Cosmic evolution and metal aversion in superluminous supernova host galaxies
NASA Astrophysics Data System (ADS)
Schulze, S.; Krühler, T.; Leloudas, G.; Gorosabel, J.; Mehner, A.; Buchner, J.; Kim, S.; Ibar, E.; Amorín, R.; Herrero-Illana, R.; Anderson, J. P.; Bauer, F. E.; Christensen, L.; de Pasquale, M.; de Ugarte Postigo, A.; Gallazzi, A.; Hjorth, J.; Morrell, N.; Malesani, D.; Sparre, M.; Stalder, B.; Stark, A. A.; Thöne, C. C.; Wheeler, J. C.
2018-01-01
The SUperluminous Supernova Host galaxIES survey aims to provide strong new constraints on the progenitors of superluminous supernovae (SLSNe) by understanding the relationship to their host galaxies. We present the photometric properties of 53 H-poor and 16 H-rich SLSN host galaxies out to z ∼ 4. We model their spectral energy distributions to derive physical properties, which we compare with other galaxy populations. At low redshift, H-poor SLSNe are preferentially found in very blue, low-mass galaxies with high average specific star formation rates. As redshift increases, the host population follows the general evolution of star-forming galaxies towards more luminous galaxies. After accounting for secular evolution, we find evidence for differential evolution in galaxy mass, but not in the B band and the far-ultraviolet luminosity (3σ confidence). Most remarkable is the scarcity of hosts with stellar masses above 1010 M⊙ for both classes of SLSNe. In case of H-poor SLSNe, we attribute this to a stifled production efficiency above ∼0.4 solar metallicity. However, we argue that, in addition to low metallicity, a short-lived stellar population is also required to regulate the SLSN production. H-rich SLSNe are found in a very diverse population of star-forming galaxies. Still, the scarcity of massive hosts suggests a stifled production efficiency above ∼0.8 solar metallicity. The large dispersion of the H-rich SLSNe host properties is in stark contrast to those of gamma-ray burst, regular core-collapse SN, and H-poor SLSNe host galaxies. We propose that multiple progenitor channels give rise to this subclass.
The early phase of the SMBH-galaxy coevolution in low-z "young" galaxies
NASA Astrophysics Data System (ADS)
Nagao, Tohru
2014-01-01
It is now widely recognized that most galaxies have a supermassive black hole (SMBH) in their nucleus, and the evolution of SMBHs is closely related with that of their host galaxies (the SMBH-galaxy coevolution). This is suggested by the correlation in the mass of SMBHs and their host galaxies, that has been observed in low redshifts. However, the physics of the coevolution is totally unclear, that prevents us from complete understandings of the galaxy evolution. One possible strategy to tackle this issue is measuring the mass ratio between SMBHs and their host galaxies (M_BH/M_host) at high redshifs, since different scenarios predict different evolution of the ratio ofMBH/Mhost. However it is extremely challenging to measure the mass of the host of high-z quasars, given the faint surface brightness of the host at close to the glaring quasar nucleus. Here we propose a brand-new approach to assess the early phase of the SMBH-galaxy coevolution, by focusing on low-z AGN-hosting "young" galaxies. Specifically, we focus on some very metal-poor galaxies with broadline Balmer lines at z ~ 0.1 - 0.3. By examining the SMBH scaling relations in some low-z metal-poor AGNs through high-resolution IRCS imaging observations, we will discriminate various scenarios for the SMBH-galaxy coevolution.
Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies
NASA Astrophysics Data System (ADS)
Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.
2016-12-01
We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.
The role of black holes in galaxy formation and evolution.
Cattaneo, A; Faber, S M; Binney, J; Dekel, A; Kormendy, J; Mushotzky, R; Babul, A; Best, P N; Brüggen, M; Fabian, A C; Frenk, C S; Khalatyan, A; Netzer, H; Mahdavi, A; Silk, J; Steinmetz, M; Wisotzki, L
2009-07-09
Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.
Probing the Building Blocks of Galactic Disks: An Analysis of Ultraviolet Clumps
NASA Astrophysics Data System (ADS)
Soto, Emmaris
The universe is filled with a diversity of galaxies; however, despite these diversities we are able to group galaxies into morphological categories, such as Hubble types, that may indicate different paths of evolution. In order to understand the evolution of galaxies, such as our own Milk Way, it is necessary to study the underlying star formation over cosmic time. At high redshift (z>2) star-forming galaxies reveal asymmetric and clumpy morphologies. However, the evolutionary process which takes clumpy galaxies from z>2 to the smooth axially symmetric Hubble-type galaxies in place at z˜0.5 is still unknown. Therefore, it is vital to make a connection between the morphologies of galaxies at the peak epoch of cosmic star formation at z˜2 with the galaxies observed in the local universe to better understand the mechanisms that led to their evolution. To address this and chronicle the progression of galaxy evolution, deep high resolution multi-wavelength data is used to study galaxies across cosmic time. This dissertation provides a detailed study of clumpy star-forming galaxies at intermediate redshifts, 0.5 ≤ z ≤ 1.5, focusing on sub-galactic regions of star formation which provide a mechanism to explain the evolution of clumpy galaxies to the spiral galaxies we observe today. We developed a clump-finding algorithm to select a sample of clumpy galaxies from the Ultraviolet Ultra Deep Field (UVUDF). The UVUDF was the first deep image (˜28 AB mag) ever taken with the Hubble Space Telescope (HST) showing the rest-frame far-ultraviolet (FUV, 1500A) at intermediate-z. The rest-frame FUV probes the young star-forming regions which are often seen in clumpy galaxies at high redshift. We identified 209 clumpy galaxies (hereafter host galaxies) from 1,404 candidates at intermediate redshifts. We used the HST Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS) broadband images from the UVUDF with observed near-ultraviolet, optical, and near-infrared photometry to determine their stellar properties via spectral energy distribution (SED) fitting. We estimated properties such as the mass, age, star formation rate (SFR), and metallicity of host galaxies. The deep high resolution WFC3 rest-frame FUV data allowed us to detect and measure the sizes of 403 clumps. The results provided evidence to support clump migration as a mechanism for galaxy evolution. We show that clumps make an average contribution of 19% to the total rest-frame FUV flux of their host galaxy. Additionally, individual clumps contribute a median of 5% to the host galaxy SFR and an average of ˜4% to the host galaxy mass, with total clump contributions to the host galaxy stellar mass ranging widely from less than 1% up to 93%. We showed that clumps in the outskirts of galaxies are typically younger, with higher star formation rates than clumps in the inner regions. The results are consistent with clump migration theories in which clumps form through violent gravitational instabilities in gas-rich turbulent disks, eventually migrate toward the center of the galaxies, and coalesce into the bulge.
Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm
NASA Technical Reports Server (NTRS)
2001-01-01
Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.
Spitzer Observations of GRB Hosts: A Legacy Approach
NASA Astrophysics Data System (ADS)
Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew
2012-09-01
The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).
Trakhtenbrot, Benny; Urry, C Megan; Civano, Francesca; Rosario, David J; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D
2015-07-10
Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow. Copyright © 2015, American Association for the Advancement of Science.
Galaxy Zoo: Observing secular evolution through bars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Edmond; Faber, S. M.; Koo, David C.
In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We findmore » that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).« less
The Swift GRB Host Galaxy Legacy Survey
NASA Astrophysics Data System (ADS)
Perley, Daniel
2015-08-01
I will describe the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population and its redshift evolution from z=0 to z=7. Using unbiased selection criteria we have designated a subset of 119 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, Gemini, VLT, and Magellan to obtain complementary optical/NIR photometry and spectroscopy to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass distributions and their evolution with redshift, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to serve as tools for measuring and studying cosmic star-formation in the distant universe.
Star Formation in the Central Regions of Galaxies
NASA Astrophysics Data System (ADS)
Tsai, Mengchun
2015-08-01
The galactic central region connects the galactic nucleus to the host galaxy. If the central black hole co-evolved with the host galaxies, there should be some evidence left in the central region. We use the environmental properties in the central regions such as star-forming activity, stellar population and molecular abundance to figure out a possible scenario of the evolution of galaxies. In this thesis at first we investigated the properties of the central regions in the host galaxies of active and normal galaxies. We used radio emission around the nuclei of the host galaxies to represent activity of active galactic nuclei (AGNs), and used infrared ray (IR) emission to represent the star-forming activity and stellar population of the host galaxies. We determined that active galaxies have higher stellar masses (SMs) within the central kiloparsec radius than normal galaxies do independent of the Hubble types of the host galaxies; but both active and normal galaxies exhibit similar specific star formation rates (SSFRs). We also discovered that certain AGNs exhibit substantial inner stellar structures in the IR images; most of the AGNs with inner structures are Seyferts, whereas only a few LINERs exhibit inner structures. We note that the AGNs with inner structures show a positive correlation between the radio activity of the AGNs and the SFRs of the host galaxies, but the sources without inner structures show a negative correlation between the radio power and the SFRs. These results might be explained with a scenario of starburst-AGN evolution. In this scenario, AGN activities are triggered following a nuclear starburst; during the evolution, AGN activities are accompanied by SF activity in the inner regions of the host galaxies; at the final stage of the evolution, the AGNs might transform into LINERs, exhibiting weak SF activity in the central regions of the host galaxies. For further investigation about the inner structure, we choose the most nearby and luminous Seyfert galaxy with inner structure as an example. In this thesis, we present CO(3-2) interferometric observations of the central region of the Seyfert 2 galaxy NGC1068 using the Submillimeter Array, together with CO(1-0) data taken with the Owens Valley Radio Observatory Millimeter Array. Both the CO(3-2) and CO(1-0) emission lines are mainly distributed within ~5 arcsec of the nucleus and along the spiral arms, but the intensity distributions show differences; the CO(3-2) map peaks in the nucleus, while the CO(1-0) emission is mainly located along the spiral arms. The CO(3-2)/CO(1-0) ratio is about 3.1 in the nucleus, which is four times as large as the average line ratio in the spiral arms, suggesting that the molecular gas there must be affected by the radiation arising from the AGN. On the other hand, the line ratios in the spiral arms vary over a wide range from 0.24 to 2.34 with a average value around 0.75, which is similar to the line ratios of star-formation regions, indicating that the molecular gas is affected by star formation. Besides, we see a tight correlation between CO(3-2)/(1-0) ratios in the spiral arms and star formation rate surface densities derived from Spitzer 8 micron dust flux densities. We also compare the CO(3-2)/(1-0) ratio and the star formation rate at different positions within the spiral arms; both are found to decrease as the radius from the nucleus increases.
The Luminosity Function of the Host Galaxies of QSOs and BL Lac Objects
NASA Astrophysics Data System (ADS)
Carangelo, Nicoletta; Falomo, Renato; Treves, Aldo
A clear insight of the galaxies hosting active galactic nuclei is of fundamental importance for understanding the processes of galaxies and nuclei formation and their cosmic evolution. A good characterization of the host galaxies properties requires images of excellent quality in order to disentangle the light of the galaxy from that of the bright nucleus. To this aim HST has provided a major improvement of data on QSOs (Disney et al. 1995; Bahcall et al. 1996,1997; Boyce et al. 1998; McLure et al. 1999; Hamilton et al. 2000; Kukula et al. 2001) and BL Lacs (Scarpa et al. 2000, Urry et al. 2000).
DISCOVERY OF A PSEUDOBULGE GALAXY LAUNCHING POWERFUL RELATIVISTIC JETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotilainen, Jari K.; Olguín-Iglesias, Alejandro; León-Tavares, Jonathan
Supermassive black holes launching plasma jets at close to the speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated with the latest stages of galaxy evolution. We have discovered a pseudobulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio-loud AGN found to have been launched from a system where both the black hole and host galaxy have been actively growing via secularmore » processes. This is evidence of an alternative black hole–galaxy co-evolutionary path to develop powerful relativistic jets, which is not merger driven.« less
Star formation quenching in quasar host galaxies
NASA Astrophysics Data System (ADS)
Carniani, Stefano
2017-10-01
Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.
Long-Duration Gamma-Ray Burst Host Galaxies in Emission and Absorption
NASA Astrophysics Data System (ADS)
Perley, Daniel A.; Niino, Yuu; Tanvir, Nial R.; Vergani, Susanna D.; Fynbo, Johan P. U.
2016-12-01
The galaxy population hosting long-duration GRBs provides a means to constrain the progenitor and an opportunity to use these violent explosions to characterize the nature of the high-redshift universe. Studies of GRB host galaxies in emission reveal a population of star-forming galaxies with great diversity, spanning a wide range of masses, metallicities, and redshifts. However, as a population GRB hosts are significantly less massive and poorer in metals than the hosts of other core-collapse transients, suggesting that GRB production is only efficient at metallicities significantly below Solar. GRBs may also prefer compact galaxies, and dense and/or central regions of galaxies, more than other types of core-collapse explosion. Meanwhile, studies of hosts in absorption against the luminous GRB optical afterglow provide a unique means of unveiling properties of the ISM in even the faintest and most distant galaxies; these observations are helping to constrain the chemical evolution of galaxies and the properties of interstellar dust out to very high redshifts. New ground- and space-based instrumentation, and the accumulation of larger and more carefully-selected samples, are continually enhancing our view of the GRB host population.
NASA Astrophysics Data System (ADS)
Kirby, Evan N.
2018-06-01
Dwarf galaxies are excellent laboratories of chemical evolution. Many dwarf galaxies have simple star formation histories with very low average star formation rates. These conditions simplify models of chemical evolution and facilitate the identification of sites of nucleosynthesis. Dwarf galaxies also host extremely metal-poor stars, which sample the ejecta of the first generations of supernovae in the universe. This meeting-in-a-meeting, "Stellar Abundances in Dwarf Galasxies," will recognize the importance of dwarf galaxies in learning about the creation and evolution of the elements. Topics include: * the most metal-poor stars * the connection between dwarf galaxies and the Milky Way halo * dwarf galaxies as the paragons of r-process nucleosynthesis * modern techniques in stellar abundance measurements * recent advances in chemical evolution modelingI will give a very brief introduction to set the stage for the meeting.
LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0
NASA Astrophysics Data System (ADS)
Williams, W. L.; Calistro Rivera, G.; Best, P. N.; Hardcastle, M. J.; Röttgering, H. J. A.; Duncan, K. J.; de Gasperin, F.; Jarvis, M. J.; Miley, G. K.; Mahony, E. K.; Morabito, L. K.; Nisbet, D. M.; Prandoni, I.; Smith, D. J. B.; Tasse, C.; White, G. J.
2018-04-01
This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Boötes field. To achieve this we match low-frequency radio sources from deep 150-MHz LOFAR (LOw Frequency ARray) observations to an I-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses, and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as high- versus low-excitation radio galaxies (HERGs and LERGs) or star-forming galaxies. Based on these classifications, we construct luminosity functions for the separate redshift ranges going out to z = 2. From the matched radio-optical catalogues, we select a sub-sample of 624 high power (P150 MHz > 1025 W Hz-1) radio sources between 0.5 ≤ z < 2. For this sample, we study the fraction of galaxies hosting HERGs and LERGs as a function of stellar mass and host galaxy colour. The fraction of HERGs increases with redshift, as does the fraction of sources in galaxies with lower stellar masses. We find that the fraction of galaxies that host LERGs is a strong function of stellar mass as it is in the local Universe. This, combined with the strong negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.
Modeling Supermassive Black Holes in Cosmological Simulations
NASA Astrophysics Data System (ADS)
Tremmel, Michael
My thesis work has focused on improving the implementation of supermassive black hole (SMBH) physics in cosmological hydrodynamic simulations. SMBHs are ubiquitous in mas- sive galaxies, as well as bulge-less galaxies and dwarfs, and are thought to be a critical component to massive galaxy evolution. Still, much is unknown about how SMBHs form, grow, and affect their host galaxies. Cosmological simulations are an invaluable tool for un- derstanding the formation of galaxies, self-consistently tracking their evolution with realistic merger and gas accretion histories. SMBHs are often modeled in these simulations (generally as a necessity to produce realistic massive galaxies), but their implementations are commonly simplified in ways that can limit what can be learned. Current and future observations are opening new windows into the lifecycle of SMBHs and their host galaxies, but require more detailed, physically motivated simulations. Within the novel framework I have developed, SMBHs 1) are seeded at early times without a priori assumptions of galaxy occupation, 2) grow in a way that accounts for the angular momentum of gas, and 3) experience realistic orbital evolution. I show how this model, properly tuned with a novel parameter optimiza- tion technique, results in realistic galaxies and SMBHs. Utilizing the unique ability of these simulations to capture the dynamical evolution of SMBHs, I present the first self-consistent prediction for the formation timescales of close SMBH pairs, precursors to SMBH binaries and merger events potentially detected by future gravitational wave experiments.
The dust masses of powerful radio galaxies: clues to the triggering of their activity
NASA Astrophysics Data System (ADS)
Tadhunter, C.; Dicken, D.; Morganti, R.; Konyves, V.; Ysard, N.; Nesvadba, N.; Ramos Almeida, C.
2014-11-01
We use deep Herschel Space Observatory observations of a 90 per cent complete sample of 32 intermediate-redshift 2Jy radio galaxies (0.05 < z < 0.7) with strong emission lines to estimate the dust masses of their host galaxies and thereby investigate the triggering mechanisms for their quasar-like AGN. The dust masses derived for the radio galaxies (7.2 × 105 < Md < 2.6 × 108 M⊙) are intermediate between those of quiescent elliptical galaxies on the one hand, and ultraluminous infrared galaxies (ULIRGs) on the other. Consistent with simple models for the co-evolution of supermassive black holes and their host galaxies, these results suggest that most radio galaxies represent the late time re-triggering of AGN activity via mergers between the host giant elliptical galaxies and companion galaxies with relatively low gas masses. However, a minority of the radio galaxies in our sample (˜20 per cent) have high, ULIRG-like dust masses, along with evidence for prodigious star formation activity. The latter objects are more likely to have been triggered in major, gas-rich mergers that represent a rapid growth phase for both their host galaxies and their supermassive black holes.
Bar Evolution and Bar Properties from Disc Galaxies in the Early Universe
NASA Astrophysics Data System (ADS)
Hutchinson-Smith, Tenley; Simmons, Brooke
2017-01-01
Bars in disc galaxies indicate a large collection of stars in a specific configuration of orbits that give the galaxy center a rectangular looking feature. Astronomers have discovered that these bars affect the distribution of matter in galaxies, and are also related to galaxy stellar mass and star formation history. Little is known about the specifics of how bars evolve and drive the evolution of their host galaxies because only a handful of bars have been studied in detail so far. I have examined a sample of 8,221 barred galaxies from the early universe to identify and examine correlations with galaxy properties. The data comes from Galaxy Zoo, an online citizen science project that allows anyone to classify and measure detailed properties of galaxies. I present results including the fraction of galaxies in the sample that have bars, and the variation of galaxy properties with bar length, including galaxy color and stellar mass. I also compare these results to barred galaxies in the local universe. I will discuss the implications of these results in the context of galaxy evolution overall, including the effect of dark matter on bars and galaxy evolution.
Understanding the Progenitors of Short Gamma-Ray Bursts via their Host Galaxies: A Pilot Study
NASA Astrophysics Data System (ADS)
Cenko, S. Brad
2014-08-01
While massive star core-collapse is known to power long-duration gamma-ray bursts (GRBs), the origin of short GRBs remains unconfirmed. Studies of the host galaxies of short GRBs provide critical constraints on their progenitors, particularly if (as expected) short GRBs result from the neutron star mergers. Here we request deep Keck/LRIS imaging of short GRBs lacking securely identified hosts. By constraining the fraction of events that appear to have been 'kicked' out of their host galaxy in a more unbiased manner than past efforts, we aim to infer fundamental properties about the formation and evolution of binary neutron star systems.
Deficiency of ''Thin'' Stellar Bars in Seyfert Host Galaxies
NASA Technical Reports Server (NTRS)
Shlosman, Isaac; Peletier, Reynier F.; Knapen, Johan
1999-01-01
Using all available major samples of Seyfert galaxies and their corresponding control samples of closely matched non-active galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in non-active galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., 'fat' or 'weak' bars) in Seyferts, compared to non-active galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, in redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their non-active counterparts on scales of a few kpc.
POWERFUL RADIO EMISSION FROM LOW-MASS SUPERMASSIVE BLACK HOLES FAVORS DISK-LIKE BULGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.; Xu, Y.; Xu, D. W.
The origin of spin of low-mass supermassive black holes (SMBHs) is still a puzzle at present. We report here a study on the host galaxies of a sample of radio-selected nearby ( z < 0.05) Seyfert 2 galaxies with a BH mass of 10{sup 6–7} M{sub ⊙}. By modeling the SDSS r -band images of these galaxies through a two-dimensional bulge+disk decomposition, we identify a new dependence of SMBH's radio power on host bulge surface brightness profiles, in which more powerful radio emission comes from an SMBH associated with a more disk-like bulge. This result means low-mass and high-mass SMBHsmore » are spun up by two entirely different modes that correspond to two different evolutionary paths. A low-mass SMBH is spun up by a gas accretion with significant disk-like rotational dynamics of the host galaxy in the secular evolution, while a high-mass one by a BH–BH merger in the merger evolution.« less
NASA Astrophysics Data System (ADS)
Trump, Jonathan R.; Hsu, Alexander D.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.
2013-02-01
We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.
Secular Black Hole Growth and Feedback in Merger-Free Galaxies
NASA Astrophysics Data System (ADS)
Simmons, Brooke
2016-10-01
We will measure the merger-free galaxy-black hole mass relation for the first time, using a unique, newly-discovered sample of luminous active galactic nuclei (AGN) hosted in galaxies that have not grown via mergers. Our preliminary study has shown that supermassive black holes (SMBHs) in bulgeless galaxies - i.e., galaxies that have never undergone a significant merger - can have substantial growth: bulges are not required for the formation and growth of SMBHs. The proposed targets are broad-line AGN with black hole masses spanning a wide mass range (1e6 to >1e9 M_Sun) and hosted in strongly disk dominated galaxies (>80% light from a disk). This sample is an ideal laboratory for understanding merger-free black hole growth and its feedback on the host galaxy. HST imaging will allow us to disentangle bright nuclear emission from host galaxy, measure bulge type and strength, and identify bulgeless galaxies that have evolved under purely secular conditions. In addition, we will determine whether merger-free galaxies lie on the same SMBH-galaxy relation as galaxies with substantial past mergers, or whether merger-free growth results in a separate relation. The answer to this question has profound consequences for the role of baryon dynamics in driving black hole-galaxy co-evolution.
Galaxy evolution. Black hole feedback in the luminous quasar PDS 456.
Nardini, E; Reeves, J N; Gofford, J; Harrison, F A; Risaliti, G; Braito, V; Costa, M T; Matzeu, G A; Walton, D J; Behar, E; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Matt, G; Miller, J M; O'Brien, P T; Stern, D; Turner, T J; Ward, M J
2015-02-20
The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10(46) ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution. Copyright © 2015, American Association for the Advancement of Science.
Imprints of the large-scale structure on AGN formation and evolution
NASA Astrophysics Data System (ADS)
Porqueres, Natàlia; Jasche, Jens; Enßlin, Torsten A.; Lavaux, Guilhem
2018-04-01
Black hole masses are found to correlate with several global properties of their host galaxies, suggesting that black holes and galaxies have an intertwined evolution and that active galactic nuclei (AGN) have a significant impact on galaxy evolution. Since the large-scale environment can also affect AGN, this work studies how their formation and properties depend on the environment. We have used a reconstructed three-dimensional high-resolution density field obtained from a Bayesian large-scale structure reconstruction method applied to the 2M++ galaxy sample. A web-type classification relying on the shear tensor is used to identify different structures on the cosmic web, defining voids, sheets, filaments, and clusters. We confirm that the environmental density affects the AGN formation and their properties. We found that the AGN abundance is equivalent to the galaxy abundance, indicating that active and inactive galaxies reside in similar dark matter halos. However, occurrence rates are different for each spectral type and accretion rate. These differences are consistent with the AGN evolutionary sequence suggested by previous authors, Seyferts and Transition objects transforming into low-ionization nuclear emission line regions (LINERs), the weaker counterpart of Seyferts. We conclude that AGN properties depend on the environmental density more than on the web-type. More powerful starbursts and younger stellar populations are found in high densities, where interactions and mergers are more likely. AGN hosts show smaller masses in clusters for Seyferts and Transition objects, which might be due to gas stripping. In voids, the AGN population is dominated by the most massive galaxy hosts.
The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory
NASA Technical Reports Server (NTRS)
Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.
2013-01-01
We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.
NASA Astrophysics Data System (ADS)
Le Floc'h, Emeric; Charmandaris, Vassilis; Forrest, Bill; Mirabel, Félix; Armus, Lee; Devost, Daniel
2006-05-01
We report on the first mid-infrared observations of 16 GRB host galaxies performed with the Spitzer Space Telescope, and investigate the presence of evolved stellar populations and dust-enshrouded star-forming activity associated with GRBs. Only a very small fraction of our sample is detected by Spitzer, which is not consistent with recent works suggesting the presence of a GRB host population dominated by massive and strongly-starbursting galaxies (SFR >~ 100Msolaryr-1). Should the GRB hosts be representative of star-forming galaxies at high redshift, models of galaxy evolution indicate that >~ 50% of GRB hosts would be easily detected at the depth of our mid-infrared observations. Unless our sample suffers from a strong observational bias which remains to be understood, we infer in this context that the GRBs identified with the current techniques can not be directly used as unbiased probes of the global and integrated star formation history of the Universe.
The Swift GRB Host Galaxy Legacy Survey
NASA Astrophysics Data System (ADS)
Perley, Daniel A.
2015-01-01
I introduce the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population across its entire redshift range. Using unbiased selection criteria we have designated a subset of 130 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, and Gemini to obtain complementary optical/NIR photometry to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass functions and their evolution with redshift between z=0 and z=5, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to probe cosmic star-formation.
2MASS J00423991+3017515: An AGN On The Run?
NASA Astrophysics Data System (ADS)
Hogg, James
2016-10-01
We have discovered a peculiar AGN, 2MASS J00423991+3017515, in a local (z=0.14), disturbed galaxy whose optical spectrum has multiple broad lines that are consistently offset from the narrow line emission and host galaxy absorption by 1530 km/s. The morphology of the host galaxy and spectral properties thus suggest this AGN may be a recoiling supermassive black hole (SMBH). Gravitational-wave recoil kicks result from the coalescence of two SMBHs and have implications for the early growth of high-redshift quasars and SMBH-galaxy co-evolution. We propose high-resolution imaging in the NIR, optical, and UV with the WFC3 camera on Hubble and high-resolution X-ray imaging and spectral follow-ups with the ACIS camera on Chandra to determine if the source of the kinematically-offset broad line emission is also spatially offset from the nucleus of the host galaxy. We request 3 orbits with Hubble and 8 ksec with Chandra to conduct these follow-up observations. If a single, spatially offset AGN is detected, this source will be strongest candidate for a recoiling AGN candidate discovered to date, providing a new, indirect constraint on SMBH spin evolution and merger rates.
The Co-evolution of QSOs and Galaxies
NASA Astrophysics Data System (ADS)
Coziol, R.; Torres-Papaqui, J. P.; Andernach, H.
2015-07-01
Using two large samples of QSOs detected in the mid-infrared (MIR) with WISE, we find that the change of W2-W3 colors with redshift suggests that star formation in their host galaxies increases by a factor of 3 from z = 0 to 2.7, then stays constant up to z = 4, and decreases above z=4. This behavior is slightly different from the best fits for the star formation history of field galaxies as deduced from the Optical-UV and IR, but is consistent with what is observed for sub-mm galaxies at high z. Our results constitute the clearest evidence, so far, that QSO host galaxies form their stars before field galaxies, and are in good agreement with the hierarchical biased structure formation paradigm.
The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey
Bufanda, E.; Hollowood, D.; Jeltema, T. E.; ...
2016-12-13
The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. Here, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 10 43 ergs s -1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.10.7. Our resultmore » is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. But, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schawinski, Kevin; Urry, C. Megan; Virani, Shanil
We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z < 0.05) and to break down the active galactic nucleus (AGN) host galaxy population by color, stellar mass, and morphology. We find that the black hole growth at luminosities L[O{sub III}]>10{sup 40} erg s{sup -1} in early- and late-type galaxies is fundamentally different. AGN host galaxies as a population have a broad range of stellar masses (10{sup 10}-10{sup 11} M{sub sun}), reside in the green valley of the color-mass diagram andmore » their central black holes have median masses around 10{sup 6.5} M{sub sun}. However, by comparing early- and late-type AGN host galaxies to their non-active counterparts, we find several key differences: in early-type galaxies, it is preferentially the galaxies with the least massive black holes that are growing, while in late-type galaxies, it is preferentially the most massive black holes that are growing. The duty cycle of AGNs in early-type galaxies is strongly peaked in the green valley below the low-mass end (10{sup 10} M{sub sun}) of the red sequence at stellar masses where there is a steady supply of blue cloud progenitors. The duty cycle of AGNs in late-type galaxies on the other hand peaks in massive (10{sup 11} M{sub sun}) green and red late-types which generally do not have a corresponding blue cloud population of similar mass. At high-Eddington ratios (L/L{sub Edd}>0.1), the only population with a substantial fraction of AGNs are the low-mass green valley early-type galaxies. Finally, the Milky Way likely resides in the 'sweet spot' on the color-mass diagram where the AGN duty cycle of late-type galaxies is highest. We discuss the implications of these results for our understanding of the role of AGNs in the evolution of galaxies.« less
Shocks and metallicity gradients in normal star-forming galaxies
NASA Astrophysics Data System (ADS)
Ho, I.-Ting
Gas flow is one of the most fundamental processes driving galaxy evolution. This thesis explores gas flows in local galaxies by studying metallicity gradients and galactic-scale outflows in normal star-forming galaxies. This is made possible by new integral field spectroscopy data that provide simultaneously spatial and spectral information of galaxies. First, I measure metallicity gradients in isolated disk galaxies and show that their metallicity gradients are remarkably simple and universal. When the metallicity gradients are normalized to galaxy sizes, all the 49 galaxies studied have virtually the same metallicity gradient. I model the common metallicity gradient using a simple chemical evolution model to understand its origin. The common metallicity gradient is a direct result of the coevolution of gas and stellar disk while galactic disks build up their masses from inside-out. Tight constraints on the mass outflow rates and inflow rates can be placed by the chemical evolution model. Second, I investigate galactic winds in normal star-forming galaxies using data from an integral field spectroscopy survey. I demonstrate how to search for galactic winds by probing emission line ratios, shocks, and gas kinematics. Galactic winds are found to be common even in normal star-forming galaxies that were not expected to host winds. By comparing galaxies with and without hosting winds, I show that galaxies with high star formation rate surface densities and bursty star formation histories are more likely to drive large-scale galactic winds. Finally, lzifu, a toolkit for fitting multiple emission lines simultaneously in integral field spectroscopy data, is developed in this thesis. I describe in detail the structure of the toolkit and demonstrate the capabilities of lzifu.
Radio AGN in the local universe: unification, triggering and evolution
NASA Astrophysics Data System (ADS)
Tadhunter, Clive
2016-06-01
Associated with one of the most important forms of active galactic nucleus (AGN) feedback, and showing a strong preference for giant elliptical host galaxies, radio AGN (L_{1.4 GHz} > 10^{24} W Hz^{-1}) are a key sub-class of the overall AGN population. Recently their study has benefitted dramatically from the availability of high-quality data covering the X-ray to far-IR wavelength range obtained with the current generation of ground- and space-based telescope facilities. Reflecting this progress, here I review our current state of understanding of the population of radio AGN at low and intermediate redshifts (z < 0.7), concentrating on their nuclear AGN and host galaxy properties, and covering three interlocking themes: the classification of radio AGN and its interpretation; the triggering and fuelling of the jet and AGN activity; and the evolution of the host galaxies. I show that much of the observed diversity in the AGN properties of radio AGN can be explained in terms of a combination of orientation/anisotropy, mass accretion rate, and variability effects. The detailed morphologies of the host galaxies are consistent with the triggering of strong-line radio galaxies (SLRG) in galaxy mergers. However, the star formation properties and cool ISM contents suggest that the triggering mergers are relatively minor in terms of their gas masses in most cases, and would not lead to major growth of the supermassive black holes and stellar bulges; therefore, apart from a minority (<20 %) that show evidence for higher star formation rates and more massive cool ISM reservoirs, the SLRG represent late-time re-triggering of activity in mature giant elliptical galaxies. In contrast, the host and environmental properties of weak-line radio galaxies (WLRG) with Fanaroff-Riley class I radio morphologies are consistent with more gradual fuelling of the activity via gas accretion at low rates onto the supermassive black holes.
Accreting SMBH in the COSMOS field: the connection to their host galaxies .
NASA Astrophysics Data System (ADS)
Merloni, A.; Bongiorno, A.
Using the rich multi-band photometry in the COSMOS field we explore the host galaxy properties of a large, complete, sample of X-ray and spectroscopically selected AGN. Based on a two-components fit to their Spectral Energy Distribution (SED) we derive rest-frame magnitudes, colours, stellar masses and star formation rates up to z˜ 3. The probability for a galaxy to host a black hole growing at any given specific accretion rate (the ratio of X-ray luminosity to the host stellar mass) is independent of the galaxy mass and follows a power-law distribution in L_X/M. By looking at the normalisation of such a probability distribution, we show how the incidence of AGN increases with redshift as rapidly as (1+z)4.2, in close resemblance with the overall evolution of the specific star formation rate. Although AGN activity and star formation appear to have a common triggering mechanism, we do not find any 'smoking gun' signalling powerful AGN influence on the global properties of their host galaxies.
Molecular gas in the host galaxy of a quasar at redshift z = 6.42.
Walter, Fabian; Bertoldi, Frank; Carilli, Chris; Cox, Pierre; Lo, K Y; Neri, Roberto; Fan, Xiaohui; Omont, Alain; Strauss, Michael A; Menten, Karl M
2003-07-24
Observations of molecular hydrogen in quasar host galaxies at high redshifts provide fundamental constraints on galaxy evolution, because it is out of this molecular gas that stars form. Molecular hydrogen is traced by emission from the carbon monoxide molecule, CO; cold H2 itself is generally not observable. Carbon monoxide has been detected in about ten quasar host galaxies with redshifts z > 2; the record-holder is at z = 4.69 (refs 1-3). Here we report CO emission from the quasar SDSS J114816.64 + 525150.3 (refs 5, 6) at z = 6.42. At that redshift, the Universe was only 1/16 of its present age, and the era of cosmic reionization was just ending. The presence of about 2 x 1010 M\\circ of H2 in an object at this time demonstrates that molecular gas enriched with heavy elements can be generated rapidly in the youngest galaxies.
Bulgeless Galaxies Hosting 107 M⊙ AGN in Galaxy Zoo: The Growth of Black Holes via Secular Processes
NASA Astrophysics Data System (ADS)
Simmons, Brooke; Lintott, C. J.; Schawinski, K.; Moran, E. C.; Han, A.; Kaviraj, S.; Masters, K. L.; Urry, C. M.; Willett, K.; Bamford, S. P.; Nichol, R.
2013-01-01
The growth of supermassive black holes (SMBHs) appears to proceed via multiple pathways including mergers and secular processes, but these are difficult to disentangle for most galaxies given their complex evolutionary histories. In order to understand the effects of secular galaxy evolution on black hole growth, we require a sample of active galactic nuclei (AGN) in galaxies with a calm formation history free of significant mergers, a population that heretofore has been difficult to locate. Here we present a sample of 13 AGN in massive galaxies lacking the classical bulges believed inevitably to result from mergers; they also either lack or have extremely small pseudobulges, meaning they have had very calm accretion histories. This is the largest sample to date of massive, bulgeless AGN host galaxies selected without any direct restriction on the SMBH mass. The broad-line objects in the sample have black hole masses of 106-7 M⊙ Eddington arguments imply similar masses for the rest of the sample, meaning these black holes have grown substantially in the absence of mergers or other bulge-building processes such as violent disk instabilities. The black hole masses are systematically higher than expected from established bulge-black hole relations. However, these systems may be consistent with the correlation between black hole mass and total stellar mass. We discuss these results in the context of other studies and consider the implication that the details of stellar galaxy evolution and dynamics may not be fundamental to the co-evolution of galaxies and black holes.
Galaxy evolution. Isolated compact elliptical galaxies: stellar systems that ran away.
Chilingarian, Igor; Zolotukhin, Ivan
2015-04-24
Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenitors, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
van Loon, Jacco Th.; Sansom, Anne E.
2015-11-01
SAGE1C J053634.78-722658.5 is a galaxy at redshift z = 0.14, discovered behind the Large Magellanic Cloud in the Spitzer Space Telescope`Surveying the Agents of Galaxy Evolution' Spectroscopy survey. It has very strong silicate emission at 10 μm but negligible far-IR and UV emission. This makes it a candidate for a bare active galactic nuclei (AGN) source in the IR, perhaps seen pole-on, without significant IR emission from the host galaxy. In this paper we present optical spectra taken with the Southern African Large Telescope to investigate the nature of the underlying host galaxy and its AGN. We find broad H α emission characteristic of an AGN, plus absorption lines associated with a mature stellar population (>9 Gyr), and refine its redshift determination to z = 0.1428 ± 0.0001. There is no evidence for any emission lines associated with star formation. This remarkable object exemplifies the need for separating the emission from any AGN from that of the host galaxy when employing IR diagnostic diagrams. We estimate the black hole mass, MBH = 3.5 ± 0.8 × 108 M⊙, host galaxy mass, M_stars=2.5^{2.5}_{1.2}× 10^{10} M⊙, and accretion luminosity, Lbol(AGN) = 5.3 ± 0.4 × 1045 erg s-1 (≈12 per cent of the Eddington luminosity), and find the AGN to be more prominent than expected for a host galaxy of this modest size. The old age is in tension with the downsizing paradigm in which this galaxy would recently have transformed from a star-forming disc galaxy into an early-type, passively evolving galaxy.
The Interplay of Star formation and Accretion in the Local Universe
NASA Astrophysics Data System (ADS)
Green, Paul
2010-09-01
Galaxy evolution and supermassive black hole growth are closely linked, but the inter-relationships between active accretion and star formation, AGN outflows, and host morphological trends remain poorly understood. We propose to study an unprecedented sample of 615 low redshift SDSS galaxies and AGN detected in archival Chandra fields. We will measure diverse optical and X-ray spectroscopic properties spanning the artificial galaxy/AGN divide, and provide detailed results of our model fitting. We highlight tests of (1) an evolutionary sequence from star-forming through AGN to passive galaxy modes (2) narrow line Sy1 galaxies and new parallels between the accretion modes of AGN and stellar mass X-ray binaries and (3) the relationship of host morphology and mergers to accretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khosravi, Shahram; Mollazadeh, Amir; Baghram, Shant, E-mail: khosravi_sh@khu.ac.ir, E-mail: amirmollazadeh@khu.ac.ir, E-mail: baghram@sharif.edu
2016-09-01
Cross correlation of the Integrated Sachs-Wolfe signal (ISW) with the galaxy distribution in late time is a promising tool for constraining the dark energy properties. Here, we study the effect of dark energy clustering on the ISW-galaxy cross correlation and demonstrate the fact that the bias parameter between the distribution of the galaxies and the underlying dark matter introduces a degeneracy and complications. We argue that as the galaxy's host halo formation time is different from the observation time, we have to consider the evolution of the halo bias parameter. It will be shown that any deviation from ΛCDM modelmore » will change the evolution of the bias as well. Therefore, it is deduced that the halo bias depends strongly on the sub-sample of galaxies which is chosen for cross correlation and that the joint kernel of ISW effect and the galaxy distribution has a dominant effect on the observed signal. In this work, comparison is made specifically between the clustered dark energy models using two samples of galaxies. The first one is a sub-sample of galaxies from Sloan Digital Sky Survey, chosen with the r-band magnitude 18 < r < 21 and the dark matter halo host of mass M ∼10{sup 12} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.5. The second one is the sub-sample of Luminous Red galaxies with the dark matter halo hosts of mass M ∼ 10{sup 13} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.0. Using the evolved bias we improve the χ{sup 2} for the ΛCDM which reconciles the ∼1σ-2σ tension of the ISW-galaxy signal with ΛCDM prediction. Finally, we study the parameter estimation of a dark energy model with free parameters w {sub 0} and w {sub a} in the equation of state w {sub de} = w {sub 0} + w {sub az} /(1+ z ) with the constant bias parameter and also with an evolved bias model with free parameters of galaxy's host halo mass and the halo formation redshift.« less
NASA Astrophysics Data System (ADS)
Urbaneja, Miguel A.; Kudritzki, Rolf P.
2017-11-01
Blue supergiant stars of B and A spectral types are amongst the visually brightest non-transient astronomical objects. Their intrinsic brightness makes it possible to obtain high quality optical spectra of these objects in distant galaxies, enabling the study not only of these stars in different environments, but also to use them as tools to probe their host galaxies. Quantitative analysis of their optical spectra provide tight constraints on their evolution in a wide range of metallicities, as well as on the present-day chemical composition, extinction laws and distances to their host galaxies. We review in this contribution recent results in this field.
Isolated Galaxies and Isolated Satellite Systems
NASA Astrophysics Data System (ADS)
Ann, H. B.; Park, C.; Choi, Y. Y.
2010-10-01
We search for isolated galaxies using a volume-limited sample of galaxies with 0.02 < z < 0.04742 from SDSS DR7 supplemented by bright galaxies. We devise a diagnostic tool to select isolated galaxies in different environments using the projected separation (rp) normalized by the virial radius of the nearest neighbor (rvir,nei) and the local background density. We find that the isolation condition of rp > rvir,nei and ρ < ρbar well segregates the CIG galaxies. We confirm the morphology conformity between the host and their satellites, which suggests the importance to galaxy evolution of hydrodynamic interactions among galaxies within their virial radii.
Globular cluster systems and their host galaxies: comparison of spatial distributions and colors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Jonathan R.; Rhode, Katherine L., E-mail: jhargis@haverford.edu
2014-11-20
We present a study of the spatial and color distributions of four early-type galaxies and their globular cluster (GC) systems observed as part of our ongoing wide-field imaging survey. We use BVR KPNO 4 m+MOSAIC imaging data to characterize the galaxies' GC populations, perform surface photometry of the galaxies, and compare the projected two-dimensional shape of the host galaxy light to that of the GC population. The GC systems of the ellipticals NGC 4406 and NGC 5813 both show an elliptical distribution consistent with that of the host galaxy light. Our analysis suggests a similar result for the giant ellipticalmore » NGC 4472, but a smaller GC candidate sample precludes a definite conclusion. For the S0 galaxy NGC 4594, the GCs have a circular projected distribution, in contrast to the host galaxy light, which is flattened in the inner regions. For NGC 4406 and NGC 5813, we also examine the projected shapes of the metal-poor and metal-rich GC subpopulations and find that both subpopulations have elliptical shapes that are consistent with those of the host galaxy light. Lastly, we use integrated colors and color profiles to compare the stellar populations of the galaxies to their GC systems. For each galaxy, we explore the possibility of color gradients in the individual metal-rich and metal-poor GC subpopulations. We find statistically significant color gradients in both GC subpopulations of NGC 4594 over the inner ∼5 effective radii (∼20 kpc). We compare our results to scenarios for the formation and evolution of giant galaxies and their GC systems.« less
Secular Evolution in Disk Galaxies
NASA Astrophysics Data System (ADS)
Kormendy, John
2013-10-01
Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions with respect to the Faber-Jackson correlation between velocity dispersion and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognisable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgeless giant galaxies are common in field environments. We now realise that many dense centres of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well-known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to divide bulges into two types that correlate differently with their BHs. I review environmental secular evolution -- the transformation of gas-rich, star-forming spiral and irregular galaxies into gas-poor, `red and dead' S0 and spheroidal (`Sph') galaxies. I show that Sph galaxies such as NGC205 and Draco are not the low-luminosity end of the structural sequence (the `fundamental plane') of elliptical galaxies. Instead, Sph galaxies have structural parameters like those of low-luminosity S+Im galaxies. Spheroidals are continuous in their structural parameters~with~the disks of S0 galaxies. They are bulgeless S0s. S+Im -->S0+Sph transformation involves a variety of internal (supernova-driven baryon ejection) and environmental processes (e.g., ram-pressure gas stripping, harassment, and starvation). Finally, I summarise how hierarchical clustering and secular processes can be combined into a consistent and comprehensive picture of galaxy evolution.
Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings
NASA Astrophysics Data System (ADS)
Ma, Chao; de Grijs, Richard; Ho, Luis C.
2018-04-01
Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.
Using diffusion k-means for simple stellar population modeling of low S/N quasar host galaxy spectra
NASA Astrophysics Data System (ADS)
Mosby, Gregory; Tremonti, Christina A.; Hooper, Eric; Wolf, Marsha J.; Sheinis, Andrew; Richards, Joseph
2016-01-01
Quasar host galaxies (QHGs) represent a unique stage in galaxy evolution that can provide a glimpse into the relationship between an active supermassive black hole (SMBH) and its host galaxy. However, observing the hosts of high luminosity, unobscured quasars in the optical is complicated by the large ratio of quasar to host galaxy light. One strategy in optical spectroscopy is to use offset longslit observations of the host galaxy. This method allows the centers of QHGs to be analyzed apart from other regions of their host galaxies. But light from the accreting black hole's point spread function still enters the host galaxy observations, and where the contrast between the host and intervening quasar light is favorable, the host galaxy is faint, producing low signal-to-noise (S/N) data. This stymies traditional stellar population methods that might rely on high S/N features in galaxy spectra to recover key galaxy properties like its star formation history (SFH). In response to this challenge, we have developed a method of stellar population modeling using diffusion k-means (DFK) that can recover SFHs from rest frame optical data with S/N ~ 5 Å^-1. Specifically, we use DFK to cultivate a reduced stellar population basis set. This DFK basis set of four broad age bins is able to recover a range of SFHs. With an analytic description of the seeing, we can use this DFK basis set to simultaneously model the SFHs and the intervening quasar light of QHGs as well. We compare the results of this method with previous techniques using synthetic data and find that our new method has a clear advantage in recovering SFHs from QHGs. On average, the DFK basis set is just as accurate and decisively more precise. This new technique could be used to analyze other low S/N galaxy spectra like those from higher redshift or integral field spectroscopy surveys.This material is based upon work supported by the National Science Foundation under grant no. DGE -0718123 and the Advanced Opportunity fellowship program at the University of Wisconsin-Madison. This research was performed using the computer resources and assistance of the UW-Madison Center For High Throughput Computing (CHTC) in the Department of Computer Sciences.
VizieR Online Data Catalog: Multiwavelength photometry of CDFS X-ray sources (Brusa+, 2009)
NASA Astrophysics Data System (ADS)
Brusa, M.; Fiore, F.; Santini, P.; Grazian, A.; Comastri, A.; Zamorani, G.; Hasinger, G.; Merloni, A.; Civano, F.; Fontana, A.; Mainieri, V.
2010-03-01
The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured active galactic nuclei (AGN) detected in the CDFS 1 Ms observation and their host galaxies. We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. (2 data files).
Quenching histories of galaxies and the role of AGN feedback
NASA Astrophysics Data System (ADS)
Smethurst, Rebecca Jane; Lintott, Chris; Simmons, Brooke; Galaxy Zoo Team
2016-01-01
Two open issues in modern astrophysics are: (i) how do galaxies fully quench their star formation and (ii) how is this affected - or not - by AGN feedback? I present the results of a new Bayesian-MCMC analysis of the star formation histories of over 126,000 galaxies across the colour magnitude diagram showing that diverse quenching mechanisms are instrumental in the formation of the present day red sequence. Using classifications from Galaxy Zoo we show that the rate at which quenching can occur is morphologically dependent in each of the blue cloud, green valley and red sequence. We discuss the nature of these possible quenching mechanisms, considering the influence of secular evolution, galaxy interactions and mergers, both with and without black hole activity. We focus particularly on the relationship between these quenched star formation histories and the presence of an AGN by using this new Bayesian method to show a population of type 2 AGN host galaxies have recently (within 2 Gyr) undergone a rapid (τ < 1 Gyr) drop in their star formation rate. With this result we therefore present the first statistically supported observational evidence that AGN feedback is an important mechanism for the cessation of star formation in this population of galaxies. The diversity of this new method also highlights that such rapid quenching histories cannot account fully for all the quenching across the current AGN host population. We demonstrate that slower (τ > 2 Gyr) quenching rates dominate for high stellar mass (log10[M*/M⊙] > 10.75) hosts of AGN with both early- and late-type morphology. We discuss how these results show that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes across the entirety of the colour magnitude diagram.
NASA Astrophysics Data System (ADS)
Wang, Y. O.; Lin, W. P.; Kang, X.; Dutton, Aaron; Yu, Yu; Macciò, Andrea V.
2014-05-01
Observations have shown that the spatial distribution of satellite galaxies is not random, but aligned with the major axes of central galaxies. This alignment is dependent on galaxy properties, such that red satellites are more strongly aligned than blue satellites. Theoretical work conducted to interpret this phenomenon has found that it is due to the non-spherical nature of dark matter halos. However, most studies overpredict the alignment signal under the assumption that the central galaxy shape follows the shape of the host halo. It is also not clear whether the color dependence of alignment is due to an assembly bias or an evolution effect. In this paper we study these problems using a cosmological N-body simulation. Subhalos are used to trace the positions of satellite galaxies. It is found that the shapes of dark matter halos are mis-aligned at different radii. If the central galaxy shares the same shape as the inner host halo, then the alignment effect is weaker and agrees with observational data. However, it predicts almost no dependence of alignment on the color of satellite galaxies, though the late accreted subhalos show stronger alignment with the outer layer of the host halo than their early accreted counterparts. We find that this is due to the limitation of pure N-body simulations where satellite galaxies without associated subhalos ("orphan galaxies") are not resolved. These orphan (mostly red) satellites often reside in the inner region of host halos and should follow the shape of the host halo in the inner region.
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2016-06-01
Many of the most fundamental unsolved questions in star and galaxy formation revolve around star formation and "feedback" from massive stars, in-extricably linking galaxy formation and stellar evolution. I'll present simulations with un-precedented resolution of Milky-Way (MW) mass galaxies, followed cosmologically to redshift zero. For the first time, these simulations resolve the internal structure of small dwarf satellites around a MW-like host, with detailed models for stellar evolution including radiation pressure, supernovae, stellar winds, and photo-heating. I'll show that, without fine-tuning, these feedback processes naturally resolve the "missing satellites," "too big to fail," and "cusp-core" problems, and produce realistic galaxy populations. At high redshifts however, the realistic ISM structure predicted, coupled to standard stellar population models, naively leads to the prediction that only ~1-2% of ionizing photons can ever escape galaxies, insufficient to ionize the Universe. But these models assume all stars are single: if we account for binary evolution, the escape fraction increases dramatically to ~20% for the small, low-metallicity galaxies believed to ionize the Universe.
The sub-mJy radio population in the Extended Chandra Deep Field South
NASA Astrophysics Data System (ADS)
Bonzini, M.
2014-06-01
Deep radio observations provide a dust unbiased view of both black hole (BH) and star formation (SF) activity and therefore represent a powerful tool to investigate their evolution and their possible mutual influence across cosmic time. Radio astronomy is therefore becoming increasingly important for galaxy evolution studies thanks also to the many new radio facilities under construction or being planned. To maximise the potentiality of these new instruments it is crucial to make predictions on what they will observe and to see how best to complement the radio data with multi-wavelength information. These are the motivations of my Thesis in which I studied a sample of 900 sources detected in one of the deepest radio surveys ever made. The observations have been performed at 1.4 GHz with the Very Large Array on the Extended Chandra Deep Field South. I developed a multi-wavelength method to identify the optical-infrared counterparts of the radio sources and to classify them as radio-loud active galactic nuclei (RL AGNs), radio-quiet (RQ) AGNs, and star forming galaxies (SFGs). I was able for the first time to quantify the relative contribution of these different classes of sources down to a radio flux density limit of ∼30 μJy. I characterized the host galaxy properties (stellar masses, optical colors, and morphology) of the radio sources; RQ AGN hosts and SFGs have similar properties with disk morphology and blue colors while radio-loud AGN hosts are more massive, redder and mostly ellipticals. This suggests that the RQ and RL activity occurs at two different evolutionary stages of the BH-host galaxy co-evolution. The RQ phase occurs at earlier times when the galaxy is still gas rich and actively forming stars while the radio activity of the BH appears when the galaxy has already formed the bulk of its stellar population, the gas supply is lower, and the SF is considerably reduced. I quantified the star formation rate (SFR) of the radio sources using two independent tracers, the radio and far-infrared luminosities. I found evidence that the main contribution to the radio emission of RQ AGNs is the SF activity in their host galaxy. This result demonstrates the remarkable possibility of using the radio band to estimate the SFR even in the hosts of bright RQ AGNs where the optical-to-mid-infrared emission can be dominated by the AGN. I have shown that deep radio surveys can be used to study the cosmic star formation history; I estimated the contribution of the so-called "starburst" mode to the total SFR density and quantified the AGN occurrence in galaxies with different levels of SF.
Energy input from quasars regulates the growth and activity of black holes and their host galaxies.
Di Matteo, Tiziana; Springel, Volker; Hernquist, Lars
2005-02-10
In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.
How to model AGN feedback in cosmological simulations?
NASA Astrophysics Data System (ADS)
Sijacki, Debora
2015-08-01
Hydrodynamical cosmological simulations are one of the most powerful tools to study the formation and evolution of galaxies in the fully non-linear regime. Despite several recent successes in simulating Milky Way look-alikes, self-consistent, ab-initio models are still a long way off. In this talk I will review numerical and physical uncertainties plaguing current state-of-the-art cosmological simulations of galaxy formation. I will then discuss which feedback mechanisms are needed to reproduce realistic stellar masses and galaxy morphologies in the present day Universe and argue that the black hole feedback is necessary for the quenching of massive galaxies. I will then demonstrate how black hole - host galaxy scaling relations depend on galaxy morphology and colour, highlighting the implications for the co-evolutionary picture between galaxies and their central black holes. In the second part of the talk I will present a novel method that permits to resolve gas flows around black holes all the way from large cosmological scales to the Bondi radii of black holes themselves. I will demonstrate that with this new numerical technique it is possible to estimate much more accurately gas properties in the vicinity of black holes than has been feasible before in galaxy and cosmological simulations, allowing to track reliably gas angular momentum transport from Mpc to pc scales. Finally, I will also discuss if AGN-driven outflows are more likely to be energy- or momentum-driven and what implications this has for the redshift evolution of black hole - host galaxy scaling relations.
Phenomenological model for the evolution of radio galaxies such as Cygnus A
NASA Astrophysics Data System (ADS)
Artyukh, V. S.
2015-06-01
A phenomenological model for the evolution of classical radio galaxies such as Cygnus A is presented. An activity cycle of the host galaxy in the radio begins with the birth of radio jets, which correspond to shocks on scales ˜1 pc (the radio galaxy B0108+388). In the following stage of the evolution, the radio emission comes predominantly from formations on scales of 10-100 pc, whose physical parameters are close to those of the hot spots of Cygnus A (this corresponds to GHz-peaked spectrum radio sources). Further, the hot spots create radio lobes on scales of 103-104 pc (compact steep-spectrum radio sources). The fully formed radio galaxies have radio jets, hot spots, and giant radio lobes; the direction of the jets can vary in a discrete steps with time, creating new hot spots and inflating the radio lobes (as in Cygnus A). In the final stage of the evolutionary cycle, first the radio jets disappear, then the hot spots, and finally the radio lobes (similar to the giant radio galaxies DA 240 and 3C 236). A large fraction of radio galaxies with repeating activity cycles is observed. The close connection between Cygnus A-type radio galaxies and optical quasars is noted, as well as similarity in the cosmological evolution of powerful radio galaxies and optical quasars.
The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution
NASA Technical Reports Server (NTRS)
Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.;
2016-01-01
We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perley, D. A.; Tanvir, N. R.; Hjorth, J.
2016-01-20
We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated withmore » low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.« less
Radio Source Morphology: 'nature or nuture'?
NASA Astrophysics Data System (ADS)
Banfield, Julie; Emonts, Bjorn; O'Sullivan, Shane
2012-10-01
Radio sources, emanating from supermassive black-holes in the centres of active galaxies, display a large variety of morphological properties. It is a long-standing debate to what extent the differences between various types of radio sources are due to intrinsic properties of the central engine (`nature') or due to the properties of the interstellar medium that surrounds the central engine and host galaxy (`nurture'). Settling this `nature vs. nurture' debate for nearby radio galaxies, which can be studied in great detail, is vital for understanding the properties and evolution of radio galaxies throughout the Universe. We propose to observe the radio galaxy NGC 612 where previous observations have detected the presence of a large-scale HI bridge between the host galaxy and a nearby galaxy NGC 619. We request a total of 13 hrs in the 750m array-configuration to determine whether or not the 100 kpc-scale radio source morphology is directly related to the intergalactic distribution of neutral hydrogen gas.
The Extreme Hosts of Extreme Supernovae
NASA Astrophysics Data System (ADS)
Neill, James D.
2012-01-01
We present the results from a deeper survey of Luminous Supernova (LSN) hosts with the Galaxy Evolution Explorer (GALEX). We have added new, multiple kilo-second observations to our original observations of seventeen LSN hosts providing better constraints on their physical properties. We place the LSNe hosts on the galaxy NUV-r versus M(r) color magnitude diagram (CMD) with a larger comparison sample ( 26,000) to illustrate the extreme nature of these galaxies. The LSN hosts favor low-density regions of the galaxy CMD falling on the blue edge of the blue cloud toward the low luminosity end. The new observations provide tighter constraints on the star formation rates (SFRs) and stellar masses, M(*), and show that the LSNe result from regions of high specific star formation and yet low total SFR. This regime is of particular interest for exploring the upper end of the stellar IMF and its variation. If our understanding of the progenitors of the LSNe leans toward very massive (> 200 M_sun) progenitors, the potential for a conflict with IMF theory exists because the conditions found in the hosts producing the LSNe should not create such massive stars. If it also required that LSNe can only be produced in primordial or very low metallicity environments, then they will also provide evidence for strong variation in metallicity within a dwarf galaxy, since their masses are consistent with low, but not extreme metallicity.
NASA Astrophysics Data System (ADS)
Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.
2018-06-01
We present a detailed analysis of the specific star formation rate-stellar mass (sSFR-M*) of z ≤ 0.13 disc central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5 M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR-M* relations of disc-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR-M* relation of non-grouped (field) central disc galaxies with redshift, even over a Δz ≈ 0.04 (≈5 × 108 yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the `main sequence of star-forming-galaxies' from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star formation in discs, with the inflow being determined by the product of the cosmological accretion rate and a fuelling efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3 M⊙ over z = 0-0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disc-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for discs are unclear.
The locations of cosmic explosions
NASA Technical Reports Server (NTRS)
Fruchter, A. S.; Levan, A. J.; Strolger, L.; Vreeswijk, P. M.; Bersier, D.; Burud, I.; Castro-Ceron, J. M.; Consclice, C.; Dahlen, T.; Strolger, L.
2005-01-01
When massive stars exhaust their fuel they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. Recently, it has become apparent that stellar collapse can power the even more brilliant relativistic explosions known as long-duration gamma-ray bursts. In some cases, a gamma-ray burst and a supernova have been observed from the same event. One would thus expect that gamma-ray bursts and supernovae should be found in similar environments. Here we show that this expectation is wrong. Using Hubble Space Telescope imaging of the host galaxies of long-duration gamma-ray bursts and core-collapse supernovae, we demonstrate that while the distribution of the supernovae in their hosts traces the blue light of young stars, the gamma-ray bursts are much more concentrated on the very brightest regions of their hosts. Furthermore, the host galaxies of the gamma-ray bursts are significantly fainter and more irregular than the hosts of the supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the very most massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long-duration gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.
KPC-SCALE STUDY OF SUBSTRUCTURES INSIDE GALAXIES out to z ~ 1.3
NASA Astrophysics Data System (ADS)
Hemmati, Shoubaneh; Mobasher, B.; Miller, S.; Nayyeri, H.
2014-01-01
Studying the resolved properties of galaxies in kpc scale has the capability to address major questions in galaxy structure formation and stellar properties evolution. We use a unique sample of 129 morphologically inclusive disk-like galaxies in the redshift range 0.2
Long gamma-ray bursts and core-collapse supernovae have different environments.
Fruchter, A S; Levan, A J; Strolger, L; Vreeswijk, P M; Thorsett, S E; Bersier, D; Burud, I; Castro Cerón, J M; Castro-Tirado, A J; Conselice, C; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levay, Z; Livio, M; Metzger, M R; Nugent, P E; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Tanvir, N R; Wijers, R A M J; Woosley, S E
2006-05-25
When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.
Active Galactic Nuclei with James Webb Space Telescope (JWST)
NASA Technical Reports Server (NTRS)
Rigby, Jane R.
2011-01-01
I'll discuss several ways in which JWST will probe the cosmic history of accretion onto supermassive black holes, and the co-evolution of host galaxies. Key investigations include: 1) Measurements of redshift, luminosity, and AGN fraction for obscured AGN candidates identified by other missions. 2) Measurements of AGN hosts at all redshifts, including stellar masses, morphology, interactions, and star formation rates. 3) Measurements of stellar mass and black hole mass in AGN at high redshift, to chart the early history of black hole and galaxy growth.
The Spitzer/Swift Gamma-Ray Burst Host Galaxy Extended Legacy Survey
NASA Astrophysics Data System (ADS)
Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna
2014-12-01
Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample and provide the definitive resource with which to examine all aspects of the GRB/galaxy connection for years and possibly decades to come.
Cosmological evolution of the nitrogen abundance
NASA Astrophysics Data System (ADS)
Vangioni, Elisabeth; Dvorkin, Irina; Olive, Keith A.; Dubois, Yohan; Molaro, Paolo; Petitjean, Patrick; Silk, Joe; Kimm, Taysun
2018-06-01
The abundance of nitrogen in the interstellar medium is a powerful probe of star formation processes over cosmological time-scales. Since nitrogen can be produced both in massive and intermediate-mass stars with metallicity-dependent yields, its evolution is challenging to model, as evidenced by the differences between theoretical predictions and observations. In this work, we attempt to identify the sources of these discrepancies using a cosmic evolution model. To further complicate matters, there is considerable dispersion in the abundances from observations of damped Lyα absorbers (DLAs) at z ˜ 2-3. We study the evolution of nitrogen with a detailed cosmic chemical evolution model and find good agreement with these observations, including the relative abundances of (N/O) and (N/Si). We find that the principal contribution of nitrogen comes from intermediate-mass stars, with the exception of systems with the lowest N/H, where nitrogen production might possibly be dominated by massive stars. This last result could be strengthened if stellar rotation which is important at low metallicity can produce significant amounts of nitrogen. Moreover, these systems likely reside in host galaxies with stellar masses below 108.5 M⊙. We also study the origin of the observed dispersion in nitrogen abundances using the cosmological hydrodynamical simulations Horizon-AGN. We conclude that this dispersion can originate from two effects: difference in the masses of the DLA host galaxies, and difference in their position inside the galaxy.
On the Supermassive Black Hole-Galaxy Coevolution
NASA Astrophysics Data System (ADS)
Hegde, Sahil; Zhang, Shawn; Rodriguez, Aldo; Primack, Joel R.
2017-01-01
In recent years, a major focus of astronomy has been the study of the effects of supermassive black holes (SMBH) on their host galaxies. Recent results have found strong correlations between SMBH mass and host galaxy properties, most notably in the bulge velocity dispersion and galaxy stellar mass. We utilize these relations along with a novel convolution method to construct number density models of different galaxy properties. Using these models, we compare two fundamental methods for constructing a black hole mass function (BHMF) with the M⊙-σ and M⊙-M* relations. With these methods, we estimate the redshift evolution of the BHMF and, based on that, compare mass growth histories of central black holes and their host galaxies. Additionally, we utilize a data compilation of over 500 galaxies with individual measurements of galaxy properties (BH mass, stellar velocity dispersion, stellar mass, etc.) and classify galaxies by their morphologies in order to shed light on the controversial Shankar et al. (2016) argument that observations are biased in favor of massive SMBHs. We find that such a bias has little impact on the SMBH-galaxy relations.We conclude that the galaxy sample is a fair representation of the local universe and argue that our BH number density and scaling relations can be employed in the future to constrain relevant mechanisms for galaxy formation. We emphasize that this is the most comprehensive and accurate study of SMBH-galaxy coevolution as of now. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.
NASA Astrophysics Data System (ADS)
Nyland, Kristina; Harwood, Jeremy; Jagannathan, Preshanth; Mukherjee, Dipanjan; Lacy, Mark; Morabito, Leah; Maksym, W. Peter; Kimball, Amy; Alatalo, Katherine; Bicknell, Geoff; Patil, Pallavi; Emonts, Bjorn
2018-01-01
Energetic feedback by Active Galactic Nuclei (AGNs) likely plays an important evolutionary role in the regulation of star formation (SF) on galactic scales. However, the effects of this feedback under different host galaxy conditions and environments remain unknown due to the scarcity of observational examples of this process in action given the limitations of current telescopes. The Next Generation Very Large Array (ngVLA) will serve as a transformational new tool in our understanding of how radio jets affect their surroundings. Current plans for the ngVLA consist of an array of 214 18m antennas with baselines out to 500 km operating over a frequency range of 1-115 GHz. By combining deep, broadband continuum data with measurements of the atomic and/or molecular gas content and kinematics, the ngVLA will quantify the energetic impact of radio jets hosted by gas-rich galaxies as the jets interact with the star-forming gas reservoirs of their hosts. Here, we evaluate the progress in our understanding of AGN feedback and its connection to galaxy evolution that may be accomplished with the unique capabilities of the ngVLA. Our analysis includes simulations of ngVLA observations of redshifted analogs of nearby AGNs with diverse properties, along with examples of opportunities for multiwavelength synergies with current and future next-generation instruments that are currently under development.
Active Galactic Nucleus Host Galaxy Morphologies in COSMOS
NASA Astrophysics Data System (ADS)
Gabor, J. M.; Impey, C. D.; Jahnke, K.; Simmons, B. D.; Trump, J. R.; Koekemoer, A. M.; Brusa, M.; Cappelluti, N.; Schinnerer, E.; Smolčić, V.; Salvato, M.; Rhodes, J. D.; Mobasher, B.; Capak, P.; Massey, R.; Leauthaud, A.; Scoville, N.
2009-01-01
We use Hubble Space Telescope/Advanced Camera for Surveys images and a photometric catalog of the Cosmic Evolution Survey (COSMOS) field to analyze morphologies of the host galaxies of ~400 active galactic nucleus (AGN) candidates at redshifts 0.3 < z < 1.0. We compare the AGN hosts with a sample of nonactive galaxies drawn from the COSMOS field to match the magnitude and redshift distribution of the AGN hosts. We perform two-dimensional surface brightness modeling with GALFIT to yield host galaxy and nuclear point source magnitudes. X-ray-selected AGN host galaxy morphologies span a substantial range that peaks between those of early-type, bulge-dominated and late-type, disk-dominated systems. We also measure the asymmetry and concentration of the host galaxies. Unaccounted for, the nuclear point source can significantly bias results of these measured structural parameters, so we subtract the best-fit point source component to obtain images of the underlying host galaxies. Our concentration measurements reinforce the findings of our two-dimensional morphology fits, placing X-ray AGN hosts between early- and late-type inactive galaxies. AGN host asymmetry distributions are consistent with those of control galaxies. Combined with a lack of excess companion galaxies around AGN, the asymmetry distributions indicate that strong interactions are no more prevalent among AGN than normal galaxies. In light of recent work, these results suggest that the host galaxies of AGN at these X-ray luminosities may be in a transition from disk-dominated to bulge-dominated, but that this transition is not typically triggered by major mergers. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc, under NASA contract NAS 5-26555; also based on data collected at: the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation; the National Radio Astronomy Observatory which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc; and the Canada-France-Hawaii Telescope with MegaPrime/MegaCam operated as a joint project by the CFHT Corporation, CEA/DAPNIA, the National Research Council of Canada, the Canadian Astronomy Data Centre, the Centre National de la Recherche Scientifique de France, TERAPIX and the University of Hawaii.
The Observed Evolution of the Black-Hole-Host Mass Relation to z~3.5
NASA Astrophysics Data System (ADS)
Trakhtenbrot, Benny; Urry, C. Megan; Civano, Francesca M.; Rosario, David J.; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke; Marchesi, Stefano
2016-01-01
We present our Keck/MOSFIRE project to probe basic black hole and host galaxy properties in a sample of faint Active Galactic Nuclei (AGN) at z~2.1-3.7, selected through the extensive X-ray Chandra coverage of the COSMOS field. Compared with previous studies of unobscured AGN at these high redshifts, our sources have lower AGN luminosities, corresponding to significantly higher number densities, of order ˜10-6-10-5 Mpc-3. The new K-band data covers the spectral region surrounding the broad Hbeta or Halpha emission lines, and enables the estimation of black hole masses (MBH) and accretion rates (in terms of L/LEdd). The lower AGN luminosities also allow for robust determinations of the host galaxies stellar masses, therefore enabling us to trace the evolution of the BH-to-stellar mass ratio (MBH/M*) to z~3.5. Compared with the rarer, higher-luminosity quasars targeted in previous studies, we find that the 12 AGN in our sample have lower MBH (~5x108 Msun), but similar accretion rates (L/LEdd~0.1-0.5). The BH-to-stellar mass ratio, MBH/M*, has a large scatter, with several sources reaching extremely high ratios of MBH/M* ~ 10% - higher by at least an order of magnitude than what is observed in the local Universe. The typical mass ratio for our sample is consistent with a trend of MBH/M* ~ (1+z)2. I will highlight some intriguing sources in the sample, and will briefly discuss the implications of our findings to the co-evolution of SMBHs and their host galaxies.
Fossils of reionization in the local group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y.; /Fermilab /KICP, Chicago /Chicago U., EFI; Kravtsov, Andrey V.
We use a combination of high-resolution gas dynamics simulations of high-redshift dwarf galaxies and dissipationless simulations of a Milky Way sized halo to estimate the expected abundance and spatial distribution of the dwarf satellite galaxies that formed most of their stars around z {approx} 8 and evolved only little since then. Such galaxies can be considered as fossils of the reionization era, and studying their properties could provide a direct window into the early, pre-reionization stages of galaxy formation. We show that 5-15% of the objects existing at z {approx} 8 do indeed survive until the present in the MWmore » like environment without significant evolution. This implies that it is plausible that the fossil dwarf galaxies do exist in the Local Group. Because such galaxies form their stellar systems early during the period of active merging and accretion, they should have spheroidal morphology regardless of their current distance from the host galaxy. We show that both the expected luminosity function and spatial distribution of dark matter halos which are likely to host fossil galaxies agree reasonably well with the observed distributions of the luminous (L{sub V} > 10{sup 6} Lsun) Local Group fossil candidates near the host galaxy (d<200 kpc). However, the predicted abundance is substantially larger (by a factor of 2-3) for fainter galaxies (L{sub V} < 10{sup 6} Lsun) at larger distances (d>300 kpc). We discuss several possible explanations for this discrepancy.« less
The Post-starburst Evolution of Tidal Disruption Event Host Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, K. Decker; Zabludoff, Ann; Arcavi, Iair
We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10–1000 Myr ago, indicating that TDEs arise at different times in their hosts’ post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 inmore » most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%–10% for most hosts, not enough to explain the observed 30–200× boost in TDE rates, suggesting that the host’s core stellar concentration is more important. TDE hosts have stellar masses 10{sup 9.4}–10{sup 10.3} M {sub ☉}, consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10{sup 5.5}–10{sup 7.5} M {sub ☉}. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.« less
Complete identification of the Parkes half-Jansky sample of GHz peaked spectrum radio galaxies
NASA Astrophysics Data System (ADS)
de Vries, N.; Snellen, I. A. G.; Schilizzi, R. T.; Lehnert, M. D.; Bremer, M. N.
2007-03-01
Context: Gigahertz Peaked Spectrum (GPS) radio galaxies are generally thought to be the young counterparts of classical extended radio sources. Statistically complete samples of GPS sources are vital for studying the early evolution of radio-loud AGN and the trigger of their nuclear activity. The "Parkes half-Jansky" sample of GPS radio galaxies is such a sample, representing the southern counterpart of the 1998 Stanghellini sample of bright GPS sources. Aims: As a first step of the investigation of the sample, the host galaxies need to be identified and their redshifts determined. Methods: Deep R-band VLT-FORS1 and ESO 3.6 m EFOSC II images and long slit spectra have been taken for the unidentified sources in the sample. Results: We have identified all twelve previously unknown host galaxies of the radio sources in the sample. Eleven have host galaxies in the range 21.0 < RC < 23.0, while one object, PKS J0210+0419, is identified in the near infrared with a galaxy with Ks = 18.3. The redshifts of 21 host galaxies have been determined in the range 0.474 < z < 1.539, bringing the total number of redshifts to 39 (80%). Analysis of the absolute magnitudes of the GPS host galaxies show that at z>1 they are on average a magnitude fainter than classical 3C radio galaxies, as found in earlier studies. However their restframe UV luminosities indicate that there is an extra light contribution from the AGN, or from a population of young stars. Based on observations collected at the European Southern Observatory Very Large Telescope, Paranal, Chile (ESO prog. ID No. 073.B-0289(B)) and the European Southern Observatory 3.6 m Telescope, La Silla, Chile (prog. ID No. 073.B-0289(A)). Appendices are only available in electronic form at http://www.aanda.org
Structural properties of faint low surface brightness galaxies
NASA Astrophysics Data System (ADS)
Pahwa, Isha; Saha, Kanak
2018-05-01
We study the structural properties of Low Surface Brightness galaxies (LSB) using a sample of 263 galaxies observed by the Green Bank Telescope (Schneider et al. 1992). We perform 2D decompositions of these galaxies in the SDSS g, r and i bands using the GALFIT software. Our decomposition reveals that about 60% of these galaxies are bulgeless i.e., their light distributions are well modelled by pure exponential disks. The rest of the galaxies were fitted with two components: a Sersic bulge and an exponential disk. Most of these galaxies have bulge-to-total (B/T) ratio less than 0.1. However, of these 104 galaxies, 20% have B/T > 0.1 i.e., hosting significant bulge component and they are more prominent amongst the fainter LSBs. According to g - r colour criteria, most of the LSB galaxies in our sample are blue, with only 7 classified as red LSBs. About 15% of the LSB galaxies (including both blue and red) in our sample host stellar bars. The incidence of bars is more prominent in relatively massive blue LSB galaxies with very high gas fraction. These findings may provide important clues to the formation and evolution of LSB galaxies - in particular on the bar/bulge formation in faint LSB disks.
