Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections.
Campos, Rafael K; Garcia-Blanco, Mariano A; Bradrick, Shelton S
2017-07-09
Identification and analysis of viral host factors is a growing area of research which aims to understand the how viruses molecularly interface with the host cell. Investigations into flavivirus-host interactions has led to new discoveries in viral and cell biology, and will potentially bolster strategies to control the important diseases caused by these pathogens. Here, we address the current knowledge of prominent host factors required for the flavivirus life-cycle and mechanisms by which they promote infection.
The Use of Arabidopsis to Study Interactions between Parasitic Angiosperms and Their Plant Hosts
Goldwasser, Y.; Westwood, J. H.; Yoder, J. I.
2002-01-01
Parasitic plants invade host plants in order to rob them of water, minerals and nutrients. The consequences to the infected hosts can be debilitating and some of the world's most pernicious agricultural weeds are parasitic. Parasitic genera of the Scrophulariaceae and Orobanchaceae directly invade roots of neighboring plants via underground structures called haustoria. The mechanisms by which these parasites identify and associate with host plants present unsurpassed opportunities for studying chemical signaling in plant-plant interactions. Seeds of some parasites require specific host factors for efficient germination, thereby insuring the availability of an appropriate host root prior to germination. A second set of signal molecules is required to induce haustorium development and the beginning of heterotrophy. Later stages in parasitism also require the presence of host factors, although these have not yet been well characterized. Arabidopsis is being used as a model host plant to identify genetic loci associated with stimulating parasite germination, haustorium development, and parasite support. Arabidopsis is also being employed to explore how host plants respond to parasite attack. Current methodologies and recent findings in Arabidopsis – parasitic plant interactions will be discussed. PMID:22303205
Interaction between FMDV Lpro and transcription factor ADNP is required for viral replication
USDA-ARS?s Scientific Manuscript database
The foot-and-mouth disease virus (FMDV) leader protease (Lpro) inhibits host translation and transcription affecting the expression of several factors involved in innate immunity. In this study, we have identified the host transcription factor ADNP (activity dependent neuroprotective protein) as an ...
G Protein-Coupled Receptor Kinase 2 Promotes Flaviviridae Entry and Replication
Le Sommer, Caroline; Barrows, Nicholas J.; Bradrick, Shelton S.; Pearson, James L.; Garcia-Blanco, Mariano A.
2012-01-01
Flaviviruses cause a wide range of severe diseases ranging from encephalitis to hemorrhagic fever. Discovery of host factors that regulate the fate of flaviviruses in infected cells could provide insight into the molecular mechanisms of infection and therefore facilitate the development of anti-flaviviral drugs. We performed genome-scale siRNA screens to discover human host factors required for yellow fever virus (YFV) propagation. Using a 2×2 siRNA pool screening format and a duplicate of the screen, we identified a high confidence list of YFV host factors. To find commonalities between flaviviruses, these candidates were compared to host factors previously identified for West Nile virus (WNV) and dengue virus (DENV). This comparison highlighted a potential requirement for the G protein-coupled receptor kinase family, GRKs, for flaviviral infection. The YFV host candidate GRK2 (also known as ADRBK1) was validated both in siRNA-mediated knockdown HuH-7 cells and in GRK−/− mouse embryonic fibroblasts. Additionally, we showed that GRK2 was required for efficient propagation of DENV and Hepatitis C virus (HCV) indicating that GRK2 requirement is conserved throughout the Flaviviridae. Finally, we found that GRK2 participates in multiple distinct steps of the flavivirus life cycle by promoting both entry and RNA synthesis. Together, our findings identified GRK2 as a novel regulator of flavivirus infection and suggest that inhibition of GRK2 function may constitute a new approach for treatment of flavivirus associated diseases. PMID:23029581
G protein-coupled receptor kinase 2 promotes flaviviridae entry and replication.
Le Sommer, Caroline; Barrows, Nicholas J; Bradrick, Shelton S; Pearson, James L; Garcia-Blanco, Mariano A
2012-01-01
Flaviviruses cause a wide range of severe diseases ranging from encephalitis to hemorrhagic fever. Discovery of host factors that regulate the fate of flaviviruses in infected cells could provide insight into the molecular mechanisms of infection and therefore facilitate the development of anti-flaviviral drugs. We performed genome-scale siRNA screens to discover human host factors required for yellow fever virus (YFV) propagation. Using a 2 × 2 siRNA pool screening format and a duplicate of the screen, we identified a high confidence list of YFV host factors. To find commonalities between flaviviruses, these candidates were compared to host factors previously identified for West Nile virus (WNV) and dengue virus (DENV). This comparison highlighted a potential requirement for the G protein-coupled receptor kinase family, GRKs, for flaviviral infection. The YFV host candidate GRK2 (also known as ADRBK1) was validated both in siRNA-mediated knockdown HuH-7 cells and in GRK(-/-) mouse embryonic fibroblasts. Additionally, we showed that GRK2 was required for efficient propagation of DENV and Hepatitis C virus (HCV) indicating that GRK2 requirement is conserved throughout the Flaviviridae. Finally, we found that GRK2 participates in multiple distinct steps of the flavivirus life cycle by promoting both entry and RNA synthesis. Together, our findings identified GRK2 as a novel regulator of flavivirus infection and suggest that inhibition of GRK2 function may constitute a new approach for treatment of flavivirus associated diseases.
Targeting Host Factors to Treat West Nile and Dengue Viral Infections
Krishnan, Manoj N.; Garcia-Blanco, Mariano A.
2014-01-01
West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans. PMID:24517970
Targeting host factors to treat West Nile and dengue viral infections.
Krishnan, Manoj N; Garcia-Blanco, Mariano A
2014-02-10
West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans.
Parra-Millán, Raquel; Guerrero-Gómez, David; Ayerbe-Algaba, Rafael; Pachón-Ibáñez, Maria Eugenia; Miranda-Vizuete, Antonio
2018-01-01
ABSTRACT Acinetobacter baumannii is a significant human pathogen associated with hospital-acquired infections. While adhesion, an initial and important step in A. baumannii infection, is well characterized, the intracellular trafficking of this pathogen inside host cells remains poorly studied. Here, we demonstrate that transcription factor EB (TFEB) is activated after A. baumannii infection of human lung epithelial cells (A549). We also show that TFEB is required for the invasion and persistence inside A549 cells. Consequently, lysosomal biogenesis and autophagy activation were observed after TFEB activation which could increase the death of A549 cells. In addition, using the Caenorhabditis elegans infection model by A. baumannii, the TFEB orthologue HLH-30 was required for survival of the nematode to infection, although nuclear translocation of HLH-30 was not required. These results identify TFEB as a conserved key factor in the pathogenesis of A. baumannii. IMPORTANCE Adhesion is an initial and important step in Acinetobacter baumannii infections. However, the mechanism of entrance and persistence inside host cells is unclear and remains to be understood. In this study, we report that, in addition to its known role in host defense against Gram-positive bacterial infection, TFEB also plays an important role in the intracellular trafficking of A. baumannii in host cells. TFEB was activated shortly after A. baumannii infection and is required for its persistence within host cells. Additionally, using the C. elegans infection model by A. baumannii, the TFEB orthologue HLH-30 was required for survival of the nematode to infection, although nuclear translocation of HLH-30 was not required. PMID:29600279
Novel Permissive Cell Lines for Complete Propagation of Hepatitis C Virus
Shiokawa, Mai; Fukuhara, Takasuke; Ono, Chikako; Yamamoto, Satomi; Okamoto, Toru; Watanabe, Noriyuki; Wakita, Takaji
2014-01-01
ABSTRACT Hepatitis C virus (HCV) is a major etiologic agent of chronic liver diseases. Although the HCV life cycle has been clarified by studying laboratory strains of HCV derived from the genotype 2a JFH-1 strain (cell culture-adapted HCV [HCVcc]), the mechanisms of particle formation have not been elucidated. Recently, we showed that exogenous expression of a liver-specific microRNA, miR-122, in nonhepatic cell lines facilitates efficient replication but not particle production of HCVcc, suggesting that liver-specific host factors are required for infectious particle formation. In this study, we screened human cancer cell lines for expression of the liver-specific α-fetoprotein by using a cDNA array database and identified liver-derived JHH-4 cells and stomach-derived FU97 cells, which express liver-specific host factors comparable to Huh7 cells. These cell lines permit not only replication of HCV RNA but also particle formation upon infection with HCVcc, suggesting that hepatic differentiation participates in the expression of liver-specific host factors required for HCV propagation. HCV inhibitors targeting host and viral factors exhibited different antiviral efficacies between Huh7 and FU97 cells. Furthermore, FU97 cells exhibited higher susceptibility for propagation of HCVcc derived from the JFH-2 strain than Huh7 cells. These results suggest that hepatic differentiation participates in the expression of liver-specific host factors required for complete propagation of HCV. IMPORTANCE Previous studies have shown that liver-specific host factors are required for efficient replication of HCV RNA and formation of infectious particles. In this study, we screened human cancer cell lines for expression of the liver-specific α-fetoprotein by using a cDNA array database and identified novel permissive cell lines for complete propagation of HCVcc without any artificial manipulation. In particular, gastric cancer-derived FU97 cells exhibited a much higher susceptibility to HCVcc/JFH-2 infection than observed in Huh7 cells, suggesting that FU97 cells would be useful for further investigation of the HCV life cycle, as well as the development of therapeutic agents for chronic hepatitis C. PMID:24599999
Connor, Michael G.; Pulsifer, Amanda R.; Ceresa, Brian K.
2018-01-01
ABSTRACT Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. PMID:29463656
Ha, Connie W Y; Lam, Yan Y; Holmes, Andrew J
2014-11-28
Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging.
Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health
Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J
2014-01-01
Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018
p53 Is a Host Cell Regulator during Herpes Simplex Encephalitis.
Maruzuru, Yuhei; Koyanagi, Naoto; Takemura, Naoki; Uematsu, Satoshi; Matsubara, Daisuke; Suzuki, Yutaka; Arii, Jun; Kato, Akihisa; Kawaguchi, Yasushi
2016-08-01
p53 is a critical host cell factor in the cellular response to a broad range of stress factors. We recently reported that p53 is required for efficient herpes simplex virus 1 (HSV-1) replication in cell culture. However, a defined role for p53 in HSV-1 replication and pathogenesis in vivo remains elusive. In this study, we examined the effects of p53 on HSV-1 infection in vivo using p53-deficient mice. Following intracranial inoculation, p53 knockout reduced viral replication in the brains of mice and led to significantly reduced rates of mortality due to herpes simplex encephalitis. These results suggest that p53 is an important host cell regulator of HSV-1 replication and pathogenesis in the central nervous system (CNS). HSV-1 causes sporadic cases of encephalitis, which, even with antiviral therapy, can result in severe neurological defects and even death. Many host cell factors involved in the regulation of CNS HSV-1 infection have been investigated using genetically modified mice. However, most of these factors are immunological regulators and act via immunological pathways in order to restrict CNS HSV-1 infection. They therefore provide limited information on intrinsic host cell regulators that may be involved in the facilitation of CNS HSV-1 infection. Here we demonstrate that a host cell protein, p53, which has generally been considered a host cell restriction factor for various viral infections, is required for efficient HSV-1 replication and pathogenesis in the CNS of mice. This is the first report showing that p53 positively regulates viral replication and pathogenesis in vivo and provides insights into its molecular mechanism, which may suggest novel clinical treatment options for herpes simplex encephalitis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Charpentier, Xavier; Gabay, Joëlle E.; Reyes, Moraima; Zhu, Jing W.; Weiss, Arthur; Shuman, Howard A.
2009-01-01
Delivery of effector proteins is a process widely used by bacterial pathogens to subvert host cell functions and cause disease. Effector delivery is achieved by elaborate injection devices and can often be triggered by environmental stimuli. However, effector export by the L. pneumophila Icm/Dot Type IVB secretion system cannot be detected until the bacterium encounters a target host cell. We used chemical genetics, a perturbation strategy that utilizes small molecule inhibitors, to determine the mechanisms critical for L. pneumophila Icm/Dot activity. From a collection of more than 2,500 annotated molecules we identified specific inhibitors of effector translocation. We found that L. pneumophila effector translocation in macrophages requires host cell factors known to be involved in phagocytosis such as phosphoinositide 3-kinases, actin and tubulin. Moreover, we found that L. pneumophila phagocytosis and effector translocation also specifically require the receptor protein tyrosine phosphate phosphatases CD45 and CD148. We further show that phagocytosis is required to trigger effector delivery unless intimate contact between the bacteria and the host is artificially generated. In addition, real-time analysis of effector translocation suggests that effector export is rate-limited by phagocytosis. We propose a model in which L. pneumophila utilizes phagocytosis to initiate an intimate contact event required for the translocation of pre-synthesized effector molecules. We discuss the need for host cell participation in the initial step of the infection and its implications in the L. pneumophila lifestyle. Chemical genetic screening provides a novel approach to probe the host cell functions and factors involved in host–pathogen interactions. PMID:19578436
KLF6 and iNOS regulates apoptosis during respiratory syncytial virus infection
Mgbemena, Victoria; Segovia, Jesus; Chang, Te-Hung; Bose, Santanu
2013-01-01
Human respiratory syncytial virus (RSV) is a highly pathogenic lung-tropic virus that causes severe respiratory diseases. Enzymatic activity of inducible nitric oxide (iNOS) is required for NO generation. Although NO contributes to exaggerated lung disease during RSV infection, the role of NO in apoptosis during infection is not known. In addition, host trans-activator(s) required for iNOS gene expression during RSV infection is unknown. In the current study we have uncovered the mechanism of iNOS gene induction by identifying kruppel-like factor 6 (KLF6) as a critical transcription factor required for iNOS gene expression during RSV infection. Furthermore, we have also uncovered the role of iNOS as a critical host factor regulating apoptosis during RSV infection. PMID:23831683
Yang, Jae-Seong; Kwon, Oh Sung; Kim, Sanguk; Jang, Sung Key
2013-01-01
Successful viral infection requires intimate communication between virus and host cell, a process that absolutely requires various host proteins. However, current efforts to discover novel host proteins as therapeutic targets for viral infection are difficult. Here, we developed an integrative-genomics approach to predict human genes involved in the early steps of hepatitis C virus (HCV) infection. By integrating HCV and human protein associations, co-expression data, and tight junction-tetraspanin web specific networks, we identified host proteins required for the early steps in HCV infection. Moreover, we validated the roles of newly identified proteins in HCV infection by knocking down their expression using small interfering RNAs. Specifically, a novel host factor CD63 was shown to directly interact with HCV E2 protein. We further demonstrated that an antibody against CD63 blocked HCV infection, indicating that CD63 may serve as a new therapeutic target for HCV-related diseases. The candidate gene list provides a source for identification of new therapeutic targets. PMID:23593195
Ardourel, M; Demont, N; Debellé, F; Maillet, F; de Billy, F; Promé, J C; Dénarié, J; Truchet, G
1994-10-01
Rhizobium meliloti produces lipochitooligosaccharide nodulation NodRm factors that are required for nodulation of legume hosts. NodRm factors are O-acetylated and N-acylated by specific C16-unsaturated fatty acids. nodL mutants produce non-O-acetylated factors, and nodFE mutants produce factors with modified acyl substituents. Both mutants exhibited a significantly reduced capacity to elicit infection thread (IT) formation in alfalfa. However, once initiated, ITs developed and allowed the formation of nitrogen-fixing nodules. In contrast, double nodF/nodL mutants were unable to penetrate into legume hosts and to form ITs. Nevertheless, these mutants induced widespread cell wall tip growth in trichoblasts and other epidermal cells and were also able to elicit cortical cell activation at a distance. NodRm factor structural requirements are thus clearly more stringent for bacterial entry than for the elicitation of developmental plant responses.
Barczak, Amy K; Avraham, Roi; Singh, Shantanu; Luo, Samantha S; Zhang, Wei Ran; Bray, Mark-Anthony; Hinman, Amelia E; Thompson, Matthew; Nietupski, Raymond M; Golas, Aaron; Montgomery, Paul; Fitzgerald, Michael; Smith, Roger S; White, Dylan W; Tischler, Anna D; Carpenter, Anne E; Hung, Deborah T
2017-05-01
A key to the pathogenic success of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the capacity to survive within host macrophages. Although several factors required for this survival have been identified, a comprehensive knowledge of such factors and how they work together to manipulate the host environment to benefit bacterial survival are not well understood. To systematically identify Mtb factors required for intracellular growth, we screened an arrayed, non-redundant Mtb transposon mutant library by high-content imaging to characterize the mutant-macrophage interaction. Based on a combination of imaging features, we identified mutants impaired for intracellular survival. We then characterized the phenotype of infection with each mutant by profiling the induced macrophage cytokine response. Taking a systems-level approach to understanding the biology of identified mutants, we performed a multiparametric analysis combining pathogen and host phenotypes to predict functional relationships between mutants based on clustering. Strikingly, mutants defective in two well-known virulence factors, the ESX-1 protein secretion system and the virulence lipid phthiocerol dimycocerosate (PDIM), clustered together. Building upon the shared phenotype of loss of the macrophage type I interferon (IFN) response to infection, we found that PDIM production and export are required for coordinated secretion of ESX-1-substrates, for phagosomal permeabilization, and for downstream induction of the type I IFN response. Multiparametric clustering also identified two novel genes that are required for PDIM production and induction of the type I IFN response. Thus, multiparametric analysis combining host and pathogen infection phenotypes can be used to identify novel functional relationships between genes that play a role in infection.
RPLP1 and RPLP2 Are Essential Flavivirus Host Factors That Promote Early Viral Protein Accumulation
Campos, Rafael K.; Wong, Benjamin; Lu, Yi-Fan; Shi, Pei-Yong; Pompon, Julien
2016-01-01
ABSTRACT The Flavivirus genus contains several arthropod-borne viruses that pose global health threats, including dengue viruses (DENV), yellow fever virus (YFV), and Zika virus (ZIKV). In order to understand how these viruses replicate in human cells, we previously conducted genome-scale RNA interference screens to identify candidate host factors. In these screens, we identified ribosomal proteins RPLP1 and RPLP2 (RPLP1/2) to be among the most crucial putative host factors required for DENV and YFV infection. RPLP1/2 are phosphoproteins that bind the ribosome through interaction with another ribosomal protein, RPLP0, to form a structure termed the ribosomal stalk. RPLP1/2 were validated as essential host factors for DENV, YFV, and ZIKV infection in two human cell lines: A549 lung adenocarcinoma and HuH-7 hepatoma cells, and for productive DENV infection of Aedes aegypti mosquitoes. Depletion of RPLP1/2 caused moderate cell-line-specific effects on global protein synthesis, as determined by metabolic labeling. In A549 cells, global translation was increased, while in HuH-7 cells it was reduced, albeit both of these effects were modest. In contrast, RPLP1/2 knockdown strongly reduced early DENV protein accumulation, suggesting a requirement for RPLP1/2 in viral translation. Furthermore, knockdown of RPLP1/2 reduced levels of DENV structural proteins expressed from an exogenous transgene. We postulate that these ribosomal proteins are required for efficient translation elongation through the viral open reading frame. In summary, this work identifies RPLP1/2 as critical flaviviral host factors required for translation. IMPORTANCE Flaviviruses cause important diseases in humans. Examples of mosquito-transmitted flaviviruses include dengue, yellow fever and Zika viruses. Viruses require a plethora of cellular factors to infect cells, and the ribosome plays an essential role in all viral infections. The ribosome is a complex macromolecular machine composed of RNA and proteins and it is responsible for protein synthesis. We identified two specific ribosomal proteins that are strictly required for flavivirus infection of human cells and mosquitoes: RPLP1 and RPLP2 (RPLP1/2). These proteins are part of a structure known as the ribosomal stalk and help orchestrate the elongation phase of translation. We show that flaviviruses are particularly dependent on the function of RPLP1/2. Our findings suggest that ribosome composition is an important factor for virus translation and may represent a regulatory layer for translation of specific cellular mRNAs. PMID:27974556
Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping
2016-07-29
Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.
Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji
2017-07-05
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV-host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus-host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding.
Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji
2017-01-01
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV–host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus–host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding. PMID:28678154
Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host.
Shan, Hongying; Pasin, Fabio; Tzanetakis, Ioannis E; Simón-Mateo, Carmen; García, Juan Antonio; Rodamilans, Bernardo
2018-06-01
The Potyviridae family is a major group of plant viruses that includes c. 200 species, most of which have narrow host ranges. The potyvirid P1 leader proteinase self-cleaves from the remainder of the viral polyprotein and shows large sequence variability linked to host adaptation. P1 proteins can be classified as Type A or Type B on the basis, amongst other things, of their dependence or not on a host factor to develop their protease activity. In this work, we studied Type A proteases from the Potyviridae family, characterizing their host factor requirements. Our in vitro cleavage analyses of potyvirid P1 proteases showed that the N-terminal domain is relevant for host factor interaction and suggested that the C-terminal domain is also involved. In the absence of plant factors, the N-terminal end of Plum pox virus P1 antagonizes protease self-processing. We performed extended deletion mutagenesis analysis to define the N-terminal antagonistic domain of P1. In viral infections, removal of the P1 protease antagonistic domain led to a gain-of-function phenotype, strongly increasing local infection in a non-permissive host. Altogether, our results shed new insights into the adaptation and evolution of potyvirids. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Liu, Q; Astell, C R
1996-10-01
During replication of the minute virus of mice (MVM) genome, a dimer replicative form (RF) intermediate is resolved into two monomer RF molecules in such a way as to retain a unique sequence within the left hand hairpin terminus of the viral genome. Although the proposed mechanism for resolution of the dimer RF remains uncertain, it likely involves site-specific nicking of the dimer bridge. The RF contains two double-stranded copies of the viral genome joined by the extended 3' hairpin. Minor sequence asymmetries within the 3' hairpin allow the two halves of the dimer bridge to be distinguished. The A half contains the sequence [sequence: see text], whereas the B half contains the sequence [sequence: see text]. Using an in vitro assay, we show that only the B half of the MVM dimer bridge is nicked site-specifically when incubated with crude NS-1 protein (expressed in insect cells) and mouse LA9 cellular extract. When highly purified NS-1, the major nonstructural protein of MVM, is used in this nicking reaction, there is an absolute requirement for the LA9 cellular extract, suggesting a cellular factor (or factors) is (are) required. A series of mutations were created in the putative host factor binding region (HFBR) on the B half of the MVM dimer bridge adjacent to the NS-1 binding site. Nicking assays of these B half mutants showed that two CG motifs displaced by 10 nucleotides are important for nicking. Gel mobility shift assays demonstrated that a host factor(s) can bind to the HFBR of the B half of the dimer bridge and efficient binding depends on the presence of both CG motifs. Competitor DNA containing the wild-type HFBR sequence is able to specifically inhibit nicking of the B half, indicating that the host factor(s) bound to the HFBR is(are) essential for site-specific nicking to occur.
Newman, John W; Floyd, Rachel V; Fothergill, Joanne L
2017-08-15
Pseudomonas aeruginosa can cause complicated urinary tract infections, particularly in people with catheters, which can lead to pyelonephritis. Whilst some subgroups appear more susceptible to infection, such as the elderly and women, the contribution of other host factors and bacterial virulence factors to successful infection remains relatively understudied. In this review, we explore the potential role of P. aeruginosa virulence factors including phenazines, quorum sensing, biofilm formation and siderophores along with host factors such as Tamm-Horsfall protein, osmotic stress and iron specifically on establishment of successful infection in the urinary niche. P. aeruginosa urinary tract infections are highly antibiotic resistant and require costly and intensive treatment. By understanding the infection dynamics of this organism within this specific niche, we may be able to identify novel therapeutic strategies to enhance the use of existing antibiotics. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Barretto, Naina; Sainz, Bruno; Hussain, Snawar
2014-01-01
ABSTRACT Hepatitis C virus (HCV) infects 180 million people worldwide and is a leading cause of liver diseases such as fibrosis, cirrhosis, and hepatocellular carcinoma. It has been shown that HCV can spread to naive cells using two distinct entry mechanisms, “cell-free” entry of infectious extracellular virions that have been released by infected cells and direct “cell-to-cell” transmission. Here, we examined host cell requirements for HCV spread and found that the cholesterol uptake receptor NPC1L1, which we recently identified as being an antiviral target involved in HCV cell-free entry/spread, is also required for the cell-to-cell spread. In contrast, the very low density lipoprotein (VLDL) pathway, which is required for the secretion of cell-free infectious virus and thus has been identified as an antiviral target for blocking cell-free virus secretion/spread, is not required for cell-to-cell spread. Noting that HCV cell-free and cell-to-cell spread share some common factors but not others, we tested the therapeutic implications of these observations and demonstrate that inhibitors that target cell factors required for both forms of HCV spread exhibit synergy when used in combination with interferon (a representative inhibitor of intracellular HCV production), while inhibitors that block only cell-free spread do not. This provides insight into the mechanistic basis of synergy between interferon and HCV entry inhibitors and highlights the broader, previously unappreciated impact blocking HCV cell-to-cell spread can have on the efficacy of HCV combination therapies. IMPORTANCE HCV can spread to naive cells using distinct mechanisms: “cell-free” entry of extracellular virus and direct “cell-to-cell” transmission. Herein, we identify the host cell HCV entry factor NPC1L1 as also being required for HCV cell-to-cell spread, while showing that the VLDL pathway, which is required for the secretion of cell-free infectious virus, is not required for cell-to-cell spread. While both these host factors are considered viable antiviral targets, we demonstrate that only inhibitors that block factors required for both forms of HCV entry/spread (i.e., NPC1L1) exhibit synergy when used in combination with interferon, while inhibitors that block factors required only for cell-free spread (i.e., VLDL pathway components) do not. Thus, this study advances our understanding of HCV cell-to-cell spread, provides mechanistic insight into the basis of drug synergy, and highlights inhibition of HCV spread as a previously unappreciated consideration in HCV therapy design. PMID:24554660
A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria
Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping
2016-01-01
Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens. DOI: http://dx.doi.org/10.7554/eLife.19605.001 PMID:27472897
Reguera, Gemma; Kolter, Roberto
2005-01-01
The toxin-coregulated pilus (TCP) of Vibrio cholerae is required for intestinal colonization and cholera toxin acquisition. Here we report that TCP mediates bacterial interactions required for biofilm differentiation on chitinaceous surfaces. We also show that undifferentiated TCP− biofilms have reduced ecological fitness and, thus, that chitin colonization may represent an ecological setting outside the host in which selection for a host colonization factor may take place. PMID:15866944
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.
Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two ofmore » these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.« less
Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A; van der Linden, Giel T J; Schaminée, Joop H J; Siepel, Henk; Kleijn, David
2014-12-09
Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species.
Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A.; van der Linden, Giel T. J.; Schaminée, Joop H. J.; Siepel, Henk; Kleijn, David
2014-01-01
Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species. PMID:25422416
Xanthomonas TAL effectors hijack host basal transcription factor IIA α and γ subunits for invasion.
Ma, Ling; Wang, Qiang; Yuan, Meng; Zou, Tingting; Yin, Ping; Wang, Shiping
2018-02-05
The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria, which infect a broad range of crops and wild plant species, cause symptoms with leaf blights, streaks, spots, stripes, necrosis, wilt, cankers and gummosis on leaves, stems and fruits in a wide variety of plants via injecting their effector proteins into the host cell during infection. Among these virulent effectors, transcription activator-like effectors (TALEs) interact with the γ subunit of host transcription factor IIA (TFIIAγ) to activate the transcription of host disease susceptibility genes. Functional TFIIA is a ternary complex comprising α, β and γ subunits. However, whether TALEs recruit TFIIAα, TFIIAβ, or both remains unknown. The underlying molecular mechanisms by which TALEs mediate host susceptibility gene activation require full elucidation. Here, we show that TALEs interact with the α+γ binary subcomplex but not the α+β+γ ternary complex of rice TFIIA (holo-OsTFIIA). The transcription factor binding (TFB) regions of TALEs, which are highly conserved in Xanthomonas species, have a dominant role in these interactions. Furthermore, the interaction between TALEs and the α+γ complex exhibits robust DNA binding activity in vitro. These results collectively demonstrate that TALE-carrying pathogens hijack the host basal transcription factors TFIIAα and TFIIAγ, but not TFIIAβ, to enhance host susceptibility during pathogen infection. The uncovered mechanism widens new insights on host-microbe interaction and provide an applicable strategy to breed high-resistance crop varieties. Copyright © 2018 Elsevier Inc. All rights reserved.
Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut
Reese, Aspen T; Cho, Eugenia H; Klitzman, Bruce; Nichols, Scott P; Wisniewski, Natalie A; Villa, Max M; Durand, Heather K; Jiang, Sharon; Midani, Firas S; Nimmagadda, Sai N; O'Connell, Thomas M; Wright, Justin P; Deshusses, Marc A
2018-01-01
How host and microbial factors combine to structure gut microbial communities remains incompletely understood. Redox potential is an important environmental feature affected by both host and microbial actions. We assessed how antibiotics, which can impact host and microbial function, change redox state and how this contributes to post-antibiotic succession. We showed gut redox potential increased within hours of an antibiotic dose in mice. Host and microbial functioning changed under treatment, but shifts in redox potentials could be attributed specifically to bacterial suppression in a host-free ex vivo human gut microbiota model. Redox dynamics were linked to blooms of the bacterial family Enterobacteriaceae. Ecological succession to pre-treatment composition was associated with recovery of gut redox, but also required dispersal from unaffected gut communities. As bacterial competition for electron acceptors can be a key ecological factor structuring gut communities, these results support the potential for manipulating gut microbiota through managing bacterial respiration. PMID:29916366
Wallqvist, Anders; Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V; Kwon, Keehwan; Yu, Chenggang; Hoover, Timothy A; Reifman, Jaques
2015-12-29
Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Direct interactions with specific host proteins and the ability to influence interactions among host proteins are important components for F. tularensis to avoid host-cell defense mechanisms and successfully establish an infection. Although direct host-pathogen protein-protein binding is only one aspect of Francisella virulence, it is a critical component in directly manipulating and interfering with cellular processes in the host cell.
Wong, Hui Hui; Kumar, Pankaj; Tay, Felicia Pei Ling; Moreau, Dimitri
2015-01-01
ABSTRACT Coronaviruses are RNA viruses with a large zoonotic reservoir and propensity for host switching, representing a real threat for public health, as evidenced by severe acute respiratory syndrome (SARS) and the emerging Middle East respiratory syndrome (MERS). Cellular factors required for their replication are poorly understood. Using genome-wide small interfering RNA (siRNA) screening, we identified 83 novel genes supporting infectious bronchitis virus (IBV) replication in human cells. Thirty of these hits can be placed in a network of interactions with viral proteins and are involved in RNA splicing, membrane trafficking, and ubiquitin conjugation. In addition, our screen reveals an unexpected role for valosin-containing protein (VCP/p97) in early steps of infection. Loss of VCP inhibits a previously uncharacterized degradation of the nucleocapsid N protein. This inhibition derives from virus accumulation in early endosomes, suggesting a role for VCP in the maturation of virus-loaded endosomes. The several host factors identified in this study may provide avenues for targeted therapeutics. IMPORTANCE Coronaviruses are RNA viruses representing a real threat for public health, as evidenced by SARS and the emerging MERS. However, cellular factors required for their replication are poorly understood. Using genome-wide siRNA screening, we identified novel genes supporting infectious bronchitis virus (IBV) replication in human cells. The several host factors identified in this study may provide directions for future research on targeted therapeutics. PMID:26311884
Ishikawa, Hiroki; Ikeda, Motoko; Felipe Alves, Cristiano A.; Thiem, Suzanne M.; Kobayashi, Michihiro
2004-01-01
Host range factor 1 (HRF-1) of Lymantria dispar multinucleocapsid nucleopolyhedrovirus promotes Autographa californica MNPV replication in nonpermissive Ld652Y cells derived from L. dispar. Here we demonstrate that restricted Hyphantria cunea NPV replication in Ld652Y cells was not due to apoptosis but was likely due to global protein synthesis arrest that could be restored by HRF-1. Our data also showed that HRF-1 promoted the production of progeny virions for two other baculoviruses, Bombyx mori NPV and Spodoptera exigua MNPV, whose replication in Ld652Y cells is limited to replication of viral DNA without successful production of infectious progeny virions. Thus, HRF-1 is an essential viral factor required for productive infection of NPVs in Ld652Y cells. PMID:15507661
Ishikawa, Hiroki; Ikeda, Motoko; Alves, Cristiano A Felipe; Thiem, Suzanne M; Kobayashi, Michihiro
2004-11-01
Host range factor 1 (HRF-1) of Lymantria dispar multinucleocapsid nucleopolyhedrovirus promotes Autographa californica MNPV replication in nonpermissive Ld652Y cells derived from L. dispar. Here we demonstrate that restricted Hyphantria cunea NPV replication in Ld652Y cells was not due to apoptosis but was likely due to global protein synthesis arrest that could be restored by HRF-1. Our data also showed that HRF-1 promoted the production of progeny virions for two other baculoviruses, Bombyx mori NPV and Spodoptera exigua MNPV, whose replication in Ld652Y cells is limited to replication of viral DNA without successful production of infectious progeny virions. Thus, HRF-1 is an essential viral factor required for productive infection of NPVs in Ld652Y cells.
Human Meningitis-Associated Escherichia coli.
Kim, Kwang Sik
2016-05-01
Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using in vitro and in vivo models of the blood-brain barrier have shown that E. coli meningitis follows a high degree of bacteremia and invasion of the blood-brain barrier. E. coli invasion of the blood-brain barrier, the essential step in the development of E. coli meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to E. coli invasion of the blood-brain barrier is shown to be efficient in preventing E. coli penetration into the brain. The basis for requiring a high degree of bacteremia for E. coli penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high degree of bacteremia and E. coli invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis.
Human Meningitis-Associated Escherichia coli
KIM, KWANG SIK
2016-01-01
E. coli is the most common Gram-negative bacillary organism causing meningitis and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using in vitro and in vivo models of the blood-brain barrier have shown that E. coli meningitis follows a high-degree of bacteremia and invasion of the blood-brain barrier. E. coli invasion of the blood-brain barrier, the essentials step in the development of E. coli meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to E. coli invasion of the blood-brain barrier is shown to be efficient in preventing E. coli penetration into the brain. The basis for requiring a high-degree of bacteremia for E. coli penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high-degree of bacteremia and E. coli invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis. PMID:27223820
Mamantopoulos, Michail; Ronchi, Francesca; McCoy, Kathy D; Wullaert, Andy
2018-04-19
Several human diseases are thought to evolve due to a combination of host genetic mutations and environmental factors that include alterations in intestinal microbiota composition termed dysbiosis. Although in some cases, host genetics may shape the gut microbiota and enable it to provoke disease, experimentally disentangling cause and consequence in such host-microbe interactions requires strict control over non-genetic confounding factors. Mouse genetic studies previously proposed Nlrp6/ASC inflammasomes as innate immunity regulators of the intestinal ecosystem. In contrast, using littermate-controlled experimental setups, we recently showed that Nlrp6/ASC inflammasomes do not alter the gut microbiota composition. Our analyses indicated that maternal inheritance and long-term separate housing are non-genetic confounders that preclude the use of non-littermate mice when analyzing host genetic effects on intestinal ecology. Here, we summarize and discuss our gut microbiota analyses in inflammasome-deficient mice for illustrating the importance of littermate experimental design in studying host-microbiota interactions.
Kim, Kwang S
2012-06-01
Neonatal Escherichia coli meningitis continues to be an important cause of mortality and morbidity throughout the world. The major contributing factors to this mortality and morbidity include our incomplete knowledge on its pathogenesis and an emergence of antimicrobial-resistant E. coli. Recent reports of neonatal meningitis caused by E. coli producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge, and innovative approaches are needed to identify potential targets for prevention and therapy of E. coli meningitis. E. coli invasion of the blood-brain barrier is a prerequisite for penetration into the brain and requires specific microbial-host factors as well as microbe-specific and host-specific signaling molecules. Recent studies identified additional microbial and host factors contributing to E. coli invasion of the blood-brain barrier and elucidated their underlying mechanisms. Blockade of the microbial-host factors contributing to E. coli invasion of the blood-brain barrier was shown to be efficient in preventing E. coli penetration into the brain. Continued investigation on the microbial-host factors contributing to E. coli invasion of the blood-brain barrier is needed to identify new targets for prevention and therapy of E. coli meningitis, thereby limiting the exposure to emerging antimicrobial-resistant E. coli.
SUMO1 depletion prevents lipid droplet accumulation and HCV replication.
Akil, Abdellah; Wedeh, Ghaith; Zahid Mustafa, Mohammad; Gassama-Diagne, Ama
2016-01-01
Infection by hepatitis C virus (HCV) is a major public-health problem. Chronic infection often leads to cirrhosis, steatosis, and hepatocellular carcinoma. The life cycle of HCV depends on the host cell machinery and involves intimate interaction between viral and host proteins. However, the role of host proteins in the life cycle of HCV remains poorly understood. Here, we identify the small ubiquitin-related modifier (SUMO1) as a key host factor required for HCV replication. We performed a series of cell biology and biochemistry experiments using the HCV JFH-1 (Japanese fulminate hepatitis 1) genotype 2a strain, which produces infectious particles and recapitulates all the steps of the HCV life cycle. We observed that SUMO1 is upregulated in Huh7.5 infected cells. Reciprocally, SUMO1 was found to regulate the expression of viral core protein. Moreover, knockdown of SUMO1 using specific siRNA influenced the accumulation of lipid droplets and reduced HCV replication as measured by qRT-PCR. Thus, we identify SUMO1 as a key host factor required for HCV replication. To our knowledge, this is the first report showing that SUMO1 regulates lipid droplets in the context of viral infection. Our report provides a meaningful insight into how HCV replicates and interacts with host proteins and is of significant importance for the field of HCV and RNA viruses.
Takemoto, Kazuhiro; Aie, Kazuki
2017-05-25
Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.
The chaperonin CCTα is required for efficient transcription and replication of rabies virus.
Zhang, Jinyang; Ye, Chengjin; Ruan, Xizhen; Zan, Jie; Xu, Yunbin; Liao, Min; Zhou, Jiyong
2014-10-01
Negri bodies (NBs) are formed in the cytoplasm of rabies virus (RABV)-infected cells and are accompanied by a number of host factors to NBs, in which replication and transcription occur. Here, it was found that chaperonin containing TCP-1 subunit alpha (CCTα) relocalizes to NBs in RABV-infected cells, and that cotransfection of nucleo- and phospho-proteins of RABV is sufficient to recruit CCTα to the NBs' structure. Inhibition of CCTα expression by specific short hairpin RNA knockdown inhibited the replication and transcription of RABV. Therefore, this study showed that the host factor CCTα is associated with RABV infection and is very likely required for efficient virus transcription and replication. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.
Bacteriophages encode factors required for protection in a symbiotic mutualism.
Oliver, Kerry M; Degnan, Patrick H; Hunter, Martha S; Moran, Nancy A
2009-08-21
Bacteriophages are known to carry key virulence factors for pathogenic bacteria, but their roles in symbiotic bacteria are less well understood. The heritable symbiont Hamiltonella defensa protects the aphid Acyrthosiphon pisum from attack by the parasitoid Aphidius ervi by killing developing wasp larvae. In a controlled genetic background, we show that a toxin-encoding bacteriophage is required to produce the protective phenotype. Phage loss occurs repeatedly in laboratory-held H. defensa-infected aphid clonal lines, resulting in increased susceptibility to parasitism in each instance. Our results show that these mobile genetic elements can endow a bacterial symbiont with benefits that extend to the animal host. Thus, phages vector ecologically important traits, such as defense against parasitoids, within and among symbiont and animal host lineages.
Boyle, Jon P; Radke, Jay R
2009-07-01
This review is a historical look at work carried out over the past 50 years examining interactions of Toxoplasma with the host cell and attempts to focus on some of the seminal experiments in the field. This early work formed the foundation for more recent studies aimed at identifying the host and parasite factors mediating key Toxoplasma-host cell interactions. We focus especially on those studies that were performed in vitro and provide discussions of the following general areas: (i) establishment of the parasitophorous vacuole, (ii) the requirement of specific host cell molecules for parasite replication, (iii) the scenarios under which the host cell can resist parasite replication and/or persistence, (iv) host species-specific and host strain-specific responses to Toxoplasma infection, and (v) Toxoplasma-induced immune modulation.
Nuclear Envelope Protein SUN2 Promotes Cyclophilin-A-Dependent Steps of HIV Replication
Lahaye, Xavier; Satoh, Takeshi; Gentili, Matteo; Cerboni, Silvia; Silvin, Aymeric; Conrad, Cécile; Ahmed-Belkacem, Abdelhakim; Rodriguez, Elisa C.; Guichou, Jean-François; Bosquet, Nathalie; Piel, Matthieu; Le Grand, Roger; King, Megan C.; Pawlotsky, Jean-Michel; Manel, Nicolas
2016-01-01
Summary During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA) is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope. PMID:27149839
Ebola virus entry requires the cholesterol transporter Niemann-Pick C1.
Carette, Jan E; Raaben, Matthijs; Wong, Anthony C; Herbert, Andrew S; Obernosterer, Gregor; Mulherkar, Nirupama; Kuehne, Ana I; Kranzusch, Philip J; Griffin, April M; Ruthel, Gordon; Dal Cin, Paola; Dye, John M; Whelan, Sean P; Chandran, Kartik; Brummelkamp, Thijn R
2011-08-24
Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann-Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann-Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.
Icm/Dot-Independent Entry of Legionella pneumophila into Amoeba and Macrophage Hosts
Bandyopadhyay, Purnima; Xiao, Huifang; Coleman, Hope A.; Price-Whelan, Alexa; Steinman, Howard M.
2004-01-01
Legionella pneumophila, the causative agent of Legionnaires' disease, expresses a type IVB secretion apparatus that translocates bacterial proteins into amoeba and macrophage hosts. When stationary-phase cultures are used to infect hosts, the type IVB apparatus encoded by the icm/dot genes is required for entry, delay of phagosome-lysosome fusion, and intracellular multiplication within host cells. Null mutants with mutations in icm/dot genes are defective in these phenotypes. Here a new model is described in which hosts are infected with stationary-phase cultures that have been incubated overnight in pH 6.5 buffer. This model is called Ers treatment because it enhances the resistance to acid, hydrogen peroxide, and antibiotic stress beyond that of stationary-phase cultures. Following Ers treatment entry into amoeba and macrophage hosts does not require dotA, which is essential for Legionella virulence phenotypes when hosts are infected with stationary-phase cultures, dotB, icmF, icmV, or icmX. Defective host entry is also suppressed for null mutants with mutations in the KatA and KatB catalase-peroxidase enzymes, which are required for proper intracellular growth in amoeba and macrophage hosts. Ers treatment-induced suppression of defective entry is not associated with increased bacterial adhesion to host cells or with morphological changes in the bacterial envelope but is dependent on protein expression during Ers treatment. By using proteomic analysis, Ers treatment was shown to induce a protein predicted to contain eight tetratricopeptide repeats, a motif previously implicated in enhanced entry of L. pneumophila. Characterization of Ers treatment-dependent changes in expression is proposed as an avenue for identifying icm/dot-independent factors that function in the entry of Legionella into amoeba and macrophage hosts. PMID:15271914
Interactions of Salmonella with animals and plants.
Wiedemann, Agnès; Virlogeux-Payant, Isabelle; Chaussé, Anne-Marie; Schikora, Adam; Velge, Philippe
2014-01-01
Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.
Adaptation to the Host Environment by Plant-Pathogenic Fungi.
van der Does, H Charlotte; Rep, Martijn
2017-08-04
Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.
MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis
Abshire, Camille F.; Roy, Craig R.
2016-01-01
Vacuolar bacterial pathogens are sheltered within unique membrane-bound organelles that expand over time to support bacterial replication. These compartments sequester bacterial molecules away from host cytosolic immunosurveillance pathways that induce antimicrobial responses. The mechanisms by which the human pulmonary pathogen Legionella pneumophila maintains niche homeostasis are poorly understood. We uncovered that the Legionella-containing vacuole (LCV) required a sustained supply of host lipids during expansion. Lipids shortage resulted in LCV rupture and initiation of a host cell death response, whereas excess of host lipids increased LCVs size and housing capacity. We found that lipids uptake from serum and de novo lipogenesis are distinct redundant supply mechanisms for membrane biogenesis in Legionella-infected macrophages. During infection, the metabolic checkpoint kinase Mechanistic Target of Rapamycin (MTOR) controlled lipogenesis through the Serum Response Element Binding Protein 1 and 2 (SREBP1/2) transcription factors. In Legionella-infected macrophages a host-driven response that required the Toll-like receptors (TLRs) adaptor protein Myeloid differentiation primary response gene 88 (Myd88) dampened MTOR signaling which in turn destabilized LCVs under serum starvation. Inactivation of the host MTOR-suppression pathway revealed that L. pneumophila sustained MTOR signaling throughout its intracellular infection cycle by a process that required the upstream regulator Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and one or more Dot/Icm effector proteins. Legionella-sustained MTOR signaling facilitated LCV expansion and inhibition of the PI3K-MTOR-SREPB1/2 axis through pharmacological or genetic interference or by activation of the host MTOR-suppression response destabilized expanding LCVs, which in turn triggered cell death of infected macrophages. Our work identified a host metabolic requirement for LCV homeostasis and demonstrated that L. pneumophila has evolved to manipulate MTOR-dependent lipogenesis for optimal intracellular replication. PMID:27942021
Modulation of host cell function by Legionella pneumophila type IV effectors.
Hubber, Andree; Roy, Craig R
2010-01-01
Macrophages and protozoa ingest bacteria by phagocytosis and destroy these microbes using a conserved pathway that mediates fusion of the phagosome with lysosomes. To survive within phagocytic host cells, bacterial pathogens have evolved a variety of strategies to avoid fusion with lysosomes. A virulence strategy used by the intracellular pathogen Legionella pneumophila is to manipulate host cellular processes using bacterial proteins that are delivered into the cytosolic compartment of the host cell by a specialized secretion system called Dot/Icm. The proteins delivered by the Dot/Icm system target host factors that play evolutionarily conserved roles in controlling membrane transport in eukaryotic cells, which enables L. pneumophila to create an endoplasmic reticulum-like vacuole that supports intracellular replication in both protozoan and mammalian host cells. This review focuses on intracellular trafficking of L. pneumophila and describes how bacterial proteins contribute to modulation of host processes required for survival within host cells.
Guo, Haitao; Xu, Chunxiao; Zhou, Tianlun; Block, Timothy M; Guo, Ju-Tao
2012-01-01
Synthesis of the covalently closed circular (ccc) DNA is a critical, but not well-understood step in the life cycle of hepadnaviruses. Our previous studies favor a model that removal of genome-linked viral DNA polymerase occurs in the cytoplasm and the resulting deproteinized relaxed circular DNA (DP-rcDNA) is subsequently transported into the nucleus and converted into cccDNA. In support of this model, our current study showed that deproteinization of viral double-stranded linear (dsl) DNA also took place in the cytoplasm. Furthermore, we demonstrated that Ku80, a component of non-homologous end joining DNA repair pathway, was essential for synthesis of cccDNA from dslDNA, but not rcDNA. In an attempt to identify additional host factors regulating cccDNA biosynthesis, we found that the DP-rcDNA was produced in all tested cell lines that supported DHBV DNA replication, but cccDNA was only synthesized in the cell lines that accumulated high levels of DP-rcDNA, except for NCI-H322M and MDBK cells, which failed to synthesize cccDNA despite of the existence of nuclear DP-rcDNA. The results thus imply that while removal of the genome-linked viral DNA polymerase is most likely catalyzed by viral or ubiquitous host function(s), nuclear factors required for the conversion of DP-rcDNA into cccDNA and/or its maintenance are deficient in the above two cell lines, which could be useful tools for identification of the elusive host factors essential for cccDNA biosynthesis or maintenance.
Asrat, Seblewongel; Dugan, Aisling S.; Isberg, Ralph R.
2014-01-01
Many pathogens, particularly those that require their host for survival, have devised mechanisms to subvert the host immune response in order to survive and replicate intracellularly. Legionella pneumophila, the causative agent of Legionnaires' disease, promotes intracellular growth by translocating proteins into its host cytosol through its type IV protein secretion machinery. At least 5 of the bacterial translocated effectors interfere with the function of host cell elongation factors, blocking translation and causing the induction of a unique host cell transcriptional profile. In addition, L. pneumophila also interferes with translation initiation, by preventing cap-dependent translation in host cells. We demonstrate here that protein translation inhibition by L. pneumophila leads to a frustrated host MAP kinase response, where genes involved in the pathway are transcribed but fail to be translated due to the bacterium-induced protein synthesis inhibition. Surprisingly, few pro-inflammatory cytokines, such as IL-1α and IL-1β, bypass this inhibition and get synthesized in the presence of Legionella effectors. We show that the selective synthesis of these genes requires MyD88 signaling and takes place in both infected cells that harbor bacteria and neighboring bystander cells. Our findings offer a perspective of how host cells are able to cope with pathogen-encoded activities that disrupt normal cellular process and initiate a successful inflammatory response. PMID:25058342
Sindhwani, Aastha; Kaur, Harmeet; Tuli, Amit
2017-01-01
Salmonella enterica serovar typhimurium extensively remodels the host late endocytic compartments to establish its vacuolar niche within the host cells conducive for its replication, also known as the Salmonella-containing vacuole (SCV). By maintaining a prolonged interaction with late endosomes and lysosomes of the host cells in the form of interconnected network of tubules (Salmonella-induced filaments or SIFs), Salmonella gains access to both membrane and fluid-phase cargo from these compartments. This is essential for maintaining SCV membrane integrity and for bacterial intravacuolar nutrition. Here, we have identified the multisubunit lysosomal tethering factor—HOPS (HOmotypic fusion and Protein Sorting) complex as a crucial host factor facilitating delivery of late endosomal and lysosomal content to SCVs, providing membrane for SIF formation, and nutrients for intravacuolar bacterial replication. Accordingly, depletion of HOPS subunits significantly reduced the bacterial load in non-phagocytic and phagocytic cells as well as in a mouse model of Salmonella infection. We found that Salmonella effector SifA in complex with its binding partner; SKIP, interacts with HOPS subunit Vps39 and mediates recruitment of this tethering factor to SCV compartments. The lysosomal small GTPase Arl8b that binds to, and promotes membrane localization of Vps41 (and other HOPS subunits) was also required for HOPS recruitment to SCVs and SIFs. Our findings suggest that Salmonella recruits the host late endosomal and lysosomal membrane fusion machinery to its vacuolar niche for access to host membrane and nutrients, ensuring its intracellular survival and replication. PMID:29084291
Wada, C; Imai, M; Yura, T
1987-01-01
Replication of F factor or mini-F plasmid is strongly inhibited in the rpoH (htpR) mutants of Escherichia coli deficient in the sigma factor (sigma 32) known to be required for heat shock gene expression. Transcription of the mini-F repE gene encoding a replication initiator protein (E protein) was examined by operon fusion and by direct determination of repE mRNA. The synthesis rate and the level of repE mRNA were found to increase transiently upon temperature upshift (30 degrees C to 42 degrees C) in wild-type cells but to decrease rapidly in the rpoH mutants. Thus sigma 32 appeared to be directly involved in transcription of repE whose product, E protein, in turn activates DNA replication from the mini-F ori2 region. This scheme of host-controlled plasmid replication is further supported by the analysis of transcription in vitro: RNA synthesis can be initiated from the repE promoter by a minor form of RNA polymerase containing sigma 32 but not by the major polymerase containing the normal sigma factor sigma 70. The sigma 32-mediated transcription from the repE promoter is strongly inhibited by the E protein. We conclude that transcription of the mini-F repE gene is mediated by the host transcription factor sigma 32 and is negatively controlled by its own product. Images PMID:2447584
Herren, Jeremy K; Lemaitre, Bruno
2011-09-01
Spiroplasma poulsonii and its relatives are facultative, vertically transmitted endosymbionts harboured by several Drosophila species. Their long-term survival requires not only evasion of host immunity, but also that Spiroplasma does not have a net detrimental effect on host fitness. These requirements provide the central framework for interactions between host and endosymbiont. We use Drosophila melaogaster as a model to unravel aspects of the mechanistic basis of endosymbiont-host immune interactions. Here we show that Spiroplasma does not activate an immune response in Drosophila and is not susceptible to either the cellular or humoral arms of the Drosophila immune system. We gain unexpected insight into host factors that can promote Spiroplasma growth by showing that activation of Toll and Imd immune pathways actually increases Sprioplasma titre. Spiroplasma-mediated protection is not observed for variety of fungal and bacterial pathogens and Spiroplasma actually increases susceptibility of Drosophila to certain Gram-negative pathogens. Finally, we show that the growth of endosymbiotic Spiroplasma is apparently self-regulated, as suggested by the unhindered proliferation of non-endosymbiotic Spiroplasma citri in fly haemolymph. © 2011 Blackwell Publishing Ltd.
Human Cytomegalovirus Strategies to Maintain and Promote mRNA Translation
Vincent, Heather A.; Ziehr, Benjamin; Moorman, Nathaniel J.
2016-01-01
mRNA translation requires the ordered assembly of translation initiation factors and ribosomal subunits on a transcript. Host signaling pathways regulate each step in this process to match levels of protein synthesis to environmental cues. In response to infection, cells activate multiple defenses that limit viral protein synthesis, which viruses must counteract to successfully replicate. Human cytomegalovirus (HCMV) inhibits host defenses that limit viral protein expression and manipulates host signaling pathways to promote the expression of both host and viral proteins necessary for virus replication. Here we review key regulatory steps in mRNA translation, and the strategies used by HCMV to maintain protein synthesis in infected cells. PMID:27089357
Host factors that promote retrotransposon integration are similar in distantly related eukaryotes
Rai, Sudhir Kumar; Sangesland, Maya; Lee, Michael; Esnault, Caroline; Cui, Yujin; Chatterjee, Atreyi Ghatak
2017-01-01
Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements. PMID:29232693
Host factors that promote retrotransposon integration are similar in distantly related eukaryotes.
Rai, Sudhir Kumar; Sangesland, Maya; Lee, Michael; Esnault, Caroline; Cui, Yujin; Chatterjee, Atreyi Ghatak; Levin, Henry L
2017-12-01
Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.
Host structural carbohydrate induces vector transmission of a bacterial plant pathogen.
Killiny, Nabil; Almeida, Rodrigo P P
2009-12-29
Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.
Engineering tolerance to industrially relevant stress factors in yeast cell factories.
Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R; Thevelein, Johan M
2017-06-01
The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. © FEMS 2017.
Engineering tolerance to industrially relevant stress factors in yeast cell factories
Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R.
2017-01-01
Abstract The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. PMID:28586408
Leishmania Hijacks Myeloid Cells for Immune Escape
Martínez-López, María; Soto, Manuel; Iborra, Salvador; Sancho, David
2018-01-01
Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited. PMID:29867798
ROS is Required for Alternatively Activated Macrophage Differentiation | Center for Cancer Research
Macrophages are key regulators in host inflammatory responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are responsible for inducing macrophage differentiation from monocytes. GM-CSF or M-CSF-differentiated macrophages can be further differentiated, or polarized, to more specialized cells. Classically activated,
Rose, Patrick P; Hanna, Sheri L; Spiridigliozzi, Anna; Wannissorn, Nattha; Beiting, Daniel P; Ross, Susan R; Hardy, Richard W; Bambina, Shelly A; Heise, Mark T; Cherry, Sara
2011-08-18
Alphaviruses, including several emerging human pathogens, are a large family of mosquito-borne viruses with Sindbis virus being a prototypical member of the genus. The host factor requirements and receptors for entry of this class of viruses remain obscure. Using a Drosophila system, we identified the divalent metal ion transporter natural resistance-associated macrophage protein (NRAMP) as a host cell surface molecule required for Sindbis virus binding and entry into Drosophila cells. Consequently, flies mutant for dNRAMP were protected from virus infection. NRAMP2, the ubiquitously expressed vertebrate homolog, mediated binding and infection of Sindbis virus into mammalian cells, and murine cells deficient for NRAMP2 were nonpermissive to infection. Alphavirus glycoprotein chimeras demonstrated that the requirement for NRAMP2 is at the level of Sindbis virus entry. Given the conserved structure of alphavirus glycoproteins, and the widespread use of transporters for viral entry, other alphaviruses may use conserved multipass membrane proteins for infection. Copyright © 2011 Elsevier Inc. All rights reserved.
Emerging and re-emerging infections.
Lim, V K
1999-06-01
An emerging infection is defined as an infection which has newly appeared in a population while a re-emerging infection is one which has existed in the past but its incidence is rapidly increasing. The reasons for the emergence and re-emergence of infections are not well understood but appear to be associated with factors that involve the pathogen, the host and the environment. These factors are often inter-related and act together in a complex manner to bring about changes in patterns of infection. Pathogens are extremely resourceful and possess mechanisms to adapt to new hosts and environments as well as to acquire new virulence traits. Host factors include herd immunity, social behaviour and demographics. Environmental factors like the climate, deforestation and new technologies have an impact on the emergence of infections. The challenge is to contain an infection when it emerges but more importantly to prevent its emergence in the first place. As the emergence of an infection is complex and multifactorial, a multidisciplinary approach is required. Health based strategies alone are insufficient. Social, economic and environmental measures and the political will to implement appropriate policies are equally important.
Insights into Vibrio cholerae Intestinal Colonization from Monitoring Fluorescently Labeled Bacteria
Millet, Yves A.; Alvarez, David; Ringgaard, Simon; von Andrian, Ulrich H.; Davis, Brigid M.; Waldor, Matthew K.
2014-01-01
Vibrio cholerae, the agent of cholera, is a motile non-invasive pathogen that colonizes the small intestine (SI). Most of our knowledge of the processes required for V. cholerae intestinal colonization is derived from enumeration of wt and mutant V. cholerae recovered from orogastrically infected infant mice. There is limited knowledge of the distribution of V. cholerae within the SI, particularly its localization along the villous axis, or of the bacterial and host factors that account for this distribution. Here, using confocal and intravital two-photon microscopy to monitor the localization of fluorescently tagged V. cholerae strains, we uncovered unexpected and previously unrecognized features of V. cholerae intestinal colonization. Direct visualization of the pathogen within the intestine revealed that the majority of V. cholerae microcolonies attached to the intestinal epithelium arise from single cells, and that there are notable regiospecific aspects to V. cholerae localization and factors required for colonization. In the proximal SI, V. cholerae reside exclusively within the developing intestinal crypts, but they are not restricted to the crypts in the more distal SI. Unexpectedly, V. cholerae motility proved to be a regiospecific colonization factor that is critical for colonization of the proximal, but not the distal, SI. Furthermore, neither motility nor chemotaxis were required for proper V. cholerae distribution along the villous axis or in crypts, suggesting that yet undefined processes enable the pathogen to find its niches outside the intestinal lumen. Finally, our observations suggest that host mucins are a key factor limiting V. cholerae intestinal colonization, particularly in the proximal SI where there appears to be a more abundant mucus layer. Collectively, our findings demonstrate the potent capacity of direct pathogen visualization during infection to deepen our understanding of host pathogen interactions. PMID:25275396
Ibrahim, Nouhou; Wicklund, April; Wiebe, Matthew S
2011-11-01
The barrier to autointegration factor (BAF) is an essential cellular protein with functions in mitotic nuclear reassembly, retroviral preintegration complex stability, and transcriptional regulation. Molecular properties of BAF include the ability to bind double-stranded DNA in a sequence-independent manner, homodimerize, and bind proteins containing a LEM domain. These capabilities allow BAF to compact DNA and assemble higher-order nucleoprotein complexes, the nature of which is poorly understood. Recently, it was revealed that BAF also acts as a potent host defense against poxviral DNA replication in the cytoplasm. Here, we extend these observations by examining the molecular mechanism through which BAF acts as a host defense against vaccinia virus replication and cytoplasmic DNA in general. Interestingly, BAF rapidly relocalizes to transfected DNA from a variety of sources, demonstrating that BAF's activity as a host defense factor is not limited to poxviral infection. BAF's relocalization to cytoplasmic foreign DNA is highly dependent upon its DNA binding and dimerization properties but does not appear to require its LEM domain binding activity. However, the LEM domain protein emerin is recruited to cytoplasmic DNA in a BAF-dependent manner during both transfection and vaccinia virus infection. Finally, we demonstrate that the DNA binding and dimerization capabilities of BAF are essential for its function as an antipoxviral effector, while the presence of emerin is not required. Together, these data provide further mechanistic insight into which of BAF's molecular properties are employed by cells to impair the replication of poxviruses or respond to foreign DNA in general.
A CRISPR toolbox to study virus–host interactions
Puschnik, Andreas S.; Majzoub, Karim; Ooi, Yaw Shin; Carette, Jan E.
2018-01-01
Viruses depend on their hosts to complete their replication cycles; they exploit cellular receptors for entry and hijack cellular functions to replicate their genome, assemble progeny virions and spread. Recently, genome-scale CRISPR–Cas screens have been used to identify host factors that are required for virus replication, including the replication of clinically relevant viruses such as Zika virus, West Nile virus, dengue virus and hepatitis C virus. In this Review, we discuss the technical aspects of genome-scale knockout screens using CRISPR–Cas technology, and we compare these screens with alternative genetic screening technologies. The relative ease of use and reproducibility of CRISPR–Cas make it a powerful tool for probing virus–host interactions and for identifying new antiviral targets. PMID:28420884
Viral Interference and Persistence in Mosquito-Borne Flaviviruses.
Salas-Benito, Juan Santiago; De Nova-Ocampo, Mónica
2015-01-01
Mosquito-borne flaviviruses are important pathogens for humans, and the detection of two or more flaviviruses cocirculating in the same geographic area has often been reported. However, the epidemiological impact remains to be determined. Mosquito-borne flaviviruses are primarily transmitted through Aedes and Culex mosquitoes; these viruses establish a life-long or persistent infection without apparent pathological effects. This establishment requires a balance between virus replication and the antiviral host response. Viral interference is a phenomenon whereby one virus inhibits the replication of other viruses, and this condition is frequently associated with persistent infections. Viral interference and persistent infection are determined by several factors, such as defective interfering particles, competition for cellular factors required for translation/replication, and the host antiviral response. The interaction between two flaviviruses typically results in viral interference, indicating that these viruses share common features during the replicative cycle in the vector. The potential mechanisms involved in these processes are reviewed here.
Tejeda-Dominguez, Farid; Huerta-Cantillo, Jazmin; Chavez-Dueñas, Lucia; Navarro-Garcia, Fernando
2017-03-28
The type 3 secretion system (T3SS) is essential for bacterial virulence through delivering effector proteins directly into the host cytosol. Here, we identified an alternative delivery mechanism of virulence factors mediated by the T3SS, which consists of the association of extracellularly secreted proteins from bacteria with the T3SS to gain access to the host cytosol. Both EspC, a protein secreted as an enteropathogenic Escherichia coli (EPEC) autotransporter, and YopH, a protein detected on the surface of Yersinia , require a functional T3SS for host cell internalization; here we provide biophysical and molecular evidence to support the concept of the EspC translocation mechanism, which requires (i) an interaction between EspA and an EspC middle segment, (ii) an EspC translocation motif (21 residues that are shared with the YopH translocation motif), (iii) increases in the association and dissociation rates of EspC mediated by EspA interacting with EspD, and (iv) an interaction of EspC with the EspD/EspB translocon pore. Interestingly, this novel mechanism does not exclude the injection model (i.e., EspF) operating through the T3SS conduit; therefore, T3SS can be functioning as an internal conduit or as an external railway, which can be used to reach the translocator pore, and this mechanism appears to be conserved among different T3SS-dependent pathogens. IMPORTANCE The type 3 secretion system is essential for injection of virulence factors, which are delivered directly into the cytosol of the host cells for usurping and subverting host processes. Recent studies have shown that these effectors proteins indeed travel inside an "injectisome" conduit through a single step of translocation by connecting the bacterium and host cell cytoplasms. However, all findings are not compatible with this model. For example, both YopH, a protein detected on the surface of Yersinia , and EspC, an autotransporter protein secreted by enteropathogenic E. coli , require a functional T3SS for host cell translocation. Both proteins have an intermediate extracellular step before their T3SS-dependent translocation. Here, we show an alternative delivery mechanism for these extracellularly secreted virulence factors that are then incorporated into the T3SS to enter the cells; this novel mechanism coexists with but diverges from the canonical injection model that involves the passage of the protein inside the injectisome. Copyright © 2017 Tejeda-Dominguez et al.
Host-regulated Hepatitis B Virus Capsid Assembly in a Mammalian Cell-free System.
