Science.gov

Sample records for host parasite interactions

  1. Systems analysis of host-parasite interactions.

    PubMed

    Swann, Justine; Jamshidi, Neema; Lewis, Nathan E; Winzeler, Elizabeth A

    2015-01-01

    Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug-resistant parasites necessitates that the research community take an active role in understanding host-parasite infection biology in order to develop improved therapeutics. Recent advances in next-generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host-parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high-throughput -omic data will undoubtedly generate extraordinary insight into host-parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host-parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies.

  2. Biological warfare: Microorganisms as drivers of host-parasite interactions.

    PubMed

    Dheilly, Nolwenn M; Poulin, Robert; Thomas, Frédéric

    2015-08-01

    Understanding parasite strategies for evasion, manipulation or exploitation of hosts is crucial for many fields, from ecology to medical sciences. Generally, research has focused on either the host response to parasitic infection, or the parasite virulence mechanisms. More recently, integrated studies of host-parasite interactions have allowed significant advances in theoretical and applied biology. However, these studies still provide a simplistic view of these as mere two-player interactions. Host and parasite are associated with a myriad of microorganisms that could benefit from the improved fitness of their partner. Illustrations of such complex multi-player interactions have emerged recently from studies performed in various taxa. In this conceptual article, we propose how these associated microorganisms may participate in the phenotypic alterations induced by parasites and hence in host-parasite interactions, from an ecological and evolutionary perspective. Host- and parasite-associated microorganisms may participate in the host-parasite interaction by interacting directly or indirectly with the other partner. As a result, parasites may develop (i) the disruptive strategy in which the parasite alters the host microbiota to its advantage, and (ii) the biological weapon strategy where the parasite-associated microorganism contributes to or modulates the parasite's virulence. Some phenotypic alterations induced by parasite may also arise from conflicts of interests between the host or parasite and its associated microorganism. For each situation, we review the literature and propose new directions for future research. Specifically, investigating the role of host- and parasite-associated microorganisms in host-parasite interactions at the individual, local and regional level will lead to a holistic understanding of how the co-evolution of the different partners influences how the other ones respond, both ecologically and evolutionary. The conceptual framework we

  3. Biological warfare: Microorganisms as drivers of host-parasite interactions.

    PubMed

    Dheilly, Nolwenn M; Poulin, Robert; Thomas, Frédéric

    2015-08-01

    Understanding parasite strategies for evasion, manipulation or exploitation of hosts is crucial for many fields, from ecology to medical sciences. Generally, research has focused on either the host response to parasitic infection, or the parasite virulence mechanisms. More recently, integrated studies of host-parasite interactions have allowed significant advances in theoretical and applied biology. However, these studies still provide a simplistic view of these as mere two-player interactions. Host and parasite are associated with a myriad of microorganisms that could benefit from the improved fitness of their partner. Illustrations of such complex multi-player interactions have emerged recently from studies performed in various taxa. In this conceptual article, we propose how these associated microorganisms may participate in the phenotypic alterations induced by parasites and hence in host-parasite interactions, from an ecological and evolutionary perspective. Host- and parasite-associated microorganisms may participate in the host-parasite interaction by interacting directly or indirectly with the other partner. As a result, parasites may develop (i) the disruptive strategy in which the parasite alters the host microbiota to its advantage, and (ii) the biological weapon strategy where the parasite-associated microorganism contributes to or modulates the parasite's virulence. Some phenotypic alterations induced by parasite may also arise from conflicts of interests between the host or parasite and its associated microorganism. For each situation, we review the literature and propose new directions for future research. Specifically, investigating the role of host- and parasite-associated microorganisms in host-parasite interactions at the individual, local and regional level will lead to a holistic understanding of how the co-evolution of the different partners influences how the other ones respond, both ecologically and evolutionary. The conceptual framework we

  4. Host-parasite interactions: Marine bivalve molluscs and protozoan parasites, Perkinsus species.

    PubMed

    Soudant, Philippe; E Chu, Fu-Lin; Volety, Aswani

    2013-10-01

    This review assesses and examines the work conducted to date concerning host and parasite interactions between marine bivalve molluscs and protozoan parasites, belonging to Perkinsus species. The review focuses on two well-studied host-parasite interaction models: the two clam species, Ruditapes philippinarum and R. decussatus, and the parasite Perkinsus olseni, and the eastern oyster, Crassostrea virginica, and the parasite Perkinsus marinus. Cellular and humoral defense responses of the host in combating parasitic infection, the mechanisms (e.g., antioxidant enzymes, extracellular products) employed by the parasite in evading host defenses as well as the role of environmental factors in modulating the host-parasite interactions are described.