NASA Astrophysics Data System (ADS)
Fischer, Travis; Rigby, Jane; Gladders, Michael; Sharon, Keren q.; Barrientos, L. Felipe; Bayliss, Matt; Dahle, Håkon; Florian, Michael; Johnson, Traci Lin; Wuyts, Eva
2018-01-01
We present rest-frame optical SINFONI integral field spectroscopy and rest-frame UV HST imaging of a lensed galaxy hosting an active galactic nucleus (AGN) at z = 2.39. Galactic wind feedback is widely acknowledged to play a critical role in the evolution of galaxies, however, the physical mechanisms involved and the relative importance of AGN and star formation as the main feedback drivers remain poorly understood. AGN-driven feedback has been evident in very luminous but rare quasars and radio galaxies, but observational evidence remains lacking for less extreme, “normal” star-forming galaxies. We report, for the first time at high redshift, spatially resolved velocity profiles and geometries of an AGN-driven outflow in a normal star-forming galaxy and spatial extents and morphologies of Lyα emission and stellar UV continuum. Analyzing these measurements in tandem, we determine the physical conditions, geometry, and excitation sources of the interstellar medium in a star-forming, AGN-hosting galaxy at cosmic noon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Robyn Deborah
2008-01-01
Supermassive black holes (SMBHs) are ubiquitous in the centers of galaxies. Their formation and subsequent evolution is inextricably linked to that of their host galaxies, and the study of galaxy formation is incomplete without the inclusion of SMBHs. The present work seeks to understand the growth and evolution of SMBHs through their interaction with the host galaxy and its environment. In the first part of the thesis (Chap. 2 and 3), we combine a simple semi-analytic model of outflows from active galactic nuclei (AGN) with a simulated dark matter density distribution to study the impact of SMBH feedback on cosmologicalmore » scales. We find that constraints can be placed on the kinetic efficiency of such feedback using observations of the filling fraction of the Lyα forest. We also find that AGN feedback is energetic enough to redistribute baryons over cosmological distances, having potentially significant effects on the interpretation of cosmological data which are sensitive to the total matter density distribution (e.g. weak lensing). However, truly assessing the impact of AGN feedback in the universe necessitates large-dynamic range simulations with extensive treatment of baryonic physics to first model the fueling of SMBHs. In the second part of the thesis (Chap. 4-6) we use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting a SMBH, in a cosmological context. The simulation covers a dynamical range of 10 million allowing us to study the transport of matter and angular momentum from super-galactic scales all the way down to the outer edge of the accretion disk around the SMBH. Focusing our attention on the central few hundred parsecs of the galaxy, we find the presence of a cold, self-gravitating, molecular gas disk which is globally unstable. The global instabilities drive super-sonic turbulence, which maintains local stability and allows gas to fuel a SMBH without first fragmenting completely into stars. The fueling appears to be a stochastic process, with no preferred timescale for accretion over the duration of the simulation.« less
NASA Astrophysics Data System (ADS)
Buchner, Johannes; Bauer, Franz E.
2017-03-01
The 'torus' obscurer of active galactic nuclei (AGN) is poorly understood in terms of its density, sub-structure and physical mechanisms. Large X-ray surveys provide model boundary constraints, for both Compton-thin and Compton-thick levels of obscuration, as obscured fractions are mean covering factors fcov. However, a major remaining uncertainty is host-galaxy obscuration. In Paper I, we discovered a relation of {NH} ∝ M_{star }^{1/3} for the obscuration of galaxy-scale gas. Here, we apply this observational relation to the AGN population, and find that galaxy-scale gas is responsible for a luminosity-independent fraction of Compton-thin AGN, but does not produce Compton-thick columns. With the host-galaxy obscuration understood, we present a model of the remaining nuclear obscurer, which is consistent with a range of observations. Our radiation-lifted torus model consists of a Compton-thick component (fcov ∼ 35 per cent) and a Compton-thin component (fcov ∼ 40 per cent), which depends on both black hole mass and luminosity. This provides a useful summary of observational constraints for torus modellers who attempt to reproduce this behaviour. It can also be employed as a sub-grid recipe in cosmological simulations that do not resolve the torus. We also investigate host-galaxy X-ray obscuration inside cosmological, hydrodynamic simulations (Evolution and Assembly of Galaxies and their Environment; Illustris). The obscuration from ray-traced galaxy gas can agree with observations, but is highly sensitive to the chosen feedback assumptions.
NASA Astrophysics Data System (ADS)
Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration
2015-01-01
The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the environmental effects involved in the evolution of such objects.
Evolution of LMC/M33-mass dwarf galaxies in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Shao, Shi; Cautun, Marius; Deason, Alis J.; Frenk, Carlos S.; Theuns, Tom
2018-06-01
We investigate the population of dwarf galaxies with stellar masses similar to the Large Magellanic Cloud (LMC) and M33 in the EAGLE galaxy formation simulation. In the field, galaxies reside in haloes with stellar-to-halo mass ratios of 1.03^{+0.50}_{-0.31}× 10^{-2} (68% confidence level); systems like the LMC, which have an SMC-mass satellite, reside in haloes about 1.3 times more massive, which suggests an LMC halo mass at infall, M_{200}=3.4^{+1.8}_{-1.2}× 10^{11}{ M_⊙ } (68% confidence level). The colour distribution of dwarfs is bimodal, with the red galaxies (g - r > 0.6) being mostly satellites. The fraction of red LMC-mass dwarfs is 15% for centrals, and for satellites this fraction increases rapidly with host mass: from 10% for satellites of Milky Way (MW)-mass haloes to nearly 90% for satellites of groups and clusters. The quenching timescale, defined as the time after infall when half of the satellites have acquired red colours, decreases with host mass from >5 Gyrs for MW-mass hosts to 2.5 Gyrs for cluster mass hosts. The satellites of MW-mass haloes have higher star formation rates and bluer colours than field galaxies. This is due to enhanced star formation triggered by gas compression shortly after accretion. Both the LMC and M33 have enhanced recent star formation that could be a manifestation of this process. After infall into their MW-mass hosts, the g - r colours of LMC-mass dwarfs become bluer for the first 2 Gyrs, after which they rapidly redden. LMC-mass dwarfs fell into their MW-mass hosts only relatively recently, with more than half having an infall time of less than 3.5 Gyrs.
A Glimpse at Quasar Host Galaxy Far-UV Emission, Using Damped Lyα's as Natural Coronagraphs
Cai, Zheng; Fan, Xiaohui; Noterdaeme, Pasquier; ...
2014-09-16
In merger-driven models of massive galaxy evolution, the luminous quasar phase is expected to be accompanied by vigorous star formation in quasar host galaxies. In this paper, we use high column density damped Lyα (DLA) systems along quasar sight lines as natural coronagraphs to directly study the far-UV (FUV) radiation from the host galaxies of luminous background quasars. Here, we have stacked the spectra of ~2000 DLA systems (N HI > 10 20.6cm –2) with a median absorption redshiftmore » $$\\langle$$z$$\\rangle$$ = 2.6 selected from quasars observed in the SDSS-III Baryon Oscillation Spectroscopic Survey. We detect residual flux in the dark troughs of the composite DLA spectra. The level of this residual flux significantly exceeds systematic errors in the Sloan Digital Sky Survey fiber sky subtraction; furthermore, the residual flux is strongly correlated with the continuum luminosity of the background quasar, while uncorrelated with DLA column density or metallicity. We conclude that the flux could be associated with the average FUV radiation from the background quasar host galaxies (with medium redshift $$\\langle$$z$$\\rangle$$ = 3.1) that is not blocked by the intervening DLA. Finally, assuming that all of the detected flux originates from quasar hosts, for the highest quasar luminosity bin ($$\\langle$$L$$\\rangle$$ = 2.5 × 10 13 L ⊙), the host galaxy has an FUV intensity of 1.5 ± 0.2 × 10 40 erg s –1 Å –1; this corresponds to an unobscured UV star formation rate of 9 M ⊙ yr –1.« less
A glimpse at quasar host galaxy far-UV emission using damped Lyα's as natural coronagraphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Zheng; Fan, Xiaohui; Wang, Ran
2014-10-01
In merger-driven models of massive galaxy evolution, the luminous quasar phase is expected to be accompanied by vigorous star formation in quasar host galaxies. In this paper, we use high column density damped Lyα (DLA) systems along quasar sight lines as natural coronagraphs to directly study the far-UV (FUV) radiation from the host galaxies of luminous background quasars. We have stacked the spectra of ∼2000 DLA systems (N {sub H} {sub I} > 10{sup 20.6} cm{sup –2}) with a median absorption redshift (z) = 2.6 selected from quasars observed in the SDSS-III Baryon Oscillation Spectroscopic Survey. We detect residual fluxmore » in the dark troughs of the composite DLA spectra. The level of this residual flux significantly exceeds systematic errors in the Sloan Digital Sky Survey fiber sky subtraction; furthermore, the residual flux is strongly correlated with the continuum luminosity of the background quasar, while uncorrelated with DLA column density or metallicity. We conclude that the flux could be associated with the average FUV radiation from the background quasar host galaxies (with medium redshift (z) = 3.1) that is not blocked by the intervening DLA. Assuming that all of the detected flux originates from quasar hosts, for the highest quasar luminosity bin ((L) = 2.5 × 10{sup 13} L {sub ☉}), the host galaxy has an FUV intensity of 1.5 ± 0.2 × 10{sup 40} erg s{sup –1} Å{sup –1}; this corresponds to an unobscured UV star formation rate of 9 M {sub ☉} yr{sup –1}.« less
Galaxy gas as obscurer - I. GRBs x-ray galaxies and find an NH3∝ M_{star} relation
NASA Astrophysics Data System (ADS)
Buchner, Johannes; Schulze, Steve; Bauer, Franz E.
2017-02-01
An important constraint for galaxy evolution models is how much gas resides in galaxies, in particular, at the peak of star formation z = 1-3. We attempt a novel approach by letting long-duration gamma ray bursts (LGRBs) x-ray their host galaxies and deliver column densities to us. This requires a good understanding of the obscurer and biases introduced by incomplete follow-up observations. We analyse the X-ray afterglow of all 844 Swift LGRBs to date for their column density NH. To derive the population properties, we propagate all uncertainties in a consistent Bayesian methodology. The NH distribution covers the 1020-23 cm-2 range and shows no evolutionary effect. Higher obscurations, e.g. Compton-thick columns, could have been detected but are not observed. The NH distribution is consistent with sources randomly populating a ellipsoidal gas cloud of major axis {N^{major}H }=10^{23}cm^{-2} with 0.22 dex intrinsic scatter between objects. The unbiased SHOALS survey of afterglows and hosts allows us to constrain the relation between Spitzer-derived stellar masses and X-ray derived column densities NH. We find a well-constrained power-law relation of NH = 1021.7 cm-2 × (M⋆/109.5 M⊙)1/3, with 0.5 dex intrinsic scatter between objects. The Milky Way and the Magellanic clouds also follow this relation. From the geometry of the obscurer, its stellar mass dependence and comparison with local galaxies, we conclude that LGRBs are primarily obscured by galaxy-scale gas. Ray tracing of simulated Illustris galaxies reveals a relation of the same normalization, but a steeper stellar-mass dependence and mild redshift evolution. Our new approach provides valuable insight into the gas residing in high-redshift galaxies.
Study of central light concentration in nearby galaxies
NASA Astrophysics Data System (ADS)
Aswathy, S.; Ravikumar, C. D.
2018-06-01
We propose a novel technique to estimate the masses of supermassive black holes (SMBHs) residing at the centres of massive galaxies in the nearby Universe using simple photometry. Aperture photometry using SEXTRACTOR is employed to determine the central intensity ratio (CIR) at the optical centre of the galaxy image for a sample of 49 nearby galaxies with SMBH mass estimations. We find that the CIR of ellipticals and classical bulges is strongly correlated with SMBH masses whereas pseudo-bulges and ongoing mergers show significant scatter. Also, the CIR of low-luminosity AGNs in the sample shows significant connection with the 5 GHz nuclear radio emission suggesting a stronger link between the former and the SMBH evolution in these galaxies. In addition, it is seen that various structural and dynamical properties of the SMBH host galaxies are correlated with the CIR making the latter an important parameter in galaxy evolution studies. Finally, we propose the CIR to be an efficient and simple tool not only to distinguish classical bulges from pseudo-bulges but also to estimate the mass of the central SMBH.
NASA Astrophysics Data System (ADS)
Bassino, L. P.
2017-10-01
Globular clusters (GCs) are ancient stellar systems, among the oldest ones in the Universe. As a consequence, they carry information related to the formation and evolution of their host-galaxies. The study of GC systems associated with early-type galaxies has shown that most of them have similar characteristics. Among them, the most noticeable is the existence of two GC subpopulations (metal-poor and metal-rich, respectively), that differ clearly in their colour distribution, spatial distribution, and kinematics. However, GC systems whose properties differ from the known ``classic'' ones, have been detected in the last years. For instance, the case of GC systems that present more than two subpopulations in their colour distribution or anomalies in the luminosity function. The peculiar properties of the GC systems, together with characteristics of the host-galaxy like the presence of type Ia SNe, the surface-brightness distribution, or the colour map, may be related to bursts of star formation and let us rebuild the host-galaxy history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shuo; Berczik, Peter; Spurzem, Rainer
Supermassive black hole binaries (SMBHBs) are productions of the hierarchical galaxy formation model. There are many close connections between a central SMBH and its host galaxy because the former plays very important roles on galaxy formation and evolution. For this reason, the evolution of SMBHBs in merging galaxies is a fundamental challenge. Since there are many discussions about SMBHB evolution in a gas-rich environment, we focus on the quiescent galaxy, using tidal disruption (TD) as a diagnostic tool. Our study is based on a series of numerical, large particle number, direct N -body simulations for dry major mergers. According tomore » the simulation results, the evolution can be divided into three phases. In phase I, the TD rate for two well separated SMBHs in a merging system is similar to that for a single SMBH in an isolated galaxy. After two SMBHs approach close enough to form a bound binary in phase II, the disruption rate can be enhanced by ∼2 orders of magnitude within a short time. This “boosted” disruption stage finishes after the SMBHB evolves to a compact binary system in phase III, corresponding to a reduction in disruption rate back to a level of a few times higher than in phase I. We also discuss how to correctly extrapolate our N -body simulation results to reality, and the implications of our results to observations.« less
An optical imaging study of 0.4 ≤ z ≤ 0.8 quasar host galaxies . II. Analysis and interpretation
NASA Astrophysics Data System (ADS)
Örndahl, E.; Rönnback, J.
2005-11-01
We performed optical imaging of 102 radio-loud and radio-quiet quasars at z=0.4{-}0.8, of which 91 fields were found suitable for host galaxy analysis after the deselection of saturated and otherwise flawed images. The data sets were obtained mainly in the R band, but also in the V and I or Gunn i band, and were presented in Rönnback et al.(1996, MNRAS, 283, 282) and Örndahl et al. (2003, A&A, 404, 883). In this paper we combine the two above-mentioned samples and also separately discuss additional hosts, extracted from data taken by Wold et al. (2000, MNRAS, 316, 267; 2001, MNRAS, 323, 231). The joint sample forms a sizeable fraction of the to-date total number of observed sources at intermediate redshifts and increases the number of resolved radio-quiet hosts at z>0.4 considerably. Equal numbers of radio-loud and radio-quiet objects were observed, resulting in a detection rate of 79% for the radio-loud hosts and 66% for the radio-quiet hosts. Profile fitting could only be carried out for a minority of the sample, but it results in predominantly elliptical morphologies. This is consistent with the mean values of the axial ratios, for which we find b/a⪆0.8 for both radio-quiet and radio-loud hosts, just as in the case of normal elliptical galaxies. The mean absolute magnitudes of the radio-loud and radio-quiet hosts is M_R=-23.5 in both cases. This similarity between the mean magnitudes of the two types of host galaxy is also seen in the other imaged bands. While the radio-loud host absolute R magnitudes are correlated with redshift, only a weak trend of the same sort is seen for the radio-quiet host magnitudes. Note, however, that the sample is not fully resolved and that the detection limit, in combination with the relationship between host and nuclear luminosity, may conspire in creating the illusion of an upturn in magnitude. The average nucleus-to-host galaxy luminosity ratios of the radio-loud and radio-quiet objects do not differ significantly in any band, nor is the difference between the average luminosity ratios of flat spectrum and steep spectrum radio-loud quasars larger than 1.5σ. Thus, no effect of beaming (as expected in the unifying scheme) is seen. The colours of both radio-loud and radio-quiet host galaxies are found to be as blue as present-day late-type spirals and starburst galaxies. These blue colours are most likely due neither to galaxy evolution over the range, which only gives rise to a colour shift of 0.2 mag, nor to scattered nuclear light, since colours determined from annular apertures yield very similar results. Since close companions in projection are not uncommon (and a few sources even exhibit tidal tail-like features and other signs of interaction), ongoing star formation is a reasonable explanation of the blue host colours. As multiple-band imaging primarily was carried out for quasars showing indications of the presence of a host galaxy, the colour analysis results are valid for host galaxies which are large, bright, have low nucleus-to-host luminosity ratios, and/or display large scale disturbances, but cannot however safely be generalised to hold for the quasar host galaxy population at intermediate redshift as a whole.
NASA Astrophysics Data System (ADS)
Zegeye, David W.
2018-01-01
We present a study of the evolution of the 10 brightest galaxies in the Fornax Cluster, as reconstructed through their Globular Cluster (GC) populations. GCs can be characterized by their projected two-dimensional (2D) spatial distribution. Over- or under-densities in the GC distribution, can be linked to events in the host galaxy assembly history, and used to constrain the properties of their progenitors. With HST/ACS imaging, we identified significant structures in the GC distribution of the 10 galaxies investigated, with some of the galaxies possessing structures with >10-sigma significance. GC over-densities have been found within the galaxies, with significant differences between the red and blue GC population. For elongated galaxies, structures are preferentially to be aligned along the major axis. Fornax Cluster galaxies appear to be more dynamically relaxed than the Virgo Cluster galaxies previously investigated with the same methodology by D'Abrusco et al. (2016). However, from these observations, the evident imprints left in the spatial distribution of GCs in these galaxies suggest a similarly intense history of interactions.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
NASA Astrophysics Data System (ADS)
Spengler, Chelsea; Côté, Patrick; Roediger, Joel; Ferrarese, Laura; Sánchez-Janssen, Rubén; Toloba, Elisa; Liu, Yiqing; Guhathakurta, Puragra; Cuillandre, Jean-Charles; Gwyn, Stephen; Zirm, Andrew; Muñoz, Roberto; Puzia, Thomas; Lançon, Ariane; Peng, Eric; Mei, Simona; Powalka, Mathieu
2018-01-01
It is now established that most, if not all, massive galaxies host central supermassive black holes (SMBHs), and that these SMBHs are linked to the growth their host galaxies as shown by several scaling relations. Within the last couple of decades, it has become apparent that most lower-mass galaxies without obvious SMBHs nevertheless contain some sort of central massive object in the form of compact stellar nuclei that also follow identical (or similar) scaling relations. These nuclei are challenging to study given their small sizes and relatively faint magnitudes, but understanding their origins and relationship to their hosts is critical to gaining a more complete picture of galaxy evolution. To that end, we highlight selected results from an analysis of 39 nuclei and their early-type hosts in the Virgo Cluster using ten broadband filters: F300W, F475W, F850LP, F160W, u*griz, and Ks. We estimate masses, metallicities and ages using simple stellar population (SSP) models. For 19 nuclei, we compare to SSP parameters derived from Keck and Gemini spectra and find reasonable agreement between the photometric and spectroscopic metallicity: the RMS scatter is 0.3 dex. We reproduce the nucleus-galaxy mass fraction of 0.33 ± 0.08% for galaxy stellar masses 108.4-1010.3 M⊙ with a typical precision of ~35% for the nuclei masses. Based on available model predictions, there is no single preferred formation scenario for nuclei, suggesting that nuclei are formed stochastically through a mix of processes. Nuclei metallicities are statistically identical to those of their hosts, appearing 0.07 ± 0.3 dex more metal-rich on average — although, omitting galaxies with unusual origins (i.e., compact ellipticals), nuclei are 0.20 ± 0.28 dex more metal-rich. We find no clear age difference between nuclei and their galaxies, with nuclei displaying a broad range of ages. Interestingly, we find that the most massive nuclei may be flatter and more closely aligned with the semi-major axes of their hosts, suggesting that they formed through predominantly dissipative processes.
Revisiting The First Galaxies: The effects of Population III stars on their host galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratov, Alexander L.; Gnedin, Oleg Y.; Gnedin, Nickolay Y.
2013-07-12
We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H 2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch duringmore » which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 10 8 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 10 6 M ⊙ re-accrete most of their baryons and transition to metal-enriched Pop II star formation.« less
REVISITING THE FIRST GALAXIES: THE EFFECTS OF POPULATION III STARS ON THEIR HOST GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratov, Alexander L.; Gnedin, Oleg Y.; Zemp, Marcel
2013-08-01
We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H{sub 2} formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch duringmore » which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 10{sup 8} years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 Multiplication-Sign 10{sup 6} M{sub Sun} re-accrete most of their baryons and transition to metal-enriched Pop II star formation.« less
Mass and metallicity scaling relations of high-redshift star-forming galaxies selected by GRBs
NASA Astrophysics Data System (ADS)
Arabsalmani, M.; Møller, P.; Perley, D. A.; Freudling, W.; Fynbo, J. P. U.; Le Floc'h, E.; Zwaan, M. A.; Schulze, S.; Tanvir, N. R.; Christensen, L.; Levan, A. J.; Jakobsson, P.; Malesani, D.; Cano, Z.; Covino, S.; D'Elia, V.; Goldoni, P.; Gomboc, A.; Heintz, K. E.; Sparre, M.; de Ugarte Postigo, A.; Vergani, S. D.
2018-01-01
We present a comprehensive study of the relations between gas kinematics, metallicity and stellar mass in a sample of 82 gamma-ray burst (GRB)-selected galaxies using absorption and emission methods. We find the velocity widths of both emission and absorption profiles to be a proxy of stellar mass. We also investigate the velocity-metallicity correlation and its evolution with redshift. Using 33 GRB hosts with measured stellar mass and metallicity, we study the mass-metallicity relation for GRB host galaxies in a stellar mass range of 108.2-1011.1 M⊙ and a redshift range of z ∼ 0.3-3.4. The GRB-selected galaxies appear to track the mass-metallicity relation of star-forming galaxies but with an offset of 0.15 towards lower metallicities. This offset is comparable with the average error bar on the metallicity measurements of the GRB sample and also the scatter on the mass-metallicity relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high redshifts. Our analysis shows that the metallicity measurements from absorption methods can significantly differ from emission metallicities and assuming identical measurements from the two methods may result in erroneous conclusions.
The Merger-Free Growth of Galaxies and Supermassive Black Holes
NASA Astrophysics Data System (ADS)
Simmons, Brooke; Smethurst, Rebecca; Lintott, Chris; Martin, Garreth; Kaviraj, Sugata; Devriendt, Julien; Galaxy Zoo Team
2018-01-01
There is now clear evidence that the merger-driven pathway to black hole and galaxy growth is only half the story. Merger-free evolution contributes roughly equally to the overall growth of black holes in the Universe and is also responsible for a significant amount of galaxy growth over cosmic time. A recent study examining the growth of black holes in unambiguously disk-dominated galaxies shows these black holes reach quasar-like luminosities and black hole masses typical of those hosted in bulge-dominated and elliptical galaxies with major mergers in their evolutionary histories. However, while there appears to be no correlation between the size of the black hole and upper limits on the host galaxy bulges, the fitted correlation between black hole mass and total galaxy stellar mass in these merger-free systems is fully consistent with the canonical relationship based on merger-driven systems. There is further evidence via comparison between observed populations and cosmological simulations confirming that bulgeless systems are generally consistent with having merger-free histories. If bulgeless and disk-dominated galaxies are indeed signatures of systems with no violent mergers in their formation histories, the same correlation between black hole and galaxy in these systems versus that seen in elliptical galaxy samples indicates the black hole-galaxy connection must originate with a process more fundamental than the dynamical configuration of a galaxy's stars.
Significant Enhancement of H2 Formation in Disk Galaxies under Strong Ram Pressure
NASA Astrophysics Data System (ADS)
Henderson, Benjamin; Bekki, Kenji
2016-05-01
We show for the first time that H2 formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H I and H2 components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H I caused by RP increases H2 formation in disk galaxies before RP rapidly strips H I, cutting off the fuel supply and causing a drop in H2 density. We also find that the level of this H2 formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H I and H2 mass in disk galaxies under strong RP. We discuss how the correlation between H2 fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H2 densities.
NASA Astrophysics Data System (ADS)
Gupta, Anshu; Yuan, Tiantian; Torrey, Paul; Vogelsberger, Mark; Martizzi, Davide; Tran, Kim-Vy H.; Kewley, Lisa J.; Marinacci, Federico; Nelson, Dylan; Pillepich, Annalisa; Hernquist, Lars; Genel, Shy; Springel, Volker
2018-06-01
We use the IllustrisTNG simulations to investigate the evolution of the mass-metallicity relation (MZR) for star-forming cluster galaxies as a function of the formation history of their cluster host. The simulations predict an enhancement in the gas-phase metallicities of star-forming cluster galaxies (109 < M* < 1010 M⊙ h-1) at z ≤ 1.0 in comparisons to field galaxies. This is qualitatively consistent with observations. We find that the metallicity enhancement of cluster galaxies appears prior to their infall into the central cluster potential, indicating for the first time a systematic `chemical pre-processing' signature for infalling cluster galaxies. Namely, galaxies that will fall into a cluster by z = 0 show a ˜0.05 dex enhancement in the MZR compared to field galaxies at z ≤ 0.5. Based on the inflow rate of gas into cluster galaxies and its metallicity, we identify that the accretion of pre-enriched gas is the key driver of the chemical evolution of such galaxies, particularly in the stellar mass range (109 < M* < 1010 M⊙ h-1). We see signatures of an environmental dependence of the ambient/inflowing gas metallicity that extends well outside the nominal virial radius of clusters. Our results motivate future observations looking for pre-enrichment signatures in dense environments.
NASA Technical Reports Server (NTRS)
Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.;
2012-01-01
We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.
NASA Astrophysics Data System (ADS)
Le Floc'h, Emeric; Charmandaris, Vassilis; Forrest, William J.; Mirabel, I. Félix; Armus, Lee; Devost, Daniel
2006-05-01
We report on IRAC 4.5 μm, IRAC 8.0 μm, and MIPS 24 μm deep observations of 16 gamma-ray burst (GRB) host galaxies performed with the Spitzer Space Telescope, and we investigate in the thermal infrared the presence of evolved stellar populations and dust-enshrouded star-forming activity associated with these objects. Our sample is derived from GRBs that were identified with subarcsecond localization between 1997 and 2001, and only a very small fraction (~20%) of the targeted sources are detected down to f4.5μm~3.5 μJy and f24μm~85 μJy (3 σ). This likely argues against a population dominated by massive and strongly starbursting (i.e., SFR>~100 Msolar yr-1) galaxies as has been recently suggested from submillimeter/radio and optical studies of similarly selected GRB hosts. Furthermore, we find evidence that some GRBs do not occur in the most infrared luminous regions-hence the most actively star-forming environments-of their host galaxies. Should the GRB hosts be representative of all star-forming galaxies at high redshift, models of infrared galaxy evolution indicate that >~50% of GRB hosts should have f24μm>~100 μJy. Unless the identification of GRBs prior to 2001 was prone to strong selection effects biasing our sample against dusty galaxies, we infer in this context that the GRBs identified with the current techniques cannot be directly used as unbiased probes of the global and integrated star formation history of the universe. Based on observations made with the Spitzer Space Telescope, operated by the Jet Propulsion Laboratory under NASA contract 1407.
Star clusters in evolving galaxies
NASA Astrophysics Data System (ADS)
Renaud, Florent
2018-04-01
Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.
Violence in the hearts of galaxies: aberration or adolescence?
Mundell, Carole G
2002-12-15
Violent activity in the nuclei of galaxies has long been considered a curiosity in its own right; manifestations of this phenomenon include distant quasars in the early Universe and comparatively nearby Seyfert galaxies, both thought to be powered by the release of gravitational potential energy as material from the host galaxy accretes onto a central supermassive black hole (SMBH). Traditionally, the broader study of the formation, structure and evolution of galaxies has largely excluded active galactic nuclei. Recently, however, this situation has changed dramatically, both observationally and theoretically, with the realization that the growth and influence of the SMBH, the origin and development of galaxies and nuclear activity at different epochs in the Universe may be intimately related. The most spectacular fireworks seen in distant quasars may be relatively easy to explain, since the era of greatest quasar activity seems to coincide with turbulent dynamics at the epoch of galaxy formation in the young, gas-rich Universe. Ubiquitous black holes are believed to be a legacy of this violent birth. Alternatively, black holes may be the seeds that drive galaxy formation in the first place. Closer to home, and hence more recently in the history of the Universe, a fraction of comparatively ordinary galaxies, similar to our own, has reignited their central engines, albeit at a lower level of activity. Since these galaxies are more established than their younger and more distant counterparts, the activity here is all the more puzzling. Whatever the mechanisms involved, they are likely to play an important role in galaxy evolution. I review the intriguing evidence for causal links between SMBHs, nuclear activity and the formation and evolution of galaxies, and describe opportunities for testing these relationships using the next generation of earthbound and space-borne astronomical facilities.
Wandering Supermassive Black Holes in Milky-Way-mass Halos
NASA Astrophysics Data System (ADS)
Tremmel, Michael; Governato, Fabio; Volonteri, Marta; Pontzen, Andrew; Quinn, Thomas R.
2018-04-01
We present a self-consistent prediction from a large-scale cosmological simulation for the population of “wandering” supermassive black holes (SMBHs) of mass greater than 106 M ⊙ on long-lived, kpc-scale orbits within Milky Way (MW)-mass galaxies. We extract a sample of MW-mass halos from the ROMULUS25 cosmological simulation, which is uniquely able to capture the orbital evolution of SMBHs during and following galaxy mergers. We predict that such halos, regardless of recent merger history or morphology, host an average of 5.1 ± 3.3 SMBHs, including their central black hole, within 10 kpc from the galactic center and an average of 12.2 ± 8.4 SMBHs total within their virial radius, not counting those in satellite halos. Wandering SMBHs exist within their host galaxies for several Gyr, often accreted by their host halo in the early Universe. We find, with >4σ significance, that wandering SMBHs are preferentially found outside of galactic disks.
NASA Astrophysics Data System (ADS)
Shi, Fei; Liu, Yu-Yan; Sun, Guang-Lan; Li, Pei-Yu; Lei, Yu-Ming; Wang, Jian
2015-10-01
The emission-lines of galaxies originate from massive young stars or supermassive blackholes. As a result, spectral classification of emission-line galaxies into star-forming galaxies, active galactic nucleus (AGN) hosts, or compositions of both relates closely to formation and evolution of galaxy. To find efficient and automatic spectral classification method, especially in large surveys and huge data bases, a support vector machine (SVM) supervised learning algorithm is applied to a sample of emission-line galaxies from the Sloan Digital Sky Survey (SDSS) data release 9 (DR9) provided by the Max Planck Institute and the Johns Hopkins University (MPA/JHU). A two-step approach is adopted. (i) The SVM must be trained with a subset of objects that are known to be AGN hosts, composites or star-forming galaxies, treating the strong emission-line flux measurements as input feature vectors in an n-dimensional space, where n is the number of strong emission-line flux ratios. (ii) After training on a sample of emission-line galaxies, the remaining galaxies are automatically classified. In the classification process, we use a 10-fold cross-validation technique. We show that the classification diagrams based on the [N II]/Hα versus other emission-line ratio, such as [O III]/Hβ, [Ne III]/[O II], ([O III]λ4959+[O III]λ5007)/[O III]λ4363, [O II]/Hβ, [Ar III]/[O III], [S II]/Hα, and [O I]/Hα, plus colour, allows us to separate unambiguously AGN hosts, composites or star-forming galaxies. Among them, the diagram of [N II]/Hα versus [O III]/Hβ achieved an accuracy of 99 per cent to separate the three classes of objects. The other diagrams above give an accuracy of ˜91 per cent.
What triggers starbursts in dwarf galaxies?
NASA Astrophysics Data System (ADS)
Johnson, Kelsey
While the processes regulating star formation and the interstellar medium in massive interacting galaxies have been studied extensively, the extent to which these processes occur in the shallower gravitational potential wells of lower mass dwarf galaxies is relatively unconstrained. While dwarf galaxies are known to undergo starbursts (Heckman et al. 1998; Johnson et al. 2000), the origins of these bursts remain unclear, and interactions and mergers with other dwarfs have not been ruled out (Lelli et al. 2012; Koleva et al. 2014). These gas-rich dwarf galaxies in the nearby universe are expected to offer glimpses of star formation modes at high redshift with their low metal content and large amounts of fuel for forming stars. Given that dwarf-dwarf mergers dominate the merger rate at any given redshift (i.e. De Lucia et al. 2006; Fakhouri et al. 2010), this lack of observational constraints leaves a significant mode of galaxy evolution in the universe mostly unexplored. While a few individual dwarf mergers/pairs have been observed (e.g., Henize 2-10: Reines et al. 2012; NGC4490: Clemens et al. 1998; NGC3448: Noreau & Kronberg 1986; IIZw40: Lequeux et al. 1980), a systematic study of the star formation histories of interacting dwarfs as a population has never been done. We propose to obtain and further process near- and far-ultraviolet (NUV/FUV), nearinfrared (NIR), and mid-infrared (MIR) imaging for a sample of 58 dwarf galaxy pairs (116 dwarfs) and 348 unpaired dwarfs (analogs matched in stellar mass, redshift, and local density enhancement) using the NASA archives for the Galaxy Evolution Explorer (GALEX; Martin et al. 2003), the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006), and the Wide-Field Infrared Survey Explorer (WISE; Wright et al. 2010) missions. We aim to characterize the impact interactions have on fueling star formation in the nearby universe for a complete sample of dwarf galaxy pairs caught in a variety of interaction stages from the TiNy Titans Survey. The archival UV observations will first allow us to determine the presence of stellar bridges and tidal tails and whether dwarf-dwarf interactions alone can trigger significant levels of star formation and/or remove stars from their host galaxies. We will then use the UV and IR photometry to place age constraints on the stellar populations and to determine stellar mass surface densities, ages, and host galaxy stellar mass as a function of pair separation and dwarf-dwarf mass ratio. We will distinguish tidally triggered star formation from star formation derived from stochastic processes by taking advantage of the wealth of observations available in all three archives for "normal" non-interacting dwarfs that we have carefully selected to be analogs to our paired dwarfs (matched in stellar mass, redshift, and environment) and by comparing the stellar populations of those dwarfs with the interacting dwarfs in our sample. Ultimately, we can combine the UV and IR imaging from this proposal with ground-based optical photometry from our current, ongoing program to model the star formation histories of these dwarfs as part of a larger, multi-wavelength effort to understand the role low-mass mergers play in galaxy evolution. This study will thus characterize evidence for the hierarchical evolution of dwarf galaxies as well as the extent of pre-processing (i.e., dwarf-dwarf interactions occurring before the accretion by a massive host) that occurs.
Black Hole Masses for Type I Active Galactic Nuclei in the Chandra Cosmos Legacy Survey
NASA Astrophysics Data System (ADS)
Nagaraj, Gautam; Fornasini, Francesca; Civano, Francesca Maria
2018-01-01
Tight local relations between SMBH masses and galaxy properties have established the fundamental connection between SMBHs and their host galaxies. However, in order to better understand the coevolution of SMBHs and their host galaxies over cosmic time, we need measurements of black hole masses, AGN luminosities, and galaxy stellar masses from sizable samples of AGN covering lower luminosities than the brightest quasars spanning a wide redshift range. In this study, we report masses of the SMBHs of 224 Type I AGNs from the Chandra COSMOS Legacy Survey as determined by the line widths of Mg II 2798, Hb 4862, and Ha 6564 via scaling relations derived from reverberation mapping. Preliminary comparison with host galaxy luminosities and stellar masses suggests an increase in Eddington ratio with redshift, consistent with previous studies. In addition, our derived SMBH masses fall above the local AGN MBH--M* (galactic stellar mass) relation from Reines & Volonteri (2015), but it is still not clear whether this results from redshift evolution of the MBH--M* relation or from the incompleteness of the spectroscopic surveys available. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
Two New Calcium-rich Gap Transients in Group and Cluster Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunnan, R.; Kasliwal, M. M.; Cao, Y.
We present the Palomar Transient Factory discoveries and the photometric and spectroscopic observations of PTF11kmb and PTF12bho. We show that both transients have properties consistent with the class of calcium-rich gap transients, specifically lower peak luminosities and rapid evolution compared to ordinary supernovae, and a nebular spectrum dominated by [Ca ii] emission. A striking feature of both transients is their host environments: PTF12bho is an intracluster transient in the Coma Cluster, while PTF11kmb is located in a loose galaxy group, at a physical offset ~150 kpc from the most likely host galaxy. Deep Subaru imaging of PTF12bho rules out anmore » underlying host system to a limit of M R > -8.0 mag, while Hubble Space Telescope imaging of PTF11kmb reveals a marginal counterpart that, if real, could be either a background galaxy or a globular cluster. Here, we show that the offset distribution of Ca-rich gap transients is significantly more extreme than that seen for SNe Ia or even short-hard gamma-ray bursts (sGRBs). Thus, if the offsets are caused by a kick, they require higher kick velocities and/or longer merger times than sGRBs. Finally, we also show that almost all Ca-rich transients found to date are in group and cluster environments with elliptical host galaxies, indicating a very old progenitor population; the remote locations could partially be explained by these environments having the largest fraction of stars in the intragroup/intracluster light following galaxy-galaxy interactions.« less
Two New Calcium-rich Gap Transients in Group and Cluster Environments
Lunnan, R.; Kasliwal, M. M.; Cao, Y.; ...
2017-02-08
We present the Palomar Transient Factory discoveries and the photometric and spectroscopic observations of PTF11kmb and PTF12bho. We show that both transients have properties consistent with the class of calcium-rich gap transients, specifically lower peak luminosities and rapid evolution compared to ordinary supernovae, and a nebular spectrum dominated by [Ca ii] emission. A striking feature of both transients is their host environments: PTF12bho is an intracluster transient in the Coma Cluster, while PTF11kmb is located in a loose galaxy group, at a physical offset ~150 kpc from the most likely host galaxy. Deep Subaru imaging of PTF12bho rules out anmore » underlying host system to a limit of M R > -8.0 mag, while Hubble Space Telescope imaging of PTF11kmb reveals a marginal counterpart that, if real, could be either a background galaxy or a globular cluster. Here, we show that the offset distribution of Ca-rich gap transients is significantly more extreme than that seen for SNe Ia or even short-hard gamma-ray bursts (sGRBs). Thus, if the offsets are caused by a kick, they require higher kick velocities and/or longer merger times than sGRBs. Finally, we also show that almost all Ca-rich transients found to date are in group and cluster environments with elliptical host galaxies, indicating a very old progenitor population; the remote locations could partially be explained by these environments having the largest fraction of stars in the intragroup/intracluster light following galaxy-galaxy interactions.« less
NASA Astrophysics Data System (ADS)
Circosta, Chiara; Vignali, C.; Gilli, R.; Feltre, A.; Vito, F.
2016-10-01
Obscured AGN are a crucial ingredient to understand the full growth history of super massive black holes and the coevolution with their host galaxies, since they constitute the bulk of the BH accretion. In the distant Universe, many of them are hosted by submillimeter galaxies (SMGs), characterized by a high production of stars and a very fast consumption of gas. Therefore, the analysis of this class of objects is fundamental to investigate the role of the ISM in the early coevolution of galaxies and black holesWe collected a sample of six obscured X-ray selected AGN at z>2.5 in the CDF-S, detected in the far-IR/submm bands. We performed a multiwavelength analysis in order to characterize their physical properties, as well as those of their host galaxies (e.g. column density, accretion luminosity, stellar mass, SFR, dust and gas mass). I will present the results of the X-ray spectral analysis of these sources based on the 7Ms Chandra data - the deepest X-ray observation ever carried out on any field - along with their broad-band spectral energy distributions (SEDs), built up using the public UV to far-IR photometry from the CANDELS and Herschel catalogs. By comparing the column density associated with the ISM (estimated measuring the size of the system) with that obtained from the X-ray data, it is possible to understand whether the ISM in the host galaxy may be able to produce a substantial part of the observed nuclear obscuration.
Star formation across galactic environments
NASA Astrophysics Data System (ADS)
Young, Jason
I present here parallel investigations of star formation in typical and extreme galaxies. The typical galaxies are selected to be free of active galactic nuclei (AGN), while the extreme galaxies host quasars (the most luminous class of AGN). These two environments are each insightful in their own way; quasars are among the most violent objects in the universe, literally reshaping their host galaxies, while my sample of AGN-free star-forming galaxies ranges from systems larger than the Milky Way to small galaxies which are forming stars at unsustainably high rates. The current paradigm of galaxy formation and evolution suggests that extreme circumstances are key stepping stones in the assembly of galaxies like our Milky Way. To test this paradigm and fully explore its ramifications, this dual approach is needed. My sample of AGN-free galaxies is drawn from the KPNO International Spectroscopic Survey. This Halpha-selected, volume-limited survey was designed to detect star-forming galaxies without a bias toward continuum luminosity. This type of selection ensures that this sample is not biased toward galaxies that are large or nearby. My work studies the KISS galaxies in the mid- and far-infrared using photometry from the IRAC and MIPS instruments aboard the Spitzer Space Telescope. These infrared bands are particularly interesting for star formation studies because the ultraviolet light from young stars is reprocessed into thermal emission in the far-infrared (24mum MIPS) by dust and into vibrational transitions features in the mid-infrared (8.0mum IRAC) by polycyclic aromatic hydrocarbons (PAHs). The work I present here examines the efficiencies of PAH and thermal dust emission as tracers of star-formation rates over a wide range of galactic stellar masses. I find that the efficiency of PAH as a star-formation tracer varies with galactic stellar mass, while thermal dust has a highly variable efficiency that does not systematically depend on galactic stellar mass. Complementing this study of normal star-forming galaxies, my study of quasar host galaxies utilizes narrow- and medium-band images of eight Palomar-Green (PG) quasars from the WFPC2 and NICMOS instruments aboard the Hubble Space Telescope. Using images of a point-spread function (PSF) star in the same filters, I subtract the PSF of the quasar from each of the target images. The residual light images clearly show the host galaxies of the respective quasars. The narrow-band images were chosen to be centered on the Hbeta, [O II ], [O III], and Paalpha emission lines, allowing the use of line ratios and luminosities to create extinction and star formation maps. Additionally, I utilize the line-ratio maps to distinguish AGN-powered line emission from star formation powered line emission with line-diagnostic diagrams. I find star formation in each of the eight quasar host galaxies in my study. The bulk star-formation rates are lower than expected, suggesting that quasar host galaxies may be dynamically more advanced than previously believed. Seven of the eight quasar host galaxies in this study have higher-than-typical mass-specific star-formation rates. Additionally, I see evidence of shocked gas, supporting the hypotheses presented in earlier works that suggest that AGN activity quenches star formation in its host galaxy by disrupting its gas reservoir.
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta; De Lucia, Gabriella; Poggianti, Bianca M.; Bundy, Kevin; More, Surhud; Calvi, Rosa
2014-06-01
We present a comparison between the observed galaxy stellar mass function and the one predicted from the De Lucia & Blaizot semi-analytic model applied to the Millennium Simulation, for cluster satellites and galaxies in the field (meant as a wide portion of the sky, including all environments), in the local universe (z ~ 0.06), and at intermediate redshift (z ~ 0.6), with the aim to shed light on the processes which regulate the mass distribution in different environments. While the mass functions in the field and in its finer environments (groups, binary, and single systems) are well matched in the local universe down to the completeness limit of the observational sample, the model overpredicts the number of low-mass galaxies in the field at z ~ 0.6 and in clusters at both redshifts. Above M * = 1010.25 M ⊙, it reproduces the observed similarity of the cluster and field mass functions but not the observed evolution. Our results point out two shortcomings of the model: an incorrect treatment of cluster-specific environmental effects and an overefficient galaxy formation at early times (as already found by, e.g., Weinmann et al.). Next, we consider only simulations. Also using the Guo et al. model, we find that the high-mass end of the mass functions depends on halo mass: only very massive halos host massive galaxies, with the result that their mass function is flatter. Above M * = 109.4 M ⊙, simulations show an evolution in the number of the most massive galaxies in all environments. Mass functions obtained from the two prescriptions are different, however, results are qualitatively similar, indicating that the adopted methods to model the evolution of central and satellite galaxies still have to be better implemented in semi-analytic models.
NASA Astrophysics Data System (ADS)
Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.
2016-04-01
We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.
The WISSH quasars project. II. Giant star nurseries in hyper-luminous quasars
NASA Astrophysics Data System (ADS)
Duras, F.; Bongiorno, A.; Piconcelli, E.; Bianchi, S.; Pappalardo, C.; Valiante, R.; Bischetti, M.; Feruglio, C.; Martocchia, S.; Schneider, R.; Vietri, G.; Vignali, C.; Zappacosta, L.; La Franca, F.; Fiore, F.
2017-08-01
Context. Studying the coupling between the energy output produced by the central quasar and the host galaxy is fundamental to fully understand galaxy evolution. Quasar feedback is indeed supposed to dramatically affect the galaxy properties by depositing large amounts of energy and momentum into the interstellar medium (ISM). Aims: In order to gain further insights on this process, we study the spectral energy distributions (SEDs) of sources at the brightest end of the quasar luminosity function, for which the feedback mechanism is assumed to be at its maximum, given their high efficiency in driving powerful outflows. Methods: We modelled the rest-frame UV-to-far-IR SEDs of 16 WISE-SDSS Selected Hyper-luminous (WISSH) quasars at 1.8 < z < 4.6 based on SDSS, 2MASS, WISE and Herschel/SPIRE data. Through an accurate SED-fitting procedure, we separate the different emission components by deriving physical parameters of both the nuclear component (I.e. bolometric and monochromatic luminosities) and the host galaxy (I.e. star formation rate, mass, and temperature of the cold dust). We also use a radiative transfer code to account for the contribution of the quasar-related emission to the far-IR fluxes. Results: Most SEDs are well described by a standard combination of accretion disc plus torus and cold dust emission. However, about 30% of SEDs require an additional emission component in the near-IR, with temperatures peaking at 750 K, which indicates that a hotter dust component is present in these powerful quasars. We measure extreme values of both AGN bolometric luminosity (LBOL > 1047 erg/s) and star formation rate (up to 2000 M⊙/yr) based on the quasar-corrected, IR luminosity of the host galaxy. A new relation between quasar and star formation luminosity is derived (LSF ∝ L0.73QSO) by combining several Herschel-detected quasar samples from z 0 to 4. WISSH quasars have masses ( 108M⊙) and temperatures ( 50 K) of cold dust in agreement with those found for other high-z IR luminous quasars. Conclusions: Thanks to their extreme nuclear and star formation luminosities, the WISSH quasars are ideal targets to shed light on the feedback mechanism and its effect on the evolution of their host galaxies, as well as on the merger-induced scenario that is commonly assumed to explain these exceptional luminosities. Future observations will be crucial to measure the molecular gas content in these systems, probe the effect between quasar-driven outflows and on-going star formation, and reveal merger signatures in their host galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reines, Amy E.; Volonteri, Marta, E-mail: reines@umich.edu
Scaling relations between central black hole (BH) mass and host galaxy properties are of fundamental importance to studies of BH and galaxy evolution throughout cosmic time. Here we investigate the relationship between BH mass and host galaxy total stellar mass using a sample of 262 broad-line active galactic nuclei (AGNs) in the nearby universe (z < 0.055), as well as 79 galaxies with dynamical BH masses. The vast majority of our AGN sample is constructed using Sloan Digital Sky Survey spectroscopy and searching for Seyfert-like narrow-line ratios and broad Hα emission. BH masses are estimated using standard virial techniques. Wemore » also include a small number of dwarf galaxies with total stellar masses M{sub stellar} ≲ 10{sup 9.5} M{sub ⊙} and a subsample of the reverberation-mapped AGNs. Total stellar masses of all 341 galaxies are calculated in the most consistent manner feasible using color-dependent mass-to-light ratios. We find a clear correlation between BH mass and total stellar mass for the AGN host galaxies, with M{sub BH} ∝ M{sub stellar}, similar to that of early-type galaxies with dynamically detected BHs. However, the relation defined by the AGNs has a normalization that is lower by more than an order of magnitude, with a BH-to-total stellar mass fraction of M{sub BH}/M{sub stellar} ∼ 0.025% across the stellar mass range 10{sup 8} ≤ M{sub stellar}/M{sub ⊙} ≤ 10{sup 12}. This result has significant implications for studies at high redshift and cosmological simulations in which stellar bulges cannot be resolved.« less
NASA Astrophysics Data System (ADS)
Jones, Mackenzie L.; Hickox, Ryan C.; Mutch, Simon J.; Croton, Darren J.; Ptak, Andrew F.; DiPompeo, Michael A.
2017-07-01
In studies of the connection between active galactic nuclei (AGNs) and their host galaxies, there is widespread disagreement on some key aspects of the connection. These disagreements largely stem from a lack of understanding of the nature of the full underlying AGN population. Recent attempts to probe this connection utilize both observations and simulations to correct for a missed population, but presently are limited by intrinsic biases and complicated models. We take a simple simulation for galaxy evolution and add a new prescription for AGN activity to connect galaxy growth to dark matter halo properties and AGN activity to star formation. We explicitly model selection effects to produce an “observed” AGN population for comparison with observations and empirically motivated models of the local universe. This allows us to bypass the difficulties inherent in models that attempt to infer the AGN population by inverting selection effects. We investigate the impact of selecting AGNs based on thresholds in luminosity or Eddington ratio on the “observed” AGN population. By limiting our model AGN sample in luminosity, we are able to recreate the observed local AGN luminosity function and specific star formation-stellar mass distribution, and show that using an Eddington ratio threshold introduces less bias into the sample by selecting the full range of growing black holes, despite the challenge of selecting low-mass black holes. We find that selecting AGNs using these various thresholds yield samples with different AGN host galaxy properties.
Fast radio bursts as a cosmic probe?
NASA Astrophysics Data System (ADS)
Zhou, Bei; Li, Xiang; Wang, Tao; Fan, Yi-Zhong; Wei, Da-Ming
2014-05-01
We discuss the possibility of using fast radio bursts (FRBs)—if cosmological—as a viable cosmic probe. We find that the contribution of the host galaxies to the detected dispersion measures can be inapparent for the FRBs that are not from galaxy centers or star-forming regions. The inhomogeneity of the intergalactic medium (IGM), however, causes significant deviation of the dispersion measure from that predicted in the simplified homogeneous IGM model for an individual event. Fortunately, with sufficient FRBs along different sightlines but within a very narrow redshift interval (e.g., Δz ˜0.05), the mean obtained from averaging observed dispersion measures does not suffer such a problem and hence may be used as a cosmic probe. We show that in the optimistic case (e.g., about 20 FRBs in each Δz have been measured; the most distant FRBs were at redshift ≥3; the host galaxies and the FRB sources contribute little to the detected dispersion measures) and with all the uncertainties (i.e., the inhomogeneity of the IGM, the contribution and uncertainty of host galaxies, and the evolution and error of fIGM) considered, FRBs could help constrain the equation of state of dark energy.
NASA Astrophysics Data System (ADS)
Chisholm, John
2013-10-01
Galactic outflows have become vital for understanding galaxy evolution. Outflows have been used to explain the mass-metallicity relation, the star formation history of the universe, and the shape of the baryonic mass function. However, few studies have focused on the basic question of how outflow velocities depend upon the physical properties of their host galaxies. Here we propose an archival project utilizing 52 COS spectra of local star-forming galaxies spanning four decades of star formation rate, and stellar mass. We will preform a self-consistent analysis of trends between galactic properties {star formation rate, stellar mass, specific star formation rate and star formation rate surface density} and outflow velocities measured from interstellar metal absorption lines {e.g., CII 1335}. We will extend this analysis to different gas phases - cold, warm, and hot - to gain a more comprehensive understanding of the physics of multi-phase outflows. The trends we observe will provide insights into the feedback process and will be crucial new benchmarks for simulations.
THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannella, Maurilio; Gabasch, Armin; Drory, Niv
2009-08-10
The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars in the universe preferentially belonging to the highest density regions. The whole catalog including morphological information and stellar mass estimates analyzed in this work is made publicly available.« less
NASA Astrophysics Data System (ADS)
Wylezalek, Dominika; Zakamska, Nadia L.; MaNGA-GMOS Team
2017-01-01
Feedback from actively accreting SMBHs (Active Galactic Nuclei, AGN) is now widely considered to be the main driver in regulating the growth of massive galaxies. Observational proof for this scenario has, however, been hard to come by. Many attempts at finding a conclusive observational proof that AGN may be able to quench star formation and regulate the host galaxies' growth have shown that this problem is highly complex.I will present results from several projects that focus on understanding the power, reach and impact of feedback processes exerted by AGN. I will describe recent efforts in our group of relating feedback signatures to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history (Wylezalek+2016a,b). Furthermore, I will show that powerful AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of the galaxy. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and outflows that are potentially very relevant for understanding the role of AGN in galaxy evolution (Wylezalek+2016c)!
DEMOGRAPHICS OF BULGE TYPES WITHIN 11 Mpc AND IMPLICATIONS FOR GALAXY EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, David B.; Drory, Niv, E-mail: dbfisher@astro.umd.edu
2011-06-01
We present an inventory of galaxy bulge types (elliptical galaxy, classical bulge, pseudobulge, and bulgeless galaxy) in a volume-limited sample within the local 11 Mpc sphere using Spitzer 3.6 {mu}m and Hubble Space Telescope data. We find that whether counting by number, star formation rate, or stellar mass, the dominant galaxy type in the local universe has pure disk characteristics (either hosting a pseudobulge or being bulgeless). Galaxies that contain either a pseudobulge or no bulge combine to account for over 80% of the number of galaxies above a stellar mass of 10{sup 9} M{sub sun}. Classical bulges and ellipticalmore » galaxies account for {approx}1/4, and disks for {approx}3/4 of the stellar mass in the local 11 Mpc. About 2/3 of all star formation in the local volume takes place in galaxies with pseudobulges. Looking at the fraction of galaxies with different bulge types as a function of stellar mass, we find that the frequency of classical bulges strongly increases with stellar mass, and comes to dominate above 10{sup 10.5} M{sub sun}. Galaxies with pseudobulges dominate at 10{sup 9.5}-10{sup 10.5} M{sub sun}. Yet lower-mass galaxies are most likely to be bulgeless. If pseudobulges are not a product of mergers, then the frequency of pseudobulges in the local universe poses a challenge for galaxy evolution models.« less
SIGNIFICANT ENHANCEMENT OF H{sub 2} FORMATION IN DISK GALAXIES UNDER STRONG RAM PRESSURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Benjamin; Bekki, Kenji
We show for the first time that H{sub 2} formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H i and H{sub 2} components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H i caused by RP increases H{sub 2} formation in disk galaxies before RP rapidly strips H i, cutting off the fuel supply and causing a drop in H{sub 2}more » density. We also find that the level of this H{sub 2} formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H i and H{sub 2} mass in disk galaxies under strong RP. We discuss how the correlation between H{sub 2} fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H{sub 2} densities.« less
LINER galaxy properties and the local environment
NASA Astrophysics Data System (ADS)
Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria
2018-05-01
We analyse the properties of a sample of 5560 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR12 at low red shift, for a complete range of local density environments. The host LINER galaxies were studied and compared with a well-defined control sample of 5553 non-LINER galaxies matched in red shift, luminosity, morphology and local density. By studying the distributions of galaxy colours and the stellar age population, we find that LINERs are redder and older than the control sample over a wide range of densities. In addition, LINERs are older than the control sample, at a given galaxy colour, indicating that some external process could have accelerated the evolution of the stellar population. The analysis of the host properties shows that the control sample exhibits a strong relation between colours, ages and the local density, while more than 90 per cent of the LINERs are redder and older than the mean values, independently of the neighbourhood density. Furthermore, a detailed study in three local density ranges shows that, while control sample galaxies are redder and older as a function of stellar mass and density, LINER galaxies mismatch the known morphology-density relation of galaxies without low-ionization features. The results support the contribution of hot and old stars to the low-ionization emission although the contribution of nuclear activity is not discarded.
NASA Astrophysics Data System (ADS)
Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate
2018-04-01
We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome this shortcoming.
The origin, evolution and signatures of primordial magnetic fields.
Subramanian, Kandaswamy
2016-07-01
The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak ∼ 10(-16) Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.
Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation
NASA Astrophysics Data System (ADS)
Beckmann, R. S.; Devriendt, J.; Slyz, A.; Peirani, S.; Richardson, M. L. A.; Dubois, Y.; Pichon, C.; Chisari, N. E.; Kaviraj, S.; Laigle, C.; Volonteri, M.
2017-11-01
The observed massive end of the galaxy stellar mass function is steeper than its predicted dark matter halo counterpart in the standard Λ cold dark matter paradigm. In this paper, we investigate the impact of active galactic nuclei (AGN) feedback on star formation in massive galaxies. We isolate the impact of AGN by comparing two simulations from the HORIZON suite, which are identical except that one also includes supermassive black holes (SMBHs) and related feedback models. This allows us to cross-identify individual galaxies between simulations and quantify the effect of AGN feedback on their properties, including stellar mass and gas outflows. We find that massive galaxies (M* ≥ 1011 M⊙) are quenched by AGN feedback to the extent that their stellar masses decrease by up to 80 per cent at z = 0. SMBHs affect their host halo through a combination of outflows that reduce their baryonic mass, particularly for galaxies in the mass range 109 M⊙ ≤ M* ≤ 1011 M⊙, and a disruption of central gas inflows, which limits in situ star formation. As a result, net gas inflows on to massive galaxies, M* ≥ 1011 M⊙, drop by up to 70 per cent. We measure a redshift evolution in the stellar mass ratio of twin galaxies with and without AGN feedback, with galaxies of a given stellar mass showing stronger signs of quenching earlier on. This evolution is driven by a progressive flattening of the MSMBH-M* relation with redshift, particularly for galaxies with M* ≤ 1010 M⊙. MSMBH/M* ratios decrease over time, as falling average gas densities in galaxies curb SMBH growth.
Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancuso, C.; Prandoni, I.; Lapi, A.
We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statisticsmore » at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.« less
A COSMIC COINCIDENCE: THE POWER-LAW GALAXY CORRELATION FUNCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Douglas F.; Berlind, Andreas A.; Zentner, Andrew R.
We model the evolution of galaxy clustering through cosmic time to investigate the nature of the power-law shape of {xi}(r), the galaxy two-point correlation function. While {xi}(r) at large scales is set by primordial fluctuations, departures from a power law are governed by galaxy pair counts at small scales, subject to nonlinear dynamics. We assume that galaxies reside within dark matter halos and subhalos. Therefore, the shape of the correlation function at small scales depends on the amount of halo substructure. We use a semi-analytic substructure evolution model to study subhalo populations within host halos. We find that tidal massmore » loss and, to a lesser extent, dynamical friction dramatically deplete the number of subhalos within larger host halos over time, resulting in a {approx}90% reduction by z = 0 compared to the number of distinct mergers that occur during the assembly of a host halo. We show that these nonlinear processes resulting in this depletion are essential for achieving a power law {xi}(r). We investigate how the shape of {xi}(r) depends on subhalo mass (or luminosity) and redshift. We find that {xi}(r) breaks from a power law at high masses, implying that only galaxies of luminosities {approx}< L{sub *} should exhibit power-law clustering. Moreover, we demonstrate that {xi}(r) evolves from being far from a power law at high redshift, toward a near power-law shape at z = 0. We argue that {xi}(r) will once again evolve away from a power law in the future. This is in large part caused by the evolving competition between the accretion and destruction rates of subhalos over time, which happen to strike just the right balance at z {approx} 0. We then investigate the conditions required for {xi}(r) to be a power law in a general context. We use the halo model, along with simple parameterizations of the halo occupation distribution, to probe galaxy occupation at various masses and redshifts. We show that the key ingredients determining the shape of {xi}(r) are the fraction of galaxies that are satellites, the relative difference in mass between the halos of isolated galaxies and halos that contain a single satellite on average, and the rareness of halos that host galaxies. These pieces are intertwined and we find no simple, universal rule for which a power law {xi}(r) will occur. However, we do show that the physics responsible for setting the galaxy content of halos do not care about the conditions needed to achieve a power law {xi}(r) and that these conditions are met only in a narrow mass and redshift range. We conclude that the power-law nature of {xi}(r) for L{sub *} and fainter galaxy samples at low redshift is a cosmic coincidence.« less
Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D. Christopher; Darvish, Behnam; Seibert, Mark
We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observedmore » colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.« less
Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution
NASA Astrophysics Data System (ADS)
Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David
2017-06-01
We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.
The morphological transformation of red sequence galaxies in clusters since z ˜ 1
NASA Astrophysics Data System (ADS)
Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R.
2017-11-01
The study of galaxy morphology is fundamental to understand the physical processes driving the structural evolution of galaxies. It has long been known that dense environments host high fractions of early-type galaxies and low fractions of late-type galaxies, indicating that the environment affects the structural evolution of galaxies. In this paper, we present an analysis of the morphological composition of red sequence galaxies in a sample of nine galaxy clusters at 0.8 < z < 1.5 drawn from the HAWK-I Cluster Survey (HCS), with the aim of investigating the evolutionary paths of galaxies with different morphologies. We classify galaxies according to their apparent bulge-to-total light ratio and compare with red sequence galaxies from the lower redshift WIde-field Nearby Galaxy-cluster Survey (WINGS) and ESO Distant Cluster Survey (EDisCS). We find that, while the HCS red sequence is dominated by elliptical galaxies at all luminosities and stellar masses, the WINGS red sequence is dominated by elliptical galaxies only at its bright end (MV < -21.0 mag), while S0s become the most frequent class at fainter luminosities. Disc-dominated galaxies comprise 10-14 per cent of the red sequence population in the low (WINGS) and high (HCS) redshift samples, although their fraction increases up to 40 per cent at 0.4 < z < 0.8 (EDisCS). We find a 20 per cent increase in the fraction of S0 galaxies from z ∼ 1.5 to 0.05 on the red sequence. These results suggest that elliptical and S0 galaxies follow different evolutionary histories and, in particular, that S0 galaxies result, at least at intermediate luminosities (-22.0 < MV < -20.0), from the morphological transformation of quiescent spiral galaxies.
The Relationship Between Galaxies and the Large-Scale Structure of the Universe
NASA Astrophysics Data System (ADS)
Coil, Alison L.
2018-06-01
I will describe our current understanding of the relationship between galaxies and the large-scale structure of the Universe, often called the galaxy-halo connection. Galaxies are thought to form and evolve in the centers of dark matter halos, which grow along with the galaxies they host. Large galaxy redshift surveys have revealed clear observational signatures of connections between galaxy properties and their clustering properties on large scales. For example, older, quiescent galaxies are known to cluster more strongly than younger, star-forming galaxies, which are more likely to be found in galactic voids and filaments rather than the centers of galaxy clusters. I will show how cosmological numerical simulations have aided our understanding of this galaxy-halo connection and what is known from a statistical point of view about how galaxies populate dark matter halos. This knowledge both helps us learn about galaxy evolution and is fundamental to our ability to use galaxy surveys to reveal cosmological information. I will talk briefly about some of the current open questions in the field, including galactic conformity and assembly bias.
Host galaxy properties of calcium II and sodium I quasar absorption-line systems
NASA Astrophysics Data System (ADS)
Cherinka, Brian
Many questions remain within the areas of galaxy formation and evolution. Understanding the origin of gas in galaxy environments, whether as tidal debris, infalling High Velocity Clouds, galaxy outflows, or as gaseous material residing in galaxy disks, is an important step in answering those questions. Quasar absorption-lines can often be used to probe the environments of intervening galaxies. Traditionally, quasar absorption-lines are studied independently of the host galaxy but this method denies us the exploration of the connection between galaxy and environment. Instead, one can select pairs of known galaxies and quasars. This gives much more information regarding the host galaxy and allows us to better connect galaxy properties with associated absorbers. We use the seventh data release of the Sloan Digital Sky Survey to generate a sample of spectroscopic galaxy-quasar pairs. We cross-correlated a sample of 105,000 quasars and ˜800,000 galaxies to produce ˜98,000 galaxy-quasar pairs, with the quasar projected within 100 kpc of the galaxy. Adopting an automated line-finding algorithm and using the galaxy redshift as a prior, we search through all quasar spectra and identify Ca II and Na I absorption due to the intervening galaxy. This procedure produced 1745 Ca II absorbers and 4500 Na I absorbers detected at or above 2σ. Stacking analysis of a subset of absorbers at z > 0.01, with significances at or above 3σ, showed strong Ca II and Na I features around external galaxies. Using the same subset of absorbers at z > 0.01, we looked for correlations between absorber and galaxy properties and examined differences in galaxy properties between the absorbers and non-absorbers. We found no correlations with absorber strength or differences between many galaxy properties at the 3σ level. The lack of correlations and differences between absorbers and non-absorbers suggest a ubiquitous nature for Ca II and Na I around all types of galaxies, with the absorbers showing no geometric preference within galaxy halos. This suggests a possible origin as leftover debris from past mergers that has been redistributed within the halo over time. The main results are presented in Chapters 3 and 4, with complimentary work presented in Chapter 5.
Oxygen Abundances in the Rings of Polar-Ring Galaxies
NASA Astrophysics Data System (ADS)
Radtke, I. R.; Eskridge, P. B.; Pogge, R. W.
2003-05-01
Polar ring galaxies (PRGs) are typically early-type (S0 or E) galaxies surrounded by rings of gas, dust, and stars orbiting nearly perpendicular to the principle plane of the host galaxy (Whitmore et al. 1990 AJ 100 1489). Given that PRGs have two separate, perpendicular axes of rotation, it is clear on dynamical grounds that PRGs are the products of merger events between two galaxies, but are observed in a state where two distinct kinematic and morphological structures are still apparent. As such, they present a unique opportunity to study merger events in systems where the debris is not confused with material from the host. Our understanding of the relative importance of polar ring systems in the overall process of galaxy evolution is confounded by our lack of knowledge regarding the typical lifetimes and evolutionary histories of polar rings. A crucial factor for understanding the formation and evolution of PRGs is information regarding the elemental abundances of the ring material. Polar rings are typically rich in {\\protectH 2} regions. Optical spectroscopy of these {\\protectH 2} regions can tell us their density, temperature, and oxygen abundance. Our earlier work (Eskridge & Pogge 1997 ApJ 486 259) revealed roughly Solar oxygen abundances for {\\protectH 2} regions in the polar ring of NGC 2685. We have extended this project, and now have spectra for six PRGs. Analysis of the data for II Zw 73 and UGC 7576 reveal the polar rings of these galaxies to have {\\protectH 2} region oxygen abundances in the range 0.3 to 0.6 Solar, substantially less than found for NGC 2685. Abundances in this range are much easier to explain with conventional models of chemical enrichment and polar ring formation. We shall present results for our full sample. Taken as a whole, this sample will provide a clear foundation for the typical chemical enrichment patterns in polar rings, and thus provide a clearer understanding of the formation and evolution of these curious objects. We gratefully acknowledge financial support for this project from the AAS Small Research Grant program, and from a Minnesota State University Faculty Research Grant awarded to P. Eskridge.
NASA Technical Reports Server (NTRS)
Rosario, D.J.; McIntosh, D. H.; van der Wel, A.; Kartaltepe, J.; Lang, P.; Santini, P.; Wuyts, S.; Lutz, D.; Rafelski, M.; Villforth, C.;
2014-01-01
We study the relationship between the structure and star-formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Near Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z is approximately 1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). In contrast, at z 2, AGNs show similar levels of galaxy disturbance as inactive galaxies, but display a red central light enhancement, which may arise due to a more pronounced bulge in AGN hosts or due to extinguished nuclear light. We undertake a number of tests of both these alternatives, but our results do not strongly favour one interpretation over the other. The mean SFR and its distribution among AGNs and inactive galaxies are similar at z greater than 1.5. At z less than 1, however, clear and significant enhancements are seen in the SFRs of AGNs with bulge-dominated light profiles. These trends suggest an evolution in the relation between nuclear activity and host properties with redshift towards a minor role for mergers and interactions at z greater than 15
NASA Astrophysics Data System (ADS)
Villarroel, Beatriz; Nyholm, Anders; Karlsson, Torgny; Comerón, Sébastien; Korn, Andreas J.; Sollerman, Jesper; Zackrisson, Erik
2017-03-01
Active galactic nuclei (AGNs) are extremely powerful cosmic objects, driven by accretion of hot gas upon super-massive black holes. The zoo of AGN classes is divided into two major groups, with Type-1 AGNs displaying broad Balmer emission lines and Type-2 narrow ones. For a long time it was believed that a Type-2 AGN is a Type-1 AGN viewed through a dusty kiloparsec-sized torus, but an emerging body of observations suggests more than just the viewing angle matters. Here we report significant differences in supernova (SN) counts and classes in the first study to date of SNe near Type-1 and Type-2 AGN host galaxies, using data from the intermediate Palomar Transient Factory, the Sloan Digital Sky Survey Data Release 7, and Galaxy Zoo. We detect many more SNe in Type-2 AGN hosts (size of effect ˜5.1σ) compared to Type-1 hosts, which shows that the two classes of AGN are located inside host galaxies with different properties. In addition, Type-1 and Type-2 AGNs that are dominated by star formation according to Wide-field Infrared Survey Explorer colors {m}W1-{m}W2< 0.5 and are matched in 22 μm absolute magnitude differ by a factor of ten in L[O III] λ5007 luminosity, suggesting that when residing in similar types of host galaxies Type-1 AGNs are much more luminous. Our results demonstrate two more factors that play an important role in completing the current picture: the age of stellar populations and the AGN luminosity. This has immediate consequences for understanding the many AGN classes and galaxy evolution.
An over-massive black hole in the compact lenticular galaxy NGC 1277.
van den Bosch, Remco C E; Gebhardt, Karl; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L
2012-11-29
Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, and galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 10(11) solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 10(10) solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trenti, Michele; Perna, Rosalba; Levesque, Emily M.
2012-04-20
Measuring the star formation rate (SFR) at high redshift is crucial for understanding cosmic reionization and galaxy formation. Two common complementary approaches are Lyman break galaxy (LBG) surveys for large samples and gamma-ray burst (GRB) observations for sensitivity to SFR in small galaxies. The z {approx}> 4 GRB-inferred SFR is higher than the LBG rate, but this difference is difficult to understand, as both methods rely on several modeling assumptions. Using a physically motivated galaxy luminosity function model, with star formation in dark matter halos with virial temperature T{sub vir} {approx}> 2 Multiplication-Sign 10{sup 4} K (M{sub DM} {approx}> 2more » Multiplication-Sign 10{sup 8} M{sub Sun }), we show that GRB- and LBG-derived SFRs are consistent if GRBs extend to faint galaxies (M{sub AB} {approx}< -11). To test star formation below the detection limit L{sub lim} {approx} 0.05L*{sub z=3} of LBG surveys, we propose to measure the fraction f{sub det}(L > L{sub lim}, z) of GRB hosts with L > L{sub lim}. This fraction quantifies the missing star formation fraction in LBG surveys, constraining the mass-suppression scale for galaxy formation, with weak dependence on modeling assumptions. Because f{sub det}(L > L{sub lim}, z) corresponds to the ratio of SFRs derived from LBG and GRB surveys, if these estimators are unbiased, measuring f{sub det}(L > L{sub lim}, z) also constrains the redshift evolution of the GRB production rate per unit mass of star formation. Our analysis predicts significant success for GRB host detections at z {approx} 5 with f{sub det}(L > L{sub lim}, z) {approx} 0.4, but rarer detections at z > 6. By analyzing the upper limits on host galaxy luminosities of six z > 5 GRBs from literature data, we infer that galaxies with M{sub AB} > -15 were present at z > 5 at 95% confidence, demonstrating the key role played by very faint galaxies during reionization.« less
Examining the effect of galaxy evolution on the stellar-halo mass relation in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Kulier, Andrea; Padilla, Nelson; Schaye, Joop; Crain, Robert; Schaller, Matthieu; Bower, Richard; Theuns, Tom; Paillas, Enrique
2018-01-01
The EAGLE hydrodynamical simulation was used in Matthee et al. 2016 to examine the scatter in the stellar mass-halo mass relation of central galaxies, finding that the stellar mass (M*) correlates well with the maximum circular velocity (Vmax) of the host halo, but with a substantial scatter that does not correlate significantly with other host halo properties. Here we further examine the scatter in the stellar mass-halo mass relation of central galaxies in EAGLE, its correlation with other properties, and its origin. We find that at fixed Vmax, galaxies with lower concentration have younger stellar populations, as expected from the relationship between concentration and halo assembly time. However, at fixed Vmax and halo concentration, galaxies with larger M* have younger stellar ages, so that combining the two effects, galaxies with younger stellar ages at fixed halo mass have higher stellar masses. The host halos of galaxies with larger M* at fixed Vmax and concentration also contain more gas than those with smaller stellar masses at z = 0.1, i.e. the baryon fraction of the halos is larger. There is an even stronger correlation between the scatter in M* at z = 0.1 and the scatter in the baryon fraction of the galaxy's progenitors at z ~ 1, such that the latter sets ~50% of the scatter in M* at z = 0.1. We conclude that most of the scatter between Vmax and M* at z = 0.1 is set at earlier redshifts by the scatter in the baryon fraction of halos, which in turn is primarily the result of differences in feedback strength within halos.