Liu, Kuancheng; Hu, Jianming
2018-04-20
The hepatitis B virus (HBV) is an important global human pathogen and represents a major cause of hepatitis, liver cirrhosis and liver cancer. The HBV capsid is composed of multiple copies of a single viral protein, the capsid or core protein (HBc), plays multiple roles in the viral life cycle, and has emerged recently as a major target for developing antiviral therapies against HBV infection. Although several systems have been developed to study HBV capsid assembly, including heterologous overexpression systems like bacteria and insect cells, in vitro assembly using purified protein, and mammalian cell culture systems, the requirement for non-physiological concentrations of HBc and salts and the difficulty in manipulating host regulators of assembly presents major limitations for detailed studies on capsid assembly under physiologically relevant conditions. We have recently developed a mammalian cell-free system based on the rabbit reticulocyte lysate (RRL), in which HBc is expressed at physiological concentrations and assembles into capsids under near-physiological conditions. This system has already revealed HBc assembly requirements that are not anticipated based on previous assembly systems. Furthermore, capsid assembly in this system is regulated by endogenous host factors that can be readily manipulated. Here we present a detailed protocol for this cell-free capsid assembly system, including an illustration on how to manipulate host factors that regulate assembly.
Leveraging Commercial Communication Satellites to support the Space Situational
NASA Astrophysics Data System (ADS)
Deaver, T.
The majority of USSTRATCOM detect and track requirements in the geosynchronous regime could be met via strategic placement of medium grade optical sensors on select geosynchronous satellites at relatively low cost in less than 48 months. An architecture which includes hosting SSA sensors on eight to ten commercial communication satellites could provide for highly accurate, timely and relatively inexpensive detect and track capabilities. The major factors considered when hosting any sensor on a commercial communications satellite are size, weight (mass) and power or SWAP. Additional sensor specific items must also be considered to form a complete feasibility analysis. These include data rate, mounting constraints, thermal balance, timing accuracy, and attitude stability requirements. All of these factors directly impact the cost and flexibility of hosting such a sensor on a geosynchronous communication satellite. By choosing a relatively light weight, low power consumption sensor which requires a small amount of bandwidth to transmit its data, the cost of hosting the sensor is kept to a minimum. Once the type of sensor or sensors is identified, the next step is to identify idea geosynchronous locations for the "hosted" sensors. Once these locations are identified, then one would identify a potential host which needs to be replaced within the desired timeframe. Once the host is identified, then the satellite owner / operator should be approached about hosting a "neighborhood" watch sensor aboard their spacecraft. Commercial satellites are routinely replaced based on age, lack of available station keeping fuel or to allow a service provider to upgrade its capabilities. Each commercial communication satellite operator maintains a plan of replacing spacecraft. Between the two largest commercial SATCOM providers, INTELSAT and SES, six to eight spacecraft will be replaced each year (100 plus spacecraft with 15 year average lifetimes). The satellites are usually procured, designed, built, launched and operational within 36 months. In order for the US Government to adapt to this timeline, a sensor specification would need to be established as well as a sensor procurement pipeline. The sensors would then be provided to the satellite bus manufacturer for integration onto the bus. The spacecraft would then be launched and operated by the commercial SATCOM operator for the life of the spacecraft. Based on this approach, it is highly conceivable that a complete geosynchronous "neighborhood" watch program could be completed within 48 months of initiation.
Papenfort, Kai; Espinosa, Elena; Casadesús, Josep; Vogel, Jörg
2015-08-25
Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σ(S) and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σ(S) and, together, RprA and σ(S) orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer.
HSPA5 is an essential host factor for Ebola virus infection.
Reid, St Patrick; Shurtleff, Amy C; Costantino, Julie A; Tritsch, Sarah R; Retterer, Cary; Spurgers, Kevin B; Bavari, Sina
2014-09-01
Development of novel strategies targeting the highly virulent ebolaviruses is urgently required. A proteomic study identified the ER chaperone HSPA5 as an ebolavirus-associated host protein. Here, we show using the HSPA5 inhibitor (-)- epigallocatechin gallate (EGCG) that the chaperone is essential for virus infection, thereby demonstrating a functional significance for the association. Furthermore, in vitro and in vivo gene targeting impaired viral replication and protected animals in a lethal infection model. These findings demonstrate that HSPA5 is vital for replication and can serve as a viable target for the design of host-based countermeasures. Published by Elsevier B.V.
A synthetic review of notoedres species mites and mange
Foley, Janet E.; Serieys, L.E.; Stephenson, N.; Riley, S.; Foley, C.; Jennings, M.; Wengert, G.; Vickers, W.; Boydston, Erin E.; Lyren, Lisa L.; Moriarty, J.; Clifford, D.L.
2016-01-01
Notoedric mange, caused by obligately parasitic sarcoptiform Notoedres mites, is associated with potentially fatal dermatitis with secondary systemic disease in small mammals, felids and procyonids among others, as well as an occasional zoonosis. We describe clinical spectra in non-chiropteran hosts, review risk factors and summarize ecological and epidemiological studies. The genus is disproportionately represented on rodents. Disease in felids and procyonids ranges from very mild to death. Knowledge of the geographical distribution of the mites is highly inadequate, with focal hot spots known for Notoedres cati in domestic cats and bobcats. Predisposing genetic and immunological factors are not known, except that co-infection with other parasites and anticoagulant rodenticide toxicoses may contribute to severe disease. Treatment of individual animals is typically successful with macrocytic lactones such as selamectin, but herd or wildlife population treatment has not been undertaken. Transmission requires close contact and typically is within a host species. Notoedric mange can kill half all individuals in a population and regulate host population below non-diseased density for decades, consistent with frequency-dependent transmission or spillover from other hosts. Epidemics are increasingly identified in various hosts, suggesting global change in suitable environmental conditions or increased reporting bias.
Lam, Grace Y; Cemma, Marija; Muise, Aleixo M; Higgins, Darren E; Brumell, John H
2013-07-01
Listeria monocytogenes is a bacterial pathogen that can escape the phagosome and replicate in the cytosol of host cells during infection. We previously observed that a population (up to 35%) of L. monocytogenes strain 10403S colocalize with the macroautophagy marker LC3 at 1 h postinfection. This is thought to give rise to spacious Listeria-containing phagosomes (SLAPs), a membrane-bound compartment harboring slow-growing bacteria that is associated with persistent infection. Here, we examined the host and bacterial factors that mediate LC3 recruitment to bacteria at 1 h postinfection. At this early time point, LC3(+) bacteria were present within single-membrane phagosomes that are LAMP1(+). Protein ubiquitination is known to play a role in targeting cytosolic L. monocytogenes to macroautophagy. However, we found that neither protein ubiquitination nor the ubiquitin-binding adaptor SQSTM1/p62 are associated with LC3(+) bacteria at 1 h postinfection. Reactive oxygen species (ROS) production by the CYBB/NOX2 NADPH oxidase was also required for LC3 recruitment to bacteria at 1 h postinfection and for subsequent SLAP formation. Diacylglycerol is an upstream activator of the CYBB/NOX2 NADPH oxidase, and its production by both bacterial and host phospholipases was required for LC3 recruitment to bacteria. Our data suggest that the LC3-associated phagocytosis (LAP) pathway, which is distinct from macroautophagy, targets L. monocytogenes during the early stage of infection within host macrophages and allows establishment of an intracellular niche (SLAPs) associated with persistent infection.
TIA-1 and TIAR interact with 5'-UTR of enterovirus 71 genome and facilitate viral replication.
Wang, Xiaohui; Wang, Huanru; Li, Yixuan; Jin, Yu; Chu, Ying; Su, Airong; Wu, Zhiwei
2015-10-16
Enterovirus 71 is one of the major causative pathogens of HFMD in children. Upon infection, the viral RNA is translated in an IRES-dependent manner and requires several host factors for effective replication. Here, we found that T-cell-restricted intracellular antigen 1 (TIA-1), and TIA-1 related protein (TIAR) were translocated from nucleus to cytoplasm after EV71 infection and localized to the sites of viral replication. We found that TIA-1 and TIAR can facilitate EV71 replication by enhancing the viral genome synthesis in host cells. We demonstrated that both proteins bound to the stem-loop I of 5'-UTR of viral genome and improved the stability of viral genomic RNA. Our results suggest that TIA-1 and TIAR are two new host factors that interact with 5-UTR of EV71 genome and positively regulate viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.
Inefficiencies in water project design and operation in the third world: An economic perspective
NASA Astrophysics Data System (ADS)
Howe, Charles W.; Dixon, John A.
1993-07-01
Water projects in less developed countries (LDCs) frequently are poorly operated and maintained. As a result, project benefits and development impacts fall short of plans. The problems begin in the project identification, design, and construction stages: donor and host country biases lead to inappropriate projects, unsustainable technologies, and shoddy construction. Later operation and maintenance are then difficult or impossible. Causal factors include donor desire to build monuments and sell technology, provision of excessive capital to favored sectors or institutions, and an unwillingness to require a reasonable quid pro quo from the host country. Host country factors include excessive administrative centralization, lack of rewards for good operation and maintenance, and widespread corruption in forms that seriously distort allocative efficiency. Until individual actors on both sides can be motivated to pursue the long-run good of the LDC, Third World water projects will continue to have low or negative net payoffs.
Vincent, Carr D; Vogel, Joseph P
2006-08-01
Many bacterial pathogens require a functional type IV secretion system (T4SS) for virulence. Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Dot/Icm T4SS to inject a large number of protein substrates into its host, thereby altering phagosome trafficking. The L. pneumophila T4SS substrate SdeA has been shown to require the accessory factor IcmS for its export. IcmS, defined as a type IV adaptor, exists as a heterodimer with IcmW and this complex functions in a manner similar to a type III secretion chaperone. Here we report an interaction between IcmS and the previously identified virulence factor LvgA. Similar to the icmS mutant, the lvgA mutant appears to assemble a fully functional Dot/Icm complex. Both LvgA and IcmS are small, acidic proteins localized to the cytoplasm and are not exported by the Dot/Icm system, suggesting they form a novel type IV adaptor complex. Inactivation of lvgA causes a minimal defect in growth in the human monocytic cell line U937 and the environmental host Acanthamoeba castellanii. However, the lvgA mutant was severely attenuated for intracellular growth of L. pneumophila in mouse macrophages, suggesting LvgA may be a critical factor that confers host specificity.
Yong, Kamuela E; Mubayi, Anuj; Kribs, Christopher M
2015-11-01
The parasite Trypanosoma cruzi, spread by triatomine vectors, affects over 100 mammalian species throughout the Americas, including humans, in whom it causes Chagas' disease. In the U.S., only a few autochthonous cases have been documented in humans, but prevalence is high in sylvatic hosts (primarily raccoons in the southeast and woodrats in Texas). The sylvatic transmission of T. cruzi is spread by the vector species Triatoma sanguisuga and Triatoma gerstaeckeri biting their preferred hosts and thus creating multiple interacting vector-host cycles. The goal of this study is to quantify the rate of contacts between different host and vector species native to Texas using an agent-based model framework. The contact rates, which represent bites, are required to estimate transmission coefficients, which can be applied to models of infection dynamics. In addition to quantitative estimates, results confirm host irritability (in conjunction with host density) and vector starvation thresholds and dispersal as determining factors for vector density as well as host-vector contact rates. Copyright © 2015 Elsevier B.V. All rights reserved.
Hashimoto, Masayoshi; Neriya, Yutaro; Yamaji, Yasuyuki; Namba, Shigetou
2016-01-01
The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species. PMID:27833593
USDA-ARS?s Scientific Manuscript database
Objectives: To determine the roles of host and dietary factors in matching increases in physiological requirements for zinc (Zn) during late pregnancy and early lactation in women whose major dietary staple is maize with and without phytate reduction. Methods: Subjects were 22 indigenous Guatemalan ...
Lihoradova, Olga; Ikegami, Tetsuro
2014-01-01
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease characterized by a high rate of abortion in ruminants, and febrile illness, hemorrhagic fever, retinitis and encephalitis in humans. RVF is caused by the RVF virus (RVFV), belonging to the genus Phlebovirus of the family Bunyaviridae . RVFV encodes a major virulence factor, NSs , which is dispensable for viral replication, yet required for evasion of host innate immune responses. RVFV NSs inhibits host gene upregulation at the transcriptional level, while promoting viral translation in the cytoplasm. In this article, we summarize the virology and pathology of RVF, and countermeasure development for RVF, with emphasis on NSs function and applications.
Lihoradova, Olga; Ikegami, Tetsuro
2014-01-01
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease characterized by a high rate of abortion in ruminants, and febrile illness, hemorrhagic fever, retinitis and encephalitis in humans. RVF is caused by the RVF virus (RVFV), belonging to the genus Phlebovirus of the family Bunyaviridae. RVFV encodes a major virulence factor, NSs, which is dispensable for viral replication, yet required for evasion of host innate immune responses. RVFV NSs inhibits host gene upregulation at the transcriptional level, while promoting viral translation in the cytoplasm. In this article, we summarize the virology and pathology of RVF, and countermeasure development for RVF, with emphasis on NSs function and applications. PMID:24910709
Mylonakis, Eleftherios; Casadevall, Arturo; Ausubel, Frederick M
2007-07-27
Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host-fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.
Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang; Liu, Chao; Zhang, Hui
2015-12-01
Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. Copyright © 2015 Elsevier Inc. All rights reserved.
Filone, Claire Marie; Hanna, Sheri L; Caino, M Cecilia; Bambina, Shelly; Doms, Robert W; Cherry, Sara
2010-11-24
As an arthropod-borne human pathogen, Rift Valley fever virus (RVFV) cycles between an insect vector and mammalian hosts. Little is known about the cellular requirements for infection in either host. Here we developed a tissue culture model for RVFV infection of human and insect cells that is amenable to high-throughput screening. Using this approach we screened a library of 1280 small molecules with pharmacologically defined activities and identified 59 drugs that inhibited RVFV infection with 15 inhibiting RVFV replication in both human and insect cells. Amongst the 15 inhibitors that blocked infection in both hosts was a subset that inhibits protein kinase C. Further studies found that infection is dependent upon the novel protein kinase C isozyme epsilon (PKCε) in both human and insect cells as well as in adult flies. Altogether, these data show that inhibition of cellular factors required for early steps in the infection cycle including PKCε can block RVFV infection, and may represent a starting point for the development of anti-RVFV therapeutics.
Rich, Mélanie K.
2015-01-01
Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) GIBBERELLIC ACID INSENSITIVE, REPRESSOR of GIBBERELLIC ACID INSENSITIVE, and SCARECROW (GRAS)-type transcription factor, ATYPICAL ARBUSCULE (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of REQUIRED FOR ARBUSCULAR MYCORRHIZA1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function. PMID:25971550
Rich, Mélanie K; Schorderet, Martine; Bapaume, Laure; Falquet, Laurent; Morel, Patrice; Vandenbussche, Michiel; Reinhardt, Didier
2015-07-01
Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) Gibberellic Acid Insensitive, Repressor of Gibberellic Acid Insensitive, and Scarecrow (GRAS)-type transcription factor, Atypical Arbuscule (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of Required For Arbuscular Mycorrhiza1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function. © 2015 American Society of Plant Biologists. All Rights Reserved.
Interferon in lyssavirus infection.
Rieder, Martina; Finke, Stefan; Conzelmann, Karl-Klaus
2012-01-01
Rabies is a zoonosis still claiming more than 50 000 human deaths per year. Typically, human cases are due to infection with rabies virus, the prototype of the Lyssavirus genus, but sporadic cases of rabies-like encephalitis caused by other lyssaviruses have been reported. In contrast to rabies virus, which has an extremely broad host range including many terrestrial warm-blooded animals, rabies-related viruses are associated predominantly with bats and rarely infect terrestrial species. In spite of a very close genetic relationship of rabies and rabies-related viruses, the factors determining the limited host range of rabies-related viruses are not clear. In the past years the importance of viral countermeasures against the host type I interferon system for establishment of an infection became evident. The rabies virus phosphoprotein (P) has emerged as a critical factor required for paralysing the signalling cascades leading to transcriptional activation of interferon genes as well as interferon signalling pathways, thereby limiting expression of antiviral and immune stimulatory genes. Comparative studies would be of interest in order to determine whether differential abilities of the lyssavirus P proteins contribute to the restricted host range of lyssaviruses.
NASA Astrophysics Data System (ADS)
Kristie, Thomas M.; Vogel, Jodi L.; Sears, Amy E.
1999-02-01
After a primary infection, herpes simplex virus is maintained in a latent state in neurons of sensory ganglia until complex stimuli reactivate viral lytic replication. Although the mechanisms governing reactivation from the latent state remain unknown, the regulated expression of the viral immediate early genes represents a critical point in this process. These genes are controlled by transcription enhancer complexes whose assembly requires and is coordinated by the cellular C1 factor (host cell factor). In contrast to other tissues, the C1 factor is not detected in the nuclei of sensory neurons. Experimental conditions that induce the reactivation of herpes simplex virus in mouse model systems result in rapid nuclear localization of the protein, indicating that the C1 factor is sequestered in these cells until reactivation signals induce a redistribution of the protein. The regulated localization suggests that C1 is a critical switch determinant of the viral lytic-latent cycle.
Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H
2016-09-01
Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.
Ning, Yun-Jia; Feng, Kuan; Min, Yuan-Qin; Deng, Fei; Hu, Zhihong; Wang, Hualin
2017-10-06
Heartland virus (HRTV) is a pathogenic phlebovirus related to the severe fever with thrombocytopenia syndrome virus (SFTSV), another phlebovirus causing life-threatening disease in humans. Previous findings have suggested that SFTSV can antagonize the host interferon (IFN) system via viral nonstructural protein (NSs)-mediated sequestration of antiviral signaling proteins into NSs-induced inclusion bodies. However, whether and how HRTV counteracts the host innate immunity is unknown. Here, we report that HRTV NSs (HNSs) also antagonizes IFN and cytokine induction and bolsters viral replication, although no noticeable inclusion body formation was observed in HNSs-expressing cells. Furthermore, HNSs inhibited the virus-triggered activation of IFN-β promoter by specifically targeting the IFN-stimulated response element but not the NF-κB response element. Consistently, HNSs blocked the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3, an IFN-stimulated response element-activating transcription factor). Reporter gene assays next showed that HNSs blockades the antiviral signaling mediated by RIG-I-like receptors likely at the level of TANK-binding kinase 1 (TBK1). Indeed, HNSs strongly interacts with TBK1 as indicated by confocal microscopy and pulldown analyses, and we also noted that the scaffold dimerization domain of TBK1 is required for the TBK1-HNSs interaction. Finally, pulldown assays demonstrated that HNSs expression dose-dependently diminishes a TBK1-IRF3 interaction, further explaining the mechanism for HNSs function. Collectively, these data suggest that HNSs, an antagonist of host innate immunity, interacts with TBK1 and thereby hinders the association of TBK1 with its substrate IRF3, thus blocking IRF3 activation and transcriptional induction of the cellular antiviral responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Zhang, Liang; Das, Priyabrata; Schmolke, Mirco; Manicassamy, Balaji; Wang, Yaming; Deng, Xiaoyi; Cai, Ling; Tu, Benjamin P.; Forst, Christian V.; Roth, Michael G.; Levy, David E.; García-Sastre, Adolfo; de Brabander, Jef; Phillips, Margaret A.
2012-01-01
The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. PMID:22312003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Feng; Zhang, Junsong; Zhang, Yijun
Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-boxmore » of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. - Highlights: • MOV10 can function as a co-factor of HIV-1 Rev. • MOV10 facilitates Rev/RRE-dependent transport of viral mRNAs. • MOV10 interacts with Rev in an RNA-independent manner. • The DEAG-box of MOV10 is required for the enhancement of Rev/RRE-dependent export.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.
1987-11-01
The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription ofmore » RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.« less
Nocera, David Andrés; Roselli, Emiliano; Araya, Paula; Nuñez, Nicolás Gonzalo; Lienenklaus, Stefan; Jablonska, Jadwiga; Weiss, Siegfried; Gatti, Gerardo; Brinkmann, Melanie M; Kröger, Andrea; Morón, Gabriel; Maccioni, Mariana
2016-03-15
The crucial role that endogenously produced IFN-β plays in eliciting an immune response against cancer has recently started to be elucidated. Endogenous IFN-β has an important role in immune surveillance and control of tumor development. Accordingly, the role of TLR agonists as cancer therapeutic agents is being revisited via the strategy of intra/peritumoral injection with the idea of stimulating the production of endogenous type I IFN inside the tumor. Polyadenylic-polyuridylic acid (poly A:U) is a dsRNA mimetic explored empirically in cancer immunotherapy a long time ago with little knowledge regarding its mechanisms of action. In this work, we have in vivo visualized the IFN-β required for the antitumor immune response elicited in a therapeutic model of poly A:U administration. In this study, we have identified the role of host type I IFNs, cell populations that are sources of IFN-β in the tumor microenvironment, and other host requirements for tumor control in this model. One single peritumoral dose of poly A:U was sufficient to induce IFN-β, readily visualized in vivo. IFN-β production relied mainly on the activation of the transcription factor IFN regulatory factor 3 and the molecule UNC93B1, indicating that TLR3 is required for recognizing poly A:U. CD11c(+) cells were an important, but not the only source of IFN-β. Host type I IFN signaling was absolutely required for the reduced tumor growth, prolonged mice survival, and the strong antitumor-specific immune response elicited upon poly A:U administration. These findings add new perspectives to the use of IFN-β-inducing compounds in tumor therapy. Copyright © 2016 by The American Association of Immunologists, Inc.
Factors affecting host range in a generalist seed pathogen of semi-arid shrublands
Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg
2014-01-01
Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...
Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature
Gerasimidis, Konstantinos; Edwards, Christine Ann; Shaikh, M. Guftar
2016-01-01
The aetiology of obesity has been attributed to several factors (environmental, dietary, lifestyle, host, and genetic factors); however none of these fully explain the increase in the prevalence of obesity worldwide. Gut microbiota located at the interface of host and environment in the gut are a new area of research being explored to explain the excess accumulation of energy in obese individuals and may be a potential target for therapeutic manipulation to reduce host energy storage. Several mechanisms have been suggested to explain the role of gut microbiota in the aetiology of obesity such as short chain fatty acid production, stimulation of hormones, chronic low-grade inflammation, lipoprotein and bile acid metabolism, and increased endocannabinoid receptor system tone. However, evidence from animal and human studies clearly indicates controversies in determining the cause or effect relationship between the gut microbiota and obesity. Metagenomics based studies indicate that functionality rather than the composition of gut microbiota may be important. Further mechanistic studies controlling for environmental and epigenetic factors are therefore required to help unravel obesity pathogenesis. PMID:27703805
Holden, Victoria I; Breen, Paul; Houle, Sébastien; Dozois, Charles M; Bachman, Michael A
2016-09-13
Klebsiella pneumoniae is a Gram-negative pathogen responsible for a wide range of infections, including pneumonia and bacteremia, and is rapidly acquiring antibiotic resistance. K. pneumoniae requires secretion of siderophores, low-molecular-weight, high-affinity iron chelators, for bacterial replication and full virulence. The specific combination of siderophores secreted by K. pneumoniae during infection can impact tissue localization, systemic dissemination, and host survival. However, the effect of these potent iron chelators on the host during infection is unknown. In vitro, siderophores deplete epithelial cell iron, induce cytokine secretion, and activate the master transcription factor hypoxia inducible factor-1α (HIF-1α) protein that controls vascular permeability and inflammatory gene expression. Therefore, we hypothesized that siderophore secretion by K. pneumoniae directly contributes to inflammation and bacterial dissemination during pneumonia. To examine the effects of siderophore secretion independently of bacterial growth, we performed infections with tonB mutants that persist in vivo but are deficient in siderophore import. Using a murine model of pneumonia, we found that siderophore secretion by K. pneumoniae induces the secretion of interleukin-6 (IL-6), CXCL1, and CXCL2, as well as bacterial dissemination to the spleen, compared to siderophore-negative mutants at an equivalent bacterial number. Furthermore, we determined that siderophore-secreting K. pneumoniae stabilized HIF-1α in vivo and that bacterial dissemination to the spleen required alveolar epithelial HIF-1α. Our results indicate that siderophores act directly on the host to induce inflammatory cytokines and bacterial dissemination and that HIF-1α is a susceptibility factor for bacterial invasion during pneumonia. Klebsiella pneumoniae causes a wide range of bacterial diseases, including pneumonia, urinary tract infections, and sepsis. To cause infection, K. pneumoniae steals iron from its host by secreting siderophores, small iron-chelating molecules. Classically, siderophores are thought to worsen infections by promoting bacterial growth. In this study, we determined that siderophore-secreting K. pneumoniae causes lung inflammation and bacterial dissemination to the bloodstream independently of bacterial growth. Furthermore, we determined that siderophore-secreting K. pneumoniae activates a host protein, hypoxia inducible factor (HIF)-1α, and requires it for siderophore-dependent bacterial dissemination. Although HIF-1α can protect against some infections, it appears to worsen infection with K. pneumoniae Together, these results indicate that bacterial siderophores directly alter the host response to pneumonia in addition to providing iron for bacterial growth. Therapies that disrupt production of siderophores could provide a two-pronged attack against K. pneumoniae infection by preventing bacterial growth and preventing bacterial dissemination to the blood. Copyright © 2016 Holden et al.
Nagy, Peter D.
2017-01-01
Reconstituted antiviral defense pathway in surrogate host yeast is used as an intracellular probe to further our understanding of virus-host interactions and the role of co-opted host factors in formation of membrane-bound viral replicase complexes in protection of the viral RNA against ribonucleases. The inhibitory effect of the RNA interference (RNAi) machinery of S. castellii, which only consists of the two-component DCR1 and AGO1 genes, was measured against tomato bushy stunt virus (TBSV) in wild type and mutant yeasts. We show that deletion of the co-opted ESCRT-I (endosomal sorting complexes required for transport I) or ESCRT-III factors makes TBSV replication more sensitive to the RNAi machinery in yeast. Moreover, the lack of these pro-viral cellular factors in cell-free extracts (CFEs) used for in vitro assembly of the TBSV replicase results in destruction of dsRNA replication intermediate by a ribonuclease at the 60 min time point when the CFE from wt yeast has provided protection for dsRNA. In addition, we demonstrate that co-opted oxysterol-binding proteins and membrane contact sites, which are involved in enrichment of sterols within the tombusvirus replication compartment, are required for protection of viral dsRNA. We also show that phosphatidylethanolamine level influences the formation of RNAi-resistant replication compartment. In the absence of peroxisomes in pex3Δ yeast, TBSV subverts the ER membranes, which provide as good protection for TBSV dsRNA against RNAi or ribonucleases as the peroxisomal membranes in wt yeast. Altogether, these results demonstrate that co-opted protein factors and usurped lipids are exploited by tombusviruses to build protective subcellular environment against the RNAi machinery and possibly other cellular ribonucleases. PMID:28759634
Hall, Aidan A G; Steinbauer, Martin J; Taylor, Gary S; Johnson, Scott N; Cook, James M; Riegler, Markus
2017-06-06
Parasitoids are hyperdiverse and can contain morphologically and functionally cryptic species, making them challenging to study. Parasitoid speciation can arise from specialisation on niches or diverging hosts. However, which process dominates is unclear because cospeciation across multiple parasitoid and host species has rarely been tested. Host specificity and trophic interactions of the parasitoids of psyllids (Hemiptera) remain mostly unknown, but these factors are fundamentally important for understanding of species diversity, and have important applied implications for biological control. We sampled diverse parasitoid communities from eight Eucalyptus-feeding psyllid species in the genera Cardiaspina and Spondyliaspis, and characterised their phylogenetic and trophic relationships using a novel approach that forensically linked emerging parasitoids with the presence of their DNA in post-emergence insect mummies. We also tested whether parasitoids have cospeciated with their psyllid hosts. The parasitoid communities included three Psyllaephagus morphospecies (two primary and, unexpectedly, one heteronomous hyperparasitoid that uses different host species for male and female development), and the hyperparasitoid, Coccidoctonus psyllae. However, the number of genetically delimited Psyllaephagus species was three times higher than the number of recognisable morphospecies, while the hyperparasitoid formed a single generalist species. In spite of this, cophylogenetic analysis revealed unprecedented codivergence of this hyperparasitoid with its primary parasitoid host, suggesting that this single hyperparasitoid species is possibly diverging into host-specific species. Overall, parasitoid and hyperparasitoid diversification was characterised by functional conservation of morphospecies, high host specificity and some host switching between sympatric psyllid hosts. We conclude that host specialisation, host codivergence and host switching are important factors driving the species diversity of endoparasitoid communities of specialist host herbivores. Specialisation in parasitoids can also result in heteronomous life histories that may be more common than appreciated. A host generalist strategy may be rare in endoparasitoids of specialist herbivores despite the high conservation of morphology and trophic roles, and endoparasitoid species richness is likely to be much higher than previously estimated. This also implies that the success of biological control requires detailed investigation to enable accurate identification of parasitoid-host interactions before candidate parasitoid species are selected as biological control agents for target pests.
Exosomes and other extracellular vesicles in host–pathogen interactions
Schorey, Jeffrey S; Cheng, Yong; Singh, Prachi P; Smith, Victoria L
2015-01-01
An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes—which are extracellular vesicles that function in intercellular communication—may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity. PMID:25488940
Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis
Basso, Pauline; Ragno, Michel; Elsen, Sylvie; Reboud, Emeline; Golovkine, Guillaume; Bouillot, Stephanie; Huber, Philippe; Lory, Stephen; Faudry, Eric
2017-01-01
ABSTRACT Clinical strains of Pseudomonas aeruginosa lacking the type III secretion system genes employ a toxin, exolysin (ExlA), for host cell membrane disruption. Here, we demonstrated that ExlA export requires a predicted outer membrane protein, ExlB, showing that ExlA and ExlB define a new active two-partner secretion (TPS) system of P. aeruginosa. In addition to the TPS signals, ExlA harbors several distinct domains, which include one hemagglutinin domain, five arginine-glycine-aspartic acid (RGD) motifs, and a C-terminal region lacking any identifiable sequence motifs. However, this C-terminal region is important for the toxic activity, since its deletion abolishes host cell lysis. Using lipid vesicles and eukaryotic cells, including red blood cells, we demonstrated that ExlA has a pore-forming activity which precedes cell membrane disruption of nucleated cells. Finally, we developed a high-throughput cell-based live-dead assay and used it to screen a transposon mutant library of an ExlA-producing P. aeruginosa clinical strain for bacterial factors required for ExlA-mediated toxicity. The screen resulted in the identification of proteins involved in the formation of type IV pili as being required for ExlA to exert its cytotoxic activity by promoting close contact between bacteria and the host cell. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages in host cell intoxication. PMID:28119472
Sharma, Pratibha; Teymournejad, Omid; Rikihisa, Yasuko
2017-01-01
Survival of Ehrlichia chaffeensis depends on obligatory intracellular infection. One of the barriers to E. chaffeensis research progress has been the inability, using conventional techniques, to generate knock-out mutants for genes essential for intracellular infection. This study examined the use of Peptide Nucleic Acids (PNAs) technology to interrupt type IV secretion system (T4SS) effector protein expression in E. chaffeensis followed by intracellular complementation of the effector to determine its requirement for infection. Successful E. chaffeensis infection depends on the E. chaffeensis -specific T4SS protein effector, ehrlichial translocated factor-1 (Etf-1), which induces Rab5-regulated autophagy to provide host cytosolic nutrients required for E. chaffeensis proliferation. Etf-1 is also imported by host cell mitochondria where it inhibits host cell apoptosis to prolong its infection. We designed a PNA specific to Etf-1 and showed that the PNA bound to the target region of single-stranded Etf-1 RNA using a competitive binding assay. Electroporation of E. chaffeensis with this PNA significantly reduced Etf-1 mRNA and protein, and the bacteria's ability to induce host cell autophagy and infect host cells. Etf-1 PNA-mediated inhibition of ehrlichial Etf-1 expression and E. chaffeensis infection could be intracellularly trans-complemented by ectopic expression of Etf-1-GFP in host cells. These data affirmed the critical role of bacterial T4SS effector in host cell autophagy and E. chaffeensis infection, and demonstrated the use of PNA to analyze the gene functions of obligate intracellular bacteria.
Sharma, Pratibha; Teymournejad, Omid; Rikihisa, Yasuko
2017-01-01
Survival of Ehrlichia chaffeensis depends on obligatory intracellular infection. One of the barriers to E. chaffeensis research progress has been the inability, using conventional techniques, to generate knock-out mutants for genes essential for intracellular infection. This study examined the use of Peptide Nucleic Acids (PNAs) technology to interrupt type IV secretion system (T4SS) effector protein expression in E. chaffeensis followed by intracellular complementation of the effector to determine its requirement for infection. Successful E. chaffeensis infection depends on the E. chaffeensis-specific T4SS protein effector, ehrlichial translocated factor-1 (Etf-1), which induces Rab5-regulated autophagy to provide host cytosolic nutrients required for E. chaffeensis proliferation. Etf-1 is also imported by host cell mitochondria where it inhibits host cell apoptosis to prolong its infection. We designed a PNA specific to Etf-1 and showed that the PNA bound to the target region of single-stranded Etf-1 RNA using a competitive binding assay. Electroporation of E. chaffeensis with this PNA significantly reduced Etf-1 mRNA and protein, and the bacteria's ability to induce host cell autophagy and infect host cells. Etf-1 PNA-mediated inhibition of ehrlichial Etf-1 expression and E. chaffeensis infection could be intracellularly trans-complemented by ectopic expression of Etf-1-GFP in host cells. These data affirmed the critical role of bacterial T4SS effector in host cell autophagy and E. chaffeensis infection, and demonstrated the use of PNA to analyze the gene functions of obligate intracellular bacteria. PMID:28638803
Dapat, Clyde; Saito, Reiko; Suzuki, Hiroshi; Horigome, Tsuneyoshi
2014-01-22
The emergence of antiviral drug-resistant influenza viruses highlights the need for alternative therapeutic strategies. Elucidation of host factors required during virus infection provides information not only on the signaling pathways involved but also on the identification of novel drug targets. RNA interference screening method had been utilized by several studies to determine these host factors; however, proteomics data on influenza host factors are currently limited. In this study, quantitative phosphoproteomic analysis of human lung cell line (A549) infected with 2009 pandemic influenza virus A (H1N1) virus was performed. Phosphopeptides were enriched from tryptic digests of total protein of infected and mock-infected cells using a titania column on an automated purification system followed by iTRAQ labeling. Identification and quantitative analysis of iTRAQ-labeled phosphopeptides were performed using LC-MS/MS. We identified 366 phosphorylation sites on 283 proteins. Of these, we detected 43 upregulated and 35 downregulated proteins during influenza virus infection. Gene ontology enrichment analysis showed that majority of the identified proteins are phosphoproteins involved in RNA processing, immune system process and response to infection. Host-virus interaction network analysis had identified 23 densely connected subnetworks. Of which, 13 subnetworks contained proteins with altered phosphorylation levels during by influenza virus infection. Our results will help to identify potential drug targets that can be pursued for influenza antiviral drug development. Copyright © 2013 Elsevier B.V. All rights reserved.
Naor, Adit; Panas, Michael W; Marino, Nicole; Coffey, Michael J; Tonkin, Christopher J; Boothroyd, John C
2018-04-03
The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV) by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5) and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma , we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT), RHΔ myr1 , and RHΔ asp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, "hidden" responses arising in RHΔ myr1 - but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite's ability to co-opt host cell functions. IMPORTANCE Toxoplasma gondii is unique in its ability to successfully invade and replicate in a broad range of host species and cells within those hosts. The complex interplay of effector proteins exported by Toxoplasma is key to its success in co-opting the host cell to create a favorable replicative niche. Here we show that a majority of the transcriptomic effects in tachyzoite-infected cells depend on the activity of a novel translocation system involving MYR1 and that the effectors delivered by this system are part of an intricate interplay of activators and suppressors. Removal of all MYR1-dependent effectors reveals previously unknown activities that are masked or hidden by the action of these proteins. Copyright © 2018 Naor et al.
Quantifying Transmission Investment in Malaria Parasites
Greischar, Megan A.; Mideo, Nicole; Read, Andrew F.; Bjørnstad, Ottar N.
2016-01-01
Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment. PMID:26890485
Discovery of host-targeted covalent inhibitors of dengue virus
de Wispelaere, Mélissanne; Carocci, Margot; Liang, Yanke; Liu, Qingsong; Sun, Eileen; Vetter, Michael L.; Wang, Jinhua; Gray, Nathanael S.; Yang, Priscilla L.
2017-01-01
We report here on an approach targeting the host reactive cysteinome to identify inhibitors of host factors required for the infectious cycle of Flaviviruses and other viruses. We used two parallel cellular phenotypic screens to identify a series of covalent inhibitors, exemplified by QL-XII-47, that are active against dengue virus. We show that the compounds effectively block viral protein expression and that this inhibition is associated with repression of downstream processes of the infectious cycle, and thus significantly contributes to the potent antiviral activity of these compounds. We demonstrate that QL-XII-47’s antiviral activity requires selective, covalent modification of a host target by showing that the compound's antiviral activity is recapitulated when cells are preincubated with QL-XII-47 and then washed prior to viral infection and by showing that QL-XII-47R, a non-reactive analog, lacks antiviral activity at concentrations more than 20-fold higher than QL-XII-47's IC90. QL-XII-47’s inhibition of Zika virus, West Nile virus, hepatitis C virus, and poliovirus further suggests that it acts via a target mediating inhibition of these other medically relevant viruses. These results demonstrate the utility of screens targeting the host reactive cysteinome for rapid identification of compounds with potent antiviral activity. PMID:28034743
The Immune Interplay between the Host and the Pathogen in Aspergillus fumigatus Lung Infection
Sales-Campos, Helioswilton; Tonani, Ludmilla; Cardoso, Cristina Ribeiro Barros; Kress, Márcia Regina Von Zeska
2013-01-01
The interplay between Aspergillus fumigatus and the host immune response in lung infection has been subject of studies over the last years due to its importance in immunocompromised patients. The multifactorial virulence factors of A. fumigatus are related to the fungus biological characteristics, for example, structure, ability to grow and adapt to high temperatures and stress conditions, besides capability of evading the immune system and causing damage to the host. In this context, the fungus recognition by the host innate immunity occurs when the pathogen disrupts the natural and chemical barriers followed by the activation of acquired immunity. It seems clear that a Th1 response has a protective role, whereas Th2 reactions are often associated with higher fungal burden, and Th17 response is still controversial. Furthermore, a fine regulation of the effector immunity is required to avoid excessive tissue damage associated with fungal clearance, and this role could be attributed to regulatory T cells. Finally, in this work we reviewed the aspects involved in the complex interplay between the host immune response and the pathogen virulence factors, highlighting the immunological issues and the importance of its better understanding to the development of novel therapeutic approaches for invasive lung aspergillosis. PMID:23984400
Morash, Michael G; Brassinga, Ann Karen C; Warthan, Michelle; Gourabathini, Poornima; Garduño, Rafael A; Goodman, Steven D; Hoffman, Paul S
2009-04-01
Legionella pneumophila is an intracellular parasite of protozoa that differentiates late in infection into metabolically dormant cysts that are highly infectious. Regulation of this process is poorly understood. Here we report that the small DNA binding regulatory proteins integration host factor (IHF) and HU are reciprocally expressed over the developmental cycle, with HU expressed during exponential phase and IHF expressed postexponentially. To assess the role of these regulatory proteins in development, chromosomal deletions were constructed. Single (ihfA or ihfB) and double deletion (Deltaihf) IHF mutants failed to grow in Acanthamoeba castellanii unless complemented in trans when expressed temporally from the ihfA promoter but not under P(tac) (isopropyl-beta-d-thiogalactopyranoside). In contrast, IHF mutants were infectious for HeLa cells, though electron microscopic examination revealed defects in late-stage cyst morphogenesis (thickened cell wall, intracytoplasmic membranes, and inclusions of poly-beta-hydroxybutyrate), and were depressed for the developmental marker MagA. Green fluorescent protein promoter fusion assays indicated that IHF and the stationary-phase sigma factor RpoS were required for full postexponential expression of magA. Finally, defects in cyst morphogenesis noted for Deltaihf mutants in HeLa cells correlated with a loss of both detergent resistance and hyperinfectivity compared with results for wild-type cysts. These studies establish IHF and HU as markers of developmental stages and show that IHF function is required for both differentiation and full virulence of L. pneumophila in natural amoebic hosts.
Rich, Mélanie K; Courty, Pierre-Emmanuel; Roux, Christophe; Reinhardt, Didier
2017-08-08
Development of arbuscular mycorrhiza (AM) requires a fundamental reprogramming of root cells for symbiosis. This involves the induction of hundreds of genes in the host. A recently identified GRAS-type transcription factor in Petunia hybrida, ATA/RAM1, is required for the induction of host genes during AM, and for morphogenesis of the fungal endosymbiont. To better understand the role of RAM1 in symbiosis, we set out to identify all genes that depend on activation by RAM1 in mycorrhizal roots. We have carried out a transcript profiling experiment by RNAseq of mycorrhizal plants vs. non-mycorrhizal controls in wild type and ram1 mutants. The results show that the expression of early genes required for AM, such as the strigolactone biosynthetic genes and the common symbiosis signalling genes, is independent of RAM1. In contrast, genes that are involved at later stages of symbiosis, for example for nutrient exchange in cortex cells, require RAM1 for induction. RAM1 itself is highly induced in mycorrhizal roots together with many other transcription factors, in particular GRAS proteins. Since RAM1 has previously been shown to be directly activated by the common symbiosis signalling pathway through CYCLOPS, we conclude that it acts as an early transcriptional switch that induces many AM-related genes, among them genes that are essential for the development of arbuscules, such as STR, STR2, RAM2, and PT4, besides hundreds of additional RAM1-dependent genes the role of which in symbiosis remains to be explored. Taken together, these results indicate that the defect in the morphogenesis of the fungal arbuscules in ram1 mutants may be an indirect consequence of functional defects in the host, which interfere with nutrient exchange and possibly other functions on which the fungus depends.
Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven
2016-04-26
Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.
Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven
2016-04-26
Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.
The Unexpected Tuners: Are LncRNAs Regulating Host Translation during Infections?
Knap, Primoz; Tebaldi, Toma; Di Leva, Francesca; Biagioli, Marta; Dalla Serra, Mauro; Viero, Gabriella
2017-01-01
Pathogenic bacteria produce powerful virulent factors, such as pore-forming toxins, that promote their survival and cause serious damage to the host. Host cells reply to membrane stresses and ionic imbalance by modifying gene expression at the epigenetic, transcriptional and translational level, to recover from the toxin attack. The fact that the majority of the human transcriptome encodes for non-coding RNAs (ncRNAs) raises the question: do host cells deploy non-coding transcripts to rapidly control the most energy-consuming process in cells—i.e., host translation—to counteract the infection? Here, we discuss the intriguing possibility that membrane-damaging toxins induce, in the host, the expression of toxin-specific long non-coding RNAs (lncRNAs), which act as sponges for other molecules, encoding small peptides or binding target mRNAs to depress their translation efficiency. Unravelling the function of host-produced lncRNAs upon bacterial infection or membrane damage requires an improved understanding of host lncRNA expression patterns, their association with polysomes and their function during this stress. This field of investigation holds a unique opportunity to reveal unpredicted scenarios and novel approaches to counteract antibiotic-resistant infections. PMID:29469820
Thomas, Jacob; Lee, Catherine A.; Grossman, Alan D.
2013-01-01
Integrative and conjugative elements (ICEs) are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT) by the ICE–encoded relaxase and transfer of the nicked single strand of ICE DNA. For ICEBs1 of Bacillus subtilis, nicking of oriT by the ICEBs1 relaxase NicK also initiates rolling circle replication. This autonomous replication of ICEBs1 is critical for stability of the excised element in growing cells. We found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication of ICEBs1. Our results indicate that this gene, helP (formerly ydcP), encodes a helicase processivity factor that enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA. HelP was required for both conjugation and replication of ICEBs1, and HelP and NicK were the only ICEBs1 proteins needed for replication from ICEBs1 oriT. Using chromatin immunoprecipitation, we measured association of HelP, NicK, PcrA, and the host-encoded single-strand DNA binding protein Ssb with ICEBs1. We found that NicK was required for association of HelP and PcrA with ICEBs1 DNA. HelP was required for association of PcrA and Ssb with ICEBs1 regions distal, but not proximal, to oriT, indicating that PcrA needs HelP to progress beyond nicked oriT and unwind ICEBs1. In vitro, HelP directly stimulated the helicase activity of the PcrA homologue UvrD. Our findings demonstrate that HelP is a helicase processivity factor needed for efficient unwinding of ICEBs1 for conjugation and replication. Homologues of HelP and PcrA-type helicases are encoded on many known and putative ICEs. We propose that these factors are essential for ICE conjugation, replication, and genetic stability. PMID:23326247
Immune response and immunopathology during toxoplasmosis1
Dupont, Christopher D.; Christian, David A.; Hunter, Christopher A.
2012-01-01
Toxoplasma gondii is a protozoan parasite of medical and veterinary significance that is able to infect any warm-blooded vertebrate host. In addition to its importance to public health, several inherent features of the biology of T. gondii have made it an important model organism to study host-pathogen interactions. One factor is the genetic tractability of the parasite, which allows studies on the microbial factors that affect virulence and allows the development of tools that facilitate immune studies. Additionally, mice are natural hosts for T. gondii, and the availability of numerous reagents to study the murine immune system makes this an ideal experimental system to understand the functions of cytokines and effector mechanisms involved in immunity to intracellular microorganisms. In this article, we will review current knowledge of the innate and adaptive immune responses required for resistance to toxoplasmosis, the events that lead to the development of immunopathology, and the natural regulatory mechanisms that limit excessive inflammation during this infection. PMID:22955326
Nagy, Peter D; Pogany, Judit
2010-01-01
The success of RNA viruses as pathogens of plants, animals, and humans depends on their ability to reprogram the host cell metabolism to support the viral infection cycle and to suppress host defense mechanisms. Plus-strand (+)RNA viruses have limited coding potential necessitating that they co-opt an unknown number of host factors to facilitate their replication in host cells. Global genomics and proteomics approaches performed with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have led to the identification of 250 host factors affecting TBSV RNA replication and recombination or bound to the viral replicase, replication proteins, or the viral RNA. The roles of a dozen host factors involved in various steps of the replication process have been validated in yeast as well as a plant host. Altogether, the large number of host factors identified and the great variety of cellular functions performed by these factors indicate the existence of a truly complex interaction between TBSV and the host cell. This review summarizes the advantages of using a simple plant virus and yeast as a model host to advance our understanding of virus-host interactions at the molecular and cellular levels. The knowledge of host factors gained can potentially be used to inhibit virus replication via gene silencing, expression of dominant negative mutants, or design of specific chemical inhibitors leading to novel specific or broad-range resistance and antiviral tools against (+)RNA plant viruses. Copyright © 2010 Elsevier Inc. All rights reserved.
pelo Is Required for High Efficiency Viral Replication
Wu, Xiurong; He, Wan-Ting; Tian, Shuye; Meng, Dan; Li, Yuanyue; Chen, Wanze; Li, Lisheng; Tian, Lili; Zhong, Chuan-Qi; Han, Felicia; Chen, Jianming; Han, Jiahuai
2014-01-01
Viruses hijack host factors for their high speed protein synthesis, but information about these factors is largely unknown. In searching for genes that are involved in viral replication, we carried out a forward genetic screen for Drosophila mutants that are more resistant or sensitive to Drosophila C virus (DCV) infection-caused death, and found a virus-resistant line in which the expression of pelo gene was deficient. Our mechanistic studies excluded the viral resistance of pelo deficient flies resulting from the known Drosophila anti-viral pathways, and revealed that pelo deficiency limits the high level synthesis of the DCV capsid proteins but has no or very little effect on the expression of some other viral proteins, bulk cellular proteins, and transfected exogenous genes. The restriction of replication of other types of viruses in pelo deficient flies was also observed, suggesting pelo is required for high level production of capsids of all kinds of viruses. We show that both pelo deficiency and high level DCV protein synthesis increase aberrant 80S ribosomes, and propose that the preferential requirement of pelo for high level synthesis of viral capsids is at least partly due to the role of pelo in dissociation of stalled 80S ribosomes and clearance of aberrant viral RNA and proteins. Our data demonstrated that pelo is a host factor that is required for high efficiency translation of viral capsids and targeting pelo could be a strategy for general inhibition of viral infection. PMID:24722736
Ham, Jong Hyun; Majerczak, Doris R; Nomura, Kinya; Mecey, Christy; Uribe, Francisco; He, Sheng-Yang; Mackey, David; Coplin, David L
2009-06-01
The broadly conserved AvrE-family of type III effectors from gram-negative plant-pathogenic bacteria includes important virulence factors, yet little is known about the mechanisms by which these effectors function inside plant cells to promote disease. We have identified two conserved motifs in AvrE-family effectors: a WxxxE motif and a putative C-terminal endoplasmic reticulum membrane retention/retrieval signal (ERMRS). The WxxxE and ERMRS motifs are both required for the virulence activities of WtsE and AvrE, which are major virulence factors of the corn pathogen Pantoea stewartii subsp. stewartii and the tomato or Arabidopsis pathogen Pseudomonas syringae pv. tomato, respectively. The WxxxE and the predicted ERMRS motifs are also required for other biological activities of WtsE, including elicitation of the hypersensitive response in nonhost plants and suppression of defense responses in Arabidopsis. A family of type III effectors from mammalian bacterial pathogens requires WxxxE and subcellular targeting motifs for virulence functions that involve their ability to mimic activated G-proteins. The conservation of related motifs and their necessity for the function of type III effectors from plant pathogens indicates that disturbing host pathways by mimicking activated host G-proteins may be a virulence mechanism employed by plant pathogens as well.
Predictors of Mortality in Staphylococcus aureus Bacteremia
Jensen, Slade O.; Vaska, Vikram L.; Espedido, Björn A.; Paterson, David L.; Gosbell, Iain B.
2012-01-01
Summary: Staphylococcus aureus bacteremia (SAB) is an important infection with an incidence rate ranging from 20 to 50 cases/100,000 population per year. Between 10% and 30% of these patients will die from SAB. Comparatively, this accounts for a greater number of deaths than for AIDS, tuberculosis, and viral hepatitis combined. Multiple factors influence outcomes for SAB patients. The most consistent predictor of mortality is age, with older patients being twice as likely to die. Except for the presence of comorbidities, the impacts of other host factors, including gender, ethnicity, socioeconomic status, and immune status, are unclear. Pathogen-host interactions, especially the presence of shock and the source of SAB, are strong predictors of outcomes. Although antibiotic resistance may be associated with increased mortality, questions remain as to whether this reflects pathogen-specific factors or poorer responses to antibiotic therapy, namely, vancomycin. Optimal management relies on starting appropriate antibiotics in a timely fashion, resulting in improved outcomes for certain patient subgroups. The roles of surgery and infectious disease consultations require further study. Although the rate of mortality from SAB is declining, it remains high. Future international collaborative studies are required to tease out the relative contributions of various factors to mortality, which would enable the optimization of SAB management and patient outcomes. PMID:22491776
Gallet, Romain; Fontaine, Colin; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Fournier, Elisabeth; Tharreau, Didier
2016-04-01
Efficient strategies for limiting the impact of pathogens on crops require a good understanding of the factors underlying the evolution of compatibility range for the pathogens and host plants, i.e., the set of host genotypes that a particular pathogen genotype can infect and the set of pathogen genotypes that can infect a particular host genotype. Until now, little is known about the evolutionary and ecological factors driving compatibility ranges in systems implicating crop plants. We studied the evolution of host and pathogen compatibility ranges for rice blast disease, which is caused by the ascomycete Magnaporthe oryzae. We challenged 61 rice varieties from three rice subspecies with 31 strains of M. oryzae collected worldwide from all major known genetic groups. We determined the compatibility range of each plant variety and pathogen genotype and the severity of each plant-pathogen interaction. Compatibility ranges differed between rice subspecies, with the most resistant subspecies selecting for pathogens with broader compatibility ranges and the least resistant subspecies selecting for pathogens with narrower compatibility ranges. These results are consistent with a nested distribution of R genes between rice subspecies.
Parasitic Cuscuta factor(s) and the detection by tomato initiates plant defense.
Fürst, Ursula; Hegenauer, Volker; Kaiser, Bettina; Körner, Max; Welz, Max; Albert, Markus
2016-01-01
Dodders ( Cuscuta spp.) are holoparasitic plants that enwind stems of host plants and penetrate those by haustoria to connect to the vascular bundles. Having a broad host plant spectrum, Cuscuta spp infect nearly all dicot plants - only cultivated tomato as one exception is mounting an active defense specifically against C. reflexa . In a recent work we identified a pattern recognition receptor of tomato, "Cuscuta Receptor 1" (CuRe1), which is critical to detect a "Cuscuta factor" (CuF) and initiate defense responses such as the production of ethylene or the generation of reactive oxygen species. CuRe1 also contributes to the tomato resistance against C. reflexa . Here we point to the fact that CuRe1 is not the only relevant component for full tomato resistance but it requires additional defense mechanisms, or receptors, respectively, to totally fend off the parasite.
Questions about the behaviour of bacterial pathogens in vivo.
Smith, H
2000-01-01
Bacterial pathogens cause disease in man and animals. They have unique biological properties, which enable them to colonize mucous surfaces, penetrate them, grow in the environment of the host, inhibit or avoid host defences and damage the host. The bacterial products responsible for these five biological requirements are the determinants of pathogenicity (virulence determinants). Current knowledge comes from studies in vitro, but now interest is increasing in how bacteria behave and produce virulence determinants within the infected host. There are three aspects to elucidate: bacterial activities, the host factors that affect them and the metabolic interactions between the two. The first is relatively easy to accomplish and, recently, new methods for doing this have been devised. The second is not easy because of the complexity of the environment in vivo and its ever-changing face. Nevertheless, some information can be gained from the literature and by new methodology. The third aspect is very difficult to study effectively unless some events in vivo can be simulated in vitro. The objectives of the Discussion Meeting were to describe the new methods and to show how they, and conventional studies, are revealing the activities of bacterial pathogens in vivo. This paper sets the scene by raising some questions and suggesting, with examples, how they might be answered. Bacterial growth in vivo is the primary requirement for pathogenicity. Without growth, determinants of the other four requirements are not formed. Results from the new methods are underlining this point. The important questions are as follows. What is the pattern of a developing infection and the growth rates and population sizes of the bacteria at different stages? What nutrients are present in vivo and how do they change as infection progresses and relate to growth rates and population sizes? How are these nutrients metabolized and by what bacterial mechanisms? Which bacterial processes handle nutrient deficiencies and antagonistic conditions that may arise? Conventional and new methods can answer the first question and part of the second; examples are described. The difficulties of trying to answer the last two are discussed. Turning to production in vivo of determinants of mucosal colonization, penetration, interference with host defence and damage to the host, here are the crucial questions. Are putative determinants, which have been recognized by studies in vitro, produced in vivo and are they relevant to virulence? Can hitherto unknown virulence determinants be recognized by examining bacteria grown in vivo? Does the complement of virulence determinants change as infection proceeds? Are regulatory processes recognized in vitro, such as ToxR/ToxS, PhoP/PhoQ, quorum sensing and type III secretion, operative in vivo? What environmental factors affect virulence determinant production in vivo and by what metabolic processes? Examples indicate that the answers to the first four questions are 'yes' in most but not all cases. Attempts to answer the last, and most difficult, question are also described. Finally, sialylation of the lipopolysaccharide of gonococci in vivo by host-derived cytidine 5'-mono-phospho-N-acetyl neuraminic acid, and the effect of host lactate are described. This investigation revealed a new bacterial component important in pathogenicity, the host factors responsible for its production and the metabolism involved. PMID:10874729
4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression
Shives, Katherine D.; Massey, Aaron R.; May, Nicholas A.; Morrison, Thomas E.; Beckham, J. David
2016-01-01
West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5′ cap with 2′-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome. PMID:27763553
Bridging scales in the evolution of infectious disease life histories: theory.
Day, Troy; Alizon, Samuel; Mideo, Nicole
2011-12-01
A significant goal of recent theoretical research on pathogen evolution has been to develop theory that bridges within- and between-host dynamics. The main approach used to date is one that nests within-host models of pathogen replication in models for the between-host spread of infectious diseases. Although this provides an elegant approach, it nevertheless suffers from some practical difficulties. In particular, the information required to satisfactorily model the mechanistic details of the within-host dynamics is not often available. Here, we present a theoretical approach that circumvents these difficulties by quantifying the relevant within-host factors in an empirically tractable way. The approach is closely related to quantitative genetic models for function-valued traits, and it also allows for the prediction of general characteristics of disease life history, including the timing of virulence, transmission, and host recovery. In a companion paper, we illustrate the approach by applying it to data from a model system of malaria. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Non-Steroidal Anti-inflammatory Drugs As Host-Directed Therapy for Tuberculosis: A Systematic Review
Kroesen, Vera M.; Gröschel, Matthias I.; Martinson, Neil; Zumla, Alimuddin; Maeurer, Markus; van der Werf, Tjip S.; Vilaplana, Cristina
2017-01-01
Lengthy, antimicrobial therapy targeting the pathogen is the mainstay of conventional tuberculosis treatment, complicated by emerging drug resistances. Host-directed therapies, including non-steroidal anti-inflammatory drugs (NSAIDs), in contrast, target host factors to mitigate disease severity. In the present Systematic Review, we investigate whether NSAIDs display any effects as therapy of TB and discuss possible mechanisms of action of NSAIDs as adjunctive therapy of TB. Ten studies, seven preclinical studies in mice and three clinical trials, were included and systematically reviewed. Our results point toward a beneficial effect of NSAIDs as adjunct to current TB therapy regimens, mediated by decreased lung pathology balancing host-immune reaction. The determination of the best timing for their administration in order to obtain the potential beneficial effects needs further investigation. Even if the preclinical evidence requires clinical evaluation, NSAIDs might represent a potential safe, simple, and cheap improvement in therapy of TB. PMID:28713389
The High Affinity Iron Permease is a Key Virulence Factor Required for Rhizopus oryzae Pathogenesis
USDA-ARS?s Scientific Manuscript database
Rhizopus oryzae is the most common cause of mucormycosis, an angioinvasive fungal infection that causes a >/=50% mortality rate despite first-line therapy. Clinical and animal model data clearly demonstrate that the presence of elevated available serum iron predisposes the host to mucormycosis. Th...
Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality
USDA-ARS?s Scientific Manuscript database
To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytica...
Wang, Xing; Li, Yun; Liu, Shan; Yu, Xiaoliang; Li, Lin; Shi, Cuilin; He, Wenhui; Li, Jun; Xu, Lei; Hu, Zhilin; Yu, Lu; Yang, Zhongxu; Chen, Qin; Ge, Lin; Zhang, Zili; Zhou, Biqi; Jiang, Xuejun; Chen, She; He, Sudan
2014-01-01
The receptor-interacting kinase-3 (RIP3) and its downstream substrate mixed lineage kinase domain-like protein (MLKL) have emerged as the key cellular components in programmed necrotic cell death. Receptors for the cytokines of tumor necrosis factor (TNF) family and Toll-like receptors (TLR) 3 and 4 are able to activate RIP3 through receptor-interacting kinase-1 and Toll/IL-1 receptor domain-containing adapter inducing IFN-β, respectively. This form of cell death has been implicated in the host-defense system. However, the molecular mechanisms that drive the activation of RIP3 by a variety of pathogens, other than the above-mentioned receptors, are largely unknown. Here, we report that human herpes simplex virus 1 (HSV-1) infection triggers RIP3-dependent necrosis. This process requires MLKL but is independent of TNF receptor, TLR3, cylindromatosis, and host RIP homotypic interaction motif-containing protein DNA-dependent activator of IFN regulatory factor. After HSV-1 infection, the viral ribonucleotide reductase large subunit (ICP6) interacts with RIP3. The formation of the ICP6–RIP3 complex requires the RHIM domains of both proteins. An HSV-1 ICP6 deletion mutant failed to cause effective necrosis of HSV-1–infected cells. Furthermore, ectopic expression of ICP6, but not RHIM mutant ICP6, directly activated RIP3/MLKL-mediated necrosis. Mice lacking RIP3 exhibited severely impaired control of HSV-1 replication and pathogenesis. Therefore, this study reveals a previously uncharacterized host antipathogen mechanism. PMID:25316792
Lee, I-Ping; Works, Melissa G.; Kumar, Vineet; De Miguel, Zurine; Manley, Nathan C.; Sapolsky, Robert M.
2014-01-01
The obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1) T. gondii relies on glutamine for optimal infection, replication and viability, and 2) T. gondii-infected bone marrow-derived dendritic cells (DCs) display both “hypermotility” and “enhanced migration” to an elevated glutamine gradient in vitro. We show that glutamine uptake by the sodium-dependent neutral amino acid transporter 2 (SNAT2) is required for this enhanced migration. SNAT2 transport of glutamine is also a significant factor in the induction of migration by the small cytokine stromal cell-derived factor-1 (SDF-1) in uninfected DCs. Blocking both SNAT2 and C-X-C chemokine receptor 4 (CXCR4; the unique receptor for SDF-1) blocks hypermotility and the enhanced migration in T. gondii-infected DCs. Changes in host cell protein expression following T. gondii infection may explain the altered migratory phenotype; we observed an increase of CD80 and unchanged protein level of CXCR4 in both T. gondii-infected and lipopolysaccharide (LPS)-stimulated DCs. However, unlike activated DCs, SNAT2 expression in the cytosol of infected cells was also unchanged. Thus, our results suggest an important role of glutamine transport via SNAT2 in immune cell migration and a possible interaction between SNAT2 and CXCR4, by which T. gondii manipulates host cell motility. PMID:25299045
NASA Technical Reports Server (NTRS)
Schuerger, Andrew C.; Ming, Douglas W.; Golden, D. C.
2012-01-01
Life can be defined as a self-sustaining chemical system capable of undergoing Darwinian evolution; a self-bounded, self-replicating, and self-perpetuating entity [1]. This definition should hold for terrestrial as well as extraterrestrial life-forms. Although, it is reasonable to expect that a Mars life-form would be more adaptable to Mars-like conditions than to Earth-like environments, it remains possible that negative ecological or host interactions might occur if Mars microbiota were to be inadvertently released into the terrestrial environment. A biogenic infectious agent can be defined as a self-sustaining chemical system capable of undergoing Darwinian evolution and derives its sustenance from a living cell or from the by-products of cell death. Disease can be de-fined as the detrimental alteration of one or more ordered metabolic processes in a living host caused by the continued irritation of a primary causal factor or factors; disease is a dynamic process [2]. In contrast, an injury is due to an instantaneous event; injury is not a dynamic process [2]. A causal agent of disease is defined as a pathogen, and can be either abiotic or biotic in nature. Diseases incited by biotic pathogens are the exceptions, not the norms, in terrestrial host-microbe interactions. Disease induction in a plant host can be conceptually characterized using the Disease Triangle (Fig. 1) in which disease occurs only when all host, pathogen, and environ-mental factors that contribute to the development of disease are within conducive ranges for a necessary minimum period of time. For example, plant infection and disease caused by the wheat leaf rust fungus, Puccinia recondita, occur only if virulent spores adhere to genetically susceptible host tissues for at least 4-6 hours under favorable conditions of temperature and moisture [3]. As long as one or more conditions required for disease initiation are not available, disease symptoms will not develop.
Casanova, Alain; Low, Shyan H; Emmenlauer, Mario; Conde-Alvarez, Raquel; Salcedo, Suzana P; Gorvel, Jean-Pierre; Dehio, Christoph
2016-08-05
Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular bacteria based on the GFP signal, with only intracellular bacteria being able to express GFP. This allows the robust detection of single intracellular bacteria before intracellular proliferation is initiated.
Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions*
Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V.; Kwon, Keehwan; Townsend, Katherine; Yu, Chenggang; Yu, Xueping; DeShazer, David; Reifman, Jaques; Wallqvist, Anders
2013-01-01
Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement processes. PMID:23800426
Interactions of Gut Microbiota, Endotoxemia, Immune Function, and Diet in Exertional Heatstroke
Lee, Elaine C.; Armstrong, Elizabeth M.
2018-01-01
Exertional heatstroke (EHS) is a medical emergency that cannot be predicted, requires immediate whole-body cooling to reduce elevated internal body temperature, and is influenced by numerous host and environmental factors. Widely accepted predisposing factors (PDF) include prolonged or intense exercise, lack of heat acclimatization, sleep deprivation, dehydration, diet, alcohol abuse, drug use, chronic inflammation, febrile illness, older age, and nonsteroidal anti-inflammatory drug use. The present review links these factors to the human intestinal microbiota (IM) and diet, which previously have not been appreciated as PDF. This review also describes plausible mechanisms by which these PDF lead to EHS: endotoxemia resulting from elevated plasma lipopolysaccharide (i.e., a structural component of the outer membrane of Gram-negative bacteria) and tissue injury from oxygen free radicals. We propose that recognizing the lifestyle and host factors which are influenced by intestine-microbial interactions, and modifying habitual dietary patterns to alter the IM ecosystem, will encourage efficient immune function, optimize the intestinal epithelial barrier, and reduce EHS morbidity and mortality. PMID:29850597
Ventilator associated pneumonia: risk factors and preventive measures.