  5. Host-Parasite Interactions in Some Fish Species

    PubMed Central

    Khan, R. A.

    2012-01-01

    Host-parasite interactions are complex, compounded by factors that are capable of shifting the balance in either direction. The host's age, behaviour, immunological status, and environmental change can affect the association that is beneficial to the host whereas evasion of the host's immune response favours the parasite. In fish, some infections that induce mortality are age and temperature dependent. Environmental change, especially habitat degradation by anthropogenic pollutants and oceanographic alterations induced by climatic, can influence parasitic-host interaction. The outcome of these associations will hinge on susceptibility and resistance. PMID:22900144

  6. The influence of biological rhythms on host-parasite interactions.

    PubMed

    Martinez-Bakker, Micaela; Helm, Barbara

    2015-06-01

    Biological rhythms, from circadian control of cellular processes to annual cycles in life history, are a main structural element of biology. Biological rhythms are considered adaptive because they enable organisms to partition activities to cope with, and take advantage of, predictable fluctuations in environmental conditions. A flourishing area of immunology is uncovering rhythms in the immune system of animals, including humans. Given the temporal structure of immunity, and rhythms in parasite activity and disease incidence, we propose that the intersection of chronobiology, disease ecology, and evolutionary biology holds the key to understanding host-parasite interactions. Here, we review host-parasite interactions while explicitly considering biological rhythms, and propose that rhythms: influence within-host infection dynamics and transmission between hosts, might account for diel and annual periodicity in host-parasite systems, and can lead to a host-parasite arms race in the temporal domain.

  7. Host-parasite interactions: a litmus test for ocean acidification?

    PubMed

    MacLeod, Colin D; Poulin, Robert

    2012-09-01

    The effects of ocean acidification (OA) on marine species and ecosystems have received significant scientific attention in the past 10 years. However, to date, the effects of OA on host-parasite interactions have been largely ignored. As parasites play a multidimensional role in the regulation of marine population, community, and ecosystem dynamics, this knowledge gap may result in an incomplete understanding of the consequences of OA. In addition, the impact of stressors associated with OA on host-parasite interactions may serve as an indicator of future changes to the biodiversity of marine systems. This opinion article discusses the potential effects of OA on host and parasite species and proposes the use of parasites as bioindicators of OA disturbance.

  8. Evolution of spatially structured host-parasite interactions.

    PubMed

    Lion, S; Gandon, S

    2015-01-01

    Spatial structure has dramatic effects on the demography and the evolution of species. A large variety of theoretical models have attempted to understand how local dispersal may shape the coevolution of interacting species such as host-parasite interactions. The lack of a unifying framework is a serious impediment for anyone willing to understand current theory. Here, we review previous theoretical studies in the light of a single epidemiological model that allows us to explore the effects of both host and parasite migration rates on the evolution and coevolution of various life-history traits. We discuss the impact of local dispersal on parasite virulence, various host defence strategies and local adaptation. Our analysis shows that evolutionary and coevolutionary outcomes crucially depend on the details of the host-parasite life cycle and on which life-history trait is involved in the interaction. We also discuss experimental studies that support the effects of spatial structure on the evolution of host-parasite interactions. This review highlights major similarities between some theoretical results, but it also reveals an important gap between evolutionary and coevolutionary models. We discuss possible ways to bridge this gap within a more unified framework that would reconcile spatial epidemiology, evolution and coevolution.

  9. Empirical evaluation of neutral interactions in host-parasite networks.

    PubMed

    Canard, E F; Mouquet, N; Mouillot, D; Stanko, M; Miklisova, D; Gravel, D

    2014-04-01

    While niche-based processes have been invoked extensively to explain the structure of interaction networks, recent studies propose that neutrality could also be of great importance. Under the neutral hypothesis, network structure would simply emerge from random encounters between individuals and thus would be directly linked to species abundance. We investigated the impact of species abundance distributions on qualitative and quantitative metrics of 113 host-parasite networks. We analyzed the concordance between neutral expectations and empirical observations at interaction, species, and network levels. We found that species abundance accurately predicts network metrics at all levels. Despite host-parasite systems being constrained by physiology and immunology, our results suggest that neutrality could also explain, at least partially, their structure. We hypothesize that trait matching would determine potential interactions between species, while abundance would determine their realization. PMID:24642492

  10. Interacting parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2010-01-01

    Parasitism is the most popular life-style on Earth, and many vertebrates host more than one kind of parasite at a time. A common assumption is that parasite species rarely interact, because they often exploit different tissues in a host, and this use of discrete resources limits competition (1). On page 243 of this issue, however, Telfer et al. (2) provide a convincing case of a highly interactive parasite community in voles, and show how infection with one parasite can affect susceptibility to others. If some human parasites are equally interactive, our current, disease-by-disease approach to modeling and treating infectious diseases is inadequate (3).