Unveiling Quasar Fueling through a Public Snapshot Survey of Quasar Host Environments
NASA Astrophysics Data System (ADS)
Johnson, Sean
2017-08-01
Feedback from quasars is thought to play a vital role in galaxy evolution, but the relationship between quasars and the halo gas that fuels star-formation on long timescales is not well constrained. Recent observations of the content of quasar host halos have found unusually high covering fractions of cool gas observed in absorption in background quasar spectra. The cool halo gas is strongly correlated with quasar luminosity and exceeds what is observed around non-AGN galaxies by factor of two. Together, these observations provide compelling evidence for a connection between AGN activity and halo gas on 20-200 kpc scales. The high covering fraction and correlation with quasar luminosity may be the result of debris from the galaxy mergers thought to trigger luminous quasars or the halo gas of satellites in gas-rich groups amenable to quasar feeding. If this is the case, then the cool gas observed in absorption will be correlated with signatures of recent galaxy interactions in the quasar host or satellites close to the background sightline. Here, we propose a snapshot imaging survey of z<1 quasars with available constraints on halo gas content to examine a possible correlation between cool halo gas and galaxy interaction signatures. Galaxy morphologies and faint tidal features at z 1 can only be observed with the high resolution imaging capabilities of HST due to the substantial flux in extended wings of AO point-spread functions. The images will be of significant archival value for studying the galaxy environments of quasars and for constraining gas flow models with multi-sightline halo gas studies of galaxies at lower redshift than the foreground & background quasars.
NASA Astrophysics Data System (ADS)
Bundy, Kevin; Fukugita, Masataka; Ellis, Richard S.; Targett, Thomas A.; Belli, Sirio; Kodama, Tadayuki
2009-06-01
Using deep infrared observations conducted with the MOIRCS imager on the Subaru Telescope in the northern GOODS field combined with public surveys in GOODS-S, we investigate the dependence on stellar mass, M *, and galaxy type of the close pair fraction (5 h -1 kpc < r sep < 20 h -1 kpc) and implied merger rate. In terms of combined depth and survey area, our publicly available mass-limited sample represents a significant improvement over earlier infrared surveys used for this purpose. In common with some recent studies, we find that the fraction of paired systems that could result in major mergers is low (~4%) and does not increase significantly with redshift to z ≈ 1.2, with vprop(1 + z)1.6±1.6. Our key finding is that massive galaxies with M *>1011 M sun are more likely to host merging companions than less massive systems (M * ~ 1010 M sun). We find evidence for a higher pair fraction for red, spheroidal hosts compared to blue, late-type systems, in line with expectations based on clustering at small scales. The so-called "dry" mergers between early-type galaxies devoid of star formation (SF) represent nearly 50% of close pairs with M *>3 × 1010 M sun at z ~ 0.5, but less than 30% at z ~ 1. This result can be explained by the increasing abundance of red, early-type galaxies at these masses. We compare the volumetric merger rate of galaxies with different masses to mass-dependent trends in galaxy evolution. Our results reaffirm the conclusion of Bundy et al. that major mergers do not fully account for the formation of spheroidal galaxies since z ~ 1. In terms of mass assembly, major mergers contribute little to galaxy growth below M * ~ 3 × 1010 M sun but play a more significant role among galaxies with M * gsim 1011 M sun ~ 30% of which have undergone mostly dry mergers over the observed redshift range. Overall, the relatively rapid and recent coalescence of high-mass galaxies mirrors the expected hierarchical growth of halos and is consistent with recent model predictions, even if the top-down suppression of SF and morphological evolution (i.e., "downsizing") involves additional physical processes. Based on observations collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and with the NASA/ESA HST, obtained at STScI, which is operated by AURA, under NASA contract NAS5-26555.
NASA Astrophysics Data System (ADS)
Wetzel, Andrew R.; Tinker, Jeremy L.; Conroy, Charlie
2012-07-01
Using galaxy group/cluster catalogues created from the Sloan Digital Sky Survey Data Release 7, we examine in detail the specific star formation rate (SSFR) distribution of satellite galaxies and its dependence on stellar mass, host halo mass and halo-centric radius. All galaxies, regardless of central satellite designation, exhibit a similar bimodal SSFR distribution, with a strong break at SSFR ≈ 10-11 yr-1 and the same high SSFR peak; in no regime is there ever an excess of galaxies in the 'green valley'. Satellite galaxies are simply more likely to lie on the quenched ('red sequence') side of the SSFR distribution. Furthermore, the satellite quenched fraction excess above the field galaxy value is nearly independent of galaxy stellar mass. An enhanced quenched fraction for satellites persists in groups with halo masses down to 3 × 1011 M⊙ and increases strongly with halo mass and towards halo centre. We find no detectable quenching enhancement for galaxies beyond ˜2 Rvir around massive clusters once these galaxies have been decomposed into centrals and satellites. These trends imply that (1) galaxies experience no significant environmental effects until they cross within ˜Rvir of a more massive host halo; (2) after this, star formation in active satellites continues to evolve in the same manner as active central galaxies for several Gyr; and (3) once begun, satellite star formation quenching occurs rapidly. These results place strong constraints on satellite-specific quenching mechanisms, as we will discuss further in companion papers.
NASA Astrophysics Data System (ADS)
Brusa, M.; Fiore, F.; Santini, P.; Grazian, A.; Comastri, A.; Zamorani, G.; Hasinger, G.; Merloni, A.; Civano, F.; Fontana, A.; Mainieri, V.
2009-12-01
Aims: The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured active galactic nuclei (AGN) detected in the CDFS 1 Ms observation and their host galaxies. Methods: We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. Results: We found that X-ray selected (LX ⪆ 1042 erg s-1) AGN show Spitzer colors consistent with both AGN and starburst dominated infrared continuum; the latter would not have been selected as AGN from infrared diagnostics. The host galaxies of X-ray selected obscured AGN are all massive (Mast > 1010 M_⊙) and, in 50% of the cases, are also actively forming stars (1/SSFR < tHubble) in dusty environments. The median L/LEdd value of the active nucleus is between 2% and 10% depending on the assumed MBH/Mast ratio. Finally, we found that the X-ray selected AGN fraction increases with the stellar mass up to a value of 30% at z > 1 and Mast > 3 × 1011 M_⊙, a fraction significantly higher than in the local Universe for AGN of similar luminosities. Tables [see full textsee full textsee full text] and [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Nyland, K.; Harwood, J. J.; Mukherjee, D.; Jagannathan, P.; Rujopakarn, W.; Emonts, B.; Alatalo, K.; Bicknell, G. V.; Davis, T. A.; Greene, J. E.; Kimball, A.; Lacy, M.; Lonsdale, Carol; Lonsdale, Colin; Maksym, W. P.; Molnár, D. C.; Morabito, L.; Murphy, E. J.; Patil, P.; Prandoni, I.; Sargent, M.; Vlahakis, C.
2018-05-01
Energetic feedback by active galactic nuclei (AGNs) plays an important evolutionary role in the regulation of star formation on galactic scales. However, the effects of this feedback as a function of redshift and galaxy properties such as mass, environment, and cold gas content remain poorly understood. The broad frequency coverage (1 to 116 GHz), high sensitivity (up to ten times higher than the Karl G. Jansky Very Large Array), and superb angular resolution (maximum baselines of at least a few hundred kilometers) of the proposed next-generation Very Large Array (ngVLA) are uniquely poised to revolutionize our understanding of AGNs and their role in galaxy evolution. Here, we provide an overview of the science related to AGN feedback that will be possible in the ngVLA era and present new continuum ngVLA imaging simulations of resolved radio jets spanning a wide range of intrinsic extents. We also consider key computational challenges and discuss exciting opportunities for multiwavelength synergy with other next-generation instruments, such as the Square Kilometer Array and the James Webb Space Telescope. The unique combination of high-resolution, large collecting area, and wide frequency range will enable significant advancements in our understanding of the effects of jet-driven feedback on sub-galactic scales, particularly for sources with extents of a few parsec to a few kiloparsec, such as young and/or lower-power radio AGNs, AGNs hosted by low-mass galaxies, radio jets that are interacting strongly with the interstellar medium of the host galaxy, and AGNs at high redshift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Mackenzie L.; Hickox, Ryan C.; DiPompeo, Michael A.
In studies of the connection between active galactic nuclei (AGNs) and their host galaxies, there is widespread disagreement on some key aspects of the connection. These disagreements largely stem from a lack of understanding of the nature of the full underlying AGN population. Recent attempts to probe this connection utilize both observations and simulations to correct for a missed population, but presently are limited by intrinsic biases and complicated models. We take a simple simulation for galaxy evolution and add a new prescription for AGN activity to connect galaxy growth to dark matter halo properties and AGN activity to starmore » formation. We explicitly model selection effects to produce an “observed” AGN population for comparison with observations and empirically motivated models of the local universe. This allows us to bypass the difficulties inherent in models that attempt to infer the AGN population by inverting selection effects. We investigate the impact of selecting AGNs based on thresholds in luminosity or Eddington ratio on the “observed” AGN population. By limiting our model AGN sample in luminosity, we are able to recreate the observed local AGN luminosity function and specific star formation-stellar mass distribution, and show that using an Eddington ratio threshold introduces less bias into the sample by selecting the full range of growing black holes, despite the challenge of selecting low-mass black holes. We find that selecting AGNs using these various thresholds yield samples with different AGN host galaxy properties.« less
The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies
NASA Astrophysics Data System (ADS)
Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L.
2018-04-01
We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs) that encompasses their high-z star-forming progenitors, their high-z quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star formation takes place and most of the stellar mass is accumulated; and ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing-up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size R e , on the ratio v/σ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum j ⋆ of the stellar component; we find good consistency with the available multiband data in average values and dispersion, both for local ETGs and for their z ∼ 1–2 star-forming and quiescent progenitors. The outcomes of our analysis can provide hints to gauge sub-grid recipes implemented in simulations, to tune numerical experiments focused on specific processes, and to plan future multiband, high-resolution observations on high-redshift star-forming and quiescent galaxies with next-generation facilities.
The Origin of Powerful Radio Sources
NASA Astrophysics Data System (ADS)
Wilson, A. S.; Colbert, E. J. M.
1995-05-01
Radio-loud active galaxies are associated with elliptical or elliptical-like galaxies, many of which appear to be the result of a recent merger. In contrast, radio-quiet active galaxies prefer spiral hosts. Despite the very large difference in radio luminosities between the two classes, their continua and line spectra from infrared through X-ray frequencies are very similar. In this paper, we describe recent developments of our model (Ap. J. 438, 62 1995) in which the radio-loud phenomenon is the result of a merger of two galaxies, with each galaxy nucleus containing a slowly (or non-) rotating supermassive black hole. It is envisaged that the two black holes eventually coalesce. For the small fraction of mergers in which the two holes are both massive and of comparable mass, a rapidly-spinning, high-mass hole results. The spin energy of a rapidly rotating 10(8-9) solar mass hole suffices to provide the ~ 10(60) ergs in relativistic particles and magnetic fields in the most energetic radio sources. Luminous radio-quiet active galaxies contain high-mass, slowly-rotating holes, with the infrared through X-ray emission of both classes being fuelled by accretion as commonly assumed. We discuss constraints on the model from the luminosity functions of radio-loud and radio-quiet galaxies and from the known cosmological evolution of the radio source population; this evolution is assumed to reflect higher galaxy merger rates in the past.
NASA Astrophysics Data System (ADS)
Cristiano Amorisco, Nicola; Martinez-Delgado, David
2015-08-01
Low surface brightness tidal features around massive galaxies are the smoking gun of hierarchical galaxy formation. These debris are informative of: (i) the evolutionary struggles of the progenitor dwarf galaxies, transformed and partially destroyed by the tides; (ii) the formation history of the massive host, its halo populations and the structure of its dark matter halo. However, extracting reliable measurements of the progenitor’s initial mass, infall time, host halo mass and density profile has so far been difficult, as the parameter space is too wide to explore with N-body simulations.We use new deep imaging data of the extended, X shaped stream in NGC1097 [1,2] and a new dynamical technique to quantitatively reconstruct: (i) the density profile of the massive spiral host (inferred virial mass M200=1012.25±0.1 M⊙) ; and (ii) the dramatic evolution of the progenitor galaxy; by modeling its stream within a fully statistical framework. I will show that the current location of the remnant coincides with a nucleated dwarf Spheroidal, with a luminosity of ~3.3x106LV,⊙ [3], and a predicted total mass of M(<0.45±0.2 kpc)=107.8±0.6 M⊙. This is the result of a strong transformation: at its first interaction with the host, 4.4±0.4 Gyr and three pericentric passages ago, the progenitor was over two orders of magnitude more massive, with Mtot(3.2±0.7 kpc)=1010.4±0.2 M⊙. Its orbit has a pericenter of a few kpc, but reaches out to 150±12 kpc. In this range the stream’s morphology allows us to see the total density slope of the host bending and steepening towards large radii. For the first time in a single galaxy (rather than on stacked data), both central and outer slope are constrained by observations and can be compared to LCDM expectations [4]. Finally, I will discuss prospects of applying this technique to more known streams, to map the structure of a wider sample of galaxy haloes and unveil the evolutionary histories of more individual dwarf galaxies.Refs.[1] Arp, 1976, ApJ, 207[2] Higdon & Wallin, 2003, ApJ, 585[3] Galianni et al., 2010, A&A, 521[4] Diemer & Kravtsov, 2014, ApJ, 789
Galaxy evolution in the cluster Abell 85: new insights from the dwarf population
NASA Astrophysics Data System (ADS)
Habas, Rebecca; Fadda, Dario; Marleau, Francine R.; Biviano, Andrea; Durret, Florence
2018-04-01
We present the first results of a new spectroscopic survey of the cluster Abell 85 targeting 1466 candidate cluster members within the central ˜1 deg2 of the cluster and having magnitudes mr < 20.5 using the VIsible MultiObject Spectrograph on the VLT and the Hydra spectrograh on WIYN. A total of 520 galaxies are confirmed as either relaxed cluster members or part of an infalling population. A significant fraction are low mass; the median stellar mass of the sample is 109.6 M⊙, and 25 per cent have stellar masses below 109 M⊙ (i.e. 133 dwarf galaxies). We also identify seven active galactic nuclei (AGN), four of which reside in dwarf host galaxies. We probe the evolution of star formation rates, based on Hα emission and continuum modelling, as a function of both mass and environment. We find that more star-forming galaxies are observed at larger clustercentric distances, while infalling galaxies show evidence for recently enhanced star-forming activity. Main-sequence galaxies, defined by their continuum star formation rates, show different evolutionary behaviour based on their mass. At the low-mass end, the galaxies have had their star formation recently quenched, while more massive galaxies show no significant change. The time-scales probed here favour fast quenching mechanisms, such as ram-pressure stripping. Galaxies within the green valley, defined similarly, do not show evidence of quenching. Instead, the low-mass galaxies maintain their levels of star-forming activity, while the more massive galaxies have experienced a recent burst.
Pulsating red giants and supergiants as probes of galaxy formation and evolution
NASA Astrophysics Data System (ADS)
Theodorus van Loon, Jacco; Javadi, Atefeh; Khosroshahi, Habib; Rezaei, Sara; Golshan, Roya; Saberi, Maryam
2015-08-01
We have developed new techniques to use pulsating red giant and supergiants stars to reconstruct the star formation history of galaxies over cosmological time, as well as using them to map the dust production across their host galaxies. We describe the large programme on the Local Group spiral galaxy Triangulum (M33), which we have monitored at near-infrared wavelengths for several years using the United Kingdom InfraRed Telescope in Hawai'i. We outline the methodology and present the results for the central square kiloparsec (Javadi et al. 2011a,b, 2013) and - fresh from the press - the disc of M33 (Javadi et al. 2015, and in preparation). We also describe the results from our application of this new technique to other nearby galaxies: the Magellanic Clouds (published in Rezaei et al. 2014), the dwarf galaxies NGC 147 and 185 (Golshan et al. in preparation), and Centaurus A.
Structure and dynamics of star-forming galaxies across the history of the Universe using GRBs
NASA Astrophysics Data System (ADS)
Thöne, Christina; Fynbo, Johan; de Ugarte Postigo, Antonio
2015-08-01
Gamma-ray bursts are exploding massive stars and some of the most luminous explosions in the Universe. They can serve as powerful light houses that probe the structure and abundances of the dense ISM in their hosts at almost any redshift and not accessible by other types of observations, e.g. using quasars. Since 2009 our collaboration has collected UV to nIR medium-resolution spectra of over 70 GRB afterglows using the ESO/VLT X-shooter spectrograph. Our sample covers a redshift range from 0.06 to 6.3 allowing us to study the dynamics of the ISM in star-forming galaxies from the nearby Universe out to the epoch of reionization and for the first time in a statistically sound way. Absorption lines usually show a rich structure of different components due to galaxy dynamics, turbulences or in-/outflows and different ionization levels seem to arise from different regions in the host. Fine-structure lines some of which are uniquely observed in GRB hosts are excited in the dense regions close to the GRB site itself. For some host with z < 3 we can also simultaenously observe emission lines from the hot ISM, comparing the origin of hot and cold gas within the same galaxy. The large wavelength coverage of the sample gives us the unique opportunity to study the evolution of gas dynamics across most of the time galaxies have existed, how the gas structure changed over time and what is the importance and consistency of in- and ouflows. Here we will present the X-shooter GRB afterglow sample, our results on the study of absorption and emission line features and compare the observed structures with theoretical models of galaxies to get a unique insight on the distrubution and dynamics of the ISM in starforming galaxies at any redshift.
Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Minjin; Ho, Luis C.; Peng, Chien Y.
2017-10-01
We present detailed image analysis of rest-frame optical images of 235 low-redshift ( z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope . The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetrymore » of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (H β FWHM ≤ 2000 km s{sup −1}) Type 1 AGNs, in contrast to their broad-line (H β FWHM > 2000 km s{sup −1}) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.« less
NASA Astrophysics Data System (ADS)
Contreras, S.; Baugh, C. M.; Norberg, P.; Padilla, N.
2015-09-01
We demonstrate how the properties of a galaxy depend on the mass of its host dark matter subhalo, using two independent models of galaxy formation. For the cases of stellar mass and black hole mass, the median property value displays a monotonic dependence on subhalo mass. The slope of the relation changes for subhalo masses for which heating by active galactic nuclei becomes important. The median property values are predicted to be remarkably similar for central and satellite galaxies. The two models predict considerable scatter around the median property value, though the size of the scatter is model dependent. There is only modest evolution with redshift in the median galaxy property at a fixed subhalo mass. Properties such as cold gas mass and star formation rate, however, are predicted to have a complex dependence on subhalo mass. In these cases, subhalo mass is not a good indicator of the value of the galaxy property. We illustrate how the predictions in the galaxy property-subhalo mass plane differ from the assumptions made in some empirical models of galaxy clustering by reconstructing the model output using a basic subhalo abundance matching scheme. In its simplest form, abundance matching generally does not reproduce the clustering predicted by the models, typically resulting in an overprediction of the clustering signal. Using the predictions of the galaxy formation model for the correlations between pairs of galaxy properties, the basic abundance matching scheme can be extended to reproduce the model predictions more faithfully for a wider range of galaxy properties. Our results have implications for the analysis of galaxy clustering, particularly for low abundance samples.
The hydroxyl-water megamaser connection. I. Water emission toward OH megamaser hosts
Wiggins, Brandon K.; Migenes, Victor; Smidt, Joseph M.
2016-02-05
Questions surround the connection of luminous extragalactic masers to galactic processes. The observation that water and hydroxyl megamasers rarely coexist in the same galaxy has given rise to a hypothesis that the two species appear in different phases of nuclear activity. The detection of simultaneous hydroxyl and water megamaser emission toward IC694 has called this hypothesis into question, but, because many megamasers have not been surveyed for emission in the other molecule, it remains unclear whether IC694 occupies a narrow phase of galaxy evolution or whether the relationship between megamaser species and galactic processes is more complicated than previously believed. In this paper, we present results of a systematic search for 22 GHz water maser emission among OH megamaser hosts to identify additional objects hosting both megamasers. Our work roughly doubles the number of galaxies searched for emission in both molecules, which host at least one confirmed maser. We confirm with a high degree of confidence (more » $$\\gt 8\\sigma $$) the detection of water emission toward IIZw96, firmly establishing it as the second object to cohost both water and hydroxyl megamasers after IC694. We find high luminosity, narrow features in the water feature in IIZw96. All dual megamaser candidates appear in merging galaxy systems suggestive that megamasers that coexistance may signal a brief phase along the merger sequence. In conclusion, a statistical analysis of the results of our observations provide possible evidence for an exclusion of H 2O kilomasers among OH megamaser hosts.« less
Radio mode feedback: Does relativity matter?
NASA Astrophysics Data System (ADS)
Perucho, Manel; Martí, José-María; Quilis, Vicent; Borja-Lloret, Marina
2017-10-01
Radio mode feedback, associated with the propagation of powerful outflows in active galaxies, is a crucial ingredient in galaxy evolution. Extragalactic jets are well collimated and relativistic, both in terms of thermodynamics and kinematics. They generate strong shocks in the ambient medium, associated with observed hotspots, and carve cavities that are filled with the shocked jet flow. In this Letter, we compare the pressure evolution in the hotspot and the cavity generated by relativistic and classical jets. Our results show that the classical approach underestimates the cavity pressure by a factor ≥2 for a given shocked volume during the whole active phase. The tension between both approaches can only be alleviated by unrealistic jet flow densities or gigantic jet areas in the classical case. As a consequence, the efficiency of a relativistic jet heating the ambient is typically ∼20 per cent larger compared with a classical jet, and the heated volume is 2 to 10 times larger during the time evolution. This conflict translates into two substantially disparate manners, both spatially and temporal, of heating the ambient medium. These differences are expected to have relevant implications on the star formation rates of the host galaxies and their evolution.
The Nature and Origin of UCDs in the Coma Cluster
NASA Astrophysics Data System (ADS)
Chiboucas, Kristin; Tully, R. Brent; Madrid, Juan; Phillipps, Steven; Carter, David; Peng, Eric
2018-01-01
UCDs are super massive star clusters found largely in dense regions but have also been found around individual galaxies and in smaller groups. Their origin is still under debate but currently favored scenarios include formation as giant star clusters, either as the brightest globular clusters or through mergers of super star clusters, themselves formed during major galaxy mergers, or as remnant nuclei from tidal stripping of nucleated dwarf ellipticals. Establishing the nature of these enigmatic objects has important implications for our understanding of star formation, star cluster formation, the missing satellite problem, and galaxy evolution. We are attempting to disentangle these competing formation scenarios with a large survey of UCDs in the Coma cluster. Using ACS two-passband imaging from the HST/ACS Coma Cluster Treasury Survey, we are using colors and sizes to identify the UCD cluster members. With a large size limited sample of the UCD population within the core region of the Coma cluster, we are investigating the population size, properties, and spatial distribution, and comparing that with the Coma globular cluster and nuclear star cluster populations to discriminate between the threshing and globular cluster scenarios. In previous work, we had found a possible correlation of UCD colors with host galaxy and a possible excess of UCDs around a non-central giant galaxy with an unusually large globular cluster population, both suggestive of a globular cluster origin. With a larger sample size and additional imaging fields that encompass the regions around these giant galaxies, we have found that the color correlation with host persists and the giant galaxy with unusually large globular cluster population does appear to host a large UCD population as well. We present the current status of the survey.
Molecular Gas in Obscured and Extremely Red Quasars at z ˜ 2.5
NASA Astrophysics Data System (ADS)
Alexandroff, Rachael; Zakamska, Nadia; Hamann, Fred; Greene, Jenny; Rahman, Mubdi
2018-01-01
Quasar feedback is a key element of modern galaxy evolution theory. During powerful episodes of feedback, quasar-driven winds are suspected of removing large amounts of molecular gas from the host galaxy, thus limiting supplies for star formation and ultimately curtailing the maximum mass of galaxies. Here we present Karl A. Jansky Very Large Array (VLA) observations of the CO(1-0) transition in 11 powerful obscured and extremely red quasars (ERQs) at z~2.5. Previous observations have shown that several of these targets display signatures of powerful quasar-driven winds in their ionized gas. Molecular emission is not detected in a single object, whether kinematically disturbed due to a quasar wind or in equilibrium with the host galaxy and neither is molecular gas detected in a combined stack of all objects (equivalent to an exposure time of over 10 hours with the VLA). This observation is in contrast with the previous suggestions that such objects should occupy gas-rich, extremely star-forming galaxies. Possible explanations include a paucity of molecular gas or an excess of high- excitation molecular gas, both of which could be the results of quasar feedback. In the radio continuum, we detect an average point-like (< 5 kpc) emission with luminosity νLν[33 GHz]=2.2 x 1042 erg s-1, consistent with optically-thin (α ≈ -1.0) synchrotron with some possible contribution from thermal free-free emission. The continuum radio emission of these radio-intermediate objects may be a bi-product of radiatively driven winds or may be due to weak jets confined to the host galaxy.
The star-forming properties of an ultra-hard x-ray selected sample of active galactic nuclei
NASA Astrophysics Data System (ADS)
Shimizu, Thomas Taro
This thesis provides a comprehensive examination of star formation in the host galaxies of active galactic nuclei or AGN. AGN are bright, central regions of galaxies that are powered through accretion onto a supermassive black hole (SMBH). Through accretion and the loss of gravitational potential energy, AGN emit powerful radiation over all wavelengths of the electromagnetic spectrum. This radiation can influence the AGN's host galaxy through what is known as AGN ``feedback'' and is thought to suppress star formation as well as stop accretion onto the SMBH leading to a co-evolution between the SMBH and its host galaxy. Theoretical models have long invoked AGN feedback to be able reproduce the galaxy population we see today but observations have been unclear as to whether AGN actually have an effect on star formation. To address this question, we selected a large sample of local ( z < 0.05) AGN based on their detection at ultra-hard X-ray energies (14-195 keV) with the Swift Burst Alert Telescope (BAT). Ultra-hard X-ray selection frees our sample from selection effects and biases due to obscuration and host galaxy contamination that can hinder other AGN samples. With these 313 BAT AGN we conducted a far-infrared survey using the HerschelSpace Observatory. We use the far-infrared imaging to probe the cold dust that traces recent star formation in the galaxy and construct spectral energy distributions (SEDs) from 12-500 \\micron. We decompose the SEDs to remove the AGN contribution and measure infrared luminosity which provides us with robust estimates of the star formation rate (SFR). Through a comparison with a stellar-mass matched non-AGN sample, we find that AGN host galaxies have larger dust masses, dust temperatures, and SFRs, confirming the results of previous studies that showed the optical colors of the BAT AGN are bluer than non-AGN. We find that the AGN luminosity as probed by the 14-195 keV luminosity is not related to the SFR of the host galaxy suggesting global, large scale star formation on an individual basis is not affected by the AGN. However, after a thorough analysis comparing our AGN to star-forming main sequence, a tight relationship between the SFR and stellar mass of a galaxy, we discover that our AGN as a whole show systematically lower specific SFRs (SFR/stellar mass). We confirm that AGN host galaxies, as a population, are transitioning between the star-forming and quiescent populations. This result supports the theory that AGN feedback has suppressed star formation, but we also consider other models that could reproduce our observations. Finally we conclude with a summary of this thesis and describe several ongoing and future projects that will push forward the exciting field of AGN research.
The Influence of Host Galaxies in Type Ia Supernova Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uddin, Syed A.; Mould, Jeremy; Lidman, Chris
We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We studymore » the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.« less
The Influence of Host Galaxies in Type Ia Supernova Cosmology
NASA Astrophysics Data System (ADS)
Uddin, Syed A.; Mould, Jeremy; Lidman, Chris; Ruhlmann-Kleider, Vanina; Zhang, Bonnie R.
2017-10-01
We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5σ), and decline more rapidly in massive hosts (significance >9σ) and in hosts with low specific star formation rates (significance >8σ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter (σ int = 0.08 ± 0.01) in luminosity after standardization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan
2016-10-01
We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ∼ 6–12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region,more » and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR–stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.« less
NASA Astrophysics Data System (ADS)
Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio
2016-10-01
We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ˜ 6-12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (I) constant wind velocity (CW), (II) variable wind scaling with galaxy properties (VW), and (III) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR-stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.
NASA Astrophysics Data System (ADS)
Sanchez, N. Nicole; Bellovary, Jillian M.; Holley-Bockelmann, Kelly; Tremmel, Michael; Brooks, Alyson; Governato, Fabio; Quinn, Tom; Volonteri, Marta; Wadsley, James
2018-06-01
Using a new, high-resolution cosmological hydrodynamic simulation of a Milky Way-type (MW-type) galaxy, we explore how a merger-rich assembly history affects the mass budget of the central supermassive black hole (SMBH). We examine a MW-mass halo at the present epoch whose evolution is characterized by several major mergers to isolate the importance of merger history on black hole (BH) accretion. This study is an extension of Bellovary et al. (2013), which analyzed the accretion of high mass, high-redshift galaxies and their central BHs, and found that the gas content of the central BH reflects what is accreted by the host galaxy halo. In this study, we find that a merger-rich galaxy will have a central SMBH preferentially fed by gas accreted through mergers. Moreover, we find that the gas composition of the inner ∼10 kpc of the galaxy can account for the increase of merger-accreted gas fueling the SMBH. Through an investigation of the angular momentum of the gas entering the host and its SMBH, we determine that gas accreted through mergers enters the galaxy halo with lower angular momentum compared to smooth accretion, partially accounting for the preferential fueling witnessed in the SMBH. In addition, the presence of mergers, particularly major mergers, also helps funnel low angular momentum gas more readily to the center of the galaxy. Our results imply that galaxy mergers play an important role in feeding the SMBH in MW-type galaxies with merger-rich histories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiggins, Brandon K.; Migenes, Victor; Smidt, Joseph M.
Questions surround the connection of luminous extragalactic masers to galactic processes. The observation that water and hydroxyl megamasers rarely coexist in the same galaxy has given rise to a hypothesis that the two species appear in different phases of nuclear activity. The detection of simultaneous hydroxyl and water megamaser emission toward IC694 has called this hypothesis into question, but, because many megamasers have not been surveyed for emission in the other molecule, it remains unclear whether IC694 occupies a narrow phase of galaxy evolution or whether the relationship between megamaser species and galactic processes is more complicated than previously believed. In this paper, we present results of a systematic search for 22 GHz water maser emission among OH megamaser hosts to identify additional objects hosting both megamasers. Our work roughly doubles the number of galaxies searched for emission in both molecules, which host at least one confirmed maser. We confirm with a high degree of confidence (more » $$\\gt 8\\sigma $$) the detection of water emission toward IIZw96, firmly establishing it as the second object to cohost both water and hydroxyl megamasers after IC694. We find high luminosity, narrow features in the water feature in IIZw96. All dual megamaser candidates appear in merging galaxy systems suggestive that megamasers that coexistance may signal a brief phase along the merger sequence. In conclusion, a statistical analysis of the results of our observations provide possible evidence for an exclusion of H 2O kilomasers among OH megamaser hosts.« less
NASA Astrophysics Data System (ADS)
Reines, Amy Ellen
2011-01-01
Globular star clusters and supermassive black holes are fundamental components of today's massive galaxies, with origins dating back to the very early universe. Both globular clusters and the seeds of supermassive black holes are believed to have formed in the progenitors of modern massive galaxies, although the details are poorly understood. Direct observations of these low-mass, distant, and hence faint systems are unobtainable with current capabilities. However, gas-rich dwarf starburst galaxies in the local universe, analogous in many ways to protogalaxies at high-redshift, can provide critical insight into the early stages of galaxy evolution including the formation of globular clusters and massive black holes. This thesis presents a panchromatic study of nearby dwarf starburst galaxies harboring nascent globular clusters still embedded in their birth material. Infant clusters are identified via their production of thermal radio emission at centimeter wavelengths, which comes from dense gas ionized by young massive stars. By combining radio observations with complementary data at ultraviolet, optical and infrared wavelengths, we obtain a comprehensive view of massive clusters emerging from their gaseous and dusty birth cocoons. This thesis also presents the first example of a nearby dwarf starburst galaxy hosting an actively accreting massive central black hole. The black hole in this dwarf galaxy is unusual in that it is not associated with a bulge, a nuclear star cluster, or any other well-defined nucleus, likely reflecting an early phase of black hole and galaxy evolution that has not been previously observed.
Morphological Perspectives on Galaxy Evolution since z~1.5
NASA Astrophysics Data System (ADS)
Rutkowski, Michael
Galaxies represent a fundamental catalyst in the "lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With the Hubble Space Telescope, the astrophysical community is able to study the formation and evolution of galaxies, at an unrivaled spatial resolution, over more than 90% of cosmic time. Here, I present results from two complementary studies of galaxy evolution in the local and intermediate redshift Universe which used new and archival HST images. First, I use archival broad-band HST WFPC2 optical images of local (d < 63 Mpc) Seyfert-type galaxies to test the observed correlation between visually-classified host galaxy dust morphology and AGN class. Using quantitative parameters for classifying galaxy morphology, I do not measure a strong correlation between the galaxy morphology and AGN class. This result could imply that the Unified Model of AGN provides a sufficient model for the observed diversity of AGN, but this result could also indicate the quantitative techniques are insufficient for characterizing the dust morphology of local galaxies. To address the latter, I develop a new automated method using an inverse unsharp masking technique coupled to Source Extractor to detect and measure dust morphology. I measure no strong trends with dust-morphology and AGN class using this method, and conclude that the Unified Model remains sufficient to explain the diversity of AGN. Second, I use new UV-optical-near IR broad-band images obtained with the HST WFC3 in the Early Release Science (ERS) program to study the evolution of massive, early-type galaxies. These galaxies were once considered to be "red and dead'', as a class uniformly devoid of recent star formation, but observations of these galaxies in the local Universe at UV wavelengths have revealed a significant fraction (30%) of ETGs to have recently formed a small fraction (5--10%) of their stellar mass in young stars. I extend the study of recent star formation in ETGs to intermediate-redshift 0.35 intermediate-redshift 0.35 < z < 1.5 with the ERS data. Comparing the mass fraction and age of young stellar populations identified in these ETGs from two-component SED analysis with the morphology of the ETG and the frequency of companions, I find that at this redshift many ETGs are likely to have experienced a minor burst of recent star formation. The mechanisms driving this recent star formation are varied, and evidence for both minor merger driven recent star formation as well as the evolution of transitioning ETGs is identified.
NASA Astrophysics Data System (ADS)
Forbes, Duncan A.; Bastian, Nate; Gieles, Mark; Crain, Robert A.; Kruijssen, J. M. Diederik; Larsen, Søren S.; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M. N.; Pfeffer, Joel; Gnedin, Oleg Y.
2018-02-01
We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z˜6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ˜2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.
Stellar Archaeology: New Science with Old Stars
NASA Astrophysics Data System (ADS)
Frebel, Anna
2011-01-01
The early chemical evolution of the Galaxy and the Universe is vital to our understanding of a host of astrophysical phenomena. Since the most metal-poor Galactic stars are relics from the high-redshift Universe, they probe the chemical and dynamical conditions as the Milky Way began to form, the origin and evolution of the elements, and the physics of nucleosynthesis. They also provide constraints on the nature of the first stars, their associated supernovae and initial mass function, and early star and galaxy formation. I will present exemplary metal-poor stars with which these different topics can be addressed. Those are the most metal-poor stars in the Galaxy ([Fe/H] < -5.0), and metal-poor stars with strong overabundances of heavy elements, in particular uranium and thorium, which can be used to radioactively date the stars to be 13 Gyr old. I will then transition to recent discoveries of metal-poor ([Fe/H] -3.0) stars in the least luminous dwarf satellites orbiting the Milky Way. Their stellar chemical signatures support the concept that small systems, analogous to the surviving dwarf galaxies, were the building blocks of the Milky Way's low-metallicity halo. This opens a new window for studying galaxy formation through stellar chemistry.
Forbes, Duncan A; Bastian, Nate; Gieles, Mark; Crain, Robert A; Kruijssen, J M Diederik; Larsen, Søren S; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M N; Pfeffer, Joel; Gnedin, Oleg Y
2018-02-01
We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z ∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.
Bastian, Nate; Gieles, Mark; Crain, Robert A.; Kruijssen, J. M. Diederik; Larsen, Søren S.; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M. N.; Pfeffer, Joel; Gnedin, Oleg Y.
2018-01-01
We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations. PMID:29507511
LOFAR discovery of a 700-kpc remnant radio galaxy at low redshift
NASA Astrophysics Data System (ADS)
Brienza, M.; Godfrey, L.; Morganti, R.; Vilchez, N.; Maddox, N.; Murgia, M.; Orru, E.; Shulevski, A.; Best, P. N.; Brüggen, M.; Harwood, J. J.; Jamrozy, M.; Jarvis, M. J.; Mahony, E. K.; McKean, J.; Röttgering, H. J. A.
2016-01-01
Context. Remnant radio galaxies represent the final dying phase of radio galaxy evolution in which the jets are no longer active. Remnants are rare in flux-limited samples, comprising at most a few percent. As a result of their rarity and because they are difficult to identify, this dying phase remains poorly understood and the luminosity evolution is largely unconstrained. Aims: Here we present the discovery and detailed analysis of a large (700 kpc) remnant radio galaxy with a low surface brightness that has been identified in LOFAR images at 150 MHz. Methods: By combining LOFAR data with new follow-up Westerbork observations and archival data at higher frequencies, we investigated the source morphology and spectral properties from 116 to 4850 MHz. By modelling the radio spectrum, we probed characteristic timescales of the radio activity. Results: The source has a relatively smooth, diffuse, amorphous appearance together with a very weak central compact core that is associated with the host galaxy located at z = 0.051. From our ageing and morphological analysis it is clear that the nuclear engine is currently switched off or, at most, active at a very low power state. We find that the source has remained visible in the remnant phase for about 60 Myr, significantly longer than its active phase of 15 Myr, despite being located outside a cluster. The host galaxy is currently interacting with another galaxy located at a projected separation of 15 kpc and a radial velocity offset of ~ 300 km s-1. This interaction may have played a role in the triggering and/or shut-down of the radio jets. Conclusions: The spectral shape of this remnant radio galaxy differs from most of the previously identified remnant sources, which show steep or curved spectra at low to intermediate frequencies. Our results demonstrate that remnant radio galaxies can show a wide range of evolutionary paths and spectral properties. In light of this finding and in preparation for new-generation deep low-frequency surveys, we discuss the selection criteria to be used to select representative samples of these sources.
The Black Hole Mass-Bulge Luminosity Relationship for Reverberation- Mapped AGNs in the Near-IR
NASA Astrophysics Data System (ADS)
Manne-Nicholas, Emily R.; Bentz, Misty C.
2013-02-01
We propose to use WHIRC on WIYN to obtain high spatial resolution near-IR images of the remaining host galaxies in our sample of reverberation-mapped AGNs in order to study the effect of host-galaxy morphology on the M_BH-L_bulge scaling relationship. Recent studies of the M_BH-sigma_star relationship, which is based on the stellar and gas-dynamical sample of black hole masses, have uncovered a possible offset in the relationship due to the presence of a pseudobulge or bar in the host galaxy. This offset would adversely affect ones ability to use the M_BH-sigma_star relationship as a way to estimate black hole masses efficiently because it would require the detailed morphology of the galaxy to be known it a priori. Preliminary results based on optical HST data suggest that the M_BH-L_bulge is not plagued by this same offset. However, due to dust and on-going star formation, the optical data yield an M_BH-L_bulge relationship with a slightly higher scatter. WHIRC near-IR imaging is essential to minimize the effects of dust and star formation in order to confirm the M_BH-L_bulge relationship as a more accurate predictor of black hole masses and a potentially more fundamental relationship, thus informing our understanding of black hole and galaxy co-evolution across cosmic time. emphThe proposed observations will comprise a significant portion of the PI's PhD thesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan Changshuo; Wang Jianmin, E-mail: wangjm@ihep.ac.c
High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the H{alpha}, H{beta}, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can bemore » intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to {approx}1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of {approx}10{sup 8} yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as {approx}100 km s{sup -1} in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of H{alpha}, H{beta}, [O III], and [N II], and H{alpha} brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive rings independently evolving are able to reproduce the main dynamical and emission properties of the two galaxies, such as the Baldwin-Phillips-Terlevich diagram, the relation between line ratios, and H{alpha} brightness. The observed relation between turbulent velocity and the H{alpha} brightness can be explained by the present model. High viscosity excited by SNexp is able to efficiently transport the gas into a bulge to maintain high SFRs or to form a stellar ring close enough to the bulge so that it immigrates into the bulge of its host galaxy. This leads to a fast growing bulge. Implications and future work of the present models have been extensively discussed for galaxy formation in high-z universe.« less
Properties and Expected Number Counts of Active Galactic Nuclei and Their Hosts in the Far-infrared
NASA Astrophysics Data System (ADS)
Draper, A. R.; Ballantyne, D. R.
2011-03-01
Telescopes like Herschel and the Atacama Large Millimeter/submillimeter Array (ALMA) are creating new opportunities to study sources in the far-infrared (FIR), a wavelength region dominated by cold dust emission. Probing cold dust in active galaxies allows for study of the star formation history of active galactic nucleus (AGN) hosts. The FIR is also an important spectral region for observing AGNs which are heavily enshrouded by dust, such as Compton thick (CT) AGNs. By using information from deep X-ray surveys and cosmic X-ray background synthesis models, we compute Cloudy photoionization simulations which are used to predict the spectral energy distribution (SED) of AGNs in the FIR. Expected differential number counts of AGNs and their host galaxies are calculated in the Herschel bands. The expected contribution of AGNs and their hosts to the cosmic infrared background (CIRB) and the infrared luminosity density are also computed. Multiple star formation scenarios are investigated using a modified blackbody star formation SED. It is found that FIR observations at ~500 μm are an excellent tool in determining the star formation history of AGN hosts. Additionally, the AGN contribution to the CIRB can be used to determine whether star formation in AGN hosts evolves differently than in normal galaxies. The contribution of CT AGNs to the bright end differential number counts and to the bright source infrared luminosity density is a good test of AGN evolution models where quasars are triggered by major mergers.
NASA Astrophysics Data System (ADS)
Galloway, Melanie A.
Galaxy morphology is one of the primary keys to understanding a galaxy's evolutionary history. External mechanisms (environment/clustering, mergers) have a strong impact on the formative evolution of the major galactic components (disk, bulge, Hubble type), while internal instabilities created by bars, spiral arms, or other substructures drive secular evolution via the rearrangement of material within the disk. This thesis will explore several ways in which morphology impacts the dynamics and evolution of a galaxy using visual classifications from several Galaxy Zoo projects. The first half of this work will detail the motivations of using morphology to study galaxy evolution, and describe how morphology is measured, debiased, and interpreted using crowdsourced classification data via Galaxy Zoo. The second half will present scientific studies which make use of these classifications; first by focusing on the morphology of galaxies in the local Universe (z < 0.2) using data from Galaxy Zoo 2 and Galaxy Zoo UKIDSS. Last, the high-redshift Universe will be explored by examining populations of morphologies at various lookback times, from z = 0 out to z = 1 using data from Galaxy Zoo Hubble. The investigation of the physical implications of morphology in the local Universe will first be presented in Chapter 4, in a study of the impact of bars on the fueling of an active galactic nucleus (AGN). Using a sample of 19,756 disk galaxies at 0.01 < z < 0.05 imaged by the Sloan Digital Sky Survey and morphologically classified by Galaxy Zoo 2 (GZ2), the difference in AGN fraction in barred and unbarred disks was measured. A weak, but statistically significant, effect was found in that the population of AGN hosts exhibited a 16.0% increase in bar fraction as compared to their unbarred counterparts at fixed mass and color. These results are consistent with a cosmological model in which bar-driven fueling contributes to the growth of black holes, but other dynamical mechanisms must also play a significant role. Next, the morphological dependence on wavelength is studied in Chapter 5 by comparing the optical morphological classifications from GZ2 to classifications done on infrared images in GZ:UKIDSS. Consistent morphologies were found in both sets and similar bar fractions, which confirms that for most galaxies, both old and young stellar populations follow similar spatial distributions. Last, the morphological changes in galaxy populations are computed as a function of their age using classifications from Galaxy Zoo: Hubble (Chapter 6). The evolution of the passive disc population from z = 1 to z = 0.3 was studied in a sample of 20,000 galaxies from the COSMOS field and morphologically classified by the Galaxy Zoo: Hubble project. It was found that the fraction of disc galaxies that are red, as well as the fraction of red sequence galaxies that are discs, decreases for the most massive galaxies (log(M/M solar masses) > 11) but increases for lower masses. The observations are consistent with a physical scenario in which more massive galaxies are more likely to enter a red disc phase, and more massive red discs are more likely to morphologically transform into ellipticals than their less massive counterparts. Additionally, the challenges of visual classification that are particular to galaxies at high redshift were investigated. To address these biases, a new correction technique is presented using simulated images of nearby SDSS galaxies which were artificially redshifted using the FERENGI code and classified in GZH.
Iron Low-ionization Broad Absorption Line quasars - the missing link in galaxy evolution?
NASA Astrophysics Data System (ADS)
Lawther, Daniel Peter; Vestergaard, Marianne; Fan, Xiaohui
2015-08-01
A peculiar and rare type of quasar with strong low-ionization iron absorption lines - known as FeLoBAL quasars - may be the missing link between star forming (or starbursting) galaxies and quasars. They are hypothesized to be quasars breaking out of their dense birth blanket of gas and dust. In that case they are expected to have high rates of star formation in their galaxies. With the aim of addressing and settling this issue we have studied deep Hubble Space Telescope restframe UV and optical imaging of a subset of such quasars in order to characterize the host galaxy properties of these quasars. We present the results of this study along with simulations to characterize the uncertainties and robustness of our results.
The rapid formation of a large rotating disk galaxy three billion years after the Big Bang.
Genzel, R; Tacconi, L J; Eisenhauer, F; Schreiber, N M Förster; Cimatti, A; Daddi, E; Bouché, N; Davies, R; Lehnert, M D; Lutz, D; Nesvadba, N; Verma, A; Abuter, R; Shapiro, K; Sternberg, A; Renzini, A; Kong, X; Arimoto, N; Mignoli, M
2006-08-17
Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.
Origin of the Galaxy Mass-Metallicity-Star Formation Relation
NASA Astrophysics Data System (ADS)
Harwit, Martin; Brisbin, Drew
2015-02-01
We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 <= z <= 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 109 to 6 × 1010 M ⊙. This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established.
Stellar Populations in BL Lac type Objects
NASA Astrophysics Data System (ADS)
Serote Roos, Margarida
The relationship between an Active Galactic Nucleus (AGN) and its host galaxy is a crucial question in the study of galaxy evolution. We present an estimate of the stellar contribution in a sample of low luminosity BL Lac type objects. We have performed stellar population synthesis for a sample of 19 objects selected from Marchã et al. (1996, MNRAS 281, 425). The stellar content is quantified using the equivalent widths of all absorption features available throughout the spectrum. The synthesis is done by a variant of the GPG method (Pelat: 1997, MNRAS 284, 365).
Demographics and Case Studies of Galactic Outflows in the Local Universe
NASA Astrophysics Data System (ADS)
Rupke, David
2017-07-01
Galactic outflows driven by both star formation and active black holes are an important driver of galaxy evolution. The local universe is a sensitive laboratory for understanding the scaling relations that characterize these winds and the physics that govern them. I will review what we know from statistical studies about the prevalance and properties of nearby galactic winds and how these properties depend on those of the host galaxy or power source. I will also highlight detailed case studies of key objects that illustrate the multiphase structure of these winds.
Locating the two black holes in NGC 6240.
Max, Claire E; Canalizo, Gabriela; de Vries, Willem H
2007-06-29
Mergers play an important role in galaxy evolution and are key to understanding the correlation between central-black hole mass and host-galaxy properties. We used the new technology of adaptive optics at the Keck II telescope to observe NGC 6240, a merger between two disk galaxies. Our high-resolution near-infrared images, combined with radio and x-ray positions, revealed the location and environment of two central supermassive black holes. Each is at the center of a rotating stellar disk, surrounded by a cloud of young star clusters. The brightest of these young clusters lie in the plane of each disk, but surprisingly are seen only on the disks' receding side.
The Prevalence of Ionized Gas Outflow Signatures in SDSS-IV MaNGA Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Flores, Anthony M.; Wylezalek, Dominika; Zakamska, Nadia
2018-01-01
Actively accreting supermassive black holes (AGN) can have a variety of effects on their host galaxies, from generating large regions of hot, photoionized gas, to driving AGN feedback in the form of galaxy wide outflows that may affect the evolution of the galaxy over time by quenching their star formation and by thus setting limits to the total mass of their host galaxy. The focus of this work is to assess the prevalence of AGN-driven outflows in low-redshift AGN of moderate power using IFU observations of 2778 galaxies available through SDSS-IV MaNGA.SDSS-IV MaNGA is an optical spectroscopic IFU survey which will have obtained spatially resolved spectroscopic observations of ~10,000 galaxies at z ≤ 0.1 and with stellar masses >10^9 solar masses over the next three years, allowing us to describe the kinematic properties of a large galaxy sample across different spatial regions.We have re-mapped the kinematics of the [O III] emission line to account for asymmetries and secondary kinematic components in the emission line brought on by potential AGN-driven outflows. Using all galaxies currently in the MaNGA survey, we implement a new fitting procedure to help determine the prevalence of these secondary components. Specifically, we use the non-parametric W80 value as a proxy for velocity dispersion, which we expect to be affected especially in the case of asymmetries and broadening of the emission lines. Separating these galaxies into two samples of independently identified AGN candidates and non-AGN, I will show that broad secondary components are twice as common in MaNGA-selected AGN compared to galaxies in MaNGA not classified as AGN. Moreover, when the underlying distribution of W80 values are compared between samples, I will show that the differences in these distributions are statistically significant. This demonstrates that large IFU survey like SDSS-IV MaNGA will uncover many previously unknown AGN and AGN feedback signatures. Outflows and feedback from low- and intermediate-luminosity AGN might have been underestimated in the past but can potentially significantly contribute to the AGN/host-galaxy self-regulation.
Properties of Dwarf Ellipticals in Low-Density Environments
NASA Astrophysics Data System (ADS)
Sur, Debnil; Guhathakurta, P.; Toloba, E.
2013-01-01
Dwarf elliptical galaxies have been studied only in dense cluster environments, where they are the most common type of object. While this suggests that their location affects their formation and evolution, the role of distance is not fully understood. Thus, to investigate the physical processes that shape these galaxies, we have conducted a study of dwarf elliptical galaxies (dEs) in low-density environments to compare their properties with those in clusters. Catalogs of such objects have not been created; thus, we have developed a novel objective method to find new dEs through comparing photometric properties with those of galaxies in the Virgo Cluster Catalog. This method utilizes optical colors, surface brightness and ellipticity, and it confirms smoothness through visual classification. In this last step, we found a very low contamination rate, which suggests the procedure’s utility in finding dEs. Through the NSA Sloan Atlas, we have analyzed the spectrophotometric properties of the dE candidates as a function of distance to the nearest massive galaxy, which we refer to as their host. We have found that these dEs are younger and more actively forming stars than dEs in denser regions. This is consistent with a transformation scenario in which low luminosity spiral galaxies are affected by the environment and transformed into quiescent galaxies. This low density regime contains objects in an intermediate state between the spiral galaxy and the classical dE in Virgo, where no star formation is ongoing. The correlation of the studied properties with the distance to the host galaxy provides new evidence that the dEs are created by a process called ram-pressure stripping: the interstellar medium of a host galaxy removes the gas of a smaller star-forming galaxy and provokes its quenching. We are currently analysing Keck/DEIMOS spectroscopy of some of the dE candidates from our catalog to explore in more detail their connection to cluster dEs. Possible similarities include their kinematic behaviour, stellar populations and chemical abundances. This research was supported by the Science Internship Program (SIP) at UCSC and the National Science Foundation.
Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population
NASA Astrophysics Data System (ADS)
Law-Smith, Jamie; Ramirez-Ruiz, Enrico; Ellison, Sara L.; Foley, Ryan J.
2017-11-01
We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ˜500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong active galactic nucleus presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ˜4 (from ˜×100-190 to ˜×25-48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, “typical” galaxies. In particular, TDE host galaxies tend to live in or near the “green valley” between star-forming and passive galaxies, and have bluer bulge colors ({{Δ }}(g-r)≈ 0.3 mag), lower half-light surface brightnesses (by ˜1 mag/arcsec2), higher Sérsic indices ({{Δ }}{n}{{g}}≈ 3), and higher bulge-to-total-light ratios ({{Δ }}B/T≈ 0.5) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sérsic indices and B/T fractions—on average in the top 10% of galaxies of the same BH mass—suggesting a higher nuclear stellar density. We identify a region in the Sérsic index and BH mass parameter space that contains ˜2% of our reference catalog galaxies but ≥slant 60 % of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.
Galaxy Rotation and Rapid Supermassive Binary Coalescence
NASA Astrophysics Data System (ADS)
Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood
2015-09-01
Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.
NASA Astrophysics Data System (ADS)
Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.
2018-04-01
We present the first self-consistent prediction for the distribution of formation time-scales for close supermassive black hole (SMBH) pairs following galaxy mergers. Using ROMULUS25, the first large-scale cosmological simulation to accurately track the orbital evolution of SMBHs within their host galaxies down to sub-kpc scales, we predict an average formation rate density of close SMBH pairs of 0.013 cMpc-3 Gyr-1. We find that it is relatively rare for galaxy mergers to result in the formation of close SMBH pairs with sub-kpc separation and those that do form are often the result of Gyr of orbital evolution following the galaxy merger. The likelihood and time-scale to form a close SMBH pair depends strongly on the mass ratio of the merging galaxies, as well as the presence of dense stellar cores. Low stellar mass ratio mergers with galaxies that lack a dense stellar core are more likely to become tidally disrupted and deposit their SMBH at large radii without any stellar core to aid in their orbital decay, resulting in a population of long-lived `wandering' SMBHs. Conversely, SMBHs in galaxies that remain embedded within a stellar core form close pairs in much shorter time-scales on average. This time-scale is a crucial, though often ignored or very simplified, ingredient to models predicting SMBH mergers rates and the connection between SMBH and star formation activity.
Mg II-Absorbing Galaxies in the UltraVISTA Survey
NASA Astrophysics Data System (ADS)
Stroupe, Darren; Lundgren, Britt
2018-01-01
Light that is emitted from distant quasars can become partially absorbed by intervening gaseous structures, including galaxies, in its path toward Earth, revealing information about the chemical content, degree of ionization, organization and evolution of these structures through time. In this project, quasar spectra are used to probe the halos of foreground galaxies at a mean redshift of z=1.1 in the COSMOS Field. Mg II absorption lines in Sloan Digital Sky Survey quasar spectra are paired with galaxies in the UltraVISTA catalog at an impact parameter less than 200 kpc. A sample of 77 strong Mg II absorbers with a rest-frame equivalent width ≥ 0.3 Å and redshift from 0.34 < z < 2.21 are investigated to find equivalent width ratios of Mg II, C IV and Fe II absorption lines, and their relation to the impact parameter and the star formation rates, stellar masses, environments and redshifts of their host galaxies.
NASA Astrophysics Data System (ADS)
Schawinski, Kevin
2016-06-01
When the Galaxy Zoo website calling for citizen scientists around the world to help classify galaxies from the Sloan Digital Sky Survey was launched, it brought down the servers hosting the images. The Galaxy Zoo tapped into the incredible desire of the public to get involved in and contribute to scientific research. With the he help of over a quarter million citizen scientists, we were able to map out the evolution of galaxy populations from star formation to quiescence and how this "quenching" is related to changes in morphology. Citizen scientists also discovered unusual objects in public data, such as "Hanny's Voorwerp", a quasar light echo which can constrain black hole accretion on timescales of 10-100 kyr. Finally, the work of citizen scientists taking part in Galaxy Zoo points to a future where machine learning and humans both contribute to systems capable of analyzing extremely large data sets.
The formation and evolution of high-redshift dusty galaxies
NASA Astrophysics Data System (ADS)
Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration
2017-01-01
Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 < z < 5.7, which were first discovered by the South Pole Telescope (SPT) and further confirmed by ALMA. My thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other ingredients including high metallicity, high depletion level, overall low ionization state of gas, neutral carbon and molecules. I have also pushed forward this study by using HST IR grism to link the absorber and the host galaxy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardamone, Carolin N.; Megan Urry, C.; Brammer, Gabriel
2010-09-20
Using new, highly accurate photometric redshifts from the MUSYC medium-band survey in the Extended Chandra Deep Field-South (ECDF-S), we fit synthetic stellar population models to compare active galactic nucleus (AGN) host galaxies to inactive galaxies at 0.8 {<=} z {<=} 1.2. We find that AGN host galaxies are predominantly massive galaxies on the red sequence and in the green valley of the color-mass diagram. Because both passive and dusty galaxies can appear red in optical colors, we use rest-frame near-infrared colors to separate passively evolving stellar populations from galaxies that are reddened by dust. As with the overall galaxy population,more » {approx}25% of the 'red' AGN host galaxies and {approx}75% of the 'green' AGN host galaxies have colors consistent with young stellar populations reddened by dust. The dust-corrected rest-frame optical colors are the blue colors of star-forming galaxies, which imply that these AGN hosts are not passively aging to the red sequence. At z {approx} 1, AGN activity is roughly evenly split between two modes of black hole growth: the first in passively evolving host galaxies, which may be heating up the galaxy's gas and preventing future episodes of star formation, and the second in dust-reddened young galaxies, which may be ionizing the galaxy's interstellar medium and shutting down star formation.« less
NASA Technical Reports Server (NTRS)
Lehmer, B. D.; Basu-Zych, A. R.; Mineo, S.; Brandt, W. N.; Eurfrasio, R. T.; Fragos, T.; Hornschemeier, A. E.; Lou, B.; Xue, Y. Q.; Bauer, F. E.;
2016-01-01
We present measurements of the evolution of normal-galaxy X-ray emission from z (is) approx. 0-7 using local galaxies and galaxy samples in the approx. 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed-frame (is) less than 1 keV emission at z (is) less than 1. We show that a single scaling relation between X-ray luminosity (L(sub x)) and star-formation rate (SFR) literature, is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at z (is) approx. 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) and high-mass XRB (HMXB) populations and their scalings with stellar mass and SFR, respectively. We find L2 -10 keV(LMXB)/stellar mass alpha (1+z)(sub 2-3) and L2 -10 keV(HMXB)/SFR alpha (1+z), and show that these relations are consistent with XRB population-synthesis model predictions, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. We discuss how emission from XRBs could provide an important source of heating to the intergalactic medium in the early universe, exceeding that of active galactic nuclei.
NASA Astrophysics Data System (ADS)
Newman, Andrew B.; Ellis, Richard S.; Bundy, Kevin; Treu, Tommaso
2012-02-01
The presence of extremely compact galaxies at z ~ 2 and their subsequent growth in physical size has been the cause of much puzzlement. We revisit the question using deep infrared Wide Field Camera 3 data to probe the rest-frame optical structure of 935 galaxies selected with 0.4 < z < 2.5 and stellar masses M * > 1010.7 M ⊙ in the UKIRT Ultra Deep Survey and GOODS-South fields of the CANDELS survey. At each redshift, the most compact sources are those with little or no star formation, and the mean size of these systems at fixed stellar mass grows by a factor of 3.5 ± 0.3 over this redshift interval. The data are sufficiently deep to identify companions to these hosts whose stellar masses are ten times smaller. By searching for these around 404 quiescent hosts within a physical annulus 10 h -1 kpc < R < 30 h -1 kpc, we estimate the minor merger rate over 0.4 < z < 2. We find that 13%-18% of quiescent hosts have likely physical companions with stellar mass ratios of 0.1 or greater. Mergers of these companions will typically increase the host mass by 6% ± 2% per merger timescale. We estimate the minimum growth rate necessary to explain the declining abundance of compact galaxies. Using a simple model motivated by recent numerical simulations, we then assess whether mergers of the faint companions with their hosts are sufficient to explain this minimal rate. We find that mergers may explain most of the size evolution observed at z <~ 1 if a relatively short merger timescale is assumed, but the rapid growth seen at higher redshift likely requires additional physical processes.
NASA Astrophysics Data System (ADS)
Glikman, Eliat
2016-10-01
We propose to conduct a controlled study of the relationship between radio emission and host galaxy morphology for a new sample of radio-quiet dust-reddened quasars selected by their infrared colors in WISE and 2MASS (W2M). These sources are the radio-quiet analogs to the FIRST-2MASS (F2M) red quasars, which we found to be predominantly driven by major mergers. F2M red quasars are accreting at very high rates and exhibit broad absorption lines associated with outflows and feedback. Their properties are consistent with buried quasars expelling their dusty shrouds in an an evolutionary phase predicted by merger-driven co-evolution models. The quasars in both samples are the most intrinsically luminous objects in the Universe - the regime where we expect mergers to dominate. However, recent lines of evidence suggest that radio emission may be linked to AGN reddening and merging hosts. We will use WFC3/IR and ACS to image the host galaxies of W2M quasars in the two redshift regimes that our previous studies probed, z 0.7 and z 2, testing the merger-driven quasar paradigm across the full radio range with a minimum of selection effects or other biases that plague many studies comparing different samples. The images proposed here will sample the host galaxies in rest-frame visible and UV light to look for merger signatures. Evidence for mergers in these quasar hosts would support a picture in which luminous quasars and galaxies co-evolve through major-mergers, independent of their radio properties. The absence of mergers in our data would link radio emission to mergers and require an alternate explanation for the extreme properties of these radio-quiet sources.
Getting the sigma in the M_BH - sigma relation right
NASA Astrophysics Data System (ADS)
van der Marel, Roeland
2017-08-01
The relation between the mass of the central supermassive black hole (M_BH) and the velocity dispersion of its host spheroid (sigma) is fundamental for our understanding of galaxy evolution and its relation to their nuclei. Correspondingly many HST orbits have been invested in determining accurate M_BH masses. Surprisingly little has been done on standardizing the other axis, i.e. sigma measurements. These values are often derived from various long-slit datasets at different physical radii of the galaxy and no homogeneous definition has been given. We propose to remedy this situation by using our dataset of MUSE and PPAK kinematic maps out to 1 R_e of galaxies with a secure black hole mass. These data are useful for large scale kinematics, however, obtaining velocity dispersions at small radii is not possible. To measure velocity dispersions at small radii we require high-spatial resolution spectroscopy as provided by HST/STIS. In addtion, high-resolution photometric data is needed to define consistent apertures in each galaxy. We therefore propose to use the unique capabilities of HST and harvest years of efforts to collect archival spectroscopic and imaging data for BH host galaxies. This will allow creating a catalog of sigma values, calculated in various ways and at various radii and to re-calibrate the M_BH - sigma relation.
ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Chen; Fang, Taotao; Wang, Junfeng
We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright,more » optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.« less
Infrared Emission from the Smallest Active Galaxies
NASA Astrophysics Data System (ADS)
Barth, Aaron; Greene, Jenny; Ho, Luis
2006-05-01
Virtually all of our current knowledge of black hole demographics, both in nearby inactive galaxies and in AGNs, comes from observations of black holes with masses between a few million and a few billion solar masses in host galaxies with stellar velocity dispersions between about 70 and 400 km/sec. Searching for smaller black holes in low-mass galaxies can yield important clues to the origin and early evolution of supermassive black holes, and AGN surveys are the best available way to identify such objects. Using the Sloan Digital Sky Survey, we have identified 19 Seyfert 1 galaxies with black hole mass below 10^6 solar masses (Greene & Ho 2004), and 20 Seyfert 2 galaxies having stellar velocity dispersions smaller than 70 km/sec as determined by new Keck observations. These AGN samples offer a unique opportunity to study the very early growth stages of black holes and their host galaxies. Spitzer observations of mid-infrared emission will be the best available calorimeter of the energetics of these tiny AGNs. Our primary goal is to determine the infrared contribution to the bolometric luminosities, which will be a key to understanding the black hole accretion rates. From the infrared spectral shapes we will constrain the dust temperatures and search for silicate features in emission or absorption that may indicate the presence of an obscuring torus, and which will help to determine whether the Type 1 and Type 2 objects differ primarily as a result of our viewing angle, as in classic AGN unified models. PAH features and narrow emission lines will be used to diagnose the relative contributions of AGN and star formation to the infrared luminosity. To accomplish these goals, we request IRS staring-mode spectroscopy in the SL2, SL1, LL2, and LL1 settings for our Sloan-selected sample of 19 Seyfert 1s and 20 Seyfert 2s, as well as NGC 4395 and POX 52, which are the prototypical nearby examples of Seyfert nuclei in dwarf host galaxies.
BLUETIDES simulation: establishing black hole-galaxy relations at high-redshift
NASA Astrophysics Data System (ADS)
Huang, Kuan-Wei; Di Matteo, Tiziana; Bhowmick, Aklant K.; Feng, Yu; Ma, Chung-Pei
2018-05-01
The scaling relations between the mass of supermassive black holes (M•) and host galaxy properties (stellar mass, M⋆, and velocity dispersion, σ), provide a link between the growth of black holes (BHs) and that of their hosts. Here we investigate if and how the BH-galaxy relations are established in the high-z universe using BLUETIDES, a high-resolution large volume cosmological hydrodynamic simulation. We find the M• - M⋆ and M• - σ relations at z = 8: log10(M•) = 8.25 + 1.10 log10(M⋆/1011M⊙) and log10(M•) = 8.35 + 5.31 log10(σ/200kms-1) at z = 8, both fully consistent with the local measurements. The slope of the M• - σ relation is slightly steeper for high star formation rate and M⋆ galaxies while it remains unchanged as a function of Eddington accretion rate onto the BH. The intrinsic scatter in M• - σ relation in all cases (ɛ ˜ 0.4) is larger at these redshifts than inferred from observations and larger than in M• - M⋆ relation (ɛ ˜ 0.14). We find the gas-to-stellar ratio f = Mgas/M⋆ in the host (which can be very high at these redshifts) to have the most significant impact setting the intrinsic scatter of M• - σ. The scatter is significantly reduced when galaxies with high gas fractions (ɛ = 0.28 as f < 10) are excluded (making the sample more comparable to low-z galaxies); these systems have the largest star formation rates and black hole accretion rates, indicating that these fast-growing systems are still moving toward the relation at these high redshifts. Examining the evolution (from z = 10 to 8) of high mass black holes in M• - σ plane confirms this trend.
Coevolution of Supermassive Black Holes and Galaxies across cosmic times
NASA Astrophysics Data System (ADS)
Aversa, Rossella
2015-10-01
Understanding how supermassive black holes (SMBHs) and galaxies coevolve within their host dark matter (DM) halos is a fundamental issue in astrophysics. This thesis is aimed to shed light on this topic. As a first step, we employ the recent wide samples of far-infrared (FIR) selected galaxies followed-up in X-rays, and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity functions at redshift z & 1.5, to probe different stages in the coevolution of SMBHs and their host galaxies. The results of this analysis indicate the following scenario: (i) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium, at an almost constant rate, over a timescale . 0.5 - 1 Gyr, and then abruptly declines due to quasar feedback; (ii) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions, at a rate proportional to the star formation, and is temporarily stored into a massive reservoir/proto-torus, wherefrom it can be promptly accreted; (iii) the black hole (BH) grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit (L/LEdd . 4), particularly at the highest redshifts; (iv) the ensuing energy feedback from massive BHs, at its maximum, exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (v) afterwards, if the gas stored in the reservoir is enough, a phase of supply-limited accretion follows, whose rate exponentially declines with a timescale of ∼3 e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of starforming, strongly lensed galaxies in the (sub-)mm band with ALMA, and in the X-ray band with Chandra and the next generation of X-ray instruments. According to the scenario described above, we further investigate the coevolution of galaxies and hosted SMBHs throughout the history of the Universe by applying a statistical, model-independent approach, based on the continuity equation and the abundance matching technique. We present analytical solutions of the continuity equation without source term, to reconstruct the SMBH mass function (BHMF) at different redshifts iii from the AGN luminosity function. Such an approach includes the physically-motivated AGN lightcurves we have tested and discussed, which describe the evolution of both the Eddington ratio and the radiative efficiency from slim- to thin-disc conditions. We nicely reproduce the local estimates of the BHMF, the AGN duty cycle as a function of mass and redshift, along with the Eddington ratio function and the fraction of galaxies hosting an AGN with given Eddington ratio. We employ the same approach to reconstruct the observed stellar mass function (SMF) at different redshifts, starting from the ultraviolet (UV) and FIR luminosity functions associated to star formation in galaxies. Our results imply that the buildup of stars and BHs in galaxies occurs via in-situ processes, with dry mergers playing a marginal role, at least for stellar masses . 3×10^11 M⊙ and BH masses . 10^9 M⊙, where the statistical data are more secure and less biased by systematic errors. In addition, we develop an improved abundance matching technique, to link the stellar and BH content of galaxies to the gravitationally dominant DM component. The resulting relationships constitute a testbed for galaxy evolution models, highlighting the complementary role of stellar and AGN feedback in the star formation process. They may also be operationally implemented in numerical simulations to populate DM halos, or to gauge subgrid physics. Moreover, they can be exploited to investigate the galaxy/AGN clustering as a function of redshift, stellar/BH mass, and/or luminosity. The clustering properties of BHs and galaxies are found to be in full agreement with current observations, so further validating our results from the continuity equation. Finally, our analysis highlights that: (i) the fraction of AGNs observed in the slim-disc regime, where anyway most of the BH mass is accreted, increases with redshift; (ii) already at z & 6, a substantial amount of dust must have formed, over timescales . 10^8 yr, in strongly starforming galaxies, making these sources well within the reach of ALMA surveys in (sub-)millimeter bands.
NASA Astrophysics Data System (ADS)
Posti, Lorenzo; Nipoti, Carlo; Stiavelli, Massimo; Ciotti, Luca
2014-05-01
Early-type galaxies (ETGs) are observed to be more compact, on average, at z ≳ 2 than at z ≃ 0, at fixed stellar mass. Recent observational works suggest that such size evolution could reflect the similar evolution of the host dark matter halo density as a function of the time of galaxy quenching. We explore this hypothesis by studying the distribution of halo central velocity dispersion (σ0) and half-mass radius (rh) as functions of halo mass M and redshift z, in a cosmological Λ cold dark matter N-body simulation. In the range 0 ≲ z ≲ 2.5, we find σ0∝M0.31-0.37 and rh∝M0.28-0.32, close to the values expected for homologous virialized systems. At fixed M in the range 1011 M⊙ ≲ M ≲ 5.5 × 1014 M⊙ we find σ0 ∝ (1 + z)0.35 and rh ∝ (1 + z)-0.7. We show that such evolution of the halo scaling laws is driven by individual haloes growing in mass following the evolutionary tracks σ0 ∝ M0.2 and rh ∝ M0.6, consistent with simple dissipationless merging models in which the encounter orbital energy is accounted for. We compare the N-body data with ETGs observed at 0 ≲ z ≲ 3 by populating the haloes with a stellar component under simple but justified assumptions: the resulting galaxies evolve consistently with the observed ETGs up to z ≃ 2, but the model has difficulty in reproducing the fast evolution observed at z ≳ 2. We conclude that a substantial fraction of the size evolution of ETGs can be ascribed to a systematic dependence on redshift of the dark matter haloes structural properties.
Evolution in the Dust Lane Fraction of Edge-on L* V Spiral Galaxies Since z = 0.8
NASA Astrophysics Data System (ADS)
Holwerda, B. W.; Dalcanton, J. J.; Radburn-Smith, D.; de Jong, R. S.; Guhathakurta, P.; Koekemoer, A.; Allen, R. J.; Böker, T.