Vincent, J L; Lobo, S; Struelens, M
2001-11-01
Ventilator-associated pneumonia (VAP) is a common nosocomial infection associated with considerable morbidity and mortality. Various risk factors for VAP have been identified and include the duration of ICU stay and of mechanical ventilation, a diagnosis of trauma, and severity of illness. Knowledge of these factors can promote early diagnosis and hence treatment. In addition to simple, but very effective, basic hygiene, different preventative strategies have been suggested, and can be divided into those that aim to limit airway colonization, and those that improve host defense mechanisms. Of the former, non-invasive ventilation is effective but not always applicable or available, nursing the patient in the semi-recumbent position is also associated with a reduced incidence of VAP but carries its own problems, stress ulcer prophylaxis remains controversial, and selective digestive decontamination is probably only relevant to certain subgroups of patients. Methods to improve host defense include early nutrition. Immunostimulatory therapies, such as interferon and granulocyte colony stimulating factor, require further research to confirm their place in the prevention or management of VAP.
Kühbacher, Andreas; Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph
2015-01-01
ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. PMID:25991686
Mukherjee, Krishnendu; Vilcinskas, Andreas
2018-01-01
Parasitic fungi are the only pathogens that can infect insect hosts directly through their proteinaceous exoskeleton. Penetration of the cuticle requires the release of fungal enzymes, including proteinases, which act as virulence factors. Insects can sense fungal infections and activate innate immune responses, including the synthesis of antifungal peptides and proteinase inhibitors that neutralize the incoming proteinases. This well-studied host response is epigenetically regulated by histone acetylation/deacetylation. Here we show that entomopathogenic fungi can in turn sense the presence of insect-derived antifungal peptides and proteinase inhibitors, and respond by inducing the synthesis of chymotrypsin-like proteinases and metalloproteinases that degrade the host-derived defense molecules. The rapidity of this response is dependent on the virulence of the fungal strain. We confirmed the specificity of the pathogen response to host-derived defense molecules by LC/MS and RT-PCR analysis, and correlated this process with the epigenetic regulation of histone acetylation/deacetylation. This cascade of responses reveals that the coevolution of pathogens and hosts can involve a complex series of attacks and counterattacks based on communication between the invading fungal pathogen and its insect host. The resolution of this process determines whether or not pathogenesis is successful.
Host specificity in biological control: insights from opportunistic pathogens
Brodeur, Jacques
2012-01-01
Host/prey specificity is a significant concern in biological control. It influences the effectiveness of a natural enemy and the risks it might have on non-target organisms. Furthermore, narrow host specificity can be a limiting factor for the commercialization of natural enemies. Given the great diversity in taxonomy and mode of action of natural enemies, host specificity is a highly variable biological trait. This variability can be illustrated by opportunist fungi from the genus Lecanicillium, which have the capacity to exploit a wide range of hosts – from arthropod pests to fungi causing plant diseases – through different modes of action. Processes determining evolutionary trajectories in host specificity are closely linked to the modes of action of the natural enemy. This hypothesis is supported by advances in fungal genomics concerning the identity of genes and biological traits that are required for the evolution of life history strategies and host range. Despite the significance of specificity, we still need to develop a conceptual framework for better understanding of the relationship between specialization and successful biological control. The emergence of opportunistic pathogens and the development of ‘omic’ technologies offer new opportunities to investigate evolutionary principles and applications of the specificity of biocontrol agents. PMID:22949922
Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohareer, Krishnaveni; Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046; Sahdev, Sudhir
2011-11-04
Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors,more » which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.« less
Angiogenesis and parasitic helminth-associated neovascularization.
Dennis, Roger D; Schubert, Uwe; Bauer, Christian
2011-04-01
Successful metazoan parasitism, among many other factors, requires a supply of nutrients and the removal of waste products. There is a prerequisite for a parasite-defined vasculature. The angiogenic mechanism(s) involved presumably depend on the characteristics of the tissue- and vascular system-dwelling, parasitic helminths. Simplistically, 2 possibilities or a combination of both have been considered in this review. The multifactorial induction of parasitic helminth-associated neovascularization could arise through, either a host-, a parasite- or a host-/parasite-dependent, angiogenic switch. Most studies appear to support the first and third hypotheses, but evidence exists for the intrahepatic cestode Echinococcus multilocularis, the free-living nematode Caenorhabditis elegans and the intravascular trematode Schistosoma mansoni for the second inference. In contrast, the nematode anti-coagulant protein NAPc2 from adult Ancylostoma caninum is also an anti-angiogenic factor.
Dulebohn, Daniel P; Hayes, Beth M; Rosa, Patricia A
2014-01-01
Borrelia burgdorferi, the agent of Lyme disease, is a vector-borne pathogen that transits between Ixodes ticks and vertebrate hosts. During the natural infectious cycle, spirochetes must globally adjust their transcriptome to survive in these dissimilar environments. One way B. burgdorferi accomplishes this is through the use of alternative sigma factors to direct transcription of specific genes. RpoS, one of only three sigma factors in B. burgdorferi, controls expression of genes required during tick-transmission and infection of the mammalian host. How spirochetes switch between different sigma factors during the infectious cycle has remained elusive. Here we establish a role for a novel protein, BBD18, in the regulation of the virulence-associated sigma factor RpoS. Constitutive expression of BBD18 repressed transcription of RpoS-dependent genes to levels equivalent to those observed in an rpoS mutant. Consistent with the global loss of RpoS-dependent transcripts, we were unable to detect RpoS protein. However, constitutive expression of BBD18 did not diminish the amount of rpoS transcript, indicating post-transcriptional regulation of RpoS by BBD18. Interestingly, BBD18-mediated repression of RpoS is independent of both the rpoS promoter and the 5' untranslated region, suggesting a mechanism of protein destabilization rather than translational control. We propose that BBD18 is a novel regulator of RpoS and its activity likely represents a first step in the transition from an RpoS-ON to an RpoS-OFF state, when spirochetes transition from the host to the tick vector.
Gu, Haidong
2016-01-01
Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced “conquer and compromise” strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host. PMID:26870669
Understanding the complexities of Salmonella-host crosstalk as revealed by in vivo model organisms.
Verma, Smriti; Srikanth, Chittur V
2015-07-01
Foodborne infections caused by non-typhoidal Salmonellae, such as Salmonella enterica serovar Typhimurium (ST), pose a major challenge in the developed and developing world. With constant rise of drug-resistant strains, understanding the epidemiology, microbiology, pathogenesis and host-pathogen interactions biology is a mandatory requirement to enable health systems to be ready to combat these illnesses. Patient data from hospitals, at least from some parts of the world, have aided in epidemiological understanding of ST-mediated disease. Most of the other aspects connected to Salmonella-host crosstalk have come from model systems that offer convenience, genetic tractability and low maintenance costs that make them extremely valuable tools. Complex model systems such as the bovine model have helped in understanding key virulence factors needed for infection. Simple systems such as fruit flies and Caenorhabditis elegans have aided in identification of novel virulence factors, host pathways and mechanistic details of interactions. Some of the path-breaking concepts of the field have come from mice model of ST colitis, which allows genetic manipulations as well as high degree of similarity to human counterpart. Together, they are invaluable for correlating in vitro findings of ST-induced disease progression in vivo. The current review is a compilation of various advances of ST-host interactions at cellular and molecular levels that has come from investigations involving model organisms. © 2015 International Union of Biochemistry and Molecular Biology.
Yang, Fen; Li, Wanshun; Derbyshire, Mark; Larsen, Martin R; Rudd, Jason J; Palmisano, Giuseppe
2015-05-08
Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici, but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction.
Complement Regulator Factor H Mediates a Two-step Uptake of Streptococcus pneumoniae by Human Cells*
Agarwal, Vaibhav; Asmat, Tauseef M.; Luo, Shanshan; Jensch, Inga; Zipfel, Peter F.; Hammerschmidt, Sven
2010-01-01
Streptococcus pneumoniae, a human pathogen, recruits complement regulator factor H to its bacterial cell surface. The bacterial PspC protein binds Factor H via short consensus repeats (SCR) 8–11 and SCR19–20. In this study, we define how bacterially bound Factor H promotes pneumococcal adherence to and uptake by epithelial cells or human polymorphonuclear leukocytes (PMNs) via a two-step process. First, pneumococcal adherence to epithelial cells was significantly reduced by heparin and dermatan sulfate. However, none of the glycosaminoglycans affected binding of Factor H to pneumococci. Adherence of pneumococci to human epithelial cells was inhibited by monoclonal antibodies recognizing SCR19–20 of Factor H suggesting that the C-terminal glycosaminoglycan-binding region of Factor H mediates the contact between pneumococci and human cells. Blocking of the integrin CR3 receptor, i.e. CD11b and CD18, of PMNs or CR3-expressing epithelial cells reduced significantly the interaction of pneumococci with both cell types. Similarly, an additional CR3 ligand, Pra1, derived from Candida albicans, blocked the interaction of pneumococci with PMNs. Strikingly, Pra1 inhibited also pneumococcal uptake by lung epithelial cells but not adherence. In addition, invasion of Factor H-coated pneumococci required the dynamics of host-cell actin microfilaments and was affected by inhibitors of protein-tyrosine kinases and phosphatidylinositol 3-kinase. In conclusion, pneumococcal entry into host cells via Factor H is based on a two-step mechanism. The first and initial contact of Factor H-coated pneumococci is mediated by glycosaminoglycans expressed on the surface of human cells, and the second step, pneumococcal uptake, is integrin-mediated and depends on host signaling molecules such as phosphatidylinositol 3-kinase. PMID:20504767
Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts.
Takeshita, Daijiro; Tomita, Kozo
2010-09-07
Replication and transcription of viral RNA genomes rely on host-donated proteins. Qbeta virus infects Escherichia coli and replicates and transcribes its own genomic RNA by Qbeta replicase. Qbeta replicase requires the virus-encoded RNA-dependent RNA polymerase (beta-subunit), and the host-donated translational elongation factors EF-Tu and -Ts, as active core subunits for its RNA polymerization activity. Here, we present the crystal structure of the core Qbeta replicase, comprising the beta-subunit, EF-Tu and -Ts. The beta-subunit has a right-handed structure, and the EF-Tu:Ts binary complex maintains the structure of the catalytic core crevasse of the beta-subunit through hydrophobic interactions, between the finger and thumb domains of the beta-subunit and domain-2 of EF-Tu and the coiled-coil motif of EF-Ts, respectively. These hydrophobic interactions are required for the expression and assembly of the Qbeta replicase complex. Thus, EF-Tu and -Ts have chaperone-like functions in the maintenance of the structure of the active Qbeta replicase. Modeling of the template RNA and the growing RNA in the catalytic site of the Qbeta replicase structure also suggests that structural changes of the RNAs and EF-Tu:Ts should accompany processive RNA polymerization and that EF-Tu:Ts in the Qbeta replicase could function to modulate the RNA folding and structure.
USDA-ARS?s Scientific Manuscript database
Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Most studies addressing virulence factors of B. bronchiseptica utilize isolates derived from hosts other than pigs in conjunction with rodent infection models. Based on previous in vivo mouse...
USDA-ARS?s Scientific Manuscript database
Nezara viridula (L.) and other phytophagous stink bug species continue to plague producers in Texas and the remainder of the Cotton Belt. Developing effective management tactics for Nezara viridula (L.) requires a thorough understanding of factors contributing to continued production of field pest ...
Host and parasite morphology influence congruence between host and parasite phylogenies.
Sweet, Andrew D; Bush, Sarah E; Gustafsson, Daniel R; Allen, Julie M; DiBlasi, Emily; Skeen, Heather R; Weckstein, Jason D; Johnson, Kevin P
2018-03-23
Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host-parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host-parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host-parasite coevolution. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
The eIF4AIII RNA helicase is a critical determinant of human cytomegalovirus replication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziehr, Ben; Lenarcic, Erik; Cecil, Chad
Human cytomegalovirus (HCMV) was recently shown to encode a large number of spliced mRNAs. While the nuclear export of unspliced viral transcripts has been extensively studied, the role of host mRNA export factors in HCMV mRNA trafficking remains poorly defined. We found that the eIF4AIII RNA helicase, a component of the exon junction complex, was necessary for efficient virus replication. Depletion of eIF4AIII limited viral DNA accumulation, export of viral mRNAs from the nucleus, and the production of progeny virus. However eIF4AIII was dispensable for the association of viral transcripts with ribosomes. We found that pateamine A, a natural compoundmore » that inhibits both eIF4AI/II and eIF4AIII, has potent antiviral activity and inhibits HCMV replication throughout the virus lytic cycle. Our results demonstrate that eIF4AIII is required for efficient HCMV replication, and suggest that eIF4A family helicases may be a new class of targets for the development of host-directed antiviral therapeutics. - Highlights: • The host eIF4AIII RNA helicase is required for efficient HCMV replication. • Depleting eIF4AIII inhibited the nuclear export of HCMV mRNAs. • HCMV mRNAs did not require eIF4AIII to associate with polyribosomes. • The eIF4A family helicases may be new targets for host-directed antiviral drugs.« less
1998-10-01
Life Cycle officer Frank Boydell hosted visit. Mr. Ed Brown, AFRL, accompanied Dr. Gregory. We were briefed on the Logistics Support Services (LSS...requirements for robotic ground support equipment. Mr. Boydell explained that most reliability factors are not used to project manpower requirements...Frank Boydell accompanied Dr. Gregory from the RAF LSS. DERA has 12,000 employees and appears to be organizationally equivalent to our OSD/PA&E
Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development.
Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M
2015-08-01
Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5. © 2015 John Wiley & Sons Ltd.
Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host-specificity gene.
Hanin, M; Jabbouri, S; Quesada-Vincens, D; Freiberg, C; Perret, X; Promé, J C; Broughton, W J; Fellay, R
1997-06-01
Rhizobia secrete specific lipo-chitooligosaccharide signals (LCOs) called Nod factors that are required for infection and nodulation of legumes. In Rhizobium sp. NGR234, the reducing N-acetyl-D-glucosamine of LCOs is substituted at C6 with 2-O-methyl-L-fucose which can be acetylated or sulphated. We identified a flavonoid-inducible locus on the symbiotic plasmid pNGR234a that contains a new nodulation gene, noeE, which is required for the sulphation of NGR234 Nod factors (NodNGR). noeE was identified by conjugation into the closely related Rhizobium fredii strain USDA257, which produces fucosylated but non-sulphated Nod factors (NodUSDA). R. fredii transconjugants producing sulphated LCOs acquire the capacity to nodulate Calopogonium caeruleum. Furthermore, mutation of noeE (NGRdelta noeE) abolishes the production of sulphated LCOs and prevents nodulation of Pachyrhizus tuberosus. The sulphotransferase activity linked to NoeE is specific for fucose. In contrast, the sulphotransferase NodH of Rhizobium meliloti seems to be less specific than NoeE, because its introduction into NGRdelta noeE leads to the production of a mixture of LCOs that are sulphated on C6 of the reducing terminus and sulphated on the 2-O-methylfucose residue. Together, these findings show that noeE is a host-specificity gene which probably encodes a fucose-specific sulphotransferase.
Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976.
Hofmann-Winkler, Heike; Gnirß, Kerstin; Wrensch, Florian; Pöhlmann, Stefan
2015-10-01
The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Kuhn, Thomas; Cunze, Sarah; Kochmann, Judith; Klimpel, Sven
2016-01-01
Marine nematodes of the genus Anisakis are common parasites of a wide range of aquatic organisms. Public interest is primarily based on their importance as zoonotic agents of the human Anisakiasis, a severe infection of the gastro-intestinal tract as result of consuming live larvae in insufficiently cooked fish dishes. The diverse nature of external impacts unequally influencing larval and adult stages of marine endohelminth parasites requires the consideration of both abiotic and biotic factors. Whereas abiotic factors are generally more relevant for early life stages and might also be linked to intermediate hosts, definitive hosts are indispensable for a parasite’s reproduction. In order to better understand the uneven occurrence of parasites in fish species, we here use the maximum entropy approach (Maxent) to model the habitat suitability for nine Anisakis species accounting for abiotic parameters as well as biotic data (definitive hosts). The modelled habitat suitability reflects the observed distribution quite well for all Anisakis species, however, in some cases, habitat suitability exceeded the known geographical distribution, suggesting a wider distribution than presently recorded. We suggest that integrative modelling combining abiotic and biotic parameters is a valid approach for habitat suitability assessments of Anisakis, and potentially other marine parasite species. PMID:27507328
NASA Astrophysics Data System (ADS)
Kuhn, Thomas; Cunze, Sarah; Kochmann, Judith; Klimpel, Sven
2016-08-01
Marine nematodes of the genus Anisakis are common parasites of a wide range of aquatic organisms. Public interest is primarily based on their importance as zoonotic agents of the human Anisakiasis, a severe infection of the gastro-intestinal tract as result of consuming live larvae in insufficiently cooked fish dishes. The diverse nature of external impacts unequally influencing larval and adult stages of marine endohelminth parasites requires the consideration of both abiotic and biotic factors. Whereas abiotic factors are generally more relevant for early life stages and might also be linked to intermediate hosts, definitive hosts are indispensable for a parasite’s reproduction. In order to better understand the uneven occurrence of parasites in fish species, we here use the maximum entropy approach (Maxent) to model the habitat suitability for nine Anisakis species accounting for abiotic parameters as well as biotic data (definitive hosts). The modelled habitat suitability reflects the observed distribution quite well for all Anisakis species, however, in some cases, habitat suitability exceeded the known geographical distribution, suggesting a wider distribution than presently recorded. We suggest that integrative modelling combining abiotic and biotic parameters is a valid approach for habitat suitability assessments of Anisakis, and potentially other marine parasite species.
Zafar, M. Ammar; Kono, Masamitsu; Wang, Yang; Zangari, Tonia
2016-01-01
One of the least understood aspects of the bacterium Streptococcus pneumoniae (pneumococcus) is its transmission from host to host, the critical first step in both the carrier state and the disease state. To date, transmission models have depended on influenza A virus coinfection, which greatly enhances pneumococcal shedding to levels that allow acquisition by a new host. Here, we describe an infant mouse model that can be utilized to study pneumococcal colonization, shedding, and transmission during bacterial monoinfection. Using this model, we demonstrated that the level of bacterial shedding is highest in pups infected intranasally at age 4 days and peaks over the first 4 days postchallenge. Shedding results differed among isolates of five different pneumococcal types. Colonization density was found to be a major factor in the level of pneumococcal shedding and required expression of capsule. Transmission within a litter occurred when there was a high ratio of colonized “index” pups to uncolonized “contact” pups. Transmission was observed for each of the well-colonizing pneumococcal isolates, with the rate of transmission proportional to the level of shedding. This model can be used to examine bacterial and host factors that contribute to pneumococcal transmission without the effects of viral coinfection. PMID:27400721
Fabro, Georgina; Alvarez, María Elena
2012-08-11
The establishment of compatibility between plants and pathogens requires compliance with various conditions, such as recognition of the right host, suppression of defence mechanisms, and maintenance of an environment allowing pathogen reproduction. To date, most of the plant factors required to sustain compatibility remain unknown, with the few best characterized being those interfering with defence responses. A suitable system to study host compatibility factors is the interaction between Arabidopsis thaliana and the powdery mildew (PM) Golovinomyces cichoracearum. As an obligate biotrophic pathogen, this fungus must establish compatibility in order to perpetuate. In turn, A. thaliana displays natural variation for susceptibility to this invader, with some accessions showing full susceptibility (Col-0), and others monogenic dominant resistance (Kas-1). Interestingly, Te-0, among other accessions, displays recessive partial resistance to this PM. In this study, we characterized the interaction of G. cichoracearum with Te-0 plants to investigate the basis of this plant resistance. We found that Te-0's incompatibility was not associated with hyper-activation of host inducible defences. Te-0 plants allowed germination of conidia and development of functional haustoria, but could not support the formation of mature conidiophores. Using a suppressive subtractive hybridization technique, we identified plant genes showing differential expression between resistant Te-0 and susceptible Col-0 plants at the fungal pre-conidiation stage. Te-0 resistance is likely caused by loss of host compatibility and not by stimulation of inducible defences. Conidiophores formation is the main constraint for completion of fungal life cycle in Te-0 plants. The system here described allowed the identification of genes proposed as markers for susceptibility to this PM.
2012-01-01
Background The establishment of compatibility between plants and pathogens requires compliance with various conditions, such as recognition of the right host, suppression of defence mechanisms, and maintenance of an environment allowing pathogen reproduction. To date, most of the plant factors required to sustain compatibility remain unknown, with the few best characterized being those interfering with defence responses. A suitable system to study host compatibility factors is the interaction between Arabidopsis thaliana and the powdery mildew (PM) Golovinomyces cichoracearum. As an obligate biotrophic pathogen, this fungus must establish compatibility in order to perpetuate. In turn, A. thaliana displays natural variation for susceptibility to this invader, with some accessions showing full susceptibility (Col-0), and others monogenic dominant resistance (Kas-1). Interestingly, Te-0, among other accessions, displays recessive partial resistance to this PM. Results In this study, we characterized the interaction of G. cichoracearum with Te-0 plants to investigate the basis of this plant resistance. We found that Te-0´s incompatibility was not associated with hyper-activation of host inducible defences. Te-0 plants allowed germination of conidia and development of functional haustoria, but could not support the formation of mature conidiophores. Using a suppressive subtractive hybridization technique, we identified plant genes showing differential expression between resistant Te-0 and susceptible Col-0 plants at the fungal pre-conidiation stage. Conclusions Te-0 resistance is likely caused by loss of host compatibility and not by stimulation of inducible defences. Conidiophores formation is the main constraint for completion of fungal life cycle in Te-0 plants. The system here described allowed the identification of genes proposed as markers for susceptibility to this PM. PMID:22883024
Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions
Papa, Anna; Tsergouli, Katerina; Tsioka, Katerina; Mirazimi, Ali
2017-01-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is transmitted to humans by bite of infected ticks or by direct contact with blood or tissues of viremic patients or animals. It causes to humans a severe disease with fatality up to 30%. The current knowledge about the vector-host-CCHFV interactions is very limited due to the high-level containment required for CCHFV studies. Among ticks, Hyalomma spp. are considered the most competent virus vectors. CCHFV evades the tick immune response, and following its replication in the lining of the tick's midgut, it is disseminated by the hemolymph in the salivary glands and reproductive organs. The introduction of salivary gland secretions into the host cells is the major route via which CCHFV enters the host. Following an initial amplification at the site of inoculation, the virus is spread to the target organs. Apoptosis is induced via both intrinsic and extrinsic pathways. Genetic factors and immune status of the host may affect the release of cytokines which play a major role in disease progression and outcome. It is expected that the use of new technology of metabolomics, transcriptomics and proteomics will lead to improved understanding of CCHFV-host interactions and identify potential targets for blocking the CCHFV transmission. PMID:28603698
Novel mechanism and factor for regulation by HIV-1 Tat.
Zhou, Q; Sharp, P A
1995-01-01
Tat regulation of human immunodeficiency virus (HIV) transcription is unique because of its specificity for an RNA target, TAR, and its ability to increase the efficiency of elongation by polymerase. A reconstituted reaction that is Tat-specific and TAR-dependent for activation of HIV transcription has been used to identify and partially purify a cellular activity that is required for trans-activation by Tat, but not by other activators. In the reaction, Tat stimulates the efficiency of elongation by polymerase, whereas Sp1 and other DNA sequence-specific transcription factors activate the rate of initiation. Furthermore, while TATA binding protein (TBP)-associated factors (TAFs) in the TFIID complex are required for activation by transcription factors, they are dispensable for Tat function. Thus, Tat acts through a novel mechanism, which is mediated by a specific host cellular factor, to stimulate HIV-1 gene expression. Images PMID:7835343
Endochondral ossification is required for haematopoietic stem-cell niche formation.
Chan, Charles K F; Chen, Ching-Cheng; Luppen, Cynthia A; Kim, Jae-Beom; DeBoer, Anthony T; Wei, Kevin; Helms, Jill A; Kuo, Calvin J; Kraft, Daniel L; Weissman, Irving L
2009-01-22
Little is known about the formation of niches, local micro-environments required for stem-cell maintenance. Here we develop an in vivo assay for adult haematopoietic stem-cell (HSC) niche formation. With this assay, we identified a population of progenitor cells with surface markers CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1.1(-) (CD105(+)Thy1(-)) that, when sorted from 15.5 days post-coitum fetal bones and transplanted under the adult mouse kidney capsule, could recruit host-derived blood vessels, produce donor-derived ectopic bones through a cartilage intermediate and generate a marrow cavity populated by host-derived long-term reconstituting HSC (LT-HSC). In contrast, CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1(+) (CD105(+)Thy1(+)) fetal bone progenitors form bone that does not contain a marrow cavity. Suppressing expression of factors involved in endochondral ossification, such as osterix and vascular endothelial growth factor (VEGF), inhibited niche generation. CD105(+)Thy1(-) progenitor populations derived from regions of the fetal mandible or calvaria that do not undergo endochondral ossification formed only bone without marrow in our assay. Collectively, our data implicate endochondral ossification, bone formation that proceeds through a cartilage intermediate, as a requirement for adult HSC niche formation.
Maia, João P.; Harris, D. James; Carranza, Salvador; Gómez-Díaz, Elena
2014-01-01
Identifying factors influencing infection patterns among hosts is critical for our understanding of the evolution and impact of parasitism in natural populations. However, the correct estimation of infection parameters depends on the performance of detection and quantification methods. In this study, we designed a quantitative PCR (qPCR) assay targeting the 18 S rRNA gene to estimate prevalence and intensity of Hepatozoon infection and compared its performance with microscopy and PCR. Using qPCR, we also compared various protocols that differ in the biological source and the extraction methods. Our results show that the qPCR approach on DNA extracted from blood samples, regardless of the extraction protocol, provided the most sensitive estimates of Hepatozoon infection parameters; while allowed us to differentiate between mixed infections of Adeleorinid (Hepatozoon) and Eimeriorinid (Schellackia and Lankesterella), based on the analysis of melting curves. We also show that tissue and saline methods can be used as low-cost alternatives in parasitological studies. The next step was to test our qPCR assay in a biological context, and for this purpose we investigated infection patterns between two sympatric lacertid species, which are naturally infected with apicomplexan hemoparasites, such as the genera Schellackia (Eimeriorina) and Hepatozoon (Adeleorina). From a biological standpoint, we found a positive correlation between Hepatozoon intensity of infection and host body size within each host species, being significantly higher in males, and higher in the smaller sized host species. These variations can be associated with a number of host intrinsic factors, like hormonal and immunological traits, that require further investigation. Our findings are relevant as they pinpoint the importance of accounting for methodological issues to better estimate infection in parasitological studies, and illustrate how between-host factors can influence parasite distributions in sympatric natural populations. PMID:24743340
Maia, João P; Harris, D James; Carranza, Salvador; Gómez-Díaz, Elena
2014-01-01
Identifying factors influencing infection patterns among hosts is critical for our understanding of the evolution and impact of parasitism in natural populations. However, the correct estimation of infection parameters depends on the performance of detection and quantification methods. In this study, we designed a quantitative PCR (qPCR) assay targeting the 18 S rRNA gene to estimate prevalence and intensity of Hepatozoon infection and compared its performance with microscopy and PCR. Using qPCR, we also compared various protocols that differ in the biological source and the extraction methods. Our results show that the qPCR approach on DNA extracted from blood samples, regardless of the extraction protocol, provided the most sensitive estimates of Hepatozoon infection parameters; while allowed us to differentiate between mixed infections of Adeleorinid (Hepatozoon) and Eimeriorinid (Schellackia and Lankesterella), based on the analysis of melting curves. We also show that tissue and saline methods can be used as low-cost alternatives in parasitological studies. The next step was to test our qPCR assay in a biological context, and for this purpose we investigated infection patterns between two sympatric lacertid species, which are naturally infected with apicomplexan hemoparasites, such as the genera Schellackia (Eimeriorina) and Hepatozoon (Adeleorina). From a biological standpoint, we found a positive correlation between Hepatozoon intensity of infection and host body size within each host species, being significantly higher in males, and higher in the smaller sized host species. These variations can be associated with a number of host intrinsic factors, like hormonal and immunological traits, that require further investigation. Our findings are relevant as they pinpoint the importance of accounting for methodological issues to better estimate infection in parasitological studies, and illustrate how between-host factors can influence parasite distributions in sympatric natural populations.
Lee, Jae Hoon; Zhao, Youfu
2016-01-01
Erwinia amylovora requires an hrp-type III secretion system (T3SS) to cause disease. It has been reported that HrpL, the master regulator of T3SS, is transcriptionally regulated by sigma factor 54 (RpoN), YhbH, and HrpS. In this study, the role of integration host factor (IHF) in regulating hrpL and T3SS gene expression was investigated. IHF is a nucleoid-associated protein that regulates gene expression by influencing nucleoid structure and DNA bending. Our results showed that both ihfA and ihfB mutants of E. amylovora did not induce necrotic lesions on pear fruits. Growth of both mutants was greatly reduced, and expression of the hrpL and T3SS genes was significantly down-regulated as compared with those of the wild type. In addition, expression of the ihfA, but not the ihfB gene, was under auto-suppression by IHF. Furthermore, both ihfA and ihfB mutants were hypermotile, due to significantly reduced expression of small RNA (sRNA) rsmB. Electrophoresis mobility shift assay further confirmed that IHF binds to the promoters of the hrpL and ihfA genes, as well as the rsmB sRNA gene. These results indicate that IHF is required for RpoN-dependent hrpL gene expression and virulence, and controls motility by positively regulating the rsmB sRNA in E. amylovora.
Viral degradasome hijacks mitochondria to suppress innate immunity
Goswami, Ramansu; Majumdar, Tanmay; Dhar, Jayeeta; Chattopadhyay, Saurabh; Bandyopadhyay, Sudip K; Verbovetskaya, Valentina; Sen, Ganes C; Barik, Sailen
2013-01-01
The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity. PMID:23877405
Madsen, Lene H; Tirichine, Leïla; Jurkiewicz, Anna; Sullivan, John T; Heckmann, Anne B; Bek, Anita S; Ronson, Clive W; James, Euan K; Stougaard, Jens
2010-04-12
Bacterial infection of interior tissues of legume root nodules is controlled at the epidermal cell layer and is closely coordinated with progressing organ development. Using spontaneous nodulating Lotus japonicus plant mutants to uncouple nodule organogenesis from infection, we have determined the role of 16 genes in these two developmental processes. We show that host-encoded mechanisms control three alternative entry processes operating in the epidermis, the root cortex and at the single cell level. Single cell infection did not involve the formation of trans-cellular infection threads and was independent of host Nod-factor receptors and bacterial Nod-factor signals. In contrast, Nod-factor perception was required for epidermal root hair infection threads, whereas primary signal transduction genes preceding the secondary Ca2+ oscillations have an indirect role. We provide support for the origin of rhizobial infection through direct intercellular epidermal invasion and subsequent evolution of crack entry and root hair invasions observed in most extant legumes.
Identification of secreted bacterial proteins by noncanonical amino acid tagging
Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.
2014-01-01
Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637
The CXCL12/CXCR4 Signaling Pathway: A New Susceptibility Factor in Human Papillomavirus Pathogenesis
Meuris, Floriane; Carthagena, Laetitia; Cutolo, Pasquale; Xue, Yuezhen; Thierry, Françoise; Doorbar, John; Bachelerie, Françoise
2016-01-01
The productive human papillomavirus (HPV) life cycle is tightly linked to the differentiation and cycling of keratinocytes. Deregulation of these processes and stimulation of cell proliferation by the action of viral oncoproteins and host cell factors underlies HPV-mediated carcinogenesis. Severe HPV infections characterize the wart, hypogammaglobulinemia, infection, and myelokathexis (WHIM) immunodeficiency syndrome, which is caused by gain-of-function mutations in the CXCR4 receptor for the CXCL12 chemokine, one of which is CXCR41013. We investigated whether CXCR41013 interferes in the HPV18 life cycle in epithelial organotypic cultures. Expression of CXCR41013 promoted stabilization of HPV oncoproteins, thus disturbing cell cycle progression and proliferation at the expense of the ordered expression of the viral genes required for virus production. Conversely, blocking CXCR41013 function restored virus production and limited HPV-induced carcinogenesis. Thus, CXCR4 and its potential activation by genetic alterations in the course of the carcinogenic process can be considered as an important host factor for HPV carcinogenesis. PMID:27918748
Rasmussen, B; Davis, R; Thomas, J; Reddy, P
1998-11-01
The dihydrofolate reductase-deficient Chinese hamster ovary cell line, DXB11-CHO, commonly used as a host cell for the production of recombinant proteins requires 7.5% serum-supplementation for optimal growth. Regulatory issues surrounding the use of serum in clinical production processes and the direct and indirect costs of using serum in large-scale production and recovery processes have triggered efforts to derive serum-independent host cell lines. We have successfully isolated a serum-free host that we named Veggie- CHO. Veggie-CHO was generated by adapting DXB11-CHO cells to growth in serum-free media in the absence of exogenous growth factors such as Transferrin and Insulin-like growth factor, which we have previously shown to be essential for growth and viability of DXB11- CHO cells. Veggie-CHO cells have been shown to maintain an average doubling time of 22 hr in continuous growth cultures over a period of three months and have retained the dihydrofolate reductase -deficient phenotype of their parental DXB11-CHO cells. These properties and the stability of its serum-free phenotype have allowed the use of Veggie- CHO as host cells for transfection and amplified expression of recombinant proteins. We describe the derivation a serum-free recombinant cell line with an average doubling time of 20 hr and specific productivity of 2.5 Units recombinant Flt-3L protein per 10e6 cells per day.
Stress and sex in malaria parasites: Why does commitment vary?
Carter, Lucy M; Kafsack, Björn F C; Llinás, Manuel; Mideo, Nicole; Pollitt, Laura C; Reece, Sarah E
2013-01-01
For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission to occur, specialized sexual stages (gametocytes) must be produced. Despite the central role that gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production in response to in-host factors remain controversial. We propose that evolutionary theory developed to explain variation in reproductive effort in multicellular organisms, provides a framework to understand gametocyte investment strategies. We examine why parasites adjust investment in gametocytes according to the impact of changing conditions on their in-host survival. We then outline experiments required to determine whether plasticity in gametocyte investment enables parasites to maintain fitness in a variable environment. Gametocytes are a target for anti-malarial transmission-blocking interventions so understanding plasticity in investment is central to maximizing the success of control measures in the face of parasite evolution.
Escoll, Pedro; Rolando, Monica; Gomez-Valero, Laura; Buchrieser, Carmen
2013-01-01
Legionella pneumophila is a Gram-negative bacterium and the causative agent of Legionnaires' disease. It replicates within amoeba and infects accidentally human macrophages. Several similarities are seen in the L. pneumophila-infection cycle in both hosts, suggesting that the tools necessary for macrophage infection may have evolved during co-evolution of L. pneumophila and amoeba. The establishment of the Legionella-containing vacuole (LCV) within the host cytoplasm requires the remodeling of the LCV surface and the hijacking of vesicles and organelles. Then L. pneumophila replicates in a safe intracellular niche in amoeba and macrophages. In this review we will summarize the existing knowledge of the L. pneumophila infection cycle in both hosts at the molecular level and compare the factors involved within amoeba and macrophages. This knowledge will be discussed in the light of recent findings from the Acanthamoeba castellanii genome analyses suggesting the existence of a primitive immune-like system in amoeba.
Santos, Jorge M; Egarter, Saskia; Zuzarte-Luís, Vanessa; Kumar, Hirdesh; Moreau, Catherine A; Kehrer, Jessica; Pinto, Andreia; da Costa, Mário; Franke-Fayard, Blandine; Janse, Chris J; Frischknecht, Friedrich; Mair, Gunnar R
2017-01-01
Gliding motility allows malaria parasites to migrate and invade tissues and cells in different hosts. It requires parasite surface proteins to provide attachment to host cells and extracellular matrices. Here, we identify the Plasmodium protein LIMP (the name refers to a gliding phenotype in the sporozoite arising from epitope tagging of the endogenous protein) as a key regulator for adhesion during gliding motility in the rodent malaria model P. berghei. Transcribed in gametocytes, LIMP is translated in the ookinete from maternal mRNA, and later in the sporozoite. The absence of LIMP reduces initial mosquito infection by 50%, impedes salivary gland invasion 10-fold, and causes a complete absence of liver invasion as mutants fail to attach to host cells. GFP tagging of LIMP caused a limping defect during movement with reduced speed and transient curvature changes of the parasite. LIMP is an essential motility and invasion factor necessary for malaria transmission. DOI: http://dx.doi.org/10.7554/eLife.24109.001 PMID:28525314
Rasheed, Mubashshir; Battu, Anamika; Kaur, Rupinder
2018-01-01
A family of 11 cell surface-associated aspartyl proteases (CgYps1–11), also referred as yapsins, is a key virulence factor in the pathogenic yeast Candida glabrata. However, the mechanism by which CgYapsins modulate immune response and facilitate survival in the mammalian host remains to be identified. Here, using RNA-Seq analysis, we report that genes involved in cell wall metabolism are differentially regulated in the Cgyps1–11Δ mutant. Consistently, the mutant contained lower β-glucan and mannan levels and exhibited increased chitin content in the cell wall. As cell wall components are known to regulate the innate immune response, we next determined the macrophage transcriptional response to C. glabrata infection and observed differential expression of genes implicated in inflammation, chemotaxis, ion transport, and the tumor necrosis factor signaling cascade. Importantly, the Cgyps1–11Δ mutant evoked a different immune response, resulting in an enhanced release of the pro-inflammatory cytokine IL-1β in THP-1 macrophages. Further, Cgyps1–11Δ–induced IL-1β production adversely affected intracellular proliferation of co-infected WT cells and depended on activation of spleen tyrosine kinase (Syk) signaling in the host cells. Accordingly, the Syk inhibitor R406 augmented intracellular survival of the Cgyps1–11Δ mutant. Finally, we demonstrate that C. glabrata infection triggers elevated IL-1β production in mouse organs and that the CgYPS genes are required for organ colonization and dissemination in the murine model of systemic infection. Altogether, our results uncover the basis for macrophage-mediated killing of Cgyps1–11Δ cells and provide the first evidence that aspartyl proteases in C. glabrata are required for suppression of IL-1β production in macrophages. PMID:29491142
Yersinia pestis targets neutrophils via complement receptor 3
Merritt, Peter M.; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S.; Marketon, Melanie M.
2015-01-01
Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins due to reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria toward neutrophils during plague infection. PMID:25359083
Bennett, Ryan P; Presnyak, Vladimir; Wedekind, Joseph E; Smith, Harold C
2008-03-21
Human APOBEC3G (hA3G) is a host factor that defends against HIV-1 as well as other exogenous retroviruses and endogenous retroelements. To this end, hA3G is restricted to the cytoplasm of T lymphocytes where it interacts with viral RNA and proteins to assemble with viral particles causing a post-entry block during reverse transcription. hA3G also exhibits a mechanism to inhibit the reverse transcription of retroelements by RNA binding and sequestration into mRNA processing centers in the cytoplasm. We have determined that the molecular basis for this specialized property of hA3G is a novel cytoplasmic retention signal (CRS) that is necessary and sufficient to restrict wild-type hA3G and chimeric constructs to the cytoplasm. The CRS resides within amino acids 113-128 and is embedded within a basic flanking sequence and does not require RNA binding to retain hA3G in the cytoplasm. Paralogs of hA3G that have nuclear or cytoplasmic distributions differ from hA3G within the region encompassing the CRS motif with respect to charge and amino acid composition. We propose that the CRS enables hA3G to interact with cytoplasmic factors, and thereby enables hA3G to serve in host cell defense by restricting an antiviral sentinel to the cytoplasm. The CRS lies in a region involved in both Gag and Vif interactions; therefore, identification of this motif has important implications for the design of therapeutics that target HIV-1 while maintaining antiviral and cellular functions.
Ren, Xiao-Xin; Wang, Hai-Bo; Li, Chuan; Jiang, Jin-Feng; Xiong, Si-Dong; Jin, Xia; Wu, Li; Wang, Jian-Hua
2016-02-26
HIV-1 depends on host-cell-encoded factors to complete its life cycle. A comprehensive understanding of how HIV-1 manipulates host machineries during viral infection can facilitate the identification of host targets for antiviral drugs or gene therapy. The cellular protein Naf1 (HIV-1 Nef-associated factor 1) is a CRM1-dependent nucleo-cytoplasmic shuttling protein, and has been identified to regulate multiple receptor-mediated signal pathways in inflammation. The cytoplasm-located Naf1 can inhibit NF-κB activation through binding to A20, and the loss of Naf1 controlled NF-κB activation is associated with multiple autoimmune diseases. However, the effect of Naf1 on HIV-1 mRNA expression has not been characterized. In this study we found that the nucleus-located Naf1 could promote nuclear export of unspliced HIV-1 gag mRNA. We demonstrated that the association between Naf1 and CRM1 was required for this function as the inhibition or knockdown of CRM1 expression significantly impaired Naf1-promoted HIV-1 production. The mutation of Naf1 nuclear export signals (NESs) that account for CRM1 recruitment for nuclear export decreased Naf1 function. Additionally, the mutation of the nuclear localization signal (NLS) of Naf1 diminished its ability to promote HIV-1 production, demonstrating that the shuttling property of Naf1 is required for this function. Our results reveal a novel role of Naf1 in enhancing HIV-1 production, and provide a potential therapeutic target for controlling HIV-1 infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Munguia, Jason; Nizet, Victor
2017-01-01
The rise of multidrug-resistant pathogens and the dearth of new antibiotic development place an existential strain on successful infectious disease therapy. Breakthrough strategies that go beyond classical antibiotic mechanisms are needed to combat this looming public health catastrophe. Reconceptualizing antibiotic therapy in the richer context of the host-pathogen interaction is required for innovative solutions. By defining specific virulence factors, the essence of a pathogen, and pharmacologically neutralizing their activities, one can block disease progression and sensitize microbes to immune clearance. Likewise, host-directed strategies to boost phagocyte bactericidal activity, enhance leukocyte recruitment, or reverse pathogen-induced immunosuppression seek to replicate the success of cancer immunotherapy in the field of infectious diseases. The answer to the threat of multidrug-resistant pathogens lies “outside-the-box” of current antibiotic paradigms. PMID:28283200
Productive Lifecycle of Human Papillomaviruses that Depends Upon Squamous Epithelial Differentiation
Kajitani, Naoko; Satsuka, Ayano; Kawate, Akifumi; Sakai, Hiroyuki
2012-01-01
Human papillomaviruses (HPVs) target the stratified epidermis, and can causes diseases ranging from benign condylomas to malignant tumors. Infections of HPVs in the genital tract are among the most common sexually transmitted diseases, and a major risk factor for cervical cancer. The virus targets epithelial cells in the basal layer of the epithelium, while progeny virions egress from terminally differentiated cells in the cornified layer, the surface layer of the epithelium. In infected basal cells, the virus maintains its genomic DNA at low-copy numbers, at which the viral productive lifecycle cannot proceed. Progression of the productive lifecycle requires differentiation of the host cell, indicating that there is tight crosstalk between viral replication and host differentiation programs. In this review, we discuss the regulation of the HPV lifecycle controlled by the differentiation program of the host cells. PMID:22536200
Induction of virulence factors in Giardia duodenalis independent of host attachment
Emery, Samantha J.; Mirzaei, Mehdi; Vuong, Daniel; Pascovici, Dana; Chick, Joel M.; Lacey, Ernest; Haynes, Paul A.
2016-01-01
Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response. PMID:26867958
Fontana, Mary F; Banga, Simran; Barry, Kevin C; Shen, Xihui; Tan, Yunhao; Luo, Zhao-Qing; Vance, Russell E
2011-02-01
The intracellular bacterial pathogen Legionella pneumophila causes an inflammatory pneumonia called Legionnaires' Disease. For virulence, L. pneumophila requires a Dot/Icm type IV secretion system that translocates bacterial effectors to the host cytosol. L. pneumophila lacking the Dot/Icm system is recognized by Toll-like receptors (TLRs), leading to a canonical NF-κB-dependent transcriptional response. In addition, L. pneumophila expressing a functional Dot/Icm system potently induces unique transcriptional targets, including proinflammatory genes such as Il23a and Csf2. Here we demonstrate that this Dot/Icm-dependent response, which we term the effector-triggered response (ETR), requires five translocated bacterial effectors that inhibit host protein synthesis. Upon infection of macrophages with virulent L. pneumophila, these five effectors caused a global decrease in host translation, thereby preventing synthesis of IκB, an inhibitor of the NF-κB transcription factor. Thus, macrophages infected with wildtype L. pneumophila exhibited prolonged activation of NF-κB, which was associated with transcription of ETR target genes such as Il23a and Csf2. L. pneumophila mutants lacking the five effectors still activated TLRs and NF-κB, but because the mutants permitted normal IκB synthesis, NF-κB activation was more transient and was not sufficient to fully induce the ETR. L. pneumophila mutants expressing enzymatically inactive effectors were also unable to fully induce the ETR, whereas multiple compounds or bacterial toxins that inhibit host protein synthesis via distinct mechanisms recapitulated the ETR when administered with TLR ligands. Previous studies have demonstrated that the host response to bacterial infection is induced primarily by specific microbial molecules that activate TLRs or cytosolic pattern recognition receptors. Our results add to this model by providing a striking illustration of how the host immune response to a virulent pathogen can also be shaped by pathogen-encoded activities, such as inhibition of host protein synthesis.
Li, Yang; Fang, Liurong; Zhou, Yanrong; Tao, Ran; Wang, Dang; Xiao, Shaobo
2018-06-13
Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has caused tremendous economic losses in the global swine industry since it was discovered in the late 1980s. Inducing host translation shutoff is a strategy used by many viruses to optimize their replication and spread. Here, we demonstrate that PRRSV infection causes host translation suppression, which is strongly dependent on viral replication. By screening PRRSV-encoded nonstructural proteins (nsps), we found that nsp2 participates in the induction of host translation shutoff and that its transmembrane (TM) domain is required for this process. Nsp2-induced translation suppression is independent of protein degradation pathways and the phosphorylation of eukaryotic initiation factor 2α (eIF2α). However, the overexpression of nsp2 or its TM domain significantly attenuated the mammalian target of rapamycin (mTOR) signaling pathway, an alternative pathway for modulating host gene expression. PRRSV infection also attenuated the mTOR signaling pathway, and PRRSV-induced host translation shutoff could be partly reversed when the attenuated mTOR phosphorylation was reactivated by an activator of the mTOR pathway. PRRSV infection still negatively regulated the host translation when the effects of eIF2α phosphorylation were completely reversed. Taken together, our results demonstrate that PRRSV infection induces host translation shutoff and that nsp2 is associated with this process. Both eIF2α phosphorylation and the attenuation of the mTOR signaling pathway contribute to PRRSV-induced host translation arrest. IMPORTANCE Viruses are obligate parasites, and the production of progeny viruses relies strictly on the host translation machinery. Therefore, the efficient modulation of host mRNA translation benefits viral replication, spread, and evolution. In this study, we provide evidence that porcine reproductive and respiratory syndrome virus (PRRSV) infection induces host translation shutoff and that the viral nonstructural protein nsp2 is associated with this process. Many viruses induce host translation shutoff by phosphorylating eukaryotic initiation factor 2α (eIF2α). However, PRRSV nsp2 does not induce eIF2α phosphorylation but attenuates the mTOR signaling pathway, another pathway regulating the host cell translational machinery. We also found that PRRSV-induced host translation shutoff was partly reversed by dephosphorylating eIF2α or reactivating the mTOR pathway, indicating that PRRSV infection induces both eIF2α-phosphorylation-dependent and -independent host translation shutoff. Copyright © 2018 American Society for Microbiology.
Stanko, Michal; Fričová, Jana; Miklisová, Dana; Khokhlova, Irina S; Krasnov, Boris R
2015-06-01
We studied the effects of environment- (habitat, season) and host-related (sex, body mass) factors on the occurrence of four species of lice (Insecta:Phthiraptera:Anoplura) on six rodent species (Rodentia:Muridae). We asked how these factors influence the occurrence of lice on an individual host and whether different rodent-louse associations demonstrate consistent trends in these effects. We found significant effects of at least one environment-related and at least one host-related factor on the louse occurrence in five of six host-louse associations. The effect of habitat was significant in two associations with the occurrence of lice being more frequent in lowland than in mountain habitats. The effect of season was significant in five associations with a higher occurrence of infestation during the warm season in four associations and the cold season in one association. Host sex affected significantly the infestation by lice in three associations with a higher frequency of infestation in males. Host body mass affected the occurrence of lice in all five associations, being negative in wood mice and positive in voles. In conclusion, lice were influenced not only by the host- but also by environment-related factors. The effects of the latter could be mediated via life history parameters of a host.
Wasielewski, Helen; Alcock, Joe; Aktipis, Athena
2016-05-01
Diet has been known to play an important role in human health since at least the time period of the ancient Greek physician Hippocrates. In the last decade, research has revealed that microorganisms inhabiting the digestive tract, known as the gut microbiota, are critical factors in human health. This paper draws on concepts of cooperation and conflict from ecology and evolutionary biology to make predictions about host-microbiota interactions involving nutrients. To optimally extract energy from some resources (e.g., fiber), hosts require cooperation from microbes. Other nutrients can be utilized by both hosts and microbes (e.g., simple sugars, iron) in their ingested form, which may lead to greater conflict over these resources. This framework predicts that some negative health effects of foods are driven by the direct effects of these foods on human physiology and by indirect effects resulting from microbiome-host competition and conflict (e.g., increased invasiveness and inflammation). Similarly, beneficial effects of some foods on host health may be enhanced by resource sharing and other cooperative behaviors between host and microbes that may downregulate inflammation and virulence. Given that some foods cultivate cooperation between hosts and microbes while others agitate conflict, host-microbe interactions may be novel targets for interventions aimed at improving nutrition and human health. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.
No Major Host Genetic Risk Factor Contributed to A(H1N1)2009 Influenza Severity
Garcia-Etxebarria, Koldo; Bracho, María Alma; Galán, Juan Carlos; Pumarola, Tomàs; Castilla, Jesús; Ortiz de Lejarazu, Raúl; Rodríguez-Dominguez, Mario; Quintela, Inés; Bonet, Núria; Garcia-Garcerà, Marc; Domínguez, Angela; González-Candelas, Fernando; Calafell, Francesc
2015-01-01
While most patients affected by the influenza A(H1N1) pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs) between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10−8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course. PMID:26379185
Levecke, Bruno; Speybroeck, Niko; Dobson, Robert J.; Vercruysse, Jozef; Charlier, Johannes
2011-01-01
Background The fecal egg count reduction test (FECRT) is recommended to monitor drug efficacy against soil-transmitted helminths (STHs) in public health. However, the impact of factors inherent to study design (sample size and detection limit of the fecal egg count (FEC) method) and host-parasite interactions (mean baseline FEC and aggregation of FEC across host population) on the reliability of FECRT is poorly understood. Methodology/Principal Findings A simulation study was performed in which FECRT was assessed under varying conditions of the aforementioned factors. Classification trees were built to explore critical values for these factors required to obtain conclusive FECRT results. The outcome of this analysis was subsequently validated on five efficacy trials across Africa, Asia, and Latin America. Unsatisfactory (<85.0%) sensitivity and specificity results to detect reduced efficacy were found if sample sizes were small (<10) or if sample sizes were moderate (10–49) combined with highly aggregated FEC (k<0.25). FECRT remained inconclusive under any evaluated condition for drug efficacies ranging from 87.5% to 92.5% for a reduced-efficacy-threshold of 90% and from 92.5% to 97.5% for a threshold of 95%. The most discriminatory study design required 200 subjects independent of STH status (including subjects who are not excreting eggs). For this sample size, the detection limit of the FEC method and the level of aggregation of the FEC did not affect the interpretation of the FECRT. Only for a threshold of 90%, mean baseline FEC <150 eggs per gram of stool led to a reduced discriminatory power. Conclusions/Significance This study confirms that the interpretation of FECRT is affected by a complex interplay of factors inherent to both study design and host-parasite interactions. The results also highlight that revision of the current World Health Organization guidelines to monitor drug efficacy is indicated. We, therefore, propose novel guidelines to support future monitoring programs. PMID:22180801
Ectromelia virus upregulates the expression of heat shock protein 70 to promote viral replication.
Cheng, Wenyu; Jia, Huaijie; Wang, Xiaoxia; He, Xiaobing; Jin, Qiwang; Cao, Jingxin; Jing, Zhizhong
2018-08-01
The ectromelia virus (ECTV) is a mouse specific Orthopoxvirus that causes lethal infection in some mouse strains. ECTV infection of these mouse strains has been used as a valuable model for understanding the interplay between Orthopoxvirus species and their hosts, including variola virus in humans. Although poxviruses encode numerous proteins required for DNA and RNA synthesis, and are less dependent on host functions than other DNA viruses, a detailed understanding of the host factors required for the replication of poxviruses is lacking. Heat shock protein 70 (Hsp70) isoforms have been reported to serve various roles in the replication cycle of numerous viruses. In the present study, microarray and reverse transcription‑quantitative polymerase chain reaction analysis were conducted to investigate the host gene expression profiles following ECTV infection in mice and cell cultures. The results indicated that one Hsp70 isoform, Hsp70 member 1B (Hspa1b), was highly upregulated during ECTV infection in vitro and in vivo. Subsequently, overexpression of Hspa1b protein and small interfering RNA‑mediated gene silencing of Hspa1b revealed that Hspa1b is required for efficient replication of ECTV. Furthermore, the results demonstrated that ECTV replication may be significantly suppressed by two chemical Hspa1b inhibitors: Quercetin and VER155008. In conclusion, the present study clearly demonstrated that ECTV infection upregulates the expression of Hspa1b in order to promote its replication. The dependence on Hsp70 may be used as a novel therapeutic target for the treatment of Orthopoxvirus infection.
A Temperature-Responsive Network Links Cell Shape and Virulence Traits in a Primary Fungal Pathogen
Beyhan, Sinem; Gutierrez, Matias; Voorhies, Mark; Sil, Anita
2013-01-01
Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between environmental and pathogenic states in response to temperature. PMID:23935449
Body Condition Peaks at Intermediate Parasite Loads in the Common Bully Gobiomorphus cotidianus
Maceda-Veiga, Alberto; Green, Andy J.; Poulin, Robert; Lagrue, Clément
2016-01-01
Most ecologists and conservationists perceive parasitic infections as deleterious for the hosts. Their effects, however, depend on many factors including host body condition, parasite load and the life cycle of the parasite. More research into how multiple parasite taxa affect host body condition is required and will help us to better understand host-parasite coevolution. We used body condition indices, based on mass-length relationships, to test the effects that abundances and biomasses of six parasite taxa (five trematodes, Apatemon sp., Tylodelphys sp., Stegodexamene anguillae, Telogaster opisthorchis, Coitocaecum parvum, and the nematode Eustrongylides sp.) with different modes of transmission have on the body condition of their intermediate or final fish host, the common bully Gobiomorphus cotidianus in New Zealand. We used two alternative body condition methods, the Scaled Mass Index (SMI) and Fulton’s condition factor. General linear and hierarchical partitioning models consistently showed that fish body condition varied strongly across three lakes and seasons, and that most parasites did not have an effect on the two body condition indices. However, fish body condition showed a highly significant humpbacked relationship with the total abundance of all six parasite taxa, mostly driven by Apatemon sp. and S. anguillae, indicating that the effects of these parasites can range from positive to negative as abundance increases. Such a response was also evident in models including total parasite biomass. Our methodological comparison supports the SMI as the most robust mass-length method to examine the effects of parasitic infections on fish body condition, and suggests that linear, negative relationships between host condition and parasite load should not be assumed. PMID:28030606
Discovery of a proteinaceous cellular receptor for a norovirus
Orchard, Robert C.; Wilen, Craig B.; Doench, John G.; Baldridge, Megan T.; McCune, Broc T.; Lee, Ying-Chiang J.; Lee, Sanghyun; Pruett-Miller, Shondra M.; Nelson, Christopher A.; Fremont, Daved H.; Virgin, Herbert W.
2017-01-01
Human noroviruses (NoV) are a leading cause of gastroenteritis globally, yet host factors required for NoV infection are poorly understood. We identified host molecules essential for murine NoV (MNoV) induced cell death including CD300lf as a proteinaceous receptor. CD300lf is essential for MNoV binding and replication in cell lines and primary cells. Additionally, Cd300lf−/− mice are resistant to MNoV infection. Expression of CD300lf in human cells breaks the species barrier restricting MNoV replication. The crystal structure of the CD300lf ectodomain revealed a potential ligand binding cleft composed of residues critical for MNoV infection. Therefore, the presence of a proteinaceous receptor is the primary determinant of MNoV species tropism while other components of cellular machinery required for NoV replication are conserved between humans and mice. PMID:27540007
A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.
Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K
2015-06-01
Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.
Russ, Christiana M; Ganapathi, Lakshmi; Marangu, Diana; Silverman, Melanie; Kija, Edward; Bakeera-Kitaka, Sabrina; Laving, Ahmed
2016-01-01
Background Investments in faculty exchanges to build physician workforce capacity are increasing. Little attention has been paid to the expectations of host institution faculty and trainees. This prospective qualitative research study explored faculty and resident perspectives about guest faculty in paediatric departments in East Africa, asking (1) What are the benefits and challenges of hosting guest faculty, (2) What factors influence the effectiveness of faculty visits and (3) How do host institutions prepare for faculty visits? Methods We recruited 36 faculty members and residents from among four paediatric departments in East Africa to participate in semistructured interviews which were audio recorded and transcribed. Data were qualitatively analysed using principles of open coding and thematic analysis. We achieved saturation of themes. Results Benefits of faculty visits varied based on the size and needs of host institutions. Emergent themes included the importance of guest faculty time commitment, and mutual preparation to ensure that visit goals and scheduling met host needs. We documented conflicts that developed around guest emotional responses and ethical approaches to clinical resource limitations, which some hosts tried to prepare for and mitigate. Imbalance in resources led to power differentials; some hosts sought partnerships to re-establish control over the process of having guests. Conclusions We identified that guest faculty can assist paediatric institutions in building capacity; however, effective visits require: (1) mutually agreed on goals with appropriate scheduling, visit length and commitment to ensure that the visits meet the host's needs, (2) careful selection and preparation of guest faculty to meet the host's goals, (3) emotional preparation by prospective guests along with host orientation to clinical work in the host's setting and (4) attention to funding sources for the visit and mitigation of resulting power differentials. PMID:28588960
Parasitic Cuscuta factor(s) and the detection by tomato initiates plant defense
Fürst, Ursula; Hegenauer, Volker; Kaiser, Bettina; Körner, Max; Welz, Max; Albert, Markus
2016-01-01
ABSTRACT Dodders (Cuscuta spp.) are holoparasitic plants that enwind stems of host plants and penetrate those by haustoria to connect to the vascular bundles. Having a broad host plant spectrum, Cuscuta spp infect nearly all dicot plants – only cultivated tomato as one exception is mounting an active defense specifically against C. reflexa. In a recent work we identified a pattern recognition receptor of tomato, “Cuscuta Receptor 1“ (CuRe1), which is critical to detect a “Cuscuta factor” (CuF) and initiate defense responses such as the production of ethylene or the generation of reactive oxygen species. CuRe1 also contributes to the tomato resistance against C. reflexa. Here we point to the fact that CuRe1 is not the only relevant component for full tomato resistance but it requires additional defense mechanisms, or receptors, respectively, to totally fend off the parasite. PMID:28042379
Yersinia pestis and Yersinia pseudotuberculosis infection: a regulatory RNA perspective
Martínez-Chavarría, Luary C.; Vadyvaloo, Viveka
2015-01-01
Yersinia pestis, responsible for causing fulminant plague, has evolved clonally from the enteric pathogen, Y. pseudotuberculosis, which in contrast, causes a relatively benign enteric illness. An ~97% nucleotide identity over 75% of their shared protein coding genes is maintained between these two pathogens, leaving much conjecture regarding the molecular determinants responsible for producing these vastly different disease etiologies, host preferences and transmission routes. One idea is that coordinated production of distinct factors required for host adaptation and virulence in response to specific environmental cues could contribute to the distinct pathogenicity distinguishing these two species. Small non-coding RNAs that direct posttranscriptional regulation have recently been identified as key molecules that may provide such timeous expression of appropriate disease enabling factors. Here the burgeoning field of small non-coding regulatory RNAs in Yersinia pathogenesis is reviewed from the viewpoint of adaptive colonization, virulence and divergent evolution of these pathogens. PMID:26441890
Intersections between immune responses and morphological regulation in plants.
Uchida, Naoyuki; Tasaka, Masao
2010-06-01
Successful plant pathogens have developed strategies to interfere with the defence mechanisms of their host plants through evolution. Conversely, host plants have evolved systems to counteract pathogen attack. Some pathogens induce pathogenic symptoms on plants that include morphological changes in addition to interference with plant growth. Recent studies, based on molecular biology and genetics using Arabidopsis thaliana, have revealed that factors derived from pathogens can modulate host systems and/or host factors that play important roles in the morphological regulation of host plants. Other reports, meanwhile, have shown that factors known to have roles in plant morphology also function in plant immune responses. Evolutionary conservation of these factors and systems implies that host-pathogen interactions and the evolution they drive have yielded tight links between morphological processes and immune responses. In this review, recent findings about these topics are introduced and discussed.
Murdock, Courtney C; Adler, Peter H; Frank, Jared; Perkins, Susan L
2015-06-25
Molecular studies have suggested that the true diversity of Leucocytozoon (Apicomplexa: Haemospororida) species well exceeds the approximately 35 currently described taxa. Further, the degree of host-specificity may vary substantially among lineages. Parasite distribution can be influenced by the ability of the parasite to infect a host, vector preferences for certain avian hosts, or other factors such as microhabitat requirements that increase the probability that vertebrate hosts and vectors are in frequent contact with each other. Whereas most studies of haemosporidians have focused on passerine hosts, sampling vectors in the same habitats may allow the detection of other lineages affecting other hosts. We sampled abundant, ornithophilic black flies (Simuliidae) across a variety of sites and habitats in the Colorado Rocky Mountains throughout the summer of 2007. Black flies were screened with PCR using Leucocytozoon-specific primers that amplify a portion of the cytochrome b gene, and the sequences were compared to the haplotypes in the MalAvi database. Infections of Leucocytozoon from birds sampled in the same area were also included. We recovered 33 unique haplotypes from the black flies in this study area, which represented a large phylogenetic diversity of Leucocytozoon parasites. However, there were no clear patterns of avian host species or geography for the distribution of Leucocytozoon haplotypes in the phylogeny. Sampling host-seeking vectors is a useful way to obtain a wide variety of avian haemosporidian haplotypes from a given area and may prove useful for understanding the global patterns of host, parasite, and vector associations of these ubiquitous and diverse parasites.
McNally, R Ryan; Zeng, Quan; Sundin, George W
2016-05-20
Many Gram-negative bacterial pathogens mediate host-microbe interactions via utilization of the type III secretion (T3S) system. The T3S system is a complex molecular machine consisting of more than 20 proteins. Collectively, these proteins translocate effectors across extracellular space and into the host cytoplasm. Successful translocation requires timely synthesis and allocation of both structural and secreted T3S proteins. Based on amino acid conservation in animal pathogenic bacteria, HrcU and HrpP were examined for their roles in regulation of T3S hierarchy. Both HrcU and HrpP were shown to be required for disease development in an immature pear infection model and respective mutants were unable to induce a hypersensitive response in tobacco. Using in vitro western blot analyses, both proteins were also shown to be required for the secretion of DspA/E, a type 3 effector and an important pathogenicity factor. Via yeast-two hybridization (Y2H), HrpP and HrcU were revealed to exhibit protein-protein binding. Finally, all HrcU and HrpP phenotypes identified were shown to be dependent on a conserved amino acid motif in the cytoplasmic tail of HrcU. Collectively, these data demonstrate roles for HrcU and HrpP in regulating T3S and represent the first attempt in understanding T3S heirarchy in E. amylovora.
USDA-ARS?s Scientific Manuscript database
The baculovirus occlusion-derived virion (ODV) is required to spread virus infection among insect hosts via the per os route. The Autographa californica Multicapsid Nucleopolyhedrovirus (AcMNPV) P74 protein is an ODV envelope protein that is essential for ODVs to be infectious. P74 is anchored in ...
Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens?
Kumar, Dilip; Barad, Shiri; Sionov, Edward; Prusky, Dov B.