  11. Host-parasite interactions between whiteflies and their parasitoids.

    PubMed

    Gelman, Dale B; Gerling, Dan; Blackburn, Michael B; Hu, Jing S

    2005-12-01

    There is relatively little information available concerning the physiological and biochemical interactions between whiteflies and their parasitoids. In this report, we describe interactions between aphelinid parasitoids and their aleyrodid hosts that we have observed in four host-parasite systems: Bemisia tabaci/Encarsia formosa, Trialeurodes vaporariorum/E. formosa, B. tabaci/Eretmocerus mundus, and T. lauri/Encarsia scapeata. In the absence of reported polydnavirus and teratocytes, these parasitoids probably inject and/or produce compounds that interfere with the host immune response and also manipulate host development to suit their own needs. In addition, parasitoids must coordinate their own development with that of their host. Although eggs are deposited under all four instars of B. tabaci, Eretmocerus larvae only penetrate 4th instar B. tabaci nymphs. A pre-penetrating E. mundus first instar was capable of inducing permanent developmental arrest in its host, and upon penetration stimulated its host to produce a capsule (epidermal in origin) in which the parasitoid larva developed. T. vaporariorum and B. tabaci parasitized by E. formosa initiated adult development, and, on occasion, produced abnormal adult wings and eyes. In these systems, the site of parasitoid oviposition depended on the host species, occurring within or pressing into the ventral ganglion in T. vaporariorum and at various locations in B. tabaci. E. formosa's final larval molt is cued by the initiation of adult development in its host. In the T. lauri-E. scapeata system, both the host whitefly and the female parasitoid diapause during most of the year, i.e., from June until the middle of February (T. lauri) or from May until the end of December (E. scapeata). It appears that the growth and development of the insects are directed by the appearance of new, young foliage on Arbutus andrachne, the host tree. When adult female parasitoids emerged in the spring, they laid unfertilized male

  12. Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix

    PubMed Central

    Piña-Vázquez, Carolina; Reyes-López, Magda; Ortíz-Estrada, Guillermo; de la Garza, Mireya; Serrano-Luna, Jesús

    2012-01-01

    Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina). The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa. PMID:22792442

  13. Host-parasite interactions and the evolution of ploidy.

    PubMed

    Nuismer, Scott L; Otto, Sarah P

    2004-07-27

    Although the majority of animals and plants, including humans, are dominated by the diploid phase of their life cycle, extensive diversity in ploidy level exists among eukaryotes, with some groups being primarily haploid whereas others alternate between haploid and diploid phases. Previous theory has illuminated conditions that favor the evolution of increased or decreased ploidy but has shed little light on which species should be primarily haploid and which primarily diploid. Here, we report a discovery that emerged from host-parasite models in which ploidy levels were allowed to evolve: selection is more likely to favor diploidy in host species and haploidy in parasite species. Essentially, when parasites must evade a host's immune system or defense response, selection favors parasitic individuals that express a narrow array of antigens and elicitors, thus favoring haploid parasites over diploid parasites. Conversely, when hosts must recognize a parasite before mounting a defensive response, selection favors hosts with a broader arsenal of recognition molecules, thus favoring diploid hosts over haploid hosts. These results are consistent with the predominance of haploidy among parasitic protists.