2012-07-01
The presence of a well-defined and narrow dust lane in an edge-on spiral galaxy is the observational signature of a thin and dense molecular disk, in which gravitational collapse has overcome turbulence. Using a sample of galaxies out to z ~ 1 extracted from the COSMOS survey, we identify the fraction of massive (L* V ) disks that display a dust lane. Our goal is to explore the evolution in the stability of the molecular interstellar medium (ISM) disks in spiral galaxies over a cosmic timescale. We check the reliability of our morphological classifications against changes in rest-frame wavelength, resolution, and cosmic dimming with (artificially redshifted) images of local galaxies from the Sloan Digital Sky Survey. We find that the fraction of L* V disks with dust lanes in COSMOS is consistent with the local fraction (≈80%) out to z ~ 0.7. At z = 0.8, the dust lane fraction is only slightly lower. A somewhat lower dust lane fraction in starbursting galaxies tentatively supports the notion that a high specific star formation rate can efficiently destroy or inhibit a dense molecular disk. A small subsample of higher redshift COSMOS galaxies display low internal reddening (E[B - V]), as well as a low incidence of dust lanes. These may be disks in which the growth of the dusty ISM disk lags behind that of the stellar disk. We note that at z = 0.8, the most massive galaxies display a lower dust lane fraction than lower mass galaxies. A small contribution of recent mergers or starbursts to this most massive population may be responsible. The fact that the fraction of galaxies with dust lanes in COSMOS is consistent with little or no evolution implies that models to explain the spectral energy distribution or the host galaxy dust extinction of supernovae based on local galaxies are still applicable to higher redshift spirals. It also suggests that dust lanes are long-lived phenomena or can be reformed over very short timescales.
EVOLUTION IN THE DUST LANE FRACTION OF EDGE-ON L*{sub V} SPIRAL GALAXIES SINCE z = 0.8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holwerda, B. W.; Boeker, T.; Dalcanton, J. J.
2012-07-01
The presence of a well-defined and narrow dust lane in an edge-on spiral galaxy is the observational signature of a thin and dense molecular disk, in which gravitational collapse has overcome turbulence. Using a sample of galaxies out to z {approx} 1 extracted from the COSMOS survey, we identify the fraction of massive (L*{sub V}) disks that display a dust lane. Our goal is to explore the evolution in the stability of the molecular interstellar medium (ISM) disks in spiral galaxies over a cosmic timescale. We check the reliability of our morphological classifications against changes in rest-frame wavelength, resolution, andmore » cosmic dimming with (artificially redshifted) images of local galaxies from the Sloan Digital Sky Survey. We find that the fraction of L*{sub V} disks with dust lanes in COSMOS is consistent with the local fraction ( Almost-Equal-To 80%) out to z {approx} 0.7. At z = 0.8, the dust lane fraction is only slightly lower. A somewhat lower dust lane fraction in starbursting galaxies tentatively supports the notion that a high specific star formation rate can efficiently destroy or inhibit a dense molecular disk. A small subsample of higher redshift COSMOS galaxies display low internal reddening (E[B - V]), as well as a low incidence of dust lanes. These may be disks in which the growth of the dusty ISM disk lags behind that of the stellar disk. We note that at z = 0.8, the most massive galaxies display a lower dust lane fraction than lower mass galaxies. A small contribution of recent mergers or starbursts to this most massive population may be responsible. The fact that the fraction of galaxies with dust lanes in COSMOS is consistent with little or no evolution implies that models to explain the spectral energy distribution or the host galaxy dust extinction of supernovae based on local galaxies are still applicable to higher redshift spirals. It also suggests that dust lanes are long-lived phenomena or can be reformed over very short timescales.« less
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Chruslinska, Martyna; Corsi, Alessandra; Belczynski, Krzysztof
2018-07-01
Binary black holes (BBHs) are one of the endpoints of isolated binary evolution, and their mergers a leading channel for gravitational wave events. Here, using the evolutionary code STARTRACK, we study the statistical properties of the BBH population from isolated binary evolution for a range of progenitor star metallicities and BH natal kicks. We compute the mass function and the distribution of the primary BH spin a as a result of mass accretion during the binary evolution, and find that this is not an efficient process to spin-up BHs, producing an increase by at most a ˜ 0.2-0.3 for very low natal BH spins. We further compute the distribution of merger sites within the host galaxy, after tracking the motion of the binaries in the potentials of a massive spiral, a massive elliptical, and a dwarf galaxy. We find that a fraction of 70-90 per cent of mergers in massive galaxies and of 40-60 per cent in dwarfs (range mostly sensitive to the natal kicks) are expected to occur inside of their hosts. The number density distribution at the merger sites further allows us to estimate the broad-band luminosity distribution that BBH mergers would produce, if associated with a kinetic energy release in an outflow, which, as a reference, we assume at the level inferred for the Fermi GBM counterpart to GW150914, with the understanding that current limits from the O1 and O2 runs would require such emission to be produced within a jet of angular size within ≲50°.
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Chruslinska, Martyna; Corsi, Alessandra; Belczynski, Krzysztof
2018-03-01
Binary black holes (BBHs) are one of the endpoints of isolated binary evolution, and their mergers a leading channel for gravitational wave events. Here, using the evolutionary code STARTRACK, we study the statistical properties of the BBH population from isolated binary evolution for a range of progenitor star metallicities and BH natal kicks. We compute the mass function and the distribution of the primary BH spin a as a result of mass accretion during the binary evolution, and find that this is not an efficient process to spin up BHs, producing an increase by at most a ˜ 0.2-0.3 for very low natal BH spins. We further compute the distribution of merger sites within the host galaxy, after tracking the motion of the binaries in the potentials of a massive spiral, a massive elliptical, and a dwarf galaxy. We find that a fraction of 70-90% of mergers in massive galaxies and of 40-60% in dwarfs (range mostly sensitive to the natal kicks) is expected to occur inside of their hosts. The number density distribution at the merger sites further allows us to estimate the broadband luminosity distribution that BBH mergers would produce, if associated with a kinetic energy release in an outflow, which, as a reference, we assume at the level inferred for the Fermi GBM counterpart to GW150914, with the understanding that current limits from the O1 and O2 runs would require such emission to be produced within a jet of angular size within ≲ 50°.
The redshift evolution of major merger triggering of luminous AGNs: a slight enhancement at z ˜ 2
NASA Astrophysics Data System (ADS)
Hewlett, Timothy; Villforth, Carolin; Wild, Vivienne; Mendez-Abreu, Jairo; Pawlik, Milena; Rowlands, Kate
2017-09-01
Active galactic nuclei (AGNs), particularly the most luminous AGNs, are commonly assumed to be triggered through major mergers; however, observational evidence for this scenario is mixed. To investigate any influence of galaxy mergers on AGN triggering and luminosities through cosmic time, we present a sample of 106 luminous X-ray-selected type 1 AGNs from the COSMOS survey. These AGNs occupy a large redshift range (0.5 < z < 2.2) and two orders of magnitude in X-ray luminosity (˜1043-1045 erg s-1). AGN hosts are carefully mass and redshift matched to 486 control galaxies. A novel technique for identifying and quantifying merger features in galaxies is developed, subtracting galfit galaxy models and quantifying the residuals. Comparison to visual classification confirms this measure reliably picks out disturbance features in galaxies. No enhancement of merger features with increasing AGN luminosity is found with this metric, or by visual inspection. We analyse the redshift evolution of AGNs associated with galaxy mergers and find no merger enhancement in lower redshift bins. Contrarily, in the highest redshift bin (z ˜ 2) AGNs are ˜4 times more likely to be in galaxies exhibiting evidence of morphological disturbance compared to control galaxies, at 99 per cent confidence level (˜2.4σ) from visual inspection. Since only ˜15 per cent of these AGNs are found to be in morphologically disturbed galaxies, it is implied that major mergers at high redshift make a noticeable but subdominant contribution to AGN fuelling. At low redshifts, other processes dominate and mergers become a less significant triggering mechanism.
Transport of magnetic fields into the circumgalactic medium
NASA Astrophysics Data System (ADS)
Lilly, Simon
2017-08-01
Supernova-driven winds are known to play a major role in galaxy evolution, and to drive metal-enriched material far out into the circum-galactic medium. We have demonstrated that magnetic fields in these winds are detectably modifying the polarization properties of background radio quasars with intervening MgII 2799 absorption in their spectra, through Faraday Rotation. We have obtained estimates of the disordered fields within these Faraday screens and wish to map how these vary around galaxies, e.g. whether they are maximal above the poles of the galaxies as we would expect for biconical outflows. We also want to compare our estimates quantitatively with magnetohydrodynamical models that we have been developing. For both investigations, we need to know where the lines of sight pass, relative to the galaxies. For this we need HST resolution images of the host galaxies to establish the orientation and inclination of the disks, and the general morphologies of the galaxies. We have in hand images for 17/30 quasars, and request here images for the remaining 13 sources.
Tacchella, S; Carollo, C M; Renzini, A; Förster Schreiber, N M; Lang, P; Wuyts, S; Cresci, G; Dekel, A; Genzel, R; Lilly, S J; Mancini, C; Newman, S; Onodera, M; Shapley, A; Tacconi, L; Woo, J; Zamorani, G
2015-04-17
Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores. Copyright © 2015, American Association for the Advancement of Science.
The Black Hole Mass-Bulge Luminosity Relationship for Reverberation-Mapped AGNs in the Near-IR
NASA Astrophysics Data System (ADS)
Nicholas, Emily; Bentz, M. C.
2014-01-01
We present preliminary results for a near-IR M-L scaling relationship for active galaxies in the reverberation sample. We are particularly interested in the effect of host-galaxy morphology on the M-L scaling relationship. In order to study evolution over cosmic time we must employ scaling relations, which are calibrated to the direct methods of black hole mass measurement and rely on correlations between host galaxy properties and black hole masses. However, it remains uncertain which scaling relation most reliably predicts black hole masses based on host galaxy observables. Recent studies of the M- relationship have uncovered a possible offset in the relationship due to the presence of a pseudobulge or bar in the host galaxy. This offset would adversely affect one's ability to use the M-relationship as a way to estimate black hole masses efficiently because it would require the detailed morphology of the galaxy to be known a priori. Preliminary results based on optical HST data suggest that the M-L relation for active galaxies with reverberation-based black hole masses is not plagued by the same offsets. However, due to dust and on-going star formation, the optical data yield an M-L relationship with a slightly higher scatter than the M- relation. We have carried out near-IR imaging with the WIYN High-Resolution Infrared Camera (WHIRC) on the WIYN telescope to minimize the effects of dust and star formation in order to test whether the M-L relationship is a more accurate predictor of black hole masses and a potentially more fundamental relationship. The imaging campaign has been completed, and we are currently in the process of carefully modeling the galaxy surface brightness features so that we can accurately remove the contribution from the point spread function of the active nucleus. We present our preliminary results here, and we expect that the final results will prove to be quite useful in conjunction with future large imaging surveys, such as LSST, which have no dedicated spectroscopic component. Our team is also in the process of improving distance measurements to these galaxies, which could potentially help to decrease the scatter in bulge luminosity measurements for the reverberation sample.
Investigating evidence for different black hole accretion modes since redshift z ˜ 1
NASA Astrophysics Data System (ADS)
Georgakakis, A.; Pérez-González, P. G.; Fanidakis, N.; Salvato, M.; Aird, J.; Messias, H.; Lotz, J. M.; Barro, G.; Hsu, Li-Ting; Nandra, K.; Rosario, D.; Cooper, M. C.; Kocevski, D. D.; Newman, J. A.
2014-05-01
Chandra data in the COSMOS, AEGIS-XD and 4 Ms Chandra Deep Field South are combined with multiwavelength photometry available in those fields to determine the rest-frame U - V versus V - J colours of X-ray AGN hosts in the redshift intervals 0.1 < z < 0.6 (mean overline{z}=0.40) and 0.6 < z < 1.2 (mean overline{z}=0.85). This combination of colours provides an effective and least model-dependent means of separating quiescent from star-forming, including dust reddened, galaxies. Morphological information emphasizes differences between AGN populations split by their U - V versus V - J colours. AGN in quiescent galaxies consist almost exclusively of bulges, while star-forming hosts are equally split between early- and late-type hosts. The position of AGN hosts on the U - V versus V - J diagram is then used to set limits on the accretion density of the Universe associated with evolved and star-forming systems independent of dust induced biases. It is found that most of the black hole growth at z ≈ 0.40 and 0.85 is associated with star-forming hosts. Nevertheless, a non-negligible fraction of the X-ray luminosity density, about 15-20 per cent, at both overline{z}=0.40 and 0.85, is taking place in galaxies in the quiescent region of the U - V versus V - J diagram. For the low-redshift sub-sample, 0.1 < z < 0.6, we also find tentative evidence, significant at the 2σ level, that AGN split by their U - V and V - J colours have different Eddington ratio distributions. AGN in blue star-forming hosts dominate at relatively high Eddington ratios. In contrast, AGN in red quiescent hosts become increasingly important as a fraction of the total population towards low Eddington ratios. At higher redshift, z > 0.6, such differences are significant at the 2σ level only for sources with Eddington ratios ≳ 10- 3. These findings are consistent with scenarios in which diverse accretion modes are responsible for the build-up of supermassive black holes at the centres of galaxies. We compare these results with the predictions of the GALFORM semi-analytic model for the cosmological evolution of AGN and galaxies. This model postulates two black hole fuelling modes, the first is linked to star formation events and the second takes place in passive galaxies. GALFORM predicts that a substantial fraction of the black hole growth at z < 1 is associated with quiescent galaxies, in apparent conflict with the observations. Relaxing the strong assumption of the model that passive AGN hosts have zero star formation rate could bring those predictions in better agreement with the data.
Science of active galactic nuclei with the GTC and CanariCam
NASA Astrophysics Data System (ADS)
Levenson, Nancy A.; Packham, Christopher C.; Alonso-Herrero, Almudena; Aretxaga, Itziar; Colina, Luis; Díaz-Santos, Tanio; Elitzur, Moshe; Mason, Rachel E.; Perlman, Eric S.; Radomski, James T.; Roche, Patrick F.; Rodríguez Espinosa, José Miguel; Young, Stuart; Telesco, Charles M.
2008-07-01
CanariCam is the facility mid-infrared (MIR) instrument for the Gran Telescopio Canarias (GTC), a 10.4m telescope at the Observatorio del Roque de los Muchachos on La Palma. One of the science drivers for CanariCam is the study of active galactic nuclei (AGN). We will exploit the instrument's high sensitivity in imaging, spectroscopy, and polarimetry modes to answer fundamental questions of AGN and their host galaxies. Dust in the nucleus of an active galaxy reprocesses the intrinsic radiation of the central engine to emerge in the MIR. Current work demonstrates that the hot dust immediately associated with the AGN, which blocks direct views of the AGN from some lines of sight, is confined to small (parsec) scales. Thus, high spatial resolution is essential to probe the "torus" of unified AGN models separate from the host galaxy. CanariCam provides a 0.08" pixel scale for Nyquist sampling the diffraction-limited point spread function at 8μm, and narrow (0.2") spectroscopy slits (with R=120-1300). New observations with the GTC/CanariCam will provide key constraints on the physical conditions in the clumpy torus, and we will sensitively determine AGN obscuration as a function of nuclear activity. We will therefore address the fueling process and its relationship to the torus, the interaction with the host galaxy, and dust chemistry. These data will be essential preparation for the next generation of telescopes that will observe the distant universe directly to explore galaxy and black hole formation and evolution, and the GTC/CanariCam system uniquely provides multiple modes to probe AGN.
TWO LOCAL VOLUME DWARF GALAXIES DISCOVERED IN 21 cm EMISSION: PISCES A AND B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tollerud, Erik J.; Geha, Marla C.; Grcevich, Jana
2015-01-01
We report the discovery of two dwarf galaxies, Pisces A and B, from a blind 21 cm H I search. These were the only two galaxies found via optical imaging and spectroscopy of 22 H I clouds identified in the GALFA-H I survey as dwarf galaxy candidates. They have properties consistent with being in the Local Volume (<10 Mpc), and one has resolved stellar populations such that it may be on the outer edge of the Local Group (∼1 Mpc from M31). While the distance uncertainty makes interpretation ambiguous, these may be among the faintest star-forming galaxies known. Additionally, rough estimatesmore » comparing these galaxies to ΛCDM dark matter simulations suggest consistency in number density, implying that the dark matter halos likely to host these galaxies are primarily H I-rich. The galaxies may thus be indicative of a large population of dwarfs at the limit of detectability that are comparable to the faint satellites of the Local Group. Because they are outside the influence of a large dark matter halo to alter their evolution, these galaxies can provide critical anchors to dwarf galaxy formation models.« less
New Methods for Tracking Galaxy and Black Hole Evolution Using Post-Starburst Galaxies
NASA Astrophysics Data System (ADS)
French, Katheryn Decker
2017-08-01
Galaxies in transition from star-forming to quiescence are a natural laboratory for exploring the processes responsible for this evolution. Using a sample of post-starburst galaxies identified to have recently experienced a recent burst of star formation that has now ended, I explore both the fate of the molecular gas that drives star formation and the increased rate of stars disrupted by the central supermassive black hole. Chapter 1 provides an introduction to galaxy evolution through the post-starburst phase and to tidal disruption events, which surprisingly favor post-starburst galaxy hosts. In Chapter 2, I present a survey of the molecular gas properties of 32 post-starburst galaxies traced by CO (1-0) and CO (2-1). In order to accurately put galaxies on an evolutionary sequence, we must select likely progenitors and descendants. We do this by identifying galaxies with similar starburst properties, such as the amount of mass produced in the burst and the burst duration. In Chapter 3, I describe a method to determine the starburst properties and the time elapsed since the starburst ended, and discuss trends in the molecular gas properties of these galaxies with time. In Chapter 4, I present the results of followup observations with ALMA of HCN (1-0) and HCO+ (1-0) in two post-starburst galaxies. CO (1-0) is detected in over half (17/32) the post-starburst sample and the molecular gas mass traced by CO declines on ˜100 Myr timescales after the starburst has ended. HCN (1-0) is not detected in either galaxy targeted, indicating the post-starbursts are now quiescent because of a lack of the denser molecular gas traced by HCN. In Chapter 5 I quantify the increase in TDE rate in quiescent galaxies with strong Balmer absorption to be 30 - 200x higher than in normal galaxies. Using the stellar population fitting method from Chapter 3, I examine possible reasons for the increased TDE rate in post-starburst galaxies in Chapter 6. The TDE rate could be boosted due to a binary supermassive black hole coalescing after a major merger or an increased density of stars or gas remaining near the nucleus after the starburst has ended. In Chapter 7, I present a summary of the findings of this dissertation and an outlook for future work.
Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin
2017-10-01
We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s-1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s-1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555. These data are associated with program AR-12133 and AR-12818.
Spatially Resolved Spectroscopy of Narrow-line Seyfert 1 Host Galaxies
NASA Astrophysics Data System (ADS)
Scharwächter, J.; Husemann, B.; Busch, G.; Komossa, S.; Dopita, M. A.
2017-10-01
We present optical integral field spectroscopy for five z< 0.062 narrow-line Seyfert 1 (NLS1) galaxies, probing their host galaxies at ≳ 2{--}3 {kpc} scales. Emission lines from the active galactic nucleus (AGN) and the large-scale host galaxy are analyzed separately, based on an AGN-host decomposition technique. The host galaxy gas kinematics indicates large-scale gas rotation in all five sources. At the probed scales of ≳ 2{--}3 {kpc}, the host galaxy gas is found to be predominantly ionized by star formation without any evidence of a strong AGN contribution. None of the five objects shows specific star formation rates (SFRs) exceeding the main sequence of low-redshift star-forming galaxies. The specific SFRs for MCG-05-01-013 and WPVS 007 are roughly consistent with the main sequence, while ESO 399-IG20, MS 22549-3712, and TON S180 show lower specific SFRs, intermediate to the main sequence and the red quiescent galaxies. The host galaxy metallicities, derived for the two sources with sufficient data quality (ESO 399-IG20 and MCG-05-01-013), indicate central oxygen abundances just below the low-redshift mass-metallicity relation. Based on this initial case study, we outline a comparison of AGN and host galaxy parameters as a starting point for future extended NLS1 studies with similar methods.
NASA Astrophysics Data System (ADS)
Bayliss, Matthew B.; Sharon, Keren; Acharyya, Ayan; Gladders, Michael D.; Rigby, Jane R.; Bian, Fuyan; Bordoloi, Rongmon; Runnoe, Jessie; Dahle, Hakon; Kewley, Lisa; Florian, Michael; Johnson, Traci; Paterno-Mahler, Rachel
2017-08-01
We report the detection of extended Lyα emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Lyα in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ˜200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Lyα emission to its physical origin on one side of the host galaxy at radii ˜0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyα and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyα, host galaxy Lyα, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alatalo, Katherine; Lanz, Lauranne; Bitsakis, Theodoros
NGC 1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, providing a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high-power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC 1266 at millimeter wavelengths. Our observations show that molecular gas is being drivenmore » out of the nuclear region at M-dot {sub out}≈110 M{sub ⊙} yr{sup –1}, of which the vast majority cannot escape the nucleus. Only 2 M {sub ☉} yr{sup –1} is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact (≲ 50 pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density (Σ{sub SFR}) to the gas surface density (Σ{sub H{sub 2}}) indicates that SF is suppressed by a factor of ≈50 compared to normal star-forming galaxies if all gas is forming stars, and ≈150 for the outskirt (98%) dense molecular gas if the central region is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-σ relation.« less
NASA Astrophysics Data System (ADS)
Neumann, J.; Wisotzki, L.; Choudhury, O. S.; Gadotti, D. A.; Walcher, C. J.; Bland-Hawthorn, J.; García-Benito, R.; González Delgado, R. M.; Husemann, B.; Marino, R. A.; Márquez, I.; Sánchez, S. F.; Ziegler, B.; Califa Collaboration
2017-07-01
Understanding the nature of bulges in disc galaxies can provide important insights into the formation and evolution of galaxies. For instance, the presence of a classical bulge suggests a relatively violent history. In contrast, the presence of an inner disc instead (also referred to as a "pseudobulge") indicates the occurrence of secular evolution processes in the main disc. However, we still lack criteria to effectively categorise bulges, limiting our ability to study their impact on the evolution of the host galaxies. Here we present a recipe to separate inner discs from classical bulges by combining four different parameters from photometric and kinematic analyses: the bulge Sérsic index nb, the concentration index C20,50, the Kormendy (1977, ApJ, 217, 406) relation and the inner slope of the radial velocity dispersion profile ∇σ. With that recipe we provide a detailed bulge classification for a sample of 45 galaxies from the integral-field spectroscopic survey CALIFA. To aid in categorising bulges within these galaxies, we perform 2D image decomposition to determine bulge Sérsic index, bulge-to-total light ratio, surface brightness and effective radius of the bulge and use growth curve analysis to derive a new concentration index, C20,50. We further extract the stellar kinematics from CALIFA data cubes and analyse the radial velocity dispersion profile. The results of the different approaches are in good agreement and allow a safe classification for approximately 95% of the galaxies. In particular, we show that our new "inner" concentration index performs considerably better than the traditionally used C50,90 when yielding the nature of bulges. We also found that a combined use of this index and the Kormendy relation gives a very robust indication of the physical nature of the bulge.
A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, XiLong; Messenger, Christopher; Heng, Ik Siong
We present a general framework for incorporating astrophysical information into Bayesian parameter estimation techniques used by gravitational wave data analysis to facilitate multi-messenger astronomy. Since the progenitors of transient gravitational wave events, such as compact binary coalescences, are likely to be associated with a host galaxy, improvements to the source sky location estimates through the use of host galaxy information are explored. To demonstrate how host galaxy properties can be included, we simulate a population of compact binary coalescences and show that for ∼8.5% of simulations within 200 Mpc, the top 10 most likely galaxies account for a ∼50% ofmore » the total probability of hosting a gravitational wave source. The true gravitational wave source host galaxy is in the top 10 galaxy candidates ∼10% of the time. Furthermore, we show that by including host galaxy information, a better estimate of the inclination angle of a compact binary gravitational wave source can be obtained. We also demonstrate the flexibility of our method by incorporating the use of either the B or K band into our analysis.« less
NASA Astrophysics Data System (ADS)
Mezcua, M.; Civano, F.; Marchesi, S.; Suh, H.; Fabbiano, G.; Volonteri, M.
2018-05-01
We present a sample of 40 AGN in dwarf galaxies at redshifts z ≲ 2.4. The galaxies are drawn from the Chandra COSMOS-Legacy survey as having stellar masses 107 ≤ M* ≤ 3 × 109 M⊙. Most of the dwarf galaxies are star-forming. After removing the contribution from star formation to the X-ray emission, the AGN luminosities of the 40 dwarf galaxies are in the range L0.5-10keV ˜ 1039 - 1044 erg s-1. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. The record-holder is cid_1192, at z = 2.39 and with L0.5-10keV ˜ 1044 erg s-1. One of the dwarf galaxies has M* = 6.6 × 107 M⊙ and is the least massive galaxy found so far to host an AGN. All the AGN are of type 2 and consistent with hosting intermediate-mass black holes (BHs) with masses ˜104 - 105 M⊙ and typical Eddington ratios >1%. We also study the evolution, corrected for completeness, of AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7. We find that the AGN fraction for 109 < M* ≤ 3 × 109 M⊙ and LX ˜ 1041 - 1042 erg s-1 is ˜0.4% for z ≤ 0.3 and that it decreases with X-ray luminosity and decreasing stellar mass. Unlike massive galaxies, the AGN fraction seems to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies. Mindful of potential caveats, the results seem to favor a direct collapse formation mechanism for the seed BHs in the early Universe.
NASA Astrophysics Data System (ADS)
Kravtsov, V. V.
2006-09-01
Peak metallicities of metal-rich populations of globular clusters (MRGCs) belonging to early-type galaxies and spheroidal subsystems of spiral galaxies (spheroids) of different mass fall within the somewhat conservative -0.7<=[Fe/H]<=-0.3 range. Indeed, if possible age effects are taken into account, this metallicity range might become smaller. Irregular galaxies such as the Large Magellanic Cloud (LMC), with longer timescales of formation and lower star formation (SF) efficiency, do not contain old MRGCs with [Fe/H]>-1.0, but they are observed to form populations of young/intermediate-age massive star clusters (MSCs) with masses exceeding 104 Msolar. Their formation is widely believed to be an accidental process fully dependent on external factors. From the analysis of available data on the populations and their hosts, including intermediate-age populous star clusters in the LMC, we find that their most probable mean metallicities fall within -0.7<=[Fe/H]<=-0.3, as the peak metallicities of MRGCs do, irrespective of signs of interaction. Moreover, both the disk giant metallicity distribution function (MDF) in the LMC and the MDFs for old giants in the halos of massive spheroids exhibit a significant increase toward [Fe/H]~-0.5. That is in agreement with a correlation found between SF activity in galaxies and their metallicity. The formation of both the old MRGCs in spheroids and MSC populations in irregular galaxies probably occurs at approximately the same stage of the host galaxies' chemical evolution and is related to the essentially increased SF activity in the hosts around the same metallicity that is achieved very early in massive spheroids, later in lower mass spheroids, and much later in irregular galaxies. Changes in the interstellar dust, particularly in elemental abundances in dust grains and in the mass distribution function of the grains, may be among the factors regulating star and MSC formation activity in galaxies. Strong interactions and mergers affecting the MSC formation presumably play an additional role, although they can substantially intensify the internally regulated MSC formation process. Several implications of our suggestions are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie
2010-07-01
We conduct a comprehensive analysis of the relationship between central galaxies and their host dark matter halos, as characterized by the stellar mass-halo mass (SM-HM) relation, with rigorous consideration of uncertainties. Our analysis focuses on results from the abundance matching technique, which assumes that every dark matter halo or subhalo above a specific mass threshold hosts one galaxy. We provide a robust estimate of the SM-HM relation for 0 < z < 1 and discuss the quantitative effects of uncertainties in observed galaxy stellar mass functions (including stellar mass estimates and counting uncertainties), halo mass functions (including cosmology and uncertaintiesmore » from substructure), and the abundance matching technique used to link galaxies to halos (including scatter in this connection). Our analysis results in a robust estimate of the SM-HM relation and its evolution from z = 0 to z = 4. The shape and the evolution are well constrained for z < 1. The largest uncertainties at these redshifts are due to stellar mass estimates (0.25 dex uncertainty in normalization); however, failure to account for scatter in stellar masses at fixed halo mass can lead to errors of similar magnitude in the SM-HM relation for central galaxies in massive halos. We also investigate the SM-HM relation to z = 4, although the shape of the relation at higher redshifts remains fairly unconstrained when uncertainties are taken into account. We find that the integrated star formation at a given halo mass peaks at 10%-20% of available baryons for all redshifts from 0 to 4. This peak occurs at a halo mass of 7 x 10{sup 11} M{sub sun} at z = 0 and this mass increases by a factor of 5 to z = 4. At lower and higher masses, star formation is substantially less efficient, with stellar mass scaling as M{sub *} {approx} M {sup 2.3}{sub h} at low masses and M{sub *} {approx} M {sup 0.29}{sub h} at high masses. The typical stellar mass for halos with mass less than 10{sup 12} M{sub sun} has increased by 0.3-0.45 dex for halos since z {approx} 1. These results will provide a powerful tool to inform galaxy evolution models.« less
A Comprehensive Analysis of Uncertainties Affecting the Stellar Mass-Halo Mass Relation for 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behroozi, Peter S.; Conroy, Charlie; Wechsler, Risa H.
2010-06-07
We conduct a comprehensive analysis of the relationship between central galaxies and their host dark matter halos, as characterized by the stellar mass - halo mass (SM-HM) relation, with rigorous consideration of uncertainties. Our analysis focuses on results from the abundance matching technique, which assumes that every dark matter halo or subhalo above a specific mass threshold hosts one galaxy. We provide a robust estimate of the SM-HM relation for 0 < z < 1 and discuss the quantitative effects of uncertainties in observed galaxy stellar mass functions (GSMFs) (including stellar mass estimates and counting uncertainties), halo mass functions (includingmore » cosmology and uncertainties from substructure), and the abundance matching technique used to link galaxies to halos (including scatter in this connection). Our analysis results in a robust estimate of the SM-HM relation and its evolution from z=0 to z=4. The shape and evolution are well constrained for z < 1. The largest uncertainties at these redshifts are due to stellar mass estimates (0.25 dex uncertainty in normalization); however, failure to account for scatter in stellar masses at fixed halo mass can lead to errors of similar magnitude in the SM-HM relation for central galaxies in massive halos. We also investigate the SM-HM relation to z = 4, although the shape of the relation at higher redshifts remains fairly unconstrained when uncertainties are taken into account. We find that the integrated star formation at a given halo mass peaks at 10-20% of available baryons for all redshifts from 0 to 4. This peak occurs at a halo mass of 7 x 10{sup 11} M{sub {circle_dot}} at z = 0 and this mass increases by a factor of 5 to z = 4. At lower and higher masses, star formation is substantially less efficient, with stellar mass scaling as M{sub *} {approx} M{sub h}{sup 2.3} at low masses and M{sub *} {approx} M{sub h}{sup 0.29} at high masses. The typical stellar mass for halos with mass less than 10{sup 12} M{sub {circle_dot}} has increased by 0.3-0.45 dex for halos since z {approx} 1. These results will provide a powerful tool to inform galaxy evolution models.« less
A Spatially Resolved Study of the GRB 020903 Host Galaxy
NASA Astrophysics Data System (ADS)
Thorp, Mallory D.; Levesque, Emily M.
2018-03-01
GRB 020903 is a long-duration gamma-ray burst with a host galaxy close enough and extended enough for spatially resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles, we were able to obtain optical spectra (3600–9000 Å) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure the metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable subsolar metallicities. We conclude that, in agreement with past spatially resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.
Host galaxy identification for supernova surveys
Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; ...
2016-11-08
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations withinmore » their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less
HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within theirmore » host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less
Host galaxy identification for supernova surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations withinmore » their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less
HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within theirmore » host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabra, Bassem M.; Saliba, Charbel; Akl, Maya Abi
We explore the connection between the central supermassive black holes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of the host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. Our assumption here is that the circular velocity is a proxy for the mass of the dark matter halo. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has a direct measurement of the mass of its SMBHmore » and a direct measurement of its circular velocity and its velocity dispersion. Previous studies have analyzed the connection between the SMBH and dark matter halo through the relationship between the circular velocity and the bulge velocity dispersion, with the assumption that the bulge velocity dispersion stands in for the mass of the SMBH, via the well-established SMBH mass–bulge velocity dispersion relation. Using intermediate relations may be misleading when one is studying them to decipher the active ingredients of galaxy formation and evolution. We believe that our approach will provide a more direct probe of the SMBH and the dark matter halo connection. We find that the correlation between the mass of SMBHs and the circular velocities of the host galaxies is extremely weak, leading us to state the dark matter halo may not play a major role in regulating the black hole growth in the present Universe.« less
Gravitational Lenses and the Structure and Evolution of Galaxies
NASA Technical Reports Server (NTRS)
Kochanek, Christopher
2003-01-01
The grant has supported the completion of 16 papers and 4 conference proceedings to date. During the first year of the project we completed five papers, each of which represents a new direction in the theory and interpretation of gravitational lenses. In the first paper, "The Importance of Einstein Rings", we developed the first theory for the formation and structure of the Einstein rings formed by lensing extended sources like the host galaxies of quasar and radio sources. We applied the theory to three lenses with lensed host galaxies. For the time delay lens PG 1115+080 we found that the structure of the Einstein ring ruled out models of the gravitational potential which permitted a large Hubble constant (70 km/s Mpc). In the second paper, :Cusped Mass Models Of Gravitational Lenses", we introduced a new class of lens models where the central density is characterized by a cusp ( rho proportional to tau(sup -gamma), 1 less than gamma less than 2) as in most modern models and theories of galaxies rather than a finite core radius. In the third paper, "Global Probes of the Impact of Baryons on Dark Matter Halos", we made the first globally consistent models for the separation distribution of gravitational lenses including both galaxy and cluster lenses. We show that the key physics for the origin of the sharp separation cutoff in the separation distribution near 3 arc sec is the effect of the cooling baryons in galaxies on the density structure of the system.
Internal and environmental secular evolution of disk galaxies
NASA Astrophysics Data System (ADS)
Kormendy, John
2015-03-01
This Special Session is devoted to the secular evolution of disk galaxies. Here `secular' means `slow' i.e., evolution on time scales that are generally much longer than the galaxy crossing or rotation time. Internal and environmentally driven evolution both are covered. I am indebted to Albert Bosma for reminding me at the 2011 Canary Islands Winter School on Secular Evolution that our subject first appeared in print in a comment made by Ivan King (1977) in his introductory talk at the Yale University meeting on The Evolution of Galaxies and Stellar Populations: `John Kormendy would like us to consider the possibility that a galaxy can interact with itself.. . . I'm not at all convinced, but John can show you some interesting pictures.' Two of the earliest papers that followed were Kormendy (1979a, b); the first discusses the interaction of galaxy components with each other, and the second studies these phenomena in the context of a morphological survey of barred galaxies. The earliest modeling paper that we still use regularly is Combes & Sanders (1981), which introduces the now well known idea that box-shaped bulges in edge-on galaxies are side-on, vertically thickened bars. It is gratifying to see how this subject has grown since that time. Hundreds of papers have been written, and the topic features prominently at many meetings (e.g., Block et al. 2004; Falcoń-Barroso & Knapen 2012, and this Special Session). My talk here introduces both internal and environmental secular evolution; a brief abstract follows. My Canary Islands Winter School review covers both subjects in more detail (Kormendy 2012). Kormendy & Kennicutt (2004) is a comprehensive review of internal secular evolution, and Kormendy & Bender (2012) covers environmental evolution. Both of these subject make significant progress at this meeting. Secular evolution happens because self-gravitating systems evolve toward the most tightly bound configuration that is reachable by the evolution processes that are available to them. They do this by spreading - the inner parts shrink while the outer parts expand. Significant changes happen only if some process efficiently transports energy or angular momentum outward. The consequences are very general: evolution by spreading happens in stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks. This meeting is about disk galaxies, so the evolution most often involves the redistribution of angular momentum. We now have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the center. Numerical simulations reproduce observed morphologies very well. Gas that is transported to small radii reaches high densities that are seen in CO observations. Star formation rates measured (e.g.) in the mid-infrared show that many barred and oval galaxies grow, on timescales of a few Gyr, dense central `pseudobulges' that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). Our resulting picture of secular evolution accounts for the richness observed in morphological classification schemes such as those of de Vaucouleurs (1959) and Sandage (1961). State-of-the art morphology discussions include the de Vaucouleurs Atlas of Galaxies (Buta et al. 2007) and Buta (2012, 2013). Pseudobulges as disk-grown alternatives to merger-built classical bulges are important because they impact many aspects of our understanding of galaxy evolution. For example, they are observed to contain supermassive black holes (BHs), but they do not show the well known, tight correlations between BH mass and host properties (Kormendy et al. 2011). We can distinguish between classical and pseudo bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions σ with respect to the Faber-Jackson correlation between σ and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. None of the above classification criteria are 100% reliable. Published disagreements on (pseudo)bulge classifications usually result from the use of diffferent criteria. It is very important to use as many classification criteria as possible. When two or more criteria are used, the probability of misclassification becomes very small. I also review environmental secular evolution - the transformation of gas-rich, star-forming spiral and irregular galaxies into gas-poor, `red and dead' S0 and spheroidal (`Sph') galaxies. I show that Sph galaxies such as NGC 205 and Draco are not the low-luminosity end of the structural sequence (the `fundamental plane') of elliptical galaxies. Instead, Sph galaxies have structural parameters like those of low-luminosity S+Im galaxies. Spheroidals are continuous in their structural parameters with the disks of S0 galaxies. They are bulgeless S0s. S+Im -> S0+Sph transformation involves a variety of internal (supernova-driven baryon ejection) and environmental processes (e.g., ram-pressure gas stripping, harassment, and starvation). Improved evidence for galaxy transformation is presented in several papers at this meeting.
The formation of bulges and black holes: lessons from a census of active galaxies in the SDSS.
Kauffmann, Guinevere; Heckman, Timothy M
2005-03-15
We examine the relationship between galaxies, supermassive black holes and AGN using a sample of 23,000 narrow-emission-line ('type 2') active galactic nuclei (AGN) drawn from a sample of 123,000 galaxies from the Sloan Digital Sky Survey. We have studied how AGN host properties compare with those of normal galaxies and how they depend on the luminosity of the active nucleus. We find that AGN reside in massive galaxies and have distributions of sizes and concentrations that are similar to those of the early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high- luminosity AGN have much younger mean stellar ages, and a significant fraction have experienced recent starbursts. High-luminosity AGN are also found in lower-density environments. We then use the stellar velocity dispersions of the AGN hosts to estimate black hole masses and their [OIII]lambda5007 emission-line luminosities to estimate black hole accretion rates. We find that the volume averaged ratio of star formation to black hole accretion is approximately 1000 for the bulge-dominated galaxies in our sample. This is remarkably similar to the observed ratio of stellar mass to black hole mass in nearby bulges. Most of the present-day black hole growth is occurring in black holes with masses less than 3 x 10(7)M(3). Our estimated accretion rates imply that low-mass black holes are growing on a time-scale that is comparable with the age of the Universe. Around 50% this growth takes place in AGN that are radiating within a factor of five of the Eddington luminosity. Such systems are rare, making up only 0.2% of the low-mass black hole population at the present day. The remaining growth occurs in lower luminosity AGN. The growth time-scale increases by more than an order of magnitude for the most massive black holes in our sample. We conclude that the evolution of the AGN luminosity function documented in recent optical and X-ray surveys is driven by a decrease in the characteristic mass scale of actively accreting black holes.
Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.
Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S
2015-03-26
Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).
The Alignment effect of brightest cluster galaxies in the SDSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, R. S. J.; Annis, J.; Strauss, M. A.
2001-10-01
One of the most vital observational clues for unraveling the origin of Brightest Cluster Galaxies (BCG) is the observed alignment of the BCGs with their host cluster and its surroundings. We have examined the BCG-cluster alignment effect, using clusters of galaxies detected from the Sloan Digital Sky Survey (SDSS). We find that the BCGs are preferentially aligned with the principal axis of their hosts, to a much higher redshift (z >~ 0.3) than probed by previous studies (z <~ 0.1). The alignment effect strongly depends on the magnitude difference of the BCG and the second and third brightest cluster members:more » we find a strong alignment effect for the dominant BCGs, while less dominant BCGs do not show any departure from random alignment with respect to the cluster. We therefore claim that the alignment process originates from the same process that makes the BCG grow dominant, be it direct mergers in the early stage of cluster formation, or a later process that resembles the galactic cannibalism scenario. We do not find strong evidence for (or against) redshift evolution between 0« less
NASA Astrophysics Data System (ADS)
Yoon, Yongmin; Im, Myungshin; Jeon, Yiseul; Lee, Seong-Kook; Choi, Philip; Gehrels, Neil; Pak, Soojong; Sakamoto, Takanori; Urata, Yuji
2015-07-01
We study the host galaxy properties of the tidal disruption object Swift J164449.3+573451 using long-term optical to near-infrared (NIR) data. First, we decompose the galaxy surface brightness distribution and analyze the morphology of the host galaxy using high-resolution Hubble Space Telescope WFC3 images. We conclude that the host galaxy is bulge-dominant and well described by a single Sérsic model with Sérsic index n=3.43+/- 0.05. Adding a disk component, the bulge to total host galaxy flux ratio (B/ T) is 0.83 ± 0.03, which still indicates a bulge-dominant galaxy. Second, we estimate multi-band fluxes of the host galaxy through long-term light curves. Our long-term NIR light curves reveal the pure host galaxy fluxes ˜500 days after the burst. We fit spectral energy distribution models to the multi-band fluxes from the optical to NIR of the host galaxy and determine its properties. The stellar mass, the star formation rate, and the age of the stellar population are {log}({M}\\star /{M}⊙ )={9.14}-0.10+0.13, {0.03}-0.03+0.28 {M}⊙ yr-1, and {0.63}-0.43+0.95 Gyr. Finally, we estimate the mass of the central super massive black hole which is responsible for the tidal disruption event. The black hole mass is estimated to be {10}6.7+/- 0.4 {M}⊙ from {M}{BH}-{M}\\star ,{bul} and {M}{BH}-{L}{bul} relations for the K band, although a smaller value of ˜ {10}5 {M}⊙ cannot be excluded convincingly if the host galaxy harbors a pseudobulge.
The line-emitting gas in active galaxies - A probe of the nuclear engine
NASA Technical Reports Server (NTRS)
Veilleux, Sylvain
1993-01-01
This paper reviews some of the basic questions regarding the structure of the engine powering active galactic nuclei (AGN), the nature of the interaction between the AGN and the host galaxy, and the origin and evolution of AGN. The study of the dynamics and physical characteristics of the line-emitting gas in these objects has proven fruitful in addressing many of these issues. Recent advances in optical and infrared detector technology combined with the development of superior ground-based instruments have produced efficient new tools for the study of the line-emitting gas on nuclear and Galactic scales. Programs which take advantage of two of these new techniques, Fabry-Perot imaging spectroscopy and infrared spectroscopy, are described in this paper. The origin of nuclear activity in galaxies is also addressed in a third project which aims at determining the nature of luminous infrared galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, Matthew B.; Bordoloi, Rongmon; Sharon, Keren
We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission tomore » its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.« less
Galactic satellite systems: radial distribution and environment dependence of galaxy morphology
NASA Astrophysics Data System (ADS)
Ann, H. B.; Park, Changbom; Choi, Yun-Young
2008-09-01
We have studied the radial distribution of the early (E/S0) and late (S/Irr) types of satellites around bright host galaxies. We made a volume-limited sample of 4986 satellites brighter than Mr = -18.0 associated with 2254 hosts brighter than Mr = -19.0 from the Sloan Digital Sky Survey Data Release 5 sample. The morphology of satellites is determined by an automated morphology classifier, but the host galaxies are visually classified. We found segregation of satellite morphology as a function of the projected distance from the host galaxy. The amplitude and shape of the early-type satellite fraction profile are found to depend on the host luminosity. This is the morphology-radius/density relation at the galactic scale. There is a strong tendency for morphology conformity between the host galaxy and its satellites. The early-type fraction of satellites hosted by early-type galaxies is systematically larger than that of late-type hosts, and is a strong function of the distance from the host galaxies. Fainter satellites are more vulnerable to the morphology transformation effects of hosts. Dependence of satellite morphology on the large-scale background density was detected. The fraction of early-type satellites increases in high-density regions for both early- and late-type hosts. It is argued that the conformity in morphology of galactic satellite system is mainly originated by the hydrodynamical and radiative effects of hosts on satellites.
Physical Properties of Sub-galactic Clumps at 0.5 ≤ Z ≤ 1.5 in the UVUDF
NASA Astrophysics Data System (ADS)
Soto, Emmaris; de Mello, Duilia F.; Rafelski, Marc; Gardner, Jonathan P.; Teplitz, Harry I.; Koekemoer, Anton M.; Ravindranath, Swara; Grogin, Norman A.; Scarlata, Claudia; Kurczynski, Peter; Gawiser, Eric
2017-03-01
We present an investigation of clumpy galaxies in the Hubble Ultra Deep Field at 0.5≤slant z≤slant 1.5 in the rest-frame far-ultraviolet (FUV) using Hubble Space Telescope Wide Field Camera 3 broadband imaging in F225W, F275W, and F336W. An analysis of 1404 galaxies yields 209 galaxies that host 403 kpc scale clumps. These host galaxies appear to be typical star-forming galaxies, with an average of 2 clumps per galaxy and reaching a maximum of 8 clumps. We measure the photometry of the clumps and determine the mass, age, and star formation rates (SFR) using the spectral energy distribution fitting code FAST. We find that clumps make an average contribution of 19% to the total rest-frame FUV flux of their host galaxy. Individually, clumps contribute a median of 5% to the host galaxy SFR and an average of ˜4% to the host galaxy mass, with total clump contributions to the host galaxy stellar mass ranging widely from lower than 1% up to 93%. Clumps in the outskirts of galaxies are typically younger, with higher SFRs, than clumps in the inner regions. The results are consistent with clump migration theories in which clumps form through violent gravitational instabilities in gas-rich turbulent disks, eventually migrate toward the center of the galaxies, and coalesce into the bulge.
THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinis, S.; Gezari, S.; Kumar, S.
2016-07-20
We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massivemore » hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.« less
Galaxy and Mass Assembly (GAMA): the red fraction and radial distribution of satellite galaxies
NASA Astrophysics Data System (ADS)
Prescott, Matthew; Baldry, I. K.; James, P. A.; Bamford, S. P.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Driver, S. P.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Hopkins, A. M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Liske, J.; Loveday, J.; Nichol, R. C.; Norberg, P.; Parkinson, H. R.; Peacock, J. A.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.
2011-10-01
We investigate the properties of satellite galaxies that surround isolated hosts within the redshift range 0.01 < z < 0.15, using data taken as part of the Galaxy And Mass Assembly survey. Making use of isolation and satellite criteria that take into account stellar mass estimates, we find 3514 isolated galaxies of which 1426 host a total of 2998 satellites. Separating the red and blue populations of satellites and hosts, using colour-mass diagrams, we investigate the radial distribution of satellite galaxies and determine how the red fraction of satellites varies as a function of satellite mass, host mass and the projected distance from their host. Comparing the red fraction of satellites to a control sample of small neighbours at greater projected radii, we show that the increase in red fraction is primarily a function of host mass. The satellite red fraction is about 0.2 higher than the control sample for hosts with ?, while the red fractions show no difference for hosts with ?. For the satellites of more massive hosts, the red fraction also increases as a function of decreasing projected distance. Our results suggest that the likely main mechanism for the quenching of star formation in satellites hosted by isolated galaxies is strangulation.
The Duration of Starbursts in Eighteen Nearby Dwarf Starburst Galaxies
NASA Astrophysics Data System (ADS)
McQuinn, Kristen B.; Skillman, E. D.; Cannon, J. M.; Dalcanton, J.; Dolphin, A.; Hidalgo-Rodriguez, S.; Holtzman, J.; Stark, D.
2009-05-01
The duration of a starburst is a fundamental parameter affecting the evolution of galaxies yet, to date, observational constraints on the durations of starbursts are not well established. We present the recent star formation histories (SFHs) of 18 nearby dwarf galaxies and rigorously quantify the duration of their starburst events using a uniform and consistent approach. We find that the bursts last on the order of a few 100 Myr resolving the tension between the shorter timescales often derived observationally with the longer timescales derived from dynamical arguments. If this sample of starburst galaxies is representative of bursts in dwarf galaxies, then the short timescales (3 - 10 Myr) associated with starbursts in previous studies are best understood as ``flickering'' events which are simply small components of the larger starburst. Additionally, we study the spatial distribution of the star formation in three systems in more detail. In all three cases, the enhanced star formation moves around the galaxy during the bursts and covers a large fraction of the area of the galaxy. These massive, long duration starbursts appear to be a global phenomenon that can have evolutionary scale impacts on the host galaxies and their surrounding intergalactic medium (IGM).
A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies
NASA Astrophysics Data System (ADS)
Lawther, D.; Vestergaard, M.; Fan, X.
2018-04-01
We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.
NASA Astrophysics Data System (ADS)
Hartley, W. G.; Conselice, C. J.; Mortlock, A.; Foucaud, S.; Simpson, C.
2015-08-01
We explore the redshift evolution of a curious correlation between the star formation properties of central galaxies and their satellites (`galactic conformity') at intermediate to high redshift (0.4 < z < 1.9). Using an extremely deep near-infrared survey, we study the distribution and properties of satellite galaxies with stellar masses, log(M*/M⊙) > 9.7, around central galaxies at the characteristic Schechter function mass, M ˜ M*. We fit the radial profiles of satellite number densities with simple power laws, finding slopes in the range -1.1 to -1.4 for mass-selected satellites, and -1.3 to -1.6 for passive satellites. We confirm the tendency for passive satellites to be preferentially located around passive central galaxies at 3σ significance and show that it exists to at least z ˜ 2. Meanwhile, the quenched fraction of satellites around star-forming galaxies is consistent with field galaxies of equal stellar masses. We find no convincing evidence for a redshift-dependent evolution of these trends. One simple interpretation of these results is that only passive central galaxies occupy an environment that is capable of independently shutting off star formation in satellite galaxies. By examining the satellites of higher stellar mass star-forming galaxies (log(M*/M⊙) > 11), we conclude that the origin of galactic conformity is unlikely to be exclusively due to the host dark matter halo mass. A halo-mass-independent correlation could be established by either formation bias or a more physical connection between central and satellite star formation histories. For the latter, we argue that a star formation (or active galactic nucleus) related outburst event from the central galaxy could establish a hot halo environment which is then capable of quenching both central and satellite galaxies.
NASA Astrophysics Data System (ADS)
Yang, G.; Brandt, W. N.; Vito, F.; Chen, C.-T. J.; Trump, J. R.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Koekemoer, A. M.; Schneider, D. P.; Vignali, C.; Wang, J.-X.
2018-04-01
Previous studies suggest that the growth of supermassive black holes (SMBHs) may be fundamentally related to host-galaxy stellar mass (M⋆). To investigate this SMBH growth-M⋆ relation in detail, we calculate long-term SMBH accretion rate as a function of M⋆ and redshift [\\overlineBHAR(M_{\\star }, z)] over ranges of log (M⋆/M⊙) = 9.5-12 and z = 0.4-4. Our \\overlineBHAR(M_{\\star }, z) is constrained by high-quality survey data (GOODS-South, GOODS-North and COSMOS), and by the stellar mass function and the X-ray luminosity function. At a given M⋆, \\overlineBHAR is higher at high redshift. This redshift dependence is stronger in more massive systems [for log (M⋆/M⊙) ≈ 11.5, \\overlineBHAR is three decades higher at z = 4 than at z = 0.5], possibly due to AGN feedback. Our results indicate that the ratio between \\overlineBHAR and average star formation rate (\\overlineSFR) rises towards high M⋆ at a given redshift. This \\overlineBHAR/\\overlineSFR dependence on M⋆ does not support the scenario that SMBH and galaxy growth are in lockstep. We calculate SMBH mass history [MBH(z)] based on our \\overlineBHAR(M_{\\star }, z) and the M⋆(z) from the literature, and find that the MBH-M⋆ relation has weak redshift evolution since z ≈ 2. The MBH/M⋆ ratio is higher towards massive galaxies: it rises from ≈1/5000 at log M⋆ ≲ 10.5 to ≈1/500 at log M⋆ ≳ 11.2. Our predicted MBH/M⋆ ratio at high M⋆ is similar to that observed in local giant ellipticals, suggesting that SMBH growth from mergers is unlikely to dominate over growth from accretion.
The importance of satellite quenching for the build-up of the red sequence of present-day galaxies
NASA Astrophysics Data System (ADS)
van den Bosch, Frank C.; Aquino, Daniel; Yang, Xiaohu; Mo, H. J.; Pasquali, Anna; McIntosh, Daniel H.; Weinmann, Simone M.; Kang, Xi
2008-06-01
According to the current paradigm, galaxies initially form as disc galaxies at the centres of their own dark matter haloes. During their subsequent evolution, they may undergo a transformation to a red, early-type galaxy, thus giving rise to the build-up of the red sequence. Two important, outstanding questions are (i) which transformation mechanisms are most important and (ii) in what environment do they occur. In this paper, we study the impact of transformation mechanisms that operate only on satellite galaxies, such as strangulation, ram-pressure stripping and galaxy harassment. Using a large galaxy group catalogue constructed from the Sloan Digital Sky Survey, we compare the colours and concentrations of satellites galaxies to those of central galaxies of the same stellar mass, adopting the hypothesis that the latter are the progenitors of the former. On average, satellite galaxies are redder and more concentrated than central galaxies of the same stellar mass, indicating that satellite-specific transformation processes do indeed operate. Central-satellite pairs that are matched in both stellar mass and colour, however, show no average concentration difference, indicating that the transformation mechanisms operating on satellites affect colour more than morphology. We also find that the colour and concentration differences of matched central-satellite pairs are completely independent of the mass of the host halo (not to be confused with the subhalo) of the satellite galaxy, indicating that satellite-specific transformation mechanisms are equally efficient in host haloes of all masses. This strongly rules against mechanisms that are thought to operate only in very massive haloes, such as ram-pressure stripping or harassment. Instead, we argue that strangulation is the main transformation mechanism for satellite galaxies. Finally, we determine the relative importance of satellite quenching for the build-up of the red sequence. We find that roughly 70 per cent of red-sequence satellite galaxies with M* ~ 109h-2Msolar had their star formation quenched as satellites. This drops rapidly with increasing stellar mass, reaching virtually zero at M* ~ 1011h-2Msolar. Therefore, a very significant fraction of red satellite galaxies were already quenched before they became a satellite.
The Luminosity Function of QSO Host Galaxies
NASA Technical Reports Server (NTRS)
Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao
2016-04-20
Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties frommore » the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taehyun; Sheth, Kartik; Munoz-Mateos, Juan-Carlos
2012-07-01
Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T {<=} 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes {approx}3%-10% to the total 3.6 {mu}m luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigatemore » the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.« less
Near-infrared imaging of CfA Seyfert galaxies
NASA Astrophysics Data System (ADS)
McLeod, K. K.; Rieke, G. H.
1995-03-01
We present near-IR images of 43 Seyfert galaxies from the CfA Seyfert sample. The near-IR luminosity is a good tracer of luminous mass in these galaxies. Most of the Seyfert nuclei are found in hosts of mass similar to that of L* galaxies and ranging in type from S0 to Sc. In addition, there is a population of low-mass host galaxies with very low luminosity Seyfert nuclei. We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large-scale distribution of luminous mass in the galaxy. The Seyfert hosts are compared with a sample of 50 low-redshift quasar host galaxies we have also imaged. The radio-quiet quasars and the Seyfert nuclei lie in similar kinds of galaxies spanning the same range of mass centered around L*. However, for the most luminous quasars, there is a correlation between the minimum host-galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L* galaxy. The low-luminosity quasars and the Seyfert nuclei both tend to lie in host galaxies seen preferentially face-on, which suggests that there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius ratio approximately 1) and must cover a significant fraction of the narrow-line region (r greater than 100 pc).
THE BRIGHTEST CLUSTER GALAXY IN A85: THE LARGEST CORE KNOWN SO FAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Cruz, O.; Añorve, C.; Ibarra-Medel, H. J.
2014-11-10
We have found that the brightest cluster galaxy (BCG) in A85, Holm 15A, displays the largest core known so far. Its cusp radius, r {sub γ} = 4.57 ± 0.06 kpc (4.''26 ± 0.''06), is more than 18 times larger than the mean for BCGs and ≳ 1 kpc larger than A2261-BCG, hitherto the largest-cored BCG. Holm 15A hosts the luminous amorphous radio source 0039-095B and has the optical signature of a LINER. Scaling laws indicate that this core could host a supermassive black hole (SMBH) of mass M {sub •} ∼ (10{sup 9}-10{sup 11}) M {sub ☉}. We suggestmore » that cores this large represent a relatively short phase in the evolution of BCGs, whereas the masses of their associated SBMH might be set by initial conditions.« less
OUTFLOW AND METALLICITY IN THE BROAD-LINE REGION OF LOW-REDSHIFT ACTIVE GALACTIC NUCLEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jaejin; Woo, Jong-Hak; Nagao, Tohru
2017-01-20
Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE , we investigate outflows in the broad-line region (BLR) in low-redshift AGNs ( z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which ismore » consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.« less
Cosmic Chandlery with thermonuclear supernovae
Calder, Alan C.; Krueger, Brendan K.; Jackson, A. P.; ...
2017-05-30
Thermonuclear (Type Ia) supernovae are bright stellar explosions, the light curves of which can be calibrated to allow for use as "standard candles" for measuring cosmological distances. Contemporary research investigates how the brightness of an event may be influenced by properties of the progenitor system that follow from properties of the host galaxy such as composition and age. The goals are to better understand systematic effects and to assess the intrinsic scatter in the brightness, thereby reducing uncertainties in cosmological studies. We present the results from ensembles of simulations in the single-degenerate paradigm addressing the influence of age and metallicitymore » on the brightness of an event and compare our results to observed variations of brightness that correlate with properties of the host galaxy. As a result, we also present results from "hybrid" progenitor models that incorporate recent advances in stellar evolution.« less
NASA Technical Reports Server (NTRS)
Gralla, Megan B.; Crichton, Devin; Marriage, Tobias; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard;
2014-01-01
We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich effect associated with the halos that host them. We stack data at 148, 218 and 277 GHz from the Atacama Cosmology Telescope at the positions of a large sample of radio AGN selected at 1.4 GHz. The thermal Sunyaev-Zel'dovich (SZ) effect associated with the halos that host the AGN is detected at the 5 sigma level through its spectral signature, representing a statistical detection of the SZ effect in some of the lowest mass halos (average M(sub 200) approximately equals 10(sup 13) solar mass h(sub 70)(exp -1) ) studied to date. The relation between the SZ effect and mass (based on weak lensing measurements of radio galaxies) is consistent with that measured by Planck for local bright galaxies. In the context of galaxy evolution models, this study confirms that galaxies with radio AGN also typically support hot gaseous halos. Adding Herschel observations allows us to show that the SZ signal is not significantly contaminated by dust emission. Finally, we analyze the contribution of radio sources to the angular power spectrum of the cosmic microwave background.
NASA Astrophysics Data System (ADS)
Berger, Edo; Cenko, Stephen; Schmidt, Brian; Perley, Daniel; Berger, Edo; Fox, Derek; Fruchter, Andrew; Bloom, Joshua; Prochaska, Jason X.; Lopez, Sebastian; Cobb, Bethany; Roth, Kathy; Levan, Andrew; Tanvir, Nial; Rapoport, Sharon; Yuan, Fang; Chornock, Ryan; Wen-Fai, Fong; Morgan, Adam; Wiersema, Klaas; Cucchiara, Antonino
2013-08-01
The study of gamma-ray burst (GRB) afterglows, host galaxies, and associated supernovae (SNe) sheds light on a wide range of open questions in astrophysics, ranging from the deaths of massive stars to cosmic chemical enrichment and the reionization epoch, and soon, the electromagnetic (EM) counterparts of gravitational wave (GW) sources. Over the past decade, Gemini has played a leading role in all aspects of GRB science through its combination of rapid-response spectroscopy and imaging coupled with deep late-time host galaxy, afterglow, and GRB-SN follow-up. Here, we propose to step forward in our long-standing program of ToO observations, with this proposal focusing on "Rapid ToO" science, observations at t <˜ 1 day. In conjunction with an array of multi-wavelength EM facilities, we focus on three key science topics: (1) Identification, characterization, and exploitation of high-redshift GRBs in order to study the evolving IGM and galaxy populations at these redshifts; (2) Studies of short GRB afterglows and their environments to yield insight into the nature of their progenitor population, for connection with forthcoming GW facilities; and (3) Observation of exceptionally energetic bursts detected by the Fermi-LAT instrument, to test models of burst engines and enable their use as testbeds for quantum gravity effects.
NASA Astrophysics Data System (ADS)
Berger, Edo; Fox, Derek; Chornock, Ryan; Fong, Wen-Fai; Cobb, Bethany; Cenko, Brad; Perley, Daniel; Bloom, Joshua; Prochaska, Jason X.; Morgan, Adam; Cucchiara, Antonino; Levan, Andrew; Tanvir, Nial; Fruchter, Andrew; Lopez, Sebastian; Wiersema, Klaas; Roth, Kathy
2014-02-01
The study of gamma-ray burst (GRB) afterglows, host galaxies, and associated supernovae (SNe) sheds light on a wide range of open questions in astrophysics, ranging from the deaths of massive stars to cosmic chemical enrichment and the reionization epoch, and soon, the electromagnetic (EM) counterparts of gravitational wave (GW) sources. Over the past decade, Gemini has played a leading role in all aspects of GRB science through its combination of rapid-response spectroscopy and imaging coupled with deep late-time host galaxy, afterglow, and GRB-SN follow-up. Here, we propose to step forward in our long-standing program of ToO observations, with this proposal focusing on "Rapid ToO" science, observations at t <˜ 1 day. In conjunction with an array of multi-wavelength EM facilities, we focus on three key science topics: (1) Identification, characterization, and exploitation of high-redshift GRBs in order to study the evolving IGM and galaxy populations at these redshifts; (2) Studies of short GRB afterglows and their environments to yield insight into the nature of their progenitor population, for connection with forthcoming GW facilities; and (3) Observation of exceptionally energetic bursts detected by the Fermi-LAT instrument, to test models of burst engines and enable their use as testbeds for quantum gravity effects.
Chandra Observation of the WAT Radio Source/ICM Interaction in Abell 623
NASA Astrophysics Data System (ADS)
Anand, Gagandeep; Blanton, Elizabeth L.; Randall, Scott W.; Paterno-Mahler, Rachel; Douglass, Edmund
2017-01-01
Galaxy clusters are important objects for studying the physics of the intracluster medium (ICM), galaxy formation and evolution, and cosmological parameters. Clusters containing wide-angle tail (WAT) radio sources are particularly valuable for studies of the interaction between these sources and the surrounding ICM. These sources are thought to form when the ram pressure from the ICM caused by the relative motion between the host radio galaxy and the cluster bends the radio lobes into a distinct wide-angle morphology. We present our results from the analysis of a Chandra observation of the nearby WAT hosting galaxy cluster Abell 623. A clear decrement in X-ray emission is coincident with the southern radio lobe, consistent with being a cavity carved out by the radio source. We present profiles of surface brightness, temperature, density, and pressure and find evidence for a possible shock. Based on the X-ray pressure in the vicinity of the radio lobes and assumptions about the content of the lobes, we estimate the relative ICM velocity required to bend the lobes into the observed angle. We also present spectral model fits to the overall diffuse cluster emission and see no strong signature for a cool core. The sum of the evidence indicates that Abell 623 may be undergoing a large scale cluster-cluster merger.
NASA Astrophysics Data System (ADS)
Izumi, Takuma; Onoue, Masafusa; Shirakata, Hikari; Nagao, Tohru; Kohno, Kotaro; Matsuoka, Yoshiki; Imanishi, Masatoshi; Strauss, Michael A.; Kashikawa, Nobunari; Schulze, Andreas; Silverman, John D.; Fujimoto, Seiji; Harikane, Yuichi; Toba, Yoshiki; Umehata, Hideki; Nakanishi, Kouichiro; Greene, Jenny E.; Tamura, Yoichi; Taniguchi, Akio; Yamaguchi, Yuki; Goto, Tomotsugu; Hashimoto, Yasuhiro; Ikarashi, Soh; Iono, Daisuke; Iwasawa, Kazushi; Lee, Chien-Hsiu; Makiya, Ryu; Minezaki, Takeo; Tang, Ji-Jia
2018-04-01
We present our ALMA Cycle 4 measurements of the [C II] emission line and the underlying far-infrared (FIR) continuum emission from four optically low-luminosity (M1450 > -25) quasars at z ≳ 6 discovered by the Subaru Hyper Suprime Cam (HSC) survey. The [C II] line and FIR continuum luminosities lie in the ranges L_[C II] = (3.8-10.2)× 108 L_{⊙} and LFIR = (1.2-2.0) × 1011 L_{⊙}, which are at least one order of magnitude smaller than those of optically-luminous quasars at z ≳ 6. We estimate the star formation rates (SFRs) of our targets as ≃ 23-40 M_{⊙} yr-1. Their line and continuum-emitting regions are marginally resolved, and found to be comparable in size to those of optically-luminous quasars, indicating that their SFR or likely gas mass surface densities (key controlling parameter of mass accretion) are accordingly different. The L_[C II]/L_FIR ratios of the hosts, ≃ (2.2-8.7) × 10-3, are fully consistent with local star-forming galaxies. Using the [C II] dynamics, we derived their dynamical masses within a radius of 1.5-2.5 kpc as ≃ (1.4-8.2) × 1010 M_{⊙}. By interpreting these masses as stellar ones, we suggest that these faint quasar hosts are on or even below the star-forming main sequence at z ˜ 6, i.e., they appear to be transforming into quiescent galaxies. This is in contrast to the optically-luminous quasars at those redshifts, which show starburst-like properties. Finally, we find that the ratios of black hole mass to host galaxy dynamical mass of most of the low-luminosity quasars, including the HSC ones, are consistent with the local value. The mass ratios of the HSC quasars can be reproduced by a semi-analytical model that assumes merger-induced black hole host galaxy evolution.
NASA Astrophysics Data System (ADS)
Izumi, Takuma; Onoue, Masafusa; Shirakata, Hikari; Nagao, Tohru; Kohno, Kotaro; Matsuoka, Yoshiki; Imanishi, Masatoshi; Strauss, Michael A.; Kashikawa, Nobunari; Schulze, Andreas; Silverman, John D.; Fujimoto, Seiji; Harikane, Yuichi; Toba, Yoshiki; Umehata, Hideki; Nakanishi, Kouichiro; Greene, Jenny E.; Tamura, Yoichi; Taniguchi, Akio; Yamaguchi, Yuki; Goto, Tomotsugu; Hashimoto, Yasuhiro; Ikarashi, Soh; Iono, Daisuke; Iwasawa, Kazushi; Lee, Chien-Hsiu; Makiya, Ryu; Minezaki, Takeo; Tang, Ji-Jia
2018-06-01
We present our ALMA Cycle 4 measurements of the [C II] emission line and the underlying far-infrared (FIR) continuum emission from four optically low-luminosity (M1450 > -25) quasars at z ≳ 6 discovered by the Subaru Hyper Suprime Cam (HSC) survey. The [C II] line and FIR continuum luminosities lie in the ranges L_[C II] = (3.8-10.2)× 108 L_{⊙} and LFIR = (1.2-2.0) × 1011 L_{⊙}, which are at least one order of magnitude smaller than those of optically-luminous quasars at z ≳ 6. We estimate the star formation rates (SFRs) of our targets as ≃ 23-40 M_{⊙} yr-1. Their line and continuum-emitting regions are marginally resolved, and found to be comparable in size to those of optically-luminous quasars, indicating that their SFR or likely gas mass surface densities (key controlling parameter of mass accretion) are accordingly different. The L_[C II}]}/L_FIR ratios of the hosts, ≃ (2.2-8.7) × 10-3, are fully consistent with local star-forming galaxies. Using the [C II] dynamics, we derived their dynamical masses within a radius of 1.5-2.5 kpc as ≃ (1.4-8.2) × 1010 M_{⊙}. By interpreting these masses as stellar ones, we suggest that these faint quasar hosts are on or even below the star-forming main sequence at z ˜ 6, i.e., they appear to be transforming into quiescent galaxies. This is in contrast to the optically-luminous quasars at those redshifts, which show starburst-like properties. Finally, we find that the ratios of black hole mass to host galaxy dynamical mass of most of the low-luminosity quasars, including the HSC ones, are consistent with the local value. The mass ratios of the HSC quasars can be reproduced by a semi-analytical model that assumes merger-induced black hole host galaxy evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortese, Luca; Catinella, Barbara; Janowiecki, Steven, E-mail: luca.cortese@uwa.edu.au
Cold hydrogen gas is the raw fuel for star formation in galaxies, and its partition into atomic and molecular phases is a key quantity for galaxy evolution. In this Letter, we combine Atacama Large Millimeter/submillimeter Array and Arecibo single-dish observations to estimate the molecular-to-atomic hydrogen mass ratio for massive star-forming galaxies at z ∼ 0.2 extracted from the HIGHz survey, i.e., some of the most massive gas-rich systems currently known. We show that the balance between atomic and molecular hydrogen in these galaxies is similar to that of local main-sequence disks, implying that atomic hydrogen has been dominating the coldmore » gas mass budget of star-forming galaxies for at least the past three billion years. In addition, despite harboring gas reservoirs that are more typical of objects at the cosmic noon, HIGHz galaxies host regular rotating disks with low gas velocity dispersions suggesting that high total gas fractions do not necessarily drive high turbulence in the interstellar medium.« less
Narrow-Line Seyfert 1 Galaxies and their place in the Universe
NASA Astrophysics Data System (ADS)
Foschini, L.; Colpi, M.; Gallo, L.; Grupe, D.; Komossa, S.; Leighly, K.; Mathur, S.
In 1978, Davidson and Kinman wrote about Markarian 359: "This unusual object merits further observations...". In 1985, Osterbrock and Pogge defined a new class of active galactic nuclei (AGN), named Narrow-Line Seyfert 1 (NLS1). Twenty-five years later, NLS1s still continue to intrigue and bewilder. NLS1s manifest extreme behaviour at all wavelengths. They exhibit the most extreme X-ray variability seen in radio-quiet AGN, the most intense optical FeII emission, and high rates of star formation. In general, their characteristics are consistent of AGNs with relatively low mass black holes accreting close to the Eddington rate. The 2009 Fermi Gamma-ray Space Telescope discovery of high-energy (E>100 MeV) gamma rays in a handful of NLS1s has established the existence of relativistic jets in these systems -- a fact previously hinted at by the flat radio spectrum and high brightness temperature seen in some objects. Since NLS1 are generally hosted by spirals, this poses some intriguing questions on the galaxy evolution and on how relativistic jets are generated. It is therefore time for the broad community to come together and discuss what we have discovered in the last quarter century and lay the foundation for future work. Workshop Topics: * Central engine: BH mass, accretion disk, BLR/NLR, jet * Host galaxy: morphology, star formation, merging history * NLS1 in the Universe: comparison with other types of AGN, surveys/statistics, formation/merging, cosmological evolution
Star formation inside a galactic outflow.
Maiolino, R; Russell, H R; Fabian, A C; Carniani, S; Gallagher, R; Cazzoli, S; Arribas, S; Belfiore, F; Bellocchi, E; Colina, L; Cresci, G; Ishibashi, W; Marconi, A; Mannucci, F; Oliva, E; Sturm, E
2017-04-13
Recent observations have revealed massive galactic molecular outflows that may have the physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.
First neutral atomic hydrogen images of quasar host galaxies.
NASA Astrophysics Data System (ADS)
Lim, J.; Ho, P. T. P.
1999-12-01
Violent galactic encounters or mergers are the leading contenders for triggering luminous quasar activity at low redshifts: such interactions can lead to the concentration of gas in the host galactic nucleus, thus fueling the suspected central supermassive black hole. Here the authors image quasar host galaxies in the redshifted 21-cm line emission of neutral atomic hydrogen (H I) gas, which in nearby galaxies has proven to be a particularly sensitive as well as enduring tracer of tidal interactions. The three quasars studied have different optical environments normally seen around low-redshift quasars, ranging from a perhaps mildly interacting system to a relatively undisturbed host with a projected neighbouring galaxy to an isolated and apparently serene host galaxy. By contrast with their optical appearences, all three quasar host galaxies exhibit ongoing or remnant tidal H I disruptions tracing galactic encounters or mergers. These observations provide a better understanding of the likely stage of their interaction.
Black Hole and Galaxy Coevolution from Continuity Equation and Abundance Matching
NASA Astrophysics Data System (ADS)
Aversa, R.; Lapi, A.; de Zotti, G.; Shankar, F.; Danese, L.