2017-01-01
Storage of freshly harvested fruit is a key factor in modulating their supply for several months after harvest; however, their quality can be reduced by pathogen attack. Fruit pathogens may infect their host through damaged surfaces, such as mechanical injuries occurring during growing, harvesting, and packing, leading to increased colonization as the fruit ripens. Of particular concern are fungal pathogens that not only macerate the host tissue but also secrete significant amounts of mycotoxins. Many studies have described the importance of physiological factors, including stage of fruit development, biochemical factors (ripening, C and N content), and environmental factors (humidity, temperature, water deficit) on the occurrence of mycotoxins. However, those factors usually show a correlative effect on fungal growth and mycotoxin accumulation. Recent reports have suggested that host factors can induce fungal metabolism, leading to the synthesis and accumulation of mycotoxins. This review describes the new vision of host-factor impact on the regulation of mycotoxin biosynthetic gene clusters underlying the complex regulation of mycotoxin accumulation in ripening fruit. PMID:28895896
Treecode with a Special-Purpose Processor
NASA Astrophysics Data System (ADS)
Makino, Junichiro
1991-08-01
We describe an implementation of the modified Barnes-Hut tree algorithm for a gravitational N-body calculation on a GRAPE (GRAvity PipE) backend processor. GRAPE is a special-purpose computer for N-body calculations. It receives the positions and masses of particles from a host computer and then calculates the gravitational force at each coordinate specified by the host. To use this GRAPE processor with the hierarchical tree algorithm, the host computer must maintain a list of all nodes that exert force on a particle. If we create this list for each particle of the system at each timestep, the number of floating-point operations on the host and that on GRAPE would become comparable, and the increased speed obtained by using GRAPE would be small. In our modified algorithm, we create a list of nodes for many particles. Thus, the amount of the work required of the host is significantly reduced. This algorithm was originally developed by Barnes in order to vectorize the force calculation on a Cyber 205. With this algorithm, the computing time of the force calculation becomes comparable to that of the tree construction, if the GRAPE backend processor is sufficiently fast. The obtained speed-up factor is 30 to 50 for a RISC-based host computer and GRAPE-1A with a peak speed of 240 Mflops.
Meliopoulos, Victoria A.; Andersen, Lauren E.; Birrer, Katherine F.; Simpson, Kaylene J.; Lowenthal, John W.; Bean, Andrew G. D.; Stambas, John; Stewart, Cameron R.; Tompkins, S. Mark; van Beusechem, Victor W.; Fraser, Iain; Mhlanga, Musa; Barichievy, Samantha; Smith, Queta; Leake, Devin; Karpilow, Jon; Buck, Amy; Jona, Ghil; Tripp, Ralph A.
2012-01-01
Influenza virus encodes only 11 viral proteins but replicates in a broad range of avian and mammalian species by exploiting host cell functions. Genome-wide RNA interference (RNAi) has proven to be a powerful tool for identifying the host molecules that participate in each step of virus replication. Meta-analysis of findings from genome-wide RNAi screens has shown influenza virus to be dependent on functional nodes in host cell pathways, requiring a wide variety of molecules and cellular proteins for replication. Because rapid evolution of the influenza A viruses persistently complicates the effectiveness of vaccines and therapeutics, a further understanding of the complex host cell pathways coopted by influenza virus for replication may provide new targets and strategies for antiviral therapy. RNAi genome screening technologies together with bioinformatics can provide the ability to rapidly identify specific host factors involved in resistance and susceptibility to influenza virus, allowing for novel disease intervention strategies.—Meliopoulos, V. A., Andersen, L. E., Birrer, K. F., Simpson, K. J., Lowenthal, J. W., Bean, A. G. D., Stambas, J., Stewart, C. R., Tompkins, S. M., van Beusechem, V. W., Fraser, I., Mhlanga, M., Barichievy, S., Smith, Q., Leake, D., Karpilow, J., Buck, A., Jona, G., Tripp, R. A. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. PMID:22247330
Implications of microbiota and bile acid in liver injury and regeneration
Liu, Hui-Xin; Keane, Ryan; Sheng, Lili; Wan, Yu-Jui Yvonne
2015-01-01
Summary Studies examining the mechanisms by which the liver injures and regenerates usually focus on factors and pathways within the liver, neglecting the signaling derived from the gut-liver axis. The intestinal content is rich in microorganisms as well as metabolites generated from both the host and colonizing bacteria. Via the gut-liver axis, this complex “soup” exerts an immense impact on liver integrity and function. This review article summarizes data published in the past 30 years that have demonstrated the signaling derived from the gut-liver axis in relation to liver injury and regeneration. Despite many correlative findings, the intricate networks of pathways involved along with a scarcity of mechanistic data urgently require nutrigenomic, metabolomics, and microbiota profiling approaches to provide a deep understanding of the interplay between nutrition, bacteria, and host response. Such knowledge would better elucidate the molecular mechanisms that link microbiota alteration to host physiological response and vice-versa. PMID:26256437
Munguia, Jason; Nizet, Victor
2017-05-01
The rise of multidrug-resistant pathogens and the dearth of new antibiotic development place an existential strain on successful infectious disease therapy. Breakthrough strategies that go beyond classical antibiotic mechanisms are needed to combat this looming public health catastrophe. Reconceptualizing antibiotic therapy in the richer context of the host-pathogen interaction is required for innovative solutions. By defining specific virulence factors, the essence of a pathogen, and pharmacologically neutralizing their activities, one can block disease progression and sensitize microbes to immune clearance. Likewise, host-directed strategies to boost phagocyte bactericidal activity, enhance leukocyte recruitment, or reverse pathogen-induced immunosuppression seek to replicate the success of cancer immunotherapy in the field of infectious diseases. The answer to the threat of multidrug-resistant pathogens lies 'outside the box' of current antibiotic paradigms. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Payne, Molly; Jarand, Curtis; Grayson, Scott; Reed, Wayne
While living systems spontaneously heal injuries, most man made materials cannot recover from damage. Incorporating self-healing properties into synthetic polymers could significantly extend product lifetime, safety, and applications. Most reported approaches to incorporate healing into synthetic materials, however, require external stimuli such as chemical additives, heat, and light exposure. Although dynamic bonds have been explored, particularly using a hydrogen bond motif, this has not been fully investigated in an aqueous environment. To address this, hosts and guests that dynamically associate in water have been investigated to build aqueous self-healing materials. These association values were probed for various host/guest complexes using Simultaneous Multiple Sample Light Scattering (SMSLS), a technique that measures the size of aggregates via light scattering while varying concentration and other environmental factors. NSF EPSCoR IIA1430280.
Liu, Hong; Lee, Mark J.; Snarr, Brendan D.; Chen, Dan; Xu, Wenjie; Kravtsov, Ilia; Hoareau, Christopher M. Q.; Vanier, Ghyslaine; Urb, Mirjam; Campoli, Paolo; Al Abdallah, Qusai; Lehoux, Melanie; Chabot, Josée C.; Ouimet, Marie-Claude; Baptista, Stefanie D.; Fritz, Jörg H.; Nierman, William C.; Latgé, Jean Paul; Mitchell, Aaron P.; Filler, Scott G.; Fontaine, Thierry; Sheppard, Donald C.
2013-01-01
Aspergillus fumigatus is the most common cause of invasive mold disease in humans. The mechanisms underlying the adherence of this mold to host cells and macromolecules have remained elusive. Using mutants with different adhesive properties and comparative transcriptomics, we discovered that the gene uge3, encoding a fungal epimerase, is required for adherence through mediating the synthesis of galactosaminogalactan. Galactosaminogalactan functions as the dominant adhesin of A. fumigatus and mediates adherence to plastic, fibronectin, and epithelial cells. In addition, galactosaminogalactan suppresses host inflammatory responses in vitro and in vivo, in part through masking cell wall β-glucans from recognition by dectin-1. Finally, galactosaminogalactan is essential for full virulence in two murine models of invasive aspergillosis. Collectively these data establish a role for galactosaminogalactan as a pivotal bifunctional virulence factor in the pathogenesis of invasive aspergillosis. PMID:23990787
Advanced Molecular Surveillance of Hepatitis C Virus
Gonçalves Rossi, Livia Maria; Escobar-Gutierrez, Alejandro; Rahal, Paula
2015-01-01
Hepatitis C virus (HCV) infection is an important public health problem worldwide. HCV exploits complex molecular mechanisms, which result in a high degree of intrahost genetic heterogeneity. This high degree of variability represents a challenge for the accurate establishment of genetic relatedness between cases and complicates the identification of sources of infection. Tracking HCV infections is crucial for the elucidation of routes of transmission in a variety of settings. Therefore, implementation of HCV advanced molecular surveillance (AMS) is essential for disease control. Accounting for virulence is also important for HCV AMS and both viral and host factors contribute to the disease outcome. Therefore, HCV AMS requires the incorporation of host factors as an integral component of the algorithms used to monitor disease occurrence. Importantly, implementation of comprehensive global databases and data mining are also needed for the proper study of the mechanisms responsible for HCV transmission. Here, we review molecular aspects associated with HCV transmission, as well as the most recent technological advances used for virus and host characterization. Additionally, the cornerstone discoveries that have defined the pathway for viral characterization are presented and the importance of implementing advanced HCV molecular surveillance is highlighted. PMID:25781918
Dissection of Host Susceptibility to Bacterial Infections and Its Toxins.
Nashef, Aysar; Agbaria, Mahmoud; Shusterman, Ariel; Lorè, Nicola Ivan; Bragonzi, Alessandra; Wiess, Ervin; Houri-Haddad, Yael; Iraqi, Fuad A
2017-01-01
Infection is one of the leading causes of human mortality and morbidity. Exposure to microbial agents is obviously required. However, also non-microbial environmental and host factors play a key role in the onset, development and outcome of infectious disease, resulting in large of clinical variability between individuals in a population infected with the same microbe. Controlled and standardized investigations of the genetics of susceptibility to infectious disease are almost impossible to perform in humans whereas mouse models allow application of powerful genomic techniques to identify and validate causative genes underlying human diseases with complex etiologies. Most of current animal models used in complex traits diseases genetic mapping have limited genetic diversity. This limitation impedes the ability to create incorporated network using genetic interactions, epigenetics, environmental factors, microbiota, and other phenotypes. A novel mouse genetic reference population for high-resolution mapping and subsequently identifying genes underlying the QTL, namely the Collaborative Cross (CC) mouse genetic reference population (GRP) was recently developed. In this chapter, we discuss a variety of approaches using CC mice for mapping genes underlying quantitative trait loci (QTL) to dissect the host response to polygenic traits, including infectious disease caused by bacterial agents and its toxins.
Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts.
Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C
2010-02-23
Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality-aphids performed poorly on infected plants and rapidly emigrated from them-but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues.
Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts
Mauck, Kerry E.; De Moraes, Consuelo M.; Mescher, Mark C.
2010-01-01
Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality—aphids performed poorly on infected plants and rapidly emigrated from them—but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues. PMID:20133719
The Shigella flexneri OspB effector: an early immunomodulator.
Ambrosi, Cecilia; Pompili, Monica; Scribano, Daniela; Limongi, Dolores; Petrucca, Andrea; Cannavacciuolo, Sonia; Schippa, Serena; Zagaglia, Carlo; Grossi, Milena; Nicoletti, Mauro
2015-01-01
Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection. Copyright © 2014 Elsevier GmbH. All rights reserved.
TRIM25 Is Required for the Antiviral Activity of Zinc Finger Antiviral Protein
Zheng, Xiaojiao; Wang, Xinlu; Tu, Fan; Wang, Qin; Fan, Zusen
2017-01-01
ABSTRACT Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to viral mRNAs and repressing the translation and/or promoting the degradation of target mRNA. In addition, ZAP regulates the expression of certain cellular genes. Here, we report that tripartite motif-containing protein 25 (TRIM25), a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 abolished ZAP's antiviral activity. The E3 ligase activity of TRIM25 is required for this regulation. TRIM25 mediated ZAP ubiquitination, but the ubiquitination of ZAP itself did not seem to be required for its antiviral activity. Downregulation of endogenous ubiquitin or overexpression of the deubiquitinase OTUB1 impaired ZAP's activity. We provide evidence indicating that TRIM25 modulates the target RNA binding activity of ZAP. These results uncover a mechanism by which the antiviral activity of ZAP is regulated. IMPORTANCE ZAP is a host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1, Sindbis virus, and Ebola virus. ZAP binds directly to target mRNA, and it represses the translation and promotes the degradation of target mRNA. While the mechanisms by which ZAP posttranscriptionally inhibits target RNA expression have been extensively studied, how its antiviral activity is regulated is not very clear. Here, we report that TRIM25, a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 remarkably abolished ZAP's activity. TRIM25 is required for ZAP optimal binding to target mRNA. These results help us to better understand how the antiviral activity of ZAP is regulated. PMID:28202764
TRIM25 Is Required for the Antiviral Activity of Zinc Finger Antiviral Protein.
Zheng, Xiaojiao; Wang, Xinlu; Tu, Fan; Wang, Qin; Fan, Zusen; Gao, Guangxia
2017-05-01
Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to viral mRNAs and repressing the translation and/or promoting the degradation of target mRNA. In addition, ZAP regulates the expression of certain cellular genes. Here, we report that tripartite motif-containing protein 25 (TRIM25), a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 abolished ZAP's antiviral activity. The E3 ligase activity of TRIM25 is required for this regulation. TRIM25 mediated ZAP ubiquitination, but the ubiquitination of ZAP itself did not seem to be required for its antiviral activity. Downregulation of endogenous ubiquitin or overexpression of the deubiquitinase OTUB1 impaired ZAP's activity. We provide evidence indicating that TRIM25 modulates the target RNA binding activity of ZAP. These results uncover a mechanism by which the antiviral activity of ZAP is regulated. IMPORTANCE ZAP is a host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1, Sindbis virus, and Ebola virus. ZAP binds directly to target mRNA, and it represses the translation and promotes the degradation of target mRNA. While the mechanisms by which ZAP posttranscriptionally inhibits target RNA expression have been extensively studied, how its antiviral activity is regulated is not very clear. Here, we report that TRIM25, a ubiquitin E3 ligase, is required for the antiviral activity of ZAP. Downregulation of endogenous TRIM25 remarkably abolished ZAP's activity. TRIM25 is required for ZAP optimal binding to target mRNA. These results help us to better understand how the antiviral activity of ZAP is regulated. Copyright © 2017 American Society for Microbiology.
Thomas, L R; Foshage, A M; Weissmiller, A M; Popay, T M; Grieb, B C; Qualls, S J; Ng, V; Carboneau, B; Lorey, S; Eischen, C M; Tansey, W P
2016-07-07
The MYC family of oncogenes encodes a set of three related transcription factors that are overexpressed in many human tumors and contribute to the cancer-related deaths of more than 70,000 Americans every year. MYC proteins drive tumorigenesis by interacting with co-factors that enable them to regulate the expression of thousands of genes linked to cell growth, proliferation, metabolism and genome stability. One effective way to identify critical co-factors required for MYC function has been to focus on sequence motifs within MYC that are conserved throughout evolution, on the assumption that their conservation is driven by protein-protein interactions that are vital for MYC activity. In addition to their DNA-binding domains, MYC proteins carry five regions of high sequence conservation known as Myc boxes (Mb). To date, four of the Mb motifs (MbI, MbII, MbIIIa and MbIIIb) have had a molecular function assigned to them, but the precise role of the remaining Mb, MbIV, and the reason for its preservation in vertebrate Myc proteins, is unknown. Here, we show that MbIV is required for the association of MYC with the abundant transcriptional coregulator host cell factor-1 (HCF-1). We show that the invariant core of MbIV resembles the tetrapeptide HCF-binding motif (HBM) found in many HCF-interaction partners, and demonstrate that MYC interacts with HCF-1 in a manner indistinguishable from the prototypical HBM-containing protein VP16. Finally, we show that rationalized point mutations in MYC that disrupt interaction with HCF-1 attenuate the ability of MYC to drive tumorigenesis in mice. Together, these data expose a molecular function for MbIV and indicate that HCF-1 is an important co-factor for MYC.
Kouse, Andrew B.; Righetti, Francesco; Kortmann, Jens; Narberhaus, Franz; Murphy, Erin R.
2013-01-01
The initiation, progression and transmission of most bacterial infections is dependent upon the ability of the invading pathogen to acquire iron from each of the varied environments encountered during the course of a natural infection. In total, 95% of iron within the human body is complexed within heme, making heme a potentially rich source of host-associated nutrient iron for invading bacteria. As heme is encountered only within the host, pathogenic bacteria often regulate synthesis of heme utilization factors such that production is maximal under host-associated environmental conditions. This study examines the regulated production of ShuA, an outer-membrane receptor required for the utilization of heme as a source of nutrient iron by Shigella dysenteriae, a pathogenic bacterium that causes severe diarrheal diseases in humans. Specifically, the impact of the distinct environmental temperatures encountered during infection within a host (37°C) and transmission between hosts (25°C) on shuA expression is investigated. We show that shuA expression is subject to temperature-dependent post-transcriptional regulation resulting in increased ShuA production at 37°C. The observed thermoregulation is mediated by nucleic acid sequences within the 5′ untranslated region. In addition, we have identified similar nucleotide sequences within the 5′ untranslated region of the orthologous chuA transcript of enteropathogenic E. coli and have demonstrated that it also functions to confer temperature-dependent post-transcriptional regulation. In both function and predicted structure, the regulatory element within the shuA and chuA 5′ untranslated regions closely resembles a FourU RNA thermometer, a zipper-like RNA structure that occludes the Shine-Dalgarno sequence at low temperatures. Increased production of ShuA and ChuA in response to the host body temperature allows for maximal production of these heme acquisition factors within the environment where S. dysenteriae and pathogenic E. coli strains would encounter heme, a host-specific iron source. PMID:23704938
Boyce, R G; Toriumi, D M
1992-01-01
Surgical changes in the contour of soft tissue and bone of the craniomaxillofacial structures may require use of a biologic graft or alloplastic implant. Autologous materials are preferred; however, the harvesting procedure, donor site, and its associated morbidity are the disadvantages of using autografts. There are numerous types of alloplastic implants and they all differ in how they interact with host tissues. Factors such as implant texture, ability to integrate with host tissues, and rate of resorption all influence the overall success of different implants. In this article, we discuss some considerations in the use of biologic grafts and alloplastic implants in facial plastic and reconstructive surgery.
Naucler, Pontus; Darenberg, Jessica; Morfeldt, Eva; Ortqvist, Ake; Henriques Normark, Birgitta
2013-06-01
Host and bacterial factors as well as different treatment regimens are likely to influence the outcome in patients with bacteraemic pneumococcal pneumonia. To estimate the relative contribution of host factors as well as bacterial factors and antibiotic treatment to mortality in bacteraemic pneumococcal pneumonia. A cohort study of 1580 adult patients with community-acquired bacteraemic pneumococcal pneumonia was conducted between 2007 and 2009 in Sweden. Data on host factors and initial antibiotic treatment were collected from patient records. Antibiotic resistance and serotype were determined for bacterial isolates. Logistic regression analyses were performed to assess risk factors for 30-day mortality. Smoking, alcohol abuse, solid tumour, liver disease and renal disease attributed to 14.9%, 13.1%, 13.1%, 8.0% and 7.4% of the mortality, respectively. Age was the strongest predictor, and mortality increased exponentially from 1.3% in patients <45 years of age to 26.1% in patients aged ≥85 years. There was considerable confounding by host factors on the association between serotype and mortality. Increasing age, liver disease and serotype were associated with mortality in patients admitted to the ICU. Combined treatment with β-lactam antibiotics and macrolide/quinolone was associated with reduced mortality in patients in the ICU, although confounding could not be ruled out. Host factors appear to be more important than the specific serotype as determinants of mortality in patients with bacteraemic pneumococcal pneumonia. Several host factors were identified that contribute to mortality, which is important for prognosis and to guide targeted prevention strategies.
Devadas, Deepika; Koithan, Thalea; Diestel, Randi; Prank, Ute; Sodeik, Beate; Döhner, Katinka
2014-11-01
Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the specific perturbation profiles vary for different host and viral cargo. In addition to an established entry pathway via acidic endosomes, we show here that HSV-1 internalization depended on sodium-proton exchangers at the plasma membrane and p21-activated kinases. These results suggest that HSV-1 requires a reorganization of the cortical actin cytoskeleton, either for productive cell entry via pH-independent fusion from macropinosomes or for fusion at the plasma membrane, and subsequent cytosolic passage to microtubules that mediate capsid transport to the nucleus for genome uncoating and replication. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Structure of the Epiphyte Community in a Tropical Montane Forest in SW China
Zhao, Mingxu; Geekiyanage, Nalaka; Xu, Jianchu; Khin, Myo Myo; Nurdiana, Dian Ridwan; Paudel, Ekananda; Harrison, Rhett Daniel
2015-01-01
Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height), while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest. PMID:25856457
Zhu, Shifeng; Jeong, Rae-Dong; Lim, Gah-Hyun; Yu, Keshun; Wang, Caixia; Chandra-Shekara, A C; Navarre, Duroy; Klessig, Daniel F; Kachroo, Aardra; Kachroo, Pradeep
2013-09-26
Plant viruses often encode suppressors of host RNA silencing machinery, which occasionally function as avirulence factors that are recognized by host resistance (R) proteins. For example, the Arabidopsis R protein, hypersensitive response to TCV (HRT), recognizes the turnip crinkle virus (TCV) coat protein (CP). HRT-mediated resistance requires the RNA-silencing component double-stranded RNA-binding protein 4 (DRB4) even though it neither is associated with the accumulation of TCV-specific small RNA nor requires the RNA silencing suppressor function of CP. HRT interacts with the cytosolic fraction of DRB4. Interestingly, TCV infection both increases the cytosolic DRB4 pool and inhibits the HRT-DRB4 interaction. The virulent R8A CP derivative, which induces a subset of HRT-derived responses, also disrupts this interaction. The differential localization of DRB4 in the presence of wild-type and R8A CP implies the importance of subcellular compartmentalization of DRB4. The requirement of DRB4 in resistance to bacterial infection suggests a universal role in R-mediated defense signaling. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Duneau, David; Luijckx, Pepijn; Ben-Ami, Frida; Laforsch, Christian; Ebert, Dieter
2011-02-22
Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different steps can explain different aspects of the coevolutionary dynamics of the system: the properties of the attachment step, explaining the rapid evolution of infectivity and the properties of later parasite proliferation explaining the evolution of virulence. Our study underlines the importance of resolving the infection process in order to better understand host-parasite interactions.
Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions.
Kaufman, Leyla V; Wright, Mark G
2017-07-07
The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.
Blask, David E; Dauchy, Robert T; Dauchy, Erin M; Mao, Lulu; Hill, Steven M; Greene, Michael W; Belancio, Victoria P; Sauer, Leonard A; Davidson, Leslie
2014-01-01
The central circadian clock within the suprachiasmatic nucleus (SCN) plays an important role in temporally organizing and coordinating many of the processes governing cancer cell proliferation and tumor growth in synchrony with the daily light/dark cycle which may contribute to endogenous cancer prevention. Bioenergetic substrates and molecular intermediates required for building tumor biomass each day are derived from both aerobic glycolysis (Warburg effect) and lipid metabolism. Using tissue-isolated human breast cancer xenografts grown in nude rats, we determined that circulating systemic factors in the host and the Warburg effect, linoleic acid uptake/metabolism and growth signaling activities in the tumor are dynamically regulated, coordinated and integrated within circadian time structure over a 24-hour light/dark cycle by SCN-driven nocturnal pineal production of the anticancer hormone melatonin. Dim light at night (LAN)-induced melatonin suppression disrupts this circadian-regulated host/cancer balance among several important cancer preventative signaling mechanisms, leading to hyperglycemia and hyperinsulinemia in the host and runaway aerobic glycolysis, lipid signaling and proliferative activity in the tumor.
Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions
Kaufman, Leyla V.; Wright, Mark G.
2017-01-01
The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments. PMID:28686180
Pneumolysin plays a key role at the initial step of establishing pneumococcal nasal colonization.
Hotomi, Muneki; Yuasa, Jun; Briles, David E; Yamanaka, Noboru
2016-09-01
Nasopharyngeal colonization by Streptococcus pneumoniae is an important initial step for the subsequent development of pneumococcal infections. Pneumococci have many virulence factors that play a role in colonization. Pneumolysin (PLY), a pivotal pneumococcal virulence factor for invasive disease, causes severe tissue damage and inflammation with disruption of epithelial tight junctions. In this study, we evaluated the role of PLY in nasal colonization of S. pneumoniae using a mouse colonization model. A reduction of numbers of PLY-deficient pneumococci recovered from nasal tissue, as well as nasal wash, was observed at days 1 and 2 post-intranasal challenges, but not later. The findings strongly support an important role for PLY in the initial establishment nasal colonization. PLY-dependent invasion of local nasal mucosa may be required to establish nasal colonization with S. pneumoniae. The data help provide a rationale to explain why an organism that exists as an asymptomatic colonizer has evolved virulence factors that enable it to occasionally invade and kill its hosts. Thus, the same pneumococcal virulence factor, PLY that can contribute to killing the host, may also play a role early in the establishment of nasopharynx carriage.
Limmer, Stefanie; Haller, Samantha; Drenkard, Eliana; Lee, Janice; Yu, Shen; Kocks, Christine; Ausubel, Frederick M.; Ferrandon, Dominique
2011-01-01
An in-depth mechanistic understanding of microbial infection necessitates a molecular dissection of host–pathogen relationships. Both Drosophila melanogaster and Pseudomonas aeruginosa have been intensively studied. Here, we analyze the infection of D. melanogaster by P. aeruginosa by using mutants in both host and pathogen. We show that orally ingested P. aeruginosa crosses the intestinal barrier and then proliferates in the hemolymph, thereby causing the infected flies to die of bacteremia. Host defenses against ingested P. aeruginosa included an immune deficiency (IMD) response in the intestinal epithelium, systemic Toll and IMD pathway responses, and a cellular immune response controlling bacteria in the hemocoel. Although the observed cellular and intestinal immune responses appeared to act throughout the course of the infection, there was a late onset of the systemic IMD and Toll responses. In this oral infection model, P. aeruginosa PA14 did not require its type III secretion system or other well-studied virulence factors such as the two-component response regulator GacA or the protease AprA for virulence. In contrast, the quorum-sensing transcription factor RhlR, but surprisingly not LasR, played a key role in counteracting the cellular immune response against PA14, possibly at an early stage when only a few bacteria are present in the hemocoel. These results illustrate the power of studying infection from the dual perspective of host and pathogen by revealing that RhlR plays a more complex role during pathogenesis than previously appreciated. PMID:21987808
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bielmann, Regula; Habann, Matthias; Eugster, Marcel R.
Adsorption of a bacteriophage to the host requires recognition of a cell wall-associated receptor by a receptor binding protein (RBP). This recognition is specific, and high affinity binding is essential for efficient virus attachment. The molecular details of phage adsorption to the Gram-positive cell are poorly understood. We present the first description of receptor binding proteins and a tail tip structure for the siphovirus group infecting Listeria monocytogenes. The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. Two proteins were identified as RBPs in phage A118. Rhamnose residues in wallmore » teichoic acids represent the binding ligands for both proteins. In phage P35, protein gp16 could be identified as RBP and the role of both rhamnose and N-acetylglucosamine in phage adsorption was confirmed. Immunogold-labeling and transmission electron microscopy allowed the creation of a topological model of the A118 phage tail. - Highlights: • We present the first description of receptor binding proteins and a tail tip structure for the Siphovirus group infecting Listeria monocytogenes. • The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. • Rhamnose residues in wall teichoic acids represent the binding ligands for both receptor binding proteins in phage A118. • Rhamnose and N-acetylglucosamine are required for adsorption of phage P35. • We preset a topological model of the A118 phage tail.« less
Ondracková, M; Simková, A; Gelnar, M; Jurajda, P
2004-12-01
Infection parameters of Posthodiplostomum cuticola, a digenean parasite with a complex life-cycle, were investigated in fish (the second intermediate host) from 6 floodplain water bodies over 2 years. A broad range of factors related to abiotic characteristics of localities, density of the first intermediate (planorbid snails) and definitive (wading birds) hosts and fish community structure were tested for their effects on P. cuticola infection in juvenile and adult fish. Characters of the littoral zone and flood duration were found to be important factors for the presence of the first intermediate and definitive hosts. Visitation time of definitive bird hosts was also related to adult fish host density. Localities with P. cuticola infected fish were visited by a higher number of bird species. Infection of P. cuticola in fish and similarities in infection among fish host assemblages were correlated with fish host density and fish species composition. Parasite infection in both adult and juvenile fishes was associated with the slope of the bank and the bottom type, in particular in juvenile fish assemblages with snail host density. We conclude that habitat characteristics, snail host density and fish community structure contribute significantly to P. cuticola infection in fish hosts.
Pathophysiology of diverticular disease.
Schieffer, Kathleen M; Kline, Bryan P; Yochum, Gregory S; Koltun, Walter A
2018-06-07
Inflammation of diverticula, or outpouchings of the colonic mucosa and submucosa through the muscularis layer, leads to diverticulitis. The development of diverticular disease, encompassing both diverticulosis and diverticulitis, is a result of genetic predisposition, lifestyle, and environmental factors, including the microbiome. Areas covered: Previous reports implicated genetic predisposition, environmental factors, and colonic dysmotility in diverticular disease. Recent studies have associated specific host immune responses and the microbiome as contributors to diverticulitis. To review pertinent literature describing pathophysiological factors associated with diverticulosis or diverticulitis, we searched the PubMed database (March 2018) for articles considering the role of colonic architecture, genetic predisposition, environment, colonic motility, immune response, and the microbiome. Expert commentary: In the recent years, research into the molecular underpinnings of diverticular disease has enhanced our understanding of diverticular disease pathogenesis. Although acute uncomplicated diverticulitis is treated with broad spectrum antibiotics, evaluation of the microbiome has been limited and requires further comprehensive studies. Evidence suggests that a deregulation of the host immune response is associated with both diverticulosis and diverticulitis. Further examining these pathways may reveal proteins that can be therapeutic targets or aid in identifying biological determinants of clinical or surgical decision making.
Jamie Voyles; A. Marm Kilpatrick; James P. Collins; Matthew C. Fisher; Winifred F. Frick; Hamish McCallum; Craig K. R. Willis; David S. Blehert; Kris A. Murray; Robert Puschendorf; Erica Bree Rosenblum; Benjamin M. Bolker; Tina L. Cheng; Kate E. Langwig; Daniel L. Lindner; Mary Toothman; Mark Q. Wilber; Cheryl J. Briggs
2015-01-01
Emerging infectious diseases (EIDs) are on the rise due to multiple factors, including human facilitated movement of pathogens, broad-scale landscape changes, and perturbations to ecological systems (Jones et al. 2008; Fisher et al. 2012). Epidemics in wildlife are problematic because they can lead to pathogen spillover to new host organisms, erode biodiversity and...
Trehalose Biosynthesis Promotes Pseudomonas aeruginosa Pathogenicity in Plants
Djonović, Slavica; Urbach, Jonathan M.; Drenkard, Eliana; Bush, Jenifer; Feinbaum, Rhonda; Ausubel, Jonathan L.; Traficante, David; Risech, Martina; Kocks, Christine; Fischbach, Michael A.; Priebe, Gregory P.; Ausubel, Frederick M.
2013-01-01
Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved “house-keeping” anabolic pathway (trehalose biosynthesis) as a potent virulence factor that allows it to replicate in the intercellular environment of a leaf. PMID:23505373
Staphylococcus aureus infection dynamics.
Pollitt, Eric J G; Szkuta, Piotr T; Burns, Nicola; Foster, Simon J
2018-06-01
Staphylococcus aureus is a human commensal that can also cause systemic infections. This transition requires evasion of the immune response and the ability to exploit different niches within the host. However, the disease mechanisms and the dominant immune mediators against infection are poorly understood. Previously it has been shown that the infecting S. aureus population goes through a population bottleneck, from which very few bacteria escape to establish the abscesses that are characteristic of many infections. Here we examine the host factors underlying the population bottleneck and subsequent clonal expansion in S. aureus infection models, to identify underpinning principles of infection. The bottleneck is a common feature between models and is independent of S. aureus strain. Interestingly, the high doses of S. aureus required for the widely used "survival" model results in a reduced population bottleneck, suggesting that host defences have been simply overloaded. This brings into question the applicability of the survival model. Depletion of immune mediators revealed key breakpoints and the dynamics of systemic infection. Loss of macrophages, including the liver Kupffer cells, led to increased sensitivity to infection as expected but also loss of the population bottleneck and the spread to other organs still occurred. Conversely, neutrophil depletion led to greater susceptibility to disease but with a concomitant maintenance of the bottleneck and lack of systemic spread. We also used a novel microscopy approach to examine abscess architecture and distribution within organs. From these observations we developed a conceptual model for S. aureus disease from initial infection to mature abscess. This work highlights the need to understand the complexities of the infectious process to be able to assign functions for host and bacterial components, and why S. aureus disease requires a seemingly high infectious dose and how interventions such as a vaccine may be more rationally developed.
Common themes in microbial pathogenicity revisited.
Finlay, B B; Falkow, S
1997-01-01
Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics. PMID:9184008
Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars
Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica
2013-01-01
SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573
Allelic variation in Salmonella: an underappreciated driver of adaptation and virulence
Yue, Min; Schifferli, Dieter M.
2014-01-01
Salmonella enterica causes substantial morbidity and mortality in humans and animals. Infection and intestinal colonization by S. enterica require virulence factors that mediate bacterial binding and invasion of enterocytes and innate immune cells. Some S. enterica colonization factors and their alleles are host restricted, suggesting a potential role in regulation of host specificity. Recent data also suggest that colonization factors promote horizontal gene transfer of antimicrobial resistance genes by increasing the local density of Salmonella in colonized intestines. Although a profusion of genes are involved in Salmonella pathogenesis, the relative importance of their allelic variation has only been studied intensely in the type 1 fimbrial adhesin FimH. Although other Salmonella virulence factors demonstrate allelic variation, their association with specific metadata (e.g., host species, disease or carrier state, time and geographic place of isolation, antibiotic resistance profile, etc.) remains to be interrogated. To date, genome-wide association studies (GWAS) in bacteriology have been limited by the paucity of relevant metadata. In addition, due to the many variables amid metadata categories, a very large number of strains must be assessed to attain statistically significant results. However, targeted approaches in which genes of interest (e.g., virulence factors) are specifically sequenced alleviates the time-consuming and costly statistical GWAS analysis and increases statistical power, as larger numbers of strains can be screened for non-synonymous single nucleotide polymorphisms (SNPs) that are associated with available metadata. Congruence of specific allelic variants with specific metadata from strains that have a relevant clinical and epidemiological history will help to prioritize functional wet-lab and animal studies aimed at determining cause-effect relationships. Such an approach should be applicable to other pathogens that are being collected in well-curated repositories. PMID:24454310
Brockmeier, Susan L.; Loving, Crystal L.; Register, Karen B.; Kehrli, Marcus E.; Shore, Sarah M.
2014-01-01
Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Most studies addressing virulence factors of B. bronchiseptica utilize isolates derived from hosts other than pigs in conjunction with rodent infection models. Based on previous in vivo mouse studies, we hypothesized that the B. bronchiseptica type III secretion system (T3SS) would be required for maximal disease severity and persistence in the swine lower respiratory tract. To examine the contribution of the T3SS to the pathogenesis of B. bronchiseptica in swine, we compared the abilities of a virulent swine isolate and an isogenic T3SS mutant to colonize, cause disease, and be transmitted from host to host. We found that the T3SS is required for maximal persistence throughout the lower swine respiratory tract and contributed significantly to the development of nasal lesions and pneumonia. However, the T3SS mutant and the wild-type parent are equally capable of transmission among swine by both direct and indirect routes, demonstrating that transmission can occur even with attenuated disease. Our data further suggest that the T3SS skews the adaptive immune response in swine by hindering the development of serum anti-Bordetella antibody levels and inducing an interleukin-10 (IL-10) cell-mediated response, likely contributing to the persistence of B. bronchiseptica in the respiratory tract. Overall, our results demonstrate that the Bordetella T3SS is required for maximal persistence and disease severity in pigs, but not for transmission. PMID:24366249
CRISPR–Cas9 Genetic Analysis of Virus–Host Interactions
Gebre, Makda; Nomburg, Jason L.; Gewurz, Benjamin E.
2018-01-01
Clustered regularly interspaced short palindromic repeats (CRISPR) has greatly expanded the ability to genetically probe virus–host interactions. CRISPR systems enable focused or systematic, genomewide studies of nearly all aspects of a virus lifecycle. Combined with its relative ease of use and high reproducibility, CRISPR is becoming an essential tool in studies of the host factors important for viral pathogenesis. Here, we review the use of CRISPR–Cas9 for the loss-of-function analysis of host dependency factors. We focus on the use of CRISPR-pooled screens for the systematic identification of host dependency factors, particularly in Epstein–Barr virus-transformed B cells. We also discuss the use of CRISPR interference (CRISPRi) and gain-of-function CRISPR activation (CRISPRa) approaches to probe virus–host interactions. Finally, we comment on the future directions enabled by combinatorial CRISPR screens. PMID:29385696
CRISPR-Cas9 Genetic Analysis of Virus-Host Interactions.
Gebre, Makda; Nomburg, Jason L; Gewurz, Benjamin E
2018-01-30
Clustered regularly interspaced short palindromic repeats (CRISPR) has greatly expanded the ability to genetically probe virus-host interactions. CRISPR systems enable focused or systematic, genomewide studies of nearly all aspects of a virus lifecycle. Combined with its relative ease of use and high reproducibility, CRISPR is becoming an essential tool in studies of the host factors important for viral pathogenesis. Here, we review the use of CRISPR-Cas9 for the loss-of-function analysis of host dependency factors. We focus on the use of CRISPR-pooled screens for the systematic identification of host dependency factors, particularly in Epstein-Barr virus-transformed B cells. We also discuss the use of CRISPR interference (CRISPRi) and gain-of-function CRISPR activation (CRISPRa) approaches to probe virus-host interactions. Finally, we comment on the future directions enabled by combinatorial CRISPR screens.
Aspergillosis and stem cell transplantation: An overview of experimental pathogenesis studies.
Al-Bader, Nadia; Sheppard, Donald C
2016-11-16
Invasive aspergillosis is a life-threatening infection caused by the opportunistic filamentous fungus Aspergillus fumigatus. Patients undergoing haematopoietic stem cell transplant (HSCT) for the treatment of hematological malignancy are at particularly high risk of developing this fatal infection. The susceptibility of HSCT patients to infection with A. fumigatus is a consequence of a complex interplay of both fungal and host factors. Here we review our understanding of the host-pathogen interactions underlying the susceptibility of the immunocompromised host to infection with A. fumigatus with a focus on the experimental validation of fungal and host factors relevant to HSCT patients. These include fungal factors such as secondary metabolites, cell wall constituents, and metabolic adaptations that facilitate immune evasion and survival within the host microenvironment, as well as the innate and adaptive immune responses involved in host defense against A. fumigatus.
Eomesodermin Promotes the Development of Type-1 Regulatory T (TR1) Cells
Zhang, Ping; Lee, Jason S.; Gartlan, Kate H.; Schuster, Iona S; Comerford, Iain; Varelias, Antiopi; Ullah, Md Ashik; Vuckovic, Slavica; Koyama, Motoko; Kuns, Rachel D.; Locke, Kelly R.; Beckett, Kirrilee J.; Olver, Stuart D.; Samson, Luke D.; de Oca, Marcela Montes; de Labastida Rivera, Fabian; Clouston, Andrew D.; Belz, Gabrielle T.; Blazar, Bruce R.; MacDonald, Kelli P.; McColl, Shaun R.; Thomas, Ranjeny; Engwerda, Christian R.; Degli-Esposti, Mariapia A.; Kallies, Axel; Tey, Siok-Keen; Hill, Geoffrey R.
2017-01-01
Type-1 regulatory T (TR1) cells are Foxp3-negative IL-10-producing CD4+ T cells with potent immune suppressive properties but their requirements for lineage development have remained elusive. Here we show that TR1 cells constitute the most abundant regulatory population after allogeneic bone marrow transplantation (BMT), express the transcription factor Eomesodermin (Eomes) and are critical for the prevention of graft-versus-host disease (GVHD). We demonstrate that Eomes is required for TR1 cell differentiation during which it acts in concert with the transcription factor B-lymphocyte-induced maturation protein-1 (Blimp-1) by transcriptionally activating IL-10 expression and repressing differentiation into other Th lineages. We further show that Eomes induction in TR1 cells requires T-bet and donor macrophage-derived IL-27. We thus define the cellular and transcriptional control of TR1 cell differentiation during bone marrow transplantation, opening new avenues to therapeutic manipulation. PMID:28738016
Heitlinger, Emanuel; Spork, Simone; Lucius, Richard; Dieterich, Christoph
2014-08-20
The phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host. The genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria. Reduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.
A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection
Spera, Juan Manuel; Ugalde, Juan Esteban; Mucci, Juan; Comerci, Diego J.; Ugalde, Rodolfo Augusto
2006-01-01
Microbial pathogens with the ability to establish chronic infections have evolved strategies to actively modulate the host immune response. Brucellosis is a disease caused by a Gram-negative intracellular pathogen that if not treated during the initial phase of the infection becomes chronic as the bacteria persist for the lifespan of the host. How this pathogen and others achieve this action is a largely unanswered question. We report here the identification of a Brucella abortus gene (prpA) directly involved in the immune modulation of the host. PrpA belongs to the proline-racemase family and elicits a B lymphocyte polyclonal activation that depends on the integrity of its proline-racemase catalytic site. Stimulation of splenocytes with PrpA also results in IL-10 secretion. Construction of a B. abortus-prpA mutant allowed us to assess the contribution of PrpA to the infection process. Mice infected with B. abortus induced an early and transient nonresponsive status of splenocytes to both Escherichia coli LPS and ConA. This phenomenon was not observed when mice were infected with a B. abortus-prpA mutant. Moreover, the B. abortus-prpA mutant had a reduced capacity to establish a chronic infection in mice. We propose that an early and transient nonresponsive immune condition of the host mediated by this B cell polyclonal activator is required for establishing a successful chronic infection by Brucella. PMID:17053080
The Roles of Unfolded Protein Response Pathways in Chlamydia Pathogenesis.
George, Zenas; Omosun, Yusuf; Azenabor, Anthony A; Partin, James; Joseph, Kahaliah; Ellerson, Debra; He, Qing; Eko, Francis; Bandea, Claudiu; Svoboda, Pavel; Pohl, Jan; Black, Carolyn M; Igietseme, Joseph U
2017-02-01
Chlamydia is an obligate intracellular bacterium that relies on host cells for essential nutrients and adenosine triphosphate (ATP) for a productive infection. Although the unfolded protein response (UPR) plays a major role in certain microbial infectivity, its role in chlamydial pathogenesis is unknown. We hypothesized that Chlamydia induces UPR and exploits it to upregulate host cell uptake and metabolism of glucose, production of ATP, phospholipids, and other molecules required for its replicative development and host survival. Using a combination of biochemical and pathway inhibition assays, we showed that the 3 UPR pathway transducers-protein kinase RNA-activated (PKR)-like ER kinase (PERK), inositol-requiring enzyme-1α (IRE1α), and activating transcription factor-6α (ATF6α)-were activated during Chlamydia infection. The kinase activity of PERK and ribonuclease (RNase) of IRE1α mediated the upregulation of hexokinase II and production of ATP via substrate-level phosphorylation. In addition, the activation of PERK and IRE1α promoted autophagy formation and apoptosis resistance for host survival. Moreover, the activation of IRE1α resulted in the generation of spliced X-box binding protein 1 (sXBP1) and upregulation of lipid production. The vital role of UPR pathways in Chlamydia development and pathogenesis could lead to the identification of potential molecular targets for therapeutics against Chlamydia. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Density thresholds for Mopeia virus invasion and persistence in its host Mastomys natalensis.
Goyens, J; Reijniers, J; Borremans, B; Leirs, H
2013-01-21
Well-established theoretical models predict host density thresholds for invasion and persistence of parasites with a density-dependent transmission. Studying such thresholds in reality, however, is not obvious because it requires long-term data for several fluctuating populations of different size. We developed a spatially explicit and individual-based SEIR model of Mopeia virus in multimammate mice Mastomys natalensis. This is an interesting model system for studying abundance thresholds because the host is the most common African rodent, populations fluctuate considerably and the virus is closely related to Lassa virus but non-pathogenic to humans so can be studied safely in the field. The simulations show that, while host density clearly is important, sharp thresholds are only to be expected for persistence (and not for invasion), since at short time-spans (as during invasion), stochasticity is determining. Besides host density, also the spatial extent of the host population is important. We observe the repeated local occurrence of herd immunity, leading to a decrease in transmission of the virus, while even a limited amount of dispersal can have a strong influence in spreading and re-igniting the transmission. The model is most sensitive to the duration of the infectious stage, the size of the home range and the transmission coefficient, so these are important factors to determine experimentally in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.
Thongkongkaew, Tawatchai; Ding, Wei; Bratovanov, Evgeni; Oueis, Emilia; Garcı A-Altares, Marı A; Zaburannyi, Nestor; Harmrolfs, Kirsten; Zhang, Youming; Scherlach, Kirstin; Müller, Rolf; Hertweck, Christian
2018-05-18
Bacterial infections of agriculturally important mushrooms and plants pose a major threat to human food sources worldwide. However, structures of chemical mediators required by the pathogen for host colonization and infection remain elusive in most cases. Here, we report two types of threonine-tagged lipopeptides conserved among mushroom and rice pathogenic Burkholderia species that facilitate bacterial infection of hosts. Genome mining, metabolic profiling of infected mushrooms, and heterologous expression of orphan gene clusters allowed the discovery of these unprecedented metabolites in the mushroom pathogen Burkholderia gladioli (haereogladin, burriogladin) and the plant pathogen Burkholderia glumae (haereoglumin and burrioglumin). Through targeted gene deletions, the molecular basis of lipopeptide biosynthesis by nonribosomal peptide synthetases was revealed. Surprisingly, both types of lipopeptides feature unusual threonine tags, which yield longer peptide backbones than one would expect based on the canonical colinearity of the NRPS assembly lines. Both peptides play an indirect role in host infection as biosurfactants that enable host colonization by mediating swarming and biofilm formation abilities. Moreover, MALDI imaging mass spectrometry was applied to investigate the biological role of the lipopeptides. Our results shed light on conserved mechanisms that mushroom and plant pathogenic bacteria utilize for host infection and expand current knowledge on bacterial virulence factors that may represent a new starting point for the targeted development of crop protection measures in the future.
Budd, Aidan; Blandin, Stephanie; Levashina, Elena A; Gibson, Toby J
2004-01-01
Background Invasive bacteria are known to have captured and adapted eukaryotic host genes. They also readily acquire colonizing genes from other bacteria by horizontal gene transfer. Closely related species such as Helicobacter pylori and Helicobacter hepaticus, which exploit different host tissues, share almost none of their colonization genes. The protease inhibitor α2-macroglobulin provides a major metazoan defense against invasive bacteria, trapping attacking proteases required by parasites for successful invasion. Results Database searches with metazoan α2-macroglobulin sequences revealed homologous sequences in bacterial proteomes. The bacterial α2-macroglobulin phylogenetic distribution is patchy and violates the vertical descent model. Bacterial α2-macroglobulin genes are found in diverse clades, including purple bacteria (proteobacteria), fusobacteria, spirochetes, bacteroidetes, deinococcids, cyanobacteria, planctomycetes and thermotogae. Most bacterial species with bacterial α2-macroglobulin genes exploit higher eukaryotes (multicellular plants and animals) as hosts. Both pathogenically invasive and saprophytically colonizing species possess bacterial α2-macroglobulins, indicating that bacterial α2-macroglobulin is a colonization rather than a virulence factor. Conclusions Metazoan α2-macroglobulins inhibit proteases of pathogens. The bacterial homologs may function in reverse to block host antimicrobial defenses. α2-macroglobulin was probably acquired one or more times from metazoan hosts and has then spread widely through other colonizing bacterial species by more than 10 independent horizontal gene transfers. yfhM-like bacterial α2-macroglobulin genes are often found tightly linked with pbpC, encoding an atypical peptidoglycan transglycosylase, PBP1C, that does not function in vegetative peptidoglycan synthesis. We suggest that YfhM and PBP1C are coupled together as a periplasmic defense and repair system. Bacterial α2-macroglobulins might provide useful targets for enhancing vaccine efficacy in combating infections. PMID:15186489
Brown, Kevin M; Suvorova, Elena; Farrell, Andrew; McLain, Aaron; Dittmar, Ashley; Wiley, Graham B; Marth, Gabor; Gaffney, Patrick M; Gubbels, Marc Jan; White, Michael; Blader, Ira J
2014-06-01
The simultaneous targeting of host and pathogen processes represents an untapped approach for the treatment of intracellular infections. Hypoxia-inducible factor-1 (HIF-1) is a host cell transcription factor that is activated by and required for the growth of the intracellular protozoan parasite Toxoplasma gondii at physiological oxygen levels. Parasite activation of HIF-1 is blocked by inhibiting the family of closely related Activin-Like Kinase (ALK) host cell receptors ALK4, ALK5, and ALK7, which was determined in part by use of an ALK4,5,7 inhibitor named SB505124. Besides inhibiting HIF-1 activation, SB505124 also potently blocks parasite replication under normoxic conditions. To determine whether SB505124 inhibition of parasite growth was exclusively due to inhibition of ALK4,5,7 or because the drug inhibited a second kinase, SB505124-resistant parasites were isolated by chemical mutagenesis. Whole-genome sequencing of these mutants revealed mutations in the Toxoplasma MAP kinase, TgMAPK1. Allelic replacement of mutant TgMAPK1 alleles into wild-type parasites was sufficient to confer SB505124 resistance. SB505124 independently impacts TgMAPK1 and ALK4,5,7 signaling since drug resistant parasites could not activate HIF-1 in the presence of SB505124 or grow in HIF-1 deficient cells. In addition, TgMAPK1 kinase activity is inhibited by SB505124. Finally, mice treated with SB505124 had significantly lower tissue burdens following Toxoplasma infection. These data therefore identify SB505124 as a novel small molecule inhibitor that acts by inhibiting two distinct targets, host HIF-1 and TgMAPK1.
Investigation of the role of GBF1 in the replication of positive-sense single-stranded RNA viruses.
Ferlin, Juliette; Farhat, Rayan; Belouzard, Sandrine; Cocquerel, Laurence; Bertin, Antoine; Hober, Didier; Dubuisson, Jean; Rouillé, Yves
2018-06-20
GBF1 has emerged as a host factor required for the replication of positive-sense single-stranded RNA viruses of different families, but its mechanism of action is still unknown. GBF1 is a guanine nucleotide exchange factor for Arf family members. Recently, we identified Arf4 and Arf5 (class II Arfs) as host factors required for the replication of hepatitis C virus (HCV), a GBF1-dependent virus. To assess whether a GBF1/class II Arf pathway is conserved among positive-sense single-stranded RNA viruses, we investigated yellow fever virus (YFV), Sindbis virus (SINV), coxsackievirus B4 (CVB4) and human coronavirus 229E (HCoV-229E). We found that GBF1 is involved in the replication of these viruses. However, using siRNA or CRISPR-Cas9 technologies, it was seen that the depletion of Arf1, Arf3, Arf4 or Arf5 had no impact on viral replication. In contrast, the depletion of Arf pairs suggested that class II Arfs could be involved in HCoV-229E, YFV and SINV infection, as for HCV, but not in CVB4 infection. In addition, another Arf pair, Arf1 and Arf4, appears to be essential for YFV and SINV infection, but not for infection by other viruses. Finally, CVB4 infection was not inhibited by any combination of Arf depletion. We conclude that the mechanism of action of GBF1 in viral replication appears not to be conserved, and that a subset of positive-sense single-stranded RNA viruses from different families might require class II Arfs for their replication.
Rasheed, Mubashshir; Battu, Anamika; Kaur, Rupinder
2018-04-27
A family of 11 cell surface-associated aspartyl proteases (CgYps1-11), also referred as yapsins, is a key virulence factor in the pathogenic yeast Candida glabrata However, the mechanism by which CgYapsins modulate immune response and facilitate survival in the mammalian host remains to be identified. Here, using RNA-Seq analysis, we report that genes involved in cell wall metabolism are differentially regulated in the Cgyps1-11 Δ mutant. Consistently, the mutant contained lower β-glucan and mannan levels and exhibited increased chitin content in the cell wall. As cell wall components are known to regulate the innate immune response, we next determined the macrophage transcriptional response to C. glabrata infection and observed differential expression of genes implicated in inflammation, chemotaxis, ion transport, and the tumor necrosis factor signaling cascade. Importantly, the Cgyps1-11 Δ mutant evoked a different immune response, resulting in an enhanced release of the pro-inflammatory cytokine IL-1β in THP-1 macrophages. Further, Cgyps1-11 Δ-induced IL-1β production adversely affected intracellular proliferation of co-infected WT cells and depended on activation of spleen tyrosine kinase (Syk) signaling in the host cells. Accordingly, the Syk inhibitor R406 augmented intracellular survival of the Cgyps1-11 Δ mutant. Finally, we demonstrate that C. glabrata infection triggers elevated IL-1β production in mouse organs and that the CgYPS genes are required for organ colonization and dissemination in the murine model of systemic infection. Altogether, our results uncover the basis for macrophage-mediated killing of Cgyps1-11 Δ cells and provide the first evidence that aspartyl proteases in C. glabrata are required for suppression of IL-1β production in macrophages. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Ultrastructure of the replication sites of positive-strand RNA viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harak, Christian; Lohmann, Volker, E-mail: volker_lohmann@med.uni-heidelberg.de
2015-05-15
Positive strand RNA viruses replicate in the cytoplasm of infected cells and induce intracellular membranous compartments harboring the sites of viral RNA synthesis. These replication factories are supposed to concentrate the components of the replicase and to shield replication intermediates from the host cell innate immune defense. Virus induced membrane alterations are often generated in coordination with host factors and can be grouped into different morphotypes. Recent advances in conventional and electron microscopy have contributed greatly to our understanding of their biogenesis, but still many questions remain how viral proteins capture membranes and subvert host factors for their need. Inmore » this review, we will discuss different representatives of positive strand RNA viruses and their ways of hijacking cellular membranes to establish replication complexes. We will further focus on host cell factors that are critically involved in formation of these membranes and how they contribute to viral replication. - Highlights: • Positive strand RNA viruses induce massive membrane alterations. • Despite the great diversity, replication complexes share many similarities. • Host factors play a pivotal role in replication complex biogenesis. • Use of the same host factors by several viruses hints to similar functions.« less
Sakurai, Yasuteru
2015-01-01
Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.
Goodwin, Ian P; Kumova, Ogan K; Ninio, Shira
2016-08-01
The OmpA-like protein domain has been associated with peptidoglycan-binding proteins, and is often found in virulence factors of bacterial pathogens. The intracellular pathogen Legionella pneumophila encodes for six proteins that contain the OmpA-like domain, among them the highly conserved uncharacterized protein we named CmpA. Here we set out to characterize the CmpA protein and determine its contribution to intracellular survival of L. pneumophila Secondary structure analysis suggests that CmpA is an inner membrane protein with a peptidoglycan-binding domain at the C-teminus. A cmpA mutant was able to replicate normally in broth, but failed to compete with an isogenic wild-type strain in an intracellular growth competition assay. The cmpA mutant also displayed significant intracellular growth defects in both the protozoan host Acanthamoeba castellanii and in primary bone marrow-derived macrophages, where uptake into the cells was also impaired. The cmpA phenotypes were completely restored upon expression of CmpA in trans The data presented here establish CmpA as a novel virulence factor of L. pneumophila that is required for efficient intracellular replication in both mammalian and protozoan hosts. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Mansur, M. Hossein; Schroeder, Jeffery A.
1988-01-01
A moving-base simulation was conducted to investigate a pilot's ability to recover from transients following single-axis hard-over failures of the flight-control system. The investigation was performed in conjunction with a host simulation that examined the influence of control modes on a single pilot's ability to perform various mission elements under high-workload conditions. The NASA Ames large-amplitude-motion Vertical Motion Simulator (VMS) was utilized, and the experimental variables were the failure axis, the severity of the failure, and the airspeed at which the failure occurred. Other factors, such as pilot workload and terrain and obstacle proximity at the time of failure, were kept as constant as possible within the framework of the host simulation task scenarios. No explicit failure warnings were presented to the pilot. Data from the experiment are shown, and pilot ratings are compared with the proposed handling-qualities requirements for military rotorcraft. Results indicate that the current proposed failure transient requirements may need revision.
Pavelin, Jonathan; McCormick, Dominique; Chiweshe, Stephen; Ramachandran, Saranya; Lin, Yao-Tang
2017-01-01
Successful generation of virions from infected cells is a complex process requiring orchestrated regulation of host and viral genes. Cells infected with human cytomegalovirus (HCMV) undergo a dramatic reorganization of membrane organelles resulting in the formation of the virion assembly compartment, a process that is not fully understood. Here we show that acidification of vacuoles by the cellular v-ATPase is a crucial step in the formation of the virion assembly compartment and disruption of acidification results in mis-localization of virion components and a profound reduction in infectious virus levels. In addition, knockdown of ATP6V0C blocks the increase in nuclear size, normally associated with HCMV infection. Inhibition of the v-ATPase does not affect intracellular levels of viral DNA synthesis or gene expression, consistent with a defect in assembly and egress. These studies identify a novel host factor involved in virion production and a potential target for antiviral therapy. PMID:29093211
Prespacer processing and specific integration in a Type I-A CRISPR system
Rollie, Clare; Graham, Shirley; Rouillon, Christophe
2018-01-01
Abstract The CRISPR–Cas system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. Adaptation is dependent on the Cas1 and Cas2 proteins along with varying accessory proteins. Here we analyse the process in Sulfolobus solfataricus, showing that while Cas1 and Cas2 catalyze spacer integration in vitro, host factors are required for specificity. Specific integration also requires at least 400 bp of the leader sequence, and is dependent on the presence of hydrolysable ATP, suggestive of an active process that may involve DNA remodelling. Specific spacer integration is associated with processing of prespacer 3′ ends in a PAM-dependent manner. This is reflected in PAM-dependent processing of prespacer 3′ ends in vitro in the presence of cell lysate or the Cas4 nuclease, in a reaction consistent with PAM-directed binding and protection of prespacer DNA. These results highlight the diverse interplay between CRISPR–Cas elements and host proteins across CRISPR types. PMID:29228332
Han, Tae-Hee; Kim, Young-Hoon; Kim, Myung Hwan; Song, Wonjun; Lee, Tae-Woo
2016-03-09
We used various nondestructive analyses to investigate various host material systems in the emitting layer (EML) of simple-structured, green phosphorescent organic light-emitting diodes (OLEDs) to clarify how the host systems affect its luminous efficiency (LE) and operational stability. An OLED that has a unipolar single-host EML with conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) showed high operating voltage, low LE (∼26.6 cd/A, 13.7 lm/W), and short lifetime (∼4.4 h @ 1000 cd/m(2)). However, the combined use of a gradient mixed-host EML and a molecularly controlled HIL that has increased surface work function (WF) remarkably decreased operating voltage and improved LE (∼68.7 cd/A, 77.0 lm/W) and lifetime (∼70.7 h @ 1000 cd/m(2)). Accumulated charges at the injecting interfaces and formation of a narrow recombination zone close to the interfaces are the major factors that accelerate degradation of charge injection/transport and electroluminescent properties of OLEDs, so achievement of simple-structured OLEDs with high efficiency and long lifetime requires facilitating charge injection and balanced transport into the EML and distributing charge carriers and excitons in EML.
Enguita, Francisco J.; Costa, Marina C.; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José; Leitão, Ana Lúcia
2016-01-01
Fungal invasive infections are an increasing health problem. The intrinsic complexity of pathogenic fungi and the unmet clinical need for new and more effective treatments requires a detailed knowledge of the infection process. During infection, fungal pathogens are able to trigger a specific transcriptional program in their host cells. The detailed knowledge of this transcriptional program will allow for a better understanding of the infection process and consequently will help in the future design of more efficient therapeutic strategies. Simultaneous transcriptomic studies of pathogen and host by high-throughput sequencing (dual RNA-seq) is an unbiased protocol to understand the intricate regulatory networks underlying the infectious process. This protocol is starting to be applied to the study of the interactions between fungal pathogens and their hosts. To date, our knowledge of the molecular basis of infection for fungal pathogens is still very limited, and the putative role of regulatory players such as non-coding RNAs or epigenetic factors remains elusive. The wider application of high-throughput transcriptomics in the near future will help to understand the fungal mechanisms for colonization and survival, as well as to characterize the molecular responses of the host cell against a fungal infection. PMID:29376924
NASA Astrophysics Data System (ADS)
Wang, Rui-Wu; Dunn, Derek W.; Luo, Jun; He, Jun-Zhou; Shi, Lei
2015-10-01
Understanding the factors that enable mutualisms to evolve and to subsequently remain stable over time, is essential to fully understand patterns of global biodiversity and for evidence based conservation policy. Theoretically, spatial heterogeneity of mutualists, through increased likelihood of fidelity between cooperative partners in structured populations, and ‘self-restraint’ of symbionts, due to selection against high levels of virulence leading to short-term host overexploitation, will result in either a positive correlation between the reproductive success of both mutualists prior to the total exploitation of any host resource or no correlation after any host resource has been fully exploited. A quantitative review by meta-analysis on the results of 96 studies from 35 papers, showed no evidence of a significant fitness correlation between mutualists across a range of systems that captured much taxonomic diversity. However, when the data were split according to four categories of host: 1) cnidarian corals, 2) woody plants, 3) herbaceous plants, and 4) insects, a significantly positive effect in corals was revealed. The trends for the remaining three categories did not significantly differ to zero. Our results suggest that stability in mutualisms requires alternative processes, or mechanisms in addition to, spatial heterogeneity of hosts and/or ‘self-restraint’ of symbionts.
Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export
Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.
2013-01-01
Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491
Disease and infection in the Tetraonidae
Herman, C.M.
1963-01-01
Disease is one of many factors advanced to explain the fluctuations of grouse populations, but no profound study of natural disease losses in Tetraonidae exists. The literature contains frequent references to THE grouse disease, although many potential pathogens are listed in numerous surveys and limited investigations, and the relevant data indicate that no single etiologic agent is universally responsible for disease in grouse. Few experimental infections or related studies on parasite biology have been attempted. Well-trained personnel and specialized facilities are required for research and analysis (1) to develop new methods of interpretation to be used with existing census techniques, (2) to conduct intensive studies of ecological factors of host and habitat, and (3) to establish base lines for recognition of deviations from the norm. Disease in wildlife can be controlled only through management procedures based on information concerning the biology of pathogens, hosts, and environments. It cannot be studied as a separate entity if its impact on survival or population fluctuations of grouse is to be correctly assessed.
Fragile X mental retardation protein stimulates ribonucleoprotein assembly of influenza A virus
NASA Astrophysics Data System (ADS)
Zhou, Zhuo; Cao, Mengmeng; Guo, Yang; Zhao, Lili; Wang, Jingfeng; Jia, Xue; Li, Jianguo; Wang, Conghui; Gabriel, Gülsah; Xue, Qinghua; Yi, Yonghong; Cui, Sheng; Jin, Qi; Wang, Jianwei; Deng, Tao
2014-02-01
The ribonucleoprotein (RNP) of the influenza A virus is responsible for the transcription and replication of viral RNA in the nucleus. These processes require interplay between host factors and RNP components. Here, we report that the Fragile X mental retardation protein (FMRP) targets influenza virus RNA synthesis machinery and facilitates virus replication both in cell culture and in mice. We demonstrate that FMRP transiently associates with viral RNP and stimulates viral RNP assembly through RNA-mediated interaction with the nucleoprotein. Furthermore, the KH2 domain of FMRP mediates its association with the nucleoprotein. A point mutation (I304N) in the KH2 domain, identified from a Fragile X syndrome patient, disrupts the FMRP-nucleoprotein association and abolishes the ability of FMRP to participate in viral RNP assembly. We conclude that FMRP is a critical host factor used by influenza viruses to facilitate viral RNP assembly. Our observation reveals a mechanism of influenza virus RNA synthesis and provides insights into FMRP functions.
2011-01-01
Background Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Results Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Conclusions Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different steps can explain different aspects of the coevolutionary dynamics of the system: the properties of the attachment step, explaining the rapid evolution of infectivity and the properties of later parasite proliferation explaining the evolution of virulence. Our study underlines the importance of resolving the infection process in order to better understand host-parasite interactions. PMID:21342515
Immune Ecosystem of Virus-Infected Host Tissues.
Maarouf, Mohamed; Rai, Kul Raj; Goraya, Mohsan Ullah; Chen, Ji-Long
2018-05-06
Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.