  14. Coevolutionary interactions between farmers and mafia induce host acceptance of avian brood parasites.

    PubMed

    Abou Chakra, Maria; Hilbe, Christian; Traulsen, Arne

    2016-05-01

    Brood parasites exploit their host in order to increase their own fitness. Typically, this results in an arms race between parasite trickery and host defence. Thus, it is puzzling to observe hosts that accept parasitism without any resistance. The 'mafia' hypothesis suggests that these hosts accept parasitism to avoid retaliation. Retaliation has been shown to evolve when the hosts condition their response to mafia parasites, who use depredation as a targeted response to rejection. However, it is unclear if acceptance would also emerge when 'farming' parasites are present in the population. Farming parasites use depredation to synchronize the timing with the host, destroying mature clutches to force the host to re-nest. Herein, we develop an evolutionary model to analyse the interaction between depredatory parasites and their hosts. We show that coevolutionary cycles between farmers and mafia can still induce host acceptance of brood parasites. However, this equilibrium is unstable and in the long-run the dynamics of this host-parasite interaction exhibits strong oscillations: when farmers are the majority, accepters conditional to mafia (the host will reject first and only accept after retaliation by the parasite) have a higher fitness than unconditional accepters (the host always accepts parasitism). This leads to an increase in mafia parasites' fitness and in turn induce an optimal environment for accepter hosts. PMID:27293783

  15. Aggregation of Infective Stages of Parasites as an Adaptation and Its Implications for the Study of Parasite-Host Interactions.

    PubMed

    Morrill, André; Forbes, Mark R

    2016-02-01

    The causes and consequences of aggregation among conspecifics have received much attention. For infecting macroparasites, causes include variation among hosts in susceptibility and whether infective stages are aggregated in the environment. Here, we link these two phenomena and explore whether aggregation of infective stages in the environment is adaptive to parasites encountering host condition-linked defenses and what effect such aggregations have for parasite-host interactions. Using simulation models, we show that parasite fitness is increased by aggregates attacking a host, particularly when investment into defenses is high. The fitness benefit of aggregation remains despite inclusion of factors that should curb the benefits of aggregation, namely, mortality of low-condition hosts (those hosts expected to be most susceptible to parasitism) and costs of high coinfection. For sample sizes common in studies, aggregation of infective stages reduces the likelihood of detecting host condition-parasitism relations, even when host condition is the only other factor in models affecting parasitism. Thus, it is not surprising that the expected inverse relations between host condition and parasitism, commonly a premise in studies of parasite-host interactions, are inconsistently found. An understanding of how parasites encounter hosts is thus needed for developing theory for parasite-host ecological and evolutionary interactions.

  16. Red Queen dynamics in multi-host and multi-parasite interaction system.

    PubMed

    Rabajante, Jomar F; Tubay, Jerrold M; Uehara, Takashi; Morita, Satoru; Ebert, Dieter; Yoshimura, Jin

    2015-04-22

    In host-parasite systems, dominant host types are expected to be eventually replaced by other hosts due to the elevated potency of their specific parasites. This leads to changes in the abundance of both hosts and parasites exhibiting cycles of alternating dominance called Red Queen dynamics. Host-parasite models with less than three hosts and parasites have been demonstrated to exhibit Red Queen cycles, but natural host-parasite interactions typically involve many host and parasite types resulting in an intractable system with many parameters. Here we present numerical simulations of Red Queen dynamics with more than ten hosts and specialist parasites under the condition of no super-host nor super-parasite. The parameter region where the Red Queen cycles arise contracts as the number of interacting host and parasite types increases. The interplay between inter-host competition and parasite infectivity influences the condition for the Red Queen dynamics. Relatively large host carrying capacity and intermediate rates of parasite mortality result in never-ending cycles of dominant types.

  17. Red Queen dynamics in multi-host and multi-parasite interaction system

    PubMed Central

    Rabajante, Jomar F.; Tubay, Jerrold M.; Uehara, Takashi; Morita, Satoru; Ebert, Dieter; Yoshimura, Jin

    2015-01-01

    In host-parasite systems, dominant host types are expected to be eventually replaced by other hosts due to the elevated potency of their specific parasites. This leads to changes in the abundance of both hosts and parasites exhibiting cycles of alternating dominance called Red Queen dynamics. Host-parasite models with less than three hosts and parasites have been demonstrated to exhibit Red Queen cycles, but natural host-parasite interactions typically involve many host and parasite types resulting in an intractable system with many parameters. Here we present numerical simulations of Red Queen dynamics with more than ten hosts and specialist parasites under the condition of no super-host nor super-parasite. The parameter region where the Red Queen cycles arise contracts as the number of interacting host and parasite types increases. The interplay between inter-host competition and parasite infectivity influences the condition for the Red Queen dynamics. Relatively large host carrying capacity and intermediate rates of parasite mortality result in never-ending cycles of dominant types. PMID:25899168

  18. Host parasite interactions in closed and open microbial cultivation system

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Pechurkin, N. S.