2015-09-01
We investigate the coevolution of galaxies and hosted supermassive black holes (BHs) throughout the history of the universe by a statistical approach based on the continuity equation and the abundance matching technique. Specifically, we present analytical solutions of the continuity equation without source terms to reconstruct the supermassive BH mass function from the active galactic nucleus (AGN) luminosity functions. Such an approach includes physically motivated AGN light curves tested on independent data sets, which describe the evolution of the Eddington ratio and radiative efficiency from slim- to thin-disk conditions. We nicely reproduce the local estimates of the BH mass function, the AGN duty cycle as a function of mass and redshift, along with the Eddington ratio function and the fraction of galaxies with given stellar mass hosting an AGN with given Eddington ratio. We exploit the same approach to reconstruct the observed stellar mass function at different redshift from the ultraviolet and far-IR luminosity functions associated with star formation in galaxies. These results imply that the build-up of stars and BHs in galaxies occurs via in situ processes, with dry mergers playing a marginal role at least for stellar masses ≲ 3× {10}11 {M}⊙ and BH masses ≲ {10}9 {M}⊙ , where the statistical data are more secure and less biased by systematic errors. In addition, we develop an improved abundance matching technique to link the stellar and BH content of galaxies to the gravitationally dominant dark matter (DM) component. The resulting relationships constitute a testbed for galaxy evolution models, highlighting the complementary role of stellar and AGN feedback in the star formation process. In addition, they may be operationally implemented in numerical simulations to populate DM halos or to gauge subgrid physics. Moreover, they may be exploited to investigate the galaxy/AGN clustering as a function of redshift, mass, and/or luminosity. In fact, the clustering properties of BHs and galaxies are found to be in full agreement with current observations, thus further validating our results from the continuity equation. Finally, our analysis highlights that (i) the fraction of AGNs observed in the slim-disk regime, where most of the BH mass is accreted, increases with redshift; and (ii) already at z≳ 6 a substantial amount of dust must have formed over timescales ≲ {10}8 yr in strongly star-forming galaxies, making these sources well within the reach of ALMA surveys in (sub)millimeter bands.
Resolved Host Studies of Stellar Explosions
NASA Astrophysics Data System (ADS)
Levesque, Emily M.
The host galaxies of nearby (z<0.3) core-collapse supernovae and long-duration gamma-ray bursts offer an excellent means of probing the environments and populations that produce these events' varied massive progenitors. These same young stellar progenitors make LGRBs and SNe valuable and potentially powerful tracers of star formation, metallicity, the IMF, and the end phases of stellar evolution. However, properly utilizing these progenitors as tools requires a thorough understanding of their formation and, consequently, the physical properties of their parent host environments. In this talk I will review some of the recent work on LGRB and SN hosts with resolved environments that allows us to probe the precise explosion sites and surrounding environments of these events in incredible detail.
NASA Astrophysics Data System (ADS)
Falcón-Barroso, Jesús; Knapen, Johan H.
2013-10-01
Preface; 1. Secular evolution in disk galaxies John Kormendy; 2. Galaxy morphology Ronald J. Buta; 3. Dynamics of secular evolution James Binney; 4. Bars and secular evolution in disk galaxies: theoretical input E. Athanassoula; 5. Stellar populations Reynier F. Peletier; 6. Star formation rate indicators Daniela Calzetti; 7. The evolving interstellar medium Jacqueline van Gorkom; 8. Evolution of star formation and gas Nick Z. Scoville; 9. Cosmological evolution of galaxies Isaac Shlosman.
NASA Astrophysics Data System (ADS)
Ching, John H. Y.; Sadler, Elaine M.; Croom, Scott M.; Johnston, Helen M.; Pracy, Michael B.; Couch, Warrick J.; Hopkins, A. M.; Jurek, Russell J.; Pimbblet, K. A.
2017-01-01
We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ˜ 0.8. The catalogue covers ˜800 deg2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of Imod < 20.5 in Sloan Digital Sky Survey (SDSS) images. Both galaxies and point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radio-loud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc.
The accelerated build-up of the red sequence in high-redshift galaxy clusters
NASA Astrophysics Data System (ADS)
Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R. P.
2016-04-01
We analyse the evolution of the red sequence in a sample of galaxy clusters at redshifts 0.8 < z < 1.5 taken from the HAWK-I Cluster Survey (HCS). The comparison with the low-redshift (0.04 < z < 0.08) sample of the WIde-field Nearby Galaxy-cluster Survey (WINGS) and other literature results shows that the slope and intrinsic scatter of the cluster red sequence have undergone little evolution since z = 1.5. We find that the luminous-to-faint ratio and the slope of the faint end of the luminosity distribution of the HCS red sequence are consistent with those measured in WINGS, implying that there is no deficit of red galaxies at magnitudes fainter than M_V^{ast } at high redshifts. We find that the most massive HCS clusters host a population of bright red sequence galaxies at MV < -22.0 mag, which are not observed in low-mass clusters. Interestingly, we also note the presence of a population of very bright (MV < -23.0 mag) and massive (log (M*/M⊙) > 11.5) red sequence galaxies in the WINGS clusters, which do not include only the brightest cluster galaxies and which are not present in the HCS clusters, suggesting that they formed at epochs later than z = 0.8. The comparison with the luminosity distribution of a sample of passive red sequence galaxies drawn from the COSMOS/UltraVISTA field in the photometric redshift range 0.8 < zphot < 1.5 shows that the red sequence in clusters is more developed at the faint end, suggesting that halo mass plays an important role in setting the time-scales for the build-up of the red sequence.
Why are classical bulges more common in S0 galaxies than in spiral galaxies?
NASA Astrophysics Data System (ADS)
Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu
2018-05-01
In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudobulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudobulge hosting spirals. By studying the star formation properties of our galaxies in the NUV - r color-mass diagram, we find that the pseudobulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.
Why are classical bulges more common in S0 galaxies than in spiral galaxies?
NASA Astrophysics Data System (ADS)
Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu
2018-07-01
In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudo-bulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudo-bulge hosting spirals. By studying the star formation properties of our galaxies in the NUV-r colour-mass diagram, we find that the pseudo-bulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.
Dusty Starbursts within a z=3 Large Scale Structure revealed by ALMA
NASA Astrophysics Data System (ADS)
Umehata, Hideki
The role of the large-scale structure is one of the most important theme in studying galaxy formation and evolution. However, it has been still mystery especially at z>2. On the basis of our ALMA 1.1 mm observations in a z ~ 3 protocluster field, it is suggested that submillimeter galaxies (SMGs) preferentially reside in the densest environment at z ~ 3. Furthermore we find a rich cluster of AGN-host SMGs at the core of the protocluster, combining with Chandra X-ray data. Our results indicate the vigorous star-formation and accelerated super massive black hole (SMBH) growth in the node of the cosmic web.
Quasar feedback revealed by giant molecular outflows
NASA Astrophysics Data System (ADS)
Feruglio, C.; Maiolino, R.; Piconcelli, E.; Menci, N.; Aussel, H.; Lamastra, A.; Fiore, F.
2010-07-01
In the standard scenario for galaxy evolution young star-forming galaxies transform into red bulge-dominated spheroids, where star formation has been quenched. To explain this transformation, a strong negative feedback generated by accretion onto a central super-massive black hole is often invoked. The depletion of gas resulting from quasar-driven outflows should eventually stop star-formation across the host galaxy and lead the black hole to “suicide” by starvation. Direct observational evidence for a major quasar feedback onto the host galaxy is still missing, because outflows previously observed in quasars are generally associated with the ionized component of the gas, which only accounts for a minor fraction of the total gas content, and typically occurrs in the central regions. We used the IRAM PdB Interferometer to observe the CO(1-0) transition in Mrk 231, the closest quasar known. Thanks to the wide band we detected broad wings of the CO line, with velocities of up to 750 km s-1 and spatially resolved on the kpc scale. These broad CO wings trace a giant molecular outflow of about 700 M_⊙/year, far larger than the ongoing star-formation rate (~200 M_⊙/year) observed in the host galaxy. This wind will totally expel the cold gas reservoir in Mrk 231 in about 107 yrs, therefore halting the star-formation activity on the same timescale. The inferred kinetic energy in the molecular outflow is ~1.2 × 1044 erg/s, corresponding to a few percent of the AGN bolometric luminosity, which is very close to the fraction expected by models ascribing quasar feedback to highly supersonic shocks generated by radiatively accelerated nuclear winds. Instead, the contribution by the SNe associated with the starburst fall short by several orders of magnitude to account for the kinetic energy observed in the outflow. The direct observational evidence for quasar feedback reported here provides solid support to the scenarios ascribing the observed properties of local massive galaxies to quasar-induced large-scale winds.
NASA Astrophysics Data System (ADS)
Shimizu, T. Taro; Mushotzky, Richard F.; Meléndez, Marcio; Koss, Michael J.; Barger, Amy J.; Cowie, Lennox L.
2017-04-01
We combine the Herschel Space Observatory PACS (Photoconductor Array Camera and Spectrometer) and SPIRE (Spectral and Photometric Imaging Receiver) photometry with archival WISE (Wide-field Infrared Survey Explorer) photometry to construct the spectral energy distributions (SEDs) for over 300 local (z < 0.05), ultrahard X-ray (14-195 keV) selected active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) 58-month catalogue. Using a simple analytical model that combines an exponentially cutoff power law with a single temperature modified blackbody, we decompose the SEDs into a host galaxy and AGN component. We calculate dust masses, dust temperatures, and star formation rates (SFRs) for our entire sample and compare them to a stellar mass-matched sample of local non-AGN galaxies. We find AGN host galaxies have systematically higher dust masses, dust temperatures, and SFRs due to the higher prevalence of late-type galaxies to host an AGN, in agreement with previous studies of the Swift/BAT AGN. We provide a scaling to convert X-ray luminosities into 8-1000 μm AGN luminosities, as well as determine the best mid-to-far IR colours for identifying AGN-dominated galaxies in the IR regime. We find that for nearly 30 per cent of our sample, the 70 μm emission contains a significant contribution from the AGN (>0.5), especially at higher luminosities (L14 - 195 keV > 1042.5 erg s-1). Finally, we measure the local SFR-AGN luminosity relationship, finding a slope of 0.18, large scatter (0.37 dex), and no evidence for an upturn at high AGN luminosity. We conclude with a discussion on the implications of our results within the context of galaxy evolution with and without AGN feedback.
Violent Tidal Disruptions of Atomic Hydrogen Gas in Quasar Host Galaxies
NASA Astrophysics Data System (ADS)
Lim, Jeremy; Ho, Paul T. P.
1999-01-01
Violent galactic encounters or mergers are the leading contenders for triggering luminous quasar activity at low redshifts: such interactions can lead to the concentration of gas in the host galactic nucleus, thus fueling the suspected central supermassive black hole. Although optical images show a number of violently interacting systems, in many cases, the evidence for such interactions is only circumstantial (e.g., asymmetric optical morphologies, projected nearby companion galaxies) or not at all apparent. Here we image quasar host galaxies for the first time in the redshifted 21 cm line emission of neutral atomic hydrogen (H I) gas, which, in nearby galaxies, has proved to be a particularly sensitive as well as enduring tracer of tidal interactions. The three quasars studied have different optical environments that are normally seen around low-redshift quasars, ranging from a perhaps mildly interacting system to a relatively undisturbed host with a projected neighboring galaxy to an isolated and apparently serene host galaxy. By contrast with their optical appearances, all three quasar host galaxies exhibit ongoing or remnant tidal H I disruptions tracing galactic encounters or mergers. These observations demonstrate the utility of H I at revealing tidal interactions in quasar host galaxies and, combined with optical studies, provide a fuller understanding of the likely stage of the interaction.
An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.
Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L
2011-02-03
Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.
NASA Astrophysics Data System (ADS)
Cao, Liang; Lu, Youjun; Zhao, Yuetong
2018-03-01
Understanding the host galaxy properties of stellar binary black hole (SBBH) mergers is important for revealing the origin of the SBBH gravitational wave sources detected by advanced LIGO and helpful for identifying their electromagnetic counterparts. Here, we present a comprehensive analysis of the host galaxy properties of SBBHs by implementing semi-analytical recipes for SBBH formation and merger into cosmological galaxy formation model. If the time delay between SBBH formation and merger ranges from ≲ Gyr to the Hubble time, SBBH mergers at redshift z ≲ 0.3 occur preferentially in big galaxies with stellar mass M* ≳ 2 × 1010 M⊙ and metallicities Z peaking at ˜0.6 Z⊙. However, the host galaxy stellar mass distribution of heavy SBBH mergers (M•• ≳ 50 M⊙) is bimodal with one peak at ˜109 M⊙ and the other peak at ˜2 × 1010 M⊙. The contribution fraction from host galaxies with Z ≲ 0.2 Z⊙ to heavy mergers is much larger than that to less heavy mergers. If SBBHs were formed in the early Universe (e.g. z > 6), their mergers detected at z ≲ 0.3 occur preferentially in even more massive galaxies with M* > 3 × 1010 M⊙ and in galaxies with metallicities mostly ≳ 0.2 Z⊙ and peaking at Z ˜ 0.6 Z⊙, due to later cosmic assembly and enrichment of their host galaxies. SBBH mergers at z ≲ 0.3 mainly occur in spiral galaxies, but the fraction of SBBH mergers that occur in elliptical galaxies can be significant if those SBBHs were formed in the early Universe; and about two-thirds of those mergers occur in the central galaxies of dark matter haloes. We also present results on the host galaxy properties of SBBH mergers at higher redshift.
The Production of Cold Gas Within Galaxy Outflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scannapieco, Evan
2017-03-01
I present a suite of three-dimensional simulations of the evolution of initially hot material ejected by starburst-driven galaxy outflows. The simulations are conducted in a comoving frame that moves with the material, tracking atomic/ionic cooling, Compton cooling, and dust cooling and destruction. Compton cooling is the most efficient of these processes, while the main role of atomic/ionic cooling is to enhance density inhomogeneities. Dust, on the other hand, has little effect on the outflow evolution, and is rapidly destroyed in all the simulations except for the case with the smallest mass flux. I use the results to construct a simplemore » steady-state model of the observed UV/optical emission from each outflow. The velocity profiles in this case are dominated by geometric effects, and the overall luminosities are extremely strong functions of the properties of the host system, as observed in ultra-luminous infrared galaxies (ULIRGs). Furthermore the luminosities and maximum velocities in several models are consistent with emission-line observations of ULIRGs, although the velocities are significantly greater than observed in absorption-line studies. It may be that absorption line observations of galaxy outflows probe entrained cold material at small radii, while emission-line observations probe cold material condensing from the initially hot medium at larger distances.« less
Insights to Galaxy Evolution Utilizing a Multivariate Comparison of Circumgalactic OVI and MgII
NASA Astrophysics Data System (ADS)
Lewis, James; Churchill, Christopher; Nielsen, Nikole; Kacprzak, Glenn; Muzahid, Sowgat; Charlton, Jane
2018-01-01
We present a promising multivariate method to categorize inter-related astronomical data in meaningful ways. We use data from the MAGIICAT and "Multiphase Galaxy Halos" surveys and limit our sample to those galaxies which are imaged with the Hubble Space Telescope and for which the Circumgalactic Medium (CGM) is measured using high-resolution quasar spectra (HIRES/COS). Utilizing the method to categorize data about the CGM and its host galaxy yields distinct categories of CGM-galaxy pairs that imply a common fate for the outflows of MgII and OVI in redder galaxies. The analysis reveals a lack of circumgalactic OVI in lower mass, bluer (younger) galaxies, and that as the blue galaxies gain mass and age along the green valley strong OVI appears in the CGM predominately along the minor axes. But as the galaxies continue to gain mass and age into the red sequence strong OVI gas is found primarily along the major axes. Furthermore, we find a population of low mass red galaxies in which only weak, uniform, circumgalactic OVI is found. Incorporating our multivariate results for circumgalactic MgII, including evidence for quenching of star formation via weak circumgalactic MgII preferentially found along the minor axes of redder galaxies, and invoking the similarity of OVI column densities and kinematic spreads along the major and minor axes, we infer that OVI is ancient gas in the CGM.
NASA Astrophysics Data System (ADS)
Wylezalek, Dominika; Veilleux, Sylvain; Zakamska, Nadia; Barrera-Ballesteros, J.; Luetzgendorf, N.; Nesvadba, N.; Rupke, D.; Sun, A.
2017-11-01
In the last few years, optical and near-IR IFU observations from the ground have revolutionized extragalactic astronomy. The unprecedented infrared sensitivity, spatial resolution, and spectral coverage of the JWST IFUs will ensure high demand from the community. For a wide range of extragalactic phenomena (e.g. quasars, starbursts, supernovae, gamma ray bursts, tidal disruption events) and beyond (e.g. nebulae, debris disks around bright stars), PSF contamination will be an issue when studying the underlying extended emission. We propose to provide the community with a PSF decomposition and spectral analysis package for high dynamic range JWST IFU observations allowing the user to create science-ready maps of relevant spectral features. Luminous quasars, with their bright central source (quasar) and extended emission (host galaxy), are excellent test cases for this software. Quasars are also of high scientific interest in their own right as they are widely considered to be the main driver in regulating massive galaxy growth. JWST will revolutionize our understanding of black hole-galaxy co-evolution by allowing us to probe the stellar, gas, and dust components of nearby and distant galaxies, spatially and spectrally. We propose to use the IFU capabilities of NIRSpec and MIRI to study the impact of three carefully selected luminous quasars on their hosts. Our program will provide (1) a scientific dataset of broad interest that will serve as a pathfinder for JWST science investigations in IFU mode and (2) a powerful new data analysis tool that will enable frontier science for a wide swath of astrophysical research.
NASA Astrophysics Data System (ADS)
Maragkoudakis, A.; Zezas, A.; Ashby, M. L. N.; Willner, S. P.
2018-04-01
We present activity demographics and host-galaxy properties of infrared-selected galaxies in the local Universe, using the representative Star Formation Reference Survey (SFRS). Our classification scheme is based on a combination of optical emission-line diagrams (BPT) and infrared (IR)-colour diagnostics. Using the weights assigned to the SFRS galaxies based on its parent sample, a far-IR-selected sample comprises 71 per cent H II galaxies, 13 per cent Seyferts, 3 per cent transition objects (TOs), and 13 per cent low-ionization nuclear emission-line regions (LINERs). For the SFRS H II galaxies, we derive nuclear star formation rates and gas-phase metallicities. We measure host-galaxy metallicities for all galaxies with available long-slit spectroscopy and abundance gradients for a subset of 12 face-on galaxies. The majority of H II galaxies show a narrow range of metallicities, close to solar, and flat metallicity profiles. Based on their host-galaxy and nuclear properties, the dominant ionizing source in the far-infrared selected TOs is star-forming activity. LINERs are found mostly in massive hosts (median of 1010.5 M⊙), median L(60 μm) = 109 L⊙, median dust temperatures of F60/F100 = 0.36, and median LH α surface density of 1040.2 erg s-1kpc-2, indicating older stellar populations as their main ionizing source rather than active galactic nucleus activity.
The Diverse Environments of Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Perley, Daniel Alan
I present results from several years of concerted observations of the afterglows and host galaxies of gamma-ray bursts (GRBs), the most energetic explosions in the Universe. Short gamma-ray bursts originate from a wide variety of environments, including disk galaxies, elliptical galaxies, galaxy haloes, and intracluster and intergalactic space. Long gamma ray bursts associate almost exclusively with star-forming hosts, but the properties of these galaxies also vary widely. Some are hosted in extremely small galaxies, difficult to identify directly in emission or infer from the absorption of afterglow light, but the host luminosity distribution extends up to very luminous (> L*) systems as well. A significant fraction of long GRBs are observed along highly dust-obscured sightlines through their host medium. Some of these events are hosted within conspicuously dusty galaxies, although the hosts of other dust-obscured events show no outward signs of significant internal dust content. By measuring the wavelength dependence of dust absorption profiles using a few well-observed GRB afterglows, I provide evidence for ordinary dust with properties similar to those of dust in the Milky Way in a system at z ˜ 3, but a very different absorption profile from the dust in a galaxy at z ˜ 5, providing tentative evidence to support a transition in dust composition early in the history of the Universe. I present an observationally-determined redshift distribution for Swift GRBs, showing few to originate from high redshifts (z ≳ 5). I also provide the first photometric and spectroscopic catalogs from one of the largest GRB host-galaxy surveys ever conducted, including observations of almost 150 distinct GRB fields.
The ULIRG Monster Mash: The Evolution of Massive Mergers Since z~1
NASA Astrophysics Data System (ADS)
Rothberg, Barry; Fischer, Jacqueline; Pirzkal, Nor; Rodrigues, Myriam
2018-01-01
Theoretical models and observations in the local Universe indicate there is a clear progression from merger-induced star-formation (SF) to QSO activity via Ultraluminous Infrared Galaxies (ULIRGs), systems with L8-1000 µm ≥ 1012 LSun. Not all mergers are ULIRGs, but all local ULIRGs are mergers, and likely the progenitors of QSO host galaxies. At earlier epochs, this relationship is less well accepted. Here, we first present an overview of how the dynamical properties of local (z < 0.4) ULIRGs are statistically indistinguishable from Radio Loud and Radio Quiet QSOs. Then, transition to the critical redshift range 0.4 < z < 1.0, where the star-formation rates, gas fractions, and masses of galaxies are believed to be significantly higher than in the local universe. ULIRGs at these redshifts begin to dominate the SF activity and are responsible for up to 70% of the co-moving IR density. We use rest-frame UV & optical imaging and spectra to apply the same techniques used for local ULIRGs to a sample of "classically" selected (i.e via integrated 12, 25, 60 and 100μm fluxes) systems at 0.4 < z < 1.0. Although, in general, galaxies at z > 0.4 are not the same as those in the local Universe, these intermediate redshift ULIRGs are dynamically similar, but more powerful, than their local counterparts. Furthermore, they show evidence of merging, while containing a powerful AGN hosted within a massive galaxy.
Matching Supernovae to Galaxies
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-12-01
One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently developed a new automated algorithm for matching supernovae to their host galaxies. Their work builds on currently existing algorithms and makes use of information about the nearby galaxies, accounts for the uncertainty of the match, and even includes a machine learning component to improve the matching accuracy.Gupta and collaborators test their matching algorithm on catalogs of galaxies and simulated supernova events to quantify how well the algorithm is able to accurately recover the true hosts.Successful MatchingThe matching algorithms accuracy (purity) as a function of the true supernova-host separation, the supernova redshift, the true hosts brightness, and the true hosts size. [Gupta et al. 2016]The authors find that when the basic algorithm is run on catalog data, it matches supernovae to their hosts with 91% accuracy. Including the machine learning component, which is run after the initial matching algorithm, improves the accuracy of the matching to 97%.The encouraging results of this work which was intended as a proof of concept suggest that methods similar to this could prove very practical for tackling future survey data. And the method explored here has use beyond matching just supernovae to their host galaxies: it could also be applied to other extragalactic transients, such as gamma-ray bursts, tidal disruption events, or electromagnetic counterparts to gravitational-wave detections.CitationRavi R. Gupta et al 2016 AJ 152 154. doi:10.3847/0004-6256/152/6/154
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, X.; Liang, Y. C.; Chen, X. Y.
We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) ormore » absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D{sub n}(4000), Hδ{sub A}, stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D{sub n}(4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D{sub n}(4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (∼0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.« less
Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies
NASA Astrophysics Data System (ADS)
Cikota, Aleksandar; De Cia, Annalisa; Schulze, Steve; Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; Perley, Daniel A.; Cikota, Stefan; Kim, Sam; Patat, Ferdinando; Lunnan, Ragnhild; Quimby, Robert; Yaron, Ofer; Yan, Lin; Mazzali, Paolo A.
2017-08-01
Superluminous supernovae (SLSNe) are the most luminous supernovae in the Universe. They are found in extreme star-forming galaxies and are probably connected with the death of massive stars. One hallmark of very massive progenitors would be a tendency to explode in very dense, UV-bright and blue regions. In this paper, we investigate the resolved host galaxy properties of two nearby hydrogen-poor SLSNe, PTF 11hrq and PTF 12dam. For both galaxies Hubble Space Telescope multifilter images were obtained. Additionally, we perform integral field spectroscopy of the host galaxy of PTF 11hrq using the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT/MUSE), and investigate the line strength, metallicity and kinematics. Neither PTF 11hrq nor PTF 12dam occurred in the bluest part of their host galaxies, although both galaxies have overall blue UV-to-optical colours. The MUSE data reveal a bright starbursting region in the host of PTF 11hrq, although far from the SN location. The SN exploded close to a region with disturbed kinematics, bluer colour, stronger [O III] and lower metallicity. The host galaxy is likely interacting with a companion. PTF 12dam occurred in one of the brightest pixels, in a starbursting galaxy with a complex morphology and a tidal tail, where interaction is also very likely. We speculate that SLSN explosions may originate from stars generated during star formation episodes triggered by interaction. High-resolution imaging and integral field spectroscopy are fundamental for a better understanding of SLSNe explosion sites and how star formation varies across their host galaxies.
NASA Astrophysics Data System (ADS)
Klose, S.; Stecklum, B.; Masetti, N.; Pian, E.; Palazzi, E.; Henden, A. A.; Hartmann, D. H.; Fischer, O.; Gorosabel, J.; Sánchez-Fernández, C.; Butler, D.; Ott, Th.; Hippler, S.; Kasper, M.; Weiss, R.; Castro-Tirado, A.; Greiner, J.; Bartolini, C.; Guarnieri, A.; Piccioni, A.; Benetti, S.; Ghinassi, F.; Magazzú, A.; Hurley, K.; Cline, T.; Trombka, J.; McClanahan, T.; Starr, R.; Goldsten, J.; Gold, R.; Mazets, E.; Golenetskii, S.; Noeske, K.; Papaderos, P.; Vreeswijk, P. M.; Tanvir, N.; Oscoz, A.; Muñoz, J. A.; Castro Cerón, J. M.
2000-12-01
We report near-infrared and optical follow-up observations of the afterglow of the GRB 000418 starting 2.5 days after the occurrence of the burst and extending over nearly 7 weeks. GRB 000418 represents the second case for which the afterglow was initially identified by observations in the near-infrared. During the first 10 days its R-band afterglow was well characterized by a single power-law decay with a slope of 0.86. However, at later times the temporal evolution of the afterglow flattens with respect to a simple power-law decay. Attributing this to an underlying host galaxy, we find its magnitude to be R=23.9 and an intrinsic afterglow decay slope of 1.22. The afterglow was very red with R-K~4 mag. The observations can be explained by an adiabatic, spherical fireball solution and a heavy reddening due to dust extinction in the host galaxy. This supports the picture that (long) bursts are associated with events in star-forming regions. Based on observations collected at the Bologna Astronomical Observatory in Loiano, Italy; at the TNG, Canary Islands, Spain; at the German-Spanish Astronomical Centre, Calar Alto, operated by the Max-Planck-Institut for Astronomy, Heidelberg, jointly with the Spanish National Commission for Astronomy; at the US Naval Observatory; and at the UK Infrared Telescope.
The Growth of Central Black Hole and the Ionization Instability of Quasar Disk
NASA Technical Reports Server (NTRS)
Lu, Ye; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases, like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability, and the faint or 'dormant' quasars are simply the system in the lower branch. The middle branch is the transition state which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solutions (ADIOS) configuration in the stable lower branch of S-shaped instability, and Eddington accretion rate is used to constrain the accretion rate in each phase. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole (BH) similar to those found in spiral galaxies today is needed to produce a BH with a final mass 2 x 10(exp 8) solar mases.
Dwarf Galaxies in the Chandra COSMOS Legacy Survey
NASA Astrophysics Data System (ADS)
Civano, Francesca Maria; Mezcua, Mar; Fabbiano, Giuseppina; Marchesi, Stefano; Suh, Hyewon; Volonteri, Marta; cyrille
2018-01-01
The existence of intermediate mass black holes (100 < MBH < 106 Msun) has been invoked to explain the finding of extremely massive black holes at z>7. While detecting these seed black holes in the young Universe is observationally challenging, the nuclei of local dwarf galaxies are among the best places where to look for them as these galaxies resemble in mass and metallicity the first galaxies and they have not significantly grown through merger and accretion processes. We present a sample of 40 AGN in dwarf galaxies (107 <= M* <= 3x109 Msun) at z <=2.4, selected from the Chandra COSMOS-Legacy survey. Once the star formation contribution to the X-ray emission is subtracted, the AGN luminosities of the 40 dwarf galaxies are in the range L(0.5-10 keV)~1039 - 1044 erg/s. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. One of the dwarf galaxies is the least massive galaxy (M* = 6.6x107 Msun) found so far to host an active BH. We also present for the first time the evolution of the AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7, finding that it decreases with X-ray luminosity and stellar mass. Unlike massive galaxies, the AGN fraction is found to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies.
Understanding the build-up of SMBH and Galaxies
NASA Astrophysics Data System (ADS)
Carrera, Francisco; Georgakakis, Antonis; Ueda, Yoshihiro; Akylas, Thanassis; Lanzuisi, Giorgio; Castello, N.
2015-09-01
One of the main open questions in modern Astrophysics is understanding the coupled growth of supermassive black holes by accretion and their host galaxies via star formation, from their peak at redshifts z~ 1-4 to the present time. The generic scenario proposed involves an early phase of intense black hole growth that takes place behind large obscuring columns of inflowing dust and gas clouds. It is postulated that this is followed by a blow-out stage during which some form of AGN feedback controls the fate of the interstellar medium and hence, the evolution of the galaxy. X-rays are essential for testing this scenario as they uniquely probe AGN at both the early heavily obscured stage and the later blow-out phase. X-ray spectral analysis can identify the smoking gun evidence of heavily obscured black hole growth (e.g. intense iron Kalpha line). It therefore provides the most robust method for compiling clean samples of deeply shrouded AGN with well-defined selection functions and unbiased determinations of their intrinsic properties (accretion luminosity, obscuring column). X-rays are also the best window for studying in detail AGN feedback. This process ultimately originates in the innermost regions close to the supermassive black hole and is dominated, in terms of energy and mass flux, by highly ionised material that remains invisible at other wavelengths. The most important epoch for investigating the relation between AGN and galaxies is the redshift range z~1-4, when most black holes and stars we see in the present-day Universe were put in place. Unfortunately, exhaustive efforts with current high-energy telescopes only scrape the tip of the iceberg of the most obscured AGN population. Moreover, Xray studies of the incidence, nature and energetics of AGN feedback are limited to the local Universe. The Athena observatory will provide the technological leap required for a breakthrough in our understanding of AGN and galaxy evolution at the heyday of the Universe. The excellent survey capabilities of Athena/WFI (effective area, angular resolution, field of view) will allow to measure the incidence of feedback in the shape of warm absorbers and Ultra Fast Outflows among the general population of AGN, as well as to complete the census of black hole growth by detecting and characterising significant samples of the most heavily obscured (including Compton thick) AGN, to redshifts z~3-4. The outstanding spectral throughput and resolution of Athena/X-IFU will permit measuring the energetics of those outflows to assess their influence on their host galaxies. The demographics of the heavily obscured and outflowing populations relative to their hosts are fundamental for understanding how major black hole growth events relate to the build-up of galaxies.
Understanding the build-up of supermassive black holes and galaxies
NASA Astrophysics Data System (ADS)
Carrera, Francisco; Ueda, Yoshihiro; Georgakakis, Antonis
2016-07-01
One of the main open questions in modern Astrophysics is understanding the coupled growth of supermassive black holes by accretion and their host galaxies via star formation, from their peak at redshifts z~ 1-4 to the present time. The generic scenario proposed involves an early phase of intense black hole growth that takes place behind large obscuring columns of inflowing dust and gas clouds. It is postulated that this is followed by a blow-out stage during which some form of AGN feedback controls the fate of the interstellar medium and hence, the evolution of the galaxy. X-rays are essential for testing this scenario as they uniquely probe AGN at both the early heavily obscured stage and the later blow-out phase. X-ray spectral analysis can identify the smoking gun evidence of heavily obscured black hole growth (e.g. intense iron Kalpha line). It therefore provides the most robust method for compiling clean samples of deeply shrouded AGN with well-defined selection functions and unbiased determinations of their intrinsic properties (accretion luminosity, obscuring column). X-rays are also the best window for studying in detail AGN feedback. This process ultimately originates in the innermost regions close to the supermassive black hole and is dominated, in terms of energy and mass flux, by highly ionisedmaterial that remains invisible at other wavelengths. The most important epoch for investigating the relation between AGN and galaxies is the redshift range z~1-4, when most black holes and stars we see in the present-day Universe were put in place. Unfortunately, exhaustive efforts with current high-energy telescopes only scrape the tip of the iceberg of the most obscured AGN population. Moreover, Xray studies of the incidence, nature and energetics of AGN feedback are limited to the local Universe. The Athena observatory will provide the technological leap required for a breakthrough in our understanding of AGN and galaxy evolution at the heyday of the Universe. The excellent survey capabilities of Athena/WFI (effective area, angular resolution, field of view) will allow to measure the incidence of feedback in the shape of warm absorbers and Ultra Fast Outflows among the general population of AGN, as well as to complete the census of black hole growth by detecting and characterising significant samples of the most heavily obscured (including Compton thick) AGN, to redshifts z~3-4. The outstanding spectral throughput and resolution of Athena/X-IFU will permit measuring the energetics of those outflows to assess their influence on their host galaxies. The demographics of the heavily obscured and outflowing populations relative to their hosts are fundamental for understanding how major black hole growth events relate to the build-up of galaxies.
No supermassive black hole in M33?
Merritt, D; Ferrarese, L; Joseph, C L
2001-08-10
We observed the nucleus of M33, the third-brightest galaxy in the Local Group, with the Space Telescope Imaging Spectrograph at a resolution at least a factor of 10 higher than previously obtained. Rather than the steep rise expected within the radius of gravitational influence of a supermassive black hole, the random stellar velocities showed a decrease within a parsec of the center of the galaxy. The implied upper limit on the mass of the central black hole is only 3000 solar masses, about three orders of magnitude lower than the dynamically inferred mass of any other supermassive black hole. Detecting black holes of only a few thousand solar masses is observationally challenging, but it is critical to establish how supermassive black holes relate to their host galaxies, and which mechanisms influence the formation and evolution of both.
Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella
2008-12-01
Preface; SOC and LOC; Participants; Life at the conference; Conference photo; Session I. Population III and Metal-Free Star Formation: 1. Open questions in the study of population III star formation S. C. O. Glover, P. C. Clark, T. H. Greif, J. L. Johnson, V. Bromm, R. S. Klessen and A. Stacy; 2. Protostar formation in the early universe Naoki Yoshida; 3. Population III.1 stars: formation, feedback and evolution of the IMF Jonathan C. Tan; 4. The formation of the first galaxies and the transition to low-mass star formation T. H. Greif, D. R. G. Schleicher, J. L. Johnson, A.-K. Jappsen, R. S. Klessen, P. C. Clark, S. C. O. Glover, A. Stacy and V. Bromm; 5. Low-metallicity star formation: the characteristic mass and upper mass limit Kazuyuki Omukai; 6. Dark stars: dark matter in the first stars leads to a new phase of stellar evolution Katherine Freese, Douglas Spolyar, Anthony Aguirre, Peter Bodenheimer, Paolo Gondolo, J. A. Sellwood and Naoki Yoshida; 7. Effects of dark matter annihilation on the first stars F. Iocco, A. Bressan, E. Ripamonti, R. Schneider, A. Ferrara and P. Marigo; 8. Searching for Pop III stars and galaxies at high redshift Daniel Schaerer; 9. The search for population III stars Sperello di Serego Alighieri, Jaron Kurk, Benedetta Ciardi, Andrea Cimatti, Emanuele Daddi and Andrea Ferrara; 10. Observational search for population III stars in high-redshift galaxies Tohru Nagao; Session II. Metal Enrichment, Chemical Evolution, and Feedback: 11. Cosmic metal enrichment Andrea Ferrara; 12. Insights into the origin of the galaxy mass-metallicity relation Henry Lee, Eric F. Bell and Rachel S. Somerville; 13. LSD and AMAZE: the mass-metallicity relation at z > 3 F. Mannucci and R. Maiolino; 14. Three modes of metal-enriched star formation at high redshift Britton D. Smith, Matthew J. Turk, Steinn Sigurdsson, Brian W. O'Shea and Michael L. Norman; 15. Primordial supernovae and the assembly of the first galaxies Daniel Whalen, Bob Van Veelen, Brian W. O'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst
Which Galaxies Are the Most Habitable?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-09-01
Habitable zones are a hot topic in exoplanet studies: where, around a given star, could a planet exist that supports life? But if you scale this up, you get a much less common question: which type of galaxy is most likely to host complex life in the universe? A team of researchers from the UK believes it has the answer.Criteria for HabitabilityLed by Pratika Dayal of the University of Durham, the authors of this study set out to estimate the habitability of a large population of galaxies. The first step in this process is to determine what elements contribute to a galaxys habitability. The authors note three primary factors:Total number of starsMore stars means more planets!Metallicity of the starsPlanets are more likely to form in stellar vicinities with higher metallicities, since planet formation requires elements heavier than iron.Likelihood of Type II supernovae nearbyPlanets that are located out of range of supernovae have a higher probability of being habitable, since a major dose of cosmic radiation is likely to cause mass extinctions or delay evolution of complex life. Galaxies supernova rates can be estimated from their star formation rates (the two are connected via the initial mass function).Hospitable Cosmic GiantsLower panel: the number of Earth-like habitable planets (given by the color bar, which shows the log ratio relative to the Milky Way) increases in galaxies with larger stellar mass and lower star formation rates. Upper panel: the larger stellar-mass galaxies tend to be elliptical (blue line) rather than spiral (red line). Click for larger view. [Dayal et al. 2015]Interestingly, these three conditions have previously been shown to be linked via something termed the fundamental metallicity relation, which relates the total stellar masses, metallicities, and star formation rates of galaxies. By using this relation, the authors were able to create predictions for the number of habitable planets in more than 100,000 galaxies in the local universe (cataloged by the Sloan Digital Sky Survey).Based on these predictions, the authors find that the galaxies likely to host the largest number of habitable planets are those that have a mass greater than twice that of the Milky Way and star formation rates less than a tenth of that of the Milky Way.These galaxies tend to be giant elliptical galaxies, rather than compact spirals like our own galaxy. The authors calculate that the most hospitable galaxies can host up to 10,000 times as many Earth-like planets and 1,000,000 times as many gas-giants (which might have habitable moons) as the Milky Way!CitationPratika Dayal et al.2015 ApJ 810 L2 doi:10.1088/2041-8205/810/1/L2
Probing Globular Cluster Formation in Low Metallicity Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Johnson, Kelsey E.; Hunt, Leslie K.; Reines, Amy E.
2008-12-01
The ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taehyun; Lee, Myung Gyoon; Sheth, Kartik
2015-01-20
We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies. The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T > 0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T ∼ 0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independentmore » of the bulge or disk properties. We speculate that because bars are formed out of disks, bars initially have an exponential (disk-like) profile that evolves over time, trapping more disk stars to boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z > 1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.« less
The dependence of galaxy clustering on tidal environment in the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.
2018-06-01
The influence of the Cosmic Web on galaxy formation and evolution is of great observational and theoretical interest. We investigate whether the Cosmic Web leaves an imprint in the spatial clustering of galaxies in the Sloan Digital Sky Survey (SDSS), using the group catalogue of Yang et al. and tidal field estimates at ˜2 h-1 Mpc scales from the mass-tides-velocity data set of Wang et al. We use the tidal anisotropy α (Paranjape et al.) to characterize the tidal environment of groups, and measure the redshift-space 2-point correlation function (2pcf) of group positions and the luminosity- and colour-dependent clustering of group galaxies using samples segregated by α. We find that all the 2pcf measurements depend strongly on α, with factors of ˜20 between the large-scale 2pcf of objects in the most and least isotropic environments. To test whether these strong trends imply `beyond halo mass' effects for galaxy evolution, we compare our results with corresponding 2pcf measurements in mock catalogues constructed using a halo occupation distribution that uses only halo mass as an input. We find that this prescription qualitatively reproduces all observed trends, and also quantitatively matches many of the observed results. Although there are some statistically significant differences between our `halo mass only' mocks and the data - in the most and least isotropic environments - which deserve further investigation, our results suggest that if the tidal environment induces additional effects on galaxy properties other than those inherited from their host haloes, then these must be weak.
2015-11-16
At the centre of this amazing image is the elliptical galaxy NGC 3610. Surrounding the galaxy are a wealth of other galaxies of all shapes. There are spiral galaxies, galaxies with a bar in their central regions, distorted galaxies and elliptical galaxies, all visible in the background. In fact, almost every bright dot in this image is a galaxy — the few foreground stars are clearly distinguishable due to the diffraction spikes that overlay their images. NGC 3610 is of course the most prominent object in this image — and a very interesting one at that! Discovered in 1793 by William Herschel, it was later found that this elliptical galaxy contains a disc. This is very unusual, as discs are one of the main distinguishing features of a spiral galaxy. And NGC 3610 even hosts a memarkable bright disc. The reason for the peculiar shape of NGC 3610 stems from its formation history. When galaxies form, they usually resemble our galaxy, the Milky Way, with flat discs and spiral arms where star formation rates are high and which are therefore very bright. An elliptical galaxy is a much more disordered object which results from the merging of two or more disc galaxies. During these violent mergers most of the internal structure of the original galaxies is destroyed. The fact that NGC 3610 still shows some structure in the form of a bright disc implies that it formed only a short time ago. The galaxy’s age has been put at around four billion years and it is an important object for studying the early stages of evolution in elliptical galaxies.
Demise of faint satellites around isolated early-type galaxies
NASA Astrophysics Data System (ADS)
Park, Changbom; Hwang, Ho Seong; Park, Hyunbae; Lee, Jong Chul
2018-02-01
The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1-3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4-11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = -14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = -15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.
A molecular gas-rich GRB host galaxy at the peak of cosmic star formation
NASA Astrophysics Data System (ADS)
Arabsalmani, M.; Le Floc'h, E.; Dannerbauer, H.; Feruglio, C.; Daddi, E.; Ciesla, L.; Charmandaris, V.; Japelj, J.; Vergani, S. D.; Duc, P.-A.; Basa, S.; Bournaud, F.; Elbaz, D.
2018-05-01
We report the detection of the CO(3-2) emission line from the host galaxy of gamma-ray burst (GRB) 080207 at z = 2.086. This is the first detection of molecular gas in emission from a GRB host galaxy beyond redshift 1. We find this galaxy to be rich in molecular gas with a mass of 1.1 × 10^{11} M_{{\\odot }} assuming αCO = 4.36 M_{{\\odot }} (K km s^{-1} pc^2)^{-1}. The molecular gas mass fraction of the galaxy is ˜0.5, typical of star-forming galaxies (SFGs) with similar stellar masses and redshifts. With an SFR_{FIR} of 260 M_{{\\odot }} yr^{-1}, we measure a molecular gas depletion time-scale of 0.43 Gyr, near the peak of the depletion time-scale distribution of SFGs at similar redshifts. Our findings are therefore in contradiction with the proposed molecular gas deficiency in GRB host galaxies. We argue that the reported molecular gas deficiency for GRB hosts could be the artefact of improper comparisons or neglecting the effect of the typical low metallicities of GRB hosts on the CO-to-molecular-gas conversion factor. We also compare the kinematics of the CO(3-2) emission line to that of the H α emission line from the host galaxy. We find the H α emission to have contributions from two separate components, a narrow and a broad one. The narrow component matches the CO emission well in velocity space. The broad component, with a full width at half-maximum of ˜1100 km s^{-1}, is separated by +390 km s^{-1} in velocity space from the narrow component. We speculate this broad component to be associated with a powerful outflow in the host galaxy or in an interacting system.
Origin and Evolution of the Elements
NASA Astrophysics Data System (ADS)
McWilliam, Andrew; Rauch, Michael
2004-09-01
Introduction; List of participants; 1. Mount Wilson Observatory contributions to the study of cosmic abundances of the chemical elements George W. Preston; 2. Synthesis of the elements in stars: B2FH and beyond E. Margaret Burbidge; 3. Stellar nucleosynthesis: a status report 2003 David Arnett; 4. Advances in r-process nucleosynthesis John J. Cowan and Christopher Sneden; 5. Element yields of intermediate-mass stars Richard B. C. Henry; 6. The impact of rotation on chemical abundances in red giant branch stars Corinne Charbonnel; 7. s-processing in AGB stars and the composition of carbon stars Maurizio Busso, Oscar Straniero, Roberto Gallino, and Carlos Abia; 8. Models of chemical evolution Francesca Matteucci; 9. Model atmospheres and stellar abundance analysis Bengt Gustafsson; 10. The light elements: lithium, beryllium, and boron Ann Merchant Boesgaard; 11. Extremely metal-poor stars John E. Norris; 12. Thin and thick galactic disks Poul E. Nissen; 13. Globular clusters and halo field stars Christopher Sneden, Inese I. Ivans and Jon P. Fulbright; 14. Chemical evolution in ω Centauri Verne V. Smith; 15. Chemical composition of the Magellanic Clouds, from young to old stars Vanessa Hill; 16. Detailed composition of stars in dwarf spheroidal galaxies Matthew D. Shetrone; 17. The evolutionary history of Local Group irregular galaxies Eva K. Grebel; 18. Chemical evolution of the old stellar populations of M31 R. Michael Rich; 19. Stellar winds of hot massive stars nearby and beyond the Local Group Fabio Bresolin and Rolf P. Kudritzki; 20. Presolar stardust grains Donald D. Clayton and Larry R. Nittler; 21. Interstellar dust B. T. Draine; 22. Interstellar atomic abundances Edward B. Jenkins; 23. Molecules in the interstellar medium Tommy Wiklind; 24. Metal ejection by galactic winds Crystal L. Martin; 25. Abundances from the integrated light of globular clusters and galaxies Scott C. Trager; 26. Abundances in spiral and irregular galaxies Donald R. Garnett; 27. Chemical composition of the intracluster medium Michael Loewenstein; 28. Quasar elemental abundances and host galaxy evolution Fred Hamann, Matthias Dietrich, Bassem M. Sabra, and Craig Warner; 29. Chemical abundances in the damped Lyα systems Jason X. Prochaska; 30. Intergalactic medium abundances Robert F. Carswell; 31. Conference summary Bernard E. J. Pagel.
NASA Astrophysics Data System (ADS)
Brouwer, Margot M.; Cacciato, Marcello; Dvornik, Andrej; Eardley, Lizzie; Heymans, Catherine; Hoekstra, Henk; Kuijken, Konrad; McNaught-Roberts, Tamsyn; Sifón, Cristóbal; Viola, Massimo; Alpaslan, Mehmet; Bilicki, Maciej; Bland-Hawthorn, Joss; Brough, Sarah; Choi, Ami; Driver, Simon P.; Erben, Thomas; Grado, Aniello; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; de Jong, Jelte T. A.; Liske, Jochen; McFarland, John; Nakajima, Reiko; Napolitano, Nicola R.; Norberg, Peder; Peacock, John A.; Radovich, Mario; Robotham, Aaron S. G.; Schneider, Peter; Sikkema, Gert; van Uitert, Edo; Verdoes Kleijn, Gijs; Valentijn, Edwin A.
2016-11-01
Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy-galaxy lensing profile of 91 195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly survey, using {˜ }100 ° ^2 of overlapping data from the Kilo-Degree Survey. In each of the four cosmic environments we model the contributions from group centrals, satellites and neighbouring groups to the stacked galaxy-galaxy lensing profiles. After correcting the lens samples for differences in the stellar mass distribution, we find no dependence of the average halo mass of central galaxies on their cosmic environment. We do find a significant increase in the average contribution of neighbouring groups to the lensing profile in increasingly dense cosmic environments. We show, however, that the observed effect can be entirely attributed to the galaxy density at much smaller scales (within 4 h-1 Mpc), which is correlated with the density of the cosmic environments. Within our current uncertainties we find no direct dependence of galaxy halo mass on their cosmic environment.
Star formation in simulated galaxies: understanding the transition to quiescence at 3 × 1010 M⊙
NASA Astrophysics Data System (ADS)
Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki
2017-08-01
Star formation in galaxies relies on the availability of cold, dense gas, which, in turn, relies on factors internal and external to the galaxies. In order to provide a simple model for how star formation is regulated by various physical processes in galaxies, we analyse data at redshift z = 0 from a hydrodynamical cosmological simulation that includes prescriptions for star formation and stellar evolution, active galactic nuclei, and their associated feedback processes. This model can determine the star formation rate (SFR) as a function of galaxy stellar mass, gas mass, black hole mass, and environment. We find that gas mass is the most important quantity controlling star formation in low-mass galaxies, and star-forming galaxies in dense environments have higher SFR than their counterparts in the field. In high-mass galaxies, we find that black holes more massive than ˜ 107.5 M⊙ can be triggered to quench star formation in their host; this mass scale is emergent in our simulations. Furthermore, this black hole mass corresponds to a galaxy bulge mass ˜ 2 × 1010 M⊙, consistent with the mass at which galaxies start to become dominated by early types ( ˜ 3 × 1010 M⊙, as previously shown in observations by Kauffmann et al.). Finally, we demonstrate that our model can reproduce well the SFR measured from observations of galaxies in the Galaxy And Mass Assembly and Arecibo Legacy Fast ALFA surveys.
Study of GRBs Hosts Galaxies Vicinity Properties
NASA Astrophysics Data System (ADS)
Bernal, S.; Vasquez, N.; Hoyle, F.
2017-07-01
The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0
An Extremely Rich Group Of Starbursts And Agns At A Z=3.1 Proto-Cluster Core
NASA Astrophysics Data System (ADS)
Umehata, Hideki
2017-06-01
The environment where galaxies inhabit is expected to play a critical role in shaping their evolution. Galaxies and nuclei in the dense environment at high redshift (i.e., proto-clusters) provide a good laboratory to investigate the accelerated, most extreme evolution of galaxies at a given epoch. Using ALMA band 3 and band 6, we mapped a 2'x3' region within the node at the junction of the 50 Mpc-scale filamentary three-dimensional structure traced by Lyman-alpha emitters (LAEs) in this field. We obtained 18 robustly detected 1.1mm sources (here after submillimeter galaxies, SMGs) with a signal-to-noise ratio (SNR) >5. We also detected CO(3-2) line from 8 SMGs, which in general shows relatively extended structure. Totally 12 ALMA SMGs have spectroscopic redshifts of z=3.09 and six of them host a X-ray luminous active galactic nuclei (AGN). We also find that multiple z=3.09 ALMA SMGs contribute to two AzTEC sources, supporting that interaction may be responsible for a significant fraction of multiplicity in single-dish sources. Our results suggest that the vigorous star formation activity and the growth of super massive black holes (SMBHs) occurred simultaneously in the densest regions at z 3, which is likely to correspond to the most active historical phase of the massive galaxy population found in the core of the clusters in the present universe.
NASA Astrophysics Data System (ADS)
Fogasy, J.; Knudsen, K. K.; Lagos, C. D. P.; Drouart, G.; Gonzalez-Perez, V.
2017-01-01
Context. In the last decade several massive molecular gas reservoirs were found <100 kpc distance from active galactic nuclei (AGNs), residing in gas-rich companion galaxies. The study of AGN-gas-rich companion systems opens the opportunity to determine whether the stellar mass of massive local galaxies was formed in their host after a merger event or outside of their host galaxy in a close starbursting companion and later incorporated via mergers. Aims: Our aim is to study the quasar-companion galaxy system of SMM J04135+10277 (z = 2.84) and investigate the expected frequency of quasar-starburst galaxy pairs at high redshift using a cosmological galaxy formation model. Methods: We use archive data and new APEX ArTeMiS data to construct and model the spectral energy distribution of SMM J04135+10277 in order to determine its properties. We also carry out a comprehensive analysis of the cosmological galaxy formation model galform with the aim of characterising how typical the system of SMM J04135+10277 is and whether quasar-star-forming galaxy pairs may constitute an important stage in galaxy evolution. Finally, we compare our results to observations found in the literature at both large and small scales (1 Mpc-100 kpc). Results: The companion galaxy of SMM J04135+10277 is a heavily dust-obscured starburst galaxy with a median star formation rate (SFR) of 700 M⊙ yr-1, median dust mass of 5.1 × 109M⊙ and median dust luminosity of 9.3 × 1012L⊙. Our simulations, performed at z = 2.8, suggest that SMM J04135+10277 is not unique. In fact, at a distance of <100 kpc, 22% of our simulated quasar sample have at least one companion galaxy of a stellar mass >108M⊙, and 0.3% have at least one highly star-forming companion (SFR> 100 M⊙ yr-1). Conclusions: Our results suggest that quasar-gas-rich companion galaxy systems are common phenomena in the early Universe and the high incidence of companions makes the study of such systems crucial to understand the growth and hierarchical build-up of galaxies and black holes.
Dwarf spheroidal galaxies: Keystones of galaxy evolution
NASA Technical Reports Server (NTRS)
Gallagher, John S., III; Wyse, Rosemary F. G.
1994-01-01
Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.
Quasars at Cosmic Dawn: Discoveries and Probes of the Early Universe
NASA Astrophysics Data System (ADS)
Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; Yang, Jinyi; Bian, Fuyan; McGreer, Ian D.; Green, Richard F.; Yang, Qian; Jiang, Linhua; Wang, Ran; DECaLS Team; UHS Team
2017-01-01
High redshift quasars, as the most luminous non-transient objects in the early universe, are the most promising tracers to address the history of cosmic reionization and how the origins of super-massive black hole (SMBH) are linked to galaxy formation and evolution. Over the last fifteen years, more than 100 quasars within the first billion years after the Big Bang have been discovered with the highest redshift at 7.1. We have developed a new method to select z>~6 quasars with both high efficiency and high completeness by combing optical and mid-IR Wide-field Infrared Survey Explorer (WISE) photometric data. We have applied this method to SDSS footprint and resulted in the discovery of the most luminous z>6 quasar ever discovered, which hosts a twelve billion solar mass black hole. I will present detailed follow-up observations of the host galaxies and environment of the most luminous quasars using HST, LBT and ALMA, in order to constrain early black hole growth and black hole/galaxy co-evolution at the highest redshift. I will also present initial results from a new quasar survey, which utilizes optical data from DECaLS, which is imaging 6700 deg^2 of sky down to z_AB˜23.0, and neaar-IR data from UHS and UKIDSS, which maps the whole northern sky at Decl.<+60deg. The combination of these datasets allows us to discover quasars at redshift z>~7 and to conduct a complete census of the faint quasar population at z~6.
Associating Fast Radio Bursts with Their Host Galaxies
NASA Astrophysics Data System (ADS)
Eftekhari, T.; Berger, E.
2017-11-01
The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ˜ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z˜ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm-3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.
AM 2217-490: A polar ring galaxy under construction
NASA Astrophysics Data System (ADS)
Freitas-Lemes, P.; Rodrigues, I.; Faúndez-Abans, M.; Dors, O.
2014-10-01
This work is part of a series of case studies of Polar Ring Galaxies (PRGs) (see also Posters GAL-1: 163, GAL-2: 178). A PRG is formed by an early type host galaxy (e.g. lenticular or elliptical), surrounded by a ring of gas and stars orbiting approximately at the polar plane of the host galaxy. AM2217-490 is an interesting case of PRG in formation, with a still asymmetrical ring that surrounds the host galaxy. Apparently, this bluish structure (characteristic of the rings of PRGs), is not yet in equilibrium with the host galaxy. This study is based on spectra on the range 6250-7250 Å obtained with the CTIO 1.5 m telescope - Chile. From them, we measure a heliocentric radial velocity of 9152± 18 km/s. The value of the ionization parameter (log U = -3.5) is similar to that in interacting galaxies (Freitas-Lemes et al. 2013, submitted to MNRAS; and Krabbe et al. 2013, MNRAS Accepted), and lower than that of isolated ones. The electron density shows little variation along the major axis of the host galaxy, and a mean value typical of interacting galaxies. Diagnostic diagrams show that the nuclear region harbors an AGN, following a trend among polar ring galaxies. The low-resolution images of the SDSS show no tails or bridges connecting the galaxy to other objects, however, in a radius of 5 arcmin there are three other galaxies with similar speeds, featuring a group. A plausible hypothesis is that one of these galaxies may have interacted with AM2217-490, donating material to form the ring.
Quenching and ram pressure stripping of simulated Milky Way satellite galaxies
NASA Astrophysics Data System (ADS)
Simpson, Christine; Grand, Robert; Gomez, Facundo; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David; Frenk, Carlos; Auriga Project, Virgo Consortium
2018-01-01
We present predictions for the quenching of star formation in satellite galaxies of the Local Group from a suite of 30 cosmological zoom simulations of Milky Way-like host galaxies. The Auriga simulations resolve satellites down to the luminosity of the classical dwarf spheroidal galaxies of the Milky Way. We find strong mass-dependent and distance-dependent quenching signals, where dwarf systems beyond 600 kpc are only strongly quenched below a stellar mass of 107 M⊙. Ram pressure stripping appears to be the dominant quenching mechanism and 50% of quenched systems cease star formation within 1 Gyr of first infall. We demonstrate that systems within a host galaxy's R200 radius are comprised of two populations: (i) a first infall population that has entered the host halo within the past few Gyrs and (ii) a population of returning `backsplash' systems that have had a much more extended interaction with the host. Backsplash galaxies that do not return to the host galaxy by redshift zero exhibit quenching properties similar to galaxies within R200 and are distinct from other external systems. The simulated quenching trend with stellar mass has some tension with observations, but our simulations are able reproduce the range of quenching times measured from resolved stellar populations of Local Group dwarf galaxies.
Quenching and ram pressure stripping of simulated Milky Way satellite galaxies
NASA Astrophysics Data System (ADS)
Simpson, Christine M.; Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.
2018-07-01
We present predictions for the quenching of star formation in satellite galaxies of the Local Group from a suite of 30 cosmological zoom simulations of Milky Way-like host galaxies. The Auriga simulations resolve satellites down to the luminosity of the classical dwarf spheroidal galaxies of the Milky Way. We find strong mass-dependent and distance-dependent quenching signals, where dwarf systems beyond 600 kpc are only strongly quenched below a stellar mass of 107 M⊙. Ram pressure stripping appears to be the dominant quenching mechanism and 50 per cent of quenched systems cease star formation within 1 Gyr of first infall. We demonstrate that systems within a host galaxy's R200 radius are comprised of two populations: (i) a first infall population that has entered the host halo within the past few Gyrs and (ii) a population of returning `backsplash' systems that have had a much more extended interaction with the host. Backsplash galaxies that do not return to the host galaxy by redshift zero exhibit quenching properties similar to galaxies within R200 and are distinct from other external systems. The simulated quenching trend with stellar mass has some tension with observations, but our simulations are able reproduce the range of quenching times measured from resolved stellar populations of Local Group dwarf galaxies.
Quenching and ram pressure stripping of simulated Milky Way satellite galaxies
NASA Astrophysics Data System (ADS)
Simpson, Christine M.; Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.
2018-03-01
We present predictions for the quenching of star formation in satellite galaxies of the Local Group from a suite of 30 cosmological zoom simulations of Milky Way-like host galaxies. The Auriga simulations resolve satellites down to the luminosity of the classical dwarf spheroidal galaxies of the Milky Way. We find strong mass-dependent and distance-dependent quenching signals, where dwarf systems beyond 600 kpc are only strongly quenched below a stellar mass of 107 M⊙. Ram pressure stripping appears to be the dominant quenching mechanism and 50% of quenched systems cease star formation within 1 Gyr of first infall. We demonstrate that systems within a host galaxy's R200 radius are comprised of two populations: (i) a first infall population that has entered the host halo within the past few Gyrs and (ii) a population of returning `backsplash' systems that have had a much more extended interaction with the host. Backsplash galaxies that do not return to the host galaxy by redshift zero exhibit quenching properties similar to galaxies within R200 and are distinct from other external systems. The simulated quenching trend with stellar mass has some tension with observations, but our simulations are able reproduce the range of quenching times measured from resolved stellar populations of Local Group dwarf galaxies.
A dichotomy in satellite quenching around L* galaxies
NASA Astrophysics Data System (ADS)
Phillips, John I.; Wheeler, Coral; Boylan-Kolchin, Michael; Bullock, James S.; Cooper, Michael C.; Tollerud, Erik J.
2014-01-01
We examine the star formation properties of bright (˜0.1 L*) satellites around isolated ˜L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey Data Release 7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass-matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also play at least an indirect role in quenching star formation in their bright satellites. The previously reported tendency for `galactic conformity' in colour/morphology may be a by-product of this host-specific quenching dichotomy. The Sérsic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter haloes that are ˜45 per cent more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ˜30 per cent of ˜0.1L* galaxies that fall in from the field are quenched around passive hosts, compared with ˜0 per cent around star-forming hosts.
Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.
Schaefer
2000-04-10
The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.
Host galaxies of type ia supernovae from the nearby supernova factory
NASA Astrophysics Data System (ADS)
Childress, Michael Joseph
Type Ia Supernovae (SNe Ia) are excellent distance indicators, yet the full details of the underlying physical mechanism giving rise to these dramatic stellar deaths remain unclear. As large samples of cosmological SNe Ia continue to be collected, the scatter in brightnesses of these events is equally affected by systematic errors as statistical. Thus we need to understand the physics of SNe Ia better, and in particular we must know more about the progenitors of these SNe so that we can derive better estimates for their true intrinsic brightnesses. The host galaxies of SNe Ia provide important indirect clues as to the nature of SN Ia progenitors. In this Thesis we utilize the host galaxies of SNe Ia discovered by the Nearby Supernova Factory (SNfactory) to pursue several key investigations into the nature of SN Ia progenitors and their effects on SN Ia brightnesses. We first examine the host galaxy of SN 2007if, an important member of the subclass of SNe Ia whose extreme brightnesses indicate a progenitor that exceeded the canonical Chandrasekhar-mass value presumed for normal SNe Ia, and show that the host galaxy of this SN is composed of very young stars and has extremely low metallicity, providing important constraints on progenitor scenarios for this SN. We then utilize the full sample of SNfactory host galaxy masses (measured from photometry) and metallicities (derived from optical spectroscopy) to examine several global properties of SN Ia progenitors: (i) we show that SN Ia hosts show tight agreement with the normal galaxy mass-metallicity relation; (ii) comparing the observed distribution of SN Ia host galaxy masses to a theoretical model that couples galaxy physics to the SN Ia delay time distribution (DTD), we show the power of the SN Ia host mass distribution in constraining the SN Ia DTD; and (iii) we show that the lack of ultra-low metallicities in the SNfactory SN Ia host sample gives provisional support for the theorized low-metallicity inhibition of SNe Ia. Finally we revisit recent studies which found that the corrected brightnesses of SNe Ia (after application of the standard light curve width and color corrections) correlate with the masses of their host galaxies. We confirm this trend with host mass using SNfactory data, and for the first time confirm that an analogous trend exists with host metallicity. We then apply a spectroscopic standardization technique developed by SNfactory and show that this method significantly reduces the observed bias. In this Thesis we show that SN Ia host galaxies continue to provide key insight into SN Ia progenitors, and also illuminate possible biases in SN Ia brightness standardization techniques.
Low-metallicity Star Formation (IAU S255)
NASA Astrophysics Data System (ADS)
Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella
2009-01-01
Preface; SOC and LOC; Participants; Life at the conference; Conference photo; Session I. Population III and Metal-Free Star Formation: 1. Open questions in the study of population III star formation S. C. O. Glover, P. C. Clark, T. H. Greif, J. L. Johnson, V. Bromm, R. S. Klessen and A. Stacy; 2. Protostar formation in the early universe Naoki Yoshida; 3. Population III.1 stars: formation, feedback and evolution of the IMF Jonathan C. Tan; 4. The formation of the first galaxies and the transition to low-mass star formation T. H. Greif, D. R. G. Schleicher, J. L. Johnson, A.-K. Jappsen, R. S. Klessen, P. C. Clark, S. C. O. Glover, A. Stacy and V. Bromm; 5. Low-metallicity star formation: the characteristic mass and upper mass limit Kazuyuki Omukai; 6. Dark stars: dark matter in the first stars leads to a new phase of stellar evolution Katherine Freese, Douglas Spolyar, Anthony Aguirre, Peter Bodenheimer, Paolo Gondolo, J. A. Sellwood and Naoki Yoshida; 7. Effects of dark matter annihilation on the first stars F. Iocco, A. Bressan, E. Ripamonti, R. Schneider, A. Ferrara and P. Marigo; 8. Searching for Pop III stars and galaxies at high redshift Daniel Schaerer; 9. The search for population III stars Sperello di Serego Alighieri, Jaron Kurk, Benedetta Ciardi, Andrea Cimatti, Emanuele Daddi and Andrea Ferrara; 10. Observational search for population III stars in high-redshift galaxies Tohru Nagao; Session II. Metal Enrichment, Chemical Evolution, and Feedback: 11. Cosmic metal enrichment Andrea Ferrara; 12. Insights into the origin of the galaxy mass-metallicity relation Henry Lee, Eric F. Bell and Rachel S. Somerville; 13. LSD and AMAZE: the mass-metallicity relation at z > 3 F. Mannucci and R. Maiolino; 14. Three modes of metal-enriched star formation at high redshift Britton D. Smith, Matthew J. Turk, Steinn Sigurdsson, Brian W. O'Shea and Michael L. Norman; 15. Primordial supernovae and the assembly of the first galaxies Daniel Whalen, Bob Van Veelen, Brian W. O'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst
NASA Astrophysics Data System (ADS)
Finn, Rose; Collova, Natasha; Spicer, Sandy; Whalen, Kelly; Koopmann, Rebecca A.; Durbala, Adriana; Haynes, Martha P.; Undergraduate ALFALFA Team
2017-01-01
As part of the Undergraduate ALFALFA Team, we are conducting a survey of the gas and star-formation properties of galaxies in 36 groups and clusters in the local universe. The galaxies in our sample span a large range of galactic environments, from the centers of galaxy groups and clusters to the surrounding infall regions. One goal of the project is to map the spatial distribution of star-formation; the relative extent of the star-forming and stellar disks provides important information about the internal and external processes that deplete gas and thus drive galaxy evolution. We obtained wide-field H-alpha observations with the WIYN 0.9m telescope at Kitt Peak National Observatory for galaxies in the vicinity of the MKW11 and NRGb004 galaxy groups and the Abell 1367 cluster. We present a preliminary analysis of the relative size of the star-forming and stellar disks as a function of galaxy morphology and local galaxy density, and we calculate gas depletion times using star-formation rates and HI gas mass. We will combine these results with those from other UAT members to determine if and how environmentally-driven gas depletion varies with the mass and X-ray properties of the host group or cluster. This work has supported by NSF grants AST-0847430, AST-1211005 and AST-1637339.
Revealing the Host Galaxy of a Quasar 2175 Å Dust Absorber at z = 2.12
NASA Astrophysics Data System (ADS)
Ma, Jingzhe; Brammer, Gabriel; Ge, Jian; Prochaska, J. Xavier; Lundgren, Britt
2018-04-01
We report the first detection of the host galaxy of a strong 2175 Å dust absorber at z = 2.12 toward the background quasar SDSS J121143.42+083349.7 using Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3) IR F140W direct imaging and G141 grism spectroscopy. The spectroscopically confirmed host galaxy is located at a small impact parameter of ∼5.5 kpc (∼0.″65). The F140W image reveals a disk-like morphology with an effective radius of 2.24 ± 0.08 kpc. The extracted 1D spectrum is dominated by a continuum with weak emission lines ([O III] and [O II]). The [O III]-based unobscured star formation rate (SFR) is 9.4 ± 2.6 M ⊙ yr‑1, assuming an [O III]/Hα ratio of 1. The moderate 4000 Å break (Dn(4000) index ∼1.3) and Balmer absorption lines indicate that the host galaxy contains an evolved stellar population with an estimated stellar mass M * of (3–7) × 1010 M ⊙. The SFR and M * of the host galaxy are comparable to, though slightly lower than, those of typical emission-selected galaxies at z ∼ 2. As inferred from our absorption analysis in Ma et al., the host galaxy is confirmed to be a chemically enriched, evolved, massive, and star-forming disk-like galaxy that is likely in the transition from a blue star-forming galaxy to a red quiescent galaxy.
Morphology of Dwarf Galaxies in Isolated Satellite Systems
NASA Astrophysics Data System (ADS)
Ann, Hong Bae
2017-08-01
The environmental dependence of the morphology of dwarf galaxies in isolated satellite systems is analyzed to understand the origin of the dwarf galaxy morphology using the visually classified morphological types of 5836 local galaxies with z ≲ 0.01. We consider six sub-types of dwarf galaxies, dS0, dE, dE_{bc}, dSph, dE_{blue}, and dI, of which the first four sub-types are considered as early-type and the last two as late-type. The environmental parameters we consider are the projected distance from the host galaxy (r_{p}), local and global background densities, and the host morphology. The spatial distributions of dwarf satellites of early-type galaxies are much different from those of dwarf satellites of late-type galaxies, suggesting the host morphology combined with r_{p} plays a decisive role on the morphology of the dwarf satellite galaxies. The local and global background densities play no significant role on the morphology of dwarfs in the satellite systems hosted by early-type galaxies. However, in the satellite system hosted by late-type galaxies, the global background densities of dE and dSph satellites are significantly different from those of dE_{bc}, dE_{blue}, and dI satellites. The blue-cored dwarf satellites (dE_{bc}) of early-type galaxies are likely to be located at r_{p} > 0.3 Mpc to keep their cold gas from the ram pressure stripping by the hot corona of early-type galaxies. The spatial distribution of dE_{bc} satellites of early-type galaxies and their global background densities suggest that their cold gas is intergalactic material accreted before they fall into the satellite systems.
Massive Galaxies at z=2-3: A Large Population of Disky Star-Forming Systems?
NASA Astrophysics Data System (ADS)
Weinzirl, Tim; Jogee, S.; GOODS-NICMOS Collaboration
2011-01-01
The assembly modes via which galaxies develop their present-day mass and structure remain hotly debated. We explore this issue using one of the largest samples of massive galaxies (166 with stellar mass Mstar ≥ 5 × 1010 M⊙) at z=1-3 with NICMOS F160W observations from the GOODS NICMOS Survey (GNS), along with complementary ACS, Spitzer, and Chandra data. Our findings are: (1) The majority of the massive galaxies at z=2-3 have a disky structure (as characterized by the index of single-component Sersic profiles). Most are also compact with half-light radii less than 2 kpc. These massive galaxies at z=2-3 appear to be radically different in structure from their more massive descendants at z 0. Through artificial redshfiting experiments based on redshifted simulated NICMOS data of such massive z 0 elliptical, S0, and spiral galaxies, we show that most of this difference in structure is not due to cosmological or instrumental effects. This implies that significant structural evolution is needed to convert the massive z=2-3 systems into their z 0 elliptical and S0 descendants, and places important constraints on the associated evolutionary mechanisms (e.g., major mergers and cold accretion). (2) Using IR luminosities inferred from Spitzer detections, we find that over z=1-3, the mean star formation rate (SFR) rises substantially, even if AGN candidates are excluded. SFRs of several hundred solar masses per year or higher are common. The results imply a much higher average cold gas fraction than exists in z 0 galaxies. (3) We identify AGN candidates using a variety of techniques (X-ray properties, IR power-law, and IR-to-optical excess) and classify about one-third of the massive galaxies at z=1-3 as AGN hosts. The AGN fraction rises with redshift and is 40% at z=2-3. A significant fraction of the AGN candidates have disky structures although they host massive black holes.
NASA Astrophysics Data System (ADS)
Parejko, John Kenneth
The observed relationship between the mass of a galaxy's supermassive black hole and the galaxy's bulge mass suggests a relationship between the growth of the galaxy and the growth of its central black hole. When these black holes grow, they release phenomenal amounts of energy into their surroundings, possibly disrupting further growth of the galaxy. The feeding (inflowing matter) and feedback (outflowing energy) of a galaxy's central black hole may be intimately related to the properties of the host's environment, on scales many orders of magnitude beyond the black hole's gravitational influence. While feeding, a massive black hole reveals itself as an Active Galactic Nucleus (AGN), but only a few percent of all galaxies show evidence of an AGN. This thesis focuses on this question: What distinguishes galaxies that are currently hosting actively accreting black holes from those that are not? We use the vast data set provided by the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) to study the environments of a well defined sample of AGN hosts. To reduce contamination by galaxies that do not harbor actively accreting black holes, we define a clear, unambiguous sample of local AGN. Using this sample, we search for AGN in merging galaxies and measure the 2-point cross-correlation function of AGN and all galaxies to estimate the environments of AGN hosts compared to non-AGN hosts. We also describe trends in different subsamples of AGN, including luminosity and classification sub-type. Finally, we show how these techniques may be applied to future data sets such as forthcoming SDSS III data and X-ray data from the eROSITA satellite.
Neutral Hydrogen Radio Propperties of ASAS-SN Supernovae Hosts
NASA Astrophysics Data System (ADS)
Ross, Timothy W.; Salter, Chris; Ghosh, Tapasi; Minchin, Robert; Jones, Kristen; All-Sky Automated Survey for Supernovae (ASAS-SN)
2018-01-01
We compiled properties of the galaxies containing recent supernovae. The galaxies were observed in the Hydrogen 21-cm region using the Arecibo 305-m Radio Telescope, and the supernovae were found by the All-Sky Automated Survey for Supernovae (ASAS-SN) project. We were able to detect the neutral hydrogen hyperfine transition in 50 new galaxies to date, and retrieved information on 52 host galaxies with previous detections. Including archival detections, the detection rates of Type CC SNe was 96.9%, that of Type Ia was 76.3%, while no Tidal Disruption Events (TDEs) had detections. In all we calculated the integrated HI flux of 102 host galaxies in the Arecibo sky. With the integrated HI flux we calculated mass values. The median HI mass, log [MHI/(h‑2C M⊙)], with h =.73, for all SN host galaxies was 9.47±0.02, with the median for Type Ia hosts being 9.55±0.02 and the median for Type CC being 9.30±0.02.