Banda, María M; López, Carolina; Manzo, Rubiceli; Rico-Pérez, Gadea; García, Pablo; Rosales-Reyes, Roberto; De la Cruz, Miguel A; Soncini, Fernando C; García-Del Portillo, Francisco; Bustamante, Víctor H
2018-03-19
When Salmonella is grown in the nutrient-rich lysogeny broth (LB), the AraC-like transcriptional regulator HilD positively controls the expression of genes required for Salmonella invasion of host cells, such as the Salmonella pathogenicity island 1 (SPI-1) genes. However, in minimal media, the two-component system PhoP/Q activates the expression of genes necessary for Salmonella replication inside host cells, such as the SPI-2 genes. Recently, we found that the SL1344_1872 hypothetical gene, located in a S. Typhimurium genomic island, is co-expressed with the SPI-1 genes. In this study we demonstrate that HilD induces indirectly the expression of SL1344_1872 when S. Typhimurium is grown in LB; therefore, we named SL1344_1872 as grhD1 for gene regulated by HilD. Furthermore, we found that PhoP positively controls the expression of grhD1, independently of HilD, when S. Typhimurium is grown in LB or N-minimal medium. Moreover, we demonstrate that the grhD1 gene is required for the invasion of S. Typhimurium into epithelial cells, macrophages and fibroblasts, as well as for the intestinal inflammatory response caused by S. Typhimurium in mice. Thus, our results reveal a novel virulence factor of Salmonella, whose expression is positively and independently controlled by the HilD and PhoP transcriptional regulators.
Lemaître, Nadine; Sebbane, Florent; Long, Daniel; Hinnebusch, B Joseph
2006-09-01
The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system that transfers six Yop effector proteins into host cells. One of these proteins, YopJ, has been shown to disrupt host cell signaling pathways involved in proinflammatory cytokine production and to induce macrophage apoptosis in vitro. YopJ-dependent apoptosis in mesenteric lymph nodes has also been demonstrated in a mouse model of Yersinia pseudotuberculosis infection. These results suggest that YopJ attenuates the host innate and adaptive immune response during infection, but the role of YopJ during bubonic plague has not been completely established. We evaluated the role of Yersinia pestis YopJ in a rat model of bubonic plague following intradermal infection with a fully virulent Y. pestis strain and an isogenic yopJ mutant. Deletion of yopJ resulted in a twofold decrease in the number of apoptotic immune cells in the bubo and a threefold increase in serum tumor necrosis factor alpha levels but did not result in decreased virulence, systemic spread, or colonization levels in the spleen and blood. Our results indicate that YopJ is not essential for bubonic plague pathogenesis, even after peripheral inoculation of low doses of Y. pestis. Instead, the effects of YopJ appear to overlap and augment the immunomodulatory effects of other Y. pestis virulence factors.
Andrew, Marion; Barua, Reeta; Short, Steven M.; Kohn, Linda M.
2012-01-01
The Sclerotiniaceae (Ascomycotina, Leotiomycetes) is a relatively recently evolved lineage of necrotrophic host generalists, and necrotrophic or biotrophic host specialists, some latent or symptomless. We hypothesized that they inherited a basic toolbox of genes for plant symbiosis from their common ancestor. Maintenance and evolutionary diversification of symbiosis could require selection on toolbox genes or on timing and magnitude of gene expression. The genes studied were chosen because their products have been previously investigated as pathogenicity factors in the Sclerotiniaceae. They encode proteins associated with cell wall degradation: acid protease 1 (acp1), aspartyl protease (asps), and polygalacturonases (pg1, pg3, pg5, pg6), and the oxalic acid (OA) pathway: a zinc finger transcription factor (pac1), and oxaloacetate acetylhydrolase (oah), catalyst in OA production, essential for full symptom production in Sclerotinia sclerotiorum. Site-specific likelihood analyses provided evidence for purifying selection in all 8 pathogenicity-related genes. Consistent with an evolutionary arms race model, positive selection was detected in 5 of 8 genes. Only generalists produced large, proliferating disease lesions on excised Arabidopsis thaliana leaves and oxalic acid by 72 hours in vitro. In planta expression of oah was 10–300 times greater among the necrotrophic host generalists than necrotrophic and biotrophic host specialists; pac1 was not differentially expressed. Ability to amplify 6/8 pathogenicity related genes and produce oxalic acid in all genera are consistent with the common toolbox hypothesis for this gene sample. That our data did not distinguish biotrophs from necrotrophs is consistent with 1) a common toolbox based on necrotrophy and 2) the most conservative interpretation of the 3-locus housekeeping gene phylogeny – a baseline of necrotrophy from which forms of biotrophy emerged at least twice. Early oah overexpression likely expands the host range of necrotrophic generalists in the Sclerotiniaceae, while specialists and biotrophs deploy oah, or other as-yet-unknown toolbox genes, differently. PMID:22253834
Fitness Impact of Obligate Intranuclear Bacterial Symbionts Depends on Host Growth Phase
Bella, Chiara; Koehler, Lars; Grosser, Katrin; Berendonk, Thomas U.; Petroni, Giulio; Schrallhammer, Martina
2016-01-01
According to text book definition, parasites reduce the fitness of their hosts whereas mutualists provide benefits. But biotic and abiotic factors influence symbiotic interactions, thus under certain circumstances parasites can provide benefits and mutualists can harm their host. Here we addressed the question which intrinsic biotic factors shape a symbiosis and are crucial for the outcome of the interaction between the obligate intranuclear bacterium Holospora caryophila (Alphaproteobacteria; Rickettsiales) and its unicellular eukaryotic host Paramecium biaurelia (Alveolata; Ciliophora). The virulence of H. caryophila, i.e., the negative fitness effect on host division and cell number, was determined by growth assays of several P. biaurelia strains. The performances of genetically identical lines either infected with H. caryophila or symbiont-free were compared. Following factors were considered as potentially influencing the outcome of the interaction: (1) host strain, (2) parasite strain, and (3) growth phases of the host. All three factors revealed a strong effect on the symbiosis. In presence of H. caryophila, the Paramecium density in the stationary growth phase decreased. Conversely, a positive effect of the bacteria during the exponential phase was observed for several host × parasite combinations resulting in an increased growth rate of infected P. biaurelia. Furthermore, the fitness impact of the tested endosymbionts on different P. biaurelia lines was not only dependent on one of the two involved strains but distinct for the specific combination. Depending on the current host growth phase, the presence of H. caryophila can be harmful or advantageous for P. biaurelia. Thus, under the tested experimental conditions, the symbionts can switch from the provision of benefits to the exploitation of host resources within the same host population and a time-span of less than 6 days. PMID:28066397
Coustau, C; Renaud, F; Delay, B; Robbins, I; Mathieu, M
1991-07-01
The mechanisms involved in the parasitic castration of the marine mussel Mytilus edulis by the trematode parasite Prosorhynchus squamatus Odhner, 1905, have been investigated in vitro with two bioassays employing dissociated host tissues. There is no conclusive evidence that P. squamatus affects the secretion of two host neuroendocrine factors, viz., gonial mitosis-stimulating factor and glycogen mobilization hormone, involved in the gametogenesis/nutrient storage cycles of the mussel. In contrast, extracts of P. squamatus sporocysts and cercariae significantly stimulated glycogen mobilization in host glycogen cells and strongly inhibited host gonial mitosis. A gonial mitosis-inhibiting factor (GMIF) was found in the hemolymph of parasitized mussels. The existence of an endogenous GMIF in mantle tissue of uninfected mussels has been demonstrated. This factor appeared to be secreted into the hemolymph during the period of sexual maturity. Whether the parasite acts directly on the host gonia, or by provoking the liberation of this endogenous GMIF, has yet to be ascertained. It would appear, however, that the parasite acts directly on host glycogen cells.
Miller, E Kathryn; Williams, John V; Gebretsadik, Tebeb; Carroll, Kecia N; Dupont, William D; Mohamed, Yassir A; Morin, Laura-Lee; Heil, Luke; Minton, Patricia A; Woodward, Kimberly; Liu, Zhouwen; Hartert, Tina V
2011-04-01
Risk factors for severe human rhinovirus (HRV)-associated infant illness are unknown. We sought to examine the role of HRV infection in infant respiratory tract illness and assess viral and host risk factors for HRV-associated disease severity. We used a prospective cohort of term, previously healthy infants enrolled during an inpatient or outpatient visit for acute upper or lower respiratory tract illness during the fall-spring months of 2004-2008. Illness severity was determined by using an ordinal bronchiolitis severity score, with higher scores indicating more severe disease. HRV was identified by means of real-time RT-PCR. The VP4/VP2 region from HRV-positive specimens was sequenced to determine species. Of 630 infants with bronchiolitis or upper respiratory tract illnesses (URIs), 162 (26%) had HRV infection; HRV infection was associated with 18% of cases of bronchiolitis and 47% of cases of URI. Among infants with HRV infection, 104 (64%) had HRV infection alone. Host factors associated with more severe HRV-associated illness included a maternal and family history of atopy (median score of 3.5 [interquartile range [IQR], 1.0-7.8] vs 2.0 [IQR, 1.0-5.2] and 3.5 [IQR, 1.0-7.5] vs 2.0 [IQR, 0-4.0]). In adjusted analyses maternal history of atopy conferred an increase in the risk for more severe HRV-associated bronchiolitis (odds ratio, 2.39; 95% CI, 1.14-4.99; P = .02). In a similar model maternal asthma was also associated with greater HRV-associated bronchiolitis severity (odds ratio, 2.49, 95% CI, 1.10-5.67; P = .03). Among patients with HRV infection, 35% had HRVA, 6% had HRVB, and 30% had HRVC. HRV infection was a frequent cause of bronchiolitis and URIs among previously healthy term infants requiring hospitalization or unscheduled outpatient visits. Substantial viral genetic diversity was seen among the patients with HRV infection, and predominant groups varied by season and year. Host factors, including maternal atopy, were associated with more severe infant HRV-associated illness. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Telepresence master glove controller for dexterous robotic end-effectors
NASA Technical Reports Server (NTRS)
Fisher, Scott S.
1987-01-01
This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computer in real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.
Oncogenes and RNA splicing of human tumor viruses
Ajiro, Masahiko; Zheng, Zhi-Ming
2014-01-01
Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis. PMID:26038756
Mechanosensing regulates virulence in Escherichia coli O157:H7.
Islam, Md Shahidul; Krachler, Anne Marie
2016-01-01
Enterohemorrhagic Escherichia coli O157:H7 is a food-borne pathogen transmitted via the fecal-oral route, and can cause bloody diarrhea and hemolytic uremic syndrome (HUS) in the human host. Although a range of colonization factors, Shiga toxins and a type III secretion system (T3SS) all contribute to disease development, the locus of enterocyte effacement (LEE) encoded T3SS is responsible for the formation of lesions in the intestinal tract. While a variety of chemical cues in the host environment are known to up-regulate LEE expression, we recently demonstrated that changes in physical forces at the site of attachment are required for localized, full induction of the system and thus spatial regulation of virulence in the intestinal tract. Here, we discuss our findings in the light of other recent studies describing mechanosensing of the host and force-dependent induction of virulence mechanisms. We discuss potential mechanisms of mechanosensing and mechanotransduction, and the level of conservation across bacterial species.
Cutler, Timothy D.; Wang, Chong; Hoff, Steven J.; Zimmerman, Jeffrey J.
2013-01-01
In aerobiology, dose-response studies are used to estimate the risk of infection to a susceptible host presented by exposure to a specific dose of an airborne pathogen. In the research setting, host- and pathogen-specific factors that affect the dose-response continuum can be accounted for by experimental design, but the requirement to precisely determine the dose of infectious pathogen to which the host was exposed is often challenging. By definition, quantification of viable airborne pathogens is based on the culture of micro-organisms, but some airborne pathogens are transmissible at concentrations below the threshold of quantification by culture. In this paper we present an approach to the calculation of exposure dose at microbiologically unquantifiable levels using an application of the “continuous-stirred tank reactor (CSTR) model” and the validation of this approach using rhodamine B dye as a surrogate for aerosolized microbial pathogens in a dynamic aerosol toroid (DAT). PMID:24082399
Gish, Stacey R.; Maier, Ezekiel J.; Haynes, Brian C.; Santiago-Tirado, Felipe H.; Srikanta, Deepa L.; Ma, Cynthia Z.; Li, Lucy X.; Williams, Matthew; Crouch, Erika C.; Khader, Shabaana A.
2016-01-01
ABSTRACT Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen that kills over 600,000 people annually. Here, we report integrated computational and experimental investigations of the role and mechanisms of transcriptional regulation in cryptococcal infection. Major cryptococcal virulence traits include melanin production and the development of a large polysaccharide capsule upon host entry; shed capsule polysaccharides also impair host defenses. We found that both transcription and translation are required for capsule growth and that Usv101 is a master regulator of pathogenesis, regulating melanin production, capsule growth, and capsule shedding. It does this by directly regulating genes encoding glycoactive enzymes and genes encoding three other transcription factors that are essential for capsule growth: GAT201, RIM101, and SP1. Murine infection with cryptococci lacking Usv101 significantly alters the kinetics and pathogenesis of disease, with extended survival and, unexpectedly, death by pneumonia rather than meningitis. Our approaches and findings will inform studies of other pathogenic microbes. PMID:27094327
Iwasaki, Masaharu; Caì, Yíngyún; de la Torre, Juan C.
2018-01-01
Several mammalian arenaviruses (mammarenaviruses) cause hemorrhagic fevers in humans and pose serious public health concerns in their endemic regions. Additionally, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. Concerns about human-pathogenic mammarenaviruses are exacerbated by of the lack of licensed vaccines, and current anti-mammarenavirus therapy is limited to off-label use of ribavirin that is only partially effective. Detailed understanding of virus/host-cell interactions may facilitate the development of novel anti-mammarenavirus strategies by targeting components of the host-cell machinery that are required for efficient virus multiplication. Here we document the generation of a recombinant LCMV encoding a nucleoprotein (NP) containing an affinity tag (rLCMV/Strep-NP) and its use to capture the NP-interactome in infected cells. Our proteomic approach combined with genetics and pharmacological validation assays identified ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) and prohibitin (PHB) as pro-viral factors. Cell-based assays revealed that ATP1A1 and PHB are involved in different steps of the virus life cycle. Accordingly, we observed a synergistic inhibitory effect on LCMV multiplication with a combination of ATP1A1 and PHB inhibitors. We show that ATP1A1 inhibitors suppress multiplication of Lassa virus and Candid#1, a live-attenuated vaccine strain of Junín virus, suggesting that the requirement of ATP1A1 in virus multiplication is conserved among genetically distantly related mammarenaviruses. Our findings suggest that clinically approved inhibitors of ATP1A1, like digoxin, could be repurposed to treat infections by mammarenaviruses pathogenic for humans. PMID:29462184
Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains.
Li, Shan; Zhang, Li; Yao, Qing; Li, Lin; Dong, Na; Rong, Jie; Gao, Wenqing; Ding, Xiaojun; Sun, Liming; Chen, Xing; Chen, She; Shao, Feng
2013-09-12
The tumour necrosis factor (TNF) family is crucial for immune homeostasis, cell death and inflammation. These cytokines are recognized by members of the TNF receptor (TNFR) family of death receptors, including TNFR1 and TNFR2, and FAS and TNF-related apoptosis-inducing ligand (TRAIL) receptors. Death receptor signalling requires death-domain-mediated homotypic/heterotypic interactions between the receptor and its downstream adaptors, including TNFR1-associated death domain protein (TRADD) and FAS-associated death domain protein (FADD). Here we discover that death domains in several proteins, including TRADD, FADD, RIPK1 and TNFR1, were directly inactivated by NleB, an enteropathogenic Escherichia coli (EPEC) type III secretion system effector known to inhibit host nuclear factor-κB (NF-κB) signalling. NleB contained an unprecedented N-acetylglucosamine (GlcNAc) transferase activity that specifically modified a conserved arginine in these death domains (Arg 235 in the TRADD death domain). NleB GlcNAcylation (the addition of GlcNAc onto a protein side chain) of death domains blocked homotypic/heterotypic death domain interactions and assembly of the oligomeric TNFR1 complex, thereby disrupting TNF signalling in EPEC-infected cells, including NF-κB signalling, apoptosis and necroptosis. Type-III-delivered NleB also blocked FAS ligand and TRAIL-induced cell death by preventing formation of a FADD-mediated death-inducing signalling complex (DISC). The arginine GlcNAc transferase activity of NleB was required for bacterial colonization in the mouse model of EPEC infection. The mechanism of action of NleB represents a new model by which bacteria counteract host defences, and also a previously unappreciated post-translational modification.
Acting on Actin: Rac and Rho Played by Yersinia.
Aepfelbacher, Martin; Wolters, Manuel
2017-01-01
Pathogenic bacteria of the genus Yersinia include Y. pestis-the agent of plaque-and two enteropathogens, Y. enterocolitica, and Y. pseudotuberculosis. These pathogens have developed an array of virulence factors aimed at manipulating Rho GTP-binding proteins and the actin cytoskeleton in host cells to cross the intestinal barrier and suppress the immune system. Yersinia virulence factors include outer membrane proteins triggering cell invasion by binding to integrins, effector proteins injected into host cells to manipulate Rho protein functions and a Rho protein-activating exotoxin. Here, we present an overview of how Yersinia and host factors are integrated in a regulatory network that orchestrates the subversion of host defense.
HK022 Nun Requires Arginine-Rich Motif Residues Distinct from λ N
Tawk, Caroline S.; Ghattas, Ingrid R.
2015-01-01
ABSTRACT Bacteriophage λ N protein binds boxB RNA hairpins in the nut (N utilization) sites of immediate early λ transcripts and interacts with host factors to suppress transcriptional termination at downstream terminators. In opposition to λ N, the Nun protein of HK022 binds the boxBs of coinfecting λ transcripts, interacts with a similar or identical set of host factors, and terminates transcription to suppress λ replication. Comparison of N-boxB and Nun-boxB nuclear magnetic resonance (NMR) structural models suggests similar interactions, though limited mutagenesis of Nun is available. Here, libraries of Nun's arginine-rich motif (ARM) were screened for the ability to exclude λ coinfection, and mutants were assayed for Nun termination with a boxB plasmid reporter system. Several Nun ARM residues appear to be immutable: Asp26, Arg28, Arg29, Arg32, Trp33, and Arg36. Asp26 and Trp33 appear to be unable to contact boxB and are not found at equivalent positions in λ N ARM. To understand if the requirement of Asp26, Trp33, and Arg36 indicated differences between HK022 Nun termination and λ N antitermination complexes, the same Nun libraries were fused to the activation domain of λ N and screened for clones able to complement N-deficient λ. Mutants were assayed for N antitermination. Surprisingly, Asp26 and Trp33 were still essential when Nun ARM was fused to N. Docking suggests that Nun ARM contacts a hydrophobic surface of the NusG carboxy-terminal domain containing residues necessary for Nun function. These findings indicate that Nun ARM relies on distinct contacts in its ternary complex and illustrate how protein-RNA recognition can evolve new regulatory functions. IMPORTANCE λ N protein interacts with host factors to allow λ nut-containing transcripts to elongate past termination signals. A competing bacteriophage, HK022, expresses Nun protein, which causes termination of λ nut transcripts. λ N and HK022 Nun use similar arginine-rich motifs (ARMs) to bind the same boxB RNAs in nut transcripts. Screening libraries of Nun ARM mutants, both in HK022 Nun and in a λ N fusion, revealed amino acids essential to Nun that could bind one or more host factors. Docking suggests that NusG, which is present in both Nun termination and N antitermination, is a plausible partner. These findings could help understand how transcription elongation is regulated and illustrate how subtle differences allow ARMs to evolve new regulatory functions. PMID:26350130
HK022 Nun Requires Arginine-Rich Motif Residues Distinct from λ N.
Tawk, Caroline S; Ghattas, Ingrid R; Smith, Colin A
2015-11-01
Bacteriophage λ N protein binds boxB RNA hairpins in the nut (N utilization) sites of immediate early λ transcripts and interacts with host factors to suppress transcriptional termination at downstream terminators. In opposition to λ N, the Nun protein of HK022 binds the boxBs of coinfecting λ transcripts, interacts with a similar or identical set of host factors, and terminates transcription to suppress λ replication. Comparison of N-boxB and Nun-boxB nuclear magnetic resonance (NMR) structural models suggests similar interactions, though limited mutagenesis of Nun is available. Here, libraries of Nun's arginine-rich motif (ARM) were screened for the ability to exclude λ coinfection, and mutants were assayed for Nun termination with a boxB plasmid reporter system. Several Nun ARM residues appear to be immutable: Asp26, Arg28, Arg29, Arg32, Trp33, and Arg36. Asp26 and Trp33 appear to be unable to contact boxB and are not found at equivalent positions in λ N ARM. To understand if the requirement of Asp26, Trp33, and Arg36 indicated differences between HK022 Nun termination and λ N antitermination complexes, the same Nun libraries were fused to the activation domain of λ N and screened for clones able to complement N-deficient λ. Mutants were assayed for N antitermination. Surprisingly, Asp26 and Trp33 were still essential when Nun ARM was fused to N. Docking suggests that Nun ARM contacts a hydrophobic surface of the NusG carboxy-terminal domain containing residues necessary for Nun function. These findings indicate that Nun ARM relies on distinct contacts in its ternary complex and illustrate how protein-RNA recognition can evolve new regulatory functions. λ N protein interacts with host factors to allow λ nut-containing transcripts to elongate past termination signals. A competing bacteriophage, HK022, expresses Nun protein, which causes termination of λ nut transcripts. λ N and HK022 Nun use similar arginine-rich motifs (ARMs) to bind the same boxB RNAs in nut transcripts. Screening libraries of Nun ARM mutants, both in HK022 Nun and in a λ N fusion, revealed amino acids essential to Nun that could bind one or more host factors. Docking suggests that NusG, which is present in both Nun termination and N antitermination, is a plausible partner. These findings could help understand how transcription elongation is regulated and illustrate how subtle differences allow ARMs to evolve new regulatory functions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Discovery of Host Factors and Pathways Utilized in Hantaviral Infection
2016-09-01
AWARD NUMBER: W81XWH-14-1-0204 TITLE: Discovery of Host Factors and Pathways Utilized in Hantaviral Infection PRINCIPAL INVESTIGATOR: Paul...Aug 2016 4. TITLE AND SUBTITLE Discovery of Host Factors and Pathways Utilized in Hantaviral Infection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...after significance values were calculated and corrected for false discovery rate. The top hit is ATP6V0A1, a gene encoding a subunit of a vacuolar
Within-Host Evolution of Human Influenza Virus.
Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D
2018-03-10
The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Dong; Hu, Fei; Chen, Yu-Fen; Yang, Jun; Kong, Chui-Hua
2007-08-01
The study on the photosynthetic characteristics of Cuscuta japonica and its hosts showed that there was a negative correlation between the photosynthetic pigment content (PPC) of C. japonica and its hosts. The PPC increased in the C. japonica-preferred hosts' parasitized and neighboring leaves, but decreased in its less preferred hosts' parasitized and neighboring leaves. The leaves parasitized by C. japonica and their neighboring far from the parasitized ones had a lowered net photosynthesis rate P(n), and the decreasing order accorded with that of parasitization. The decrease of P(n) for C. japonica-less preferred hosts was mainly due to the stomatal factors, but that for the preferred hosts was regulated by multi-factors. Under light, the PPC of C. japonica detached from preferred hosts increased faster than that of C. japonica detached from less preferred hosts, but the dry matter decrease was in adverse. In dark, however, the changes in PPC and dry matter content of C. japonica were not significant, whatever hosts it was detached from.
Sherrard-Smith, E; Perkins, S E; Chadwick, E A; Cable, J
2015-01-01
Parasites are typically aggregated within their host populations. The most heavily infected hosts are frequently cited as targets for optimal disease control. Yet a heavily infected individual is not necessarily highly infective and does not automatically contribute a higher proportion of infective parasitic stages than a host with fewer parasites. Here, Pseudamphistomum truncatum (Opisthorchiida) parasitic infection within the definitive otter host (Lutra lutra) is used as a model system. The hypothesis tested is that variation in parasite abundance, aggregation and egg production (fecundity, as a proxy of host infectivity) can be explained by abiotic (season and region) or biotic (host age, sex and body condition) factors. Parasite abundance was affected most strongly by the biotic factors of age and body condition, such that adults and otters with a higher condition index had heavier infections than sub-adults or those with a lower condition index, whilst there were no significant differences in parasite abundance among the seasons, regions (ecological regions defined by river catchment boundaries) or host sexes. Conversely, parasite aggregation was affected most strongly by the abiotic factors of season and region, which were supported by four different measures of parasite aggregation (the corrected moment estimate k, Taylor's Power Law, the Index of Discrepancy D, and Boulinier's J). Pseudamphistomum truncatum was highly aggregated within otters, with aggregation stronger in the Midlands (England) and Wales than in the southwestern region of the United Kingdom. Overall, more parasites were found in fewer hosts during the summer, which coincides with the summer peak in parasite fecundity. Combined, these data suggest that (i) few otters carry the majority of P. truncatum parasites and that there are more infective stages (eggs) produced during summer; and (ii) abiotic factors are most influential when describing parasite aggregation whilst biotic factors have a greater role in defining parasite abundance. Together, parasite abundance, aggregation and fecundity can help predict which hosts make the largest contribution to the spread of infectious diseases. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L.; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F.; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A.; Schweizer, Patrick
2016-01-01
Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus. PMID:28018377
Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick
2016-01-01
Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8 ) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici . Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei . Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.
Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity.
Stephens, Richard W; Arhire, Lidia; Covasa, Mihai
2018-05-01
This review summarizes the current understanding of the relationship between gut microbiota and the host as it pertains to the regulation of energy balance and obesity. The paper begins with a brief description of the gut microbiota environment, distribution, and its unique symbiotic relationship with the host. The way that enviromental factors influence microbiota composition and subsequent impact on the host are then described. Next, the mechanisms linking gut dysbiosis with obesity are discussed, and finally current challenges and limitations in understanding the role of gut microbiota in control of obesity are presented. Gut microbiota has been implicated in regulation of fat storage, as well as gut dysbiosis, thus contributing to the development of obesity, insulin resistance, hyperglycemia and hyperlipidemia. However, the underlying mechanisms of these processes are far from being clear and will require complex preclinical and clinical interdisciplinary studies of bacteria and host cell-to-cell interactions. There is a need for a better understanding of how changes in gut microbiota composition can impact energy balance and thus control weight gain. This may represent a promising avenue in the race to develop nonsurgical treatments for obesity. © 2018 The Obesity Society.
Basigin is a druggable target for host-oriented antimalarial interventions
Zenonos, Zenon A.; Dummler, Sara K.; Müller-Sienerth, Nicole; Chen, Jianzhu; Preiser, Peter R.; Rayner, Julian C.
2015-01-01
Plasmodium falciparum is the parasite responsible for the most lethal form of malaria, an infectious disease that causes a large proportion of childhood deaths and poses a significant barrier to socioeconomic development in many countries. Although antimalarial drugs exist, the repeated emergence and spread of drug-resistant parasites limit their useful lifespan. An alternative strategy that could limit the evolution of drug-resistant parasites is to target host factors that are essential and universally required for parasite growth. Host-targeted therapeutics have been successfully applied in other infectious diseases but have never been attempted for malaria. Here, we report the development of a recombinant chimeric antibody (Ab-1) against basigin, an erythrocyte receptor necessary for parasite invasion as a putative antimalarial therapeutic. Ab-1 inhibited the PfRH5-basigin interaction and potently blocked erythrocyte invasion by all parasite strains tested. Importantly, Ab-1 rapidly cleared an established P. falciparum blood-stage infection with no overt toxicity in an in vivo infection model. Collectively, our data demonstrate that antibodies or other therapeutics targeting host basigin could be an effective treatment for patients infected with multi-drug resistant P. falciparum. PMID:26195724
The Role of Plant Innate Immunity in the Legume-Rhizobium Symbiosis.
Cao, Yangrong; Halane, Morgan K; Gassmann, Walter; Stacey, Gary
2017-04-28
A classic view of the evolution of mutualism is that it derives from a pathogenic relationship that attenuated over time to a situation in which both partners can benefit. If this is the case for rhizobia, then one might uncover features of the symbiosis that reflect this earlier pathogenic state. For example, as with plant pathogens, it is now generally assumed that rhizobia actively suppress the host immune response to allow infection and symbiosis establishment. Likewise, the host has retained mechanisms to control the nutrient supply to the symbionts and the number of nodules so that they do not become too burdensome. The open question is whether such events are strictly ancillary to the central symbiotic nodulation factor signaling pathway or are essential for rhizobial host infection. Subsequent to these early infection events, plant immune responses can also be induced inside nodules and likely play a role in, for example, nodule senescence. Thus, a balanced regulation of innate immunity is likely required throughout rhizobial infection, symbiotic establishment, and maintenance. In this review, we discuss the significance of plant immune responses in the regulation of symbiotic associations with rhizobia, as well as rhizobial evasion of the host immune system.
Ko, Ya-Ping; Flick, Matthew J.
2017-01-01
Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment. PMID:27056151
Küng, Denise; Bigler, Laurent; Davis, Leyla R.; Gratwicke, Brian; Griffith, Edgardo; Woodhams, Douglas C.
2014-01-01
Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant – skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control – sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7–12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities. PMID:24489847
Kim, Jaynee R.; Hayes, Kenneth A.; Yeung, Norine W.; Cowie, Robert H.
2014-01-01
Eosinophilic meningitis caused by the parasitic nematode Angiostrongylus cantonensis is an emerging infectious disease with recent outbreaks primarily in tropical and subtropical locations around the world, including Hawaii. Humans contract the disease primarily through ingestion of infected gastropods, the intermediate hosts of Angiostrongylus cantonensis. Effective prevention of the disease and control of the spread of the parasite require a thorough understanding of the parasite's hosts, including their distributions, as well as the human and environmental factors that contribute to transmission. The aim of this study was to screen a large cross section of gastropod species throughout the main Hawaiian Islands to determine which act as hosts of Angiostrongylus cantonensis and to assess the parasite loads in these species. Molecular screening of 7 native and 30 non-native gastropod species revealed the presence of the parasite in 16 species (2 native, 14 non-native). Four of the species tested are newly recorded hosts, two species introduced to Hawaii (Oxychilus alliarius, Cyclotropis sp.) and two native species (Philonesia sp., Tornatellides sp.). Those species testing positive were from a wide diversity of heterobranch taxa as well as two distantly related caenogastropod taxa. Review of the global literature showed that many gastropod species from 34 additional families can also act as hosts. There was a wide range of parasite loads among and within species, with an estimated maximum of 2.8 million larvae in one individual of Laevicaulis alte. This knowledge of the intermediate host range of Angiostrongylus cantonensis and the range of parasite loads will permit more focused efforts to detect, monitor and control the most important hosts, thereby improving disease prevention in Hawaii as well as globally. PMID:24788772
Kaku, Nobuhiro; Tabata, Tomonori; Tsumura, Hiroshi
2015-12-01
We verified the index cup position required for bulk bone grafting instead of morcellized grafting immediately after cementless total hip arthroplasty. Three-dimensional finite element analysis was used to evaluate changes in the volume of the slippage of the cup-host bone interface as micro-motion of the cup at the acetabular bone defect site depending on the cup-center-edge (CE) angle. The conditions of bulk bone grafts were similar to those of cortical bone. Slippage increased with decreasing cup-CE angle. A bulk bone graft tightly fixed to the host bone prevented considerably larger slippage between the cup and host bone. A smaller cup-CE angle increased the impact of the bulk bone graft on slippage. When the cup-CE angle was 0° or -10°, the criterion for slippage in favorable initial fixation in all conditions was <40 μm. Even if transplanted bulk bone is used, unless good fixation is obtained between the host bone, and the cup and bone graft, it is impossible to obtain reliable fixation of the cup with a cup-CE angle <-10° and slippage exceeding 40 μm. Bulk bone grafting tightly fixed to the host bone improves initial the cup-host bone fixation, especially when the cup-CE angle is small, such as <-10°. In clinical practice, negative factors are implicated in the initial fixation of various cups, and sufficient fixation between the host bone and cup or bulk bone graft using a screw is effective when the cup-CE angle is extremely small.
Tafesse, Fikadu G; Guimaraes, Carla P; Maruyama, Takeshi; Carette, Jan E; Lory, Stephen; Brummelkamp, Thijn R; Ploegh, Hidde L
2014-08-29
A number of toxins, including exotoxin A (PE) of Pseudomonas aeruginosa, kill cells by inhibiting protein synthesis. PE kills by ADP-ribosylation of the translation elongation factor 2, but many of the host factors required for entry, membrane translocation, and intracellular transport remain to be elucidated. A genome-wide genetic screen in human KBM7 cells was performed to uncover host factors used by PE, several of which were confirmed by CRISPR/Cas9-gene editing in a different cell type. Several proteins not previously implicated in the PE intoxication pathway were identified, including GPR107, an orphan G-protein-coupled receptor. GPR107 localizes to the trans-Golgi network and is essential for retrograde transport. It is cleaved by the endoprotease furin, and a disulfide bond connects the two cleaved fragments. Compromising this association affects the function of GPR107. The N-terminal region of GPR107 is critical for its biological function. GPR107 might be one of the long-sought receptors that associates with G-proteins to regulate intracellular vesicular transport. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Shoji, Masaki; Arakaki, Yumie; Esumi, Tomoyuki; Kohnomi, Shuntaro; Yamamoto, Chihiro; Suzuki, Yutaka; Takahashi, Etsuhisa; Konishi, Shiro; Kido, Hiroshi; Kuzuhara, Takashi
2015-01-01
Influenza represents a substantial threat to human health and requires novel therapeutic approaches. Bakuchiol is a phenolic isoprenoid compound present in Babchi (Psoralea corylifolia L.) seeds. We examined the anti-influenza viral activity of synthetic bakuchiol using Madin-Darby canine kidney cells. We found that the naturally occurring form, (+)-(S)-bakuchiol, and its enantiomer, (−)-(R)-bakuchiol, inhibited influenza A viral infection and growth and reduced the expression of viral mRNAs and proteins in these cells. Furthermore, these compounds markedly reduced the mRNA expression of the host cell influenza A virus-induced immune response genes, interferon-β and myxovirus-resistant protein 1. Interestingly, (+)-(S)-bakuchiol had greater efficacy than (−)-(R)-bakuchiol, indicating that chirality influenced anti-influenza virus activity. In vitro studies indicated that bakuchiol did not strongly inhibit the activities of influenza surface proteins or the M2 ion channel, expressed in Chinese hamster ovary cells. Analysis of luciferase reporter assay data unexpectedly indicated that bakuchiol may induce some host cell factor(s) that inhibited firefly and Renilla luciferases. Next generation sequencing and KeyMolnet analysis of influenza A virus-infected and non-infected cells exposed to bakuchiol revealed activation of transcriptional regulation by nuclear factor erythroid 2-related factor (Nrf), and an Nrf2 reporter assay showed that (+)-(S)-bakuchiol activated Nrf2. Additionally, (+)-(S)-bakuchiol up-regulated the mRNA levels of two Nrf2-induced genes, NAD(P)H quinone oxidoreductase 1 and glutathione S-transferase A3. These findings demonstrated that bakuchiol had enantiomer-selective anti-influenza viral activity involving a novel effect on the host cell oxidative stress response. PMID:26446794
The Transcriptional Regulator CpsY Is Important for Innate Immune Evasion in Streptococcus pyogenes
Vega, Luis A.; Valdes, Kayla M.; Sundar, Ganesh S.; Belew, Ashton T.; Islam, Emrul; Berge, Jacob; Curry, Patrick; Chen, Steven
2016-01-01
ABSTRACT As an exclusively human pathogen, Streptococcus pyogenes (the group A streptococcus [GAS]) has specifically adapted to evade host innate immunity and survive in multiple tissue niches, including blood. GAS can overcome the metabolic constraints of the blood environment and expresses various immunomodulatory factors necessary for survival and immune cell resistance. Here we present our investigation of one such factor, the predicted LysR family transcriptional regulator CpsY. The encoding gene, cpsY, was initially identified as being required for GAS survival in a transposon-site hybridization (TraSH) screen in whole human blood. CpsY is homologous with transcriptional regulators of Streptococcus mutans (MetR), Streptococcus iniae (CpsY), and Streptococcus agalactiae (MtaR) that regulate methionine transport, amino acid metabolism, resistance to neutrophil-mediated killing, and survival in vivo. Our investigation indicated that CpsY is involved in GAS resistance to innate immune cells of its human host. However, GAS CpsY does not manifest the in vitro phenotypes of its homologs in other streptococcal species. GAS CpsY appears to regulate a small set of genes that is markedly different from the regulons of its homologs. The differential expression of these genes depends on the growth medium, and CpsY modestly influences their expression. The GAS CpsY regulon includes known virulence factors (mntE, speB, spd, nga [spn], prtS [SpyCEP], and sse) and cell surface-associated factors of GAS (emm1, mur1.2, sibA [cdhA], and M5005_Spy0500). Intriguingly, the loss of CpsY in GAS does not result in virulence defects in murine models of infection, suggesting that CpsY function in immune evasion is specific to the human host. PMID:27993974
Gagne, Roderick B; Heins, David C; McIntyre, Peter B; Gilliam, James F; Blum, Michael J
2016-10-01
The presence of introduced hosts can increase or decrease infections of co-introduced parasites in native species of conservation concern. In this study, we compared parasite abundance, intensity, and prevalence between native Awaous stamineus and introduced poeciliid fishes by a co-introduced nematode parasite (Camallanus cotti) in 42 watersheds across the Hawaiian Islands. We found that parasite abundance, intensity and prevalence were greater in native than introduced hosts. Parasite abundance, intensity and prevalence within A. stamineus varied between years, which largely reflected a transient spike in infection in three remote watersheds on Molokai. At each site we measured host factors (length, density of native host, density of introduced host) and environmental factors (per cent agricultural and urban land use, water chemistry, watershed area and precipitation) hypothesized to influence C. cotti abundance, intensity and prevalence. Factors associated with parasitism differed between native and introduced hosts. Notably, parasitism of native hosts was higher in streams with lower water quality, whereas parasitism of introduced hosts was lower in streams with lower water quality. We also found that parasite burdens were lower in both native and introduced hosts when coincident. Evidence of a mutual dilution effect indicates that introduced hosts can ameliorate parasitism of native fishes by co-introduced parasites, which raises questions about the value of remediation actions, such as the removal of introduced hosts, in stemming the rise of infectious disease in species of conservation concern.
Infections on the move: how transient phases of host movement influence disease spread
Fenton, A.; Dell, A. I.
2017-01-01
Animal movement impacts the spread of human and wildlife diseases, and there is significant interest in understanding the role of migrations, biological invasions and other wildlife movements in spatial infection dynamics. However, the influence of processes acting on infections during transient phases of host movement is poorly understood. We propose a conceptual framework that explicitly considers infection dynamics during transient phases of host movement to better predict infection spread through spatial host networks. Accounting for host transient movement captures key processes that occur while hosts move between locations, which together determine the rate at which hosts spread infections through networks. We review theoretical and empirical studies of host movement and infection spread, highlighting the multiple factors that impact the infection status of hosts. We then outline characteristics of hosts, parasites and the environment that influence these dynamics. Recent technological advances provide disease ecologists unprecedented ability to track the fine-scale movement of organisms. These, in conjunction with experimental testing of the factors driving infection dynamics during host movement, can inform models of infection spread based on constituent biological processes. PMID:29263283
Yersinia virulence factors - a sophisticated arsenal for combating host defences
Atkinson, Steve; Williams, Paul
2016-01-01
The human pathogens Yersinia pseudotuberculosis and Yersinia enterocolitica cause enterocolitis, while Yersinia pestis is responsible for pneumonic, bubonic, and septicaemic plague. All three share an infection strategy that relies on a virulence factor arsenal to enable them to enter, adhere to, and colonise the host while evading host defences to avoid untimely clearance. Their arsenal includes a number of adhesins that allow the invading pathogens to establish a foothold in the host and to adhere to specific tissues later during infection. When the host innate immune system has been activated, all three pathogens produce a structure analogous to a hypodermic needle. In conjunction with the translocon, which forms a pore in the host membrane, the channel that is formed enables the transfer of six ‘effector’ proteins into the host cell cytoplasm. These proteins mimic host cell proteins but are more efficient than their native counterparts at modifying the host cell cytoskeleton, triggering the host cell suicide response. Such a sophisticated arsenal ensures that yersiniae maintain the upper hand despite the best efforts of the host to counteract the infecting pathogen. PMID:27347390
Kim, Ju Youn; Leader, Andrew; Stoller, Michelle L.; Coen, Donald M.; Wilson, Angus C.
2017-01-01
Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/δ-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors. PMID:28783105
Anderson, Fenja; Rother, Franziska; Rudolph, Kathrin; Prank, Ute; Binz, Anne; Hügel, Stefanie; Hartmann, Enno; Bader, Michael; Bauerfeind, Rudolf; Sodeik, Beate
2018-01-01
Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. PMID:29304174
Mekuchi, Miyuki; Asakura, Taiga; Sakata, Kenji; Yamaguchi, Tomofumi; Teruya, Kazuhisa; Kikuchi, Jun
2018-01-01
Aquaculture is currently a major source of fish and has the potential to become a major source of protein in the future. These demands require efficient aquaculture. The intestinal microbiota plays an integral role that benefits the host, providing nutrition and modulating the immune system. Although our understanding of microbiota in fish gut has increased, comprehensive studies examining fish microbiota and host metabolism remain limited. Here, we investigated the microbiota and host metabolism in the coral leopard grouper, which is traded in Asian markets as a superior fish and has begun to be produced via aquaculture. We initially examined the structural changes of the gut microbiota using next-generation sequencing and found that the composition of microbiota changed between fasting and feeding conditions. The dominant phyla were Proteobacteria in fasting and Firmicutes in feeding; interchanging the dominant bacteria required 12 hours. Moreover, microbiota diversity was higher under feeding conditions than under fasting conditions. Multivariate analysis revealed that Proteobacteria are the key bacteria in fasting and Firmicutes and Fusobacteria are the key bacteria in feeding. Subsequently, we estimated microbiota functional capacity. Microbiota functional structure was relatively stable throughout the experiment; however, individual function activity changed according to feeding conditions. Taken together, these findings indicate that the gut microbiota could be a key factor to understanding fish feeding conditions and play a role in interactions with host metabolism. In addition, the composition of microbiota in ambient seawater directly affects the fish; therefore, it is important to monitor the microbiota in rearing tanks and seawater circulating systems.
Kasper, Katherine J.; Zeppa, Joseph J.; Wakabayashi, Adrienne T.; Xu, Stacey X.; Mazzuca, Delfina M.; Welch, Ian; Baroja, Miren L.; Kotb, Malak; Cairns, Ewa; Cleary, P. Patrick; Haeryfar, S. M. Mansour; McCormick, John K.
2014-01-01
Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as ‘trademark’ virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC –II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms. PMID:24875883
Bhalla, Manmeet; Law, Daria; Dowd, Georgina C.
2017-01-01
ABSTRACT The bacterial pathogen Listeria monocytogenes causes foodborne illnesses resulting in gastroenteritis, meningitis, or abortion. Listeria induces its internalization into some human cells through interaction of the bacterial surface protein InlB with the host receptor tyrosine kinase Met. InlB-dependent entry requires localized polymerization of the host actin cytoskeleton. The signal transduction pathways that act downstream of Met to regulate actin filament assembly or other processes during Listeria uptake remain incompletely characterized. Here, we demonstrate important roles for the human serine/threonine kinases mTOR and protein kinase C-α (PKC-α) in InlB-dependent entry. Experiments involving RNA interference (RNAi) indicated that two multiprotein complexes containing mTOR, mTORC1 and mTORC2, are each needed for efficient internalization of Listeria into cells of the human cell line HeLa. InlB stimulated Met-dependent phosphorylation of mTORC1 or mTORC2 substrates, demonstrating activation of both mTOR-containing complexes. RNAi studies indicated that the mTORC1 effectors 4E-BP1 and hypoxia-inducible factor 1α (HIF-1α) and the mTORC2 substrate PKC-α each control Listeria uptake. Genetic or pharmacological inhibition of PKC-α reduced the internalization of Listeria and the accumulation of actin filaments that normally accompanies InlB-mediated entry. Collectively, our results identify mTOR and PKC-α to be host factors exploited by Listeria to promote infection. PKC-α controls Listeria entry, at least in part, by regulating the actin cytoskeleton downstream of the Met receptor. PMID:28461391
Liana habitat and host preferences in northern temperate forests
Leicht-Young, S. A.; Pavlovic, N.B.; Frohnapple, K.J.; Grundel, R.
2010-01-01
Lianas and other climbers are important ecological and structural components of forest communities. Like other plants, their abundance in a given habitat depends on a variety of factors, such as light, soil moisture and nutrients. However, since lianas require external support, host tree characteristics also influence their distribution. Lianas are conspicuous life forms in tropical regions, but in temperate areas, where they are less prominent, little is known about factors that control their distributions in these forests. We surveyed the climbing plant species in 20 mature (100 years and greater) forested habitats in the Midwest USA at a variety of levels from simple presence/absence, to ground layer abundances, to those species that had ascended trees. We also examined attributes of the tree species with climbers attached to them. Using cluster analysis, we distinguished five different tree communities in our survey locations. We determined that 25% of the trees we surveyed had one or more lianas attached to it, with Parthenocissus quinquefolia (Virginia creeper) the most common climbing species encountered. Canopy cover and soil attributes both influenced climber species presence/absence and ground layer climber abundance. The proportion of liana species of a given climbing type (roots, stem twiner, tendril climber) was significantly related to the DBH of the host tree, with more root climbers and fewer stem and tendril climbers on large trees. In general, the DBH of climbing lianas had a significant positive relationship to the DBH of the host tree; however this varied by the identity of the liana and the tree species. The greater the DBH of the host tree, the higher the probability that it was colonized by one or more lianas, with tree species such as Pinus banksiana (jack pine) and Quercus alba (white oak) being more susceptible to liana colonization than others. Finally, some liana species such as Celastrus scandens (American bittersweet) showed a preference for certain tree species (i.e., P. banksiana) as hosts. The information obtained about the relationship between the tree and climber community in this study provides insight into some of the factors that influence liana distributions in understudied temperate forest habitats and how lianas contribute to the structure of these mature forests. In addition, these data can provide a point of comparison to other liana communities in both temperate and tropical regions.
Two pore channels control Ebolavirus host cell entry and are drug targets for disease treatment
Sakurai, Yasuteru; Kolokoltsov, Andrey A.; Chen, Cheng-Chang; Tidwell, Michael W.; Bauta, William E.; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A.
2015-01-01
Ebolavirus causes sporadic outbreaks of lethal hemorrhagic fever in humans with no currently approved therapy. Cells take up Ebolavirus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebolavirus entry into host cells requires the endosomal calcium channels called two pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs or small molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule we tested, inhibited infection of human macrophages, the primary target of Ebolavirus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebolavirus infection and may be effective targets for antiviral therapy. PMID:25722412
Dissection of affinity captured LINE-1 macromolecular complexes
Mita, Paolo; Jiang, Hua; Adney, Emily M; Wudzinska, Aleksandra; Badri, Sana; Ischenko, Dmitry; Eng, George; Burns, Kathleen H; Fenyö, David; Chait, Brian T; Alexeev, Dmitry; Rout, Michael P; Boeke, Jef D
2018-01-01
Long Interspersed Nuclear Element-1 (LINE-1, L1) is a mobile genetic element active in human genomes. L1-encoded ORF1 and ORF2 proteins bind L1 RNAs, forming ribonucleoproteins (RNPs). These RNPs interact with diverse host proteins, some repressive and others required for the L1 lifecycle. Using differential affinity purifications, quantitative mass spectrometry, and next generation RNA sequencing, we have characterized the proteins and nucleic acids associated with distinctive, enzymatically active L1 macromolecular complexes. Among them, we describe a cytoplasmic intermediate that we hypothesize to be the canonical ORF1p/ORF2p/L1-RNA-containing RNP, and we describe a nuclear population containing ORF2p, but lacking ORF1p, which likely contains host factors participating in target-primed reverse transcription. PMID:29309035
Murrell, Ben; Vollbrecht, Thomas; Guatelli, John; Wertheim, Joel O
2016-09-15
Molecular evolutionary arms races between viruses and their hosts are important drivers of adaptation. These Red Queen dynamics have been frequently observed in primate retroviruses and their antagonists, host restriction factor genes, such as APOBEC3F/G, TRIM5-α, SAMHD1, and BST-2. Host restriction factors have experienced some of the most intense and pervasive adaptive evolution documented in primates. Recently, two novel host factors, SERINC3 and SERINC5, were identified as the targets of HIV-1 Nef, a protein crucial for the optimal infectivity of virus particles. Here, we compared the evolutionary fingerprints of SERINC3 and SERINC5 to those of other primate restriction factors and to a set of other genes with diverse functions. SERINC genes evolved in a manner distinct from the canonical arms race dynamics seen in the other restriction factors. Despite their antiviral activity against HIV-1 and other retroviruses, SERINC3 and SERINC5 have a relatively uneventful evolutionary history in primates. Restriction factors are host proteins that block viral infection and replication. Many viruses, like HIV-1 and related retroviruses, evolved accessory proteins to counteract these restriction factors. The importance of these interactions is evidenced by the intense adaptive selection pressures that dominate the evolutionary histories of both the host and viral genes involved in this so-called arms race. The dynamics of these arms races can point to mechanisms by which these viral infections can be prevented. Two human genes, SERINC3 and SERINC5, were recently identified as targets of an HIV-1 accessory protein important for viral infectivity. Unexpectedly, we found that these SERINC genes, unlike other host restriction factor genes, show no evidence of a recent evolutionary arms race with viral pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
R Factor-Controlled Restriction and Modification of Deoxyribonucleic Acid: Restriction Mutants
Yoshimori, Robert; Roulland-Dussoix, Daisy; Boyer, Herbert W.
1972-01-01
Restriction mutants of two different R factor-controlled host specificities (RI and RII) were isolated. All of the restriction mutants examined had a normal modification phenotype. No complementation was observed between the RI and RII host specificities. It is concluded that for each host specificity no protein subunit is shared by the restriction endonuclease and modification methylase. PMID:4565538
Staphylococcus aureus Responds to the Central Metabolite Pyruvate To Regulate Virulence.
Harper, Lamia; Balasubramanian, Divya; Ohneck, Elizabeth A; Sause, William E; Chapman, Jessica; Mejia-Sosa, Bryan; Lhakhang, Tenzin; Heguy, Adriana; Tsirigos, Aristotelis; Ueberheide, Beatrix; Boyd, Jeffrey M; Lun, Desmond S; Torres, Victor J
2018-01-23
Staphylococcus aureus is a versatile bacterial pathogen that can cause significant disease burden and mortality. Like other pathogens, S. aureus must adapt to its environment to produce virulence factors to survive the immune responses evoked by infection. Despite the importance of environmental signals for S. aureus pathogenicity, only a limited number of these signals have been investigated in detail for their ability to modulate virulence. Here we show that pyruvate, a central metabolite, causes alterations in the overall metabolic flux of S. aureus and enhances its pathogenicity. We demonstrate that pyruvate induces the production of virulence factors such as the pore-forming leucocidins and that this induction results in increased virulence of community-acquired methicillin-resistant S. aureus (CA-MRSA) clone USA300. Specifically, we show that an efficient "pyruvate response" requires the activation of S. aureus master regulators AgrAC and SaeRS as well as the ArlRS two-component system. Altogether, our report further establishes a strong relationship between metabolism and virulence and identifies pyruvate as a novel regulatory signal for the coordination of the S. aureus virulon through intricate regulatory networks. IMPORTANCE Delineation of the influence of host-derived small molecules on the makeup of human pathogens is a growing field in understanding host-pathogen interactions. S. aureus is a prominent pathogen that colonizes up to one-third of the human population and can cause serious infections that result in mortality in ~15% of cases. Here, we show that pyruvate, a key nutrient and central metabolite, causes global changes to the metabolic flux of S. aureus and activates regulatory networks that allow significant increases in the production of leucocidins. These and other virulence factors are critical for S. aureus to infect diverse host niches, initiate infections, and effectively subvert host immune responses. Understanding how environmental signals, particularly ones that are essential to and prominent in the human host, affect virulence will allow us to better understand pathogenicity and consider more-targeted approaches to tackling the current S. aureus epidemic. Copyright © 2018 Harper et al.
TRIM41-Mediated Ubiquitination of Nucleoprotein Limits Influenza A Virus Infection.
Patil, Girish; Zhao, Mengmeng; Song, Kun; Hao, Wenzhuo; Bouchereau, Daniel; Wang, Lingyan; Li, Shitao
2018-06-13
Influenza A virus (IAV) is a highly transmissible respiratory pathogen and a major cause of morbidity and mortality around the world. Nucleoprotein (NP) is an abundant IAV protein essential for multiple steps of viral life cycle. Our recent proteomic study of the IAV-host interaction network found that the tripartite motif containing 41 (TRIM41), a ubiquitin E3 ligase, interacted with NP. However, the role of TRIM41 in IAV infection is unknown. Here, we report that TRIM41 interacts with NP through its SPRY domain. Furthermore, TRIM41 is constitutively expressed in lung epithelial cells and overexpression of TRIM41 inhibits IAV infection. Conversely, RNA interference (RNAi) and knockout of TRIM41 increase host susceptibility to IAV infection. As a ubiquitin E3 ligase, TRIM41 ubiquitinates NP in vitro and in cells. The TRIM41 mutant lacking E3 ligase activity fails to inhibit IAV infection, suggesting that the E3 ligase activity is indispensable for TRIM41 antiviral function. Mechanistic analysis further revealed that the polyubiquitination leads to NP protein degradation and viral inhibition. Taken together, TRIM41 is a constitutively expressed intrinsic IAV restriction factor that targets NP for ubiquitination and protein degradation. IMPORTANCE Influenza control strategies rely on annual immunization and require frequent updates of the vaccine, which are not always a foolproof process. Furthermore, the current antivirals are also losing effectiveness as new viral strains are often refractory to conventional treatments. Thus, there is an urgent need to find new antiviral mechanisms and develop therapeutic drugs based on these mechanisms. Targeting the virus-host interface is an emerging new strategy because host factors controlling viral replication activity will be ideal candidates and cellular proteins are less likely to mutate under drug-mediated selective pressure. Here, we show that the ubiquitin E3 ligase TRIM41 is an intrinsic host restriction factor to IAV. TRIM41 directly binds the viral nucleoprotein and targets it for ubiquitination and proteasomal degradation, thereby limiting viral infection. Exploitation of this natural defense pathway may open new avenues to develop influenza antivirals. Copyright © 2018 American Society for Microbiology.
Yan, Jing; Charles, Julia F
2018-04-01
Microbiota and their hosts have coevolved for millions of years. Microbiota are not only critical for optimal development of the host under normal physiological growth, but also important to ensure proper host development during nutrient scarcity or disease conditions. A large body of research has begun to detail the mechanism(s) of how microbiota cooperate with the host to maintain optimal health status. One crucial host pathway recently demonstrated to be modulated by microbiota is that of the growth factor insulin like growth factor 1 (IGF-1). Gut microbiota are capable of dynamically modulating circulating IGF-1 in the host, with the majority of data suggesting that microbiota induce host IGF-1 synthesis to influence growth. Microbiota-derived metabolites such as short chain fatty acids are sufficient to induce IGF-1. Whether microbiota induction of IGF-1 is mediated by the difference in growth hormone expression or the host sensitivity to growth hormone is still under investigation. This review summarizes the current data detailing the interaction between gut microbiota, IGF-1 and host development.
Donadon, Matteo; Lleo, Ana; Di Tommaso, Luca; Soldani, Cristiana; Franceschini, Barbara; Roncalli, Massimo; Torzilli, Guido
2018-01-01
The determinants of prognosis in patients with colorectal liver metastases (CLM) have been traditionally searched among the tumoral factors, either of the primary colorectal tumor or of the CLM. While many different scoring systems have been developed based on those clinic-pathological factors with disparate results, there has been the introduction of genetic biological markers that added a theranostic perspective. More recently, other important elements, such as those factors related to the host immune system, have been proposed as determinants of prognosis of CLM patients. In the present work, we review the current prognostic factors of CLM patients as well as the burgeoning shifting paradigm of prognostication that relies on the host immune system. PMID:29892573
Host Factors Affect the Outcome of Arthroscopic Lavage Treatment of Septic Arthritis of the Knee.
Kang, Taebyeong; Lee, Jin Kyu
2018-03-01
The purpose of this study was to determine the prognostic factors related to the outcome of lavage surgery in patients with septic arthritis of the knee. A total of 55 patients with acute septic arthritis who underwent arthroscopic lavage were enrolled in the study. Host factors, including age, medical comorbidities, and medication use, were evaluated according to the Musculoskeletal Infection Society staging system, and patients were then stratified into 3 types: type A, no compromising factors; type B, 1 to 2 compromising factors; and type C, more than 2 compromising factors. Routes of infection were classified. Causative organisms were classified as gram positive, gram negative, mixed, or culture negative. Multivariable analysis confirmed that type C hosts showed more than 16 times the risk for failure of a single arthroscopic lavage than type A hosts. Type B hosts showed no significant differences from either type A or type C hosts. Patients with gram-positive cultures had more than 13 times the risk for failure than patients who were culture negative. Patients with gram-negative and mixed cultures showed no significant differences from the other groups. The sex of the patient and the route of infection were not related to the success of a single arthroscopic lavage surgery. Patients in poor health (ie, very medically ill) and with gram-positive cultures should be counselled regarding potential failure after a single arthroscopic debridement procedure. [Orthopedics. 2018; 41(2):e184-e188.]. Copyright 2018, SLACK Incorporated.
Novel host restriction factors implicated in HIV-1 replication.
Ghimire, Dibya; Rai, Madhu; Gaur, Ritu
2018-04-01
Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.
Microcomputer software development facilities
NASA Technical Reports Server (NTRS)
Gorman, J. S.; Mathiasen, C.
1980-01-01
A more efficient and cost effective method for developing microcomputer software is to utilize a host computer with high-speed peripheral support. Application programs such as cross assemblers, loaders, and simulators are implemented in the host computer for each of the microcomputers for which software development is a requirement. The host computer is configured to operate in a time share mode for multiusers. The remote terminals, printers, and down loading capabilities provided are based on user requirements. With this configuration a user, either local or remote, can use the host computer for microcomputer software development. Once the software is developed (through the code and modular debug stage) it can be downloaded to the development system or emulator in a test area where hardware/software integration functions can proceed. The microcomputer software program sources reside in the host computer and can be edited, assembled, loaded, and then downloaded as required until the software development project has been completed.
Martín-Hernández, Raquel; Botías, Cristina; Barrios, Laura; Martínez-Salvador, Amparo; Meana, Aránzazu; Mayack, Christopher; Higes, Mariano
2011-09-01
Nosema ceranae is a relatively new and widespread parasite of the western honeybee Apis mellifera that provokes a new form of nosemosis. In comparison to Nosema apis, which has been infecting the honeybee for much longer, N. ceranae seems to have co-evolved less with this host, causing a more virulent disease. Given that N. apis and N. ceranae are obligate intracellular microsporidian parasites, needing host energy to reproduce, energetic stress may be an important factor contributing to the increased virulence observed. Through feeding experiments on caged bees, we show that both mortality and sugar syrup consumption were higher in N. ceranae-infected bees than in N. apis-infected and control bees. The mortality and sugar syrup consumption are also higher in N. apis-infected bees than in controls, but are less than in N. ceranae-infected bees. With both microsporidia, mortality and sugar syrup consumption increased in function of the increasing spore counts administered for infection. The differences in energetic requirements between both Nosema spp. confirm that their metabolic patterns are not the same, which may depend critically on host-parasite interactions and, ultimately, on host pathology. The repercussions of this increased energetic stress may even explain the changes in host behavior due to starvation, lack of thermoregulatory capacity, or higher rates of trophallaxis, which might enhance transmission and bee death.
Past and future perspectives on mathematical models of tick-borne pathogens.
Norman, R A; Worton, A J; Gilbert, L
2016-06-01
Ticks are vectors of pathogens which are important both with respect to human health and economically. They have a complex life cycle requiring several blood meals throughout their life. These blood meals take place on different individual hosts and potentially on different host species. Their life cycle is also dependent on environmental conditions such as the temperature and habitat type. Mathematical models have been used for the more than 30 years to help us understand how tick dynamics are dependent on these environmental factors and host availability. In this paper, we review models of tick dynamics and summarize the main results. This summary is split into two parts, one which looks at tick dynamics and one which looks at tick-borne pathogens. In general, the models of tick dynamics are used to determine when the peak in tick densities is likely to occur in the year and how that changes with environmental conditions. The models of tick-borne pathogens focus more on the conditions under which the pathogen can persist and how host population densities might be manipulated to control these pathogens. In the final section of the paper, we identify gaps in the current knowledge and future modelling approaches. These include spatial models linked to environmental information and Geographic Information System maps, and development of new modelling techniques which model tick densities per host more explicitly.
Sarcocystosis of animals and humans
USDA-ARS?s Scientific Manuscript database
Species of Sarcocystosis, single-celled protozoan parasites in the Phylum Apicomplexa, are widespread in warm-blooded animals. Completion of the life cycle requires two host species: an intermediate (or prey) host and a definitive (or predator) host. Hosts can harbor more than one species of Sarcocy...
Zhukov, V A; Shishkina, L N; Safatov, A S; Sergeev, A A; P'iankov, O V; Petrishchenko, V A; Zaĭtsev, B N; Toporkov, V S; Sergeev, A N; Nesvizhskiĭ, Iu V; Vorob'ev, A A
2010-01-01
The paper presents results of testing a modified algorithm for predicting virus ID50 values in a host of interest by extrapolation from a model host taking into account immune neutralizing factors and thermal inactivation of the virus. The method was tested for A/Aichi/2/68 influenza virus in SPF Wistar rats, SPF CD-1 mice and conventional ICR mice. Each species was used as a host of interest while the other two served as model hosts. Primary lung and trachea cells and secretory factors of the rats' airway epithelium were used to measure parameters needed for the purpose of prediction. Predicted ID50 values were not significantly different (p = 0.05) from those experimentally measured in vivo. The study was supported by ISTC/DARPA Agreement 450p.
Burns, Adam R; Miller, Elizabeth; Agarwal, Meghna; Rolig, Annah S; Milligan-Myhre, Kathryn; Seredick, Steve; Guillemin, Karen; Bohannan, Brendan J M
2017-10-17
The diverse collections of microorganisms associated with humans and other animals, collectively referred to as their "microbiome," are critical for host health, but the mechanisms that govern their assembly are poorly understood. This has made it difficult to identify consistent host factors that explain variation in microbiomes across hosts, despite large-scale sampling efforts. While ecological theory predicts that the movement, or dispersal, of individuals can have profound and predictable consequences on community assembly, its role in the assembly of animal-associated microbiomes remains underexplored. Here, we show that dispersal of microorganisms among hosts can contribute substantially to microbiome variation, and is able to overwhelm the effects of individual host factors, in an experimental test of ecological theory. We manipulated dispersal among wild-type and immune-deficient myd88 knockout zebrafish and observed that interhost dispersal had a large effect on the diversity and composition of intestinal microbiomes. Interhost dispersal was strong enough to overwhelm the effects of host factors, largely eliminating differences between wild-type and immune-deficient hosts, regardless of whether dispersal occurred within or between genotypes, suggesting dispersal can independently alter the ecology of microbiomes. Our observations are consistent with a predictive model that assumes metacommunity dynamics and are likely mediated by dispersal-related microbial traits. These results illustrate the importance of microbial dispersal to animal microbiomes and motivate its integration into the study of host-microbe systems.
Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.
Pentland, Ieisha; Parish, Joanna L
2015-07-06
All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.
Rothchild, Alissa C; Stowell, Britni; Goyal, Girija; Nunes-Alves, Cláudio; Yang, Qianting; Papavinasasundaram, Kadamba; Sassetti, Christopher M; Dranoff, Glenn; Chen, Xinchun; Lee, Jinhee; Behar, Samuel M
2017-10-24
Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF -/- ) are highly susceptible to infection with Mycobacterium tuberculosis , and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4 + T cells as the infection progresses. M. tuberculosis -specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis IMPORTANCE Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune response to Mycobacterium tuberculosis While gamma interferon (IFN-γ) is a key effector function of T cells during infection, a failed phase IIb clinical trial and other studies have revealed that IFN-γ production alone is not sufficient to control M. tuberculosis In this study, we demonstrate that CD4 + , CD8 + , and nonconventional T cells produce GM-CSF during Mycobacterium tuberculosis infection in mice and in the peripheral blood of infected humans. Under conditions where other sources of GM-CSF are absent, T cell production of GM-CSF is protective and is required for control of infection. GM-CSF activation of macrophages to limit bacterial growth requires host expression of the transcription factor PPARγ. The identification of GM-CSF production as a T cell effector function may inform future host-directed therapy or vaccine designs. Copyright © 2017 Rothchild et al.
A cell–cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa
Chatterjee, Subhadeep; Wistrom, Christina; Lindow, Steven E.