    The study addresses interaction of bacteria and phages in the host parasite system in batch and continuous cultures. The study system consists of the auxotrophic strain of Brevibacterium Brevibacterium sp. 22L and the bacteriophage of Brevibacterium sp., isolated from the soil by the enrichment method.Closed system. In the investigation of the relationship between the time of bacterial lysis and multiplicity of phage infection it has been found that at a lower phage amount per cell it takes a longer time for the lysis of the culture to become discernible. Another important factor determining cytolysis in liquid medium is the physiological state of bacterial population. Specific growth rate of bacteria at the moment of phage infection has been chosen as an indicator of the physiological state of bacteria. It has been shown that the shortest latent period and the largest output of the phage are observed during the logarithmic growth phase of bacteria grown under favorable nutrient conditions. In the stationary phase, bacterial cells become “a bad host” for the phage, whose reproduction rate decreases, and the lysis either slows down significantly or does not occur at all.Open system. It has been found that in continuous culture, the components of the host parasite system can coexist over a long period of time. After phage infection, the sizes of the both populations vary for some time and then the density of the host population reaches the level close to that of the uninfected culture. The phage population copies the variations in the density of the host population, but in antiphase. It has been proven that the bacterium becomes resistant to the phage rather soon. It has been supposed that primary resistance is of physiological origin, because the percentage of cells that have survived lysis about 0.2% of the initial bacterial population is too high for phage-resistant mutants. Bacteria and phages cultured over extended periods of time in the host parasite system

  19. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, M.B.; Lafferty, K.D.; van, Oosterhout C.; Cable, J.

    2011-01-01

    Background: Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings: Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance: These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density. ?? 2011 Johnson et al.

  20. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne

    2011-01-01

    Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.

  1. Coevolutionary interactions between farmers and mafia induce host acceptance of avian brood parasites

    PubMed Central

    Hilbe, Christian; Traulsen, Arne

    2016-01-01

    Brood parasites exploit their host in order to increase their own fitness. Typically, this results in an arms race between parasite trickery and host defence. Thus, it is puzzling to observe hosts that accept parasitism without any resistance. The ‘mafia’ hypothesis suggests that these hosts accept parasitism to avoid retaliation. Retaliation has been shown to evolve when the hosts condition their response to mafia parasites, who use depredation as a targeted response to rejection. However, it is unclear if acceptance would also emerge when ‘farming’ parasites are present in the population. Farming parasites use depredation to synchronize the timing with the host, destroying mature clutches to force the host to re-nest. Herein, we develop an evolutionary model to analyse the interaction between depredatory parasites and their hosts. We show that coevolutionary cycles between farmers and mafia can still induce host acceptance of brood parasites. However, this equilibrium is unstable and in the long-run the dynamics of this host–parasite interaction exhibits strong oscillations: when farmers are the majority, accepters conditional to mafia (the host will reject first and only accept after retaliation by the parasite) have a higher fitness than unconditional accepters (the host always accepts parasitism). This leads to an increase in mafia parasites’ fitness and in turn induce an optimal environment for accepter hosts. PMID:27293783

  2. Genetic variation changes the interactions between the parasitic plant-ecosystem engineer Rhinanthus and its hosts

    PubMed Central

    Rowntree, Jennifer K.; Cameron, Duncan D.; Preziosi, Richard F.

    2011-01-01

    Within-species genetic variation is a potent factor influencing between-species interactions and community-level structure. Species of the hemi-parasitic plant genus Rhinanthus act as ecosystem engineers, significantly altering above- and below-ground community structure in grasslands. Here, we show the importance of genotypic variation within a single host species (barley—Hordeum vulgare), and population-level variation among two species of parasite (Rhinanthus minor and Rhinanthus angustifolius) on the outcome of parasite infection for both partners. We measured host fitness (number of seeds) and calculated parasite virulence as the difference in seed set between infected and uninfected hosts (the inverse of host tolerance). Virulence was determined by genetic variation within the host species and among the parasite species, but R. angustifolius was consistently more virulent than R. minor. The most tolerant host had the lowest inherent fitness and did not gain a fitness advantage over other infected hosts. We measured parasite size as a proxy for transmission ability (ability to infect further hosts) and host resistance. Parasite size depended on the specific combination of host genotype, parasite species and parasite population, and no species was consistently larger. We demonstrate that the outcome of infection by Rhinanthus depends not only on the host species, but also on the underlying genetics of both host and parasite. Thus, genetic variations within host and parasite are probably essential components of the ecosystem-altering effects of Rhinanthus. PMID:21444312