Where the Wild Things Are: Observational Constraints on Black Holes' Growth
NASA Astrophysics Data System (ADS)
Merloni, Andrea
2009-12-01
The physical and evolutionary relation between growing supermassive black holes (AGN) and host galaxies is currently the subject of intense research activity. Nevertheless, a deep theoretical understanding of such a relation is hampered by the unique multi-scale nature of the combined AGN-galaxy system, which defies any purely numerical, or semi-analytic approach. Various physical process active on different physical scales have signatures in different parts of the electromagnetic spectrum; thus, observations at different wavelengths and theoretical ideas all can contribute towards a ``large dynamic range'' view of the AGN phenomenon, capable of conceptually ``resolving'' the many scales involved. As an example, I will focus in this review on two major recent observational results on the cosmic evolution of supermassive black holes, focusing on the novel contribution given to the field by the COSMOS survey. First of all, I will discuss the evidence for the so-called ``downsizing'' in the AGN population as derived from large X-ray surveys. I will then present new constraints on the evolution of the black hole-galaxy scaling relation at 1
NASA Technical Reports Server (NTRS)
Gunn, J. E.
1982-01-01
The recent observational evidence on the evolution of galaxies is reviewed and related to the framework of current ideas for galaxy formation from primordial density fluctuations. Recent strong evidence for the evolution of the stellar population in ellipticals is presented, as well as evidence that not all ellipticals behave as predicted by any simple theory. The status of counts of faint galaxies and the implications for the evolution of spirals is discussed, together with a discussion of recent work on the redshift distribution of galaxies at faint magnitudes and a spectroscopic investigation of the Butcher-Oemler blue cluster galaxies. Finally a new picture for the formation and evolution of disk galaxies which may explain most of the features of the Hubble sequence is outlined.
NASA Technical Reports Server (NTRS)
Gralla, Megan B.; Crichton, Devin; Marriage, Tobias A.; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard;
2013-01-01
We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich Effect associated with the halos that host them. The Atacama Cosmology Telescope (ACT) has conducted a survey at 148 GHz, 218 GHz and 277 GHz along the celestial equator. Using samples of radio sources selected at 1.4 GHz from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) Survey and the National Radio Astronomy Observatory Very Large Array Sky Survey (NVSS), we measure the stacked 148, 218 and 277 GHz flux densities for sources with 1.4 GHz flux densities ranging from 5 to 200 mJy. At these flux densities, the radio source population is dominated by active galactic nuclei (AGN), with both steep and at spectrum populations, which have combined radio-to-millimeter spectral indices ranging from 0.5 to 0.95, reecting the prevalence of steep spectrum sources at high flux densities and the presence of at spectrum sources at lower flux densities. The thermal Sunyaev-Zelapos;dovich (SZ) eect associated with the halos that host the AGN is detected at the 5 level through its spectral signature. When we compare the SZ eect with weak lensing measurements of radio galaxies, we find that the relation between the two is consistent with that measured by Planck for local bright galaxies. We present a detection of the SZ eect in some of the lowest mass halos (average M(sub 200) approx. equals 10(exp 13) solar M h(sup-1) (sub 70) ) studied to date. This detection is particularly important in the context of galaxy evolution models, as it confirms that galaxies with radio AGN also typically support hot gaseous halos. With Herschel* observations, we show that the SZ detection is not significantly contaminated by dusty galaxies or by dust associated with the AGN or galaxies hosting the AGN. We show that 5 mJy < S(sub 1:4) < 200 mJy radio sources contribute l(l +1)C(sub l)/(2 pi ) = 0:37+/- 0:03 micro K(exp 2) to the angular power spectrum at l = 3000 at 148 GHz, after accounting for the SZ effect associated with their host halos.
NASA Astrophysics Data System (ADS)
Ball, Catherine; Riechers, Dominik A.; Pavesi, Riccardo
2018-01-01
The [CII]/[NII] ratio combines the [CII] line, a tracer of photodissociation and HII regions emerging from the neutral and ionized phases of the interstellar medium (ISM), with [NII] emission, which only originates from the ionized ISM. In this, the [CII]/[NII] ratio can be used to separate the fractions of [CII] emission emerging from the different phases of the ISM. We present Atacama Large sub-Millimeter Array (ALMA) observations of the Cosmic Eye, a gravitationally lensed Lyman Break Galaxy (LBG). As an LBG, the Cosmic Eye represents a "normal" star forming galaxy in the z>2 universe. LBGs were host to the bulk of star formation during the peak epoch of star formation. Diagnosing star formation in these galaxies provides insight into the evolution of “normal” galaxies in a cosmic sense. The high magnification (30x) allows us to resolve the [CII] 158μm and the [NII] 205μm lines in detail, allowing for a position-resolved analysis of their ratio. We find variations of the line ratio across the galaxy, suggesting the galaxy’s internal structure affects this ratio. We consider the Cosmic Eye in the context of both higher redshift LBGs and local luminous and ultraluminous infrared galaxies, finding that the Cosmic Eye’s line ratio is similar to those of both higher- and lower- redshift galaxies. The Cosmic Eye’s global [CII]/[NII] ratio sits between two previous measurements of z>5 LBGs at low resolution, suggesting that the ratio may correlate more significantly with LFIR than with redshift in this epoch. Furthermore, the Cosmic Eye’s [CII]/[NII] ratio is similar to those of the nearby LIRG/ULIRGs, though we expect local [CII]/[NII] values to be lower due to their different metallicities and dust content. High-resolution studies like this one probe the evolution of [CII]/[NII] over cosmic time by examining the evolution of the ISM’s structure. With a better understanding of the [CII]/[NII] line ratio, we can more effectively use it as a probe of the nature of star formation in high-redshift galaxies. CJB participated in the summer 2017 REU program in the Center for Astrophysics and Planetary Science at Cornell University under NSF award AST-1659264.
NASA Astrophysics Data System (ADS)
Arca-Sedda, Manuel; Gualandris, Alessia
2018-07-01
We model the inspiral of globular clusters (GCs) towards a galactic nucleus harbouring a supermassive black hole (SMBH), a leading scenario for the formation of nuclear star clusters. We consider the case of GCs containing either an intermediate-mass black hole (IMBH) or a population of stellar-mass black holes (BHs), and study the formation of gravitational wave (GW) sources. We perform direct summation N-body simulations of the infall of GCs with different orbital eccentricities in the live background of a galaxy with either a shallow or steep density profile. We find that the GC acts as an efficient carrier for the IMBH, facilitating the formation of a bound pair. The hardening and evolution of the binary depends sensitively on the galaxy's density profile. If the host galaxy has a shallow profile, the hardening is too slow to allow for coalescence within a Hubble time, unless the initial cluster orbit is highly eccentric. If the galaxy hosts a nuclear star cluster, the hardening leads to coalescence by emission of GWs within 3-4 Gyr. In this case, we find an IMBH-SMBH merger rate of ΓIMBH-SMBH = 2.8 × 10-3 yr-1 Gpc3. If the GC hosts a population of stellar BHs, these are deposited close enough to the SMBH to form extreme mass ratio inspirals with a merger rate of ΓEMRI = 0.25 yr-1 Gpc3. Finally, the SMBH tidal field can boost the coalescence of stellar black hole binaries delivered from the infalling GCs. The merger rate for this merging channel is ΓBHB = 0.4-4 yr-1 Gpc3.
GRB 090417B and its Host Galaxy: A Step Towards an Understanding of Optically-Dark Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Holland, Stephen T.; Sbarufatti, Boris; Shen, Rongfeng; Schady, Patricia; Cummings, Jay R.; Fonseca, Emmanuel; Fynbo, Johan P. U.; Jakobsson, Pall; Leitet, Elisabet; Linne, Staffan;
2009-01-01
GRB 090417B was an unusually long burst with a T(sub 90) duration of at least 2130 s and a multi-peaked light curve at energies of 15-150 keV. It was optically dark and has been convincingly associated with a bright star-forming galaxy at a redshift of 0.345 that is broadly similar to the Milky Way. This is one of the few cases where a host galaxy has been clearly identified for a dark gamma-ray burst and thus an ideal candidate for studying the origin of dark bursts. We find that the dark nature of GRB 090417B can not be explained by high redshift, incomplete observations, or unusual physics in the production of the afterglow. The Swift/XRT X-ray data are consistent with the afterglow being obscured by a dense, localized sheet of dust approximately 30-80 pc from the burst along the line of sight. Assuming the standard relativistic fireball model for the afterglow we find that the optical flux is at least 2.5 mag fainter than predicted by the X -ray flux. We are able to explain the lack of an optical afterglow, and the evolution of the X -ray spectrum, by assuming that there is a sheet of dust along the line of sight approximately 30-80 pc from the progenitor. Our results suggest that this dust sheet imparts an extinction of A(sub v)> or = 12 mag, which is sufficient to explain the missing optical flux. GRB 090417B is an example of a gamma-ray burst that is dark due to the localized dust structure in its host galaxy.
The edge of galaxy formation - II. Evolution of Milky Way satellite analogues after infall
NASA Astrophysics Data System (ADS)
Frings, Jonas; Macciò, Andrea; Buck, Tobias; Penzo, Camilla; Dutton, Aaron; Blank, Marvin; Obreja, Aura
2017-12-01
In the first paper, we presented 27 hydrodynamical cosmological simulations of galaxies with total masses between 5 × 108 and 1010 M⊙. In this second paper, we use a subset of these cosmological simulations as initial conditions (ICs) for more than 40 hydrodynamical simulations of satellite and host galaxy interaction. Our cosmological ICs seem to suggest that galaxies on these mass scales have very little rotational support and are velocity dispersion (σ) dominated. Accretion and environmental effects increase the scatter in the galaxy scaling relations (e.g. size-velocity dispersion) in very good agreement with observations. Star formation is substantially quenched after accretion. Mass removal due to tidal forces has several effects: it creates a very flat stellar velocity dispersion profile, and it reduces the dark matter content at all scales (even in the centre), which in turn lowers the stellar velocity on scales around 0.5 kpc even when the galaxy does not lose stellar mass. Satellites which start with a cored dark matter profile are more prone to either be destroyed or to end up in a very dark matter poor galaxy. Finally, we found that tidal effects always increase the 'cuspyness' of the dark matter profile, even for haloes that infall with a core.
NASA Astrophysics Data System (ADS)
Sheth, Kartik
2013-01-01
The Spitzer Survey of Stellar Structure in Galaxies (S4G) is the largest and the most homogenous survey of the distribution of mass and stellar structure in over 2,300 nearby galaxies. With an integration time of four minutes per pixel at 3.6 and 4.5 microns, the S4G maps are extremely deep, tracing the stellar surface densities of < 1 solar mass per square parsec! S4G is the ultimate survey of the endoskeleton of nearby galaxies from dwarfs to ellipticals and affords an incredible treasury of data which we can address a host of outstanding questions in galaxy evolution. At this special session we will present details on the public release of this survey which will include science ready images, masks for the foreground and background stars, globally integrated properties and radial profiles of all galaxies. In addition we will release the results from a GALFIT decomposition of 200 galaxies which will be supplemented with the remainder of the survey within six months. The data are being released through the NASA/IPAC Infrared Science Archive (IRSA). I will present an overview of the survey, the data we are releasing, introduce the speakers and present science highlights from the team.
The kinematics and morphology of cool galactic winds and halo gas from galaxies at 0.3 < z < 1.4
NASA Astrophysics Data System (ADS)
Rubin, Kate H. R.
Large-scale redshift surveys tracing the evolution of the luminous components of galaxies have revealed both an increase in the number density of "red and dead" galaxies and a concomitant decline in the star formation rates (SFRs) of blue galaxies since z ˜ 1. The latter is predicted to be due to a decreasing cool gas supply over time; whereas the former may be explained by the theory of merger-driven galaxy evolution, which suggests that the merging of blue galaxies expels the interstellar medium (ISM), thereby quenching star formation in the remnant. While these theoretical explanations provide robust predictions for the evolution of the gaseous components of distant galaxies, we have few direct measurements of the location and kinematics of cool gas around galaxies beyond the local universe. This thesis uses three complementary observational techniques to provide new constraints on the kinematics and morphology of cool gas in galaxies at 0.3 < z < 1.4. First, we use spectra of ˜470 galaxies at 0.7 < z < 1.5 drawn from the Team Keck Treasury Redshift Survey to study absorption line profiles for the Mg II lambdalambda2796, 2803 and Fe II lambdalambda2586, 2600 transitions, which probe cool, photoionized gas with temperature T ˜ 10 4 K. By coadding several sub-samples of galaxy spectra, we identify gaseous outflows via the Doppler shift of the absorption lines, and find that outflows are ubiquitous in galaxies having SFR > 10 M⊙ yr-1 and stellar masses ≳1010.5M⊙ . By comparing these results to those of Weiner et al. (2009), who present a similar study of outflows in star-forming galaxies at z ˜ 1.4, we find that these outflows persist in high-mass galaxies as they age between z ˜ 1.4 and z ˜ 1. Using HST/ACS imaging of our galaxy sample, we present evidence for a weak trend of increasing outflow absorption strength with increasing galaxy SFR surface density (SigmaSFR). Theoretical studies suggest that a minimum SigmaSFR must be exceeded in the host galaxy for outflows to be driven by either radiation pressure or thermalized energy from supernovae. To test this directly, we use a similar technique to probe cool gas kinematics in the individual Keck/LRIS spectra of a sample of ˜120 galaxies at 0.3 < z < 1.4. These data permit modeling of Mg II and Fe II absorption lines to obtain, e.g., the cool gas outflow velocity and covering fraction. Using Spitzer/MIPS and GALEX imaging to determine SFRs in concert with HST/ACS imaging which enables measurements of the size of star-forming regions, we compare outflow velocity to SigmaSFR. We find that while we detect outflows over a range 0.005 M⊙ yr-1 kpc-2 < Sigma SFR < 1 M⊙ yr-1 kpc-2, outflows occur more frequently with increasing SigmaSFR. The absorption line studies described above provide strong constraints on, e.g., the cool gas velocities. However, they provide only weak constraints on the radial extent and morphology of the gas. Knowledge of the spatial extent of the outflow is essential for accurately estimating its mass and energy; measurements of these rates are in turn crucial to understanding the role of outflows in driving galaxy evolution. Next, we show that emission in Mg II and Fe II* fine-structure lines can provide novel constraints on the spatial extent of an outflow. We identify a starburst galaxy at z = 0.69 which exhibits emission and absorption in Mg II, yielding a P Cygni-like line profile. We demonstrate that this emission is spatially broader than the continuum emission and the emission from H II regions, and associate the Mg II and Fe II* emission with resonance-line scattering and fluorescence in the outflow. These features are common at z ˜ 1, and in principle yield the first direct constraint on the radial extent of the outflow in many distant galaxies. Finally, we present a study of the cool gas around a single galaxy at z = 0.47 using spectroscopy of a bright background galaxy at z = 0.7 at a transverse distance of 16.5 h-170 kpc. While cool halo gas is typically studied along sightlines to background QSOs, the use of background galaxies offers several advantages over more traditional techniques. Because the background galaxy is spatially extended, we probe absorption over a large (> 4 h-170 kpc) area in the foreground halo, and find that the gas exhibits a large velocity dispersion and high covering fraction over this area. Spectroscopy of the foreground host galaxy reveals that it experienced a burst of star formation ˜1 Gyr ago, and we suggest that the absorbing gas in the halo was most likely ejected or tidally stripped during this past violent event. As such, these results again place a novel constraint on the radial extent of cool gas originating in the ISM of a distant galaxy.
Quantitative Study of Blue Stars in NGC 55
NASA Astrophysics Data System (ADS)
Castro, N.; Herrero, A.; Urbaneja, M. A.; García, M.; Simón-Díaz, S.; Bresolin, F.; Pietrzynski, G.; Kudritzki, R.-P.; Gieren, W.
2012-12-01
Massive blue stars are the rarest in number compared with other stars; however, they are the main engines in the chemical and dynamical evolution of galaxies in the Universe. They are also among the brightest stars, making it possible to be observed (and hence studied) beyond the edges of the Milky Way. In the case of the galaxy NGC 55 (1.9 Mpc), presented in this work, it has been not only possible to provide the first census of massive blue stars, but also perform a fully characterization of these stars, including the stellar parameters, the chemical abundances, and information about their evolutionary stages. Even so, that permitted to derive important properties of the host galaxy. This challenging study is based on an objective and fast automatic technique built upon a new state-of-the-art FASTWIND atmosphere model grid. Both the tool and the grid were specially developed for this project.
The Keck OSIRIS Nearby AGN (KONA) Survey: AGN Fueling and Feedback
NASA Astrophysics Data System (ADS)
Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh
In an effort to better constrain the relevant physical processes dictating the co-evolution of supermassive black holes and the galaxies in which they reside we turn to local Seyfert AGN. It is only with these local AGN that we can reach the spatial resolution needed to adequately characterize the inflow and outflow mechanisms thought to be the driving forces in establishing the relationship between black holes and their host galaxies at higher redshift. We present the first results from the KONA (Keck OSIRIS Nearby AGN) survey, which takes advantage of the integral field unit OSIRIS plus laser and natural guide star adaptive optics to probe down to scales of 5-30 parsecs in a sample of 40 local Seyfert galaxies. With these K-band data we measure the two-dimensional distribution and kinematics of the nuclear stars, molecular gas, and ionized gas within the central few hundred parsecs.
Radio active galactic nuclei in galaxy clusters: Feedback, merger signatures, and cluster tracers
NASA Astrophysics Data System (ADS)
Paterno-Mahler, Rachel Beth
Galaxy clusters, the largest gravitationally-bound structures in the universe, are composed of 50-1000s of galaxies, hot X-ray emitting gas, and dark matter. They grow in size over time through cluster and group mergers. The merger history of a cluster can be imprinted on the hot gas, known as the intracluster medium (ICM). Merger signatures include shocks, cold fronts, and sloshing of the ICM, which can form spiral structures. Some clusters host double-lobed radio sources driven by active galactic nuclei (AGN). First, I will present a study of the galaxy cluster Abell 2029, which is very relaxed on large scales and has one of the largest continuous sloshing spirals yet observed in the X-ray, extending outward approximately 400 kpc. The sloshing gas interacts with the southern lobe of the radio galaxy, causing it to bend. Energy injection from the AGN is insufficient to offset cooling. The sloshing spiral may be an important additional mechanism in preventing large amounts of gas from cooling to very low temperatures. Next, I will present a study of Abell 98, a triple system currently undergoing a merger. I will discuss the merger history, and show that it is causing a shock. The central subcluster hosts a double-lobed AGN, which is evacuating a cavity in the ICM. Understanding the physical processes that affect the ICM is important for determining the mass of clusters, which in turn affects our calculations of cosmological parameters. To further constrain these parameters, as well as models of galaxy evolution, it is important to use a large sample of galaxy clusters over a range of masses and redshifts. Bent, double-lobed radio sources can potentially act as tracers of galaxy clusters over wide ranges of these parameters. I examine how efficient bent radio sources are at tracing high-redshift (z>0.7) clusters. Out of 646 sources in our high-redshift Clusters Occupied by Bent Radio AGN (COBRA) sample, 282 are candidate new, distant clusters of galaxies based on measurements of excess galaxy counts surrounding the radio sources in Spitzer infrared images.
The environment of x ray selected BL Lacs: Host galaxies and galaxy clustering
NASA Technical Reports Server (NTRS)
Wurtz, Ron; Stocke, John T.; Ellingson, Erica; Yee, Howard K. C.
1993-01-01
Using the Canada-France-Hawaii Telescope, we have imaged a complete, flux-limited sample of Einstein Medium Sensitivity Survey BL Lacertae objects in order to study the properties of BL Lac host galaxies and to use quantitative methods to determine the richness of their galaxy cluster environments.
Morphologies of mid-IR variability-selected AGN host galaxies
NASA Astrophysics Data System (ADS)
Polimera, Mugdha; Sarajedini, Vicki; Ashby, Matthew L. N.; Willner, S. P.; Fazio, Giovanni G.
2018-05-01
We use multi-epoch 3.6 and 4.5 μm data from the Spitzer Extended Deep Survey (SEDS) to probe the AGN population among galaxies to redshifts ˜3 via their mid-IR variability. About 1 per cent of all galaxies in our survey contain varying nuclei, 80 per cent of which are likely to be AGN. Twenty-three per cent of mid-IR variables are also X-ray sources. The mid-IR variables have a slightly greater fraction of weakly disturbed morphologies compared to a control sample of normal galaxies. The increased fraction of weakly distorted hosts becomes more significant when we remove the X-ray emitting AGN, while the frequency of strongly disturbed hosts remains similar to the control galaxy sample. These results suggest that mid-IR variability identifies a unique population of obscured, Compton-thick AGN revealing elevated levels of weak distortion among their host galaxies.
NASA Astrophysics Data System (ADS)
Heintz, K. E.; Malesani, D.; Wiersema, K.; Jakobsson, P.; Fynbo, J. P. U.; Savaglio, S.; Cano, Z.; Covino, S.; D'Elia, V.; Gomboc, A.; Hammer, F.; Kaper, L.; Milvang-Jensen, B.; Møller, P.; Piranomonte, S.; Selsing, J.; Rhodin, N. H. P.; Tanvir, N. R.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S. D.; Watson, D.
2018-02-01
We here present the spectroscopic follow-up observations with VLT/X-shooter of the Swift long-duration gamma-ray burst GRB 160804A at z = 0.737. Typically, GRBs are found in low-mass, metal-poor galaxies that constitute the sub-luminous population of star-forming galaxies. For the host galaxy of the GRB presented here, we derive a stellar mass of log (M*/ M⊙) = 9.80 ± 0.07, a roughly solar metallicity (12 + log (O/H) = 8.74 ± 0.12) based on emission line diagnostics, and an infrared luminosity of M3.6/(1 + z) = -21.94 mag, but find it to be dust-poor (E(B - V) < 0.05 mag). This establishes the galaxy hosting GRB 160804A as one of the most luminous, massive and metal-rich GRB hosts at z < 1.5. Furthermore, the gas-phase metallicity is found to be representative of the physical conditions of the gas close to the explosion site of the burst. The high metallicity of the host galaxy is also observed in absorption, where we detect several strong Fe II transitions as well as Mg II and Mg I. Although host galaxy absorption features are common in GRB afterglow spectra, we detect absorption from strong metal lines directly in the host continuum (at a time when the afterglow was contributing to < 15 per cent). Finally, we discuss the possibility that the geometry and state of the absorbing and emitting gas are indicative of a galactic scale outflow expelled at the final stage of two merging galaxies.
Characterizing Quasar Outflows III: SEDs, and Bolometric Luminosity Estimates
NASA Astrophysics Data System (ADS)
Richmond, Joseph; Robbins, J. M.; Ganguly, R.; Stark, M. A.; Christenson, D. H.; Derseweh, J. A.; Townsend, S. L.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we add photometry from both the Two Micron All-Sky Survey (2MASS) and from the Wide-Field Infrared Survey Explorer (WISE). 2MASS photometry covers the rest-frame optical regime of these qusars, while the WISE W1, W2, and W3 bands cover the rest-frame wavelength ranges 0.9-1.27 micron, 1.35-1.75 micron, and 2.52-5.51 micron, respectively. The preliminary release of WISE data cover 3800 of our quasars. In an accompnying poster, we have subjectively divided these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). Here, we present average SEDs for these subsamples, estimates of bolometric luminosity, and explore changes in SED based on both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
Characterizing Quasar Outflows I: Sample, Spectral Measurements
NASA Astrophysics Data System (ADS)
Ganguly, Rajib; Christenson, D. H.; Richmond, J. M.; Derseweh, J. A.; Robbins, J. M.; Townsend, S. L.; Stark, M. A.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we subjectively divide these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). We present measurements of the absorption (velocities, velocity widths, equivalent widths), composite spectral profiles of outflows as a function of velocity, as well as measurements of the continuum and CIV, MgII, and FeII emission-line properties. In accompanying posters, we add photometry from the rest-frame X-ray (ROSAT and Chandra), EUV (GALEX), optical (2MASS), and infrared (WISE) bands to complete the SED. The continuum and emission-line measurements from the SDSS spectra and accompanying photometry provides estimates on the black hole masses, bolometric luminsosities, and SED. We consider empirically how these affect the outflow properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
Quasar Spectral Energy Distributions As A Function Of Physical Property
NASA Astrophysics Data System (ADS)
Townsend, Shonda; Ganguly, R.; Stark, M. A.; Derseweh, J. A.; Richmond, J. M.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). In turn, models of outflows have shown particular sensitivity to the shape of the spectral energy distribution (SED), depending on the UV luminosity to transfer momentum to the gas, the X-ray luminosity to regulate how efficiently that transfer can be, etc. To investigate how SED changes with physical properties, we follow up on Richards et al. (2006), who constructed SEDs with varying luminosity. Here, we construct SEDs as a function of redshift, and physical property (black hole mass, bolometric luminosity, Eddington ratio) for volume limited samples drawn from the Sloan Digital Sky Survey, with photometry supplemented from 2MASS, WISE, GALEX, ROSAT, and Chandra. To estimate black hole masses, we adopt the scaling relations from Greene & Ho (2005) based on the H-alpha emission line FWHM. This requires redshifts less than 0.4. To construct volume-limited subsamples, we begin by adopting g=19.8 as a nominal limiting magnitude over which we are guaranteed to detect z<0.4 quasars. At redshift 0.4, we are complete down to Mg=-21.8, which yields 3300 objects from Data Release 7. At z=0.1, we are complete down to Mg=-18.5. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
Characterizing Quasar Outflows II: The Incidence of the Highest Velocity Outflows
NASA Astrophysics Data System (ADS)
Stark, Michele A.; Ganguly, R.; Christenson, D. H.; Richmond, J. M.; Derseweh, J. A.; Robbins, J. M.; Townsend, S. L.
2012-05-01
Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In an accompanying poster, we subjectively divide these quasars into four categories (broad absorption-line quasars, associated absorption-line quasars, reddened quasars, and unabsorbed/unreddened quasars). This subjective scheme is limited with regard to classifying narrow absorption-line systems (NALs). With single epoch, low dispersion SDSS spectra, we cannot distinguish between cosmologically intervening NALs, and intrinsic NALs that appear at large velocity offsets. In this poster, we tackle this uncertainty statistically by considering the incidence of both CIV and MgII NALs as a function of velocity, and how this distribution changes with quasar properties. We expect that absorption by intervening structures should not vary with quasar property. Other accompanying posters add photometry from rest-frame X-ray through the infrared (WISE) to complete the SED, which we utilize in these efforts. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.
Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea, E-mail: alis@ucolick.org
Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ☉} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with amore » lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.« less
Do Low Surface Brightness Galaxies Host Stellar Bars?
NASA Astrophysics Data System (ADS)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo
2017-09-01
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.
Do Low Surface Brightness Galaxies Host Stellar Bars?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness ismore » mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.« less
Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN
NASA Technical Reports Server (NTRS)
Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne
2011-01-01
We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.
HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain
We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z < 0.05), moderate luminosity AGNs from the Swift BAT sample. The BAT AGN host galaxies have intermediate optical colors (u - r and g - r) that are bluer than a comparison sample of inactive galaxies and optically selected AGNs from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BATmore » AGNs are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGNs in massive galaxies (log M{sub *} >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] {lambda}5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.« less
An extended moderate-depth contiguous layer of the Chandra Bootes field - additional pointings
NASA Astrophysics Data System (ADS)
Kraft, Ralph
2016-09-01
We propose 150ks (6x25ks) ACIS-I observations to supplement existing X-ray data in XBootes. These new observations will allow the expansion of relatively large contiguous ( 2deg2) region in Bootes covered at 40ks, i.e., 5-8x deeper than the nominal Bootes field. In concert with the recently approved 1.025 Ms Chandra Deep Wide-Field Survey, this additional deep layer of Bootes will (1) provide new insights into the dark matter halos and large-scale structures that host AGN; (2) allow new measurements of the distribution of X-ray luminosities and connections to host galaxy evolution.
Galaxy evolution in clusters since z~1
NASA Astrophysics Data System (ADS)
Aragon-Salamanca, Alfonso
2010-09-01
Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.
Galaxy Evolution in Clusters Since z ~ 1
NASA Astrophysics Data System (ADS)
Aragón-Salamanca, A.
Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the Universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.
Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?
Erwin, Peter; Gadotti, Dimitri Alexei
2012-01-01
Smore » tudies have suggested that there is a strong correlation between the masses of nuclear star clusters (NCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (MBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while MBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio M NC / M ⋆ , tot for NCs in spirals (at least those with Hubble types c and later) is typically an order of magnitude smaller than the mass ratio M BH / M ⋆ , bul of MBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both MBHs and NCs. We also discuss evidence for a break in the NC-host galaxy correlation, galaxies with Hubble types earlier than bc appear to host systematically more massive NCs than do types c and later.« less
NASA Astrophysics Data System (ADS)
Wang, Peng; Luo, Yu; Kang, Xi; Libeskind, Noam I.; Wang, Lei; Zhang, Youcai; Tempel, Elmo; Guo, Quan
2018-06-01
The alignment between satellites and central galaxies has been studied in detail both in observational and theoretical works. The widely accepted fact is that satellites preferentially reside along the major axis of their central galaxy. However, the origin and large-scale environmental dependence of this alignment are still unknown. In an attempt to determine these variables, we use data constructed from Sloan Digital Sky Survey DR7 to investigate the large-scale environmental dependence of this alignment with emphasis on examining the alignment’s dependence on the color of the central galaxy. We find a very strong large-scale environmental dependence of the satellite–central alignment (SCA) in groups with blue centrals. Satellites of blue centrals in knots are preferentially located perpendicular to the major axes of the centrals, and the alignment angle decreases with environment, namely, when going from knots to voids. The alignment angle strongly depends on the {}0.1(g-r) color of centrals. We suggest that the SCA is the result of a competition between satellite accretion within large-scale structure (LSS) and galaxy evolution inside host halos. For groups containing red central galaxies, the SCA is mainly determined by the evolution effect, while for blue central dominated groups, the effect of the LSS plays a more important role, especially in knots. Our results provide an explanation for how the SCA forms within different large-scale environments. The perpendicular case in groups and knots with blue centrals may also provide insight into understanding similar polar arrangements, such as the formation of the Milky Way and Centaurus A’s satellite system.
The Formation of Galactic Bulges
NASA Astrophysics Data System (ADS)
Carollo, C. Marcella; Ferguson, Henry C.; Wyse, Rosemary F. G.
2000-03-01
Part I. Introduction: What are galactic bulges?; Part II. The Epoch of Bulge Formation: Origin of bulges; Deep sub-mm surveys: High-z ULIRGs and the formation of spheroids; Ages and metallicities for stars in the galactic bulge; Integrated stellar populations of bulges: First results; HST-NICMOS observations of galactic bulges: Ages and dust; Inside-out bulge formation and the origin of the Hubble sequence; Part III. The Timescales of Bulge Formation: Constraints on the bulge formation timescale from stellar populations; Bulge building with mergers and winds; Role of winds, starbursts, and activity in bulge formation; Dynamical timescales of bulge formation; Part IV. Physical Processes in Bulge Formation: the role of bars for secular bulge formation; Bars and boxy/peanut-shaped bulges: an observational point of view; Boxy- and peanut-shaped bulges; A new class of bulges; The role of secondary bars in bulge formation; Radial transport of molecular gas to the nuclei of spiral galaxies; Dynamical evolution of bulge shapes; Two-component stellar systems: Phase-space constraints; Central NGC 2146 - a firehose-type bending instability?; Bulge formation: the role of the multi-phase ISM; Global evolution of a self-gravitating multi-phase ISM in the central kpc region of galaxies; Part V. Bulge Phenomenology: Bulge-disk decomposition of spiral galaxies in the near-infrared; The triaxial bulge of NGC 1371; The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672; The kinematics and the origin of the ionized gas in NGC 4036; Optically thin thermal plasma in the galactic bulge; X-ray properties of bulges; The host galaxies of radio-loud AGN; The centers of radio-loud early-type galaxies with HST; Central UV spikes in two galactic spheroids; Conference summary: where do we stand?
Understanding The Heating And Cooling Of Galaxies Over Cosmic Time With BLISS on SPICA
NASA Astrophysics Data System (ADS)
Armus, Lee; Helou, G.; Bradford, M.; Murphy, E.; Appleton, P.
2011-05-01
In order to gain a comprehensive picture of galaxy evolution, we need to accurately measure the growing population of stars and super-massive black holes in dark matter halos. The processes that regulate this evolution are invariably those that are the most difficult to simulate, namely gas heating and cooling, star formation, black hole fueling and feedback from supernovae and AGN. Measurements of the PAH features, atomic fine-structure and H2 lines in the mid-infrared with Spitzer have been used successfully to probe the dust properties, power sources and state of the ISM in normal, starburst and AGN host galaxies at 0 < z < 3. At high redshifts, these lines enter the far-infrared, which is also home to critical diagnostics of the neutral and ionized ISM, such as [OI], [OIII], [NII], and [CII]. Recent results from Herschel, CSO, IRAM and APEX suggest that there is an extremely large range in far-infrared line fluxes and physical conditions among the most luminous, high-z galaxies. However, to measure the rest-frame far-infrared cooling lines in galaxies that dominate the far-infrared background, along with the full suite of mid-infrared atomic and molecular gas and dust features in ULIRGs over a wide range in redshift, a broadband spectrometer capable of reaching the natural astrophysical background over the 30-400 micron range is required. The Background Limited Infrared Sub-millimeter Spectrometer (BLISS) on the Japanese-led SPICA mission, would deliver unmatched sensitivity to evolving, dusty galaxies over all epochs. Here we discuss the scientific rationale behind BLISS and the opportunities afforded by US participation in the SPICA mission.
Chemical enrichment in isolated barred spiral galaxies.
NASA Astrophysics Data System (ADS)
Martel, Hugo; Carles, Christian; Robichaud, Fidéle; Ellison, Sara L.; Williamson, David J.
2018-04-01
To investigate the role of bars in the chemical evolution of isolated disc galaxies, we performed a series of 39 gas dynamical simulations of isolated barred and unbarred galaxies with various masses, initial gas fractions, and AGN feedback models. The presence of a bar drives a substantial amount of gas toward the central region of the galaxy. In the most massive galaxies, this results in a violent starburst, followed by a drop in star formation resulting from gas exhaustion. The time delay between Type Ia and Type II supernovae explosions means that barred galaxies experience a rapid increase in [O/H] in the central region, and a much more gradual increase in [Fe/H]. In unbarred galaxies, star formation proceeds at a slow and steady rate, and oxygen and iron are produced at steady rates which are similar except for a time offset. Comparing the abundance ratios in barred and unbarred galaxies with the same central stellar mass M*, we find in barred galaxies an enhancement of 0.07 dex in [O/H], 0.05 dex in [Fe/H], and 0.05 dex in [O/Fe]. The [O/H] enhancement is in excellent agreement with observations from the SDSS. The initial gas fraction has very little effect on the abundance ratios in barred and unbarred galaxies, unless the galaxies experience a starburst. We considered AGN-host galaxies located near the bottom of the AGN regime, M* ≳ 3 × 1010M⊙, where AGN feedback dominates over supernovae feedback. We found that the impact of AGN feedback on the central abundances is marginal.
Chemical enrichment in isolated barred spiral galaxies
NASA Astrophysics Data System (ADS)
Martel, Hugo; Carles, Christian; Robichaud, Fidèle; Ellison, Sara L.; Williamson, David J.
2018-07-01
To investigate the role of bars in the chemical evolution of isolated disc galaxies, we performed a series of 39 gas dynamical simulations of isolated barred and unbarred galaxies with various masses, initial gas fractions, and active galactic nucleus (AGN) feedback models. The presence of a bar drives a substantial amount of gas towards the central region of the galaxy. In the most massive galaxies, this results in a violent starburst, followed by a drop in star formation resulting from gas exhaustion. The time delay between Type Ia and Type II supernovae explosions means that barred galaxies experience a rapid increase in [O/H] in the central region, and a much more gradual increase in [Fe/H]. In unbarred galaxies, star formation proceeds at a slow and steady rate, and oxygen and iron are produced at steady rates which are similar except for a time offset. Comparing the abundance ratios in barred and unbarred galaxies with the same central stellar mass M*, we find in barred galaxies an enhancement of 0.07 dex in [O/H], 0.05 dex in [Fe/H], and 0.05 dex in [O/Fe]. The [O/H] enhancement is in excellent agreement with observations from the SDSS. The initial gas fraction has very little effect on the abundance ratios in barred and unbarred galaxies, unless the galaxies experience a starburst. We considered AGN-host galaxies located near the bottom of the AGN regime, M* ≳ 3 × 1010M⊙, where AGN feedback dominates over supernovae feedback. We found that the impact of AGN feedback on the central abundances is marginal.
The SEDs and Host Galaxies of the Dustiest GRB Afterglows
NASA Technical Reports Server (NTRS)
Kruhler, T.; Greiner, J.; Schady, P.; Savaglio, S.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Filgas, R.; Gruber, D.; Kann, D. A.;
2011-01-01
The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe, Until recently, however. the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows. biasing all demographic studies against sight-lines that contain large amounts of dust. Aims. Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (A(sub v) (Sup GRB) approx > 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry and location of the absorbing dust of these poorly-explored host galaxies. and a comparison to hosts from optically-selected samples. Methods. This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line as well as galaxy-integrated characteristics like the host's stellar mass, luminosity. color-excess and star-formation rate. Results. For the eight afterglows considered in this study we report for the first time the redshift of GRBs 081109 (z = 0.97S7 +/- 0.0005). and the visual extinction towards GRBs 0801109 (A(sub v) (Sup GRB) = 3.4(sup +0.4) (sub -0.3) mag) and l00621A (A(sub v) (Sup GRB) = 3.8 +/- 0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs. there is a strong anti-correlation between the afterglow's metals-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder(((R - K)(sub AB)) approximates 1.6 mag), more luminous (
Galaxy evolution in clusters since z=1
NASA Astrophysics Data System (ADS)
Aragón-Salamanca, A.
2011-11-01
It is now 30 years since Alan Dressler published his seminal paper onthe morphology-density relation. Although there is still much to learnon the effect of the environment on galaxy evolution, extensive progress has been made since then both observationally and theoretically.Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature'' vs. "nurture'' in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age.Many of the results presented here have been obtainedwithin the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.
AGN jet power, formation of X-ray cavities, and FR I/II dichotomy in galaxy clusters
NASA Astrophysics Data System (ADS)
Fujita, Yutaka; Kawakatu, Nozomu; Shlosman, Isaac
2016-04-01
We investigate the ability of jets in active galactic nuclei to break out of the ambient gas with sufficiently large advance velocities. Using observationally estimated jet power, we analyze 28 bright elliptical galaxies in nearby galaxy clusters. Because the gas density profiles in the innermost regions of galaxies have not been resolved so far, we consider two extreme cases for temperature and density profiles. We also follow two types of evolution for the jet cocoons: being driven by the pressure inside the cocoon [Fanaroff-Riley (FR) type I], and being driven by the jet momentum (FR type II). Our main result is that regardless of the assumed form of the density profiles, jets with observed powers of ≲1044 erg s-1 are not powerful enough to evolve as FR II sources. Instead, they evolve as FR I sources and appear to be decelerated below the buoyant velocities of the cocoons when jets were propagating through the central dense regions of the host galaxies. This explains why FR I sources are more frequent than FR II sources in clusters. Furthermore, we predict the sizes of X-ray cavities from the observed jet powers and compare them with the observed ones-they are consistent within a factor of two if the FR I type evolution is realized. Finally, we find that the jets with a power ≳1044 erg s-1 are less affected by the ambient medium, and some of them, but not all, could serve as precursors of the FR II sources.
NASA Astrophysics Data System (ADS)
Bower, Richard G.; Schaye, Joop; Frenk, Carlos S.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; McAlpine, Stuart
2017-02-01
Galaxies fall into two clearly distinct types: `blue-sequence' galaxies which are rapidly forming young stars, and `red-sequence' galaxies in which star formation has almost completely ceased. Most galaxies more massive than 3 × 1010 M⊙ follow the red sequence, while less massive central galaxies lie on the blue sequence. We show that these sequences are created by a competition between star formation-driven outflows and gas accretion on to the supermassive black hole at the galaxy's centre. We develop a simple analytic model for this interaction. In galaxies less massive than 3 × 1010 M⊙, young stars and supernovae drive a high-entropy outflow which is more buoyant than any tenuous corona. The outflow balances the rate of gas inflow, preventing high gas densities building up in the central regions. More massive galaxies, however, are surrounded by an increasingly hot corona. Above a halo mass of ˜1012 M⊙, the outflow ceases to be buoyant and star formation is unable to prevent the build-up of gas in the central regions. This triggers a strongly non-linear response from the black hole. Its accretion rate rises rapidly, heating the galaxy's corona, disrupting the incoming supply of cool gas and starving the galaxy of the fuel for star formation. The host galaxy makes a transition to the red sequence, and further growth predominantly occurs through galaxy mergers. We show that the analytic model provides a good description of galaxy evolution in the EAGLE hydrodynamic simulations. So long as star formation-driven outflows are present, the transition mass scale is almost independent of subgrid parameter choice.
NASA Astrophysics Data System (ADS)
Djordjevic, Julie; Thompson, Mark; Urquhart, James S.
2017-01-01
We present a catalog of compact and ultracompact HII regions for all Galactocentric radii. Previous catalogs focus on the inner Galaxy (Rgal ≤ 8 kpc) but the recent SASSy 870 µm survey allows us to identify regions out to ~20 kpc. Early samples are also filled with false classifications leading to uncertainty when deriving star formation efficiencies in Galactic models. These objects have similar mid-IR colours to HII regions. Urquhart et al. (2013) found that they could use mid-IR, submm, and radio data to identify the genuine compact HII regions, avoiding confusion. They used this method on a small portion of the Galaxy (10 < l < 60), identifying 213 HII regions embedded in 170 clumps. We use ATLASGAL and SASSy, crossmatched with RMS, to sample the remaining galactic longitudes out to Rgal = 20 kpc. We derive the properties of the identified compact HII regions and their host clumps while addressing the implications for recent massive star formation in the outer Galaxy. Observations towards nearby galaxies are biased towards massive stars, affecting simulations and overestimating models for galactic evolution and star formation rates. The Milky Way provides the ideal template for studying factors affecting massive star formation rates and efficiencies at high resolution, thus fine-tuning those models. We find that there is no significant change in the rate of massive star formation in the outer vs inner Galaxy. Despite some peaks in known complexes and possible correlation with spiral arms, the outer Galaxy appears to produce massive stars as efficiently as the inner regions. However, many of the potential star forming SASSy clumps have no available radio counterpart to confirm the presence of an HII region or other star formation tracer. Follow-up observations will be required to verify this conclusion and are currently in progress.
Intrinsic alignments of galaxies in the EAGLE and cosmo-OWLS simulations
NASA Astrophysics Data System (ADS)
Velliscig, Marco; Cacciato, Marcello; Schaye, Joop; Hoekstra, Henk; Bower, Richard G.; Crain, Robert A.; van Daalen, Marcel P.; Furlong, Michelle; McCarthy, I. G.; Schaller, Matthieu; Theuns, Tom
2015-12-01
We report results for the alignments of galaxies in the EAGLE and cosmo-OWLS hydrodynamical cosmological simulations as a function of galaxy separation (-1 ≤ log10(r/[ h-1 Mpc]) ≤ 2) and halo mass (10.7 ≤ log10(M200/[h-1 M⊙]) ≤ 15). We focus on two classes of alignments: the orientations of galaxies with respect to either the directions to, or the orientations of, surrounding galaxies. We find that the strength of the alignment is a strongly decreasing function of the distance between galaxies. For galaxies hosted by the most massive haloes in our simulations the alignment can remain significant up to ˜100 Mpc. Galaxies hosted by more massive haloes show stronger alignment. At a fixed halo mass, more aspherical or prolate galaxies exhibit stronger alignments. The spatial distribution of satellites is anisotropic and significantly aligned with the major axis of the main host halo. The major axes of satellite galaxies, when all stars are considered, are preferentially aligned towards the centre of the main host halo. The predicted projected direction-orientation alignment, ɛg+(rp), is in broad agreement with recent observations. We find that the orientation-orientation alignment is weaker than the orientation-direction alignment on all scales. Overall, the strength of galaxy alignments depends strongly on the subset of stars that are used to measure the orientations of galaxies and it is always weaker than the alignment of dark matter haloes. Thus, alignment models that use halo orientation as a direct proxy for galaxy orientation overestimate the impact of intrinsic galaxy alignments.
Near-infrared properties of quasar and Seyfert host galaxies
NASA Astrophysics Data System (ADS)
McLeod, Kim Katris
1994-01-01
We present near-infrared images of nearly 100 host galaxies of Active Galactic Nuclei (AGN). Our quasar sample is comprised of the 50 quasars from the Palomar Green Bright Quasar Survey with redshifts z less than or equal to 0.3. We have restricted the redshift range to ensure adequate spatial resolution, galaxy detectability, and minimal distance-dependent effects, while still giving a large sample of objects. For lower-luminosity AGN we have chosen to image the CfA Seyfert sample. This sample is composed of 48 Seyferts, roughly equally divided among types 1, 1.5-1.9, and 2. This sample was spectroscopically selected, and, therefore, is not biased towards Seyferts with significant star formation. Taken together, these samples allow a statistical look at the continuity of host galaxy properties over a factor of 10,000 in nuclear luminosity. We find the near-infrared light to be a good tracer of luminous mass in these galaxies. The Seyferts are found in galaxies of type SO to Sc. The radio quiet quasars live in similar kinds of galaxies spanning the same range of mass centered around L(*). However, for the most luminous quasars, there is a correlation between the minimum host galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L(*) galaxy. We also detect a population of low mass host galaxies with very low luminosity Seyfert nuclei. The low luminosity quasars and the Seyferts both tend to lie in host galaxies seen preferentially face-on, which suggests there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius approximately 1) and must cover a significant fraction of the narrow line region (r greater than 100 pc). We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large scale distribution of luminous mass in the galaxy. We also present an infrared image of the jet of SC 273 and compare it to optical and radio images from the literature.
Near-Infrared Properties of Quasar and Seyfert Host Galaxies
NASA Astrophysics Data System (ADS)
McLeod, Kim Katris
1995-01-01
We present near-infrared images of nearly 100 host galaxies of Active Galactic Nuclei (AGN). Our quasar sample is comprised of the 50 quasars from the Palomar Green Bright Quasar Survey with redshifts z\\<= 0.3. We have restricted the redshift range to ensure adequate spatial resolution, galaxy detectability, and minimal distance-dependent effects, while still giving a large sample of objects. For lower-luminosity AGN we have chosen to image the CfA Seyfert sample. This sample is composed of 48 Seyferts, roughly equally divided among types 1, 1.5-1.9, and 2. This sample was spectroscopically selected, and, therefore, is not biased towards Seyferts with significant star formation. Taken together, these samples allow a statistical look at the continuity of host-galaxy properties over a factor of 10,000 in nuclear luminosity. We find the near-infrared light to be a good tracer of luminous mass in these galaxies. The Seyferts are found in galaxies of type S0 to Sc. The radio quiet quasars live in similar kinds of galaxies spanning the same range of mass centered around L*. However, for the most luminous quasars, there is a correlation between the minimum host-galaxy mass and the luminosity of the active nucleus. Radio-loud quasars are generally found in hosts more massive than an L* galaxy. We also detect a population of low-mass host galaxies with very low-luminosity Seyfert nuclei. The low luminosity quasars and the Seyferts both tend to lie in host galaxies seen preferentially face-on, which suggests there is a substantial amount of obscuration coplanar with the galaxian disk. The obscuration must be geometrically thick (thickness-to-radius ~1) and must cover a significant fraction of the narrow line region (r>100 pc). We have examined our images for signs of perturbations that could drive fuel toward the galaxy nucleus, but there are none we can identify at a significant level. The critical element for fueling is evidently not reflected clearly in the large scale distribution of luminous mass in the galaxy. We also present an infrared image of the jet of 3C 273 and compare it to visible and radio images from the literature. (SECTION: Dissertation Summaries)
The mystery of a supposed massive star exploding in a brightest cluster galaxy
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Griffin
2017-08-01
Most of the diversity of core-collapse supernovae results from late-stage mass loss by their progenitor stars. Supernovae that interact with circumstellar material (CSM) are a particularly good probe of these last stages of stellar evolution. Type Ibn supernovae are a rare and poorly understood class of hydrogen-poor explosions that show signs of interaction with helium-rich CSM. The leading hypothesis is that they are explosions of very massive Wolf-Rayet stars in which the supernova ejecta excites material previously lost by stellar winds. These massive stars have very short lifetimes, and therefore should only found in actively star-forming galaxies. However, PS1-12sk is a Type Ibn supernova found on the outskirts of a giant elliptical galaxy. As this is extraordinary unlikely, we propose to obtain deep UV images of the host environment of PS1-12sk in order to map nearby star formation and/or find a potential unseen star-forming host. If star formation is detected, its amount and location will provide deep insights into the progenitor picture for the poorly-understood Type Ibn class. If star formation is still not detected, these observations would challenge the well-accepted hypothesis that these are core-collapse supernovae at all.
NASA Astrophysics Data System (ADS)
Holley-Bockelmann, Kelly
2018-04-01
Astronomers now know that supermassive black holes are in nearly every galaxy.Though these black holes are an observational certainty, nearly every aspect of their evolution -- from their birth, to their fuel source, to their basic dynamics -- is a matter of lively debate. Fortunately, LISA, a space-based gravitational wave observatory set to launch in 2034, will revolutionize this field by providing data that is complementary to electromagnetic observations as well as data in regimes that are electromagnetically dark. This talk will touch on our current understanding of how SMBHs form, evolve, and alter their galaxy host, and will outline the theoretical, computational and observational work needed to make the most of LISA observations.
GRB host galaxies with VLT/X-Shooter: properties at 0.8 < z < 1.3
NASA Astrophysics Data System (ADS)
Piranomonte, S.; Japelj, J.; Vergani, S. D.; Savaglio, S.; Palazzi, E.; Covino, S.; Flores, H.; Goldoni, P.; Cupani, G.; Krühler, T.; Mannucci, F.; Onori, F.; Rossi, A.; D'Elia, V.; Pian, E.; D'Avanzo, P.; Gomboc, A.; Hammer, F.; Randich, S.; Fiore, F.; Stella, L.; Tagliaferri, G.
2015-10-01
Long gamma-ray bursts (LGRBs) are associated with the death of massive stars. Their host galaxies therefore represent a unique class of objects tracing star formation across the observable Universe. Indeed, recently accumulated evidence shows that GRB hosts do not differ substantially from general population of galaxies at high (z > 2) redshifts. However, it has been long recognized that the properties of z < 1.5 hosts, compared to general star-forming population, are unusual. To better understand the reasons for the supposed difference in LGRB hosts properties at z < 1.5, we obtained Very Large Telescope (VLT)/X-Shooter spectra of six hosts lying in the redshift range of 0.8 < z < 1.3. Some of these hosts have been observed before, yet we still lack well-constrained information on their characteristics such as metallicity, dust extinction and star formation rate (SFR). We search for emission lines in the VLT/X-Shooter spectra of the hosts and measure their fluxes. We perform a detailed analysis, estimating host average extinction, SFRs, metallicities and electron densities where possible. Measured quantities of our hosts are compared to a larger sample of previously observed GRB hosts at z < 2. SFRs and metallicities are measured for all the hosts analysed in this paper and metallicities are well determined for four hosts. The mass-metallicity relation, the fundamental metallicity relation and SFRs derived from our hosts occupy similar parameter space as other host galaxies investigated so far at the same redshift. We therefore conclude that GRB hosts in our sample support the found discrepancy between the properties of low-redshift GRB hosts and the general population of star-forming galaxies.
Discovery of extreme [O III] λ5007 Å outflows in high-redshift red quasars
NASA Astrophysics Data System (ADS)
Zakamska, Nadia L.; Hamann, Fred; Pâris, Isabelle; Brandt, W. N.; Greene, Jenny E.; Strauss, Michael A.; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M.; Ross, Nicholas P.
2016-07-01
Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z = 2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XSHOOTER on the Very Large Telescope to measure rest-frame optical spectra of four z ˜ 2.5 extremely red quasars with infrared luminosities ˜1047 erg s-1. We present the discovery of very broad (full width at half max = 2600-5000 km s-1), strongly blueshifted (by up to 1500 km s-1) [O III] λ5007 Å emission lines in these objects. In a large sample of type 2 and red quasars, [O III] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end in both [O III] kinematics and infrared luminosity. We estimate that at least 3 per cent of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. Photo-ionization estimates suggest that the [O III] emission might be extended on a few kpc scales, which would suggest that the extreme outflow is affecting the entire host galaxy of the quasar. These sources may be the signposts of the most extreme form of quasar feedback at the peak epoch of galaxy formation, and may represent an active `blow-out' phase of quasar evolution.
The Relation between Luminous AGNs and Star Formation in Their Host Galaxies
NASA Astrophysics Data System (ADS)
Xu, Lei; Rieke, G. H.; Egami, E.; Haines, C. P.; Pereira, M. J.; Smith, G. P.
2015-08-01
We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes (˜ 3× {10}8{M}⊙ ) accreting at ˜10% of the Eddington rate and residing in galaxies with stellar mass \\gt 3× {10}10{M}⊙ ; those detected with Herschel have IR luminosity from star formation in the range of {L}{SF,{IR}}˜ {10}10-{10}12{L}⊙ . We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.
ULTRAVIOLET PROPERTIES OF GALACTIC GLOBULAR CLUSTERS WITH GALEX. II. INTEGRATED COLORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalessandro, Emanuele; Ferraro, Francesco R.; Lanzoni, Barbara
2012-11-01
We present ultraviolet (UV) integrated colors of 44 Galactic globular clusters (GGCs) observed with the Galaxy Evolution Explorer (GALEX) in both FUV and NUV bands. This database is the largest homogeneous catalog of UV colors ever published for stellar systems in our Galaxy. The proximity of GGCs makes it possible to resolve many individual stars even with the somewhat low spatial resolution of GALEX. This allows us to determine how the integrated UV colors are driven by hot stellar populations, primarily horizontal branch stars and their progeny. The UV colors are found to be correlated with various parameters commonly usedmore » to define the horizontal branch morphology. We also investigate how the UV colors vary with parameters like metallicity, age, helium abundance, and concentration. We find for the first time that GCs associated with the Sagittarius dwarf galaxy have (FUV - V) colors systematically redder than GGCs with the same metallicity. Finally, we speculate about the presence of an interesting trend, suggesting that the UV color of GCs may be correlated with the mass of the host galaxy, in the sense that more massive galaxies possess bluer clusters.« less
Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group
NASA Astrophysics Data System (ADS)
Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael
2018-06-01
We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.
Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity
NASA Astrophysics Data System (ADS)
Gallagher, Joseph S.; Garnavich, Peter M.; Caldwell, Nelson; Kirshner, Robert P.; Jha, Saurabh W.; Li, Weidong; Ganeshalingam, Mohan; Filippenko, Alexei V.
2008-10-01
We have obtained optical spectra of 29 early-type (E/S0) galaxies that hosted Type Ia supernovae (SNe Ia). We have measured absorption-line strengths and compared them to a grid of models to extract the relations between the supernova properties and the luminosity-weighted age/composition of the host galaxies. Such a direct measurement is a marked improvement over existing analyses that tend to rely on general correlations between the properties of stellar populations and morphology. We find a strong correlation suggesting that SNe Ia in galaxies whose populations have a characteristic age greater than 5 Gyr are ~1 mag fainter at Vmax than those found in galaxies with younger populations. We find that SN Ia distance residuals in the Hubble diagram are correlated with host-galaxy metal abundance with higher iron abundance galaxies hosting less-luminous supernovae. We thus conclude that the time since progenitor formation primarily determines the radioactive Ni production while progenitor metal abundance has a weaker influence on peak luminosity, but one not fully corrected by light-curve shape and color fitters. This result, particularly the secondary dependence on metallicity, has significant implications for the determination of the equation-of-state parameter, w = P/(ρ c2) , and could impact planning for future dark-energy missions such as JDEM. Assuming no selection effects in discovering SNe Ia in local early-type galaxies, we find a higher specific SN Ia rate in E/S0 galaxies with ages below 3 Gyr than in older hosts. The higher rate and brighter luminosities seen in the youngest E/S0 hosts may be a result of recent star formation and represents a tail of the "prompt" SN Ia progenitors.
Modeling evolution of dark matter substructure and annihilation boost
NASA Astrophysics Data System (ADS)
Hiroshima, Nagisa; Ando, Shin'ichiro; Ishiyama, Tomoaki
2018-06-01
We study evolution of dark matter substructures, especially how they lose mass and change density profile after they fall in gravitational potential of larger host halos. We develop an analytical prescription that models the subhalo mass evolution and calibrate it to results of N -body numerical simulations of various scales from very small (Earth size) to large (galaxies to clusters) halos. We then combine the results with halo accretion histories and calculate the subhalo mass function that is physically motivated down to Earth-mass scales. Our results—valid for arbitrary host masses and redshifts—have reasonable agreement with those of numerical simulations at resolved scales. Our analytical model also enables self-consistent calculations of the boost factor of dark matter annihilation, which we find to increase from tens of percent at the smallest (Earth) and intermediate (dwarfs) masses to a factor of several at galaxy size, and to become as large as a factor of ˜10 for the largest halos (clusters) at small redshifts. Our analytical approach can accommodate substructures in the subhalos (sub-subhalos) in a consistent framework, which we find to give up to a factor of a few enhancements to the annihilation boost. The presence of the subhalos enhances the intensity of the isotropic gamma-ray background by a factor of a few, and as the result, the measurement by the Fermi Large Area Telescope excludes the annihilation cross section greater than ˜4 ×10-26 cm3 s-1 for dark matter masses up to ˜200 GeV .
NASA Astrophysics Data System (ADS)
Choi, Ena
2015-10-01
The lives of galaxies and their supermassive black holes (SMBH) are probably intimately linked. Deep multi-wavelength surveys with HST are now providing detailed imaging of a statistically robust sample of obscured and unobscured AGN hosts, along with control samples of inactive galaxies, giving us an unprecedented opportunity to study the relationship between AGN and their hosts. However, so far these observations have uncovered more puzzles than they have resolved. Although mergers are considered a promising triggering mechanism for AGN activity, numerous studies have shown that AGN hosts are no more likely to appear morphologically disturbed than inactive galaxies. Studies of whether AGN hosts exhibit enhanced or suppressed star formation have also yielded conflicting results. We propose to run a suite of state-of-the-art simulations to study the AGN-host galaxy connection. These simulations will be post-processed with a radiative transfer code, a sub-grid model for torus-scale obscuration, and short timescale AGN variability. Using mock images created from the simulations, we will study the predicted morphologies and stellar populations of AGN hosts and normal galaxies with similar stellar masses. We will use our simulations to address two major science questions: (1) how is SMBH growth fueled and fed, and what triggers rapid feeding, and (2) how does AGN feedback regulate BH growth and the growth of the host galaxy? In addition, we will release our simulation outputs and mock images and catalogs to the community through MAST.
Type II supernovae in low luminosity host galaxies
NASA Astrophysics Data System (ADS)
Gutiérrez, C. P.; Anderson, J. P.; Sullivan, M.; Dessart, L.; González-Gaitan, S.; Galbany, L.; Dimitriadis, G.; Arcavi, I.; Bufano, F.; Chen, T.-W.; Dennefeld, M.; Gromadzki, M.; Haislip, J. B.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Kankare, E.; Leloudas, G.; Maguire, K.; McCully, C.; Morrell, N.; E, F. Olivares; Pignata, G.; Reichart, D. E.; Reynolds, T.; Smartt, S. J.; Sollerman, J.; Taddia, F.; Takáts, K.; Terreran, G.; Valenti, S.; Young, D. R.
2018-06-01
We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences) on SN II transient properties. We measure the SN absolute magnitude at maximum, the light-curve plateau duration, the optically thick duration, and the plateau decline rate in the V -band, together with expansion velocities and pseudo-equivalent-widths (pEWs) of several absorption lines in the SN spectra. For the SN host galaxies, we estimate the absolute magnitude and the stellar mass, a proxy for the metallicity of the host galaxy. SNe II exploding in low luminosity galaxies display weaker pEWs of Fe II λ5018, confirming the theoretical prediction that metal lines in SN II spectra should correlate with metallicity. We also find that SNe II in low-luminosity hosts have generally slower declining light curves and display weaker absorption lines. We find no relationship between the plateau duration or the expansion velocities with SN environment, suggesting that the hydrogen envelope mass and the explosion energy are not correlated with the metallicity of the host galaxy. This result supports recent predictions that mass-loss for red supergiants is independent of metallicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Rachel C.; D’Andrea, Chris B.; Gupta, Ravi R.
2016-04-20
Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HR). Our sample consists of 345 photometrically-classified or spectroscopicallyconfirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric hostgalaxy properties from themore » SDSS-SNS data release (Sako et al. 2014) such as host stellar mass and star-formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6σ significance of a non-zero linear slope. We also recover correlations between HR and hostgalaxy gas-phase metallicity and specific star-formation rate as they are reported in the literature. With our large dataset, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically-confirmed and photometrically-classified SNe Ia and comment on the significance of similar combined datasets for future surveys.« less
NASA Astrophysics Data System (ADS)
Boutsia, K.; Leibundgut, B.; Trevese, D.; Vagnetti, F.
2009-04-01
Context: Supermassive black holes with masses of 10^5-109 M⊙ are believed to inhabit most, if not all, nuclear regions of galaxies, and both observational evidence and theoretical models suggest a scenario where galaxy and black hole evolution are tightly related. Luminous AGNs are usually selected by their non-stellar colours or their X-ray emission. Colour selection cannot be used to select low-luminosity AGNs, since their emission is dominated by the host galaxy. Objects with low X-ray to optical ratio escape even the deepest X-ray surveys performed so far. In a previous study we presented a sample of candidates selected through optical variability in the Chandra Deep Field South, where repeated optical observations were performed in the framework of the STRESS supernova survey. Aims: The analysis is devoted to breaking down the sample in AGNs, starburst galaxies, and low-ionisation narrow-emission line objects, to providing new information about the possible dependence of the emission mechanisms on nuclear luminosity and black-hole mass, and eventually studying the evolution in cosmic time of the different populations. Methods: We obtained new optical spectroscopy for a sample of variability selected candidates with the ESO NTT telescope. We analysed the new spectra, together with those existing in the literature and studied the distribution of the objects in U-B and B-V colours, optical and X-ray luminosity, and variability amplitude. Results: A large fraction (17/27) of the observed candidates are broad-line luminous AGNs, confirming the efficiency of variability in detecting quasars. We detect: i) extended objects which would have escaped the colour selection and ii) objects of very low X-ray to optical ratio, in a few cases without any X-ray detection at all. Several objects resulted to be narrow-emission line galaxies where variability indicates nuclear activity, while no emission lines were detected in others. Some of these galaxies have variability and X-ray to optical ratio close to active galactic nuclei, while others have much lower variability and X-ray to optical ratio. This result can be explained by the dilution of the nuclear light due to the host galaxy. Conclusions: Our results demonstrate the effectiveness of supernova search programmes to detect large samples of low-luminosity AGNs. A sizable fraction of the AGN in our variability sample had escaped X-ray detection (5/47) and/or colour selection (9/48). Spectroscopic follow-up to fainter flux limits is strongly encouraged. Based on observations collected at the European Southern Observatory, Chile, 080.B-0187(A).
The new galaxy evolution paradigm revealed by the Herschel surveys
NASA Astrophysics Data System (ADS)
Eales, Stephen; Smith, Dan; Bourne, Nathan; Loveday, Jon; Rowlands, Kate; van der Werf, Paul; Driver, Simon; Dunne, Loretta; Dye, Simon; Furlanetto, Cristina; Ivison, R. J.; Maddox, Steve; Robotham, Aaron; Smith, Matthew W. L.; Taylor, Edward N.; Valiante, Elisabetta; Wright, Angus; Cigan, Philip; De Zotti, Gianfranco; Jarvis, Matt J.; Marchetti, Lucia; Michałowski, Michał J.; Phillipps, Steven; Viaene, Sebastien; Vlahakis, Catherine
2018-01-01
The Herschel Space Observatory has revealed a very different galaxyscape from that shown by optical surveys which presents a challenge for galaxy-evolution models. The Herschel surveys reveal (1) that there was rapid galaxy evolution in the very recent past and (2) that galaxies lie on a single Galaxy Sequence (GS) rather than a star-forming 'main sequence' and a separate region of 'passive' or 'red-and-dead' galaxies. The form of the GS is now clearer because far-infrared surveys such as the Herschel ATLAS pick up a population of optically red star-forming galaxies that would have been classified as passive using most optical criteria. The space-density of this population is at least as high as the traditional star-forming population. By stacking spectra of H-ATLAS galaxies over the redshift range 0.001 < z < 0.4, we show that the galaxies responsible for the rapid low-redshift evolution have high stellar masses, high star-formation rates but, even several billion years in the past, old stellar populations - they are thus likely to be relatively recent ancestors of early-type galaxies in the Universe today. The form of the GS is inconsistent with rapid quenching models and neither the analytic bathtub model nor the hydrodynamical EAGLE simulation can reproduce the rapid cosmic evolution. We propose a new gentler model of galaxy evolution that can explain the new Herschel results and other key properties of the galaxy population.
NASA Technical Reports Server (NTRS)
2003-01-01
This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.NASA Astrophysics Data System (ADS)
Carilli, C. L.; Wang, Ran
2006-11-01
It has been pointed out to us that in three dimensions the mean angle of randomly oriented disks with respect to the sky plane is <θ>=30deg, and not the 45° assumed in the original paper. This lower angle for the (assumed) random distribution of submillimeter galaxies, coupled with the factor of 2.3 lower mean CO line width for high-z, far-IR-luminous QSO host galaxies relative to the submillimeter galaxies, implies a mean angle with respect to the sky plane for the QSO host galaxies of <θ>QSO=13deg, as opposed to the 18° quoted in the original paper. We thank Pat Hall for bringing this to our attention.
A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yi-Nan; Wu, Hong, E-mail: zyn@bao.ac.cn, E-mail: hwu@bao.ac.cn
As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increasemore » or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.« less
SDSS-IV MaNGA - the spatially resolved transition from star formation to quiescence
NASA Astrophysics Data System (ADS)
Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Diamond-Stanic, Aleksandar M.; Drory, Niv; Heckman, Timothy M.; Law, David R.; Malanushenko, Olena; Oravetz, Audrey; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin
2017-04-01
Using spatially resolved spectroscopy from SDSS-IV MaNGA we have demonstrated that low ionization emission-line regions (LIERs) in local galaxies result from photoionization by hot evolved stars, not active galactic nuclei, hence tracing galactic region hosting old stellar population where, despite the presence of ionized gas, star formation is no longer occurring. LIERs are ubiquitous in both quiescent galaxies and in the central regions of galaxies where star formation takes place at larger radii. We refer to these two classes of galaxies as extended LIER (eLIER) and central LIER (cLIER) galaxies, respectively. cLIERs are late-type galaxies primarily spread across the green valley, in the transition region between the star formation main sequence and quiescent galaxies. These galaxies display regular disc rotation in both stars and gas, although featuring a higher central stellar velocity dispersion than star-forming galaxies of the same mass. cLIERs are consistent with being slowly quenched inside-out; the transformation is associated with massive bulges, pointing towards the importance of bulge growth via secular evolution. eLIERs are morphologically early types and are indistinguishable from passive galaxies devoid of line emission in terms of their stellar populations, morphology and central stellar velocity dispersion. Ionized gas in eLIERs shows both disturbed and disc-like kinematics. When a large-scale flow/rotation is observed in the gas, it is often misaligned relative to the stellar component. These features indicate that eLIERs are passive galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Importantly, quiescent galaxies devoid of line emission reside in denser environments and have significantly higher satellite fraction than eLIERs. Environmental effects thus represent the likely cause for the existence of line-less galaxies on the red sequence.
Gravitational Lenses and the Structure and Evolution of Galaxies
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J. (Technical Monitor); Kochanek, Christopher
2004-01-01
During the first year of the project we completed five papers, each of which represents a new direction in the theory and interpretation of gravitational lenses. In the first paper, The Importance of Einstein Rings, we developed the first theory for the formation and structure of the Einstein rings formed by lensing extended sources like the host galaxies of quasar and radio sources. In the second paper, Cusped Mass Models Of Gravitational Lenses, we introduced a new class of lens models. In the third paper, Global Probes of the Impact of Baryons on Dark Matter Halos, we made the first globally consistent models for the separation distribution of gravitational lenses including both galaxy and cluster lenses. The last two papers explore the properties of two lenses in detail. During the second year we have focused more closely on the relationship of baryons and dark matter. In the third year we have been further examining the relationship between baryons and dark matter. In the present year we extended our statistical analysis of lens mass distributions using a self-similar model for the halo mass distribution as compared to the luminous galaxy.
2004-12-21
This image shows six of the three-dozen "ultraviolet luminous galaxies" spotted in our corner of the universe by NASA's Galaxy Evolution Explorer. These massive galaxies greatly resemble newborn galaxies that were common in the early universe. The discovery came as a surprise, because astronomers had thought that the universe's "birth-rate" had declined, and that massive galaxies were no longer forming. The galaxies, located in the center of each panel, were discovered after the Galaxy Evolution Explorer scanned a large portion of the sky with its highly sensitive ultraviolet-light detectors. Because young stars pack most of their light into ultraviolet wavelengths, young galaxies appear to the Galaxy Evolution Explorer like diamonds in a field of stones. Astronomers mined for these rare "gems" before, but missed them because they weren't able to examine a large enough slice of the sky. The Galaxy Evolution Explorer surveyed thousands of nearby galaxies before finding three-dozen newborns. While still relatively close in astronomical terms, these galaxies are far enough away to appear small to the Galaxy Evolution Explorer. Clockwise beginning from the upper left, they are called: GALEX_J232539.24+004507.1, GALEX_J231812.98-004126.1, GALEX_J015028.39+130858.5, GALEX_J021348.52+125951.3, GALEX_J143417.15+020742.5, GALEX_J020354.02-092452.5. http://photojournal.jpl.nasa.gov/catalog/PIA07143
Discovery of a bright quasar without a massive host galaxy.
Magain, Pierre; Letawe, Géraldine; Courbin, Frédéric; Jablonka, Pascale; Jahnke, Knud; Meylan, Georges; Wisotzki, Lutz
2005-09-15
A quasar is thought to be powered by the infall of matter onto a supermassive black hole at the centre of a massive galaxy. Because the optical luminosity of quasars exceeds that of their host galaxy, disentangling the two components can be difficult. This led in the 1990s to the controversial claim of the discovery of 'naked' quasars. Since then, the connection between quasars and galaxies has been well established. Here we report the discovery of a quasar lying at the edge of a gas cloud, whose size is comparable to that of a small galaxy, but whose spectrum shows no evidence for stars. The gas in the cloud is excited by the quasar itself. If a host galaxy is present, it is at least six times fainter than would normally be expected for such a bright quasar. The quasar is interacting dynamically with a neighbouring galaxy, whose gas might be feeding the black hole.
The Halo Occupation Distribution of Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Chatterjee, Suchetana; Nagai, D.; Richardson, J.; Zheng, Z.; Degraf, C.; DiMatteo, T.
2011-05-01
We investigate the halo occupation distribution of active galactic nuclei (AGN) using a state-of-the-art cosmological hydrodynamic simulation that self-consistently incorporates the growth and feedback of supermassive black holes and the physics of galaxy formation (DiMatteo et al. 2008). We show that the mean occupation function can be modeled as a softened step function for central AGN and a power law for the satellite population. The satellite occupation is consistent with weak redshift evolution and a power law index of unity. The number of satellite black holes at a given halo mass follows a Poisson distribution. We show that at low redshifts (z=1.0) feedback from AGN is responsible for higher suppression of black hole growth in higher mass halos. This effect introduces a bias in the correlation between instantaneous AGN luminosity and the host halo mass, making AGN clustering depend weakly on luminosity at low redshifts. We show that the radial distribution of AGN follows a power law which is fundamentally different from those of galaxies and dark matter. The best-fit power law index is -2.26 ± 0.23. The power law exponent do not show any evolution with redshift, host halo mass and AGN luminosity within statistical limits. Incorporating the environmental dependence of supermassive black hole accretion and feedback, our formalism provides the most complete theoretical tool for interpreting current and future measurements of AGN clustering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geier, S.; Edelmann, H.; Heber, U.