2008-01-01
Cell–cell signaling in Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, mediated by a fatty acid Diffusible Signaling Factor (DSF), is required to colonize insect vectors and to suppress virulence to grape. Here, we show that a hybrid two-component regulatory protein RpfC is involved in negative regulation of DSF synthesis by RpfF in X. fastidiosa. X. fastidiosa rpfC mutants hyperexpress rpfF and overproduce DSF and are deficient in virulence and movement in the xylem vessels of grape. The expression of the genes encoding the adhesins FimA, HxfA, and HxfB is much higher in rpfC mutants, which also exhibit a hyperattachment phenotype in culture that is associated with their inability to migrate in xylem vessels and cause disease. rpfF mutants deficient in DSF production have the opposite phenotypes for all of these traits. RpfC is also involved in the regulation of other signaling components including rpfG, rpfB, a GGDEF domain protein that may be involved in intracellular signaling by modulating the levels of cyclic-di-GMP, and the virulence factors tolC and pglA required for disease. rpfC mutants are able to colonize the mouthparts of insect vectors and wild-type strains but are not transmitted as efficiently to new host plants, apparently because of their high levels of adhesiveness. Because of the conflicting contributions of adhesiveness and other traits to movement within plants and vectoring to new host plants, X. fastidiosa apparently coordinates these traits in a population-size-dependent fashion involving accumulation of DSF. PMID:18268318
Chatterjee, Subhadeep; Wistrom, Christina; Lindow, Steven E
2008-02-19
Cell-cell signaling in Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, mediated by a fatty acid Diffusible Signaling Factor (DSF), is required to colonize insect vectors and to suppress virulence to grape. Here, we show that a hybrid two-component regulatory protein RpfC is involved in negative regulation of DSF synthesis by RpfF in X. fastidiosa. X. fastidiosa rpfC mutants hyperexpress rpfF and overproduce DSF and are deficient in virulence and movement in the xylem vessels of grape. The expression of the genes encoding the adhesins FimA, HxfA, and HxfB is much higher in rpfC mutants, which also exhibit a hyperattachment phenotype in culture that is associated with their inability to migrate in xylem vessels and cause disease. rpfF mutants deficient in DSF production have the opposite phenotypes for all of these traits. RpfC is also involved in the regulation of other signaling components including rpfG, rpfB, a GGDEF domain protein that may be involved in intracellular signaling by modulating the levels of cyclic-di-GMP, and the virulence factors tolC and pglA required for disease. rpfC mutants are able to colonize the mouthparts of insect vectors and wild-type strains but are not transmitted as efficiently to new host plants, apparently because of their high levels of adhesiveness. Because of the conflicting contributions of adhesiveness and other traits to movement within plants and vectoring to new host plants, X. fastidiosa apparently coordinates these traits in a population-size-dependent fashion involving accumulation of DSF.
Nuclear Factor-Kappa B Activity in the Host-Tumor Microenvironment of Ovarian Cancer
2012-08-01
analysis was performed in the Vanderbilt University Small Animal Imaging Core using the Xenogen IVIS 200 bioluminescent image system with Living...progression through systemic NF-B inhibition is that anti-tumor cytotoxic macrophages 9 may require NF-B signaling for normal function, and NF...Shin, L Klampfer, LH Augenlicht, R Perez- Soler , JM Mariadason. PIK3CA/PTEN expression status predicts response of colon cancer cells to the EGFR
Kounatidis, Ilias; Ames, Lauren; Mistry, Rupal; Ho, Hsueh-Lui; Haynes, Ken; Ligoxygakis, Petros
2018-05-04
Candida glabrata ( C. glabrata ) forms part of the normal human gut microbiota but can cause life-threatening invasive infections in immune-compromised individuals. C. glabrata displays high resistance to common azole antifungals, which necessitates new treatments. In this investigation, we identified five C. glabrata deletion mutants ( ∆ada2 , ∆bas1 , ∆ hir3, ∆ino2 and ∆met31 ) from a library of 196 transcription factor mutants that were unable to grow and activate an immune response in Drosophila larvae. This highlighted the importance of these transcription factors in C. glabrata infectivity. Further ex vivo investigation into these mutants revealed the requirement of C. glabrata ADA2 for oxidative stress tolerance. We confirmed this observation in vivo whereby growth of the C. glabrata Δada2 strain was permitted only in flies with suppressed production of reactive oxygen species (ROS). Conversely, overexpression of ADA2 promoted C. glabrata replication in infected wild type larvae resulting in larval killing. We propose that ADA2 orchestrates the response of C. glabrata against ROS-mediated immune defenses during infection. With the need to find alternative antifungal treatment for C. glabrata infections, genes required for survival in the host environment, such as ADA2 , provide promising potential targets. Copyright © 2018 Kounatidis et al.
McCaffrey, Keegan; Johnson, Pieter T. J.
2017-01-01
Decades of community ecology research have highlighted the importance of resource availability, habitat heterogeneity, and colonization opportunities in driving biodiversity. Less clear, however, is whether a similar suite of factors explains the diversity of symbionts. Here, we used a hierarchical dataset involving 12,712 freshwater snail hosts representing five species to test the relative importance of potential factors in driving symbiont richness. Specifically, we used model selection to assess the explanatory power of variables related to host species identity, resource availability (average body size, host density), ecological heterogeneity (richness of hosts and other taxa), and colonization opportunities (wetland size and amount of neighboring wetland area) on symbiont richness in 146 snail host populations in California, USA. We encountered a total of 24 taxa of symbionts, including both obligatory parasites such as digenetic trematodes as well as more commensal, mutualistic, or opportunistic groups such as aquatic insect larvae, annelids, and leeches. After validating richness estimates per host population using species accumulative curves, we detected positive effects on symbiont richness from host body size, total richness of the aquatic community, and colonization opportunities. Neither snail density nor the richness of snail species accounted for significant variation in symbiont diversity. Host species identity also affected symbiont richness, with higher gamma and average alpha diversity among more common host species and with higher local abundances. These findings highlight the importance of multiple, concurrent factors in driving symbiont richness that extend beyond epidemiological measures of host abundance or host diversity alone. PMID:28039528
Control of autogenous activation of Herbaspirillum seropedicae nifA promoter by the IHF protein.
Wassem, Roseli; Pedrosa, Fábio O; Yates, Marshall G; Rego, Fabiane G M; Chubatsu, Leda S; Rigo, Liu U; Souza, Emanuel M
2002-07-02
Analysis of the expression of the Herbaspirillum seropedicae nifA promoter in Escherichia coli and Herbaspirillum seropedicae, showed that nifA expression is primarily dependent on NtrC but also required NifA for maximal expression under nitrogen-fixing conditions. Deletion of the IHF (integration host factor)-binding site produced a promoter with two-fold higher activity than the native promoter in the H. seropedicae wild-type strain but not in a nifA strain, indicating that IHF controls NifA auto-activation. IHF is apparently required to prevent overexpression of the NifA protein via auto-activation under nitrogen-fixing conditions in H. seropedicae.
Analysis of Ebola Virus Entry Into Macrophages
Dahlmann, Franziska; Biedenkopf, Nadine; Babler, Anne; Jahnen-Dechent, Willi; Karsten, Christina B.; Gnirß, Kerstin; Schneider, Heike; Wrensch, Florian; O'Callaghan, Christopher A.; Bertram, Stephanie; Herrler, Georg; Becker, Stephan; Pöhlmann, Stefan; Hofmann-Winkler, Heike
2015-01-01
Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)–driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells. PMID:25877552
Reverter, M; Cribb, T H; Cutmore, S C; Bray, R A; Parravicini, V; Sasal, P
2017-07-01
Geographical distribution of parasite species can provide insights into the evolution and diversity of parasitic communities. Biogeography of marine parasites is poorly known, especially because it requires an understanding of host-parasite interactions, information that is rare, especially over large spatial scales. Here, we have studied the biogeographical patterns of dactylogyrid parasites of chaetodontids, one of the most well-studied fish families, in the tropical Indo-west Pacific region. Dactylogyrid parasites were collected from gills of 34 butterflyfish species (n=560) at nine localities within an approximate area of 62millionkm 2 . Thirteen dactylogyrid species were identified, with richness ranging from 6 to 12 species at individual localities. Most dactylogyrid communities were dominated by Haliotrema angelopterum or Haliotrema aurigae, for which relative abundance was negatively correlated (ρ=-0.59). Parasite richness and diversity were highest in French Polynesia and the Great Barrier Reef (Australia) and lowest in Palau. Three biogeographic regions were identified based on dactylogyrid dissimilarities: French Polynesia, characterised by the dominance of H. angelopterum, the western Pacific region dominated by H. aurigae, and Ningaloo Reef (Australia), dominated by Euryhaliotrema berenguelae. Structure of host assemblages was the main factor explaining the dissimilarity (turnover and nestedness components of the Bray-Curtis dissimilarity and overall Bray-Curtis dissimilarity) of parasite communities between localities, while environment was only significant in the turnover of parasite communities and overall dissimilarity. Spatial structure of localities explained only 10% of the turnover of parasite communities. The interaction of the three factors (host assemblages, environment and spatial structure), however, explained the highest amounts of variance of the dactylogyrid communities, indicating a strong colinearity between the factors. Our findings show that spatial arrangement of chaetodontid dactylogyrids in the tropical Indo-west Pacific is primarily characterised by the turnover of the main Haliotrema spp., which is mainly explained by the structure of host assemblages. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Stillwell, R Craig; Wallin, William G; Hitchcock, Lisa J; Fox, Charles W
2007-08-01
Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35 degrees C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.
Berg, Rigmor C.; Denison, Eva
2013-01-01
Understanding the forces underpinning female genital mutilation/cutting (FGM/C) is a necessary first step to prevent the continuation of a practice that is associated with health complications and human rights violations. To this end, a systematic review of 21 studies was conducted. Based on this review, the authors reveal six key factors that underpin FGM/C: cultural tradition, sexual morals, marriageability, religion, health benefits, and male sexual enjoyment. There were four key factors perceived to hinder FGM/C: health consequences, it is not a religious requirement, it is illegal, and the host society discourse rejects FGM/C. The results show that FGM/C appears to be a tradition in transition. PMID:23489149
ROS is Required for Alternatively Activated Macrophage Differentiation | Center for Cancer Research
Macrophages are key regulators in host inflammatory responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are responsible for inducing macrophage differentiation from monocytes. GM-CSF or M-CSF-differentiated macrophages can be further differentiated, or polarized, to more specialized cells. Classically activated, or M1, macrophages have immune-stimulatory properties and cytotoxic function against tumor cells. Alternatively activated, or M2, macrophages have low cytotoxic function but high tissue-remodeling activity. There are also M2-like cells called tumor-associated macrophages (TAMs) that are responsible for many tumor-promoting activities. Blocking the function of TAMs inhibits tumorigenesis.
Olleros, Maria L; Chavez-Galan, Leslie; Segueni, Noria; Bourigault, Marie L; Vesin, Dominique; Kruglov, Andrey A; Drutskaya, Marina S; Bisig, Ruth; Ehlers, Stefan; Aly, Sahar; Walter, Kerstin; Kuprash, Dmitry V; Chouchkova, Miliana; Kozlov, Sergei V; Erard, François; Ryffel, Bernard; Quesniaux, Valérie F J; Nedospasov, Sergei A; Garcia, Irene
2015-09-01
Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Bacterial effectors target the plant cell nucleus to subvert host transcription.
Canonne, Joanne; Rivas, Susana
2012-02-01
In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells.
Ferrando, Maria Laura; Schultsz, Constance
2016-01-01
ABSTRACT Streptococcus suis (SS) is a zoonotic pathogen that can cause systemic infection in pigs and humans. The ingestion of contaminated pig meat is a well-established risk factor for zoonotic S. suis disease. In our studies, we provide experimental evidence that S. suis is capable to translocate across the host gastro-intestinal tract (GIT) using in vivo and in vitro models. Hence, S. suis should be considered an emerging foodborne pathogen. In this addendum, we give an overview of the complex interactions between S. suis and host-intestinal mucosa which depends on the host origin, the serotype and genotype of S. suis, as well as the presence and expression of virulence factors involved in host-pathogen interaction. Finally, we propose a hypothetical model of S. suis interaction with the host-GIT taking in account differences in conditions between the porcine and human host. PMID:26900998
How effectors promote beneficial interactions.
Miwa, Hiroki; Okazaki, Shin
2017-08-01
Beneficial microbes such as rhizobia possess effector proteins that are secreted into the host cytoplasm where they modulate host-signaling pathways. Among these effectors, type 3 secreted effectors (T3Es) of rhizobia play roles in promoting nitrogen-fixing nodule symbiosis, suppressing host defenses and directly activating symbiosis-related processes. Rhizobia use the same strategy as pathogenic bacteria to suppress host defenses such as targeting the MAPK cascade. In addition, rhizobial T3E can promote root nodule symbiosis by directly activating Nod factor signaling, which bypasses Nod factor perception. The various strategies employed by beneficial microbes to promote infection and maintain viability in the host are therefore crucial for plant endosymbiosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Le-Trilling, Vu Thuy Khanh; Wohlgemuth, Kerstin; Rückborn, Meike U; Jagnjic, Andreja; Maaßen, Fabienne; Timmer, Lejla; Katschinski, Benjamin; Trilling, Mirko
2018-05-09
Pathogen encounter induces interferons which signal via Janus kinases and STAT transcription factors to establish an antiviral state. However, host and pathogens are situated in a continuous arms race which shapes host evolution towards optimized immune responses and the pathogens towards enhanced immune evasive properties.Mouse cytomegalovirus (MCMV) counteracts interferon responses by pM27-mediated degradation of STAT2 which directly affects the signaling of type I as well as type III interferons. Using MCMV mutants lacking M27 and mice lacking STAT2, we studied the opposing relationship between antiviral activities and viral antagonism in a natural host-pathogen pair in vitro and in vivo In contrast to wt-MCMV, ΔM27-MCMV was efficiently cleared from all organs within a few days in BALB/c, C57BL/6, and 129 mice, highlighting the general importance of STAT2 antagonism for MCMV replication. Despite this effective and relevant STAT2 antagonism, wt and STAT2-deficient mice exhibited fundamentally different susceptibilities to MCMV infections. MCMV replication was increased in all assessed organs (e.g. liver, spleen, lungs, and salivary glands) of STAT2-deficient mice, resulting in mortality during the first week after infection.Taken together, our study reveals the importance of cytomegaloviral interferon antagonism for viral replication as well as a pivotal role of the remaining STAT2 activity for host survival. This mutual influence establishes a stable evolutionary stand-off situation with fatal consequences when the equilibrium is disturbed. IMPORTANCE The host limits viral replication by interferons which signal via STAT proteins. Several viruses evolved antagonists targeting STATs to antagonize IFNs (e.g. cytomegaloviruses, Zika virus, Dengue virus, and several paramyxoviruses). We analyzed infections of mouse CMV expressing or lacking the STAT2 antagonist pM27 in STAT2-deficient and control mice to evaluate their importance for host and virus in vitro and in vivo The inability to counteract STAT2 directly translates into exaggerated IFN susceptibility in vitro and pronounced attenuation in vivo Thus, the antiviral activity mediated by IFNs via STAT2-dependent signaling drove the development of a potent MCMV-encoded STAT2 antagonist which became indispensable for efficient virus replication and spread to organs required for dissemination. Despite this clear impact of viral STAT2 antagonism, the host critically required the remaining STAT2 activity to prevent overt disease and mortality upon MCMV infection. Our findings highlight a remarkably delicate balance between host and virus. Copyright © 2018 Le-Trilling et al.
Alam, Faraz M.; Turner, Claire E.; Smith, Ken; Wiles, Siouxsie; Sriskandan, Shiranee
2013-01-01
Streptococcus pyogenes is a leading cause of pharyngeal infection, with an estimated 616 million cases per year. The human nasopharynx represents the major reservoir for all S. pyogenes infection, including severe invasive disease. To investigate bacterial and host factors that influence S. pyogenes infection, we have devised an improved murine model of nasopharyngeal colonization, with an optimized dosing volume to avoid fulminant infections and a sensitive host strain. In addition we have utilized a refined technique for longitudinal monitoring of bacterial burden that is non-invasive thereby reducing the numbers of animals required. The model was used to demonstrate that the two component regulatory system, CovR/S, is required for optimum infection and transmission from the nasopharynx. There is a fitness cost conferred by covR/S mutation that is specific to the nasopharynx. This may explain why S. pyogenes with altered covR/S have not become prevalent in community infections despite possessing a selective advantage in invasive infection. PMID:23637876
Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges
Selin, Carrie; de Kievit, Teresa R.; Belmonte, Mark F.; Fernando, W. G. Dilantha
2016-01-01
Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as “effectors” is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function. PMID:27199930
Barriers to a cure for HIV in women
Gianella, Sara; Tsibris, Athe; Barr, Liz; Godfrey, Catherine
2016-01-01
Introduction Distinct biological factors exist that affect the natural history of HIV and the host immune response between women and men. These differences must be addressed to permit the optimal design of effective HIV eradication strategies for much of the HIV-positive population. Methods and results Here, we review the literature on sex-based differences in HIV pathogenesis and natural history in tissues and anatomic compartments, HIV latency and transcriptional activity, and host immunity including the role of sex hormones. We then outline the potential effects of these differences on HIV persistence, and on the safety and efficacy of HIV eradication and curative interventions. Finally, we discuss the next steps necessary to elucidate these factors to achieve a cure for HIV, taking in account the complex ethical issues and the regulatory landscape in the hopes of stimulating further research and awareness in these areas. Conclusions Targeted enrolment of women in clinical trials and careful sex-based analysis will be crucial to gain further insights into sex-based differences in HIV persistence and to design sex-specific approaches to HIV eradication, if required. PMID:26900031
Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents
Brai, Annalaura; Fazi, Roberta; Tintori, Cristina; Zamperini, Claudio; Bugli, Francesca; Sanguinetti, Maurizio; Stigliano, Egidio; Esté, José; Badia, Roger; Franco, Sandra; Martinez, Javier P.; Meyerhans, Andreas; Saladini, Francesco; Zazzi, Maurizio; Garbelli, Anna; Botta, Maurizio
2016-01-01
Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEAD-box polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target. PMID:27118832
Garchitorena, Andrés; Guégan, Jean-François; Léger, Lucas; Eyangoh, Sara; Marsollier, Laurent; Roche, Benjamin
2015-01-01
Host–parasite interactions are often embedded within complex host communities and can be influenced by a variety of environmental factors, such as seasonal variations in climate or abiotic conditions in water and soil, which confounds our understanding of the main drivers of many multi-host pathogens. Here, we take advantage of a combination of large environmental data sets on Mycobacterium ulcerans (MU), an environmentally persistent microorganism associated to freshwater ecosystems and present in a large variety of aquatic hosts, to characterize abiotic and biotic factors driving the dynamics of this pathogen in two regions of Cameroon. We find that MU dynamics are largely driven by seasonal climatic factors and certain physico-chemical conditions in stagnant and slow-flowing ecosystems, with an important role of pH as limiting factor. Furthermore, water conditions can modify the effect of abundance and diversity of aquatic organisms on MU dynamics, which suggests a different contribution of two MU transmission routes for aquatic hosts (trophic vs environmental transmission) depending on local abiotic factors. DOI: http://dx.doi.org/10.7554/eLife.07616.001 PMID:26216042
Stockwell, Michelle Pirrie; Clulow, John; Mahony, Michael Joseph
2012-01-01
The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0-5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1-4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation.
Stockwell, Michelle Pirrie; Clulow, John; Mahony, Michael Joseph
2012-01-01
The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0–5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1–4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation. PMID:22590639
Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation
Agler, Matthew T.; Ruhe, Jonas; Kroll, Samuel; Morhenn, Constanze; Kim, Sang-Tae; Weigel, Detlef; Kemen, Eric M.
2016-01-01
Plant-associated microorganisms have been shown to critically affect host physiology and performance, suggesting that evolution and ecology of plants and animals can only be understood in a holobiont (host and its associated organisms) context. Host-associated microbial community structures are affected by abiotic and host factors, and increased attention is given to the role of the microbiome in interactions such as pathogen inhibition. However, little is known about how these factors act on the microbial community, and especially what role microbe–microbe interaction dynamics play. We have begun to address this knowledge gap for phyllosphere microbiomes of plants by simultaneously studying three major groups of Arabidopsis thaliana symbionts (bacteria, fungi and oomycetes) using a systems biology approach. We evaluated multiple potential factors of microbial community control: we sampled various wild A. thaliana populations at different times, performed field plantings with different host genotypes, and implemented successive host colonization experiments under lab conditions where abiotic factors, host genotype, and pathogen colonization was manipulated. Our results indicate that both abiotic factors and host genotype interact to affect plant colonization by all three groups of microbes. Considering microbe–microbe interactions, however, uncovered a network of interkingdom interactions with significant contributions to community structure. As in other scale-free networks, a small number of taxa, which we call microbial “hubs,” are strongly interconnected and have a severe effect on communities. By documenting these microbe–microbe interactions, we uncover an important mechanism explaining how abiotic factors and host genotypic signatures control microbial communities. In short, they act directly on “hub” microbes, which, via microbe–microbe interactions, transmit the effects to the microbial community. We analyzed two “hub” microbes (the obligate biotrophic oomycete pathogen Albugo and the basidiomycete yeast fungus Dioszegia) more closely. Albugo had strong effects on epiphytic and endophytic bacterial colonization. Specifically, alpha diversity decreased and beta diversity stabilized in the presence of Albugo infection, whereas they otherwise varied between plants. Dioszegia, on the other hand, provided evidence for direct hub interaction with phyllosphere bacteria. The identification of microbial “hubs” and their importance in phyllosphere microbiome structuring has crucial implications for plant–pathogen and microbe–microbe research and opens new entry points for ecosystem management and future targeted biocontrol. The revelation that effects can cascade through communities via “hub” microbes is important to understand community structure perturbations in parallel fields including human microbiomes and bioprocesses. In particular, parallels to human microbiome “keystone” pathogens and microbes open new avenues of interdisciplinary research that promise to better our understanding of functions of host-associated microbiomes. PMID:26788878
Benefits of fidelity: does host specialization impact nematode parasite life history and fecundity?
Koprivnikar, J; Randhawa, H S
2013-04-01
The range of hosts used by a parasite is influenced by macro-evolutionary processes (host switching, host-parasite co-evolution), as well as 'encounter filters' and 'compatibility filters' at the micro-evolutionary level driven by host/parasite ecology and physiology. Host specialization is hypothesized to result in trade-offs with aspects of parasite life history (e.g. reproductive output), but these have not been well studied. We used previously published data to create models examining general relationships among host specificity and important aspects of life history and reproduction for nematodes parasitizing animals. Our results indicate no general trade-off between host specificity and the average pre-patent period (time to first reproduction), female size, egg size, or fecundity of these nematodes. However, female size was positively related to egg size, fecundity, and pre-patent period. Host compatibility may thus not be the primary determinant of specificity in these parasitic nematodes if there are few apparent trade-offs with reproduction, but rather, the encounter opportunities for new host species at the micro-evolutionary level, and other processes at the macro-evolutionary level (i.e. phylogeny). Because host specificity is recognized as a key factor determining the spread of parasitic diseases understanding factors limiting host use are essential to predict future changes in parasite range and occurrence.
Evaluating factors that predict the structure of a commensalistic epiphyte–phorophyte network
Sáyago, Roberto; Lopezaraiza-Mikel, Martha; Quesada, Mauricio; Álvarez-Añorve, Mariana Yolotl; Cascante-Marín, Alfredo; Bastida, Jesus Ma.
2013-01-01
A central issue in ecology is the understanding of the establishment of biotic interactions. We studied the factors that affect the assembly of the commensalistic interactions between vascular epiphytes and their host plants. We used an analytical approach that considers all individuals and species of epiphytic bromeliads and woody hosts and non-hosts at study plots. We built models of interaction probabilities among species to assess if host traits and abundance and spatial overlap of species predict the quantitative epiphyte–host network. Species abundance, species spatial overlap and host size largely predicted pairwise interactions and several network metrics. Wood density and bark texture of hosts also contributed to explain network structure. Epiphytes were more common on large hosts, on abundant woody species, with denser wood and/or rougher bark. The network had a low level of specialization, although several interactions were more frequent than expected by the models. We did not detect a phylogenetic signal on the network structure. The effect of host size on the establishment of epiphytes indicates that mature forests are necessary to preserve diverse bromeliad communities. PMID:23407832
Host selection and lethality of attacks by sea lampreys (Petromyzon marinus) in laboratory studies
Swink, William D.
2003-01-01
Parasitic-phase sea lampreys (Petromyzon marinus) are difficult to study in the wild. A series of laboratory studies (1984-1995) of single attacks on lake trout (Salvelinus namaycush), rainbow trout (Oncorhynchus mykiss), and burbot (Lota lota) examined host size selection; determined the effects of host size, host species, host strain, and temperature on host mortality; and estimated the weight of hosts killed per lamprey. Rainbow trout were more able and burbot less able to survive attacks than lake trout. Small sea lampreys actively selected the larger of two small hosts; larger sea lampreys attacked larger hosts in proportion to the hosts' body sizes, but actively avoided shorter hosts (a?? 600 mm) when larger were available. Host mortality was significantly less for larger (43-44%) than for smaller hosts (64%). However, the yearly loss of hosts per sea lamprey was less for small hosts (range, 6.8-14.2 kg per sea lamprey) than larger hosts (range, 11.4-19.3 kg per sea lamprey). Attacks at the lower of two temperature ranges (6.1-11.8A?C and 11.1-15.0A?C) did not significantly reduce the percentage of hosts killed (54% vs. 69%, p > 0.21), but longer attachment times at lower temperatures reduced the number of hosts attacked (33 vs. 45), and produced the lowest loss of hosts (6.6 kg per sea lamprey). Low temperature appeared to offset other factors that increase host mortality. Reanalysis of 789 attacks pooled from these studies, using forward stepwise logistic regression, also identified mean daily temperature as the dominant factor affecting host mortality. Observations in Lakes Superior, Huron, and Ontario support most laboratory results.
Nakatsuji, Teruaki; Tang, De-chu C.; Zhang, Liangfang; Gallo, Richard L.; Huang, Chun-Ming
2011-01-01
Background In the progression of acne vulgaris, the disruption of follicular epithelia by an over-growth of Propionibacterium acnes (P. acnes) permits the bacteria to spread and become in contact with various skin and immune cells. Methodology/Principal Findings We have demonstrated in the present study that the Christie, Atkins, Munch-Peterson (CAMP) factor of P. acnes is a secretory protein with co-hemolytic activity with sphingomyelinase that can confer cytotoxicity to HaCaT keratinocytes and RAW264.7 macrophages. The CAMP factor from bacteria and acid sphingomyelinase (ASMase) from the host cells were simultaneously present in the culture supernatant only when the cells were co-cultured with P. acnes. Either anti-CAMP factor serum or desipramine, a selective ASMase inhibitor, significantly abrogated the P. acnes-induced cell death of HaCaT and RAW264.7 cells. Intradermal injection of ICR mouse ears with live P. acnes induced considerable ear inflammation, macrophage infiltration, and an increase in cellular soluble ASMase. Suppression of ASMase by systemic treatment with desipramine significantly reduced inflammatory reaction induced by intradermal injection with P. acnes, suggesting the contribution of host ASMase in P. acnes-induced inflammatory reaction in vivo. Vaccination of mice with CAMP factor elicited a protective immunity against P. acnes-induced ear inflammation, indicating the involvement of CAMP factor in P. acnes-induced inflammation. Most notably, suppression of both bacterial CAMP factor and host ASMase using vaccination and specific antibody injection, respectively, cooperatively alleviated P. acnes-induced inflammation. Conclusions/Significance These findings envision a novel infectious mechanism by which P. acnes CAMP factor may hijack host ASMase to amplify bacterial virulence to degrade and invade host cells. This work has identified both CAMP factor and ASMase as potential molecular targets for the development of drugs and vaccines against acne vulgaris. PMID:21533261
A Study of Covert Communications in Space Platforms Hosting Government Payloads
2015-02-01
possible adversarial actions (e.g., malicious software co- resident on the commercial host). Threats to the commercial supply chain are just one... supply chain to either create or exploit channel vulnerabilities. For government hosted payload missions, the critical payload data are encrypted...access to space by hosting government- supplied payloads on commercial space platforms. These commercially hosted payloads require stringent
Using a Bayesian network to clarify areas requiring research in a host-pathogen system.
Bower, D S; Mengersen, K; Alford, R A; Schwarzkopf, L
2017-12-01
Bayesian network analyses can be used to interactively change the strength of effect of variables in a model to explore complex relationships in new ways. In doing so, they allow one to identify influential nodes that are not well studied empirically so that future research can be prioritized. We identified relationships in host and pathogen biology to examine disease-driven declines of amphibians associated with amphibian chytrid fungus (Batrachochytrium dendrobatidis). We constructed a Bayesian network consisting of behavioral, genetic, physiological, and environmental variables that influence disease and used them to predict host population trends. We varied the impacts of specific variables in the model to reveal factors with the most influence on host population trend. The behavior of the nodes (the way in which the variables probabilistically responded to changes in states of the parents, which are the nodes or variables that directly influenced them in the graphical model) was consistent with published results. The frog population had a 49% probability of decline when all states were set at their original values, and this probability increased when body temperatures were cold, the immune system was not suppressing infection, and the ambient environment was conducive to growth of B. dendrobatidis. These findings suggest the construction of our model reflected the complex relationships characteristic of host-pathogen interactions. Changes to climatic variables alone did not strongly influence the probability of population decline, which suggests that climate interacts with other factors such as the capacity of the frog immune system to suppress disease. Changes to the adaptive immune system and disease reservoirs had a large effect on the population trend, but there was little empirical information available for model construction. Our model inputs can be used as a base to examine other systems, and our results show that such analyses are useful tools for reviewing existing literature, identifying links poorly supported by evidence, and understanding complexities in emerging infectious-disease systems. © 2017 Society for Conservation Biology.
Wang, Ou; Liang, Guanxiang; McAllister, Tim A.; Plastow, Graham; Stanford, Kim; Selinger, Brent; Guan, Le Luo
2016-01-01
Super-shedder cattle are a major disseminator of E. coli O157:H7 into the environment, and the terminal rectum has been proposed as the primary E. coli O157:H7 colonization site. This study aimed to identify host factors that are associated with the super-shedding process by comparing transcriptomic profiles in rectal tissue collected from 5 super-shedder cattle and 4 non-shedder cattle using RNA-Seq. In total, 17,859 ± 354 genes and 399 ± 16 miRNAs were detected, and 11,773 genes were expressed in all animals. Fifty-eight differentially expressed (DE) genes (false discovery rate < 0.05) including 11 up-regulated and 47 down-regulated (log 2 (fold change) ranged from -5.5 to 4.2), and 2 up-regulated DE miRNAs (log 2 (fold change) = 2.1 and 2.5, respectively) were identified in super-shedders compared to non-shedders. Functional analysis of DE genes revealed that 31 down-regulated genes were potentially associated with reduced innate and adaptive immune functions in super-shedders, including 13 lymphocytes membrane receptors, 3 transcription factors and 5 cytokines, suggesting the decreased key host immune functions in the rectal tissue of super-shedders, including decreased quantity and migration of immune cells such as lymphocytes, neutrophils and dendritic cells. The up-regulation of bta-miR-29d-3p and the down regulation of its predicted target gene, regulator of G-protein signaling 13, suggested a potential regulatory role of this miRNA in decreased migration of lymphocytes in super-shedders. Based on these findings, the rectal tissue of super-shedders may inherently exhibit less effective innate and adaptive immune protection. Further study is required to confirm if such effect on host immunity is due to the nature of the host itself or due to actions mediated by E. coli O157:H7. PMID:26959367
Wang, Ou; Liang, Guanxiang; McAllister, Tim A; Plastow, Graham; Stanford, Kim; Selinger, Brent; Guan, Le Luo
2016-01-01
Super-shedder cattle are a major disseminator of E. coli O157:H7 into the environment, and the terminal rectum has been proposed as the primary E. coli O157:H7 colonization site. This study aimed to identify host factors that are associated with the super-shedding process by comparing transcriptomic profiles in rectal tissue collected from 5 super-shedder cattle and 4 non-shedder cattle using RNA-Seq. In total, 17,859 ± 354 genes and 399 ± 16 miRNAs were detected, and 11,773 genes were expressed in all animals. Fifty-eight differentially expressed (DE) genes (false discovery rate < 0.05) including 11 up-regulated and 47 down-regulated (log 2 (fold change) ranged from -5.5 to 4.2), and 2 up-regulated DE miRNAs (log 2 (fold change) = 2.1 and 2.5, respectively) were identified in super-shedders compared to non-shedders. Functional analysis of DE genes revealed that 31 down-regulated genes were potentially associated with reduced innate and adaptive immune functions in super-shedders, including 13 lymphocytes membrane receptors, 3 transcription factors and 5 cytokines, suggesting the decreased key host immune functions in the rectal tissue of super-shedders, including decreased quantity and migration of immune cells such as lymphocytes, neutrophils and dendritic cells. The up-regulation of bta-miR-29d-3p and the down regulation of its predicted target gene, regulator of G-protein signaling 13, suggested a potential regulatory role of this miRNA in decreased migration of lymphocytes in super-shedders. Based on these findings, the rectal tissue of super-shedders may inherently exhibit less effective innate and adaptive immune protection. Further study is required to confirm if such effect on host immunity is due to the nature of the host itself or due to actions mediated by E. coli O157:H7.
Macroevolutionary Immunology: A Role for Immunity in the Diversification of Animal life
Loker, Eric S.
2012-01-01
An emerging picture of the nature of immune systems across animal phyla reveals both conservatism of some features and the appearance among and within phyla of novel, lineage-specific defense solutions. The latter collectively represent a major and underappreciated form of animal diversity. Factors influencing this macroevolutionary (above the species level) pattern of novelty are considered and include adoption of different life styles, life histories, and body plans; a general advantage of being distinctive with respect to immune defenses; and the responses required to cope with parasites, many of which afflict hosts in a lineage-specific manner. This large-scale pattern of novelty implies that immunological phenomena can affect microevolutionary processes (at the population level within species) that can eventually lead to macroevolutionary events such as speciation, radiations, or extinctions. Immunologically based phenomena play a role in favoring intraspecific diversification, specialization and host specificity of parasites, and mechanisms are discussed whereby this could lead to parasite speciation. Host switching – the acquisition of new host species by parasites – is a major mechanism that drives parasite diversity and is frequently involved in disease emergence. It is also one that can be favored by reductions in immune competence of new hosts. Mechanisms involving immune phenomena favoring intraspecific diversification and speciation of host species are also discussed. A macroevolutionary perspective on immunology is invaluable in today’s world, including the need to study a broader range of species with distinctive immune systems. Many of these species are faced with extinction, another macroevolutionary process influenced by immune phenomena. PMID:22566909
Coers, Jörn; Bernstein-Hanley, Isaac; Grotsky, David; Parvanova, Iana; Howard, Jonathan C; Taylor, Gregory A; Dietrich, William F; Starnbach, Michael N
2008-05-01
Chlamydiae are obligate intracellular bacterial pathogens that exhibit a broad range of host tropism. Differences in host tropism between Chlamydia species have been linked to host variations in IFN-gamma-mediated immune responses. In mouse cells, IFN-gamma can effectively restrict growth of the human pathogen Chlamydia trachomatis but fails to control growth of the closely related mouse pathogen Chlamydia muridarum. The ability of mouse cells to resist C. trachomatis replication is largely dependent on the induction of a family of IFN-gamma-inducible GTPases called immunity-related GTPases or IRGs. In this study we demonstrate that C. muridarum can specifically evade IRG-mediated host resistance. It has previously been suggested that C. muridarum inactivates the IRG protein Irga6 (Iigp1) to dampen the murine immune response. However, we show that Irga6 is dispensable for the control of C. trachomatis replication. Instead, an effective IFN-gamma response to C. trachomatis requires the IRG proteins Irgm1 (Lrg47), Irgm3 (Igtp), and Irgb10. Ectopic expression of Irgb10 in the absence of IFN-gamma is sufficient to reduce intracellular growth of C. trachomatis but fails to restrict growth of C. muridarum, indicating that C. muridarum can specifically evade Irgb10-driven host responses. Importantly, we find that Irgb10 protein intimately associates with inclusions harboring C. trachomatis but is absent from inclusions formed by C. muridarum. These data suggest that C. muridarum has evolved a mechanism to escape the murine IFN-gamma response by restricting access of Irgb10 and possibly other IRG proteins to the inclusion.
Incorporation of Hepatitis C Virus E1 and E2 Glycoproteins: The Keystones on a Peculiar Virion
Vieyres, Gabrielle; Dubuisson, Jean; Pietschmann, Thomas
2014-01-01
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2. Their structure and mode of fusion remain unknown, and so does the virion architecture. The organization of the HCV envelope shell in particular is subject to discussion as it incorporates or associates with host-derived lipoproteins, to an extent that the biophysical properties of the virion resemble more very-low-density lipoproteins than of any virus known so far. The recent development of novel cell culture systems for HCV has provided new insights on the assembly of this atypical viral particle. Hence, the extensive E1E2 characterization accomplished for the last two decades in heterologous expression systems can now be brought into the context of a productive HCV infection. This review describes the biogenesis and maturation of HCV envelope glycoproteins, as well as the interplay between viral and host factors required for their incorporation in the viral envelope, in a way that allows efficient entry into target cells and evasion of the host immune response. PMID:24618856
Staphylococcus lugdunensis IsdG Liberates Iron from Host Heme▿
Haley, Kathryn P.; Janson, Eric M.; Heilbronner, Simon; Foster, Timothy J.; Skaar, Eric P.
2011-01-01
Staphylococcus lugdunensis is often found as part of the normal flora of human skin but has the potential to cause serious infections even in healthy individuals. It remains unclear what factors enable S. lugdunensis to transition from a skin commensal to an invasive pathogen. Analysis of the complete genome reveals a putative iron-regulated surface determinant (Isd) system encoded within S. lugdunensis. In other bacteria, the Isd system permits the utilization of host heme as a source of nutrient iron to facilitate bacterial growth during infection. In this study, we establish that S. lugdunensis expresses an iron-regulated IsdG-family heme oxygenase that binds and degrades heme. Heme degradation by IsdG results in the release of free iron and the production of the chromophore staphylobilin. IsdG-mediated heme catabolism enables the use of heme as a sole source of iron, establishing IsdG as a pathophysiologically relevant heme oxygenase in S. lugdunensis. Together these findings offer insight into how S. lugdunensis fulfills its nutritional requirements while invading host tissues and establish the S. lugdunensis Isd system as being involved in heme-iron utilization. PMID:21764939
Salmonella Typhimurium metabolism affects virulence in the host - A mini-review.
Herrero-Fresno, Ana; Olsen, John Elmerdhahl
2018-05-01
Salmonella enterica remains an important food borne pathogen in all regions of the world with S. Typhimurium as one of the most frequent serovars causing food borne disease. Since the majority of human cases are caused by food of animal origin, there has been a high interest in understanding how S. Typhimurium interacts with the animal host, mostly focusing on factors that allow it to breach host barriers and to manipulate host cells to the benefit of itself. Up to recently, such studies have ignored the metabolic factors that allow the bacteria to multiply in the host, but this is changing rapidly, and we are now beginning to understand that virulence and metabolism in the host are closely linked. The current review highlights which metabolic factors that are essential for Salmonella Typhimurium growth in the intestine, in cultured epithelial and macrophage-like cell lines, at systemic sites during invasive salmonellosis, and during long term asymptomatic colonization of the host. It also points to the limitations in our current knowledge, most notably that most studies have been carried out with few well-characterized laboratory strains, that we do not know how much the in vivo metabolism differs between serotypes, and that most results are based on challenges in the mouse model of infection. It will be very important to realize whether the current understanding of Salmonella metabolism in the host is true for all serotypes and all possible hosts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Context Dependency of a Marine Defensive Symbiosis over a Wide Geographic Distribution
NASA Astrophysics Data System (ADS)
Lopanik, N.; Linneman, J.; Mathew, M.
2016-02-01
The invasive, temperate marine bryozoan Bugula neritina possesses an uncultured, vertically-transmitted bacterial symbiont that produces natural products known as bryostatins. These unpalatable polyketides protect the host larvae from predation. In the western Atlantic, two host genotypes were thought to be restricted to differing latitudes based on the presence of the defensive symbiont: undefended aposymbiotic Type N animals were found at high latitudes, while defended symbiotic Type S colonies were found at low latitudes, where predation pressure is higher. We found that the host genotypes are more widespread than previously thought, but that the symbiont appeared to be restricted to hosts at lower latitudes, regardless of host phylotype, leading to the question of what factors are involved in restricting the symbiont's range. We performed reciprocal transplant experiments of symbiotic and antibiotic-cured hosts, and measured host growth, a proxy for fitness. Our data indicate that possession of the symbiont appears to present a physiological cost to the host. This cost may be more pronounced at higher latitudes where the benefit of symbiosis is less apparent. In addition, preliminary evidence suggests that symbiont titer in a Type S colony from North Carolina transplanted to Virginia is reduced over a period of nearly 4 months. Taken together, these results suggest that a combination of factors may play a role in the distribution of the defensive symbiont: (i) hosts that possess the symbiont are outcompeted by aposymbiotic conspecifics at high latitude and reduced levels of predation pressure; and (ii) symbiont growth may be inhibited or sanctioned by the host at high latitudes. As defensive symbiosis is an important trait in marine habitats, understanding factors that affect the distribution of both the host and symbiont are necessary to fully appreciate the ecological impact of symbiosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Akhil; Ohm, Robin A.; Oxiles, Lindsay
2011-10-26
Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen with a broad host range within the family Brassicaceae. It produces secondary metabolites that marginally affect virulence. Cell wall degrading enzymes (CDWE) have been considered important for pathogenesis but none of them individually have been identified as significant virulence factors in A. brassicicola. In this study, knockout mutants of a gene, AbVf19, were created and produced considerably smaller lesions than the wild type on inoculated host plants. The presence of tandem zinc-finger domains in the predicted amino acid sequence and nuclear localization of AbVf19- reporter protein suggested that it wasmore » a transcription factor. Gene expression comparisons using RNA-seq identified 74 genes being downregulated in the mutant during a late stage of infection. Among the 74 downregulated genes, 28 were putative CWDE genes. These were hydrolytic enzyme genes that composed a small fraction of genes within each family of cellulases, pectinases, cutinases, and proteinases. The mutants grew slower than the wild type on an axenic medium with pectin as a major carbon source. This study demonstrated the existence and the importance of a transcription factor that regulates a suite of genes that are important for decomposing and utilizing plant material during the late stage of plant infection.« less
Fouchet, David; Guitton, Jean-Sébastien; Marchandeau, Stéphane; Pontier, Dominique
2008-02-21
Many diseases are less severe when they are contracted in early life. For highly lethal diseases, such as myxomatosis in rabbits, getting infected early in life can represent the best chance for an individual to survive the disease. For myxomatosis, early infections are attenuated by maternal antibodies. This may lead to the immunisation of the host, preventing the subsequent development of the lethal form of the disease. But early infection of young individuals requires specific demographic and epidemiological contexts, such as a high transmission rate of the pathogen agent. To investigate other factors involved in the impact of such diseases, we have built a stochastic model of a rabbit metapopulation infected by myxomatosis. We show that the impact of the pathogen agent can be reduced by early infections only when the agent has a long local persistence time and/or when the host subpopulations are highly connected. The length of the reproductive period and the duration of acquired immunity are also important factors influencing the persistence of the pathogen and thus, the impact of the disease. Besides confirming the role of classical factors in the persistence of a pathogen agent, such as the size of the subpopulation or the degree of connectivity, our results highlight novel factors that can modulate the impact of diseases whose severity increase with age.
The role of host abundance in regulating populations of freshwater mussels with parasitic larvae
Wendell R. Haag; James A. Stoeckel
2015-01-01
Hostâparasite theory makes predictions about the influence of host abundance, competition for hosts, and parasite transmission on parasite population size, but many of these predictions are not well tested empirically. We experimentally examined these factors in ponds using two species of freshwater mussels with parasitic larvae that infect host fishes via different...
Dual RNA regulatory control of a Staphylococcus aureus virulence factor.
Chabelskaya, Svetlana; Bordeau, Valérie; Felden, Brice
2014-04-01
In pathogens, the accurate programming of virulence gene expression is essential for infection. It is achieved by sophisticated arrays of regulatory proteins and ribonucleic acids (sRNAs), but in many cases their contributions and connections are not yet known. Based on genetic, biochemical and structural evidence, we report that the expression pattern of a Staphylococcus aureus host immune evasion protein is enabled by the collaborative actions of RNAIII and small pathogenicity island RNA D (SprD). Their combined expression profiles during bacterial growth permit early and transient synthesis of Sbi to avoid host immune responses. Together, these two sRNAs use antisense mechanisms to monitor Sbi expression at the translational level. Deletion analysis combined with structural analysis of RNAIII in complex with its novel messenger RNA (mRNA) target indicate that three distant RNAIII domains interact with distinct sites of the sbi mRNA and that two locations are deep in the sbi coding region. Through distinct domains, RNAIII lowers production of two proteins required for avoiding innate host immunity, staphylococcal protein A and Sbi. Toeprints and in vivo mutational analysis reveal a novel regulatory module within RNAIII essential for attenuation of Sbi translation. The sophisticated translational control of mRNA by two differentially expressed sRNAs ensures supervision of host immune escape by a major pathogen.
Casselli, Timothy; Bankhead, Troy
2015-01-01
The causative agent of Lyme disease, Borrelia burgdorferi, is an obligate parasite that requires either a tick vector or a mammalian host for survival. Identification of the bacterial genes that are specifically expressed during infection of the mammalian host could provide targets for novel therapeutics and vaccines. In vivo expression technology (IVET) is a reporter-based promoter trap system that utilizes selectable markers to identify promoters of bacterial host-specific genes. Using previously characterized genes for in vivo and in vitro selection, this study utilized an IVET system that allows for selection of B. burgdorferi sequences that act as active promoters only during murine infection. This promoter trap system was able to successfully distinguish active promoter sequences both in vivo and in vitro from control sequences and a library of cloned B. burgdorferi genomic fragments. However, a bottleneck effect during the experimental mouse infection limited the utility for genome-wide promoter screening. Overall, IVET was demonstrated as a tool for the identification of in vivo-induced promoter elements of B. burgdorferi, and the observed infection bottleneck apparent using a polyclonal infection pool provides insight into the dynamics of experimental infection with B. burgdorferi. © 2015 S. Karger AG, Basel.
Incorporating the gut microbiota into models of human and non-human primate ecology and evolution.
Amato, Katherine R
2016-01-01
The mammalian gut is home to a diverse community of microbes. Advances in technology over the past two decades have allowed us to examine this community, the gut microbiota, in more detail, revealing a wide range of influences on host nutrition, health, and behavior. These host-gut microbe interactions appear to shape host plasticity and fitness in a variety of contexts, and therefore represent a key factor missing from existing models of human and non-human primate ecology and evolution. However, current studies of the gut microbiota tend to include limited contextual data or are clinical, making it difficult to directly test broad anthropological hypotheses. Here, I review what is known about the animal gut microbiota and provide examples of how gut microbiota research can be integrated into the study of human and non-human primate ecology and evolution with targeted data collection. Specifically, I examine how the gut microbiota may impact primate diet, energetics, disease resistance, and cognition. While gut microbiota research is proliferating rapidly, especially in the context of humans, there remain important gaps in our understanding of host-gut microbe interactions that will require an anthropological perspective to fill. Likewise, gut microbiota research will be an important tool for filling remaining gaps in anthropological research. © 2016 Wiley Periodicals, Inc.
Kim, Christina Sunyoung; Echaubard, Pierre; Suwannatrai, Apiporn; Kaewkes, Sasithorn; Wilcox, Bruce A.; Sripa, Banchob
2016-01-01
Background Opisthorchis viverrini (Ov) is a complex-life-cycle trematode affecting 10 million people in SEA (Southeast Asia). Human infection occurs when infected cyprinid fish are consumed raw or undercooked. Ov requires three hosts and presents two free-living parasitic stages. As a consequence Ov transmission and infection in intermediate and human hosts are strongly mediated by environmental factors and understanding how environmental variability influences intermediate host abundance is critical. The objectives of this study were 1) to document water parameters, intermediate hosts abundance and infection spatio-temporal variation, 2) to assess their causal relationships and identify windows of transmission risk. Methodology/Principal Findings Fish and snails were collected monthly for one year at 12 sites in Lawa Lake, an Ov-endemic region of Khon Kaen Province in Northeast Thailand. Physicochemical water parameters [pH, temperature (Tp), dissolved oxygen (DO), Salinity, electrical conductivity (EC), total dissolved solid (TDS), nitrite nitrogen (NO2-N), lead (Pb), total coliform bacteria (TCB) and fecal coliform bacteria (FCB)] were measured. Multivariate analyses, linear models and kriging were used to characterize water parameter variation and its influence on host abundance and infection prevalence. We found that sampling sites could be grouped in three clusters and discriminated along a nitrogen-salinity gradient where higher levels in the lake’s southern region predicted higher Bithynia relative abundance (P<0.05) and lower snail and fish species diversity (P<0.05). Highest Bithynia abundance occurred during rainy season (P<0.001), independently of site influence. Cyprinids were the most abundant fish family and higher cyprinid relative abundance was found in areas with higher Bithynia relative abundance (P<0.05). Ov infection in snails was anecdotal while Ov infection in fish was higher in the southern region (P<0.001) at sites showing high FCB. Conclusions/Significance Our results indicate that water contamination and waterways configuration can influence freshwater communities’ assemblages possibly creating ideal conditions for sustained transmission. Sustainable control may require a better appreciation of the system’s ecology with wise governance and development planning particularly in the current context of SEA agricultural intensification and landscape modification. PMID:27880787
Kim, Christina Sunyoung; Echaubard, Pierre; Suwannatrai, Apiporn; Kaewkes, Sasithorn; Wilcox, Bruce A; Sripa, Banchob
2016-11-01
Opisthorchis viverrini (Ov) is a complex-life-cycle trematode affecting 10 million people in SEA (Southeast Asia). Human infection occurs when infected cyprinid fish are consumed raw or undercooked. Ov requires three hosts and presents two free-living parasitic stages. As a consequence Ov transmission and infection in intermediate and human hosts are strongly mediated by environmental factors and understanding how environmental variability influences intermediate host abundance is critical. The objectives of this study were 1) to document water parameters, intermediate hosts abundance and infection spatio-temporal variation, 2) to assess their causal relationships and identify windows of transmission risk. Fish and snails were collected monthly for one year at 12 sites in Lawa Lake, an Ov-endemic region of Khon Kaen Province in Northeast Thailand. Physicochemical water parameters [pH, temperature (Tp), dissolved oxygen (DO), Salinity, electrical conductivity (EC), total dissolved solid (TDS), nitrite nitrogen (NO2-N), lead (Pb), total coliform bacteria (TCB) and fecal coliform bacteria (FCB)] were measured. Multivariate analyses, linear models and kriging were used to characterize water parameter variation and its influence on host abundance and infection prevalence. We found that sampling sites could be grouped in three clusters and discriminated along a nitrogen-salinity gradient where higher levels in the lake's southern region predicted higher Bithynia relative abundance (P<0.05) and lower snail and fish species diversity (P<0.05). Highest Bithynia abundance occurred during rainy season (P<0.001), independently of site influence. Cyprinids were the most abundant fish family and higher cyprinid relative abundance was found in areas with higher Bithynia relative abundance (P<0.05). Ov infection in snails was anecdotal while Ov infection in fish was higher in the southern region (P<0.001) at sites showing high FCB. Our results indicate that water contamination and waterways configuration can influence freshwater communities' assemblages possibly creating ideal conditions for sustained transmission. Sustainable control may require a better appreciation of the system's ecology with wise governance and development planning particularly in the current context of SEA agricultural intensification and landscape modification.
Generation of infectious recombinant Adeno-associated virus in Saccharomyces cerevisiae.
Barajas, Daniel; Aponte-Ubillus, Juan Jose; Akeefe, Hassibullah; Cinek, Tomas; Peltier, Joseph; Gold, Daniel
2017-01-01
The yeast Saccharomyces cerevisiae has been successfully employed to establish model systems for a number of viruses. Such model systems are powerful tools to study the virus biology and in particular for the identification and characterization of host factors playing a role in the viral infection cycle. Adeno-associated viruses (AAV) are heavily studied due to their use as gene delivery vectors. AAV relies on other helper viruses for successful replication and on host factors for several aspects of the viral life cycle. However the role of host and helper viral factors is only partially known. Production of recombinant AAV (rAAV) vectors for gene delivery applications depends on knowledge of AAV biology and the limited understanding of host and helper viral factors may be precluding efficient production, particularly in heterologous systems. Model systems in simpler eukaryotes like the yeast S. cerevisiae would be useful tools to identify and study the role of host factors in AAV biology. Here we show that expression of AAV2 viral proteins VP1, VP2, VP3, AAP, Rep78, Rep52 and an ITR-flanked DNA in yeast leads to capsid formation, DNA replication and encapsidation, resulting in formation of infectious particles. Many of the AAV characteristics observed in yeast resemble those in other systems, making it a suitable model system. Future findings in the yeast system could be translatable to other AAV host systems and aid in more efficient production of rAAV vectors.
Weir, Dawn L; Laing, Eric D; Smith, Ina L; Wang, Lin-Fa; Broder, Christopher C
2014-02-27
Australian bat lyssavirus (ABLV), a rhabdovirus of the genus Lyssavirus which circulates in both pteropid fruit bats and insectivorous bats in mainland Australia, has caused three fatal human infections, the most recent in February 2013, manifested as acute neurological disease indistinguishable from clinical rabies. Rhabdoviruses infect host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion mediated by their single envelope glycoprotein (G), but the specific host factors and pathways involved in ABLV entry have not been determined. ABLV internalization into HEK293T cells was examined using maxGFP-encoding recombinant vesicular stomatitis viruses (rVSV) that express ABLV G glycoproteins. A combination of chemical and molecular approaches was used to investigate the contribution of different endocytic pathways to ABLV entry. Dominant negative Rab GTPases were used to identify the endosomal compartment utilized by ABLV to gain entry into the host cell cytosol. Here we show that ABLV G-mediated entry into HEK293T cells was significantly inhibited by the dynamin-specific inhibitor dynasore, chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and the actin depolymerizing drug latrunculin B. Over expression of dominant negative mutants of Eps15 and Rab5 also significantly reduced ABLV G-mediated entry into HEK293T cells. Chemical inhibitors of caveolae-dependent endocytosis and macropinocytosis and dominant negative mutants of Rab7 and Rab11 had no effect on ABLV entry. The predominant pathway utilized by ABLV for internalization into HEK293T cells is clathrin-and actin-dependent. The requirement of Rab5 for productive infection indicates that ABLV G-mediated fusion occurs within the early endosome compartment.
Sadewasser, Anne; Paki, Katharina; Eichelbaum, Katrin; Bogdanow, Boris; Saenger, Sandra; Budt, Matthias; Lesch, Markus; Hinz, Klaus-Peter; Herrmann, Andreas; Meyer, Thomas F; Karlas, Alexander; Selbach, Matthias; Wolff, Thorsten
2017-05-01
Influenza A virus (IAV) infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic IAV strains replicate efficiently in permissive human cells, many avian IAV cause abortive nonproductive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or downregulated in the course of permissive versus nonpermissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive versus nonpermissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as proviral host factor because its downregulation inhibited efficient propagation of seasonal IAV whereas overexpression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and nonpermissive influenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Sadewasser, Anne; Paki, Katharina; Eichelbaum, Katrin; Bogdanow, Boris; Saenger, Sandra; Budt, Matthias; Lesch, Markus; Hinz, Klaus-Peter; Herrmann, Andreas; Meyer, Thomas F.; Karlas, Alexander; Selbach, Matthias; Wolff, Thorsten
2017-01-01
Influenza A virus (IAV) infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic IAV strains replicate efficiently in permissive human cells, many avian IAV cause abortive nonproductive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or downregulated in the course of permissive versus nonpermissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive versus nonpermissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as proviral host factor because its downregulation inhibited efficient propagation of seasonal IAV whereas overexpression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and nonpermissive influenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target. PMID:28289176
Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection
Duan, Susu; Thomas, Paul G.
2016-01-01
Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity. PMID:26904022
Li, Jingchun; Ó Foighil, Diarmaid; Middelfart, Peter
2012-01-01
Background Marine lineage diversification is shaped by the interaction of biotic and abiotic factors but our understanding of their relative roles is underdeveloped. The megadiverse bivalve superfamily Galeommatoidea represents a promising study system to address this issue. It is composed of small-bodied clams that are either free-living or have commensal associations with invertebrate hosts. To test if the evolution of this lifestyle dichotomy is correlated with specific ecologies, we have performed a statistical analysis on the lifestyle and habitat preference of 121 species based on 90 source documents. Methodology/Principal Findings Galeommatoidea has significant diversity in the two primary benthic habitats: hard- and soft-bottoms. Hard-bottom dwellers are overwhelmingly free-living, typically hidden within crevices of rocks/coral heads/encrusting epifauna. In contrast, species in soft-bottom habitats are almost exclusively infaunal commensals. These infaunal biotic associations may involve direct attachment to a host, or clustering around its tube/burrow, but all commensals locate within the oxygenated sediment envelope produced by the host’s bioturbation. Conclusions/Significance The formation of commensal associations by galeommatoidean clams is robustly correlated with an abiotic environmental setting: living in sediments (). Sediment-dwelling bivalves are exposed to intense predation pressure that drops markedly with depth of burial. Commensal galeommatoideans routinely attain depth refuges many times their body lengths, independent of siphonal investment, by virtue of their host’s burrowing and bioturbation. In effect, they use their much larger hosts as giant auto-irrigating siphon substitutes. The evolution of biotic associations with infaunal bioturbating hosts may have been a prerequisite for the diversification of Galeommatoidea in sediments and has likely been a key factor in the success of this exceptionally diverse bivalve superfamily. PMID:22905116
Qu, Yanyan; Olonisakin, Tolani; Bain, William; Zupetic, Jill; Brown, Rebecca; Hulver, Mei; Xiong, Zeyu; Shanks, Robert M.Q.; Bomberger, Jennifer M.; Cooper, Vaughn S.; Zegans, Michael E.; Han, Jongyoon; Pilewski, Joseph; Ray, Anuradha; Ray, Prabir; Lee, Janet S.
2018-01-01
Acute lung injury is characterized by excessive extracellular matrix proteolysis and neutrophilic inflammation. A major risk factor for lung injury is bacterial pneumonia. However, host factors that protect against pathogen-induced and host-sustained proteolytic injury following infection are poorly understood. Pseudomonas aeruginosa (PA) is a major cause of nosocomial pneumonia and secretes proteases to amplify tissue injury. We show that thrombospondin-1 (TSP-1), a matricellular glycoprotein released during inflammation, dose-dependently inhibits PA metalloendoprotease LasB, a virulence factor. TSP-1–deficient (Thbs1–/–) mice show reduced survival, impaired host defense, and increased lung permeability with exaggerated neutrophil activation following acute intrapulmonary PA infection. Administration of TSP-1 from platelets corrects the impaired host defense and aberrant injury in Thbs1–/– mice. Although TSP-1 is cleaved into 2 fragments by PA, TSP-1 substantially inhibits Pseudomonas elastolytic activity. Administration of LasB inhibitor, genetic disabling of the PA type II secretion system, or functional deletion of LasB improves host defense and neutrophilic inflammation in mice. Moreover, TSP-1 provides an additional line of defense by directly subduing host-derived proteolysis, with dose-dependent inhibition of neutrophil elastase from airway neutrophils of mechanically ventilated critically ill patients. Thus, a host matricellular protein provides dual levels of protection against pathogen-initiated and host-sustained proteolytic injury following microbial trigger. PMID:29415890
Realegeno, Susan; Puschnik, Andreas S; Kumar, Amrita; Goldsmith, Cynthia; Burgado, Jillybeth; Sambhara, Suryaprakash; Olson, Victoria A; Carroll, Darin; Damon, Inger; Hirata, Tetsuya; Kinoshita, Taroh; Carette, Jan E; Satheshkumar, Panayampalli Subbian
2017-06-01
Monkeypox virus (MPXV) is a human pathogen that is a member of the Orthopoxvirus genus, which includes Vaccinia virus and Variola virus (the causative agent of smallpox). Human monkeypox is considered an emerging zoonotic infectious disease. To identify host factors required for MPXV infection, we performed a genome-wide insertional mutagenesis screen in human haploid cells. The screen revealed several candidate genes, including those involved in Golgi trafficking, glycosaminoglycan biosynthesis, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis. We validated the role of a set of vacuolar protein sorting (VPS) genes during infection, VPS51 to VPS54 (VPS51-54), which comprise the Golgi-associated retrograde protein (GARP) complex. The GARP complex is a tethering complex involved in retrograde transport of endosomes to the trans -Golgi apparatus. Our data demonstrate that VPS52 and VPS54 were dispensable for mature virion (MV) production but were required for extracellular virus (EV) formation. For comparison, a known antiviral compound, ST-246, was used in our experiments, demonstrating that EV titers in VPS52 and VPS54 knockout (KO) cells were comparable to levels exhibited by ST-246-treated wild-type cells. Confocal microscopy was used to examine actin tail formation, one of the viral egress mechanisms for cell-to-cell dissemination, and revealed an absence of actin tails in VPS52KO- or VPS54KO-infected cells. Further evaluation of these cells by electron microscopy demonstrated a decrease in levels of wrapped viruses (WVs) compared to those seen with the wild-type control. Collectively, our data demonstrate the role of GARP complex genes in double-membrane wrapping of MVs necessary for EV formation, implicating the host endosomal trafficking pathway in orthopoxvirus infection. IMPORTANCE Human monkeypox is an emerging zoonotic infectious disease caused by Monkeypox virus (MPXV). Of the two MPXV clades, the Congo Basin strain is associated with severe disease, increased mortality, and increased human-to-human transmission relative to the West African strain. Monkeypox is endemic in regions of western and central Africa but was introduced into the United States in 2003 from the importation of infected animals. The threat of MPXV and other orthopoxviruses is increasing due to the absence of routine smallpox vaccination leading to a higher proportion of naive populations. In this study, we have identified and validated candidate genes that are required for MPXV infection, specifically, those associated with the Golgi-associated retrograde protein (GARP) complex. Identifying host targets required for infection that prevents extracellular virus formation such as the GARP complex or the retrograde pathway can provide a potential target for antiviral therapy. Copyright © 2017 American Society for Microbiology.
A novel host factor for integration of mycobacteriophage L5
Pedulla, Marisa L.; Lee, Mong Hong; Lever, Dawn C.; Hatfull, Graham F.
1996-01-01
Bacterial integration host factors (IHFs) play central roles in the cellular processes of recombination, DNA replication, transcription, and bacterial pathogenesis. We describe here a novel mycobacterial IHF (mIHF) of Mycobacterium smegmatis and Mycobacterium tuberculosis that stimulates integration of mycobacteriophage L5. mIHF is the product of a single gene and is unrelated at the sequence level to other integration host factors. By itself, mIHF does not bind preferentially to attP DNA, although it significantly alters the pattern of integrase (Int) binding, promoting the formation of specific integrase–mIHF–attP intasome complexes. PMID:8986825
Recent advances in the identification of the host factors involved in dengue virus replication.
Wang, Yi; Zhang, Ping
2017-02-01
Dengue virus (DENV) belongs to the genus Flavivirus of the family Flaviviridae and it is primarily transmitted via Aedes aegypti and Aedes albopictus mosquitoes. The life cycle of DENV includes attachment, endocytosis, protein translation, RNA synthesis, assembly, egress, and maturation. Recent researches have indicated that a variety of host factors, including cellular proteins and microRNAs, positively or negatively regulate the DENV replication process. This review summarizes the latest findings (from 2014 to 2016) in the identification of the host factors involved in the DENV life cycle and Dengue infection.
The Role of Viral, Host, and Secondary Bacterial Factors in Influenza Pathogenesis
Kash, John C.; Taubenberger, Jeffery K.
2016-01-01
Influenza A virus infections in humans generally cause self-limited infections, but can result in severe disease, secondary bacterial pneumonias, and death. Influenza viruses can replicate in epithelial cells throughout the respiratory tree and can cause tracheitis, bronchitis, bronchiolitis, diffuse alveolar damage with pulmonary edema and hemorrhage, and interstitial and airspace inflammation. The mechanisms by which influenza infections result in enhanced disease, including development of pneumonia and acute respiratory distress, are multifactorial, involving host, viral, and bacterial factors. Host factors that enhance risk of severe influenza disease include underlying comorbidities, such as cardiac and respiratory disease, immunosuppression, and pregnancy. Viral parameters enhancing disease risk include polymerase mutations associated with host switch and adaptation, viral proteins that modulate immune and antiviral responses, and virulence factors that increase disease severity, which can be especially prominent in pandemic viruses and some zoonotic influenza viruses causing human infections. Influenza viral infections result in damage to the respiratory epithelium that facilitates secondary infection with common bacterial pneumopathogens and can lead to secondary bacterial pneumonias that greatly contribute to respiratory distress, enhanced morbidity, and death. Understanding the molecular mechanisms by which influenza and secondary bacterial infections, coupled with the role of host risk factors, contribute to enhanced morbidity and mortality is essential to develop better therapeutic strategies to treat severe influenza. PMID:25747532
Host-Directed Therapeutics as a Novel Approach for Tuberculosis Treatment.