Substellar objects, like planets and brown dwarfs orbiting stars, are by-products of the star formation process. The evolution of their host stars may have an enormous impact on these small companions. Vice versa a planet might also influence stellar evolution as has recently been argued. Here, we report the discovery of an 8-23 Jupiter-mass substellar object orbiting the hot subdwarf HD 149382 in 2.391 d at a distance of only about five solar radii. Obviously, the companion must have survived engulfment in the red giant envelope. Moreover, the substellar companion has triggered envelope ejection and enabled the sdB star tomore » form. Hot subdwarf stars have been identified as the sources of the unexpected ultraviolet (UV) emission in elliptical galaxies, but the formation of these stars is not fully understood. Being the brightest star of its class, HD 149382 offers the best conditions to detect the substellar companion. Hence, undisclosed substellar companions offer a natural solution for the long-standing formation problem of apparently single hot subdwarf stars. Planets and brown dwarfs may therefore alter the evolution of old stellar populations and may also significantly affect the UV emission of elliptical galaxies.« less
2013-10-31
Evidence from NASA Wide-field Infrared Survey Explorer and Galaxy Evolution Explorer missions provide support for the inside-out theory of galaxy evolution, which holds that star formation starts at the core of the galaxy and spreads outward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feoli, A.; Mancini, L., E-mail: feoli@unisannio.i, E-mail: lmancini@physics.unisa.i
We show that the relation between the mass of supermassive black holes located in the center of the host galaxies and the kinetic energy of random motions of the corresponding bulges is a useful tool to study the evolution of galaxies. In the form log{sub 10}(M-dot)=b+m log{sub 10}(M{sub G}sigma{sup 2}/c{sup 2}), the best-fitting results for a sample of 64 galaxies of various morphological types are the slope m = 0.80 +- 0.03 and the normalization b = 4.53 +- 0.13. We note that, in analogy with the Hertzsprung-Russell diagram for stars, each morphological type of galaxy generally occupies a differentmore » area in the M{sub .}-(M{sub G}sigma{sup 2})/c {sup 2} plane. In particular, we find elliptical galaxies in the upper part of the line of best fit, the lenticular galaxies in the middle part, and the late-type galaxies in the lower part, the mass of the central black hole giving an estimate of the age, whereas the kinetic energy of the stellar bulges is directly connected with the temperature of each galactic system. Finally, the values of the linear correlation coefficient, the intrinsic scatter, and the chi{sup 2} obtained by using the M{sub .}-M{sub G}sigma{sup 2} relation are better than the corresponding ones obtained from the M{sub .}-sigma or the M{sub .}-M {sub G} relation.« less
Galaxy Zoo: Science and Public Engagement Hand in Hand
NASA Astrophysics Data System (ADS)
Masters, Karen; Lintott, Chris; Feldt, Julie; Keel, Bill; Skibba, Ramin
2015-08-01
Galaxy Zoo (www.galaxyzoo.org) is familiar to many as a hugely successful citizen science project. Hundreds of thousands of members of the public have contributed to Galaxy Zoo which collects visual classifications of galaxies in images from a variety of surveys (e.g. the Sloan Digital Sky Survey, Hubble Space Telescope surveys, and others) using an internet tool. Galaxy Zoo inspired the creation of "The Zooniverse" (www.zooniverse.org) which is now the world's leading online platform for citizens science, hosting a growing number of projects (at the time of writing ~30) making use of crowdsourced data analysis in all areas of academic research, and boasting over 1.3 million participants.Galaxy Zoo has also shown itself, in a series of (now ~60) peer reviewed papers, to be a fantastic database for the study of galaxy evolution. Participation in citizen science is also fantastic public engagement with scientific research. But what do the participants learn while they are involved in crowdsourced data analysis?In this talk I will discuss how public engagement via citizen science can be an effective means of outreach from data intensive astronomical surveys. A citizen science project (if done right) can and should increase the scientific output of an astronomical project, while at the same time inspiring participants to learn more about the science and techniques of astronomy.
Leo P: A very low-mass, extremely metal-poor, star-forming galaxy
NASA Astrophysics Data System (ADS)
McQuinn, Kristen B.; Leo P Team
2017-01-01
Leo P is a low-luminosity dwarf galaxy just outside the Local Group with properties that make it an ideal probe of galaxy evolution at the faint-end of the luminosity function. Using combined data from 2 Hubble Space Telescope (HST) observing campaigns, the Very Large Array, the Spitzer Space telescope, as well as ground based data, we have constructed a robust evolutionary picture of Leo P. Leo P is one the most metal-poor, gas-rich galaxies ever discovered, has a stellar mass of a 5x105 Msun, comparable gas mass, and a single HII region. The star formation history reconstructed from the resolved stellar populations in Leo P shows it is unquenched, despite its very low mass. Based on the star formation history and metallicity measurements, the galaxy has lost 95% of its oxygen produced via nucleosynthesis, presumably to outflows. The neutral gas in the galaxy shows signs of rotation, although the velocity dispersion is comparable to the rotation velocity. Thus, Leo P bridges the gap between more massive dwarf irregular and less massive dwarf spheroidals on the baryonic Tully-Fisher relation. Furthermore, the galaxy hosts several, extremely dusty AGB candidates which will be probed with new HST and Spitzer observations. If confirmed as AGB stars, these may be our best local proxies for studying chemically unevolved star formation and subsequent dust production in metallicity environments comparable to the early universe.
NASA Astrophysics Data System (ADS)
Cai, Zhen-Yi; Lapi, Andrea; Bressan, Alessandro; De Zotti, Gianfranco; Negrello, Mattia; Danese, Luigi
2014-04-01
We present a physical model for the evolution of the ultraviolet (UV) luminosity function of high-redshift galaxies, taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. Dust extinction is found to increase fast with halo mass. A strong correlation between dust attenuation and halo/stellar mass for UV selected high-z galaxies is thus predicted. The model yields good fits of the UV and Lyman-α (Lyα) line luminosity functions at all redshifts at which they have been measured. The weak observed evolution of both luminosity functions between z = 2 and z = 6 is explained as the combined effect of the negative evolution of the halo mass function; of the increase with redshift of the star formation efficiency due to the faster gas cooling; and of dust extinction, differential with halo mass. The slope of the faint end of the UV luminosity function is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of the UV luminosities at high z implies a minimum halo mass capable of hosting active star formation M crit <~ 109.8 M ⊙, which is consistent with the constraints from hydrodynamical simulations. From fits of Lyα line luminosity functions, plus data on the luminosity dependence of extinction, and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z ~= 3 Lyman break galaxies and Lyα emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate. It implies that the escape fraction is larger for low-mass galaxies, which are almost dust-free and have lower gas column densities. Galaxies already represented in the UV luminosity function (M UV <~ -18) can keep the universe fully ionized up to z ~= 6. This is consistent with (uncertain) data pointing to a rapid drop of the ionization degree above z ~= 6, such as indications of a decrease of the comoving emission rate of ionizing photons at z ~= 6, a decrease of sizes of quasar near zones, and a possible decline of the Lyα transmission through the intergalactic medium at z > 6. On the other hand, the electron scattering optical depth, τes, inferred from cosmic microwave background (CMB) experiments favor an ionization degree close to unity up to z ~= 9-10. Consistency with CMB data can be achieved if M crit ~= 108.5 M ⊙, implying that the UV luminosity functions extend to M UV ~= -13, although the corresponding τes is still on the low side of CMB-based estimates.
The Metallicity of Void Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.
2015-01-01
The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.
Flickering AGN can explain the strong circumgalactic O VI observed by COS-Halos
NASA Astrophysics Data System (ADS)
Oppenheimer, Benjamin D.; Segers, Marijke; Schaye, Joop; Richings, Alexander J.; Crain, Robert A.
2018-03-01
Proximity zone fossils (PZFs) are ionization signatures around recently active galactic nuclei (AGNs) where metal species in the circumgalactic medium remain overionized after the AGNs have shut off due to their long recombination time scales. We explore cosmological zoom hydrodynamic simulations, using the EAGLE (Evolution and Assembly of GaLaxies and their Environments) model paired with a non-equilibrium ionization and cooling module including time-variable AGN radiation to model PZFs around star-forming disc galaxies in the z ˜ 0.2 Universe. Previous simulations typically underestimated the O VI content of galactic haloes, but we show that plausible PZF models increase O VI column densities by 2 - 3 × to achieve the levels observed around COS-Halos star-forming galaxies out to 150 kpc. Models with AGN bolometric luminosities ≳ 1043.6erg s- 1, duty cycle fractions ≲ 10 per cent, and AGN lifetimes ≲ 106 yr are the most promising, because their supermassive black holes grow at the cosmologically expected rate and they mostly appear as inactive AGN, consistent with COS-Halos. The central requirement is that the typical star-forming galaxy hosted an active AGN within a time-scale comparable to the recombination time of a high metal ion, which for circumgalactic O VI is ≈107 yr. H I, by contrast, returns to equilibrium much more rapidly due to its low neutral fraction and does not show a significant PZF effect. O VI absorption features originating from PZFs appear narrow, indicating photoionization, and are often well aligned with lower metal ion species. PZFs are highly likely to affect the physical interpretation of circumgalactic high ionization metal lines if, as expected, normal galaxies host flickering AGN.
Dark matter haloes determine the masses of supermassive black holes
NASA Astrophysics Data System (ADS)
Booth, C. M.; Schaye, Joop
2010-06-01
The energy and momentum deposited by the radiation from accretion flows on to the supermassive black holes (BHs) that reside at the centres of virtually all galaxies can halt or even reverse gas inflow, providing a natural mechanism for supermassive BHs to regulate their growth and to couple their properties to those of their host galaxies. However, it remains unclear whether this self-regulation occurs on the scale at which the BH is gravitationally dominant, on that of the stellar bulge, the galaxy or that of the entire dark matter halo. To answer this question, we use self-consistent simulations of the co-evolution of the BH and galaxy populations that reproduce the observed correlations between the masses of the BHs and the properties of their host galaxies. We first confirm unambiguously that the BHs regulate their growth: the amount of energy that the BHs inject into their surroundings remains unchanged when the fraction of the accreted rest mass energy that is injected is varied by four orders of magnitude. The BHs simply adjust their masses so as to inject the same amount of energy. We then use simulations with artificially reduced star formation rates to demonstrate explicitly that BH mass is not set by the stellar mass. Instead, we find that it is determined by the mass of the dark matter halo with a secondary dependence on the halo concentration, of the form that would be expected if the halo binding energy were the fundamental property that controls the mass of the BH. We predict that the BH mass, mBH, scales with halo mass as mBH ~ mαhalo, with α ~ 1.55 +/- 0.05, and that the scatter around the mean relation in part reflects the scatter in the halo concentration-mass relation.
Stellar populations of bulges in galaxies with a low surface-brightness disc
NASA Astrophysics Data System (ADS)
Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.
2015-03-01
The radial profiles of the Hβ, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar α/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and α/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other phenomena, like mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low surface-brightness discs share many properties with those of high surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that in spite of being hosted by discs with extremely different properties, the bulges of low and high surface-brightness discs are remarkably similar.
The Coevolution of Supermassive Black Holes and Massive Galaxies at High Redshift
NASA Astrophysics Data System (ADS)
Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Negrello, M.; Celotti, A.; De Zotti, G.; Danese, L.
2014-02-01
We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z >~ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale <~ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L Edd <~ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.
Resolving the host galaxy of a distant blazar with LBT/LUCI 1 + ARGOS
NASA Astrophysics Data System (ADS)
Farina, E. P.; Georgiev, I. Y.; Decarli, R.; Terzić, T.; Busoni, L.; Gässler, W.; Mazzoni, T.; Borelli, J.; Rosensteiner, M.; Ziegleder, J.; Bonaglia, M.; Rabien, S.; Buschkamp, P.; Orban de Xivry, G.; Rahmer, G.; Kulas, M.; Peter, D.
2018-05-01
BL Lac objects emitting in the very high energy (VHE) regime are unique tools to peer into the properties of the extragalactic background light (EBL). However, due to the typical absence of features in their spectra, the determination of their redshifts has proven challenging. In this work, we exploit the superb spatial resolution delivered by the new Advanced Rayleigh guided Ground layer adaptive Optics System (ARGOS) at the Large Binocular Telescope to detect the host galaxy of HESS J1943+213, a VHE emitting BL Lac shining through the Galaxy. Deep H-band imaging collected during the ARGOS commissioning allowed us to separate the contribution of the nuclear emission and to unveil the properties of the host galaxy with unprecedented detail. The host galaxy is well fitted by a Sérsic profile with index of n ˜ 2 and total magnitude of HHost ˜ 16.15 mag. Under the assumption that BL Lac host galaxies are standard candles, we infer a redshift of z ˜ 0.21. In the framework of the current model for the EBL, this value is in agreement with the observed dimming of the VHE spectrum due to the annihilation of energetic photons on the EBL
The different neighbours around Type-1 and Type-2 active galactic nuclei
NASA Astrophysics Data System (ADS)
Villarroel, Beatriz; Korn, Andreas J.
2014-06-01
One of the most intriguing open issues in galaxy evolution is the structure and evolution of active galactic nuclei (AGN) that emit intense light believed to come from an accretion disk near a super massive black hole. To understand the zoo of different AGN classes, it has been suggested that all AGN are the same type of object viewed from different angles. This model--called AGN unification--has been successful in predicting, for example, the existence of hidden broad optical lines in the spectrum of many narrow-line AGN. But this model is not unchallenged and it is debatable whether more than viewing angle separates the so-called Type-1 and Type-2 AGN. Here we report the first large-scale study that finds strong differences in the galaxy neighbours to Type-1 and Type-2 AGN with data from the Sloan Digital Sky Survey (SDSS; ref. ) Data Release 7 (DR7; ref. ) and Galaxy Zoo. We find strong differences in the colour and AGN activity of the neighbours to Type-1 and Type-2 AGN and in how the fraction of AGN residing in spiral hosts changes depending on the presence or not of a neighbour. These findings suggest that an evolutionary link between the two major AGN types might exist.
Songlines from Direct Collapse Seed Black Holes
NASA Astrophysics Data System (ADS)
Aykutalp, Aycin; Wise, John; Spaans, Marco; Meijerink, Rowin
2015-01-01
In the last decade, the growth of supermassive black holes (SMBHs) has been intricately linked to galaxy formation and evolution, and is a key ingredient in the assembly of galaxies. Observations of SMBHs with masses of 109 solar at high redshifts (z~7) poses challenges to the theory of seed black hole formation and their growth in young galaxies. Fundamental to understanding their existence within the first billion years after the Big Bang, is the identification of their formation processes, growth rate and evolution through cosmic time. We perform cosmological hydrodynamic simulations following the growth of direct collapse seed black holes (DCBH) including X-ray irradiation from the central black hole, stellar feedback both from metal-free and metal-rich stars and H2 self-shielding. These simulations demonstrate that X-ray irradiation from the central black hole regulates its growth and influence the formation of stellar population in the host halo. In particular, X-ray radiation enhances H2 formation in metal-free gas and initially induces the star formation in the halo. However, in the long term, X-ray irradiation from the accreting seed DCBH stifles the initial growth relative to the Eddington rate argument. This further complicates the explanation for the existence of SMBHs in the early universe.
ALMA Explores How Supermassive Black Holes Talk to Their Galaxies
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
We believe that supermassive black holes evolve in tandem with their host galaxies but how do the two communicate? Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) have revealed new clues about how a monster black hole talks to its galaxy.A Hubble image of the central galaxy in the Phoenix cluster. [Adapted from Russell et al. 2017]Observing FeedbackActive galactic nuclei (AGN), the highly luminous centers of some galaxies, are thought to radiate due to active accretion onto the supermassive black hole at their center.Its long been suspected that the radiation and outflowing material which often takes the form of enormous bipolar radio jets emitted into the surroundings influence the AGNs host galaxy, affecting star formation rates and the evolution of the galaxy. This AGN feedback has been alternately suggested to trigger star formation, quench it, and truncate the growth of massive galaxies.The details of this feedback process, however, have yet to be thoroughly understood in part because its difficult to obtain detailed observations of how AGN outflows interact with the galactic gas surrounding them. Now, a team of scientists led by Helen Russell (Institute of Astronomy in Cambridge, UK) has published the results of a new, high-resolution look at the gas in a massive galaxy in the center of the Phoenix cluster.Many Uses for FuelThe Phoenix cluster, a nearby (z = 0.596) group of star-forming galaxies, is the most luminous X-ray cluster known. The central galaxy in the cluster is especially active: it hosts a starburst of 500800 solar masses per year, the largest starburst found in any galaxy below a redshift of z= 1.The star formation in this galaxy is sustained by an enormous reservoir of cold molecular gas roughly 20 billion solar masses worth. This reservoir also powers the galaxys central black hole, fueling powerful radio jets that extend into the hot atmosphere of the galaxy and blow a giant bubble into the hot gas at each pole.ALMA observations of the molecular gas in the central galaxy of the Phoenix cluster. The bubbles blown by the radio jets are indicated by the dashed white contours. Extended filaments of molecular gas can be seen to wrap around these cavities. [Adapted from Russell et al. 2017]ALMA Spots FilamentsALMAs observations of this reservoir show that extended filaments of molecular gas wrap around the peripheries of the radio bubbles. These filaments span 1020 kpc ( 3060 thousand light-years) and have a mass of several billion solar masses. The velocity gradients along them are smooth, suggesting that the gas is moving in an ordered flow around the bubble.Russell and collaborators suggest that these observations indicate that the clouds of molecular gas were either lifted by the radio bubbles as they inflated, or they formed in place via instabilities caused by the inflating bubbles.Either way, the data provide clear confirmation that the jets from the black hole affect the location and motion of the cold gas in the surrounding galaxy. This is a beautiful pieceof direct evidence showing how supermassive black holes might be communicating with their galaxies.CitationH. R. Russell et al 2017 ApJ 836 130. doi:10.3847/1538-4357/836/1/130
2003-12-10
This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA04923
The history of the dark and luminous side of Milky Way-like progenitors
NASA Astrophysics Data System (ADS)
Graziani, L.; de Bennassuti, M.; Schneider, R.; Kawata, D.; Salvadori, S.
2017-07-01
Here we investigate the evolution of a Milky Way (MW)-like galaxy with the aim of predicting the properties of its progenitors all the way from z ∼ 20 to z = 0. We apply gamesh to a high-resolution N-body simulation following the formation of a MW-type halo and we investigate its properties at z ∼ 0 and its progenitors in 0 < z < 4. Our model predicts the observed galaxy main sequence, the mass-metallicity and the Fundamental Plane of metallicity relations in 0 < z < 4. It also reproduces the stellar mass evolution of candidate MW progenitors in 0 ≲ z ≲ 2.5, although the star formation rate and gas fraction of the simulated galaxies follow a shallower redshift dependence. We find that while the MW star formation and chemical enrichment are dominated by the contribution of galaxies hosted in Lyman α cooling haloes, at z > 6 the contribution of star-forming minihaloes is comparable to the star formation rate along the MW merger tree. These systems might then provide an important contribution in the early phases of reionization. A large number of minihaloes with old stellar populations, possibly Population III stars, are dragged into the MW or survive in the Local Group. At low redshift dynamical effects, such as halo mergers, tidal stripping and halo disruption redistribute the baryonic properties among halo families. These results are critically discussed in light of future improvements including a more sophisticated treatment of radiative feedback and inhomogeneous metal enrichment.
Investigating a population of infrared-bright gamma-ray burst host galaxies
NASA Astrophysics Data System (ADS)
Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.
2018-07-01
We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX, and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further seven candidates are identified from the previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR, and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased towards low z, high M⋆, and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.
Investigating a population of infrared-bright gamma-ray burst host galaxies
NASA Astrophysics Data System (ADS)
Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.
2018-04-01
We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜ 0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further 7 candidates are identified from previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased toward low z, high M⋆ and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.
NASA Technical Reports Server (NTRS)
Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.
1995-01-01
Observations with the Wide-Field Camera of the Hubble Space Telescope (HST) are presented for eight intrinsically luminous quasars with redshifts between 0.16 and 0.29. These observations, when combined with a similar HST study of the quasar PKS 2349-014, show that luminous nearby quasars exist in a variety of environments. Seven companion galaxies brighter than M(V) = 16.5 (H(sub 0) = 100 km s(sup -1) Mpc(sup -1), Omega(sub 0) = 1.0) lie within a projected distance of 25 kpc of the quasars; three of the companions are located closer than 3'' (6 kpc projected distance) from the quasars, well within the volume that would be enclosed by a typical L* host galaxy. The observed association of quasars and companion galaxies is statistically significant and may he an important element in the luminous-quasar phenomenon. Apparent host galaxies are detected for three of the quasars: PG 1116+215, 3C 273, and PG 1444+407; the hosts have an average absolute magnitude of about 0.6 mag brighter than L*. The agreement between the previously published major-axis directions in ground-based images and in the present HST images of 3C 273 and PG 1444+407 constitutes important evidence supporting the reality of these candidate host galaxies. Upper limits are placed on the visual-band brightnesses of representative galactic hosts for all the quasars. These limits are established by placing galaxy images obtained with HST underneath the quasars and measuring at what faintness level the known galaxies are detected. On average, the HST spirals would have been detected if they were as faint as 1 mag below L*, and the early-type galaxies could have been detected down to a brightness level of about L*, where L* is the Schechter characteristic luminosity of field galaxies. Smooth, featureless galaxy models (exponential disks or de Vaucouleurs profiles) are fitted to the residual light after a best-fitting point source is subtracted from the quasar images. The results show that smooth spiral galaxies brighter than, on average, about L*, would have been detected. These upper limits, or possible detections, are consistent with, for example, the eight luminous quasars studied in this paper, occurring in host galaxies that have a Shechter luminosity function with a lower cutoff in the range 0.01-0.1 L*. Tests are performed to determine if our failure to detect, in some cases, luminous host galaxies could be an artifact caused by our analysis procedures. These tests include comparing the measured point-spread function (PSF) for our HST observations with the PSFs used in previous ground-based studies of host galaxies, measuring the fluctuations in the sky signals that were subtracted from the quasar images, evaluating empirically the effects of using different stellar PSFs in the analysis, carrying out the subtraction of the stellar (nuclear) source in different ways, creating and analyzing artificial active galactic nuclei (AGNs) with known surface brightnesses, and fitting the observed quasar light to an analytic model that includes a host galaxy.
Properties of Galaxies and Groups: Nature versus Nurture
NASA Astrophysics Data System (ADS)
Niemi, Sami-Matias
2011-09-01
Due to the inherently nonlinear nature of gravity cosmological N-body simulations have become an invaluable tool when the growth of structure is being studied and modelled closer to the present epoch. Large simulations with high dynamical range have made it possible to model the formation and growth of cosmic structure with unprecedented accuracy. Moreover, galaxies, the basic building blocks of the Universe, can also be modelled in cosmological context. However, despite all the simulations and successes in recent decades, there are still many unanswered questions in the field of galaxy formation and evolution. One of the longest standing issue being the significance of the formation place and thus initial conditions to a galaxy's evolution in respect to environment, often formulated simply as "nature versus nurture" like in human development and psychology. Unfortunately, our understanding of galaxy evolution in different environments is still limited, albeit, for example, the morphology-density relation has shown that the density of the galaxy's local environment can affect its properties. Consequently, the environment should play a role in galaxy evolution, however despite the efforts, the exact role of the galaxy's local environment to its evolution remains open. This thesis introduction discusses briefly the background cosmology, cosmological N-body simulations and semi-analytical models. The second part is reserved for groups of galaxies, whether they are gravitationally bound, and what this may imply for galaxy evolution. The third part of the thesis concentrates on describing results of a case study of isolated field elliptical galaxies. The final chapter discusses another case study of luminous infra-red galaxies.
GRB 080517: a local, low-luminosity gamma-ray burst in a dusty galaxy at z = 0.09
NASA Astrophysics Data System (ADS)
Stanway, Elizabeth R.; Levan, Andrew J.; Tanvir, Nial; Wiersema, Klaas; van der Horst, Alexander; Mundell, Carole G.; Guidorzi, Cristiano
2015-02-01
We present an analysis of the photometry and spectroscopy of the host galaxy of Swift-detected GRB 080517. From our optical spectroscopy, we identify a redshift of z = 0.089 ± 0.003, based on strong emission lines, making this a rare example of a very local, low-luminosity, long gamma-ray burst. The galaxy is detected in the radio with a flux density of S4.5 GHz = 0.22 ± 0.04 mJy - one of relatively few known gamma-ray bursts hosts with a securely measured radio flux. Both optical emission lines and a strong detection at 22 μm suggest that the host galaxy is forming stars rapidly, with an inferred star formation rate ˜16 M⊙ yr-1 and a high dust obscuration (E(B - V) > 1, based on sightlines to the nebular emission regions). The presence of a companion galaxy within a projected distance of 25 kpc, and almost identical in redshift, suggests that star formation may have been triggered by galaxy-galaxy interaction. However, fitting of the remarkably flat spectral energy distribution from the ultraviolet through to the infrared suggests that an older, 500 Myr post-starburst stellar population is present along with the ongoing star formation. We conclude that the host galaxy of GRB 080517 is a valuable addition to the still very small sample of well-studied local gamma-ray burst hosts.
GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu
2015-09-10
Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolutionmore » in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.« less
The resolved history of galaxy evolution.
Brinchmann, Jarle
2002-12-15
We briefly review the study of the evolution of galaxies from an observational point of view, with particular emphasis on the role of the Hubble Space Telescope in probing the evolution of the different morphological types of galaxy. We show how using the stellar mass of galaxies as a tracer of evolution can improve our understanding of the physical process taking place before turning our eyes towards the future and giving an overview of what we can expect from future advances in technology.
NASA Technical Reports Server (NTRS)
Lu, Y.; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole (BH) harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify the accretion rate in the disk and separate the accretion flows of the disk into three different phases, like an S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of the S-shaped instability, and the faint or 'dormant' quasars are simply these systems in the lower branch. The middle branch is the transition state, which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solution (ADIOS) configuration in the stable lower branch of the S-shaped instability, and the Eddington accretion rate is used to constrain the accretion rate in the highly active phase. The mass ratio between a BH and its host galactic bulge is a natural consequence of an ADIOS. Our model also demonstrates that a seed BH approx. 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a BH with a final mass of approx. 2 x 10(exp 8) solar masses.
Chasing the observational signatures of seed black holes at z > 7: candidate observability
NASA Astrophysics Data System (ADS)
Valiante, Rosa; Schneider, Raffaella; Zappacosta, Luca; Graziani, Luca; Pezzulli, Edwige; Volonteri, Marta
2018-05-01
Observing the light emitted by the first accreting black holes (BHs) would dramatically improve our understanding of the formation of quasars at z > 6, possibly unveiling the nature of their supermassive black hole (SMBH) seeds. In previous works, we explored the relative role of the two main competing BH seed formation channels, Population III remnants (low-mass seeds) and direct collapse BHs (high-mass seeds), investigating the properties of their host galaxies in a cosmological context. Building on this analysis, we predict here the spectral energy distribution and observational features of low- and high-mass BH seeds selected among the progenitors of a z ˜ 6 SMBH. We derive the processed emission from both accreting BHs and stars by using the photoionization code CLOUDY, accounting for the evolution of metallicity and dust-to-gas mass ratio in the interstellar medium of the host galaxies, as predicted by the cosmological data-constrained model GAMETE/QSODUST. We show how future missions like James Webb Space Telescope (JWST) and Advanced Telescope for High Energy Astrophysics (ATHENA) will be able to detect the light coming from SMBH progenitors already at z ˜ 16. We build upon previous complementary studies and propose a method based on the combined analysis of near-infrared colours, IR excess (IRX), and UV continuum slopes (i.e. colour-colour and IRX-β diagrams) to distinguish growing seed BH host galaxies from starburst-dominated systems in JWST surveys. Sources selected through this criterion would be the best target for follow-up X-ray observations.
R-band host galaxy contamination of TeV γ-ray blazar Mrk 501: effects of aperture size and seeing
NASA Astrophysics Data System (ADS)
Feng, Hai-Cheng; Liu, Hong-Tao; Zhao, Ying-He; Bai, Jin-Ming; Wang, Fang; Fan, Xu-Liang
2018-02-01
We simulated the R-band contribution of the host galaxy of TeV γ-ray BL Lac object Mrk 501 in different aperture sizes and seeing conditions. An intensive set of observations was acquired with the 1.02 m optical telescope, managed by Yunnan Observatories, from 2010 May 15 to 18. Based on the host subtraction data usually used in the literature, the subtraction of host galaxy contamination results in significant seeing-brightness correlations. These correlations would lead to illusive large amplitude variations at short timescales, which will mask the intrinsic microvariability, thus giving rise to difficulty in detecting the intrinsic microvariability. Both aperture size and seeing condition influence the flux measurements, but the aperture size impacts the result more significantly. Based on the parameters of an elliptical galaxy provided in the literature, we simulated the host contributions of Mrk 501 in different aperture sizes and seeing conditions. Our simulation data of the host galaxy obviously weaken these significant seeing-brightness correlations for the host-subtracted brightness of Mrk 501, and can help us discover the intrinsic short timescale microvariability. The pure nuclear flux is ∼8.0mJy in the R band, i.e., the AGN has a magnitude of R ∼ 13.96 mag.
Evolution Of The Galaxy Major Merger Rate Since Z 6 In The Muse Hubble Ultra Deep Field Survey.
NASA Astrophysics Data System (ADS)
Ventou, E.; Contini, T.; MUSE-GTO Collaboration
2017-06-01
Over the past two decades, strong evidence that galaxies have undergone a significant evolution over cosmic time were found. Do galaxy mergers, one of the main driving mechanisms behind the growth of galaxies, played a key role in their evolution at significant look-back time? Due to the difficulty to identify these violent interactions between galaxies at high redshifts, the major merger rate, involving two galaxies of similar masses, was constrained so far up to redshift z 3, from previous studies of spectrocopic pair counts. Thanks to MUSE, which is perfectly suited to identify close pairs of galaxies with secure spectroscopic redshifts, we are now able to extend such studies up to z 6. I will present the results obtained from deep (10-30h) MUSE observations in the Hubble Ultra Deep Field. We provide the first constraints on the galaxy major merger evolution over 12 Gyrs (0.2 < z < 6) and over a broad range of stellar masses, showing that there is a flattening of the major merger rate evolution at very high redshift.
NASA Astrophysics Data System (ADS)
Ponder, Kara A.
In the late 1990s, Type Ia supernovae (SNeIa) led to the discovery that the Universe is expanding at an accelerating rate due to dark energy. Since then, many different tracers of acceleration have been used to characterize dark energy, but the source of cosmic acceleration has remained a mystery. To better understand dark energy, future surveys such as the ground-based Large Synoptic Survey Telescope and the space-based Wide-Field Infrared Survey Telescope will collect thousands of SNeIa to use as a primary dark energy probe. These large surveys will be systematics limited, which makes it imperative for our insight regarding systematics to dramatically increase over the next decade for SNeIa to continue to contribute to precision cosmology. I approach this problem by improving statistical methods in the likelihood analysis and collecting near infrared (NIR) SNeIa with their host galaxies to improve the nearby data set and search for additional systematics. Using more statistically robust methods to account for systematics within the likelihood function can increase accuracy in cosmological parameters with a minimal precision loss. Though a sample of at least 10,000 SNeIa is necessary to confirm multiple populations of SNeIa, the bias in cosmology is ˜ 2 sigma with only 2,500 SNeIa. This work focused on an example systematic (host galaxy correlations), but it can be generalized for any systematic that can be represented by a distribution of multiple Gaussians. The SweetSpot survey gathered 114 low-redshift, NIR SNeIa that will act as a crucial anchor sample for the future high redshift surveys. NIR observations are not as affected by dust contamination, which may lead to increased understanding of systematics seen in optical wavelengths. We obtained spatially resolved spectra for 32 SweetSpot host galaxies to test for local host galaxy correlations. For the first time, we probe global host galaxy correlations with NIR brightnesses from the current literature sample of SNeIa with host galaxy data from publicly available catalogs. We find inconclusive evidence that more massive galaxies host SNeIa that are brighter in the NIR than SNeIa hosted in less massive galaxies.
The red/infrared evolution in galaxies - Effect of the stars on the asymptotic giant branch
NASA Technical Reports Server (NTRS)
Chokshi, Arati; Wright, Edward L.
1987-01-01
The effect of including the asymptotic giant branch (AGB) population in a spectral synthesis model of galaxy evolution is examined. Stars on the AGB are luminous enough and also evolve rapidly enough to affect the evolution of red and infrared colors in galaxies. The validity of using infrared colors as distance indicators to galaxies is then investigated in detail. It is found that for z of 1 or less infrared colors of model galaxies behave linearly with redshift.
The MUSE view of the host galaxy of GRB 100316D
NASA Astrophysics Data System (ADS)
Izzo, L.; Thöne, C. C.; Schulze, S.; Mehner, A.; Flores, H.; Cano, Z.; de Ugarte Postigo, A.; Kann, D. A.; Amorín, R.; Anderson, J. P.; Bauer, F. E.; Bensch, K.; Christensen, L.; Covino, S.; Della Valle, M.; Fynbo, J. P. U.; Jakobsson, P.; Klose, S.; Kuncarayakti, H.; Leloudas, G.; Milvang-Jensen, B.; Møller, P.; Puech, M.; Rossi, A.; Sánchez-Ramírez, R.; Vergani, S. D.
2017-12-01
The low distance, z = 0.0591, of GRB 100316D and its association with SN 2010bh represent two important motivations for studying this host galaxy and the GRB's immediate environment with the integral field spectrographs like Very Large Telescope/Multi-Unit Spectroscopic Explorer. Its large field of view allows us to create 2D maps of gas metallicity, ionization level and the star formation rate (SFR) distribution maps, as well as to investigate the presence of possible host companions. The host is a late-type dwarf irregular galaxy with multiple star-forming regions and an extended central region with signatures of on-going shock interactions. The gamma-ray burst (GRB) site is characterized by the lowest metallicity, the highest SFR and the youngest (∼20-30 Myr) stellar population in the galaxy, which suggest a GRB progenitor stellar population with masses up to 20-40 M⊙. We note that the GRB site has an offset of ∼660 pc from the most luminous SF region in the host. The observed SF activity in this galaxy may have been triggered by a relatively recent gravitational encounter between the host and a small undetected (LH α ≤ 1036 erg s-1) companion.
THE EXTREMELY RED HOST GALAXY OF GRB 080207
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, Leslie; Cresci, Giovanni; Palazzi, Eliana
2011-08-01
We present optical, near-infrared, and Spitzer IRAC and MIPS observations of the host galaxy of the dark Swift gamma-ray burst GRB 080207. The host is faint, with extremely red optical-infrared colors (R - K = 6.3, 24 {mu}m/R-band flux {approx}1000) making it an extremely red object (ERO) and a dust-obscured galaxy (DOG). The spectral energy distribution (SED) shows the clear signature of the 1.6 {mu}m photometric 'bump', typical of evolved stellar populations. We use this bump to establish the photometric redshift z{sub phot} as 2.2{sup +0.2}{sub -0.3}, using a vast library of SED templates, including M 82. The star formationmore » rate (SFR) inferred from the SED fitting is {approx}119 M{sub sun} yr{sup -1}, the stellar mass 3 x 10{sup 11} M{sub sun}, and A{sub V} extinction from 1 to 2 mag. The ERO and DOG nature of the host galaxy of the dark GRB 080207 may be emblematic of a distinct class of dark GRB hosts, with high SFRs, evolved and metal-rich stellar populations, and significant dust extinction within the host galaxy.« less
How Common are the Magellanic Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lulu; Gerke, Brian F.; Wechsler, Risa H.
2011-05-20
We introduce a probabilistic approach to the problem of counting dwarf satellites around host galaxies in databases with limited redshift information. This technique is used to investigate the occurrence of satellites with luminosities similar to the Magellanic Clouds around hosts with properties similar to the Milky Way in the object catalog of the Sloan Digital Sky Survey. Our analysis uses data from SDSS Data Release 7, selecting candidate Milky-Way-like hosts from the spectroscopic catalog and candidate analogs of the Magellanic Clouds from the photometric catalog. Our principal result is the probability for a Milky-Way-like galaxy to host N{sub sat} closemore » satellites with luminosities similar to the Magellanic Clouds. We find that 81 percent of galaxies like the Milky Way have no such satellites within a radius of 150 kpc, 11 percent have one, and only 3.5 percent of hosts have two. The probabilities are robust to changes in host and satellite selection criteria, background-estimation technique, and survey depth. These results demonstrate that the Milky Way has significantly more satellites than a typical galaxy of its luminosity; this fact is useful for understanding the larger cosmological context of our home galaxy.« less
Exponential Stellar Disks in Low Surface Brightness Galaxies: A Critical Test of Viscous Evolution
NASA Astrophysics Data System (ADS)
Bell, Eric F.
2002-12-01
Viscous redistribution of mass in Milky Way-type galactic disks is an appealing way of generating an exponential stellar profile over many scale lengths, almost independent of initial conditions, requiring only that the viscous timescale and star formation timescale are approximately equal. However, galaxies with solid-body rotation curves cannot undergo viscous evolution. Low surface brightness (LSB) galaxies have exponential surface brightness profiles, yet have slowly rising, nearly solid-body rotation curves. Because of this, viscous evolution may be inefficient in LSB galaxies: the exponential profiles, instead, would give important insight into initial conditions for galaxy disk formation. Using star formation laws from the literature and tuning the efficiency of viscous processes to reproduce an exponential stellar profile in Milky Way-type galaxies, I test the role of viscous evolution in LSB galaxies. Under the conservative and not unreasonable condition that LSB galaxies are gravitationally unstable for at least a part of their lives, I find that it is impossible to rule out a significant role for viscous evolution. This type of model still offers an attractive way of producing exponential disks, even in LSB galaxies with slowly rising rotation curves.
Chemical Evidence for Evolution of galaxies
NASA Astrophysics Data System (ADS)
Dutil, Yvan
I have compiled the very best data published on abundance gradients. From this sample of 29 galaxies, some information can be gained on the mecanism of morphological evolution in disk galaxies. From this sample, I find that early-type galaxies show an identical trend in the behavior of extrapolated central abundance versus morphological type to that shown by late-type galaxies with strong bars, even in the absence of bar! On a a diagram showing extrapolated central abundance versus morphological type, two sequences appear: late-type barred galaxies and early-type galaxies (barred or not barred) fall on sequence 0.5 dex below that of normal late-type galaxies. This behavior is consistent with a scenario of morphological evolution of disk galaxies by formation and dissolution of a bar over a period of a few 10^^9 yr, where later type galaxies (Sd,Sc,Sbc, evolve into earlier-type disk galaxies trough transitory SBc and SBb phases.
NASA Astrophysics Data System (ADS)
Longair, Malcolm S.
2013-04-01
Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.
2003-12-10
This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300. http://photojournal.jpl.nasa.gov/catalog/PIA04924
NASA Technical Reports Server (NTRS)
Pogge, Richard W.; Martini, Paul
2002-01-01
We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.
NASA Astrophysics Data System (ADS)
Chilingarian, Igor V.; Asa’d, Randa
2018-05-01
The star formation (SFH) and chemical enrichment (CEH) histories of Local Group galaxies are traditionally studied by analyzing their resolved stellar populations in a form of color–magnitude diagrams obtained with the Hubble Space Telescope. Star clusters can be studied in integrated light using ground-based telescopes to much larger distances. They represent snapshots of the chemical evolution of their host galaxy at different ages. Here we present a simple theoretical framework for the chemical evolution based on the instantaneous recycling approximation (IRA) model. We infer a CEH from an SFH and vice versa using observational data. We also present a more advanced model for the evolution of individual chemical elements that takes into account the contribution of supernovae type Ia. We demonstrate that ages, iron, and α-element abundances of 15 star clusters derived from the fitting of their integrated optical spectra reliably trace the CEH of the Large Magellanic Cloud obtained from resolved stellar populations in the age range 40 Myr < t < 3.5 Gyr. The CEH predicted by our model from the global SFH of the LMC agrees remarkably well with the observed cluster age–metallicity relation. Moreover, the present-day total gas mass of the LMC estimated by the IRA model (6.2× {10}8 {M}ȯ ) matches within uncertainties the observed H I mass corrected for the presence of molecular gas (5.8+/- 0.5× {10}8 {M}ȯ ). We briefly discuss how our approach can be used to study SFHs of galaxies as distant as 10 Mpc at the level of detail that is currently available only in a handful of nearby Milky Way satellites. .
Takanashi, N.; Doi, M.; Yasuda, N.; ...
2016-12-06
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takanashi, N.; Doi, M.; Yasuda, N.
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
NASA Astrophysics Data System (ADS)
van der Marel, Roeland P.; van Dokkum, Pieter G.
2007-10-01
We study the mass-to-light ratio (M/L) evolution of early-type galaxies using dynamical modeling of resolved internal kinematics. This makes fewer assumptions than fundamental plane (FP) studies and provides a powerful new approach for studying galaxy evolution. We focus on the sample of 25 galaxies in clusters at z~0.5 modeled in Paper I. For comparison, we compile and homogenize M/L literature data for 60 nearby galaxies that were modeled in comparable detail. The nearby sample obeys log(M/L)B=Z+Slog(σeff/200 km s-1), where Z=0.896+/-0.010, S=0.992+/-0.054, and σeff is the effective velocity dispersion. The z~0.5 sample follows a similar relation, but with lower zero point. The implied M/L evolution is Δlog(M/L)/Δz=-0.457+/-0.046(random)+/-0.078(systematic), consistent with passive evolution following high-redshift formation. This agrees with the FP results for this sample by van Dokkum & van der Marel, and confirms that FP evolution tracks M/L evolution, which is an important verification of the assumptions that underlie FP studies. However, while we find more FP evolution for galaxies of low σeff (or low mass), the dynamical M/L evolution shows little correlation with σeff. We argue that this difference can be plausibly attributed to a combination of two effects: (1) evolution in structural galaxy properties other than M/L, and (2) the neglect of rotational support in studies of FP evolution. The results leave the question open as to whether the low-mass galaxies in the sample have younger populations than the high-mass galaxies. This highlights the general importance in the study of population ages for complementing dynamical measurements with broadband colors or spectroscopic population diagnostics.
N-body simulations of collective effects in spiral and barred galaxies
NASA Astrophysics Data System (ADS)
Zhang, X.
2016-10-01
We present gravitational N-body simulations of the secular morphological evolution of disk galaxies induced by density wave modes. In particular, we address the demands collective effects place on the choice of simulation parameters, and show that the common practice of the use of a large gravity softening parameter was responsible for the failure of past simulations to correctly model the secular evolution process in galaxies, even for those simulations where the choice of basic state allows an unstable mode to emerge, a prerequisite for obtaining the coordinated radial mass flow pattern needed for secular evolution of galaxies along the Hubble sequence. We also demonstrate that the secular evolution rates measured in our improved simulations agree to an impressive degree with the corresponding rates predicted by the recently-advanced theories of dynamically-driven secular evolution of galaxies. The results of the current work, besides having direct implications on the cosmological evolution of galaxies, also shed light on the general question of how irreversibility emerges from a nominally reversible physical system.
Artist Concept of Galaxy Evolution Explorer
2002-12-21
The Galaxy Evolution Explorer was launched on April 28, 2003. Its mission is to study the shape, brightness, size and distance of galaxies across 10 billion years of cosmic history. The 50-centimeter-diameter (19.7-inch) telescope onboard the Galaxy Evolution Explorer sweeps the skies in search of ultraviolet-light sources. Ultraviolet is light from the higher end of the electromagnetic spectrum, just above visible light in frequency, but below X-rays and gamma rays. While a small amount of ultraviolet penetrates Earth's atmosphere, causing sunburn, the Galaxy Evolution Explorer observes those ultraviolet frequencies that can only be seen from space. http://photojournal.jpl.nasa.gov/catalog/PIA04234
How A Black Hole Lights Up Its Surroundings
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-10-01
How do the supermassive black holes that live at the centers of galaxies influence their environments? New observations of a distant active galaxy offer clues about this interaction.Signs of CoevolutionPlot demonstrating the m-sigma relation, the empirical correlation between the stellar velocity dispersion of a galactic bulge and the mass of the supermassive black hole at its center. [Msigma]We know that the centers of active galaxies host supermassive black holes with masses of millions to billions of suns. One mystery surrounding these beasts is that they are observed to evolve simultaneously with their host galaxies for instance, an empirical relationship is seen between the growth of a black hole and the growth of its host galaxys bulge. This suggests that there must be a feedback mechanism through which the evolution of a black hole is linked to that of its host galaxy.One proposed source of this coupling is the powerful jets emitted from the poles of these supermassive black holes. These jets are thought to be produced as some of the material accreting onto the black hole is flung out, confined by surrounding gas and magnetic fields. Because the jets of hot gas and radiation extend outward through the host galaxy, they provide a means for the black hole to influence the gas and dust of its surroundings.In our current model of a radio-loud active galactic nuclei,a region of hot, ionized gas the narrow-line region lies beyond the sphere of influence of the supermassive black hole. [C.M. Urry and P. Padovani]Clues in the Narrow-Line RegionThe region of gas thought to sit just outside of the black holes sphere of influence (at a distance of perhaps a thousand to a few thousand light-years) is known as the narrow line region so named because we observe narrow emission lines from this gas. Given its hot, ionized state, this gas must somehow be being pummeled with energy. In the canonical picture, radiation from the black hole heats the gas directly in a process called photoionization. But could jets also be involved?In a recent study led by kos Bogdn, a team of scientists at the Harvard-Smithsonian Center for Astrophysics used X-ray observations of a galaxys nucleus to explore the possibility that its narrow-line region is heated and ionized not only by radiation, but also by the shocks produced as radio jets collide with their surrounding environment.Heating from JetsChandra X-ray data for Mrk 3, with radio contours overplotted. Both wavelengths show S-shaped morphology of the jets, with the X-ray emission enveloping the radio emission. A strong shock is present in the west and a weaker shock toward the east. [Bogdn et al. 2017]Bogdn and collaborators analyzed deep Chandra X-ray observations of the center of Mrk 3, an early-type galaxy located roughly 200 million light-years away. Chandras imaging and high-resolution spectroscopy of the galaxys narrow-line region allowed the team to build a detailed picture of the hot gas, demonstrating that it shows similar S-shaped morphology to the gas emitting at radio wavelengths, but its more broadly distributed.The authors demonstrate the presence of shocks in the X-ray gas both toward the west and toward the east of the nucleus. These shocks, combined with the broadening of the X-ray emission and other signs, strongly support the idea that collisions of the jets with the surrounding environment heat the narrow-line-region gas, contributing to its ionization. The authors argue that, given how common small-scale radio jets are in galaxies such as Mrk 3, its likely that collisional ionization plays an important role in how the black holes in these galaxies impart energy to their surrounding environments.Citationkos Bogdn et al 2017 ApJ 848 61. doi:10.3847/1538-4357/aa8c76
An Empirical Picture for the Evolution of Galaxies outside of Clusters
NASA Astrophysics Data System (ADS)
Saucedo-Morales, Julio; Bieging, John
The main goal of this work is to study the properties of isolated elliptical galaxies with the hope of learning about their formation and evolution. A sample that contains ~25% of the galaxies classified as ellipticals in the Karachentseva Catalog of Isolated Galaxies is investigated. Approximately one half of these galaxies appear to be misclassified, a result which may imply a reduction of the percentage of ellipticals in the Karachentseva catalog to (6+/-2% of the total population of isolated galaxies. A significant number of merger candidates has also been found among the isolated galaxies. It is argued that the fraction of merger candidates to isolated ellipticals can be used to constrain models for the evolution of compact groups into isolated galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvis, M.; Hao, H.; Civano, F.
2012-11-01
The 'Cosmic Evolution Survey' (COSMOS) enables the study of the spectral energy distributions (SEDs) of active galactic nuclei (AGNs) because of the deep coverage and rich sampling of frequencies from X-ray to radio. Here we present an SED catalog of 413 X-ray (XMM-Newton)-selected type 1 (emission line FWHM > 2000 km s{sup -1}) AGNs with Magellan, SDSS, or VLT spectrum. The SEDs are corrected for Galactic extinction, broad emission line contributions, constrained variability, and host galaxy contribution. We present the mean SED and the dispersion SEDs after the above corrections in the rest-frame 1.4 GHz to 40 keV, and showmore » examples of the variety of SEDs encountered. In the near-infrared to optical (rest frame {approx}8 {mu}m-4000 A), the photometry is complete for the whole sample and the mean SED is derived from detections only. Reddening and host galaxy contamination could account for a large fraction of the observed SED variety. The SEDs are all available online.« less
Imaging the host galaxies of high-redshift radio-quiet QSOs
NASA Technical Reports Server (NTRS)
Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.
1995-01-01
We present new deep K-band and optical images of four radio-quiet QSOs at z approximately = 1 and six radio-quiet QSOs at z approximately = 2.5, as well as optical images only of six more at z approximately = 2.5. We have examined the images carefully for evidence of extended 'fuzz' from any putative QSO host galaxy. None of the z approximately = 2.5 QSOs shows any extended emission, and only two of the z approximately = 1 QSOs show marginal evidence for extended emission. Our 3 sigma detection limits in the K images, m(sub K) approximately = 21 for an isolated source, would correspond approximately to an unevolved L(sup star) elliptical galaxy at z = 2.5 or 2-3 mag fainter than an L(sup star) elliptical at z = 1, although our limits on host galaxy light are weaker than this due to the difficulty of separating galaxy light from QSO light. We simulate simple models of disk and elliptical host galaxies, and find that the marginal emission around the two z approximately = 1 QSOs can be explained by disks or bulges that are approximately 1-2 mag brighter than an unevolved L(sup star) galaxy in one case and approximately 1.5-2.5 mag brighter than L(sub star) in the other. For two other z approximately = 1 QSOs, we have only upper limits (L approximately = L(sup star)). The hosts of the high-redshift sample must be no brighter than about 3 mag above an unevolved L(sup star) galaxy, and are at least 1 magnitude fainter than the hosts of radio-loud QSOs at the same redshift. If the easily detected K-band light surrounding a previous sample of otherwise similar but radio-loud QSOs is starlight, then it must evolve on timescales of greater than or approximately equal to 10(exp 8) yr (e.g., Chambers & Charlot 1990); therefore our non-detection of host galaxy fuzz around radio-quiet QSOs supports the view that high-redshift radio-quiet and radio-loud QSOs inhabit different host objects, rather than being single types of objects that turn their radio emission on and off over short timescales. This is consistent with the general trend at low redshifts that radio-loud QSOs are found in giant elliptical galaxies while radio-quiet QSOs are found in less luminous disk galaxies. It also suggests that the processes responsible for the spectacular properties of radio-loud AGNs at high redshifts might not be generally relevent to the (far more numerous) radio-quiet population.
Modeling the Gravitational Potential of a Cosmological Dark Matter Halo with Stellar Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanderson, Robyn E.; Hartke, Johanna; Helmi, Amina, E-mail: robyn@astro.columbia.edu
2017-02-20
Stellar streams result from the tidal disruption of satellites and star clusters as they orbit a host galaxy, and can be very sensitive probes of the gravitational potential of the host system. We select and study narrow stellar streams formed in a Milky-Way-like dark matter halo of the Aquarius suite of cosmological simulations, to determine if these streams can be used to constrain the present day characteristic parameters of the halo’s gravitational potential. We find that orbits integrated in both spherical and triaxial static Navarro–Frenk–White potentials reproduce the locations and kinematics of the various streams reasonably well. To quantify thismore » further, we determine the best-fit potential parameters by maximizing the amount of clustering of the stream stars in the space of their actions. We show that using our set of Aquarius streams, we recover a mass profile that is consistent with the spherically averaged dark matter profile of the host halo, although we ignored both triaxiality and time evolution in the fit. This gives us confidence that such methods can be applied to the many streams that will be discovered by the Gaia mission to determine the gravitational potential of our Galaxy.« less
NASA Astrophysics Data System (ADS)
Nogueira-Cavalcante, J. P.; Gonçalves, T. S.; Menéndez-Delmestre, K.; Sheth, K.
2018-01-01
We calculate the star formation quenching time-scales in green valley galaxies at intermediate redshifts (z ∼ 0.5-1) using stacked zCOSMOS spectra of different galaxy morphological types: spheroidal, disc-like, irregular and merger, dividing disc-like galaxies further into unbarred, weakly barred and strongly barred, assuming a simple exponentially decaying star formation history model and based on the H δ absorption feature and the 4000 Å break. We find that different morphological types present different star formation quenching time-scales, reinforcing the idea that the galaxy morphology is strongly correlated with the physical processes responsible for quenching star formation. Our quantification of the star formation quenching time-scale indicates that discs have typical time-scales 60 per cent to five times longer than that of galaxies presenting spheroidal, irregular or merger morphologies. Barred galaxies, in particular, present the slowest transition time-scales through the green valley. This suggests that although secular evolution may ultimately lead to gas exhaustion in the host galaxy via bar-induced gas inflows that trigger star formation activity, secular agents are not major contributors in the rapid quenching of galaxies at these redshifts. Galaxy interaction, associated with the elliptical, irregular and merger morphologies, contributes, to a more significant degree, to the fast transition through the green valley at these redshifts. In light of previous works suggesting that both secular and merger processes are responsible for the star formation quenching at low redshifts, our results provide an explanation to the recent findings that star formation quenching happened at a faster pace at z ∼ 0.8.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuinn, Kristen B. W.; Skillman, Evan D.; Simones, Jacob E.
The Survey of Hi in Extremely Low-mass Dwarfs is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ∼10% of the Hi Arecibo Legacy Fast ALFA survey based on their low Hi mass and low baryonic mass. Here, we measure the star formation properties from optically resolved stellar populations for 12 galaxies using a color–magnitude diagram fitting technique. We derive lifetime average star formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, themore » recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dwarf irregulars. We do not find a correlation between the recent star formation activity and the distance to the nearest neighboring galaxy, suggesting that the star formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star formation process.« less
Initiating the Sierra Nevada catalogue of star-forming polar-ring galaxies
NASA Astrophysics Data System (ADS)
Garcia-Ribera, E.; Pérez-Montero, E.; García-Benito, R.; Vílchez, J. M.
2015-05-01
We describe photometric observations with the 1.5m. telescope of the Sierra Nevada Observatory of a preliminary sample of 16 candidates to polar-ring galaxies (PRGs) selected from Whitmore et al. (1990) and Moiseev et al. (2011). The images were taken in broad filters (BVR) in order to characterize the host galaxies and the rings and in narrow filter Hα at the corresponding redshifted wavelength to identify in the rings knots of on-going star-formation. These information allowed us to analyze different physical parameters (formation scenarios, morphological types, and stellar population) and to locate HII regions. The main aim of this work is the elaboration of a catalogue of PRGs with a star-forming ring. In a next future, the spatially-resolved spectroscopy study of these structures will help to understand their most probable mechanism of origin, formation and evolution by means of rotation curves, spectral fitting of stellar populations and chemical abundance analysis (e.g. Pérez-Montero et al. 2009)
NASA Astrophysics Data System (ADS)
Randriamanakoto, Zara; Väisänen, Petri
2017-03-01
Super star clusters (SSCs) represent the youngest and most massive form of known gravitationally bound star clusters in the Universe. They are born abundantly in environments that trigger strong and violent star formation. We investigate the properties of these massive SSCs in a sample of 42 nearby starbursts and luminous infrared galaxies. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared (NIR) K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments. Results from i) the fitted power-laws to the SSC K-band luminosity functions, ii) the NIR brightest star cluster magnitude - star formation rate (SFR) relation and iii) the star cluster age and mass distributions have shown the importance of studying SSC host galaxies with high SFR levels to determine the role of the galactic environments in the star cluster formation, evolution and disruption mechanisms.
Black Hole in Search of a Home
NASA Astrophysics Data System (ADS)
2005-09-01
Astronomers Discover Bright Quasar Without Massive Host Galaxy An international team of astronomers [1] used two of the most powerful astronomical facilities available, the ESO Very Large Telescope (VLT) at Cerro Paranal and the Hubble Space Telescope (HST), to conduct a detailed study of 20 low redshift quasars. For 19 of them, they found, as expected, that these super massive black holes are surrounded by a host galaxy. But when they studied the bright quasar HE0450-2958, located some 5 billion light-years away, they couldn't find evidence for an encircling galaxy. This, the astronomers suggest, may indicate a rare case of collision between a seemingly normal spiral galaxy and a much more exotic object harbouring a very massive black hole. With masses up to hundreds of millions that of the Sun, "super massive" black holes are the most tantalizing objects known. Hiding in the centre of most large galaxies, including our own Milky Way (see ESO PR 26/03), they sometimes manifest themselves by devouring matter they engulf from their surroundings. Shining up to the largest distances, they are then called "quasars" or "QSOs" (for "quasi-stellar objects"), as they had initially been confused with stars. Decades of observations of quasars have suggested that they are always associated with massive host galaxies. However, observing the host galaxy of a quasar is a challenging work, because the quasar is radiating so energetically that its host galaxy is hard to detect in the flare. ESO PR Photo 28a/05 ESO PR Photo 28a/05 Two Quasars with their Host Galaxy [Preview - JPEG: 400 x 760 pix - 82k] [Normal - JPEG: 800 x 1520 pix - 395k] [Full Res - JPEG: 1722 x 3271 pix - 4.0M] Caption: ESO PR Photo 28a/05 shows two examples of quasars from the sample studied by the astronomers, where the host galaxy is obvious. In each case, the quasar is the bright central spot. The host of HE1239-2426 (left), a z=0.082 quasar, displays large spiral arms, while the host of HE1503+0228 (right), having a redshift of 0.135, is more fuzzy and shows only hints of spiral arms. Although these particular objects are rather close to us and constitute therefore easy targets, their host would still be perfectly visible at much higher redshift, including at distances as large as the one of HE0450-2958 (z=0.285). The observations were done with the ACS camera on the HST. ESO PR Photo 28b/05 ESO PR Photo 28b/05 The Quasar without a Home: HE0450-2958 [Preview - JPEG: 400 x 760 pix - 53k] [Normal - JPEG: 800 x 1520 pix - 197k] [Full Res - JPEG: 1718 x 3265 pix - 1.5M] Caption of ESO PR Photo 28b/05: (Left) HST image of the z=0.285 quasar HE0450-2958. No obvious host galaxy centred on the quasar is seen. Only a strongly disturbed and star forming companion galaxy is seen near the top of the image. (Right) Same image shown after applying an efficient image sharpening method known as MCS-deconvolution. In contrast to the usual cases, as the ones shown in ESO PR Photo 28a/05, the quasar is not situated at the centre of an extended host galaxy, but on the edge of a compact structure, whose spectra (see ESO PR Photo 28c/05) show it to be composed of gas ionised by the quasar radiation. This gas may have been captured through a collision with the star-forming galaxy. The star indicated on the figure is a nearby galactic star seen by chance in the field of view. To overcome this problem, the astronomers devised a new and highly efficient strategy. Using ESO's VLT for spectroscopy and HST for imagery, they observed their quasars at the same time as a reference star. Simultaneous observation of a star allowed them to measure at best the shape of the quasar point source on spectra and images, and further to separate the quasar light from the other contribution, i.e. from the underlying galaxy itself. This very powerful image and spectra sharpening method ("MCS deconvolution") was applied to these data in order to detect the finest details of the host galaxy (see e.g. ESO PR 19/03). Using this efficient technique, the astronomers could detect a host galaxy for all but one of the quasars they studied. No stellar environment was found for HE0450-2958, suggesting that if any host galaxy exists, it must either have a luminosity at least six times fainter than expected a priori from the quasar observed luminosity, or a radius smaller than about 300 light-years. Typical radii for quasar host galaxies range between 6,000 and 50,000 light-years, i.e. they are at least 20 to 170 times larger. "With the data we managed to secure with the VLT and the HST, we would have been able to detect a normal host galaxy", says Pierre Magain (Université de Liège, Belgium), lead author of the paper reporting the study. "We must therefore conclude that, contrary to our expectations, this bright quasar is not surrounded by a massive galaxy." Instead, the astronomers detected just besides the quasar a bright cloud of about 2,500 light-years in size, which they baptized "the blob". The VLT observations show this cloud to be composed only of gas ionised by the intense radiation coming from the quasar. It is probably the gas of this cloud which is feeding the supermassive black hole, allowing it to become a quasar. ESO PR Photo 28c/05 ESO PR Photo 28c/05 Spectrum of Quasar HE0450-2958, the Blob and the Companion Galaxy (FORS/VLT) [Preview - JPEG: 400 x 561 pix - 112k] [Normal - JPEG: 800 x 1121 pix - 257k] [HiRes - JPEG: 2332 x 3268 pix - 1.1M] Caption: ESO PR Photo 28c/05 presents the spectra of the three objects indicated in ESO PR Photo 28b/05 as obtained with FORS1 on ESO's Very Large Telescope. The spectrum of the companion galaxy shown on the top panel reveals strong star formation. Thanks to the image sharpening process, it has been possible to separate very well the spectra of the quasar (centre) from that of the blob (bottom). The spectrum of the blob shows exclusively strong narrow emission lines having properties indicative of ionisation by the quasar light. There is no trace of stellar light, down to very faint levels, in the surrounding of the quasar. A strongly perturbed galaxy, showing all signs of a recent collision, is also seen on the HST images 2 arcseconds away (corresponding to about 50,000 light-years), with the VLT spectra showing it to be presently in a state where it forms stars at a frantic rate. "The absence of a massive host galaxy, combined with the existence of the blob and the star-forming galaxy, lead us to believe that we have uncovered a really exotic quasar, says team member Frédéric Courbin (Ecole Polytechnique Fédérale de Lausanne, Switzerland). "There is little doubt that a burst in the formation of stars in the companion galaxy and the quasar itself have been ignited by a collision that must haven taken place about 100 million years ago. What happened to the putative quasar host remains unknown." HE0450-2958 constitutes a challenging case of interpretation. The astronomers propose several possible explanations, that will need to be further investigated and confronted. Has the host galaxy been completely disrupted as a result of the collision? It is hard to imagine how that could happen. Has an isolated black hole captured gas while crossing the disc of a spiral galaxy? This would require very special conditions and would probably not have caused such a tremendous perturbation as is observed in the neighbouring galaxy. Another intriguing hypothesis is that the galaxy harbouring the black hole was almost exclusively made of dark matter. "Whatever the solution of this riddle, the strong observable fact is that the quasar host galaxy, if any, is much too faint", says team member Knud Jahnke (Astrophysikalisches Institut Potsdam, Germany). The report on HE0450-2958 is published in the September 15, 2005 issue of the journal Nature ("Discovery of a bright quasar without a massive host galaxy" by Pierre Magain et al.).
Examining an AGN Luminosity – SFR relation
NASA Astrophysics Data System (ADS)
Stemo, Aaron; Comerford, Julia M.; Barrows, Robert Scott
2018-06-01
The relation between the star formation rate (SFR) of a galaxy and the accretion rate of its supermassive black hole is not well understood. Some observations show that active galactic nuclei (AGN) activity and SFR are correlated while other observations show no relation between the two. In this work we present a large, uniformly-selected catalog of HST galaxies that host AGN. Using available multiwavelength photometric data, we are able to determine AGN bolometric luminosity, host galaxy SFR, host galaxy stellar mass, and redshift for our sample. Using this catalog, we are able to compare AGN bolometric luminosity and SFR, while controlling for redshift and stellar mass. These comparisons will be used to make a statistically significant statement on the correlation between AGN activity and a host galaxy’s SFR.
An Ultraviolet Investigation of Activity on Exoplanet Host Stars
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.
2013-03-01
Using the far-UV (FUV) and near-UV (NUV) photometry from the NASA Galaxy Evolution Explorer (GALEX), we searched for evidence of increased stellar activity due to tidal and/or magnetic star-planet interactions (SPI) in the 272 known FGK planetary hosts observed by GALEX. With the increased sensitivity of GALEX, we are able probe systems with lower activity levels and at larger distances than what has been done to date with X-ray satellites. We compared samples of stars with close-in planets (a < 0.1 AU) to those with far-out planets (a > 0.5 AU) and looked for correlations of excess activity with other system parameters. This statistical investigation found no clear correlations with a, Mp , or Mp /a, in contrast to some X-ray and Ca II studies. However, there is tentative evidence (at a level of 1.8σ) that stars with radial-velocity-(RV)-detected close-in planets are more FUV-active than stars with far-out planets, in agreement with several published X-ray and Ca II results. The case is strengthened to a level of significance to 2.3σ when transit-detected close-in planets are included. This is most likely because the RV-selected sample of stars is significantly less active than the field population of comparable stars, while the transit-selected sample is similarly active. Given the factor of 2-3 scatter in fractional FUV luminosity for a given stellar effective temperature, it is necessary to conduct a time-resolved study of the planet hosts in order to better characterize their UV variability and generate a firmer statistical result. Based on observations made with the NASA Galaxy Evolution Explorer. GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034.
The SAGA Survey. I. Satellite Galaxy Populations around Eight Milky Way Analogs
NASA Astrophysics Data System (ADS)
Geha, Marla; Wechsler, Risa H.; Mao, Yao-Yuan; Tollerud, Erik J.; Weiner, Benjamin; Bernstein, Rebecca; Hoyle, Ben; Marchi, Sebastian; Marshall, Phil J.; Muñoz, Ricardo; Lu, Yu
2017-09-01
We present the survey strategy and early results of the “Satellites Around Galactic Analogs” (SAGA) Survey. The SAGA Survey’s goal is to measure the distribution of satellite galaxies around 100 systems analogous to the Milky Way down to the luminosity of the Leo I dwarf galaxy ({M}r< -12.3). We define a Milky Way analog based on K-band luminosity and local environment. Here, we present satellite luminosity functions for eight Milky-Way-analog galaxies between 20 and 40 Mpc. These systems have nearly complete spectroscopic coverage of candidate satellites within the projected host virial radius down to {r}o< 20.75 using low-redshift gri color criteria. We have discovered a total of 25 new satellite galaxies: 14 new satellite galaxies meet our formal criteria around our complete host systems, plus 11 additional satellites in either incompletely surveyed hosts or below our formal magnitude limit. Combined with 13 previously known satellites, there are a total of 27 satellites around 8 complete Milky-Way-analog hosts. We find a wide distribution in the number of satellites per host, from 1 to 9, in the luminosity range for which there are 5 Milky Way satellites. Standard abundance matching extrapolated from higher luminosities predicts less scatter between hosts and a steeper luminosity function slope than observed. We find that the majority of satellites (26 of 27) are star-forming. These early results indicate that the Milky Way has a different satellite population than typical in our sample, potentially changing the physical interpretation of measurements based only on the Milky Way’s satellite galaxies.
Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts
NASA Astrophysics Data System (ADS)
Shinn, Jong-Ho; Seon, Kwang-Il
2015-12-01
In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFRUV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFRUV and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.
NASA Astrophysics Data System (ADS)
van der Marel, Roeland P.; van Dokkum, Pieter G.
2007-10-01
We present spatially resolved stellar rotation velocity and velocity dispersion profiles from Keck/LRIS absorption-line spectra for 25 galaxies, mostly visually classified ellipticals, in three clusters at z~0.5. We interpret the kinematical data and HST photometry using oblate axisymmetric two-integral f(E,Lz) dynamical models based on the Jeans equations. This yields good fits, provided that the seeing and observational characteristics are carefully modeled. The fits yield for each galaxy the dynamical mass-to-light ratio (M/L) and a measure of the galaxy rotation rate. Paper II addresses the implied M/L evolution. Here we study the rotation-rate evolution by comparison to a sample of local elliptical galaxies of similar present-day luminosity. The brightest galaxies in the sample all rotate too slowly to account for their flattening, as is also observed at z=0. But the average rotation rate is higher at z~0.5 than locally. This may be due to a higher fraction of misclassified S0 galaxies (although this effect is insufficient to explain the observed strong evolution of the cluster S0 fraction with redshift). Alternatively, dry mergers between early-type galaxies may have decreased the average rotation rate over time. It is unclear whether such mergers are numerous enough in clusters to explain the observed trend quantitatively. Disk-disk mergers may affect the comparison through the so-called ``progenitor bias,'' but this cannot explain the direction of the observed rotation-rate evolution. Additional samples are needed to constrain possible environmental dependencies and cosmic variance in galaxy rotation rates. Either way, studies of the internal stellar dynamics of distant galaxies provide a valuable new approach for exploring galaxy evolution.
Age bimodality in the central region of pseudo-bulges in S0 galaxies
NASA Astrophysics Data System (ADS)
Mishra, Preetish K.; Barway, Sudhanshu; Wadadekar, Yogesh
2017-11-01
We present evidence for bimodal stellar age distribution of pseudo-bulges of S0 galaxies as probed by the Dn(4000) index. We do not observe any bimodality in age distribution for pseudo-bulges in spiral galaxies. Our sample is flux limited and contains 2067 S0 and 2630 spiral galaxies drawn from the Sloan Digital Sky Survey. We identify pseudo-bulges in S0 and spiral galaxies, based on the position of the bulge on the Kormendy diagram and their central velocity dispersion. Dividing the pseudo-bulges of S0 galaxies into those containing old and young stellar populations, we study the connection between global star formation and pseudo-bulge age on the u - r colour-mass diagram. We find that most old pseudo-bulges are hosted by passive galaxies while majority of young bulges are hosted by galaxies that are star forming. Dividing our sample of S0 galaxies into early-type S0s and S0/a galaxies, we find that old pseudo-bulges are mainly hosted by early-type S0 galaxies while most of the pseudo-bulges in S0/a galaxies are young. We speculate that morphology plays a strong role in quenching of star formation in the disc of these S0 galaxies, which stops the growth of pseudo-bulges, giving rise to old pseudo-bulges and the observed age bimodality.
The dynamics and evolution of clusters of galaxies
NASA Technical Reports Server (NTRS)
Geller, Margaret; Huchra, John P.
1987-01-01
Research was undertaken to produce a coherent picture of the formation and evolution of large-scale structures in the universe. The program is divided into projects which examine four areas: the relationship between individual galaxies and their environment; the structure and evolution of individual rich clusters of galaxies; the nature of superclusters; and the large-scale distribution of individual galaxies. A brief review of results in each area is provided.
Cosmic Collisions: Galaxy Mergers and Evolution
NASA Astrophysics Data System (ADS)
Trouille, Laura; Willett, Kyle; Masters, Karen; Lintott, Christopher; Whyte, Laura; Lynn, Stuart; Tremonti, Christina A.
2014-08-01
Over the years evidence has mounted for a significant mode of galaxy evolution via mergers. This process links gas-rich, spiral galaxies; starbursting galaxies; active galactic nuclei (AGN); post-starburst galaxies; and gas-poor, elliptical galaxies, as objects representing different phases of major galaxy mergers. The post-starburst phase is particularly interesting because nearly every galaxy that evolves from star-forming to quiescent must pass through it. In essence, this phase is a sort of galaxy evolution “bottleneck” that indicates that a galaxy is actively evolving through important physical transitions. In this talk I will present the results from the ‘Galaxy Zoo Quench’ project - using post-starburst galaxies to place observational constraints on the role of mergers and AGN activity in quenching star formation. `Quench’ is the first fully collaborative research project with Zooniverse citizen scientists online; engaging the public in all phases of research, from classification to data analysis and discussion to writing the article and submission to a refereed journal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Nicholas; Graham, Alister W.
2013-02-15
We investigate whether or not nuclear star clusters and supermassive black holes (SMBHs) follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object (CMO). We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M {sub NC}, correlates most tightly with the host galaxy's velocity dispersion: log M {sub NC} = (2.11 {+-} 0.31)log ({sigma}/54) + (6.63 {+-} 0.09), butmore » has a slope dramatically shallower than the relation defined by SMBHs. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular, M {sub NC}{proportional_to}M {sup 0.55{+-}0.15} {sub Gal,dyn}; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and SMBHs do not form a single family of CMOs.« less
VizieR Online Data Catalog: Type 2 AGN host galaxies in Chandra-COSMOS (Suh+, 2017)
NASA Astrophysics Data System (ADS)
Suh, H.; Civano, F.; Hasinger, G.; Lusso, E.; Lanzuisi, G.; Marchesi, S.; Trakhtenbrot, B.; Allevato, V.; Cappelluti, N.; Capak, P. L.; Elvis, M.; Griffiths, R. E.; Laigle, C.; Lira, P.; Riguccini, L.; Rosario, D. J.; Salvato, M.; Schawinski, K.; Vignali, C.
2018-01-01
We investigate the star formation properties of a large sample of ~2300 X-ray-selected Type 2 Active Galactic Nuclei (AGNs) host galaxies out to z~3 in the Chandra COSMOS Legacy Survey in order to understand the connection between the star formation and nuclear activity. Making use of the existing multi-wavelength photometric data available in the COSMOS field, we perform a multi-component modeling from far-infrared to near-ultraviolet using a nuclear dust torus model, a stellar population model and a starburst model of the spectral energy distributions (SEDs). Through detailed analyses of SEDs, we derive the stellar masses and the star formation rates (SFRs) of Type 2 AGN host galaxies. The stellar mass of our sample is in the range of 9
Using HMXBs to Probe Massive Binary Evolution
NASA Astrophysics Data System (ADS)
Garofali, Kristen
2017-09-01
We propose using deep archival Chandra data of M33 to characterize the distribution of physical parameters for the high-mass X-ray binary (HMXB) population from X-ray spectra, X-ray lightcurves, and identified optical counterparts coupled with ground-based spectroscopy. Our analysis will provide the largest clean sample of HMXBs in M33, including hardness, short- and long-term variability, luminosity, and ages. These measurements will be compared across M33 and to HMXB studies in other nearby galaxies to test correlations between HMXB population and host properties such as metallicity and star formation rate. Furthermore, our measurements will yield empirical constraints on prescriptions for models of the formation and evolution of massive stars in binaries.
The inevitable youthfulness of known high-redshift radio galaxies
NASA Astrophysics Data System (ADS)
Blundell, Katherine M.; Rawlings, Steve
1999-05-01
Some galaxies are very luminous in the radio part of the spectrum. These `radio galaxies' have extensive (hundreds of kiloparsecs) lobes of emission powered by plasma jets originating at a central black hole. Some radio galaxies can be seen at very high redshifts, where in principle they can serve as probes of the early evolution of the Universe. Here we show that, for any model of radio-galaxy evolution in which the luminosity decreases with time after an initial rapid increase (that is, essentially all reasonable models), all observable high-redshift radio galaxies must be seen when the lobes are less than 107 years old. This means that high-redshift radio galaxies can be used as a high-time-resolution probe of evolution in the early Universe. Moreover, this result explains many observed trends of radio-galaxy properties with redshift, without needing to invoke explanations based on cosmology or strong evolution of the surrounding intergalactic medium with cosmic time, thereby avoiding conflict with current theories of structure formation.