Kim, Ye-Ram; Yang, Chul-Su
2017-09-28
Despite significant efforts to improve the treatment of tuberculosis (TB), it remains a prevalent infectious disease worldwide owing to the limitations of current TB therapeutic regimens. Recent work on novel TB treatment strategies has suggested that directly targeting host factors may be beneficial for TB treatment. Such strategies, termed host-directed therapeutics (HDTs), focus on host-pathogen interactions. HDTs may be more effective than the currently approved TB drugs, which are limited by the long durations of treatment needed and the emergence of drug-resistant strains. Targets of HDTs include host factors such as cytokines, immune checkpoints, immune cell functions, and essential enzyme activities. This review article discusses examples of potentially promising HDTs and introduces novel approaches for their development.
Schuchman, Ryan; Kilianski, Andy; Piper, Amanda; Vancini, Ricardo; Ribeiro, José M C; Sprague, Thomas R; Nasar, Farooq; Boyd, Gabrielle; Hernandez, Raquel; Glaros, Trevor
2018-05-09
Recent advances in mass spectrometry methods and instrumentation now allow for more accurate identification of proteins in low abundance. This technology was applied to Sindbis virus, the prototypical alphavirus to investigate the viral proteome. To determine if host proteins are specifically packaged into alphavirus virions, Sindbis virus (SINV) was grown in multiple host cells representing vertebrate and mosquito hosts and total protein content of purified virions was determined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress. One host protein, sorting nexin 5 (SNX5), was shown to be critical for the replication of three different alphaviruses, Sindbis, Mayaro and Chikungunya virus. The most significant finding was that in addition to the host proteins, SINV non-structural protein 2 (nsP2) was detected within virions grown in all host cells examined. The protein and RNA-interacting capabilities of nsP2 coupled with its presence in the virion support a role for nsP2 during packaging and/or entry of progeny virus. This function has not been identified for this protein. Taken together, this strategy identified at least one host factor integrally involved in alphavirus replication. Identification of other host proteins provides insight into alphavirus-host interactions during viral replication in both vertebrate and invertebrate hosts. This method of virus proteome analysis may also be useful for the identification of protein candidates for host-based therapeutics. IMPORTANCE Pathogenic Alphaviruses, such as Chikungunya and Mayaro virus, continue to plague public health in developing and developed countries alike. Alphaviruses belong to a group of viruses vectored in nature by hematophagous (blood-feeding) insects and are termed Arboviruses (arthropod-borne viruses). This group of viruses contains many human pathogens such as dengue fever, West Nile and Yellow fever viruses. With few exceptions there are no vaccines or prophylactics for these agents leaving one third of the world population at risk of infection. Identifying effective antivirals has been a long term goal for combating these diseases not only because of the lack of vaccines but also because they are effective during an ongoing epidemic. Mass spectrometry-based analysis of the Sindbis virus proteome can be effective in identifying host genes involved in virus replication and novel functions for virus proteins. Identification of these factors is invaluable for the prophylaxis of this group of viruses. Copyright © 2018 Schuchman et al.
G protein signaling in the parasite Entamoeba histolytica
Bosch, Dustin E; Siderovski, David P
2013-01-01
The parasite Entamoeba histolytica causes amebic colitis and systemic amebiasis. Among the known amebic factors contributing to pathogenesis are signaling pathways involving heterotrimeric and Ras superfamily G proteins. Here, we review the current knowledge of the roles of heterotrimeric G protein subunits, Ras, Rho and Rab GTPase families in E. histolytica pathogenesis, as well as of their downstream signaling effectors and nucleotide cycle regulators. Heterotrimeric G protein signaling likely modulates amebic motility and attachment to and killing of host cells, in part through activation of an RGS-RhoGEF (regulator of G protein signaling–Rho guanine nucleotide exchange factor) effector. Rho family GTPases, as well as RhoGEFs and Rho effectors (formins and p21-activated kinases) regulate the dynamic actin cytoskeleton of E. histolytica and associated pathogenesis-related cellular processes, such as migration, invasion, phagocytosis and evasion of the host immune response by surface receptor capping. A remarkably large family of 91 Rab GTPases has multiple roles in a complex amebic vesicular trafficking system required for phagocytosis and pinocytosis and secretion of known virulence factors, such as amebapores and cysteine proteases. Although much remains to be discovered, recent studies of G protein signaling in E. histolytica have enhanced our understanding of parasitic pathogenesis and have also highlighted possible targets for pharmacological manipulation. PMID:23519208
INTEGRATING PARASITES AND PATHOGENS INTO THE STUDY OF GEOGRAPHIC RANGE LIMITS.
Bozick, Brooke A; Real, Leslie A
2015-12-01
The geographic distributions of all species are limited, and the determining factors that set these limits are of fundamental importance to the fields of ecology and evolutionary biology. Plant and animal ranges have been of primary concern, while those of parasites, which represent much of the Earth's biodiversity, have been neglected. Here, we review the determinants of the geographic ranges of parasites and pathogens, and explore how parasites provide novel systems with which to investigate the ecological and evolutionary processes governing host/parasite spatial distributions. Although there is significant overlap in the causative factors that determine range borders of parasites and free-living species, parasite distributions are additionally constrained by the geographic range and ecology of the host species' population, as well as by evolutionary factors that promote host-parasite coevolution. Recently, parasites have been used to infer population demographic and ecological information about their host organisms and we conclude that this strategy can be further exploited to understand geographic range limitations of both host and parasite populations.
Gates, R D; Hoegh-Guldberg, O; McFall-Ngai, M J; Bil, K Y; Muscatine, L
1995-01-01
Reef-building corals and other tropical anthozoans harbor endosymbiotic dinoflagellates. It is now recognized that the dinoflagellates are fundamental to the biology of their hosts, and their carbon and nitrogen metabolisms are linked in important ways. Unlike free living species, growth of symbiotic dinoflagellates is unbalanced and a substantial fraction of the carbon fixed daily by symbiont photosynthesis is released and used by the host for respiration and growth. Release of fixed carbon as low molecular weight compounds by freshly isolated symbiotic dinoflagellates is evoked by a factor (i.e., a chemical agent) present in a homogenate of host tissue. We have identified this "host factor" in the Hawaiian coral Pocillopora damicornis as a set of free amino acids. Synthetic amino acid mixtures, based on the measured free amino acid pools of P. damicornis tissues, not only elicit the selective release of 14C-labeled photosynthetic products from isolated symbiotic dinoflagellates but also enhance total 14CO2 fixation. Images Fig. 2 PMID:11607567
Gates, R D; Hoegh-Guldberg, O; McFall-Ngai, M J; Bil, K Y; Muscatine, L
1995-08-01
Reef-building corals and other tropical anthozoans harbor endosymbiotic dinoflagellates. It is now recognized that the dinoflagellates are fundamental to the biology of their hosts, and their carbon and nitrogen metabolisms are linked in important ways. Unlike free living species, growth of symbiotic dinoflagellates is unbalanced and a substantial fraction of the carbon fixed daily by symbiont photosynthesis is released and used by the host for respiration and growth. Release of fixed carbon as low molecular weight compounds by freshly isolated symbiotic dinoflagellates is evoked by a factor (i.e., a chemical agent) present in a homogenate of host tissue. We have identified this "host factor" in the Hawaiian coral Pocillopora damicornis as a set of free amino acids. Synthetic amino acid mixtures, based on the measured free amino acid pools of P. damicornis tissues, not only elicit the selective release of 14C-labeled photosynthetic products from isolated symbiotic dinoflagellates but also enhance total 14CO2 fixation.
Griffiths, Sarah M; Harrison, Xavier A; Weldon, Ché; Wood, Michael D; Pretorius, Abigail; Hopkins, Kevin; Fox, Graeme; Preziosi, Richard F; Antwis, Rachael E
2018-06-25
Amphibian populations worldwide are at risk of extinction from infectious diseases, including chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Amphibian cutaneous microbiomes interact with Bd and can confer protective benefits to the host. The composition of the microbiome itself is influenced by many environment- and host-related factors. However, little is known about the interacting effects of host population structure, genetic variation and developmental stage on microbiome composition and Bd prevalence across multiple sites. Here we explore these questions in Amietia hymenopus, a disease-affected frog in southern Africa. We use microsatellite genotyping and 16S amplicon sequencing to show that the microbiome associated with tadpole mouthparts is structured spatially, and is influenced by host genotype and developmental stage. We observed strong genetic structure in host populations based on rivers and geographic distances, but this did not correspond to spatial patterns in microbiome composition. These results indicate that demographic and host genetic factors affect microbiome composition within sites, but different factors are responsible for host population structure and microbiome structure at the between-site level. Our results help to elucidate complex within- and among- population drivers of microbiome structure in amphibian populations. That there is a genetic basis to microbiome composition in amphibians could help to inform amphibian conservation efforts against infectious diseases.
Buteler, Micaela; Peterson, Robert K D; Hofland, Megan L; Weaver, David K
2015-12-01
This study investigated the dynamics of parasitism, host plant resistance, pathogens, and predation on the demography of wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), developing in susceptible (hollow stem) and resistant (solid stem) wheat hosts. This study is also the first to investigate the prevalence and impact of cannibalism on wheat stem sawfly mortality. Wheat stem sawflies were sampled in two commercial wheat fields over 4 yr from the egg stage through adult emergence, and multiple decrement life tables were constructed and analyzed. Cannibalism, host plant resistance, or unknown factors were the most prevalent factors causing egg mortality. Summer mortality of prediapause larvae ranged from 28 to 84%, mainly due to parasitism by Bracon cephi (Gahan) and Bracon lissogaster Muesebeck, cannibalism, and host plant resistance. Winter mortality ranged from 6 to 54% of the overwintering larvae, mainly due to unknown factors or pathogens. Cannibalism is a major cause of irreplaceable mortality because it is absolute, with only a single survivor in every multiple infested stem. Subsequent to obligate cannibalism, mortality of feeding larvae due to host plant resistance was lower in hollow stem wheat than in solid stem wheat. Mortality from host plant resistance was largely irreplaceable. Irreplaceable mortality due to parasitoids was greater in hollow stem wheat than in solid stem wheat. Host plant resistance due to stem solidness and parasitism in hollow stems cause substantial mortality in populations of actively feeding larvae responsible for all crop losses. Therefore, enhancing these mortality factors is vital to effective integrated pest management of wheat stem sawfly. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Venkataraman, Chandrasekar; Haack, Bradley J.; Bondada, Subbarao; Kwaik, Yousef Abu
1997-01-01
The Legionnaire's disease bacterium, Legionella pneumophila, is a facultative intracellular pathogen which invades and replicates within two evolutionarily distant hosts, free-living protozoa and mammalian cells. Invasion and intracellular replication within protozoa are thought to be major factors in the transmission of Legionnaire's disease. Although attachment and invasion of human macrophages by L. pneumophila is mediated in part by the complement receptors CR1 and CR3, the protozoan receptor involved in bacterial attachment and invasion has not been identified. To define the molecular events involved in invasion of protozoa by L. pneumophila, we examined the role of protein tyrosine phosphorylation of the protozoan host Hartmannella vermiformis upon attachment and invasion by L. pneumophila. Bacterial attachment and invasion were associated with a time-dependent tyrosine dephosphorylation of multiple host cell proteins. This host cell response was highly specific for live L. pneumophila, required contact with viable bacteria, and was completely reversible following washing off the bacteria from the host cell surface. Tyrosine dephosphorylation of host proteins was blocked by a tyrosine phosphatase inhibitor but not by tyrosine kinase inhibitors. One of the tyrosine dephosphorylated proteins was identified as the 170-kD galactose/N-acetylgalactosamine–inhibitable lectin (Gal/GalNAc) using immunoprecipitation and immunoblotting by antibodies generated against the Gal/GalNAc lectin of the protozoan Entamoeba histolytica. This Gal/GalNAc–inhibitable lectin has been shown previously to mediate adherence of E. histolytica to mammalian epithelial cells. Uptake of L. pneumophila by H. vermiformis was specifically inhibited by two monovalent sugars, Gal and GalNAc, and by mABs generated against the 170-kD lectin of E. histolytica. Interestingly, inhibition of invasion by Gal and GalNAc was associated with inhibition of bacterial-induced tyrosine dephosphorylation of H. vermiformis proteins. High stringency DNA hybridization confirmed the presence of the 170-kD lectin gene in H. vermiformis. We conclude that attachment of L. pneumophila to the H. vermiformis 170-kD lectin is required for invasion and is associated with tyrosine dephosphorylation of the Gal lectin and other host proteins. This is the first demonstration of a potential receptor used by L. pneumophila to invade protozoa. PMID:9254652
Flavivirus internalization is regulated by a size-dependent endocytic pathway.
Hackett, Brent A; Cherry, Sara
2018-04-17
Flaviviruses enter host cells through the process of clathrin-mediated endocytosis, and the spectrum of host factors required for this process are incompletely understood. Here we found that lymphocyte antigen 6 locus E (LY6E) promotes the internalization of multiple flaviviruses, including West Nile virus, Zika virus, and dengue virus. Perhaps surprisingly, LY6E is dispensable for the internalization of the endogenous cargo transferrin, which is also dependent on clathrin-mediated endocytosis for uptake. Since viruses are substantially larger than transferrin, we reasoned that LY6E may be required for uptake of larger cargoes and tested this using transferrin-coated beads of similar size as flaviviruses. LY6E was indeed required for the internalization of transferrin-coated beads, suggesting that LY6E is selectively required for large cargo. Cell biological studies found that LY6E forms tubules upon viral infection and bead internalization, and we found that tubule formation was dependent on RNASEK, which is also required for flavivirus internalization, but not transferrin uptake. Indeed, we found that RNASEK is also required for the internalization of transferrin-coated beads, suggesting it functions upstream of LY6E. These LY6E tubules resembled microtubules, and we found that microtubule assembly was required for their formation and flavivirus uptake. Since microtubule end-binding proteins link microtubules to downstream activities, we screened the three end-binding proteins and found that EB3 promotes virus uptake and LY6E tubularization. Taken together, these results highlight a specialized pathway required for the uptake of large clathrin-dependent endocytosis cargoes, including flaviviruses. Copyright © 2018 the Author(s). Published by PNAS.
Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel
2017-01-01
Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae) was enriched on terrestrial frogs. The presence of shared bacterial OTUs across geographic regions for selected host genera suggests the presence of core microbial communities which in Madagascar, might be driven more strongly by a species’ preference for specific microhabitats than by the physical, physiological or biochemical properties of their skin. These results corroborate that both host and environmental factors are driving community assembly of amphibian cutaneous microbial communities, and provide an improved foundation for elucidating their role in disease resistance. PMID:28861051
Li, Robert W; Choudhary, Ratan K; Capuco, Anthony V; Urban, Joseph F
2012-11-23
Nematode infections in ruminants are a major impediment to the profitable production of meat and dairy products, especially for small farms. Gastrointestinal parasitism not only negatively impacts weight gain and milk yield, but is also a major cause of mortality in small ruminants. The current parasite control strategy involves heavy use of anthelmintics that has resulted in the emergence of drug-resistant parasite strains. This, in addition to increasing consumer demand for animal products that are free of drug residues has stimulated development of alternative strategies, including selective breeding of parasite resistant ruminants. The development of protective immunity and manifestations of resistance to nematode infections relies upon the precise expression of the host genome that is often confounded by mechanisms simultaneously required to control multiple nematode species as well as ecto- and protozoan parasites, and microbial and viral pathogens. Understanding the molecular mechanisms underlying these processes represents a key step toward development of effective new parasite control strategies. Recent progress in characterizing the transcriptome of both hosts and parasites, utilizing high-throughput microarrays and RNA-seq technology, has led to the recognition of unique interactions and the identification of genes and biological pathways involved in the response to parasitism. Innovative use of the knowledge gained by these technologies should provide a basis for enhancing innate immunity while limiting the polarization of acquired immunity can negatively affect optimal responses to co-infection. Strategies for parasite control that use diet and vaccine/adjuvant combination could be evaluated by monitoring the host transcriptome for induction of appropriate mechanisms for imparting parasite resistance. Knowledge of different mechanisms of host immunity and the critical regulation of parasite development, physiology, and virulence can also selectively identify targets for parasite control. Comparative transcriptome analysis, in concert with genome-wide association (GWS) studies to identify quantitative trait loci (QTLs) affecting host resistance, represents a promising molecular technology to evaluate integrated control strategies that involve breed and environmental factors that contribute to parasite resistance and improved performance. Tailoring these factors to control parasitism without severely affecting production qualities, management efficiencies, and responses to pathogenic co-infection will remain a challenge. This review summarizes recent progress and limitations of understanding regulatory genetic networks and biological pathways that affect host resistance and susceptibility to nematode infection in ruminants. Published by Elsevier B.V.
Environmental conditions and Puumala virus transmission in Belgium
Linard, Catherine; Tersago, Katrien; Leirs, Herwig; Lambin, Eric F
2007-01-01
Background Non-vector-borne zoonoses such as Puumala hantavirus (PUUV) can be transmitted directly, by physical contact between infected and susceptible hosts, or indirectly, with the environment as an intermediate. The objective of this study is to better understand the causal link between environmental features and PUUV prevalence in bank vole population in Belgium, and hence with transmission risk to humans. Our hypothesis was that environmental conditions controlling the direct and indirect transmission paths differ, such that the risk of transmission to humans is not only determined by host abundance. We explored the relationship between, on one hand, environmental variables and, on the other hand, host abundance, PUUV prevalence in the host, and human cases of nephropathia epidemica (NE). Statistical analyses were carried out on 17 field sites situated in Belgian broadleaf forests. Results Linear regressions showed that landscape attributes, particularly landscape configuration, influence the abundance of hosts in broadleaf forests. Based on logistic regressions, we show that PUUV prevalence among bank voles is more linked to variables favouring the survival of the virus in the environment, and thus the indirect transmission: low winter temperatures are strongly linked to prevalence among bank voles, and high soil moisture is linked to the number of NE cases among humans. The transmission risk to humans therefore depends on the efficiency of the indirect transmission path. Human risk behaviours, such as the propensity for people to go in forest areas that best support the virus, also influence the number of human cases. Conclusion The transmission risk to humans of non-vector-borne zoonoses such as PUUV depends on a combination of various environmental factors. To understand the complex causal pathways between the environment and disease risk, one should distinguish between environmental factors related to the abundance of hosts such as land-surface attributes, landscape configuration, and climate – i.e., host ecology, – and environmental factors related to PUUV prevalence, mainly winter temperatures and soil moisture – i.e., virus ecology. Beyond a threshold abundance of hosts, environmental factors favouring the indirect transmission path (soil and climate) can better predict the number of NE cases among humans than factors influencing the abundance of hosts. PMID:18078526
Uncovering the drivers of host-associated microbiota with joint species distribution modelling.
Björk, Johannes R; Hui, Francis K C; O'Hara, Robert B; Montoya, Jose M
2018-06-01
In addition to the processes structuring free-living communities, host-associated microbiota are directly or indirectly shaped by the host. Therefore, microbiota data have a hierarchical structure where samples are nested under one or several variables representing host-specific factors, often spanning multiple levels of biological organization. Current statistical methods do not accommodate this hierarchical data structure and therefore cannot explicitly account for the effect of the host in structuring the microbiota. We introduce a novel extension of joint species distribution models (JSDMs) which can straightforwardly accommodate and discern between effects such as host phylogeny and traits, recorded covariates such as diet and collection site, among other ecological processes. Our proposed methodology includes powerful yet familiar outputs seen in community ecology overall, including (a) model-based ordination to visualize and quantify the main patterns in the data; (b) variance partitioning to assess how influential the included host-specific factors are in structuring the microbiota; and (c) co-occurrence networks to visualize microbe-to-microbe associations. © 2018 John Wiley & Sons Ltd.
de Wilde, Adriaan H.; Wannee, Kazimier F.; Scholte, Florine E. M.; Goeman, Jelle J.; ten Dijke, Peter; Snijder, Eric J.
2015-01-01
ABSTRACT To identify host factors relevant for severe acute respiratory syndrome-coronavirus (SARS-CoV) replication, we performed a small interfering RNA (siRNA) library screen targeting the human kinome. Protein kinases are key regulators of many cellular functions, and the systematic knockdown of their expression should provide a broad perspective on factors and pathways promoting or antagonizing coronavirus replication. In addition to 40 proteins that promote SARS-CoV replication, our study identified 90 factors exhibiting an antiviral effect. Pathway analysis grouped subsets of these factors in specific cellular processes, including the innate immune response and the metabolism of complex lipids, which appear to play a role in SARS-CoV infection. Several factors were selected for in-depth validation in follow-up experiments. In cells depleted for the β2 subunit of the coatomer protein complex (COPB2), the strongest proviral hit, we observed reduced SARS-CoV protein expression and a >2-log reduction in virus yield. Knockdown of the COPB2-related proteins COPB1 and Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) also suggested that COPI-coated vesicles and/or the early secretory pathway are important for SARS-CoV replication. Depletion of the antiviral double-stranded RNA-activated protein kinase (PKR) enhanced virus replication in the primary screen, and validation experiments confirmed increased SARS-CoV protein expression and virus production upon PKR depletion. In addition, cyclin-dependent kinase 6 (CDK6) was identified as a novel antiviral host factor in SARS-CoV replication. The inventory of pro- and antiviral host factors and pathways described here substantiates and expands our understanding of SARS-CoV replication and may contribute to the identification of novel targets for antiviral therapy. IMPORTANCE Replication of all viruses, including SARS-CoV, depends on and is influenced by cellular pathways. Although substantial progress has been made in dissecting the coronavirus replicative cycle, our understanding of the host factors that stimulate (proviral factors) or restrict (antiviral factors) infection remains far from complete. To study the role of host proteins in SARS-CoV infection, we set out to systematically identify kinase-regulated processes that influence virus replication. Protein kinases are key regulators in signal transduction, controlling a wide variety of cellular processes, and many of them are targets of approved drugs and other compounds. Our screen identified a variety of hits and will form the basis for more detailed follow-up studies that should contribute to a better understanding of SARS-CoV replication and coronavirus-host interactions in general. The identified factors could be interesting targets for the development of host-directed antiviral therapy to treat infections with SARS-CoV or other pathogenic coronaviruses. PMID:26041291
A Systematic Review of the Epidemiology of Echinococcosis in Domestic and Wild Animals
Otero-Abad, Belen; Torgerson, Paul R.
2013-01-01
Background Human echinococcosis is a neglected zoonosis caused by parasites of the genus Echinococcus. The most frequent clinical forms of echinococcosis, cystic echinococcosis (CE) and alveolar echinococcosis (AE), are responsible for a substantial health and economic burden, particularly to low-income societies. Quantitative epidemiology can provide important information to improve the understanding of parasite transmission and hence is an important part of efforts to control this disease. The purpose of this review is to give an insight on factors associated with echinococcosis in animal hosts by summarising significant results reported from epidemiological studies identified through a systematic search. Methodology and Principal Findings The systematic search was conducted mainly in electronic databases but a few additional records were obtained from other sources. Retrieved entries were examined in order to identify available peer-reviewed epidemiological studies that found significant risk factors for infection using associative statistical methods. One hundred studies met the eligibility criteria and were suitable for data extraction. Epidemiological factors associated with increased risk of E. granulosus infection in dogs included feeding with raw viscera, possibility of scavenging dead animals, lack of anthelmintic treatment and owners' poor health education and indicators of poverty. Key factors associated with E. granulosus infection in intermediate hosts were related to the hosts' age and the intensity of environmental contamination with parasite eggs. E. multilocularis transmission dynamics in animal hosts depended on the interaction of several ecological factors, such as hosts' population densities, host-prey interactions, landscape characteristics, climate conditions and human-related activities. Conclusions/Significance Results derived from epidemiological studies provide a better understanding of the behavioural, biological and ecological factors involved in the transmission of this parasite and hence can aid in the design of more effective control strategies. PMID:23755310
Genetic variability and haplotypes of Echinococcus isolates from Tunisia.
Boufana, Belgees; Lahmar, Samia; Rebaï, Waël; Ben Safta, Zoubeir; Jebabli, Leïla; Ammar, Adel; Kachti, Mahmoud; Aouadi, Soufia; Craig, Philip S
2014-11-01
The species/genotypes of Echinococcus infecting a range of intermediate, canid and human hosts were examined as well as the intraspecific variation and population structure of Echinococcus granulosus sensu lato (s.l.) within these hosts. A total of 174 Echinococcus isolates from humans and ungulate intermediate hosts and adult tapeworms from dogs and jackals were used. Genomic DNA was used to amplify a fragment within a mitochondrial gene and a nuclear gene, coding for cytochrome c oxidase subunit 1 (cox1; 828 bp) and elongation factor 1-alpha (ef1a; 656 bp), respectively. E. granulosus sensu stricto was identified from all host species examined, E. canadensis (G6) in a camel and, for the first time, fertile cysts of E. granulosus (s.s.) and E. equinus in equids (donkeys) and E. granulosus (s.s.) from wild boars and goats. Considerable genetic variation was seen only for the cox1 sequences of E. granulosus (s.s.). The pairwise fixation index (Fst) for cox1 E. granulosus (s.s.) sequences from donkeys was high and was statistically significant compared with that of E. granulosus populations from other intermediate hosts. A single haplotype (EqTu01) was identified for the cox1 nucleotide sequences of E. equinus. The role of donkeys in the epidemiology of echinococcosis in Tunisia requires further investigation. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bradley, M E
1984-08-01
The distributions of fatal diving accidents in commercial diver populations were examined in the Gulf of Mexico from 1968 to 1975 and in the British sector of the North Sea from 1971 to 1978. Influences and causes of death were analyzed by examining the interaction between host, environmental and agent factors. The interaction of host and environmental factors appeared to be the greatest contributing factor to diving fatalities among the estimated 900 commercial divers in the Gulf of Mexico and the 700 in the North Sea. The most significant host factors were level of experience and behavioral dysfunction. They are also the host characteristics most amenable to change through improved and more thorough training. The most significant environmental factors were equipment failure and supervisor/tender errors. These factors would be minimized by improved selection, maintenance and operation of equipment, together with improved operating and emergency diving procedures. In recent years there has been a significant downward trend in mortality rates in the commercial diver populations of this study due to improved diving techniques and operations. Further research is needed, however, on the cause(s) of diver unconsciousness and inexplicable actions that occur at depths below 91.44m (300 ft.).
Kaddis Maldonado, Rebecca J.; Parent, Leslie J.
2016-01-01
Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag–Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison. PMID:27657110
Host cell interactome of PA protein of H5N1 influenza A virus in chicken cells.
Wang, Qiao; Li, Qinghe; Liu, Ranran; Zheng, Maiqing; Wen, Jie; Zhao, Guiping
2016-03-16
Influenza A virus (IAV) heavily depends on viral-host protein interactions in order to replicate and spread. Identification of host factors that interact with viral proteins plays crucial roles in understanding the mechanism of IAV infection. Here we report the interaction landscape of H5N1 IAV PA protein in chicken cells through the use of affinity purification and mass spectrometry. PA protein was expressed in chicken cells and PA interacting complexes were captured by co-immunoprecipitation and analyzed by mass spectrometry. A total of 134 proteins were identified as PA-host interacting factors. Protein complexes including the minichromosome maintenance complex (MCM), 26S proteasome and the coat protein I (COPI) complex associated with PA in chicken cells, indicating the essential roles of these functional protein complexes during the course of IAV infection. Gene Ontology and pathway enrichment analysis both showed strong enrichment of PA interacting proteins in the category of DNA replication, covering genes such as PCNA, MCM2, MCM3, MCM4, MCM5 and MCM7. This study has uncovered the comprehensive interactome of H5N1 IAV PA protein in its chicken host and helps to establish the foundation for further investigation into the newly identified viral-host interactions. Influenza A virus (IAV) is a great threat to public health and avian production. However, the manner in which avian IAV recruits the host cellular machinery for replication and how the host antagonizes the IAV infection was previously poorly understood. Here we present the viral-host interactome of the H5N1 IAV PA protein and reveal the comprehensive association of host factors with PA. Copyright © 2016 Elsevier B.V. All rights reserved.
Fragnoud, Romain; Flamand, Marie; Reynier, Frederic; Buchy, Philippe; Duong, Vasna; Pachot, Alexandre; Paranhos-Baccala, Glaucia; Bedin, Frederic
2015-11-14
Dengue is the most widespread mosquito-borne viral disease of public health concern. In some patients, endothelial cell and platelet dysfunction lead to life-threatening hemorrhagic dengue fever or dengue shock syndrome. Prognostication of disease severity is urgently required to improve patient management. The pathogenesis of severe dengue has not been fully elucidated, and the role of host proteins associated with viral particles has received little exploration. The proteomes of virion-enriched fractions purified from plasma pools of patients with dengue fever or severe dengue were compared. Virions were purified by ultracentrifugation combined with a water-insoluble polyelectrolyte-based technique. Following in-gel hydrolysis, peptides were analyzed by nano-liquid chromatography coupled to ion trap mass spectrometry and identified using data libraries. Both dengue fever and severe dengue viral-enriched fractions contained identifiable viral envelope proteins and host cellular proteins. Canonical pathway analysis revealed the identified host proteins are mainly involved in the coagulation cascade, complement pathway or acute phase response signaling pathway. Some host proteins were over- or under-represented in plasma from patients with severe dengue compared to patients with dengue fever. ELISAs were used to validate differential expression of a selection of identified host proteins in individual plasma samples of patients with dengue fever compared to patients with severe dengue. Among 22 host proteins tested, two could differentiate between dengue fever and severe dengue in two independent cohorts (olfactomedin-4: area under the curve (AUC), 0.958; and platelet factor-4: AUC, 0.836). A novel technique of virion-enrichment from plasma has allowed to identify two host proteins that have prognostic value for classifying patients with acute dengue who are more likely to develop a severe dengue. The impact of these host proteins on pathogenicity and disease outcome are discussed.
PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis.
Micheva-Viteva, Sofiya N; Shou, Yulin; Ganguly, Kumkum; Wu, Terry H; Hong-Geller, Elizabeth
2017-01-01
Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signaling as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis , we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. Identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host-targeted therapies against infectious disease caused by intracellular pathogens.
PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micheva-Viteva, Sofiya N.; Shou, Yulin; Ganguly, Kumkum
Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signalingmore » as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. As a result, identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host-targeted therapies against infectious disease caused by intracellular pathogens.« less
PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis
Micheva-Viteva, Sofiya N.; Shou, Yulin; Ganguly, Kumkum; ...
2017-06-07
Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signalingmore » as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. As a result, identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host-targeted therapies against infectious disease caused by intracellular pathogens.« less
Davy, Christina M; Donaldson, Michael E; Willis, Craig K R; Saville, Barry J; McGuire, Liam P; Mayberry, Heather; Wilcox, Alana; Wibbelt, Gudrun; Misra, Vikram; Bollinger, Trent; Kyle, Christopher J
2017-09-01
Mitigation of emerging infectious diseases that threaten global biodiversity requires an understanding of critical host and pathogen responses to infection. For multihost pathogens where pathogen virulence or host susceptibility is variable, host-pathogen interactions in tolerant species may identify potential avenues for adaptive evolution in recently exposed, susceptible hosts. For example, the fungus Pseudogymnoascus destructans causes white-nose syndrome (WNS) in hibernating bats and is responsible for catastrophic declines in some species in North America, where it was recently introduced. Bats in Europe and Asia, where the pathogen is endemic, are only mildly affected. Different environmental conditions among Nearctic and Palearctic hibernacula have been proposed as an explanation for variable disease outcomes, but this hypothesis has not been experimentally tested. We report the first controlled, experimental investigation of response to P. destructans in a tolerant, European species of bat (the greater mouse-eared bat, Myotis myotis ). We compared body condition, disease outcomes and gene expression in control (sham-exposed) and exposed M. myotis that hibernated under controlled environmental conditions following treatment. Tolerant M. myotis experienced extremely limited fungal growth and did not exhibit symptoms of WNS. However, we detected no differential expression of genes associated with immune response in exposed bats, indicating that immune response does not drive tolerance of P. destructans in late hibernation. Variable responses to P. destructans among bat species cannot be attributed solely to environmental or ecological factors. Instead, our results implicate coevolution with the pathogen, and highlight the dynamic nature of the "white-nose syndrome transcriptome." Interspecific variation in response to exposure by the host (and possibly pathogen) emphasizes the importance of context in studies of the bat-WNS system, and robust characterization of genetic responses to exposure in various hosts and the pathogen should precede any attempts to use particular bat species as generalizable "model hosts."
Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase.
Hu, J; Seeger, C
1996-01-01
The heat shock protein Hsp90 is known as an essential component of several signal transduction pathways and has now been identified as an essential host factor for hepatitis B virus replication. Hsp90 interacts with the viral reverse transcriptase to facilitate the formation of a ribonucleoprotein (RNP) complex between the polymerase and an RNA ligand. This RNP complex is required early in replication for viral assembly and initiation of DNA synthesis through a protein-priming mechanism. These results thus invoke a role for the Hsp90 pathway in the formation of an RNP. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8577714
Obesity and Cancer Metabolism: A Perspective on Interacting Tumor-Intrinsic and Extrinsic Factors.
Doerstling, Steven S; O'Flanagan, Ciara H; Hursting, Stephen D
2017-01-01
Obesity is associated with increased risk and poor prognosis of many types of cancers. Several obesity-related host factors involved in systemic metabolism can influence tumor initiation, progression, and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. Such host factors include systemic metabolic regulators including insulin, insulin-like growth factor 1, adipokines, inflammation-related molecules, and steroid hormones, as well as the cellular and structural components of the tumor microenvironment, particularly adipose tissue. These secreted and structural host factors are extrinsic to, and interact with, the intrinsic metabolic characteristics of cancer cells to influence their growth and spread. This review will focus on the interplay of these tumor cell-intrinsic and extrinsic factors in the context of energy balance, with the objective of identifying new intervention targets for preventing obesity-associated cancer.
Martinů, Jana; Sychra, Oldřich; Literák, Ivan; Čapek, Miroslav; Gustafsson, Daniel L; Štefka, Jan
2015-01-01
Parasites with wide host spectra provide opportunities to study the ecological parameters of speciation, as well as the process of the evolution of host specificity. The speciose and cosmopolitan louse genus Menacanthus comprises both multi-host and specialised species, allowing exploration of the ecological and historical factors affecting the evolution of parasites using a comparative approach. We used phylogenetic analysis to reconstruct evolutionary relationships in 14 species of Menacanthus based on the sequences of one mitochondrial and one nuclear gene. The results allowed us to validate species identification based on morphology, as well as to explore host distribution by assumed generalist and specialist species. Our analyses confirmed a narrow host use for several species, however in some cases, the supposed host specialists had a wider host spectrum than anticipated. In one case a host generalist (Menacanthus eurysternus) was clustered terminally on a clade almost exclusively containing host specialists. Such a clade topology indicates that the process of host specialisation may not be irreversible in parasite evolution. Finally, we compared patterns of population genetic structure, geographic distribution and host spectra between two selected species, M. eurysternus and Menacanthus camelinus, using haplotype networks. Menacanthus camelinus showed limited geographical distribution in combination with monoxenous host use, whereas M. eurysternus showed a global distribution and lack of host specificity. It is suggested that frequent host switching maintains gene flow between M. eurysternus populations on unrelated hosts in local populations. However, gene flow between geographically distant localities was restricted, suggesting that geography rather than host-specificity is the main factor defining the global genetic diversity of M. eurysternus. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Finding Cardinality Heavy-Hitters in Massive Traffic Data and Its Application to Anomaly Detection
NASA Astrophysics Data System (ADS)
Ishibashi, Keisuke; Mori, Tatsuya; Kawahara, Ryoichi; Hirokawa, Yutaka; Kobayashi, Atsushi; Yamamoto, Kimihiro; Sakamoto, Hitoaki; Asano, Shoichiro
We propose an algorithm for finding heavy hitters in terms of cardinality (the number of distinct items in a set) in massive traffic data using a small amount of memory. Examples of such cardinality heavy-hitters are hosts that send large numbers of flows, or hosts that communicate with large numbers of other hosts. Finding these hosts is crucial to the provision of good communication quality because they significantly affect the communications of other hosts via either malicious activities such as worm scans, spam distribution, or botnet control or normal activities such as being a member of a flash crowd or performing peer-to-peer (P2P) communication. To precisely determine the cardinality of a host we need tables of previously seen items for each host (e. g., flow tables for every host) and this may infeasible for a high-speed environment with a massive amount of traffic. In this paper, we use a cardinality estimation algorithm that does not require these tables but needs only a little information called the cardinality summary. This is made possible by relaxing the goal from exact counting to estimation of cardinality. In addition, we propose an algorithm that does not need to maintain the cardinality summary for each host, but only for partitioned addresses of a host. As a result, the required number of tables can be significantly decreased. We evaluated our algorithm using actual backbone traffic data to find the heavy-hitters in the number of flows and estimate the number of these flows. We found that while the accuracy degraded when estimating for hosts with few flows, the algorithm could accurately find the top-100 hosts in terms of the number of flows using a limited-sized memory. In addition, we found that the number of tables required to achieve a pre-defined accuracy increased logarithmically with respect to the total number of hosts, which indicates that our method is applicable for large traffic data for a very large number of hosts. We also introduce an application of our algorithm to anomaly detection. With actual traffic data, our method could successfully detect a sudden network scan.
Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael
2012-01-01
Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.
NASA Technical Reports Server (NTRS)
Hart, W. G. (Principal Investigator); Ingle, S. J.; Davis, M. R.
1975-01-01
The author has identified the following significant results. With comparative observations of film types and seasonal influences on reflectance characteristics, many crop varieties can be identified. This study shows that citrus, sugar cane, brush, some winter vegetables, and grain crops could be identified. Vegetative patterns in border areas can be detected. This information can be useful in detecting avenues of entry of pest species and areas of stress that require vigilance in stopping the spread of destructive species. Influence of some environmental factors on crops that may be confused with pest injury, or related factors, can be detected and identified with Skylab data (S-190B).
Robilotti, Elizabeth; Deresinski, Stan
2015-01-01
SUMMARY Norovirus, an RNA virus of the family Caliciviridae, is a human enteric pathogen that causes substantial morbidity across both health care and community settings. Several factors enhance the transmissibility of norovirus, including the small inoculum required to produce infection (<100 viral particles), prolonged viral shedding, and its ability to survive in the environment. In this review, we describe the basic virology and immunology of noroviruses, the clinical disease resulting from infection and its diagnosis and management, as well as host and pathogen factors that complicate vaccine development. Additionally, we discuss overall epidemiology, infection control strategies, and global reporting efforts aimed at controlling this worldwide cause of acute gastroenteritis. Prompt implementation of infection control measures remains the mainstay of norovirus outbreak management. PMID:25567225
Suryawanshi, Gajendra W.; Hoffmann, Alexander
2015-01-01
Human immunodeficiency virus-1 (HIV-1) employs accessory proteins to evade innate immune responses by neutralizing the anti-viral activity of host restriction factors. Apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, A3G) and bone marrow stromal cell antigen 2 (BST2) are host resistance factors that potentially inhibit HIV-1 infection. BST2 reduces viral production by tethering budding HIV-1 particles to virus producing cells, while A3G inhibits the reverse transcription (RT) process and induces viral genome hypermutation through cytidine deamination, generating fewer replication competent progeny virus. Two HIV-1 proteins counter these cellular restriction factors: Vpu, which reduces surface BST2, and Vif, which degrades cellular A3G. The contest between these host and viral proteins influences whether HIV-1 infection is established and progresses towards AIDS. In this work, we present an age-structured multi-scale viral dynamics model of in vivo HIV-1 infection. We integrated the intracellular dynamics of anti-viral activity of the host factors and their neutralization by HIV-1 accessory proteins into the virus/cell population dynamics model. We calculate the basic reproductive ratio (Ro) as a function of host-viral protein interaction coefficients, and numerically simulated the multi-scale model to understand HIV-1 dynamics following host factor-induced perturbations. We found that reducing the influence of Vpu triggers a drop in Ro, revealing the impact of BST2 on viral infection control. Reducing Vif’s effect reveals the restrictive efficacy of A3G in blocking RT and in inducing lethal hypermutations, however, neither of these factors alone is sufficient to fully restrict HIV-1 infection. Interestingly, our model further predicts that BST2 and A3G function synergistically, and delineates their relative contribution in limiting HIV-1 infection and disease progression. We provide a robust modeling framework for devising novel combination therapies that target HIV-1 accessory proteins and boost antiviral activity of host factors. PMID:26385832
Effect of major abdominal surgery on the host immune response to infection.
Buttenschoen, Klaus; Fathimani, Kamran; Buttenschoen, Daniela Carli
2010-06-01
The present review summarizes key studies on the effects of major abdominal surgery on the host response to infection published during the last 18 months. Surgical trauma causes stereotyped systemic proinflammatory and compensatory anti-inflammatory reactions. It is leukocyte reprogramming rather than general immune suppression. The list of recent findings is long. Preoperative infectious challenge was found to increase survival. Obesity is associated with increased production of interleukin-17A in peritonitis. Abdominal surgery alters expression of toll-like receptors (TLRs). The acute phase reaction down-regulates the transcription factor carbohydrate response element binding protein. Myosin light chain kinase activation is a final pathway of acute tight junction regulation of gut barrier and zonula occludens 1 protein is an essential effector. The brain is involved in regulating the immune and gut system. Elimination of lipopolysaccharide is challenging. Th1/Th2 ratio is lowered in patients with postoperative complications. Cholinergic anti-inflammatory pathways can inhibit tissue damage. The new substance PXL01 prevents adhesions. Postoperative infection causes incisional hernias. Hypothermia reduced human leukocyte antigen DR surface expression and delayed tumor necrosis factor clearance. Systems biology identified interferon regulatory factor 3 as the negative regulator of TLR signaling. Protective immunity could contribute defeating surgical infections. Systemic inflammation is the usual response to trauma. All organs seem to be involved and linked up in cybernetic systems aiming at reconstitution of homeostasis. Although knowledge is still fragmentary, it is already difficult to integrate known facts and new technologies are required for information processing. Defining criteria to develop therapeutic strategies requires much more insight into molecular mechanisms and cybernetics of organ systems.
Alonzo, Francis; Port, Gary C.; Cao, Min; Freitag, Nancy E.
2009-01-01
Listeria monocytogenes is an intracellular bacterial pathogen whose virulence depends on the regulated expression of numerous secreted bacterial factors. As for other gram-positive bacteria, many proteins secreted by L. monocytogenes are translocated across the bacterial membrane in an unfolded state to the compartment existing between the membrane and the cell wall. This compartment presents a challenging environment for protein folding due to its high density of negative charge, high concentrations of cations, and low pH. We recently identified PrsA2 as a gene product required for L. monocytogenes virulence. PrsA2 was identified based on its increased secretion by strains containing a mutationally activated form of prfA, the key regulator of L. monocytogenes virulence gene expression. The prsA2 gene product is one of at least two predicted peptidyl-prolyl cis/trans-isomerases encoded by L. monocytogenes; these proteins function as posttranslocation protein chaperones and/or foldases. In this study, we demonstrate that PrsA2 plays a unique and important role in L. monocytogenes pathogenesis by promoting the activity and stability of at least two critical secreted virulence factors: listeriolysin O (LLO) and a broad-specificity phospholipase. Loss of PrsA2 activity severely attenuated virulence in mice and impaired bacterial cell-to-cell spread in host cells. In contrast, mutants lacking prsA1 resembled wild-type bacteria with respect to intracellular growth and cell-to-cell spread as well as virulence in mice. PrsA2 is thus distinct from PrsA1 in its unique requirement for the stability and full activity of L. monocytogenes-secreted factors that contribute to host infection. PMID:19451247
Molecular basis of recognition between phytophthora pathogens and their hosts.
Tyler, Brett M
2002-01-01
Recognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.
Models for integrated pest control and their biological implications.
Tang, Sanyi; Cheke, Robert A
2008-09-01
Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.
Yi, Zhigang; Sperzel, Lindsey; Nürnberger, Cindy; Bredenbeek, Peter J; Lubick, Kirk J; Best, Sonja M; Stoyanov, Cristina T; Law, Lok Man J; Yuan, Zhenghong; Rice, Charles M; MacDonald, Margaret R
2011-01-13
Viruses in the Flavivirus genus of the Flaviviridae family are arthropod-transmitted and contribute to staggering numbers of human infections and significant deaths annually across the globe. To identify cellular factors with antiviral activity against flaviviruses, we screened a cDNA library using an iterative approach. We identified a mammalian Hsp40 chaperone protein (DNAJC14) that when overexpressed was able to mediate protection from yellow fever virus (YFV)-induced cell death. Further studies revealed that DNAJC14 inhibits YFV at the step of viral RNA replication. Since replication of bovine viral diarrhea virus (BVDV), a member of the related Pestivirus genus, is also known to be modulated by DNAJC14, we tested the effect of this host factor on diverse Flaviviridae family members. Flaviviruses, including the pathogenic Asibi strain of YFV, Kunjin, and tick-borne Langat virus, as well as a Hepacivirus, hepatitis C virus (HCV), all were inhibited by overexpression of DNAJC14. Mutagenesis showed that both the J-domain and the C-terminal domain, which mediates self-interaction, are required for anti-YFV activity. We found that DNAJC14 does not block YFV nor HCV NS2-3 cleavage, and using non-inhibitory mutants demonstrate that DNAJC14 is recruited to YFV replication complexes. Immunofluorescence analysis demonstrated that endogenous DNAJC14 rearranges during infection and is found in replication complexes identified by dsRNA staining. Interestingly, silencing of endogenous DNAJC14 results in impaired YFV replication suggesting a requirement for DNAJC14 in YFV replication complex assembly. Finally, the antiviral activity of overexpressed DNAJC14 occurs in a time- and dose-dependent manner. DNAJC14 overexpression may disrupt the proper stoichiometry resulting in inhibition, which can be overcome upon restoration of the optimal ratios due to the accumulation of viral nonstructural proteins. Our findings, together with previously published work, suggest that the members of the Flaviviridae family have evolved in unique and important ways to interact with this host Hsp40 chaperone molecule.
Bmh1p (14-3-3) mediates pathways associated with virulence in Candida albicans.
Kelly, Michelle N; Johnston, Douglas A; Peel, Bethany A; Morgan, Timothy W; Palmer, Glen E; Sturtevant, Joy E
2009-05-01
The ability of the pathogenic fungus Candida albicans to cause disease requires rapid adaptation to changes in the host environment and to an evolving host immune response. The identification of 'virulence factors' using in vitro characterization of mutant strains has traditionally relied on a common set of phenotypic and biochemical assays (most often performed at 30 degrees C) and the subsequent correlation with their corresponding virulence in mouse models of disease. Utilizing a panel of isogenic mutants for the multifunctional signal-modulating 14-3-3 protein (Bmh1p), we have found that specific mutations affect a variety of different pathways currently associated with virulence, including those involved with the formation of filaments, as well as interaction with host immune cells. Surprisingly, our studies revealed that deficiencies in many of these pathways do not always correlate with virulence in a mouse model of disseminated infection. Mutations within the binding pocket of Bmh1p that affect the ability of the protein to efficiently bind ligand had varying effects on the results of a number of in vitro and in vivo assays. The capability, in vitro, to filament in embedment conditions, and to filament and form chlamydospores under microaerophilic conditions on cornmeal agar, does not correlate with virulence. It is likely that only a subset of hyphal signalling pathways is actually required for the establishment of infection in the disseminated mouse model. Most importantly, our results suggest that the delayed onset of log-phase [corrected] growth in vitro at 37 degrees C, and not at 30 degrees C, results in an inability of these mutants to rapidly adjust to environmental changes in vivo and may be responsible for their increased clearance and reduced virulence. It is critical, therefore, that future in vitro studies of putative virulence factors in C. albicans include careful characterization at physiological temperatures.
Bakenhaster, Micah D; Lowerre-Barbieri, Susan; Kiryu, Yasunari; Walters, Sarah; Fajer-Avila, Emma J
2014-04-03
The parasitic nematode Philometra floridensis infects the ovary of its only host, the economically important fish species Sciaenops ocellatus, but the factors influencing host susceptibility and potential pathogenic effects are unknown. Here we report new information on these topics from evaluations of infected and uninfected hosts collected from the northeastern Gulf of Mexico. Fish length and age were evaluated vis-à-vis nematode prevalence to check for ontogenetic differences in host susceptibility. To evaluate health and reproductive consequences of infection, we looked for effects in Fulton's condition factor (K) and batch fecundity estimates (BF), and we evaluated ovarian tissue histologically to check for oocyte atresia and other host responses. We observed localized pathological changes in fish ovarian tissue associated with female nematodes, including leucocytic exudates, granulomatous inflammation, and Langhans-type multinucleated giant cells; the hosts, however, appeared to maintain high fecundity and actually exhibited, on average, better health index scores and higher relative fecundity than did uninfected fish. These differences are likely explained by the parasite's tendency to disproportionately infect the largest, actively spawning fish and by the localization of pathogenic changes, which could have masked effects that otherwise would have been reflected in mass-based health indicators. Although we did not detect negative effects on measures of overall health or reproductive output, further research is needed to better elucidate the relationship between these parasites and other factors affecting host reproductive potential, such as egg quality.
Host and Bacterial Proteins That Repress Recruitment of LC3 to Shigella Early during Infection
Baxt, Leigh A.; Goldberg, Marcia B.
2014-01-01
Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min.), the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4–6 hr) by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG). Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection. PMID:24722587
Class II ADP-ribosylation factors are required for efficient secretion of dengue viruses.
Kudelko, Mateusz; Brault, Jean-Baptiste; Kwok, Kevin; Li, Ming Yuan; Pardigon, Nathalie; Peiris, J S Malik; Bruzzone, Roberto; Desprès, Philippe; Nal, Béatrice; Wang, Pei Gang
2012-01-02
Identification and characterization of virus-host interactions are very important steps toward a better understanding of the molecular mechanisms responsible for disease progression and pathogenesis. To date, very few cellular factors involved in the life cycle of flaviviruses, which are important human pathogens, have been described. In this study, we demonstrate a crucial role for class II Arf proteins (Arf4 and Arf5) in the dengue flavivirus life cycle. We show that simultaneous depletion of Arf4 and Arf5 blocks recombinant subviral particle secretion for all four dengue serotypes. Immunostaining analysis suggests that class II Arf proteins are required at an early pre-Golgi step for dengue virus secretion. Using a horseradish peroxidase protein fused to a signal peptide, we show that class II Arfs act specifically on dengue virus secretion without altering the secretion of proteins through the constitutive secretory pathway. Co-immunoprecipitation data demonstrate that the dengue prM glycoprotein interacts with class II Arf proteins but not through its C-terminal VXPX motif. Finally, experiments performed with replication-competent dengue and yellow fever viruses demonstrate that the depletion of class II Arfs inhibits virus secretion, thus confirming their implication in the virus life cycle, although data obtained with West Nile virus pointed out the differences in virus-host interactions among flaviviruses. Our findings shed new light on a molecular mechanism used by dengue viruses during the late stages of the life cycle and demonstrate a novel function for class II Arf proteins.
Class II ADP-ribosylation Factors Are Required for Efficient Secretion of Dengue Viruses*
Kudelko, Mateusz; Brault, Jean-Baptiste; Kwok, Kevin; Li, Ming Yuan; Pardigon, Nathalie; Peiris, J. S. Malik; Bruzzone, Roberto; Desprès, Philippe; Nal, Béatrice; Wang, Pei Gang
2012-01-01
Identification and characterization of virus-host interactions are very important steps toward a better understanding of the molecular mechanisms responsible for disease progression and pathogenesis. To date, very few cellular factors involved in the life cycle of flaviviruses, which are important human pathogens, have been described. In this study, we demonstrate a crucial role for class II Arf proteins (Arf4 and Arf5) in the dengue flavivirus life cycle. We show that simultaneous depletion of Arf4 and Arf5 blocks recombinant subviral particle secretion for all four dengue serotypes. Immunostaining analysis suggests that class II Arf proteins are required at an early pre-Golgi step for dengue virus secretion. Using a horseradish peroxidase protein fused to a signal peptide, we show that class II Arfs act specifically on dengue virus secretion without altering the secretion of proteins through the constitutive secretory pathway. Co-immunoprecipitation data demonstrate that the dengue prM glycoprotein interacts with class II Arf proteins but not through its C-terminal VXPX motif. Finally, experiments performed with replication-competent dengue and yellow fever viruses demonstrate that the depletion of class II Arfs inhibits virus secretion, thus confirming their implication in the virus life cycle, although data obtained with West Nile virus pointed out the differences in virus-host interactions among flaviviruses. Our findings shed new light on a molecular mechanism used by dengue viruses during the late stages of the life cycle and demonstrate a novel function for class II Arf proteins. PMID:22105072
A Staphylococcus aureus TIR domain protein virulence factor blocks TLR2-mediated NF-κB signaling.
Askarian, Fatemeh; van Sorge, Nina M; Sangvik, Maria; Beasley, Federico C; Henriksen, Jørn R; Sollid, Johanna U E; van Strijp, Jos A G; Nizet, Victor; Johannessen, Mona
2014-01-01
Signaling through Toll-like receptors (TLRs), crucial molecules in the induction of host defense responses, requires adaptor proteins that contain a Toll/interleukin-1 receptor (TIR) domain. The pathogen Staphylococcus aureus produces several innate immune-evasion molecules that interfere with the host's innate immune response. A database search analysis suggested the presence of a gene encoding a homologue of the human TIR domain in S. aureus MSSA476 which was named staphylococcal TIR domain protein (TirS). Ectopic expression of TirS in human embryonic kidney, macrophage and keratinocyte cell lines interfered with signaling through TLR2, including MyD88 and TIRAP, NF-κB and/or mitogen-activated protein kinase pathways. Moreover, the presence of TirS reduced the levels of cytokines MCP-1 and G-CSF secreted in response to S. aureus. The effects on NF-κB pathway were confirmed using S. aureus MSSA476 wild type, an isogenic mutant MSSA476ΔtirS, and complemented MSSA476ΔtirS +pTirS in a Transwell system where bacteria and host cells were physically separated. Finally, in a systematic mouse infection model, TirS promoted bacterial accumulation in several organs 4 days postinfection. The results of this study reveal a new S. aureus virulence factor that can interfere with PAMP-induced innate immune signaling in vitro and bacterial survival in vivo. © 2014 S. Karger AG, Basel.
Ojanen, Markus J. T.; Turpeinen, Hannu; Cordova, Zuzet M.; Hammarén, Milka M.; Harjula, Sanna-Kaisa E.; Parikka, Mataleena; Rämet, Mika
2015-01-01
Tuberculosis is a chronic bacterial disease with a complex pathogenesis. An effective immunity against Mycobacterium tuberculosis requires both the innate and adaptive immune responses, including proper T helper (Th) type 1 cell function. FURIN is a proprotein convertase subtilisin/kexin (PCSK) enzyme, which is highly expressed in Th1 type cells. FURIN expression in T cells is essential for maintaining peripheral immune tolerance, but its role in the innate immunity and infections has remained elusive. Here, we utilized Mycobacterium marinum infection models in zebrafish (Danio rerio) to investigate how furin regulates host responses against mycobacteria. In steady-state furinAtd204e/+ fish reduced furinA mRNA levels associated with low granulocyte counts and elevated Th cell transcription factor expressions. Silencing furin genes reduced the survival of M. marinum-infected zebrafish embryos. A mycobacterial infection upregulated furinA in adult zebrafish, and infected furinAtd204e/+ mutants exhibited a proinflammatory phenotype characterized by elevated tumor necrosis factor a (tnfa), lymphotoxin alpha (lta) and interleukin 17a/f3 (il17a/f3) expression levels. The enhanced innate immune response in the furinAtd204e/+ mutants correlated with a significantly decreased bacterial burden in a chronic M. marinum infection model. Our data show that upregulated furinA expression can serve as a marker for mycobacterial disease, since it inhibits early host responses and consequently promotes bacterial growth in a chronic infection. PMID:25624351
Regulation of host-pathogen interactions via the post-transcriptional Csr/Rsm system.
Kusmierek, Maria; Dersch, Petra
2018-02-01
A successful colonization of specific hosts requires a rapid and efficient adaptation of the virulence-relevant gene expression program by bacterial pathogens. An important element in this endeavor is the Csr/Rsm system. This multi-component, post-transcriptional control system forms a central hub within complex regulatory networks and coordinately adjusts virulence properties with metabolic and physiological attributes of the pathogen. A key function is elicited by the RNA-binding protein CsrA/RsmA. CsrA/RsmA interacts with numerous target mRNAs, many of which encode crucial virulence factors, and alters their translation, stability or elongation of transcription. Recent studies highlighted that important colonization factors, toxins, and bacterial secretion systems are under CsrA/RsmA control. CsrA/RsmA deficiency impairs host colonization and attenuates virulence, making this post-transcriptional regulator a suitable drug target. The CsrA/RsmA protein can be inactivated through sequestration by non-coding RNAs, or via binding to specific highly abundant mRNAs and interacting proteins. The wide range of interaction partners and RNA targets, as well as the overarching, interlinked genetic control circuits illustrate the complexity of this regulatory system in the different pathogens. Future work addressing spatio-temporal changes of Csr/Rsm-mediated control during the course of an infection will help us to understand how bacteria reprogram their expression profile to cope with continuous changes experienced in colonized niches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Satyanarayana, G.; Marty, F.M.; Tan, C.S.
2014-01-01
BK virus (BKV), an ubiquitous human polyomavirus, usually does not cause disease in healthy individuals. BKV reactivation and disease can occur in immunosuppressed individuals, such as those who have undergone renal transplantation or hematopoietic cell transplantation (HCT). Clinical manifestations of BKV disease include graft dysfunction and failure in renal transplant recipients; HCT recipients frequently experience hematuria, cystitis, hemorrhagic cystitis (HC), and renal dysfunction. Studies of HCT patients have identified several risk factors for the development of BKV disease including myeloablative conditioning, acute graft-versus-host disease, and undergoing an umbilical cord blood (uCB) HCT. Although these risk factors indicate that alterations in the immune system are necessary for BKV pathogenesis in HCT patients, few studies have examined the interactions between host immune responses and viral reactivation in BKV disease. Specifically, having BKV immunoglobulin-G before HCT does not protect against BKV infection and disease after HCT. A limited number of studies have demonstrated BKV- specific cytotoxic T-cells in healthy adults as well as in post-HCT patients who had experienced HC. New areas of research are required for a better understanding of this emerging infectious disease post HCT, including prospective studies examining BK viruria, viremia, and their relationship to clinical disease, a detailed analysis of urothelial histopathology, and laboratory evaluation of systemic and local cellular and humoral immune responses to BKV in patients receiving HCT from different sources, including uCB and haploidentical donors. PMID:24834968
Du, Yu; Mpina, Mohamed H; Birch, Paul R J; Bouwmeester, Klaas; Govers, Francine
2015-11-01
Phytophthora infestans secretes numerous RXLR effectors that modulate host defense and thereby pave the way for successful invasion. Here, we show that the RXLR effector AVR1 is a virulence factor that promotes colonization and suppresses callose deposition, a hallmark of basal defense. To identify host targets of AVR1, we performed yeast two-hybrid screens and selected Sec5 as a candidate. Sec5 is a subunit of the exocyst, a protein complex that is involved in vesicle trafficking. AVR1-like (A-L), a close homolog of AVR1, also acts as a virulence factor, but unlike AVR1, A-L does not suppress CRINKLER2 (CRN2)-induced cell death or interact with Sec5. Compared with AVR1, A-L is shorter and lacks the carboxyl-terminal tail, the T-region that is crucial for CRN2-induced cell death suppression and Sec5 interaction. In planta analyses revealed that AVR1 and Sec5 are in close proximity, and coimmunoprecipitation confirmed the interaction. Sec5 is required for secretion of the pathogenesis-related protein PR-1 and callose deposition and also plays a role in CRN2-induced cell death. Our findings show that P. infestans manipulates an exocyst subunit and thereby potentially disturbs vesicle trafficking, a cellular process that is important for basal defense. This is a novel strategy that oomycete pathogens exploit to modulate host defense. © 2015 American Society of Plant Biologists. All Rights Reserved.
Du, Yu; Mpina, Mohamed H.; Birch, Paul R.J.; Bouwmeester, Klaas; Govers, Francine
2015-01-01
Phytophthora infestans secretes numerous RXLR effectors that modulate host defense and thereby pave the way for successful invasion. Here, we show that the RXLR effector AVR1 is a virulence factor that promotes colonization and suppresses callose deposition, a hallmark of basal defense. To identify host targets of AVR1, we performed yeast two-hybrid screens and selected Sec5 as a candidate. Sec5 is a subunit of the exocyst, a protein complex that is involved in vesicle trafficking. AVR1-like (A-L), a close homolog of AVR1, also acts as a virulence factor, but unlike AVR1, A-L does not suppress CRINKLER2 (CRN2)-induced cell death or interact with Sec5. Compared with AVR1, A-L is shorter and lacks the carboxyl-terminal tail, the T-region that is crucial for CRN2-induced cell death suppression and Sec5 interaction. In planta analyses revealed that AVR1 and Sec5 are in close proximity, and coimmunoprecipitation confirmed the interaction. Sec5 is required for secretion of the pathogenesis-related protein PR-1 and callose deposition and also plays a role in CRN2-induced cell death. Our findings show that P. infestans manipulates an exocyst subunit and thereby potentially disturbs vesicle trafficking, a cellular process that is important for basal defense. This is a novel strategy that oomycete pathogens exploit to modulate host defense. PMID:26336092
Bao, Bin; Thakur, Archana; Li, Yiwei; Ahmad, Aamir; Azmi, Asfar S.; Banerjee, Sanjeev; Kong, Dejuan; Ali, Shadan; Lum, Lawrence G.; Sarkar, Fazlul H.
2013-01-01
Over decades, cancer treatment has been mainly focused on targeting cancer cells and not much attention to host tumor microenvironment. Recent advances suggest that the tumor microenvironment requires in-depth investigation for understanding the interactions between tumor cell biology and immunobiology in order to optimize therapeutic approaches. Tumor microenvironment consists of cancer cells and tumor associated reactive fibroblasts, infiltrating non-cancer cells, secreted soluble factors or molecules, and non-cellular support materials. Tumor associated host immune cells such as Th1, Th2, Th17, regulatory cells, dendritic cells, macrophages, and myeloid-derived suppressor cells are major components of the tumor microenvironment. Accumulating evidence suggests that these tumor associated immune cells may play important roles in cancer development and progression. However, the exact functions of these cells in the tumor microenvironment are poorly understood. In the tumor microenvironment, NF-κB plays an important role in cancer development and progression because this is a major transcription factor which regulates immune functions within the tumor microenvironment. In this review, we will focus our discussion on the immunological contribution of NF-κB in tumor associated host immune cells within the tumor microenvironment. We will also discuss the potential protective role of zinc, a well-known immune response mediator, in the regulation of these immune cells and cancer cells in the tumor microenvironment especially because zinc could be useful for conditioning the tumor microenvironment toward innovative cancer therapy. PMID:22155217
Wang, Hong; Guo, Haoran; Su, Jiaming; Rui, Yajuan; Zheng, Wenwen; Gao, Wenying; Zhang, Wenyan; Li, Zhaolong; Liu, Guanchen; Markham, Richard B; Wei, Wei; Yu, Xiao-Fang
2017-05-01
The lentiviral accessory proteins Vpx and Vpr are known to utilize CRL4 (DCAF1) E3 ligase to induce the degradation of the host restriction factor SAMHD1 or host helicase transcription factor (HLTF), respectively. Selective disruption of viral CRL4 (DCAF1) E3 ligase could be a promising antiviral strategy. Recently, we have determined that posttranslational modification (neddylation) of Cullin-4 is required for the activation of Vpx-CRL4 (DCAF1) E3 ligase. However, the mechanism of Vpx/Vpr-CRL4 (DCAF1) E3 ligase assembly is still poorly understood. Here, we report that zinc coordination is an important regulator of Vpx-CRL4 E3 ligase assembly. Residues in a conserved zinc-binding motif of Vpx were essential for the recruitment of the CRL4 (DCAF1) E3 complex and Vpx-induced SAMHD1 degradation. Importantly, altering the intracellular zinc concentration by treatment with the zinc chelator N , N , N '-tetrakis-(2'-pyridylmethyl)ethylenediamine (TPEN) potently blocked Vpx-mediated SAMHD1 degradation and inhibited wild-type SIVmac (simian immunodeficiency virus of macaques) infection of myeloid cells, even in the presence of Vpx. TPEN selectively inhibited Vpx and DCAF1 binding but not the Vpx-SAMHD1 interaction or Vpx virion packaging. Moreover, we have shown that zinc coordination is also important for the assembly of the HIV-1 Vpr-CRL4 E3 ligase. In particular, Vpr zinc-binding motif mutation or TPEN treatment efficiently inhibited Vpr-CRL4 (DCAF1) E3 ligase assembly and Vpr-mediated HLTF degradation or Vpr-induced G 2 cell cycle arrest. Collectively, our study sheds light on a conserved strategy by the viral proteins Vpx and Vpr to recruit host CRL4 (DCAF1) E3 ligase, which represents a target for novel anti-human immunodeficiency virus (HIV) drug development. IMPORTANCE The Vpr and its paralog Vpx are accessory proteins encoded by different human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) lentiviruses. To facilitate viral replication, Vpx has evolved to induce SAMHD1 degradation and Vpr to mediate HLTF degradation. Both Vpx and Vpr perform their functions by recruiting CRL4 (DCAF1) E3 ligase. In this study, we demonstrate that the assembly of the Vpx- or Vpr-CRL4 E3 ligase requires a highly conserved zinc-binding motif. This motif is specifically required for the DCAF1 interaction but not for the interaction of Vpx or Vpr with its substrate. Selective disruption of Vpx- or Vpr-CRL4 E3 ligase function was achieved by zinc sequestration using N , N , N '-tetrakis-(2'-pyridylmethyl)ethylenediamine (TPEN). At the same time, zinc sequestration had no effect on zinc-dependent cellular protein functions. Therefore, information obtained from this study may be important for novel anti-HIV drug development. Copyright © 2017 American Society for Microbiology.