Galaxy clusters in local Universe simulations without density constraints: a long uphill struggle
NASA Astrophysics Data System (ADS)
Sorce, Jenny G.
2018-06-01
Galaxy clusters are excellent cosmological probes provided that their formation and evolution within the large scale environment are precisely understood. Therefore studies with simulated galaxy clusters have flourished. However detailed comparisons between simulated and observed clusters and their population - the galaxies - are complicated by the diversity of clusters and their surrounding environment. An original way initiated by Bertschinger as early as 1987, to legitimize the one-to-one comparison exercise down to the details, is to produce simulations constrained to resemble the cluster under study within its large scale environment. Subsequently several methods have emerged to produce simulations that look like the local Universe. This paper highlights one of these methods and its essential steps to get simulations that not only resemble the local Large Scale Structure but also that host the local clusters. It includes a new modeling of the radial peculiar velocity uncertainties to remove the observed correlation between the decreases of the simulated cluster masses and of the amount of data used as constraints with the distance from us. This method has the particularity to use solely radial peculiar velocities as constraints: no additional density constraints are required to get local cluster simulacra. The new resulting simulations host dark matter halos that match the most prominent local clusters such as Coma. Zoom-in simulations of the latter and of a volume larger than the 30h-1 Mpc radius inner sphere become now possible to study local clusters and their effects. Mapping the local Sunyaev-Zel'dovich and Sachs-Wolfe effects can follow.
Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity
NASA Astrophysics Data System (ADS)
Gonzalez Ortiz, Andrea
2017-01-01
We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.
PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation
NASA Astrophysics Data System (ADS)
Galbany, L.; Anderson, J. P.; Sánchez, S. F.; Kuncarayakti, H.; Pedraz, S.; González-Gaitán, S.; Stanishev, V.; Domínguez, I.; Moreno-Raya, M. E.; Wood-Vasey, W. M.; Mourão, A. M.; Ponder, K. A.; Badenes, C.; Mollá, M.; López-Sánchez, A. R.; Rosales-Ortega, F. F.; Vílchez, J. M.; García-Benito, R.; Marino, R. A.
2018-03-01
We present the PMAS/PPak Integral-field Supernova hosts COmpilation (PISCO), which comprises integral field spectroscopy (IFS) of 232 supernova (SN) host galaxies that hosted 272 SNe, observed over several semesters with the 3.5 m telescope at the Calar Alto Observatory (CAHA). PISCO is the largest collection of SN host galaxies observed with wide-field IFS, totaling 466,347 individual spectra covering a typical spatial resolution of ∼380 pc. Focused studies regarding specific SN Ia-related topics will be published elsewhere; this paper aims to present the properties of the SN environments, using stellar population (SP) synthesis, and the gas-phase interstellar medium, providing additional results separating stripped-envelope SNe into their subtypes. With 11,270 H II regions detected in all galaxies, we present for the first time a statistical analysis of H II regions, which puts H II regions that have hosted SNe in context with all other star-forming clumps within their galaxies. SNe Ic are associated with environments that are more metal-rich and have higher EW(Hα) and higher star formation rate within their host galaxies than the mean of all H II regions detected within each host. This in contrast to SNe IIb, which occur in environments that are very different compared to other core-collapse SNe types. We find two clear components of young and old SPs at SNe IIn locations. We find that SNe II fast decliners tend to explode at locations where the ΣSFR is more intense. Finally, we outline how a future dedicated IFS survey of galaxies in parallel to an untargeted SN search would overcome the biases in current environmental studies.
On the Gas Content and Efficiency of AGN Feedback in Low-redshift Quasars
NASA Astrophysics Data System (ADS)
Shangguan, Jinyi; Ho, Luis C.; Xie, Yanxia
2018-02-01
The interstellar medium is crucial to understanding the physics of active galaxies and the coevolution between supermassive black holes and their host galaxies. However, direct gas measurements are limited by sensitivity and other uncertainties. Dust provides an efficient indirect probe of the total gas. We apply this technique to a large sample of quasars, whose total gas content would be prohibitively expensive to measure. We present a comprehensive study of the full (1 to 500 μm) infrared spectral energy distributions of 87 redshift <0.5 quasars selected from the Palomar-Green sample, using photometric measurements from 2MASS, WISE, and Herschel, combined with Spitzer mid-infrared (5–40 μm) spectra. With a newly developed Bayesian Markov Chain Monte Carlo fitting method, we decompose various overlapping contributions to the integrated spectral energy distribution, including starlight, warm dust from the torus, and cooler dust on galaxy scales. This procedure yields a robust dust mass, which we use to infer the gas mass, using a gas-to-dust ratio constrained by the host galaxy stellar mass. Most (90%) quasar hosts have gas fractions similar to those of massive, star-forming galaxies, although a minority (10%) seem genuinely gas-deficient, resembling present-day massive early-type galaxies. This result indicates that “quasar mode” feedback does not occur or is ineffective in the host galaxies of low-redshift quasars. We also find that quasars can boost the interstellar radiation field and heat dust on galactic scales. This cautions against the common practice of using the far-infrared luminosity to estimate the host galaxy star formation rate.
EPPUR SI MUOVE: POSITIONAL AND KINEMATIC CORRELATIONS OF SATELLITE PAIRS IN THE LOW Z UNIVERSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibata, Rodrigo A.; Famaey, Benoit; Martin, Nicolas
2015-05-20
We have recently shown that pairs of satellite galaxies located diametrically opposite to each other around their host possess predominantly anti-correlated velocities. This is consistent with a scenario in which ≳50% of satellite galaxies belong to kinematically coherent rotating planar structures. Here we extend this analysis, examining satellites of giant galaxies drawn from an SDSS photometric redshift catalog. We find that there is a ∼17% overabundance (>3σ significance) of candidate satellites at positions diametrically opposite to a spectroscopically confirmed satellite. We show that ΛCDM cosmological simulations do not possess this property when contamination is included. After subtracting contamination, we findmore » ∼2 times more satellites diametrically opposed to a spectroscopically confirmed satellite than at 90° from it, at projected distances ranging from 100 to 150 kpc from the host. This independent analysis thus strongly supports our previous results on anti-correlated velocities. We also find that those satellite pairs with anti-correlated velocities have a strong preference (∼3:1) to align with the major axis of the host whereas those with correlated velocities display the opposite behavior. We finally show that repeating a similar analysis to Ibata et al. with same-side satellites is generally hard to interpret, but is not inconsistent with our previous results when strong quality cuts are applied on the sample. This addresses all of the concerns recently raised by Cautun et al., who did not uncover any flaw in our previous analysis, but may simply have hinted at the physical extent of planar satellite structures by pointing out that the anti-correlation signal weakens at radii >150 kpc. All these unexpected positional and kinematic correlations strongly suggest that a substantial fraction of satellite galaxies are causally linked in their formation and evolution.« less
NASA Astrophysics Data System (ADS)
Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M.
2016-03-01
Context. The study of high-redshift bright quasars is crucial to gather information about the history of galaxy assembly and evolution. Variability analyses can provide useful data on the physics of quasar processes and their relation with the host galaxy. Aims: In this study, we aim to measure the black hole mass of the bright lensed BAL QSO APM 08279+5255 at z = 3.911 through reverberation mapping, and to update and extend the monitoring of its C IV absorption line variability. Methods: We perform the first reverberation mapping of the Si IV and C IV emission lines for a high-luminosity quasar at high redshift with the use of 138 R-band photometric data and 30 spectra available over 16 years of observations. We also cross-correlate the C IV absorption equivalent width variations with the continuum light curve to estimate the recombination time lags of the various absorbers and infer the physical conditions of the ionised gas. Results: We find a reverberation-mapping time lag of ~900 rest-frame days for both Si IV and C IV emission lines. This is consistent with an extension of the BLR size-to-luminosity relation for active galactic nuclei up to a luminosity of ~1048 erg s-1, and implies a black hole mass of 1010 M⊙. Additionally, we measure a recombination time lag of ~160 days in the rest frame for the C IV narrow absorption system, which implies an electron density of the absorbing gas of ~2.5 × 104 cm-3. Conclusions: The measured black hole mass of APM 08279+5255 indicates that the quasar resides in an under-massive host-galaxy bulge with Mbulge ~ 7.5MBH, and that the lens magnification is lower than ~8. Finally, the inferred electron density of the narrow-line absorber implies a distance of the order of 10 kpc of the absorbing gas from the quasar, placing it within the host galaxy.
The SINFONI survey of powerful radio galaxies at z 2: Jet-driven AGN feedback during the Quasar Era
NASA Astrophysics Data System (ADS)
Nesvadba, N. P. H.; De Breuck, C.; Lehnert, M. D.; Best, P. N.; Collet, C.
2017-03-01
We present VLT/SINFONI imaging spectroscopy of the rest-frame optical emission lines of warm ionized gas in 33 powerful radio galaxies at redshifts z ≳ 2, which are excellent sites to study the interplay of rapidly accreting active galactic nuclei and the interstellar medium of the host galaxy in the very late formation stages of massive galaxies. Our targets span two orders of magnitude in radio size (2-400 kpc) and kinetic jet energy (a few 1046- almost 1048 erg s-1). All sources have complex gas kinematics with broad line widths up to 1300 km s-1. About half have bipolar velocity fields with offsets up to 1500 km s-1 and are consistent with global back-to-back outflows. The others have complex velocity distributions, often with multiple abrupt velocity jumps far from the nucleus of the galaxy, and are not associated with a major merger in any obvious way. We present several empirical constraints that show why gas kinematics and radio jets seem to be physically related in all galaxies of the sample. The kinetic energy in the gas from large scale bulk and local outflow or turbulent motion corresponds to a few 10-3 to 10-2 of the kinetic energy output of the radio jet. In galaxies with radio jet power ≳ 1047 erg s-1, the kinetic energy in global back-to-back outflows dominates the total energy budget of the gas, suggesting that bulk motion of outflowing gas encompasses the global interstellar medium. This might be facilitated by the strong gas turbulence, as suggested by recent analytical work. We compare our findings with recent hydrodynamic simulations, and discuss the potential consequences for the subsequent evolution of massive galaxies at high redshift. Compared with recent models of metal enrichment in high-z AGN hosts, we find that the gas-phase metallicities in our galaxies are lower than in most low-z AGN, but nonetheless solar or even super-solar, suggesting that the ISM we see in these galaxies is very similar to the gas from which massive low-redshift galaxies formed most of their stars. This further highlights that we are seeing these galaxies near the end of their active formation phase. Based on observations collected at the Very Large Telescope of ESO. Program IDs 070.A-0545, 070.A-0229, 076.A-0684, 079.A-0617, 081.A-0468, 381.A-0541, 082.A-0825, 083.A-0445.
NASA Astrophysics Data System (ADS)
Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming
2016-05-01
SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}⊙ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}⊙ yr-1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He I λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He I λ10830 and the bulk blueshifting of [O III]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na I D and He I λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm-3, ionization parameter 10-1.3 ≲ U ≲ 10-0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm-2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48-65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044-1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy merger (or violent interaction) and quasar feedback. Its proximity enables our further observational investigations in detail (or tests) of the co-evolution paradigm.
AGN Variability in the GOODS Fields
NASA Astrophysics Data System (ADS)
Sarajedini, Vicki
2007-07-01
Variability is a proven method to identify intrinsically faint active nuclei in galaxies found in deep HST surveys. We propose to extend our short-term variability study of the GOODS fields to include the more recent epochs obtained via supernovae searchers, increasing the overall time baseline from 6 months to 2.5 years. Based on typical AGN lightcurves, we expect to detect 70% more AGN by including these more recent epochs. Variable-detected AGN samples complement current X-ray and mid-IR surveys for AGN by providing unambigous evidence of nuclear activity. Additionallty, a significant number of variable nuclei are not associated with X-ray or mid-IR sources and would thus go undetected. With the increased time baseline, we will be able to construct the structure function {variability amplitude vs. time} for low-luminosity AGN to z 1. The inclusion of the longer time interval will allow for better descrimination among the various models describing the nature of AGN variability. The variability survey will be compared against spectroscopically selected AGN from the Team Keck Redshift Survey of the GOODS-N and the upcoming Flamingos-II NIR survey of the GOODS-S. The high-resolution ACS images will be used to separate the AGN from the host galaxy light and study the morphology, size and environment of the host galaxy. These studies will address questions concerning the nature of low-luminosity AGN evolution and variability at z 1.
Co-evolution of Massive Black Holes and Their Host Galaxies
NASA Astrophysics Data System (ADS)
Chen, Y. M.
2010-07-01
A scenario of co-evolution of supermassive black holes (SMBHs) and galaxies has been clearly conducted by the important evidence from observational results of quasar host galaxies and the relation between spheroid and SMBH mass. There are a plenty of unresolved problems and questions, some being basic, to be addressed in this scenario. The main goal of the present thesis is focusing on the mysterious scenario including growth of primordial black holes, cosmological evolution of spins and duty cycle of SMBHs, and interaction between the SMBH activity and star formation in galaxies from low to high redshifts. We review the main progress of this field over the past decade since the discovery of Magorrian relation and present comments on some questions in light of our view of points. The key questions to be addressed in this thesis work are: (1) how does the fast growth of primordial black holes influence their evolution? (2) what is the equation to describe the co-evolution of SMBHs and galaxies? (3) what is the mechanism to control the co-evolution? (4) how to transport the fueling gas from kpc scale to the center? It has been suggested that fast growth of primordial black holes via super-Eddington accretion is a promising way to form SMBHs in high redshift universe. Neutrino cooling has been employed and expedites the growth. We consider the Compton heating of the surroundings of the primordial black holes. We find that the realistic accretion rate is only a few percent of the Eddington rate, and the accretion is episodic. It implies that the fast growth via super-Eddington is not feasible. These conclusions have been confirmed by the detailed numerical simulations of Milosavljevic et al. (2008). The difficulties of the fast growth via accretion of baryon particles make the formation of SMBHs elusive in high redshift universe. We developed a new formulation to calculate the duty cycle of SMBHs based on the Soltan argument. We show it can be expressed by the mass density ratio of active SMBHs to the total. This not only makes the calculation of the duty cycle independent of the assumption of cosmological evolution of Eddington ratios, but also allows us to set a totally new equation - the so-called η-equation to describe the co-evolution of SMBHs and galaxies. Applying the equations to SDSS (Sloan Digital Sky Survey) and other related survey data, we find that: (1) cosmological evolution of the duty cycle tightly follows the history of star formation rate (SFR) density in z<2 universe; (2) they just show opposite trends in higher redshift universe; (3) the radiative efficiency dramatically decreases with z, showing η≈0.3 at z =2 and down to η≈0.05 at z =0. It shows for the first time a history of random accretion of SMBH growth from high to low redshift universe. Chapter 3 is devoted to develop a new method to estimate the specific star formation rates (SSFR) for DEEP2 data. Using the series of Balmer absorption lines in rest-frame 3750~4150 Å, we develop a new method to estimate the SSFR. Applying this new method to both SDSS and DEEP2 data, we find the SSFR derived from Balmer absorption lines is consistent with that from emission lines at local universe, while there is a 100.3~100.4 discrepancy at z&≈1. This result implies the initial mass function changes with redshift, and it tends to form more massive stars at higher redshift. We pay much attention to the interaction between AGN and star formation in Chapter 4 through investigations of the Seyfert galaxies and type II AGNs. We obtain the SFR in about 50 Seyfert galaxies and compare with the SFR predicted by Kennicutt-Schmidt's law. We find that they are lower than the predicted by a factor of 10~100, clearly showing the evidence of suppressing the star formation in the 100 pc region around nuclei. 10848 type II AGNs are selected from SDSS data for the study of starburst and AGN connection. We find the young stars are playing an important role in triggering SMBH activities. A very tight correlation Λ≅SSFR1.5 between the Eddington ratio λ and SSFR has been found in the sample. This nonlinear relation stresses the role of supernova explosion, which could excite strong turbulent viscosity to transport the angular momentum of the fueling gas to the SMBHs. We set up a modified model by including the role of supernova explosion to account for the starburst-AGN connection. Indeed, we find that the model can be nicely consistent with the correlation. In this thesis, we demonstrate a self-adjusted system of galaxies and SMBHs - the SMBHs are triggered via star formation, which would get suppressed by SMBH activities. As a summary of the present thesis, we draw a conclusion that we poorly understand the issues as to formation of SMBHs, evolution of galaxies and SMBHs. There are a plenty of issues to be addressed in future. The solved questions are much less than the bringing out ones.
Sharing Gravity's Microscope: Star Formation and Galaxy Evolution for Underserved Arizonans
NASA Astrophysics Data System (ADS)
Knierman, Karen A.; Monkiewicz, Jacqueline A.; Bowman, Catherine DD; Taylor, Wendy
2016-01-01
Learning science in a community is important for children of all levels and especially for many underserved populations. This project combines HST research of galaxy evolution using gravitationally lensed galaxies with hands-on activities and the Starlab portable planetarium to link astronomy with families, teachers, and students. To explore galaxy evolution, new activities were developed and evaluated using novel evaluation techniques. A new set of galaxy classification cards enable inquiry-based learning about galaxy ages, evolution, and gravitational lensing. Activities using new cylinder overlays for the Starlab transparent cylinder will enable the detailed examination of star formation and galaxy evolution as seen from the viewpoint inside of different types of galaxies. These activities were presented in several Arizona venues that enable family and student participation including ASU Earth and Space Open House, Arizona Museum of Natural History Homeschooling Events, on the Salt River Pima-Maricopa Indian Community, and inner city Phoenix schools serving mainly Hispanic populations. Additional events targeted underserved families at the Phoenix Zoo, in Navajo County, and for the Pascua Yaqui Tribe. After evaluation, the activities and materials will also be shared with local teachers and nationally.
NASA Astrophysics Data System (ADS)
Boissier, S.; Buat, V.; Ilbert, O.
2010-11-01
Context. In recent years, stellar mass functions of both star-forming and quiescent galaxies have been observed at different redshifts in various fields. In addition, star formation rate (SFR) distributions (e.g. in the form of far infrared luminosity functions) were also obtained. Taken together, they offer complementary pieces of information concerning the evolution of galaxies. Aims: We attempt in this paper to check the consistency of the observed stellar mass functions, SFR functions, and the cosmic SFR density with simple backward evolutionary models. Methods: Starting from observed stellar mass functions for star-forming galaxies, we use backwards models to predict the evolution of a number of quantities, such as the SFR function, the cosmic SFR density and the velocity function. Because the velocity is a parameter attached to a galaxy during its history (contrary to the stellar mass), this approach allows us to quantify the number density evolution of galaxies of a given velocity, e.g. of the Milky Way siblings. Results: Observations suggest that the stellar mass function of star-forming galaxies is constant between redshift 0 and 1. To reproduce this result, we must quench star formation in a number of star-forming galaxies. The stellar mass function of these “quenched” galaxies is consistent with available data concerning the increase in the population of quiescent galaxies in the same redshift interval. The stellar mass function of quiescent galaxies is then mainly determined by the distribution of active galaxies that must stop star formation, with a modest mass redistribution during mergers. The cosmic SFR density and the evolution of the SFR functions are recovered relatively well, although they provide some clues to a minor evolution of the stellar mass function of star forming galaxies at the lowest redshifts. We thus consider that we have obtained in a simple way a relatively consistent picture of the evolution of galaxies at intermediate redshifts. If this picture is correct, 50% of the Milky-Way sisters (galaxies with the same velocity as our Galaxy, i.e. 220 km s-1) have quenched their star formation since redshift 1 (and an even higher fraction for higher velocities). We discuss the processes that might be responsible for this transformation.
Quasars, clusters and cosmology
NASA Astrophysics Data System (ADS)
Dhanda, Neelam
PART A: Acceleration of the Universe and Modified Gravity: We study the power of next-generation galaxy cluster surveys (such as eROSITA and WFXT) in constraining the cosmological parameters and especially the growth history of the Universe, using the information from galaxy cluster redshift and mass-function evolution and from cluster power spectrum. We use the Fisher Matrix formalism to evaluate the potential for the galaxy cluster surveys to make predictions about cosmological parameters like the gravitational growth index gamma. The primary purpose of this study has been to check whether we can rule out one or the other of the underlying gravity theories in light of the present uncertainty of mass-observable relations and their scatter evolution. We found that these surveys will provide better constraints on various cosmological parameters even after we admit a lack of complete knowledge about the galaxy cluster structure, and when we combine the information from the cluster number count redshift and mass evolution with that from the cluster power spectrum. Based on this, we studied the ability of different surveys to constrain the growth history of the Universe. It was found that whereas eROSITA surveys will need strong priors on cluster structure evolution to conclusively rule out one or the other of the two gravity models, General Relativity and DGP Braneworld Gravity; WFXT surveys do hold the special promise of differentiating growth and telling us whether it is GR or not, with its wide-field survey having the ability to say so even with 99% confidence. PART B: Chemical Evolution in Quasars: We studied chemical evolution in the broad emission line region (BELR) of nitrogen rich quasars drawn from the SDSS Quasar Catalogue IV. Using tools of emission-line spectroscopy, we made detailed abundance measurements of ˜ 40 quasars and estimated their metallicities using the line-intensity ratio method. It was found that quasars with strong nitrogen lines are indicators of high metallicities. Some of these quasars have reached metallicities as high as Z ˜ 20 Z⊙ . Our detailed analysis showed that except in three QSOs, most of the different line-intensity ratios implied the similar metallicities. This verifies that this abundance analysis technique does produce meaningful results. The exceptions are the line-intensity ratio NIV]/CIV, which gives systematically low metallicities and the line-intensity ratio NV/He II, which gives systematically high metallicities. We compared our findings with the predictions of the galactic chemical evolution models. From this study it was concluded that such high metallicities are reached either by requiring a top-heavy Initial Mass Function (IMF) for the quasar host galaxy as suggested by theoretical models, or by physically catastrophic events such as mergers that trigger star formation in already evolved systems which then leads to extreme metallicities in such quasars.
Modeling the Galaxy-Halo Connection: An open-source approach with Halotools
NASA Astrophysics Data System (ADS)
Hearin, Andrew
2016-03-01
Although the modern form of galaxy-halo modeling has been in place for over ten years, there exists no common code base for carrying out large-scale structure calculations. Considering, for example, the advances in CMB science made possible by Boltzmann-solvers such as CMBFast, CAMB and CLASS, there are clear precedents for how theorists working in a well-defined subfield can mutually benefit from such a code base. Motivated by these and other examples, I present Halotools: an open-source, object-oriented python package for building and testing models of the galaxy-halo connection. Halotools is community-driven, and already includes contributions from over a dozen scientists spread across numerous universities. Designed with high-speed performance in mind, the package generates mock observations of synthetic galaxy populations with sufficient speed to conduct expansive MCMC likelihood analyses over a diverse and highly customizable set of models. The package includes an automated test suite and extensive web-hosted documentation and tutorials (halotools.readthedocs.org). I conclude the talk by describing how Halotools can be used to analyze existing datasets to obtain robust and novel constraints on galaxy evolution models, and by outlining the Halotools program to prepare the field of cosmology for the arrival of Stage IV dark energy experiments.
International Conference: Milky Way Surveys: The Structure and Evolution of Our Galaxy
NASA Technical Reports Server (NTRS)
Clemens, Dan
2004-01-01
We were granted NASA support for partial sponsorship of an international conference on Galactic science, held June 15-17, 2003 and hosted by the Institute for Astrophysical Research at Boston University. This conference, entitled 'Milky Way Surveys: The Structure and Evolution of Our Galaxy' drew some 125 scientific experts, researchers, and graduate students to Boston to: (1) Present large area survey plans and findings; (2) Discuss important remaining questions and puzzles in Galactic science; and (3) To inform and excite students and researchers about the potential for using large area survey databases to address key Galactic science questions. An international Scientific Organizing Committee for this conference crafted a tightly packed two-day conference designed to highlight many recent and upcoming large area surveys (including 2MASS, SDSS, MSX, VLA-HI, GRS, and SIRTF/GLIMPSE) and current theoretical understandings and questions. By bringing together experts in the conduct of Galactic surveys and leading theorists, new ways of attacking long-standing scientific questions were encouraged. The titles of most of the talks and posters presented are attached to the end of this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satyapal, S.; Secrest, N. J.; McAlpine, W.
2014-04-01
In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures inmore » their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.« less
Lyman-α emitters gone missing: the different evolution of the bright and faint populations
NASA Astrophysics Data System (ADS)
Weinberger, Lewis H.; Kulkarni, Girish; Haehnelt, Martin G.; Choudhury, Tirthankar Roy
2018-06-01
We model the transmission of the Lyman-α line through the circum- and intergalactic media around dark matter haloes expected to host Lyman-alpha emitters (LAEs) at z ≥ 5.7, using the high-dynamic-range Sherwood simulations. We find very different CGM environments around more massive haloes (˜1011M⊙) compared to less massive haloes (˜109M⊙) at these redshifts, which can contribute to a different evolution of the Lyα transmission from LAEs within these haloes. Additionally we confirm that part of the differential evolution could result from bright LAEs being more likely to reside in larger ionized regions. We conclude that a combination of the CGM environment and the IGM ionization structure is likely to be responsible for the differential evolution of the bright and faint ends of the LAE luminosity function at z ≥ 6. More generally, we confirm the suggestion that the self-shielded neutral gas in the outskirts of the host halo can strongly attenuate the Lyα emission from high redshift galaxies. We find that this has a stronger effect on the more massive haloes hosting brighter LAEs. The faint-end of the LAE luminosity function is thus a more reliable probe of the average ionization state of the IGM. Comparing our model for LAEs with a range of observational data we find that the favoured reionization histories are our previously advocated `Late' and `Very Late' reionization histories, in which reionization finishes rather rapidly at around z ≃ 6.
Dwarf galaxies in the coma cluster: Star formation properties and evolution
NASA Astrophysics Data System (ADS)
Hammer, Derek M.
The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely in the process of being quenched or were only recently quenched. We modeled the quenching timescales for transition galaxies, or “green valley” objects, and found that the majority are quenched in less than 1 Gyr. This timescale is consistent with rapid dynamical processes that are active in the cluster environment as opposed to the more gradual quenching mechanisms that exist in the group environment. For the passive galaxy population, we have measured an average stellar age of 6-8 Gyr for the red sequence which is consistent with previous studies based on spectroscopic observations. We note that the star formation properties of Coma member galaxies were established from photometry alone, as opposed to using spectroscopic data which are more challenging to obtain for dwarf galaxies. We have measured the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are 3.5 mag fainter than previous studies in Coma, and are sufficiently deep that we reach the dwarf passive galaxy population for the first time. We have introduced a new technique for measuring the LF which avoids color selection effects associated with previous methods. The UV LFs constructed separately for star-forming and passive galaxies follow a similar distribution at faint magnitudes, which suggests that the recent quenching of infalling dwarf star-forming galaxies is sufficient to build the dwarf passive population in Coma. The Coma UV LFs show a turnover at faint magnitudes as compared to the field, owing to a deficit of dwarf galaxies with stellar masses below M∗ = 108 M⊙ . We show that the UV LFs for the field behind the Coma cluster are nearly identical to the average field environment, and do not show evidence for a turnover at faint magnitudes. We suspect that the missing dwarf galaxies in Coma are severely disrupted by tidal processes as they are accreted onto the cluster, just prior to reaching the infall region studied here.
NASA Technical Reports Server (NTRS)
2003-01-01
This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a 'hole' in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together.2003-12-10
This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a "hole" in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together. http://photojournal.jpl.nasa.gov/catalog/PIA04922
NASA Astrophysics Data System (ADS)
Gu, Meng; Ho, Luis C.; Peng, Chien Y.; Huang, Song
2013-08-01
Minor mergers are thought to be important for the buildup and structural evolution of massive elliptical galaxies. In this work, we report the discovery of a system of four shell features in NGC 4889, one of the brightest members of the Coma cluster, using optical images taken with the Hubble Space Telescope and the Sloan Digital Sky Survey. The shells are well aligned with the major axis of the host and are likely to have been formed by the accretion of a small satellite galaxy. We have performed a detailed two-dimensional photometric decomposition of NGC 4889 and of the many overlapping nearby galaxies in its vicinity. This comprehensive model allows us not only to firmly detect the low-surface brightness shells, but, crucially, also to accurately measure their luminosities and colors. The shells are bluer than the underlying stars at the same radius in the main galaxy. We make use of the colors of the shells and the color-magnitude relation of the Coma cluster to infer the luminosity (or mass) of the progenitor galaxy. The shells in NGC 4889 appear to have been produced by the minor merger of a moderate-luminosity (MI ≈ -18.7 mag) disk (S0 or spiral) galaxy with a luminosity (mass) ratio of ~90:1 with respect to the primary galaxy. The novel methodology presented in this work can be exploited to decode the fossil record imprinted in the photometric substructure of other nearby early-type galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555.
THE ACS LCID PROJECT: ON THE ORIGIN OF DWARF GALAXY TYPES—A MANIFESTATION OF THE HALO ASSEMBLY BIAS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallart, Carme; Monelli, Matteo; Aparicio, Antonio
We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than only being the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from color–magnitude diagrams reaching the oldest main-sequence turnoffs. We argue that these galaxies can be assigned to two basic types: fast dwarfs that startedmore » their evolution with a dominant and short star formation event and slow dwarfs that formed a small fraction of their stars early and have continued forming stars until the present time (or almost). These two different evolutionary paths do not map directly onto the present-day morphology (dwarf spheroidal versus dwarf irregular). Slow and fast dwarfs also differ in their inferred past location relative to the Milky Way and/or M31, which hints that slow dwarfs were generally assembled in lower-density environments than fast dwarfs. We propose that the distinction between a fast and slow dwarf galaxy primarily reflects the characteristic density of the environment where they form. At a later stage, interaction with a large host galaxy may play a role in the final gas removal and ultimate termination of star formation.« less
NASA Astrophysics Data System (ADS)
Wheeler, Coral; Oñorbe, Jose; Bullock, James S.; Boylan-Kolchin, Michael; Elbert, Oliver D.; Garrison-Kimmel, Shea; Hopkins, Philip F.; Kereš, Dušan
2015-10-01
We present Feedback in Realistic Environment (FIRE)/GIZMO hydrodynamic zoom-in simulations of isolated dark matter haloes, two each at the mass of classical dwarf galaxies (Mvir ≃ 1010 M⊙) and ultra-faint galaxies (Mvir ≃ 109 M⊙), and with two feedback implementations. The resulting central galaxies lie on an extrapolated abundance matching relation from M⋆ ≃ 106 to 104 M⊙ without a break. Every host is filled with subhaloes, many of which form stars. Each of our dwarfs with M⋆ ≃ 106 M⊙ has 1-2 well-resolved satellites with M⋆ = 3-200 × 103 M⊙. Even our isolated ultra-faint galaxies have star-forming subhaloes. If this is representative, dwarf galaxies throughout the Universe should commonly host tiny satellite galaxies of their own. We combine our results with the Exploring the Local Volume in Simulations (ELVIS) simulations to show that targeting ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35 per cent compared to random pointings, and specifically identify the region around the Phoenix dwarf galaxy as a good potential target. The well-resolved ultra-faint galaxies in our simulations (M⋆ ≃ 3-30 × 103 M⊙) form within Mpeak ≃ 0.5-3 × 109 M⊙ haloes. Each has a uniformly ancient stellar population ( > 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ≃ 5 × 109 M⊙ is a probable dividing line between haloes hosting reionization `fossils' and those hosting dwarfs that can continue to form stars in isolation after reionization.
NASA Astrophysics Data System (ADS)
Ryu, Taeho; Perna, Rosalba; Haiman, Zoltán; Ostriker, Jeremiah P.; Stone, Nicholas C.
2018-01-01
Using few-body simulations, we investigate the evolution of supermassive black holes (SMBHs) in galaxies (M* = 1010-1012 M⊙ at z = 0) at 0 < z < 4. Following galaxy merger trees from the Millennium simulation, we model BH mergers with two extreme binary decay scenarios for the 'hard binary' stage: a full or an empty loss cone. These two models should bracket the true evolution, and allow us to separately explore the role of dynamical friction and that of multibody BH interactions on BH mergers. Using the computed merger rates, we infer the stochastic gravitational wave background (GWB). Our dynamical approach is a first attempt to study the dynamical evolution of multiple SMBHs in the host galaxies undergoing mergers with various mass ratios (10-4 < q* < 1). Our main result demonstrates that SMBH binaries are able to merge in both scenarios. In the empty loss cone case, we find that BHs merge via multibody interactions, avoiding the 'final parsec' problem, and entering the pulsar timing arrays band with substantial orbital eccentricity. Our full loss cone treatment, albeit more approximate, suggests that the eccentricity becomes even higher when GWs become dominant, leading to rapid coalescences (binary lifetime ≲1 Gyr). Despite the lower merger rates in the empty loss cone case, due to their higher mass ratios and lower redshifts, the GWB in the full/empty loss cone models are comparable (0.70 × 10-15 and 0.53 × 10-15 at a frequency of 1 yr-1, respectively). Finally, we compute the effects of high eccentricities on the GWB spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montes, Gabriela; Ramirez-Ruiz, Enrico; Naiman, Jill
The r -process nuclei are robustly synthesized in the material ejected during neutron star binary mergers (NSBMs). If NSBMs are indeed solely responsible for the solar system r -process abundances, a galaxy like our own would be required to host a few NSBMs per million years, with each event ejecting, on average, about 5 × 10{sup −2} M {sub ⊙} of r -process material. Because the ejecta velocities in the tidal tail are significantly larger than those in ordinary supernovae, NSBMs deposit a comparable amount of energy into the ISM. In contrast to extensive efforts studying spherical models for supernovamore » remnant evolution, calculations quantifying the impact of NSBM ejecta in the ISM have been lacking. To better understand their evolution, we perform a suite of three-dimensional hydrodynamic simulations of isolated NSBM ejecta expanding in environments with conditions adopted from Milky-Way-like galaxy simulations. Although the remnant morphology is highly complex at early times, the subsequent radiative evolution is remarkably similar to that of a standard supernova. This implies that sub-resolution supernova feedback models can be used in galaxy-scale simulations that are unable to resolve the key evolutionary phases of NSBMs. Among other quantities, we examine the radius, mass, and kinetic energy content of the remnant at shell formation. We find that the shell formation epoch is attained when the swept-up mass is about 10{sup 3}( n {sub H}/1 cm{sup −3}){sup −2/7} M {sub ⊙;} at this point, the mass fraction of r -process material is enhanced up to two orders of magnitude in relation to a solar metallicity ISM.« less
A Complete Library of Infrared Spectral Energy Distributions for z=0 Galaxies
NASA Astrophysics Data System (ADS)
Sandstrom, Karin
CONTEXT: Half of the light emitted by galaxies is starlight absorbed and reprocessed into the infrared by dust. The spectral energy distribution (SED) of this IR emission encodes information on the mass and properties of the dust, the radiation field heating it, and the bolometric luminosity of the region. This makes IR emission a main tool to estimate star formation rates (SFRs) and to trace the distribution of the interstellar medium (ISM) in galaxies. The dust itself also plays key roles in the physics of star formation, and thereby galaxy evolution. This critical information on dust and its dependence on environment can only be reliably measured when we have observations with full wavelength coverage of the IR SED that resolve galaxies. With no new IR imaging missions on the horizon, the remarkably thorough census conducted by Herschel, Spitzer, and WISE of the nearby (D < 50 Mpc) galaxy population is the definitive resource on dust at z=0 for the foreseeable future. Such observations allow us to understand the behavior of the IR SED and so inform observations from the major new facilities ALMA and JWST, which have amazing sensitivity and resolution but limited wavelength coverage. OBJECTIVES: We will create a library of matched resolution, uniformly processed IR SEDs for all 532 local galaxies with resolved mapping in the Herschel, Spitzer, and WISE archives. We will associate the SED measurements with rich "value added" data, including fits of physical models to the IR SED (yielding small grain fractions, temperature, and dust masses), host galaxy properties (e.g., stellar mass, SFR, morphology, inclination), and local conditions in the galaxy (SFR and stellar surface density, ISM gas mass and metallicity where available). The library will be created for a range of spatial and angular scales and served through IRSA/MAST, providing a major high level legacy resource that will be useful to a wide community. We will exploit this database to address three major questions: (1) What powers the dust emission from galaxies and how does dust emission relate to the star formation rate? (2) How are dust and gas related across the galaxy population and how can dust emission best be used to trace gas? and (3) How does the dust grain population vary in response to local environment across galaxies? METHODS: We will use established techniques to uniformly process the archival data, fit models to the spectral energy distributions, match the data in resolution. These have been successfully deployed on similar data by individual teams (including us), but we will apply them to an order of magnitude larger sample. PERCEIVED SIGNIFICANCE: Dust is a main mediator of cloud and star formation, and thus galaxy evolution. Therefore, the properties and evolution of dust in galaxies is directly relevant to key NASA science goals to "Discover how the universe works, explore how it began and evolved, and search for life on planets around other stars." These are also essential tools to understand "How did we get here?" In practical terms, the database that we propose to create would be a major resource for many scientists: a tool to understand the physics of dust and the ISM for those studying local galaxies and a major aid to interpret monochromatic observations of high-z galaxies and galaxy surveys. This should have a large impact in the ALMA and (soon) JWST communities.
ALMA and RATIR observations of GRB 131030A
NASA Astrophysics Data System (ADS)
Huang, Kuiyun; Urata, Yuji; Takahashi, Satoko; Im, Myungshin; Yu, Po-Chieh; Choi, Changsu; Butler, Nathaniel; Watson, Alan M.; Kutyrev, Alexander; Lee, William H.; Klein, Chris; Fox, Ori D.; Littlejohns, Owen; Cucchiara, Nino; Troja, Eleonora; González, Jesús; Richer, Michael G.; Román-Zúñiga, Carlos; Bloom, Josh; Prochaska, J. Xavier; Gehrels, Neil; Moseley, Harvey; Georgiev, Leonid; de Diego, José A.; Ramirez-Ruiz, Enrico
2017-04-01
We report on the first open-use based Atacama Large Millimeter/submm Array (ALMA) 345 GHz observation for the late afterglow phase of GRB 131030A. The ALMA observation constrained a deep limit at 17.1 d for the afterglow and host galaxy. We also identified a faint submillimeter source (ALMA J2300-0522) near the GRB 131030A position. The deep limit at 345 GHz and multifrequency observations obtained using Swift and RATIR yielded forward-shock modeling with a two-dimensional relativistic hydrodynamic jet simulation and described X-ray excess in the afterglow. The excess was inconsistent with the synchrotron self-inverse Compton radiation from the forward shock. The host galaxy of GRB 131030A and optical counterpart of ALMA J2300-0522 were also identified in the Subaru image. Based on the deep ALMA limit for the host galaxy, the 3σ upper limits of IR luminosity and the star formation rate (SFR) are estimated as LIR < 1.11 × 1011 L⊙ and SFR <18.7 (M⊙ yr-1), respectively. Although the separation angle from the burst location (3{^''.}5) was rather large, ALMA J2300-0522 may be one component of the GRB 131030A host galaxy, according to previous host galaxy cases.
A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate Mass Black Hole
NASA Astrophysics Data System (ADS)
Barth, Aaron
2004-09-01
POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy is a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses. We request HST ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACIS imaging to investigate the spectral and variability properties of the X-ray emission. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.
The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos
NASA Astrophysics Data System (ADS)
Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder
2018-01-01
We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.
NASA Technical Reports Server (NTRS)
2006-01-01
The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope. The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons. Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars. Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them. Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist. Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across. This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).A New Clue in the Mystery of Fast Radio Bursts
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-06-01
The origin of the mysterious fast radio bursts has eluded us for more than a decade. With the help of a particularly cooperative burst, however, scientists may finally be homing in on the answer to this puzzle.A Burst RepeatsThe host of FRB 121102 is placed in context in this Gemini image. [Gemini Observatory/AURA/NSF/NRC]More than 20 fast radio bursts rare and highly energetic millisecond-duration radio pulses have been observed since the first was discovered in 2007. FRB 121102, however, is unique in its behavior: its the only one of these bursts to repeat. The many flashes observed from FRB 121102 allowed us for the first time to follow up on the burst and hunt for its location.Earlier this year, this work led to the announcement that FRB 121102s host galaxy has been identified: a dwarf galaxy located at a redshift of z = 0.193 (roughly 3 billion light-years away). Now a team of scientists led by Cees Bassa (ASTRON, the Netherlands Institute for Radio Astronomy) has performed additional follow-up to learn more about this host and what might be causing the mysterious flashes.Hubble observation of the host galaxy. The object at the bottom right is a reference star. The blue ellipse marks the extended diffuse emission of the galaxy, the red circle marks the centroid of the star-forming knot, and the white cross denotes the location of FRB 121102 ad the associated persistent radio source. [Adapted from Bassa et al. 2017]Host ObservationsBassa and collaborators used the Hubble Space Telescope, the Spitzer Space Telecsope, and the Gemini North telecsope in Hawaii to obtain optical, near-infrared, and mid-infrared observations of FRB 121102s host galaxy.The authors determined that the galaxy is a dim, irregular, low-metallicity dwarf galaxy. Its resolved, revealing a bright star-forming region roughly 4,000 light-years across in the galaxys outskirts. Intriguingly, the persistent radio source associated with FRB 121102 falls directly within that star-forming knot.Bassa and collaborators also found that the properties of the host galaxy are consistent with those of a type of galaxy known as extreme emission line galaxies. This provides a tantalizing clue, as these galaxies are known to host both hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts.Linking to the CauseWhat can this tell us about the cause of FRB 121102? The fact that this burst repeats already eliminates cataclysmic events as the origin. But the projected location of FRB 121102 within a star-forming region especially in a host galaxy thats similar to those typically hosting superluminous supernovae and long gamma-ray bursts strongly suggests theres a relation between these events.Artists impression of a gamma-ray burst in a star-forming region. [NASA/Swift/Mary Pat Hrybyk-Keith and John Jones]The authors propose that this observed coincidence, supported by models of magnetized neutron star birth, indicate an evolutionary link between fast radio bursts and neutron stars. In this picture, neutron stars or magnetars are born as long gamma-ray bursts or hydrogen-poor supernovae, and then evolve into fast-radio-burst-emitting sources.This picture may finally explain the cause of fast radio bursts but Bassa and collaborators caution that its also possible that this model applies only to FRB 121102. Since FRB 121102 is unique in being the only burst discovered to repeat, its cause may also be unique. The authors suggest that targeted searches of star-forming regions in galaxies similar to FRB 121102s host may reveal other repeating burst candidates, helping us to unravel the ongoing mystery of fast radio bursts.CitationC. G. Bassa et al 2017 ApJL 843 L8. doi:10.3847/2041-8213/aa7a0c
ZFOURGE/CANDELS: On the Evolution of M* Galaxy Progenitors from z = 3 to 0.5
NASA Astrophysics Data System (ADS)
Papovich, C.; Labbé, I.; Quadri, R.; Tilvi, V.; Behroozi, P.; Bell, E. F.; Glazebrook, K.; Spitler, L.; Straatman, C. M. S.; Tran, K.-V.; Cowley, M.; Davé, R.; Dekel, A.; Dickinson, M.; Ferguson, H. C.; Finkelstein, S. L.; Gawiser, E.; Inami, H.; Faber, S. M.; Kacprzak, G. G.; Kawinwanichakij, L.; Kocevski, D.; Koekemoer, A.; Koo, D. C.; Kurczynski, P.; Lotz, J. M.; Lu, Y.; Lucas, R. A.; McIntosh, D.; Mehrtens, N.; Mobasher, B.; Monson, A.; Morrison, G.; Nanayakkara, T.; Persson, S. E.; Salmon, B.; Simons, R.; Tomczak, A.; van Dokkum, P.; Weiner, B.; Willner, S. P.
2015-04-01
Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 1010 M ⊙ (defined here to be MW-mass) and 1011 M ⊙ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the growth of galaxy bulges in M* galaxies corresponds to a rapid decline in the galaxy gas fractions and/or a decrease in the star formation efficiency. This paper contains data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
New Members in the Galaxy Group Around Giant Radio Galaxy DA 240
NASA Astrophysics Data System (ADS)
Chen, Ru-Rong; Peng, Bo; Strom, Richard
2018-05-01
With new spectroscopic observations of group candidates around the giant radio galaxy DA 240, we have identified five new group members, increasing the number to twenty-five. While all the new members are located some distance from the host galaxy, two of them lie in one of the radio lobes, and the rest are found at a distance from the radio components. The new group members reinforce our earlier conclusion that the distribution of the DA 240 group with respect to the radio lobes is unusual among giant radio galaxy host environments.
Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Lena, Davide
Super-massive black holes (SBHs) have long been identified as the engines of active galactic nuclei (AGNs) and are now considered to play a key role in galaxy evolution. In this dissertation I present results from two observational studies conducted on nearby AGNs with the aim of furthering our understanding of SBH growth and their interplay with the host galaxies. The first study is an observational search for SBHs spatially offset from the center of their host galaxies. Such offsets can be considered signatures of gravitational recoil following the coalescence of an SBH binary system (formed in the aftermath of a galaxy merger) due to emission of gravitational waves. The study is based on a photometric analysis of fourteen nearby elliptical galaxies observed with the Hubble Space Telescope. I find that parsec-scale offsets are common. However, while these are individually consistent with residual gravitational recoil oscillations, there is a high probability that larger offsets than those actually observed should have been found in the sample as a whole. There are a number of possible explanations for this result: the galaxy merger rate may be lower than current estimates; SBH-binaries may reach the merger stage with a configuration which minimizes recoil velocities; or the SBH oscillations are more quickly damped than predicted. In the second study I use integral field spectroscopy obtained with the Gemini South telescope to investigate the kinematics of the circum-nuclear ionized gas in two active galaxies: NGC 1386, a Seyfert 2, and NGC 1365, a Seyfert 1. The goal of the study is to investigate outflows in low-luminosity AGNs, and the mechanisms channeling gas (the SBH fuel) from the inner kiloparsec down to a few tens of parsecs from the SBH. I find that the dominant kinematic components can be explained as a combination of rotation in the large-scale galactic disk and compact outflows along the axis of the AGN "radiation cone". However, in the case of NGC 1386, there is also compelling evidence for an equatorial outflow, which provides a new clue to the physical processes operating in AGNs.
Constraints on submicrojansky radio number counts based on evolving VLA-COSMOS luminosity functions
NASA Astrophysics Data System (ADS)
Novak, M.; Smolčić, V.; Schinnerer, E.; Zamorani, G.; Delvecchio, I.; Bondi, M.; Delhaize, J.
2018-06-01
We present an investigation of radio luminosity functions (LFs) and number counts based on the Karl G. Jansky Very Large Array-COSMOS 3 GHz Large Project. The radio-selected sample of 7826 galaxies with robust optical/near-infrared counterparts with excellent photometric coverage allows us to construct the total radio LF since z 5.7. Using the Markov chain Monte Carlo algorithm, we fit the redshift dependent pure luminosity evolution model to the data and compare it with previously published VLA-COSMOS LFs obtained on individual populations of radio-selected star-forming galaxies and galaxies hosting active galactic nuclei classified on the basis of presence or absence of a radio excess with respect to the star-formation rates derived from the infrared emission. We find they are in excellent agreement, thus showing the reliability of the radio excess method in selecting these two galaxy populations at radio wavelengths. We study radio number counts down to submicrojansky levels drawn from different models of evolving LFs. We show that our evolving LFs are able to reproduce the observed radio sky brightness, even though we rely on extrapolations toward the faint end. Our results also imply that no new radio-emitting galaxy population is present below 1 μJy. Our work suggests that selecting galaxies with radio flux densities between 0.1 and 10 μJy will yield a star-forming galaxy in 90-95% of the cases with a high percentage of these galaxies existing around a redshift of z 2, thus providing useful constraints for planned surveys with the Square Kilometer Array and its precursors.
On the evolution of clustering of 24-μm-selected galaxies
NASA Astrophysics Data System (ADS)
Magliocchetti, M.; Cirasuolo, M.; McLure, R. J.; Dunlop, J. S.; Almaini, O.; Foucaud, S.; de Zotti, G.; Simpson, C.; Sekiguchi, K.
2008-01-01
This paper investigates the clustering properties of a complete sample of 1041 24-μm-selected sources brighter than F24μm = 400μJy in the overlapping region between the Spitzer Wide-Area Infrared Extragalactic (SWIRE) and UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra Deep Survey (UDS) surveys. With the help of photometric redshift determinations we have concentrated on the two interval ranges z = [0.6-1.2] (low-z sample) and z >= 1.6 (high-z sample) as it is in these regions were we expect the mid-infrared (IR) population to be dominated by intense dust-enshrouded activity such as star formation and black hole accretion. Investigations of the angular correlation function produce an amplitude A ~ 0.010 for the high-z sample and A ~ 0.0055 for the low-z one. The corresponding correlation lengths are r0 = 15.9+2.9-3.4 and 8.5+1.5-1.8Mpc, showing that the high-z population is more strongly clustered. Comparisons with physical models for the formation and evolution of large-scale structure reveal that the high-z sources are exclusively associated with very massive (M >~ 1013Msolar) haloes, comparable to those which locally host groups-to-clusters of galaxies and are very common within such (rare) structures. Conversely, lower z galaxies are found to reside in smaller haloes (Mmin ~ 1012Msolar) and to be very rare in such systems. On the other hand, mid-IR photometry shows that the low-z and high-z samples include similar objects and probe a similar mixture of active galactic nucleus (AGN) and star-forming galaxies. While recent studies have determined a strong evolution of the 24-μm luminosity function between z ~ 2 and 0, they cannot provide information on the physical nature of such an evolution. Our clustering results instead indicate that this is due to the presence of different populations of objects inhabiting different structures, as active systems at z <~ 1.5 are found to be exclusively associated with low-mass galaxies, while very massive sources appear to have concluded their active phase before this epoch. Finally, we note that the small-scale clustering data seem to require steep (ρ ~ r-3) profiles for the distribution of galaxies within their haloes. This is suggestive of close encounters and/or mergers which could strongly favour both AGN and star formation activity.
QSO absorption spectroscopy and baryonic dark matter
NASA Astrophysics Data System (ADS)
Cirković, Milan M.
2005-04-01
The present book should serve a double purpose: first, as an introduction into the host of tightly related topics in astrophysics and cosmology all dealing with the history and evolution of the baryonic matter in the universe. Secondly, it gives argument for still somewhat controversial view that large baryonic reservoirs are present (at least in the low-redshift regime) in form of huge gaseous galactic haloes surrounding normal luminous galaxies, and manifesting through the Lyman-α absorption lines in spectra of background sources. If accepted, this view would profoundly impact our understanding of the galactic structure and evolution, and will deeply influence our views of the future evolution of galactic systems. After an introduction into cosmological jargon and symbols used throughout, and other important introductory material given in Chapter 1, the bulk of the argumentation is given in Chapter 2, which exposes phenomenology of Lyα absorption systems and various theories advanced to account for their physical origin. Chapter 3 deals with models of absorbing gas in the extended haloes of normal galaxies, and Chapter 4 gives a global discussion of main candidates for the reservoirs of the still elusive baryonic dark matter. A set of closely related technical issues which are used at several places in the main narrative are given in the appendices.
NASA Astrophysics Data System (ADS)
Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha
Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.
NGC 5291: Implications for the Formation of Dwarf Galaxies
NASA Technical Reports Server (NTRS)
Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.
1997-01-01
The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from the material associated with the system and that this entire complex contains several proto- or young dwarf irregular galaxies in various stages of development. We are therefore witnessing the early evolution of a number of genuinely young galaxies. Given the evident importance of the NGC 5291 system as a 'nursery' for young galaxies, careful modeling is required if we are to understand this remarkable galaxy.
Type Ia supernova host galaxies as seen with IFU spectroscopy
NASA Astrophysics Data System (ADS)
Stanishev, V.; Rodrigues, M.; Mourão, A.; Flores, H.
2012-09-01
Context. Type Ia supernovae (SNe Ia) have been widely used in cosmology as distance indicators. However, to fully exploit their potential in cosmology, a better control over systematic uncertainties is required. Some of the uncertainties are related to the unknown nature of the SN Ia progenitors. Aims: We aim to test the use of integral field unit (IFU) spectroscopy for correlating the properties of nearby SNe Ia with the properties of their host galaxies at the location of the SNe. The results are to be compared with those obtained from an analysis of the total host spectrum. The goal is to explore this path of constraining the nature of the SN Ia progenitors and further improve the use of SNe Ia in cosmology. Methods: We used the wide-field IFU spectrograph PMAS/PPAK at the 3.5 m telescope of Calar Alto Observatory to observe six nearby spiral galaxies that hosted SNe Ia. Spatially resolved 2D maps of the properties of the ionized gas and the stellar populations were derived. Results: Five of the observed galaxies have an ongoing star formation rate of 1-5 M⊙ yr-1 and mean stellar population ages ~5 Gyr. The sixth galaxy shows no star formation and has an about 12 Gyr old stellar population. All galaxies have stellar masses larger than 2 × 1010 M⊙ and metallicities above solar. Four galaxies show negative radial metallicity gradients of the ionized gas up to -0.058 dex kpc-1 and one has nearly uniform metallicity with a possible shallow positive slope. The stellar components show shallower negative metallicity gradients up to -0.03 dex kpc-1. We find no clear correlation between the properties of the galaxy and those of the supernovae, which may be because of the small ranges spanned by the galaxy parameters. However, we note that the Hubble residuals are on average positive while negative Hubble residuals are expected for SNe Ia in massive hosts such as the galaxies in our sample. Conclusions: The IFU spectroscopy on 4-m telescopes is a viable technique for studying host galaxies of nearby SNe Ia. It allows one to correlate the supernova properties with the properties of their host galaxies at the projected positions of the supernovae. Our current sample of six galaxies is too small to draw conclusions about the SN Ia progenitors or correlations with the galaxy properties, but the ongoing CALIFA IFU survey will provide a solid basis to exploit this technique more and improve our understanding of SNe Ia as cosmological standard candles. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Figures 7-15 and Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Nicholl, M.; Williams, P. K. G.; Berger, E.; Villar, V. A.; Alexander, K. D.; Eftekhari, T.; Metzger, B. D.
2017-07-01
The localization of the repeating fast radio burst (FRB) 121102 to a low-metallicity dwarf galaxy at z = 0.193, and its association with a luminous quiescent radio source, suggests the possibility that FRBs originate from magnetars, formed by the unusual supernovae that occur in such galaxies. We investigate this possibility via a comparison of magnetar birth rates, the FRB volumetric rate, and host galaxy demographics. We calculate average volumetric rates of possible millisecond magnetar production channels, such as superluminous supernovae (SLSNe), long and short gamma-ray bursts (GRBs), and general magnetar production via core-collapse supernovae (CCSNe). For each channel, we also explore the expected host galaxy demographics using their known properties. We determine for the first time the number density of FRB emitters (the product of their volumetric birth rate and lifetime), {R}{FRB}τ ≈ {10}4 Gpc-3, assuming that FRBs are predominantly emitted from repetitive sources similar to FRB 121102 and adopting a beaming factor of 0.1. By comparing rates, we find that production via rare channels (SLSNe, GRBs) implies a typical FRB lifetime of ˜30-300 years, in good agreement with other lines of argument. The total energy emitted over this time is consistent with the available energy stored in the magnetic field. On the other hand, any relation to magnetars produced via normal CCSNe leads to a very short lifetime of ˜0.5 years, in conflict with both theory and observation. We demonstrate that due to the diverse host galaxy distributions of the different progenitor channels, many possible sources of FRB birth can be ruled out with ≲ 10 host galaxy identifications. Conversely, targeted searches of galaxies that have previously hosted decades-old SLSNe and GRBs may be a fruitful strategy for discovering new FRBs and related quiescent radio sources, and determining the nature of their progenitors.
Satellite accretion on to massive galaxies with central black holes
NASA Astrophysics Data System (ADS)
Boylan-Kolchin, Michael; Ma, Chung-Pei
2007-02-01
Minor mergers of galaxies are expected to be common in a hierarchical cosmology such as Λ cold dark matter. Though less disruptive than major mergers, minor mergers are more frequent and thus have the potential to affect galactic structure significantly. In this paper, we dissect the case-by-case outcome from a set of numerical simulations of a single satellite elliptical galaxy accreting on to a massive elliptical galaxy. We take care to explore cosmologically relevant orbital parameters and to set up realistic initial galaxy models that include all three relevant dynamical components: dark matter haloes, stellar bulges, and central massive black holes (BHs). The effects of several different parameters are considered, including orbital energy and angular momentum, satellite density and inner density profile, satellite-to-host mass ratio, and presence of a BH at the centre of the host. BHs play a crucial role in protecting the shallow stellar cores of the hosts, as satellites merging on to a host with a central BH are more strongly disrupted than those merging on to hosts without BHs. Orbital parameters play an important role in determining the degree of disruption: satellites on less-bound or more-eccentric orbits are more easily destroyed than those on more-bound or more-circular orbits as a result of an increased number of pericentric passages and greater cumulative effects of gravitational shocking and tidal stripping. In addition, satellites with densities typical of faint elliptical galaxies are disrupted relatively easily, while denser satellites can survive much better in the tidal field of the host. Over the range of parameters explored, we find that the accretion of a single satellite elliptical galaxy can result in a broad variety of changes, in both signs, in the surface brightness profile and colour of the central part of an elliptical galaxy. Our results show that detailed properties of the stellar components of merging satellites can strongly affect the properties of the remnants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, E.; Zauderer, B. A.; Chary, R.-R.
2014-12-01
We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F {sub ν}(222 GHz) ≲ 33 μJy and F {sub ν}(3.6 μm) ≲ 81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp 220 and comparable to the local starburst M 82. Comparing this with model spectral energy distributions, we place a limit on the infrared (IR) luminosity of L {sub IR}(8-1000more » μm) ≲ 3 × 10{sup 10} L {sub ☉}, corresponding to a limit on the obscured star formation rate of SFR{sub IR}≲5 M {sub ☉} yr{sup –1}. For comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame ultraviolet (UV) observations is SFR{sub UV} ≲ 1 M {sub ☉} yr{sup –1}. We also place a limit on the host galaxy stellar mass of M {sub *} ≲ 5 × 10{sup 7} M {sub ☉} (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z ≳ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z ≳ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.« less
Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe
NASA Astrophysics Data System (ADS)
Cote, Benoit; JINA-CEE, NuGrid, ChETEC
2018-06-01
Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.
The environmental dependence of H I in galaxies in the EAGLE simulations
NASA Astrophysics Data System (ADS)
Marasco, Antonino; Crain, Robert A.; Schaye, Joop; Bahé, Yannick M.; van der Hulst, Thijs; Theuns, Tom; Bower, Richard G.
2016-09-01
We use the EAGLE suite of cosmological hydrodynamical simulations to study how the H I content of present-day galaxies depends on their environment. We show that EAGLE reproduces observed H I mass-environment trends very well, while semi-analytic models typically overpredict the average H I masses in dense environments. The environmental processes act primarily as an on/off switch for the H I content of satellites with M* > 109 M⊙. At a fixed M*, the fraction of H I-depleted satellites increase with increasing host halo mass M200 in response to stronger environmental effects, while at a fixed M200 it decreases with increasing satellite M* as the gas is confined by deeper gravitational potentials. H I-depleted satellites reside mostly, but not exclusively, within the virial radius r200 of their host halo. We investigate the origin of these trends by focusing on three environmental mechanisms: ram pressure stripping by the intragroup medium, tidal stripping by the host halo and satellite-satellite encounters. By tracking back in time the evolution of the H I-depleted satellites, we find that the most common cause of H I removal is satellite encounters. The time-scale for H I removal is typically less than 0.5 Gyr. Tidal stripping occurs in haloes of M200 < 1014 M⊙ within 0.5 × r200, while the other processes act also in more massive haloes, generally within r200. Conversely, we find that ram pressure stripping is the most common mechanism that disturbs the H I morphology of galaxies at redshift z = 0. This implies that H I removal due to satellite-satellite interactions occurs on shorter time-scales than the other processes.
SUPPRESSION OF STAR FORMATION IN THE HOSTS OF LOW-EXCITATION RADIO GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, Cameron; Salim, Samir, E-mail: cameronpace@suu.edu, E-mail: salims@indiana.edu
The feedback from radio-loud active galactic nuclei (R-AGNs) may help maintain low star-formation (SF) rates in their early-type hosts, but the observational evidence for this mechanism has been inconclusive. We study systematic differences of aggregate spectral energy distributions (SEDs) of various subsets of ∼4000 low-redshift R-AGNs from Best and Heckman with respect to (currently) inactive control samples selected to have matching redshift, stellar mass, population age, axis ratio, and environment. Aggregate SEDs, ranging from the ultraviolet (UV) through mid-infrared (mid-IR, 22 μm), were constructed using a Bayesian method that eliminates biases from non-detections in Galaxy Evolution Explorer and Wide-field Infraredmore » Survey Explorer. We study rare high-excitation sources separately from low-excitation ones, which we split by environment and host properties. We find that both the UV and mid-IR emission of non-cluster R-AGNs (80% of sample) are suppressed by ∼0.2 dex relative to that of the control group, especially for moderately massive galaxies (log M{sub *} ≲ 11). The difference disappears for high-mass R-AGNs and for R-AGNs in clusters, where other, non-AGN quenching/maintenance mechanisms may dominate, or where the suppression of SF due to AGNs may persist between active phases of the central engine, perhaps because of the presence of a hot gaseous halo storing AGN energy. High-excitation (high accretion rate) sources, which make up 2% of the R-AGN sample, do not show any evidence of SF suppression (their UV is the same as in controls), but they exhibit a strong mid-IR excess due to AGN dust heating.« less
NASA Technical Reports Server (NTRS)
Wilkes, B. J.; Mcdowell, J.
1994-01-01
Research into the optical, ultraviolet and infrared continuum emission from quasars and their host galaxies was carried out. The main results were the discovery of quasars with unusually weak infrared emission and the construction of a quantitative estimate of the dispersion in quasar continuum properties. One of the major uncertainties in the measurement of quasar continuum strength is the contribution to the continuum of the quasar host galaxy as a function of wavelength. Continuum templates were constructed for different types of host galaxy and individual estimates made of the decomposed quasar and host continua based on existing observations of the target quasars. The results are that host galaxy contamination is worse than previously suspected, and some apparent weak bump quasars are really normal quasars with strong host galaxies. However, the existence of true weak bump quasars such as PHL 909 was confirmed. The study of the link between the bump strength and other wavebands was continued by comparing with IRAS data. There is evidence that excess far infrared radiation is correlated with weaker ultraviolet bumps. This argues against an orientation effect and implies a probable link with the host galaxy environment, for instance the presence of a luminous starburst. However, the evidence still favors the idea that reddening is not important in those objects with ultraviolet weak bumps. The same work has led to the discovery of a class of infrared weak quasars. Pushing another part of the envelope of quasar continuum parameter space, the IR-weak quasars have implications for understanding the effects of reddening internal to the quasars, the reality of ultraviolet turnovers, and may allow further tests of the Phinney dust model for the IR continuum. They will also be important objects for studying the claimed IR to x-ray continuum correlation.
DEMOGRAPHICS OF THE GALAXIES HOSTING SHORT-DURATION GAMMA-RAY BURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, W.; Berger, E.; Chornock, R.
We present observations of the afterglows and host galaxies of three short-duration gamma-ray bursts (GRBs): 100625A, 101219A, and 110112A. We find that GRB 100625A occurred in a z = 0.452 early-type galaxy with a stellar mass of Almost-Equal-To 4.6 Multiplication-Sign 10{sup 9} M{sub Sun} and a stellar population age of Almost-Equal-To 0.7 Gyr, and GRB 101219A originated in a star-forming galaxy at z = 0.718 with a stellar mass of Almost-Equal-To 1.4 Multiplication-Sign 10{sup 9} M{sub Sun }, a star formation rate of Almost-Equal-To 16 M{sub Sun} yr{sup -1}, and a stellar population age of Almost-Equal-To 50 Myr. We alsomore » report the discovery of the optical afterglow of GRB 110112A, which lacks a coincident host galaxy to i {approx}> 26 mag, and we cannot conclusively identify any field galaxy as a possible host. From afterglow modeling, the bursts have inferred circumburst densities of Almost-Equal-To 10{sup -4}-1 cm{sup -3} and isotropic-equivalent gamma-ray and kinetic energies of Almost-Equal-To 10{sup 50}-10{sup 51} erg. These three events highlight the diversity of galactic environments that host short GRBs. To quantify this diversity, we use the sample of 36 Swift short GRBs with robust associations to an environment ({approx}1/2 of 68 short bursts detected by Swift to 2012 May) and classify bursts originating from four types of environments: late-type ( Almost-Equal-To 50%), early-type ( Almost-Equal-To 15%), inconclusive ( Almost-Equal-To 20%), and ''host-less'' (lacking a coincident host galaxy to limits of {approx}> 26 mag; Almost-Equal-To 15%). To find likely ranges for the true late- and early-type fractions, we assign each of the host-less bursts to either the late- or early-type category using probabilistic arguments and consider the scenario that all hosts in the inconclusive category are early-type galaxies to set an upper bound on the early-type fraction. We calculate most likely ranges for the late- and early-type fractions of Almost-Equal-To 60%-80% and Almost-Equal-To 20%-40%, respectively. We find no clear trend between gamma-ray duration and host type. We also find no change to the fractions when excluding events recently claimed as possible contaminants from the long GRB/collapsar population. Our reported demographics are consistent with a short GRB rate driven by both stellar mass and star formation.« less
The Impact of Bars and Spiral Density Waves on the Relative Frequencies of Supernovae
NASA Astrophysics Data System (ADS)
Aramyan, L. S.; Hakobyan, A. A.; Petrosian, A. R.; Barkhudaryan, L. V.; Karapetyan, A. G.; Adibekyan, V.; Turatto, M.
2017-07-01
We present the results of the analysis of the impact of bars and spiral density waves on the relative frequencies of supernovae (SNe). We find that for early -type Grand-Design (GD) and non-Grand-Design (NGD) galaxies, the NIa/NCC ratios, i.e., one of the tracers of specific star formation rate (sSFR), are not significantly different between barred and unbarred hosts. At the same time, for both barred and unbarred early-type galaxies, the NIa /NCC ratio in NGD hosts is significantly higher than that in GD, and for late-type galaxies no any significant difference exists between the N Ia/NCC ratios. Thus, in contrast to bars, the spiral density waves significantly enhance the relative frequencies of SNe in early-type GD galaxies, while not in late-type hosts. This result is actual also for galaxies when barred and unbarred categories are separated. Hence, the sSFR might be enhanced by density waves in early-type galaxies only.
Multimessenger Signatures of Massive Black Holes in Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Bellovary, Jillian; Cleary, Colleen; Tremmel, Michael; Munshi, Ferah
2018-01-01
Inspired by the recent discovery of several nearby dwarf galaxies hosting active galactic nuclei, we present results from a series of cosmological hydrodynamic simulations focusing on dwarf galaxies which host supermassive black holes (SMBHs). Cosmological simulations are a vital tool for predicting SMBH populations and merger events which will eventually be observed by LISA. Dwarf galaxies are the most numerous in the universe, so even though the occupation fraction of SMBHs in dwarfs is less than unity, their contribution to the gravitational wave background could be non-negligible. We find that electromagnetic signatures from SMBH accretion are not common among most SMBH-hosting dwarfs, but the gravitational wave signatures can be substantial. The most common mass ratio for SMBH mergers in low-mass galaxy environments is ~1:20, which is an unexplored region of gravitational waveform parameter space. We discuss the occupation fraction of SMBHs in low-mass galaxies as well as differences in field and satellite populations, providing clues to search for and characterize these elusive giants lurking in the dwarfs.
SDSS IV MaNGA - Properties of AGN Host Galaxies
NASA Astrophysics Data System (ADS)
Sánchez, S. F.; Avila-Reese, V.; Hernandez-Toledo, H.; Cortes-Suárez, E.; Rodríguez-Puebla, A.; Ibarra-Medel, H.; Cano-Díaz, M.; Barrera-Ballesteros, J. K.; Negrete, C. A.; Calette, A. R.; de Lorenzo-Cáceres, A.; Ortega-Minakata, R. A.; Aquino, E.; Valenzuela, O.; Clemente, J. C.; Storchi-Bergmann, T.; Riffel, R.; Schimoia, J.; Riffel, R. A.; Rembold, S. B.; Brownstein, J. R.; Pan, K.; Yates, R.; Mallmann, N.; Bitsakis, T.
2018-04-01
We present the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of ≍2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. AGN hosts are, on average, more massive, more compact, more centrally peaked and more pressure-supported systems. They are located in the intermediate/transition region between starforming and non-star-forming galaxies (i.e., the so-called green valley). We consider that they are in the process of halting/quenching the star formation. The analysis of the radial distributions of different properties shows that the quenching happens from inside-out involving both a decrease of the effciency of the star formation and a deficit of molecular gas. The data-products of the current analysis are distributed as a Value Added Catalog within the SDSS-DR14.
NASA Astrophysics Data System (ADS)
Fritz, J.; Poggianti, B. M.; Cava, A.; Moretti, A.; Varela, J.; Bettoni, D.; Couch, W. J.; D'Onofrio D'Onofrio, M.; Dressler, A.; Fasano, G.; Kjærgaard, P.; Marziani, P.; Moles, M.; Omizzolo, A.
2014-06-01
Context. Cluster galaxies are the ideal sites to look at when studying the influence of the environment on the various aspects of the evolution of galaxies, such as the changes in their stellar content and morphological transformations. In the framework of wings, the WIde-field Nearby Galaxy-cluster Survey, we have obtained optical spectra for ~6000 galaxies selected in fields centred on 48 local (0.04 < z < 0.07) X-ray selected clusters to tackle these issues. Aims: By classifying the spectra based on given spectral lines, we investigate the frequency of the various spectral types as a function of both the clusters' properties and the galaxies' characteristics. In this way, using the same classification criteria adopted for studies at higher redshift, we can consistently compare the properties of the local cluster population to those of their more distant counterparts. Methods: We describe a method that we have developed to automatically measure the equivalent width of spectral lines in a robust way, even in spectra with a non optimal signal-to-noise ratio. This way, we can derive a spectral classification reflecting the stellar content, based on the presence and strength of the [Oii] and Hδ lines. Results: After a quality check, we are able to measure 4381 of the ~6000 originally observed spectra in the fields of 48 clusters, of which 2744 are spectroscopically confirmed cluster members. The spectral classification is then analysed as a function of galaxies' luminosity, stellar mass, morphology, local density, and host cluster's global properties and compared to higher redshift samples (MORPHS and EDisCS). The vast majority of galaxies in the local clusters population are passive objects, being also the most luminous and massive. At a magnitude limit of MV < -18, galaxies in a post-starburst phase represent only ~11% of the cluster population, and this fraction is reduced to ~5% at MV < -19.5, which compares to the 18% at the same magnitude limit for high-z clusters. "Normal" star-forming galaxies (e(c)) are proportionally more common in local clusters. Conclusions: The relative occurrence of post-starbursts suggests a very similar quenching efficiency in clusters at redshifts in the 0 to ~1 range. Furthermore, more important than the global environment, the local density seems to be the main driver of galaxy evolution in local clusters at least with respect to their stellar populations content. Based on observations taken at the Anglo Australian Telescope (3.9 m- AAT) and at the William Herschel Telescope (4.2 m-WHT).Full Table A.1 is available in electronic form at both the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A32 and by querying the wings database at http://web.oapd.inaf.it/wings/new/index.htmlAppendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
De Rosa, Gisella
2015-08-01
The unknown dynamics of the broad line region (BLR) gas represents a serious gap in our understanding of active galactic nuclei (AGNs) and, consequently, of the black-hole/host-galaxy co-evolution. By using time resolution as a substitute for spatial resolution, reverberation mapping (RM) is the only technique that allows us to infer both the geometry and the kinematics of the BLR gas, shading light on the BLR role on accretion/feedback processes. In 2014, the AGN STORM team used HST/COS for a RM program for which we obtained 170 UV spectra of the Seyfert 1 galaxy NGC 5548 at a near daily cadence. These data and contemporaneous observations with Swift and ground-based telescopes make this the most intensive RM program ever undertaken. I will report first results of this unique RM experiment.
Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6
Decarli, R.; Walter, F.; Venemans, B.P.; Bañados, E.; Bertoldi, F.; Carilli, C.; Fan, X.; Farina, E.P.; Mazzucchelli, C.; Riechers, D.; Rix, H.-W.; Strauss, M.A.; Wang, R.; Yang, Y.
2017-01-01
The existence of massive (1011 Msun) elliptical galaxies by redshift z~4[1,2,3] (when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star formation rates SFR>100 Msun/yr at z>6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star formation rates are more than an order of magnitude lower[4]. The only known examples of very high rate galaxies at z>6 are, with only one exception[5], quasar host galaxies[6,7,8,9], i.e. galaxies that host an accreting supermassive (~109 Msun) black hole that likely affects the host properties. Here we report observations of the [CII] 158 μm line in 4 galaxies that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. Based upon the [CII] measurements, we estimate star formation rates of >100 Msun/yr. These sources are similar to the quasar hosts in [CII] brightness, line width and implied dynamical masses, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift[10,11,12]. We find such close companions in 4 out of 25 z>6 quasars surveyed, a fraction that needs to be accounted for in simulations[13,14]. If representative of the bright end of the [CII] luminosity function, they can account for the population of massive elliptical galaxies at z~4 in terms of cosmic space density. PMID:28541326