Nagesh, Prashanth Thevkar
2016-01-01
ABSTRACT Viruses dysregulate the host factors that inhibit virus infection. Here, we demonstrate that human enzyme, histone deacetylase 1 (HDAC1) is a new class of host factor that inhibits influenza A virus (IAV) infection, and IAV dysregulates HDAC1 to efficiently replicate in epithelial cells. A time-dependent decrease in HDAC1 polypeptide level was observed in IAV-infected cells, reducing to <50% by 24 h of infection. A further depletion (97%) of HDAC1 expression by RNA interference increased the IAV growth kinetics, increasing it by >3-fold by 24 h and by >6-fold by 48 h of infection. Conversely, overexpression of HDAC1 decreased the IAV infection by >2-fold. Likewise, a time-dependent decrease in HDAC1 activity, albeit with slightly different kinetics to HDAC1 polypeptide reduction, was observed in infected cells. Nevertheless, a further inhibition of deacetylase activity increased IAV infection in a dose-dependent manner. HDAC1 is an important host deacetylase and, in addition to its role as a transcription repressor, HDAC1 has been lately described as a coactivator of type I interferon response. Consistent with this property, we found that inhibition of deacetylase activity either decreased or abolished the phosphorylation of signal transducer and activator of transcription I (STAT1) and expression of interferon-stimulated genes, IFITM3, ISG15, and viperin in IAV-infected cells. Furthermore, the knockdown of HDAC1 expression in infected cells decreased viperin expression by 58% and, conversely, the overexpression of HDAC1 increased it by 55%, indicating that HDAC1 is a component of IAV-induced host type I interferon antiviral response. IMPORTANCE Influenza A virus (IAV) continues to significantly impact global public health by causing regular seasonal epidemics, occasional pandemics, and zoonotic outbreaks. IAV is among the successful human viral pathogens that has evolved various strategies to evade host defenses, prevent the development of a universal vaccine, and acquire antiviral drug resistance. A comprehensive knowledge of IAV-host interactions is needed to develop a novel and alternative anti-IAV strategy. Host produces a variety of factors that are able to fight IAV infection by employing various mechanisms. However, the full repertoire of anti-IAV host factors and their antiviral mechanisms has yet to be identified. We have identified here a new host factor, histone deacetylase 1 (HDAC1) that inhibits IAV infection. We demonstrate that HDAC1 is a component of host innate antiviral response against IAV, and IAV undermines HDAC1 to limit its role in antiviral response. PMID:26912629
USDA-ARS?s Scientific Manuscript database
Visual cues may be the first line of host plant recognition and an important determining factor when selecting host plants for feeding and oviposition, especially for highly polyphagous insects, such as leafhoppers, which have a broad range of potential host plants. Temperate Empoasca fabae and trop...
USDA-ARS?s Scientific Manuscript database
Endoparasitoids develop inside another insect; success depends on regulating host immunity and development by maternal factors injected into hosts during oviposition, including venom, polydnaviruses and teratocytes. Although prior results provide insights into parasitism-induced immunosuppression, l...
Tully, J. G.
1983-01-01
Major advances have occurred the past few years in the cultivation of a number of new, fastidious mollicutes--events which can be traced directly to successful efforts to develop culture media for the expanding group of helical mollicutes (spiroplasmas) inhabiting plants and arthropods. A description of cultivation techniques successful in primary isolation of three unusual mollicutes, representing new mycoplasmas from man and animals and a new spiroplasma from ticks, emphasizes some important factors in recovery of wall-less prokaryotes with special cultural requirements. Vigorous efforts to understand the distribution of spiroplasmas in plant and insect hosts also led to the cultivation of new, non-helical mollicutes. Preliminary characterization of a number of these new agents offers strong evidence for a unique and distinct Acholeplasma and Mycoplasma flora of both plants and insects. PMID:6382832
Host-Cell Survival and Death During Chlamydia Infection
Ying, Songmin; Pettengill, Matthew; Ojcius, David M.; Häcker, Georg
2008-01-01
Different Chlamydia trachomatis strains are responsible for prevalent bacterial sexually-transmitted disease and represent the leading cause of preventable blindness worldwide. Factors that predispose individuals to disease and mechanisms by which chlamydiae cause inflammation and tissue damage remain unclear. Results from recent studies indicate that prolonged survival and subsequent death of infected cells and their effect on immune effector cells during chlamydial infection may be important in determining the outcome. Survival of infected cells is favored at early times of infection through inhibition of the mitochondrial pathway of apoptosis. Death at later times displays features of both apoptosis and necrosis, but pro-apoptotic caspases are not involved. Most studies on chlamydial modulation of host-cell death until now have been performed in cell lines. The consequences for pathogenesis and the immune response will require animal models of chlamydial infection, preferably mice with targeted deletions of genes that play a role in cell survival and death. PMID:18843378
Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation
Goormachtig, Sofie; Capoen, Ward; James, Euan K.; Holsters, Marcelle
2004-01-01
Rhizobia colonize their legume hosts by different modes of entry while initiating symbiotic nitrogen fixation. Most legumes are invaded via growing root hairs by the root hair-curl mechanism, which involves epidermal cell responses. However, invasion of a number of tropical legumes happens through fissures at lateral root bases by cortical, intercellular crack entry. In the semiaquatic Sesbania rostrata, the bacteria entered via root hair curls under nonflooding conditions. Upon flooding, root hair growth was prevented, invasion on accessible root hairs was inhibited, and intercellular invasion was recruited. The plant hormone ethylene was involved in these processes. The occurrence of both invasion pathways on the same host plant enabled a comparison to be made of the structural requirements for the perception of nodulation factors, which were more stringent for the epidermal root hair invasion than for the cortical intercellular invasion at lateral root bases. PMID:15079070
Sakurai, Yasuteru; Kolokoltsov, Andrey A; Chen, Cheng-Chang; Tidwell, Michael W; Bauta, William E; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A
2015-02-27
Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy. Copyright © 2015, American Association for the Advancement of Science.
Animal models for influenza virus pathogenesis, transmission, and immunology
Thangavel, Rajagowthamee R.; Bouvier, Nicole M.
2014-01-01
In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research -- mice, ferrets, and guinea pigs -- and discuss the advantages and disadvantages of each. PMID:24709389
Novel players in coeliac disease pathogenesis: role of the gut microbiota
Verdu, Elena F.; Galipeau, Heather J.; Jabri, Bana
2016-01-01
Several studies point towards alteration in gut microbiota composition and function in coeliac disease, some of which can precede the onset of disease and/or persist when patients are on a gluten-free diet. Evidence also exists that the gut microbiota might promote or reduce coeliac-disease-associated immunopathology. However, additional studies are required in humans and in mice (using gnotobiotic technology) to determine cause–effect relationships and to identify agents for modulating the gut microbiota as a therapeutic or preventative approach for coeliac disease. In this Review, we summarize the current evidence for altered gut microbiota composition in coeliac disease and discuss how the interplay between host genetics, environmental factors and the intestinal microbiota might contribute to its pathogenesis. Moreover, we highlight the importance of utilizing animal models and long-term clinical studies to gain insight into the mechanisms through which host–microbial interactions can influence host responses to gluten. PMID:26055247
Linking dietary patterns with gut microbial composition and function
Sheflin, Amy M.; Carbonero, Franck; Weir, Tiffany L.
2017-01-01
ABSTRACT Emerging insights have implicated the gut microbiota as an important factor in the maintenance of human health. Although nutrition research has focused on how direct interactions between dietary components and host systems influence human health, it is becoming increasingly important to consider nutrient effects on the gut microbiome for a more complete picture. Understanding nutrient-host-microbiome interactions promises to reveal novel mechanisms of disease etiology and progression, offers new disease prevention strategies and therapeutic possibilities, and may mandate alternative criteria to evaluate the safety of food ingredients. Here we review the current literature on diet effects on the microbiome and the generation of microbial metabolites of dietary constituents that may influence human health. We conclude with a discussion of the relevance of these studies to nutrition and public health and summarize further research needs required to realize the potential of exploiting diet-microbiota interactions for improved health. PMID:27960648
Sigma Factor SigB Is Crucial to Mediate Staphylococcus aureus Adaptation during Chronic Infections.
Tuchscherr, Lorena; Bischoff, Markus; Lattar, Santiago M; Noto Llana, Mariangeles; Pförtner, Henrike; Niemann, Silke; Geraci, Jennifer; Van de Vyver, Hélène; Fraunholz, Martin J; Cheung, Ambrose L; Herrmann, Mathias; Völker, Uwe; Sordelli, Daniel O; Peters, Georg; Löffler, Bettina
2015-04-01
Staphylococcus aureus is a major human pathogen that causes a range of infections from acute invasive to chronic and difficult-to-treat. Infection strategies associated with persisting S. aureus infections are bacterial host cell invasion and the bacterial ability to dynamically change phenotypes from the aggressive wild-type to small colony variants (SCVs), which are adapted for intracellular long-term persistence. The underlying mechanisms of the bacterial switching and adaptation mechanisms appear to be very dynamic, but are largely unknown. Here, we analyzed the role and the crosstalk of the global S. aureus regulators agr, sarA and SigB by generating single, double and triple mutants, and testing them with proteome analysis and in different in vitro and in vivo infection models. We were able to demonstrate that SigB is the crucial factor for adaptation in chronic infections. During acute infection, the bacteria require the simultaneous action of the agr and sarA loci to defend against invading immune cells by causing inflammation and cytotoxicity and to escape from phagosomes in their host cells that enable them to settle an infection at high bacterial density. To persist intracellularly the bacteria subsequently need to silence agr and sarA. Indeed agr and sarA deletion mutants expressed a much lower number of virulence factors and could persist at high numbers intracellularly. SigB plays a crucial function to promote bacterial intracellular persistence. In fact, ΔsigB-mutants did not generate SCVs and were completely cleared by the host cells within a few days. In this study we identified SigB as an essential factor that enables the bacteria to switch from the highly aggressive phenotype that settles an acute infection to a silent SCV-phenotype that allows for long-term intracellular persistence. Consequently, the SigB-operon represents a possible target to develop preventive and therapeutic strategies against chronic and therapy-refractory infections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Font-Ribera, Andreu; Miralda-Escudé, Jordi; Arnau, Eduard
2012-11-01
We present the first measurement of the large-scale cross-correlation of Lyα forest absorption and Damped Lyman α systems (DLA), using the 9th Data Release of the Baryon Oscillation Spectroscopic Survey (BOSS). The cross-correlation is clearly detected on scales up to 40h{sup −1}Mpc and is well fitted by the linear theory prediction of the standard Cold Dark Matter model of structure formation with the expected redshift distortions, confirming its origin in the gravitational evolution of structure. The amplitude of the DLA-Lyα cross-correlation depends on only one free parameter, the bias factor of the DLA systems, once the Lyα forest bias factorsmore » are known from independent Lyα forest correlation measurements. We measure the DLA bias factor to be b{sub D} = (2.17±0.20)β{sub F}{sup 0.22}, where the Lyα forest redshift distortion parameter β{sub F} is expected to be above unity. This bias factor implies a typical host halo mass for DLAs that is much larger than expected in present DLA models, and is reproduced if the DLA cross section scales with halo mass as M{sub h}{sup α}, with α = 1.1±0.1 for β{sub F} = 1. Matching the observed DLA bias factor and rate of incidence requires that atomic gas remains extended in massive halos over larger areas than predicted in present simulations of galaxy formation, with typical DLA proper sizes larger than 20 kpc in host halos of masses ∼ 10{sup 12}M{sub ☉}. We infer that typical galaxies at z ≅ 2 to 3 are surrounded by systems of atomic clouds that are much more extended than the luminous parts of galaxies and contain ∼ 10% of the baryons in the host halo.« less
Industrial production of clotting factors: Challenges of expression, and choice of host cells.
Kumar, Sampath R
2015-07-01
The development of recombinant forms of blood coagulation factors as safer alternatives to plasma derived factors marked a major advance in the treatment of common coagulation disorders. These are complex proteins, mostly enzymes or co-enzymes, involving multiple post-translational modifications, and therefore are difficult to express. This article reviews the nature of the expression challenges for the industrial production of these factors, vis-à-vis the translational and post-translational bottlenecks, as well as the choice of host cell lines for high-fidelity production. For achieving high productivities of vitamin K dependent proteins, which include factors II (prothrombin), VII, IX and X, and protein C, host cell limitation of γ-glutamyl carboxylation is a major bottleneck. Despite progress in addressing this, involvement of yet unidentified protein(s) impedes a complete cell engineering solution. Human factor VIII expresses at very low levels due to limitations at several steps in the protein secretion pathway. Protein and cell engineering, vector improvement and alternate host cells promise improvement in the productivity. Production of Von Willebrand factor is constrained by its large size, complex structure, and the need for extensive glycosylation and disulfide-bonded oligomerization. All the licensed therapeutic factors are produced in CHO, BHK or HEK293 cells. While HEK293 is a recent adoption, BHK cells appear to be disfavored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species.
Amato, Katherine R; Martinez-Mota, Rodolfo; Righini, Nicoletta; Raguet-Schofield, Melissa; Corcione, Fabiana Paola; Marini, Elisabetta; Humphrey, Greg; Gogul, Grant; Gaffney, James; Lovelace, Elijah; Williams, LaShanda; Luong, Albert; Dominguez-Bello, Maria Gloria; Stumpf, Rebecca M; White, Bryan; Nelson, Karen E; Knight, Rob; Leigh, Steven R
2016-03-01
Recent studies suggest that variation in diet across time and space results in changes in the mammalian gut microbiota. This variation may ultimately impact host ecology by altering nutritional status and health. Wild animal populations provide an excellent opportunity for understanding these interactions. However, compared to clinical studies, microbial research targeting wild animals is currently limited, and many published studies focus only on a single population of a single host species. In this study we utilize fecal samples from two species of howler monkey (Alouatta pigra and A. palliata) collected at four sites to investigate factors influencing the gut microbiota at three scales: taxonomic (host species), ecosystemic (forest type), and local (habitat disturbance/season). The results demonstrate that the effect of host species on the gut microbiota is stronger than the effect of host forest type, which is stronger than the effect of habitat disturbance or seasonality. Nevertheless, within host species, gut microbiota composition differs in response to forest type, habitat disturbance, and season. Variations in the effect size of these factors are associated both with host species and environment. This information may be beneficial for understanding ecological and evolutionary questions associated with Mesoamerican howler monkeys, as well as determining conservation challenges facing each species. These mechanisms may also provide insight into the ecology of other species of howler monkeys, non-human primates, and mammals.
A lack of crowding? Body size does not decrease with density for two behavior-manipulating parasites
Weinersmith, KL; Warinner, Chloe B.; Tan, Virgina; Harris, David J.; Mora, Adrienne B.; Kuris, Armand M.; Lafferty, Kevin D.; Hechinger, Ryan F.
2014-01-01
For trophically transmitted parasites that manipulate the phenotype of their hosts, whether the parasites do or do not experience resource competition depends on such factors as the size of the parasites relative to their hosts, the intensity of infection, the extent to which parasites share the cost of defending against the host’s immune system or manipulating their host, and the extent to which parasites share transmission goals. Despite theoretical expectations for situations in which either no, or positive, or negative density-dependence should be observed, most studies document only negative density-dependence for trophically transmitted parasites. However, this trend may be an artifact of most studies having focused on systems in which parasites are large relative to their hosts. Yet, systems are common where parasites are small relative to their hosts, and these trophically transmitted parasites may be less likely to experience resource limitation. We looked for signs of density-dependence in Euhaplorchis californiensis (EUHA) and Renicola buchanani (RENB), two manipulative trematode parasites infecting wild-caught California killifish (Fundulus parvipinnis). These parasites are small relative to killifish (suggesting resources are not limiting), and are associated with changes in killifish behavior that are dependent on parasite-intensity and that increase predation rates by the parasites’ shared final host (indicating the possibility for cost sharing). We did not observe negative density-dependence in either species, indicating that resources are not limiting. In fact, observed patterns indicate possible mild positive density-dependence for EUHA. Although experimental confirmation is required, our findings suggest that some behavior-manipulating parasites suffer no reduction in size, and may even benefit when "crowded" by conspecifics.
Bloodstream infections in haematology: risks and new challenges for prevention.
Worth, Leon J; Slavin, Monica A
2009-05-01
Bloodstream infections are an important cause of morbidity and mortality in the haematology population, and may contribute to delayed administration of chemotherapy, increased length of hospitalisation, and increased healthcare expenditure. For gram-positive, gram-negative, anaerobic and fungal infections, specific risk factors are recognised. Unique host and environmental factors contributing to pathogenesis are acknowledged in this population. Trends in spectrum and antimicrobial susceptibility of pathogens are examined, and potential contributing factors are discussed. These include the widespread use of empiric antimicrobial therapy, increasingly intensive chemotherapeutic regimens, frequent use of central venous catheters, and local infection control practices. In addition, the risks and benefits of prophylaxis, and spectrum of endemic flora are identified as relevant factors within individual centres. Finally, challenges are presented regarding prevention, early detection, surveillance and prophylaxis. To reduce the rate and impact of bloodstream infections multifaceted and customised strategies are required within individual haematology units.
Grove, Arianna P; Liveris, Dionysios; Iyer, Radha; Petzke, Mary; Rudman, Joseph; Caimano, Melissa J; Radolf, Justin D; Schwartz, Ira
2017-08-22
The alternative sigma factor RpoS plays a key role modulating gene expression in Borrelia burgdorferi , the Lyme disease spirochete, by transcribing mammalian host-phase genes and repressing σ 70 -dependent genes required within the arthropod vector. To identify cis regulatory elements involved in RpoS-dependent repression, we analyzed green fluorescent protein (GFP) transcriptional reporters containing portions of the upstream regions of the prototypical tick-phase genes ospAB , the glp operon, and bba74 As RpoS-mediated repression occurs only following mammalian host adaptation, strains containing the reporters were grown in dialysis membrane chambers (DMCs) implanted into the peritoneal cavities of rats. Wild-type spirochetes harboring ospAB - and glp-gfp constructs containing only the minimal (-35/-10) σ 70 promoter elements had significantly lower expression in DMCs relative to growth in vitro at 37°C; no reduction in expression occurred in a DMC-cultivated RpoS mutant harboring these constructs. In contrast, RpoS-mediated repression of bba74 required a stretch of DNA located between -165 and -82 relative to its transcriptional start site. Electrophoretic mobility shift assays employing extracts of DMC-cultivated B. burgdorferi produced a gel shift, whereas extracts from RpoS mutant spirochetes did not. Collectively, these data demonstrate that RpoS-mediated repression of tick-phase borrelial genes occurs by at least two distinct mechanisms. One (e.g., ospAB and the glp operon) involves primarily sequence elements near the core promoter, while the other (e.g., bba74 ) involves an RpoS-induced transacting repressor. Our results provide a genetic framework for further dissection of the essential "gatekeeper" role of RpoS throughout the B. burgdorferi enzootic cycle. IMPORTANCE Borrelia burgdorferi , the Lyme disease spirochete, modulates gene expression to adapt to the distinctive environments of its mammalian host and arthropod vector during its enzootic cycle. The alternative sigma factor RpoS has been referred to as a "gatekeeper" due to its central role in regulating the reciprocal expression of mammalian host- and tick-phase genes. While RpoS-dependent transcription has been studied extensively, little is known regarding the mechanism(s) of RpoS-mediated repression. We employed a combination of green fluorescent protein transcriptional reporters along with an in vivo model to define cis regulatory sequences responsible for RpoS-mediated repression of prototypical tick-phase genes. Repression of ospAB and the glp operon requires only sequences near their core promoters, whereas modulation of bba74 expression involves a putative RpoS-dependent repressor that binds upstream of the core promoter. Thus, Lyme disease spirochetes employ at least two different RpoS-dependent mechanisms to repress tick-phase genes within the mammal. Copyright © 2017 Grove et al.
John W. Couston
2009-01-01
Insects and diseases are a natural part of forested ecosystems. Their activity is partially regulated by biotic factors, e.g., host abundance, host quality; physical factors, e.g., soil, climate; and disturbances (Berryman 1986). Insects and diseases can influence both forest patterns and forest processes by causing, for example, defoliation and mortality. These...
11 CFR 9008.55 - Funding for convention committees, host committees and municipal funds.
Code of Federal Regulations, 2011 CFR
2011-01-01
... donations are in accordance with the requirements of 11 CFR 9008.52 and 9008.53. (b) Host committees and..., unless they satisfy the prerequisites of 11 CFR 300.2(b)(1). (c) Host committees and municipal funds are...
11 CFR 9008.55 - Funding for convention committees, host committees and municipal funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... donations are in accordance with the requirements of 11 CFR 9008.52 and 9008.53. (b) Host committees and..., unless they satisfy the prerequisites of 11 CFR 300.2(b)(1). (c) Host committees and municipal funds are...
11 CFR 9008.55 - Funding for convention committees, host committees and municipal funds.
Code of Federal Regulations, 2013 CFR
2013-01-01
... donations are in accordance with the requirements of 11 CFR 9008.52 and 9008.53. (b) Host committees and..., unless they satisfy the prerequisites of 11 CFR 300.2(b)(1). (c) Host committees and municipal funds are...
11 CFR 9008.55 - Funding for convention committees, host committees and municipal funds.
Code of Federal Regulations, 2014 CFR
2014-01-01
... donations are in accordance with the requirements of 11 CFR 9008.52 and 9008.53. (b) Host committees and..., unless they satisfy the prerequisites of 11 CFR 300.2(b)(1). (c) Host committees and municipal funds are...
Analysis of Ebola Virus Entry Into Macrophages.
Dahlmann, Franziska; Biedenkopf, Nadine; Babler, Anne; Jahnen-Dechent, Willi; Karsten, Christina B; Gnirß, Kerstin; Schneider, Heike; Wrensch, Florian; O'Callaghan, Christopher A; Bertram, Stephanie; Herrler, Georg; Becker, Stephan; Pöhlmann, Stefan; Hofmann-Winkler, Heike
2015-10-01
Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)-driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Vanaerschot, Manu; Huijben, Silvie; Van den Broeck, Frederik; Dujardin, Jean-Claude
2014-01-01
Drug-resistant pathogens emerge faster than new drugs come out of drug discovery pipelines. Current and future drug options should therefore be better protected, requiring a clear understanding of the factors that contribute to the natural history of drug resistance. Although many of these factors are relatively well understood for most bacteria, this proves to be more complex for vectorborne parasites. In this review, we discuss considering three key models (Plasmodium, Leishmania and Schistosoma) how drug resistance can emerge, spread and persist. We demonstrate a multiplicity of scenarios, clearly resulting from the biological diversity of the different organisms, but also from the different modes of action of the drugs used, the specific within- and between-host ecology of the parasites, and environmental factors that may have direct or indirect effects. We conclude that integrated control of drug-resistant vectorborne parasites is not dependent upon chemotherapy only, but also requires a better insight into the ecology of these parasites and how their transmission can be impaired. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Genome-wide siRNA screen identifies UNC50 as a regulator of Shiga toxin 2 trafficking.
Selyunin, Andrey S; Iles, Lakesla R; Bartholomeusz, Geoffrey; Mukhopadhyay, Somshuvra
2017-10-02
Shiga toxins 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol. Early endosome-to-Golgi transport allows the toxins to evade degradation in lysosomes. Targeting this trafficking step has therapeutic promise, but the mechanism of trafficking for the more potent toxin STx2 is unclear. To identify host factors required for early endosome-to-Golgi trafficking of STx2, we performed a viability-based genome-wide siRNA screen in HeLa cells. 564, 535, and 196 genes were found to be required for toxicity induced by STx1 only, STx2 only, and both toxins, respectively. We focused on validating endosome/Golgi-localized hits specific for STx2 and found that depletion of UNC50 blocked early endosome-to-Golgi trafficking and induced lysosomal degradation of STx2. UNC50 acted by recruiting GBF1, an ADP ribosylation factor-guanine nucleotide exchange factor (ARF-GEF), to the Golgi. These results provide new information about STx2 trafficking mechanisms and may advance efforts to generate therapeutically viable toxin-trafficking inhibitors. © 2017 Selyunin et al.
Mapping the microbiome of Ictalurid catfish: tissue and species-specific community composition
USDA-ARS?s Scientific Manuscript database
Host mucosal immunity is regulated by the complex interplay between environmental factors, host genetics, and commensal and pathogen dynamics. Microbial imbalances due to physiological stressors, changes in nutrition, and/or antibiotic application can potentiate over-exuberant host immune responses ...
Boyce, Kylie J.; McLauchlan, Alisha; Schreider, Lena; Andrianopoulos, Alex
2015-01-01
During infection, pathogens must utilise the available nutrient sources in order to grow while simultaneously evading or tolerating the host’s defence systems. Amino acids are an important nutritional source for pathogenic fungi and can be assimilated from host proteins to provide both carbon and nitrogen. The hpdA gene of the dimorphic fungus Penicillium marneffei, which encodes an enzyme which catalyses the second step of tyrosine catabolism, was identified as up-regulated in pathogenic yeast cells. As well as enabling the fungus to acquire carbon and nitrogen, tyrosine is also a precursor in the formation of two types of protective melanin; DOPA melanin and pyomelanin. Chemical inhibition of HpdA in P. marneffei inhibits ex vivo yeast cell production suggesting that tyrosine is a key nutrient source during infectious growth. The genes required for tyrosine catabolism, including hpdA, are located in a gene cluster and the expression of these genes is induced in the presence of tyrosine. A gene (hmgR) encoding a Zn(II)2-Cys6 binuclear cluster transcription factor is present within the cluster and is required for tyrosine induced expression and repression in the presence of a preferred nitrogen source. AreA, the GATA-type transcription factor which regulates the global response to limiting nitrogen conditions negatively regulates expression of cluster genes in the absence of tyrosine and is required for nitrogen metabolite repression. Deletion of the tyrosine catabolic genes in the cluster affects growth on tyrosine as either a nitrogen or carbon source and affects pyomelanin, but not DOPA melanin, production. In contrast to other genes of the tyrosine catabolic cluster, deletion of hpdA results in no growth within macrophages. This suggests that the ability to catabolise tyrosine is not required for macrophage infection and that HpdA has an additional novel role to that of tyrosine catabolism and pyomelanin production during growth in host cells. PMID:25812137
Technologies to Increase PV Hosting Capacity in Distribution Feeders: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mather, Barry; Gotseff, Peter
This paper studies the distributed photovoltaic (PV) hosting capacity in distribution feeders by using the stochastic analysis approach. Multiple scenario simulations are conducted to analyze several factors that affect PV hosting capacity, including the existence of voltage regulator, PV location, the power factor of PV inverter and Volt/VAR control. Based on the conclusions obtained from simulation results, three approaches are then proposed to increase distributed PV hosting capacity, which can be formulated as the optimization problem to obtain the optimal solution. All technologies investigated in this paper utilize only existing assets in the feeder and therefore are implementable for amore » low cost. Additionally, the tool developed for these studies is described.« less
Technologies to Increase PV Hosting Capacity in Distribution Feeders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mather, Barry; Gotseff, Peter
This paper studies the distributed photovoltaic (PV) hosting capacity in distribution feeders by using the stochastic analysis approach. Multiple scenario simulations are conducted to analyze several factors that affect PV hosting capacity, including the existence of voltage regulator, PV location, the power factor of PV inverter and Volt/VAR control. Based on the conclusions obtained from simulation results, three approaches are then proposed to increase distributed PV hosting capacity, which can be formulated as the optimization problem to obtain the optimal solution. All technologies investigated in this paper utilize only existing assets in the feeder and therefore are implementable for amore » low cost. Additionally, the tool developed for these studies is described.« less
ERIC Educational Resources Information Center
Solomon, Norman A.; Scherer, Robert F.; Oliveti, Joseph J.; Mochel, Lucienne; Bryant, Michael
2017-01-01
Initial Association to Advance Collegiate Schools of Business International accreditation involves a process of pairing mentor and host schools to provide guidance and feedback on the congruence of the host school with the accreditation standards. The mentor serves as the primary resource for assisting the host school in identifying gaps with the…
USDA-ARS?s Scientific Manuscript database
Arboviruses (arthropod borne viruses) have life cycles that include both vertebrate and invertebrate hosts with substantial differences in vector and host specificity between different viruses. Most arboviruses utilize RNA for their genetic material and are completely dependent on host tRNAs for the...
Laakso, Into; Stenroos, Soili
2017-01-01
Heterocephalacria bachmannii is a lichenicolous fungus that takes as hosts numerous lichen species of the genus Cladonia. In the present study we analyze whether the geographical distance, the host species or the host secondary metabolites determine the genetic structure of this parasite. To address the question, populations mainly from the Southern Europe, Southern Finland and the Azores were sampled. The specimens were collected from 20 different host species representing ten chemotypes. Three loci, ITS rDNA, LSU rDNA and mtSSU, were sequenced. The genetic structure was assessed by AMOVA, redundance analyses and Bayesian clustering methods. The results indicated that the host species and the host secondary metabolites are the most influential factors over the genetic structure of this lichenicolous fungus. In addition, the genetic structure of H. bachmannii was compared with that of one of its hosts, Cladonia rangiformis. The population structure of parasite and host were discordant. The contents in phenolic compounds and fatty acids of C. rangiformis were quantified in order to test whether it had some influence on the genetic structure of the species. But no correlation was found with the genetic clusters of H. bachmannii. PMID:29253026
Green, Kimberly A; Becker, Yvonne; Tanaka, Aiko; Takemoto, Daigo; Fitzsimons, Helen L; Seiler, Stephan; Lalucque, Hervé; Silar, Philippe; Scott, Barry
2017-02-01
Cell-cell fusion in fungi is required for colony formation, nutrient transfer and signal transduction. Disruption of genes required for hyphal fusion in Epichloë festucae, a mutualistic symbiont of Lolium grasses, severely disrupts the host interaction phenotype. They examined whether symB and symC, the E. festucae homologs of Podospora anserina self-signaling genes IDC2 and IDC3, are required for E. festucae hyphal fusion and host symbiosis. Deletion mutants of these genes were defective in hyphal cell fusion, formed intra-hyphal hyphae, and had enhanced conidiation. SymB-GFP and SymC-mRFP1 localize to plasma membrane, septa and points of hyphal cell fusion. Plants infected with ΔsymB and ΔsymC strains were severely stunted. Hyphae of the mutants colonized vascular bundles, were more abundant than wild type in the intercellular spaces and formed intra-hyphal hyphae. Although these phenotypes are identical to those previously observed for cell wall integrity MAP kinase mutants no difference was observed in the basal level of MpkA phosphorylation or its cellular localization in the mutant backgrounds. Both genes contain binding sites for the transcription factor ProA. Collectively these results show that SymB and SymC are key components of a conserved signaling network for E. festucae to maintain a mutualistic symbiotic interaction within L. perenne. © 2016 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.
A design and implementation methodology for diagnostic systems
NASA Technical Reports Server (NTRS)
Williams, Linda J. F.
1988-01-01
A methodology for design and implementation of diagnostic systems is presented. Also discussed are the advantages of embedding a diagnostic system in a host system environment. The methodology utilizes an architecture for diagnostic system development that is hierarchical and makes use of object-oriented representation techniques. Additionally, qualitative models are used to describe the host system components and their behavior. The methodology architecture includes a diagnostic engine that utilizes a combination of heuristic knowledge to control the sequence of diagnostic reasoning. The methodology provides an integrated approach to development of diagnostic system requirements that is more rigorous than standard systems engineering techniques. The advantages of using this methodology during various life cycle phases of the host systems (e.g., National Aerospace Plane (NASP)) include: the capability to analyze diagnostic instrumentation requirements during the host system design phase, a ready software architecture for implementation of diagnostics in the host system, and the opportunity to analyze instrumentation for failure coverage in safety critical host system operations.
Quentin, Michaëel; Abad, Pierre; Favery, Bruno
2013-01-01
Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells (FCs). Effectors synthesized in the esophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized FCs requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defense responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalized within FC nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesized roles in the unique feeding behavior of these pests.
Battenberg, Kai; Wren, Jannah A.; Hillman, Janell; Edwards, Joseph; Huang, Liujing
2016-01-01
ABSTRACT The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host. To investigate the degree of host influence, we characterized the cluster II Frankia strain distribution in rhizosphere soil in three locations in northern California. The presence/absence of cluster II Frankia strains at a given site correlated significantly with the presence/absence of host plants on the site, as determined by glutamine synthetase (glnA) gene sequence analysis, and by microbiome analysis (16S rRNA gene) of a subset of host/nonhost rhizosphere soils. However, the distribution of cluster II Frankia strains was not significantly affected by other potential determinants such as host-plant species, geographical location, climate, soil pH, or soil type. Rhizosphere soil microbiome analysis showed that cluster II Frankia strains occupied only a minute fraction of the microbiome even in the host-plant-present site and further revealed no statistically significant difference in the α-diversity or in the microbiome composition between the host-plant-present or -absent sites. Taken together, these data suggest that host plants provide a factor that is specific for cluster II Frankia strains, not a general growth-promoting factor. Further, the factor accumulates or is transported at the site level, i.e., beyond the host rhizosphere. IMPORTANCE Biological nitrogen fixation is a bacterial process that accounts for a major fraction of net new nitrogen input in terrestrial ecosystems. Transfer of fixed nitrogen to plant biomass is especially efficient via root nodule symbioses, which represent evolutionarily and ecologically specialized mutualistic associations. Frankia spp. (Actinobacteria), especially cluster II Frankia spp., have an extremely broad host range, yet comparatively little is known about the soil ecology of these organisms in relation to the host plants and their rhizosphere microbiomes. This study reveals a strong influence of the host plant on soil distribution of cluster II Frankia spp. PMID:27795313
Dean, Deborah
2012-01-01
Summary Chlamydia trachomatis is an important human pathogen causing a myriad of severe and debilitating diseases. While antibiotics have been a mainstay of treatment, there is increasing evidence for potential drug resistance, re-infection and persistent infections that require a reevaluation of treatment strategies. A critical need to address these issues will be a rapid, sensitive and cost-effect diagnostic that can be used for global screening, treatment and test-of-cure of infected individuals instead of empiric therapy that not only drives drug resistance but is not cost effective. This type of diagnostic would allow clinicians and researchers to evaluate the true incidence and prevalence of chlamydial infections in both developed and developing countries. There is extremely limited data on chlamydial sexually transmitted diseases (STD) in many developing countries including those in Central and South America. In addition, advancing our understanding of chlamydial disease pathogenesis will required an evaluation of host genetic susceptibility to infection and sequelae. We provide preliminary data on rates of chlamydial STDs and host genetic factors that predispose to infection among adolescent pregnant and non-pregnant commercial sex worker populations residing in Quito, Ecuador. PMID:20011691
Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales
Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias
2016-01-01
Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625
Schwarzkopf, Alexander; Rosenberger, Daniel; Niebergall, Martin; Gershenzon, Jonathan; Kunert, Grit
2013-01-01
The pea aphid (Acyrthosiphon pisum Harris), a legume specialist, encompasses at least 11 genetically distinct sympatric host races. Each host race shows a preference for a certain legume species. Six pea aphid clones from three host races were used to localize plant factors influencing aphid probing and feeding behavior on four legume species. Aphid performance was tested by measuring survival and growth. The location of plant factors influencing aphid probing and feeding was determined using the electrical penetration graph (EPG) technique. Every aphid clone performed best on the plant species from which it was originally collected, as well as on Vicia faba. On other plant species, clones showed intermediate or poor performance. The most important plant factors influencing aphid probing and feeding behavior were localized in the epidermis and sieve elements. Repetitive puncturing of sieve elements might be relevant for establishing phloem feeding, since feeding periods appear nearly exclusively after these repetitive sieve element punctures. A combination of plant factors influences the behavior of pea aphid host races on different legume species and likely contributes to the maintenance of these races.
The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts.
Peinado, Héctor; Lavotshkin, Simon; Lyden, David
2011-04-01
Metastasis is a multistep process that requires acquisition of malignant cell phenotypes which allow tumor cells to escape from the primary tumor site. Each of the steps during metastatic progression involves co-evolution of the tumor and its microenvironment. Although tumor cells are the driving force of metastasis, new findings suggest that the host cells within the tumor microenvironment play a key role in influencing metastatic behavior. Many of these contributing cells are derived from the bone marrow; in particular, recruited bone marrow progenitor cells generate the "pre-metastatic niche" to which the tumor cells metastasize. Analysis of the molecular mechanisms involved in pre-metastatic niche formation has revealed that secreted soluble factors are key players in bone marrow cell mobilization during metastasis. In addition, membrane vesicles derived from both tumor and host cells have recently been recognized as new candidates with important roles in the promotion of tumor growth and metastasis. This review describes old ideas and presents new insights into the role of tumor and bone marrow-derived microvesicles and exosomes in pre-metastatic niche formation and metastasis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Woolhouse, Mark
2017-07-01
Transmissibility is the defining characteristic of infectious diseases. Quantifying transmission matters for understanding infectious disease epidemiology and designing evidence-based disease control programs. Tracing individual transmission events can be achieved by epidemiological investigation coupled with pathogen typing or genome sequencing. Individual infectiousness can be estimated by measuring pathogen loads, but few studies have directly estimated the ability of infected hosts to transmit to uninfected hosts. Individuals' opportunities to transmit infection are dependent on behavioral and other risk factors relevant given the transmission route of the pathogen concerned. Transmission at the population level can be quantified through knowledge of risk factors in the population or phylogeographic analysis of pathogen sequence data. Mathematical model-based approaches require estimation of the per capita transmission rate and basic reproduction number, obtained by fitting models to case data and/or analysis of pathogen sequence data. Heterogeneities in infectiousness, contact behavior, and susceptibility can have substantial effects on the epidemiology of an infectious disease, so estimates of only mean values may be insufficient. For some pathogens, super-shedders (infected individuals who are highly infectious) and super-spreaders (individuals with more opportunities to transmit infection) may be important. Future work on quantifying transmission should involve integrated analyses of multiple data sources.
Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, Richard E., E-mail: rlloyd@bcm.edu
Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizesmore » recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.« less
Technologies and Approaches to Elucidate and Model the Virulence Program of Salmonella.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, Jason E.; Yoon, Hyunjin; Nakayasu, Ernesto S.
Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated a large amount of datamore » and driven development of computational approaches required for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird’s eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host.« less
Persistence of canine distemper virus in the Greater Yellowstone ecosystem's carnivore community.
Almberg, Emily S; Cross, Paul C; Smith, Douglas W
2010-10-01
Canine distemper virus (CDV) is an acute, highly immunizing pathogen that should require high densities and large populations of hosts for long-term persistence, yet CDV persists among terrestrial carnivores with small, patchily distributed groups. We used CDV in the Greater Yellowstone ecosystem's (GYE) wolves (Canis lupus) and coyotes (Canis latrans) as a case study for exploring how metapopulation structure, host demographics, and multi-host transmission affect the critical community size and spatial scale required for CDV persistence. We illustrate how host spatial connectivity and demographic turnover interact to affect both local epidemic dynamics, such as the length and variation in inter-epidemic periods, and pathogen persistence using stochastic, spatially explicit susceptible-exposed-infectious-recovered simulation models. Given the apparent absence of other known persistence mechanisms (e.g., a carrier or environmental state, densely populated host, chronic infection, or a vector), we suggest that CDV requires either large spatial scales or multi-host transmission for persistence. Current GYE wolf populations are probably too small to support endemic CDV. Coyotes are a plausible reservoir host, but CDV would still require 50000-100000 individuals for moderate persistence (> 50% over 10 years), which would equate to an area of 1-3 times the size of the GYE (60000-200000 km2). Coyotes, and carnivores in general, are not uniformly distributed; therefore, this is probably a gross underestimate of the spatial scale of CDV persistence. However, the presence of a second competent host species can greatly increase the probability of long-term CDV persistence at much smaller spatial scales. Although no management of CDV is currently recommended for the GYE, wolf managers in the region should expect periodic but unpredictable CDV-related population declines as often as every 2-5 years. Awareness and monitoring of such outbreaks will allow corresponding adjustments in management activities such as regulated public harvest, creating a smooth transition to state wolf management and conservation after > 30 years of being protected by the Endangered Species Act.
Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Marla, Soma; Kumar, Anil
2018-04-01
Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Host cell proteins in biotechnology-derived products: A risk assessment framework.
de Zafra, Christina L Zuch; Quarmby, Valerie; Francissen, Kathleen; Vanderlaan, Martin; Zhu-Shimoni, Judith
2015-11-01
To manufacture biotechnology products, mammalian or bacterial cells are engineered for the production of recombinant therapeutic human proteins including monoclonal antibodies. Host cells synthesize an entire repertoire of proteins which are essential for their own function and survival. Biotechnology manufacturing processes are designed to produce recombinant therapeutics with a very high degree of purity. While there is typically a low residual level of host cell protein in the final drug product, under some circumstances a host cell protein(s) may copurify with the therapeutic protein and, if it is not detected and removed, it may become an unintended component of the final product. The purpose of this article is to enumerate and discuss factors to be considered in an assessment of risk of residual host cell protein(s) detected and identified in the drug product. The consideration of these factors and their relative ranking will lead to an overall risk assessment that informs decision-making around how to control the levels of host cell proteins. © 2015 Wiley Periodicals, Inc.
Aspergillus osteomyelitis. Report of a case and review of the literature.
Barnwell, P A; Jelsma, L F; Raff, M J
1985-11-01
Aspergillus is a ubiquitous saprophytic fungus seldom pathogenic for normal hosts. Aspergillus osteomyelitis occurs infrequently and is typically limited to patients with predisposing factors, including leukocyte dysfunction, malignancy with neutropenia, steroid or antibiotic therapy, pulmonary aspergillosis, and surgical manipulation. The spine is most frequently affected, and the clinical presentation is nonspecific (50% afebrile). Diagnosis requires demonstration of characteristic, acutely branching, broad, septate hyphae in biopsy material, and culture of Aspergillus. Therapy includes debridement of necrotic bone and loculated purulence combined with amphotericin B and possibly 5-fluorocytosine or rifampin.
Acculturation and Linguistic Factors on International Students' Self-Esteem and Language Confidence
ERIC Educational Resources Information Center
Lopez, Iris Y.; Bui, Ngoc H.
2014-01-01
Acculturation and linguistic factors were examined as predictors of self-esteem and language confidence among 91 international college students. The majority of participants were Asian (64.8%), female (59.3%), and graduate students (76.9%). Assimilative (adopting host cultural values) and integrative (blending both host and home cultural values)…
Host-Induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors
USDA-ARS?s Scientific Manuscript database
Obligate biotrophic pathogens of plants require the ability to circumvent host defenses to enable colonization. To establish compatibility, pathogens secrete a variety of effectors, which regulate host immunity, and thus, facilitate the establishment of haustorial feeding structures. These structur...
The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review
Gortazar, Christian; Diez-Delgado, Iratxe; Barasona, Jose Angel; Vicente, Joaquin; De La Fuente, Jose; Boadella, Mariana
2015-01-01
The control of diseases shared with wildlife requires the development of strategies that will reduce pathogen transmission between wildlife and both domestic animals and human beings. This review describes and criticizes the options currently applied and attempts to forecast wildlife disease control in the coming decades. Establishing a proper surveillance and monitoring scheme (disease and population wise) is the absolute priority before even making the decision as to whether or not to intervene. Disease control can be achieved by different means, including: (1) preventive actions, (2) arthropod vector control, (3) host population control through random or selective culling, habitat management or reproductive control, and (4) vaccination. The alternative options of zoning or no-action should also be considered, particularly in view of a cost/benefit assessment. Ideally, tools from several fields should be combined in an integrated control strategy. The success of disease control in wildlife depends on many factors, including disease ecology, natural history, and the characteristics of the pathogen, the availability of suitable diagnostic tools, the characteristics of the domestic and wildlife host(s) and vectors, the geographical spread of the problem, the scale of the control effort and stakeholders’ attitudes. PMID:26664926
Lin, Yao-Tang; Grey, Finn
2017-01-01
The human cytomegalovirus major immediate early proteins IE1 and IE2 are critical drivers of virus replication and are considered pivotal in determining the balance between productive and latent infection. IE1 and IE2 are derived from the same primary transcript by alternative splicing and regulation of their expression likely involves a complex interplay between cellular and viral factors. Here we show that knockdown of the host ubiquitin-dependent segregase VCP/p97, results in loss of IE2 expression, subsequent suppression of early and late gene expression and, ultimately, failure in virus replication. RNAseq analysis showed increased levels of IE1 splicing, with a corresponding decrease in IE2 splicing following VCP knockdown. Global analysis of viral transcription showed the expression of a subset of viral genes is not reduced despite the loss of IE2 expression, including UL112/113. Furthermore, Immunofluorescence studies demonstrated that VCP strongly colocalised with the viral replication compartments in the nucleus. Finally, we show that NMS-873, a small molecule inhibitor of VCP, is a potent HCMV antiviral with potential as a novel host targeting therapeutic for HCMV infection. PMID:28494016
Talking microbes: When gut bacteria interact with diet and host organs
Everard, Amandine
2016-01-01
Obesity and diabetes have reached epidemic proportions. Evidence suggests that besides dietary habits and physical activity, other environmental factors, such as gut microbes, are recognized as additional partners implicated in the control of energy homeostasis. Studies on the human gut microbiota have shown that the general population can be stratified on the sole basis of three dominant bacteria (i.e., the concept of enterotypes), while some others have suggested categorizing the population according to their microbiome gene richness. Both aspects have been strengthened by recent studies investigating the impact of nutrients (e.g., dietary fibers, fat feeding) and dietary habits (i.e., vegans versus omnivores) of different populations. Using preclinical models, quite a few novel mechanisms have been proposed in these gut microbiota–host interactions, including the role of novel bacteria, the regulation of antimicrobial peptide production, the maintenance of the gut barrier function and intestinal innate immunity. In this review, we discuss several of the aforementioned aspects. Nonetheless, determining the overall mechanisms by which microbes dialogue with host cells will require further investigations before anticipating the development of next‐generation nutritional interventions using prebiotics, probiotics, synbiotics, or even specific nutrients for promoting health benefits. PMID:26178924
Metabolic host responses to infection by intracellular bacterial pathogens
Eisenreich, Wolfgang; Heesemann, Jürgen; Rudel, Thomas; Goebel, Werner
2013-01-01
The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies. PMID:23847769
Evidence for passive chemical camouflage in the parasitic mite Varroa destructor.
Kather, Ricarda; Drijfhout, Falko P; Shemilt, Sue; Martin, Stephen J
2015-02-01
Social insect colonies provide a stable and safe environment for their members. Despite colonies being heavily guarded, parasites have evolved numerous strategies to invade and inhabit these hostile places. Two such strategies are (true) chemical mimicry via biosynthesis of host odor, and chemical camouflage, in which compounds are acquired from the host. The ectoparasitic mite Varroa destructor feeds on hemolymph of its honey bee host, Apis mellifera. The mite's odor closely resembles that of its host, which allows V. destructor to remain undetected as it lives on the adult host during its phoretic phase and while reproducing on the honeybee brood. During the mite life cycle, it switches between host adults and brood, which requires it to adjust its profile to mimic the very different odors of honey bee brood and adults. In a series of transfer experiments, using bee adults and pupae, we tested whether V. destructor changes its profile by synthesizing compounds or by using chemical camouflage. We show that V. destructor required direct access to host cuticle to mimic its odor, and that it was unable to synthesize host-specific compounds itself. The mite was able to mimic host odor, even when dead, indicating a passive physico-chemical mechanism of the parasite cuticle. The chemical profile of V. destructor was adjusted within 3 to 9 h after switching hosts, demonstrating that passive camouflage is a highly efficient, fast and flexible way for the mite to adapt to a new host profile when moving between different host life stages or colonies.
Tietze, Anna L; Zernikow, Boris; Otto, Michael; Hirschfeld, Gerrit; Michel, Erik; Koh, Michelle; Blankenburg, Markus
2014-02-01
Children with severe psychomotor impairment (SPMI) often experience sleep disturbances that severely distress both the child and his or her parents. Validated questionnaires for the assessment of parents' distress related to their child's sleep disturbances are lacking. We developed and validated a new questionnaire, the HOST (holistic assessment of sleep and daily troubles in parents of children with SPMI) to assess the effect of the sleep disturbances in children with SPMI on their parents. The questionnaire was developed based on published data and expert opinion, and it was refined via direct consultation with affected parents. Its psychometric characteristics were assessed in a sample of parents of 214 children with SPMI. It was retested using a random subsample of the participants. Explorative factor analysis revealed that the HOST was composed of four scales. Fit indices, item analysis, and convergent validity (coherence with preexisting instruments of sleep disturbances and health status) were adequate. Retest analysis (n=62) revealed high stability of the HOST questionnaire and adequate replication validity. Sleep-related difficulties significantly impact the sociomedical characteristics of the parents of children with complex neurologic diseases. Typically, parents are severely affected in various aspects of daily life (i.e., medical health, social life, professional life). The HOST proved to be a valid, reliable and economical assessment tool of sleep-related difficulties in parents and relatives of children with SPMI. The HOST is capable of identifying individuals and specific areas requiring intervention. Copyright © 2013 Elsevier B.V. All rights reserved.
Pasteuria spp.: Systematics and Phylogeny of These Bacterial Parasites of Phytopathogenic Nematodes.
Preston, J F; Dickson, D W; Maruniak, J E; Nong, G; Brito, J A; Schmidt, L M; Giblin-Davis, R M
2003-06-01
Pasteuria spp. include endospore-forming bacterial pathogens of cladoceran crustaceans and plant-parasitic nematodes. Propagation of these nematode pathogens requires attachment of soilborne endospores to nematode hosts, infection, growth, sporulation, and release of endospores to repeat the cycle of infection and propagation. The ability of these bacteria to suppress the levels of plant-parasitic nematodes in the field has made them particularly promising candidates for biocontrol of nematode diseases of plants. Genes encoding 16S ribosomal RNA have been sequenced for the cladoceran (water flea) parasite and type species, Pasteuria ramosa, and for Pasteuria spp. isolated from root-knot (Meloidogyne arenaria race 1 and Meloidogyne sp.), soybean cyst (Heterodera glycines), and sting (Belonolaimus longicaudatus) nematodes. These have provided a phylogenetic basis for their designation to a distinct clade within the family Alicyclobacillaceae of the gram-positive endospore-forming bacteria. Two apparent biotypes of P. penetrans demonstrating a host preference for different Meloidogyne spp. showed identical 16S rDNA sequences, suggesting host-recognition evolves within a given species. The sequences of genes encoding sporulation transcription factors, sigE and sigF, from P. penetrans biotype P-20 show different phylogenetic relationships to other endospore-forming bacteria, supporting their application to further discriminate Pasteuria spp. and biotypes. Distribution of an adhesin-associated epitope on polypeptides from different Pasteuria isolates provides an immunochemical approach to differentiate species and biotypes with specific host preferences. Application of bioinformatics to genomic data, as well as further characterization of the biochemical basis for host recognition, will facilitate development of Pasteuria spp. as benign alternatives to chemical nematicides.
Ebert, Dieter; Duneau, David; Hall, Matthew D; Luijckx, Pepijn; Andras, Jason P; Du Pasquier, Louis; Ben-Ami, Frida
2016-01-01
The infection process of many diseases can be divided into series of steps, each one required to successfully complete the parasite's life and transmission cycle. This approach often reveals that the complex phenomenon of infection is composed of a series of more simple mechanisms. Here we demonstrate that a population biology approach, which takes into consideration the natural genetic and environmental variation at each step, can greatly aid our understanding of the evolutionary processes shaping disease traits. We focus in this review on the biology of the bacterial parasite Pasteuria ramosa and its aquatic crustacean host Daphnia, a model system for the evolutionary ecology of infectious disease. Our analysis reveals tremendous differences in the degree to which the environment, host genetics, parasite genetics and their interactions contribute to the expression of disease traits at each of seven different steps. This allows us to predict which steps may respond most readily to selection and which steps are evolutionarily constrained by an absence of variation. We show that the ability of Pasteuria to attach to the host's cuticle (attachment step) stands out as being strongly influenced by the interaction of host and parasite genotypes, but not by environmental factors, making it the prime candidate for coevolutionary interactions. Furthermore, the stepwise approach helps us understanding the evolution of resistance, virulence and host ranges. The population biological approach introduced here is a versatile tool that can be easily transferred to other systems of infectious disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Morin-Adeline, Victoria; Fraser, Stuart T; Stack, Colin; Šlapeta, Jan
2015-10-01
The ability for protozoan parasites to tolerate pH fluctuations within their niche is critical for the establishment of infection and require the parasite to be capable of adapting to a distinct pH range. We used two host adapted Tritrichomonas foetus isolates, capable of infecting either the digestive tract (pH 5.3-6.6) of feline hosts or the reproductive tract (pH 7.4-7.8) of bovine hosts to address their adaptability to changing pH. Using flow cytometry, we investigated the pH tolerance of the bovine and feline T. foetus isolates over a range of physiologically relevant pH in vitro. Following exposure to mild acid stress (pH 6), the bovine T. foetus isolates showed a significant decrease in cell viability and increased cytoplasmic granularity (p-value < 0.003, p-value < 0.0002) compared to pH 7 and 8 (p-value > 0.7). In contrast, the feline genotype displayed an enhanced capacity to maintain cell morphology and viability (p-value > 0.05). Microscopic assessment revealed that following exposure to a weak acidic stress (pH 6), the bovine T. foetus transformed into rounded parasites with extended cell volumes and displays a decrease in viability. The higher tolerance for acidic extracellular environment of the feline isolate compared to the bovine isolate suggests that pH could be a critical factor in regulating T. foetus infections and host-specificity. Copyright © 2015 Elsevier Inc. All rights reserved.
Derbise, Anne; Pierre, François; Merchez, Maud; Pradel, Elizabeth; Laouami, Sabrina; Ricard, Isabelle; Sirard, Jean-Claude; Fritz, Jill; Lemaître, Nadine; Akinbi, Henry; Boneca, Ivo G; Sebbane, Florent
2013-05-15
Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.
Azim, A A; Griggs, J A; Huang, G T-J
2016-01-01
To determine factors that may influence treatment outcome and healing time following root canal treatment. Root filled and restored teeth by pre-doctoral students were included in this study. Teeth/roots were followed-up regularly, and treatment outcome was evaluated at every follow-up appointment (healed, healing, uncertain or unsatisfactory). Host (age, immune condition, pulp/periapical diagnosis, tooth/root type, location and anatomy) and treatment factors (master apical file size, apical extension, voids and density of root filling) were recorded from patient dental records. Univariate, bivariate and multivariate analyses were performed to determine the impact of the factors on treatment outcomes and healing times. A total of 422 roots from 291 teeth met the inclusion criteria with a mean follow-up period of 2 years. The preoperative pulp condition, procedural errors during treatment, apical extension and density of root fillings significantly affected the treatment outcome. The average time required for a periapical lesion to heal was 11.78 months. The healing time increased in patients with compromised healing, patients older than 40 years, roots with Weine type II root canal systems, root canal systems prepared to a master apical file size <35, and roots with overextended fillings (P < 0.1). Multiple host and treatment factors affected the healing time and outcome of root canal treatment. Follow-up protocols should consider these factors before concluding the treatment outcome: patient's age, immune condition, as well as roots with overextended fillings, root canal systems with smaller apical preparations (size <35) or roots with complex canal systems. Intervention may be recommended if the treatment quality was inadequate or if patients became symptomatic. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Use of lice to identify cowbird hosts
Hahn, D.C.; Price, R.D.; Osenton, P.C.
2000-01-01
The host specificity of avian lice (Phthiraptera) may be utilized by biologists to investigate the brood parasitism patterns of Brown-headed Cowbirds (Molothrus ater). As nestlings, brood parasites have a unique opportunity to encounter lice that are typically host specific. Lice are permanent hemimetabolic ectoparasites, a group found strictly on the body of the host, and they are transferred almost exclusively by bodily contact between hosts during care of young and at copulation. We investigated whether cowbird nestlings become infested with avian lice from their host parents and carry these lice away when they fledge, in effect bearing ectoparasite indicators of the species that raised them. The technique of examining the lice on cowbird fledglings to identify their foster parents would be much less costly than hiring a team of experts to determine parasitism patterns in the conventional way by finding hundreds of songbird nests. We examined 244 cowbird fledglings and found that they carried a rich fauna of lice representing 11 species and six genera, almost the entire spectrum of louse genera known to occur on passerines. We also examined 320 songbirds from 30 species, all known hosts of the Brown-headed Cowbird. As a group the host birds bore a diversity of louse species comparable to that on the fledgling cowbirds: 13 species of lice from seven genera. In contrast, most individual passerine host species yielded only 1 or 2 louse species, significantly fewer than the cowbird fledglings (p < 0.0001). Of 44 fledgling cowbirds carrying lice, 11 were linked to their probable avian foster parents via louse indicators, and these are the Wood Thrush and Red-winged Blackbird. Eighteen additional fledglings were linked to one of two possible foster parents. We concluded that cowbird fledglings do carry away host lice and this survey technique provides a partial assessment of local community parasitism patterns. The incomplete state of passerine louse taxonomy requires anyone using this technique to de-louse both cowbird fledglings and local host species in order to have a reference collection of lice. Lice from cowbird fledglings can be identified by a skilled taxonomist and linked to particular host species, and the principal difficulty is the scarcity of skilled avian louse taxonomists. We also found an unusually rich louse fauna on 219 adult cowbirds, which supports the interpretation that lack of opportunity due to physical isolation has been the fundamental factor in the host specificity of lice observed in certain avian orders.
Divya, S; Thinesh, T; Seghal Kiran, G; Hassan, Saqib; Selvin, Joseph
2018-04-23
Corals are hotspots of ocean microbial diversity and imbalance in the composition of coral associated microbes has been mostly correlated with the emergence of climate change driven diseases which affect the overall stability of the reef ecosystem. Coral sampling was performed by SCUBA diving at Palk Bay (latitude 9.271580, longitude 79.132203) south Indian coast. Among the 54 bacterial isolates, an isolate MGL-D26 showed comparatively high biofilm formation and was identified as Staphylococcus sciuri based on phylogenetic analysis. The production of exopolysaccharide (EPS) confirmed the formation of a slimy EPS matrix associated with the biofilm. The biofilm formation in S. sciuri D26 was induced significantly by UV exposure followed by other stress factors including pollution, agitation, and salinity. The strain inhibited innate immune factors of corals such as melanin synthesis and phenoloxidase. Challenge experiments in a model organism Aiptasia sp. showed pathogenicity of S. sciuri. Histopathological analysis revealed tissue invasion by S. sciuri which was a predisposing factor leading to mortality in challenged Aiptasia sp. However, specific disease condition of corals infected by S. sciuri requires continuous field monitoring and further investigation. Based on the findings, S. sciuri was a first reported multi-host opportunistic pathogen which has emerged in corals under environmental stress. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chmura, Kathryn; Ovrutsky, Alida R.; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T.; Strand, Matthew J.; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R.; Kinney, William H.; Oberley-Deegan, Rebecca E.; Voelker, Dennis R.; Ordway, Diane J.; Chan, Edward D.
2013-01-01
Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218
Zantomio, D; Grigg, A P; MacGregor, L; Panek-Hudson, Y; Szer, J; Ayton, R
2006-10-01
Female genital tract graft-versus-host disease (GVHD) is an under-recognized complication of allogeneic stem cell transplantation impacting on quality of life. We describe a prospective surveillance programme for female genital GVHD to better characterize incidence, risk factors and clinical features and the impact of a structured intervention policy. A retrospective audit was conducted on the medical records of all female transplant recipients surviving at least 6 months at a single centre over a 5-year period. Patients commenced topical vaginal oestrogen early post transplant with hormone replacement as appropriate for age, prior menopausal status and co-morbidities. A genital tract management programme included regular gynaecological review and self-maintenance of vaginal capacity by dilator or intercourse. The incidence of genital GVHD was 35% (95% confidence interval (CI) (25, 50%)) at 1 year and 49% (95% CI (36, 63%)) at 2 years. Topical therapy was effective in most cases; no patient required surgical intervention to divide vaginal adhesions. The main risk factor was stem cell source with peripheral blood progenitor cells posing a higher risk than marrow (hazard ratio=3.07 (1.22, 7.73), P=0.017). Extensive GVHD in other organs was a common association. We conclude that female genital GVHD is common, and early detection and commencement of topical immunosuppression with dilator use appears to be highly effective at preventing progression.
Liu, Chao; Ouyang, Wei; Xia, Jingyan; Sun, Xiaoru; Zhao, Liying; Xu, Feng
2018-06-05
Mast cells (MCs) play a key role in immune process response to invading pathogens. This study assessed the involvement of MCs in controlling Staphylococcus aureus infection in a cutaneous infection model of MC-deficient (KitW-sh/W-sh) mice. KitW-sh/W-sh mice developed significantly larger skin lesions after the cutaneous S. aureus challenge, when compared to wild-type (WT) mice, while MC dysfunction reduced the inflammation response to S. aureus. The levels of tumor necrosis factor (TNF)-α in skin tissues were significantly decreased in KitW-sh/W-sh mice upon infection. Moreover, the exogenous administration of MCs or recombinant TNF-α effectively restored the immune response against S. aureus in KitW-sh/W-sh mice via the recruitment of neutrophils to the infected site. These results indicate that the effects of MC deficiency are largely attributed to the decrease in production of TNF-α in cutaneous S. aureus infection. In addition, S. aureus-induced MC activation was dependent on the c-kit receptor-activated phosphoinositide 3-kinase (PI3K)/AKT/P65-nuclear factor (NF-κB) pathway, which was confirmed by treatment with Masitinib (a c-kit receptor inhibitor), Wortmannin (a PI3K inhibitor), and pyrrolidine dithiocarbamate (a NF-κB inhibitor), respectively. The present study identifies the critical role of MCs in the host defense against S. aureus infection.
Factor H: A Complement Regulator in Health and Disease, and a Mediator of Cellular Interactions
Kopp, Anne; Hebecker, Mario; Svobodová, Eliška; Józsi, Mihály
2012-01-01
Complement is an essential part of innate immunity as it participates in host defense against infections, disposal of cellular debris and apoptotic cells, inflammatory processes and modulation of adaptive immune responses. Several soluble and membrane-bound regulators protect the host from the potentially deleterious effects of uncontrolled and misdirected complement activation. Factor H is a major soluble regulator of the alternative complement pathway, but it can also bind to host cells and tissues, protecting them from complement attack. Interactions of factor H with various endogenous ligands, such as pentraxins, extracellular matrix proteins and DNA are important in limiting local complement-mediated inflammation. Impaired regulatory as well as ligand and cell recognition functions of factor H, caused by mutations or autoantibodies, are associated with the kidney diseases: atypical hemolytic uremic syndrome and dense deposit disease and the eye disorder: age-related macular degeneration. In addition, factor H binds to receptors on host cells and is involved in adhesion, phagocytosis and modulation of cell activation. In this review we discuss current concepts on the physiological and pathophysiological roles of factor H in light of new data and recent developments in our understanding of the versatile roles of factor H as an inhibitor of complement activation and inflammation, as well as a mediator of cellular interactions. A detailed knowledge of the functions of factor H in health and disease is expected to unravel novel therapeutic intervention possibilities and to facilitate the development or improvement of therapies. PMID:24970127