  3. Genetic variation changes the interactions between the parasitic plant-ecosystem engineer Rhinanthus and its hosts.

    PubMed

    Rowntree, Jennifer K; Cameron, Duncan D; Preziosi, Richard F

    2011-05-12

    Within-species genetic variation is a potent factor influencing between-species interactions and community-level structure. Species of the hemi-parasitic plant genus Rhinanthus act as ecosystem engineers, significantly altering above- and below-ground community structure in grasslands. Here, we show the importance of genotypic variation within a single host species (barley-Hordeum vulgare), and population-level variation among two species of parasite (Rhinanthus minor and Rhinanthus angustifolius) on the outcome of parasite infection for both partners. We measured host fitness (number of seeds) and calculated parasite virulence as the difference in seed set between infected and uninfected hosts (the inverse of host tolerance). Virulence was determined by genetic variation within the host species and among the parasite species, but R. angustifolius was consistently more virulent than R. minor. The most tolerant host had the lowest inherent fitness and did not gain a fitness advantage over other infected hosts. We measured parasite size as a proxy for transmission ability (ability to infect further hosts) and host resistance. Parasite size depended on the specific combination of host genotype, parasite species and parasite population, and no species was consistently larger. We demonstrate that the outcome of infection by Rhinanthus depends not only on the host species, but also on the underlying genetics of both host and parasite. Thus, genetic variations within host and parasite are probably essential components of the ecosystem-altering effects of Rhinanthus.

  4. How does human-induced environmental change influence host-parasite interactions?

    PubMed

    Budria, Alexandre; Candolin, Ulrika

    2014-04-01

    Host-parasite interactions are an integral part of ecosystems that influence both ecological and evolutionary processes. Humans are currently altering environments the world over, often with drastic consequences for host-parasite interactions and the prevalence of parasites. The mechanisms behind the changes are, however, poorly known. Here, we explain how host-parasite interactions depend on two crucial steps--encounter rate and host-parasite compatibility--and how human activities are altering them and thereby host-parasite interactions. By drawing on examples from the literature, we show that changes in the two steps depend on the influence of human activities on a range of factors, such as the density and diversity of hosts and parasites, the search strategy of the parasite, and the avoidance strategy of the host. Thus, to unravel the mechanisms behind human-induced changes in host-parasite interactions, we have to consider the characteristics of all three parts of the interaction: the host, the parasite and the environment. More attention should now be directed to unfold these mechanisms, focusing on effects of environmental change on the factors that determine encounter rate and compatibility. We end with identifying several areas in urgent need of more investigations.

  5. Host-Parasite Interactions from the Inside: Plant Reproductive Ontogeny Drives Specialization in Parasitic Insects.

    PubMed

    Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed

    2015-01-01

    Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule's nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule's megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism.

  6. Host-Parasite Interactions from the Inside: Plant Reproductive Ontogeny Drives Specialization in Parasitic Insects

    PubMed Central

    Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed

    2015-01-01

    Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule’s nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule’s megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism. PMID:26441311

  7. The Use of Arabidopsis to Study Interactions between Parasitic Angiosperms and Their Plant Hosts

    PubMed Central

    Goldwasser, Y.; Westwood, J. H.; Yoder, J. I.

    2002-01-01

    Parasitic plants invade host plants in order to rob them of water, minerals and nutrients. The consequences to the infected hosts can be debilitating and some of the world's most pernicious agricultural weeds are parasitic. Parasitic genera of the Scrophulariaceae and Orobanchaceae directly invade roots of neighboring plants via underground structures called haustoria. The mechanisms by which these parasites identify and associate with host plants present unsurpassed opportunities for studying chemical signaling in plant-plant interactions. Seeds of some parasites require specific host factors for efficient germination, thereby insuring the availability of an appropriate host root prior to germination. A second set of signal molecules is required to induce haustorium development and the beginning of heterotrophy. Later stages in parasitism also require the presence of host factors, although these have not yet been well characterized. Arabidopsis is being used as a model host plant to identify genetic loci associated with stimulating parasite germination, haustorium development, and parasite support. Arabidopsis is also being employed to explore how host plants respond to parasite attack. Current methodologies and recent findings in Arabidopsis – parasitic plant interactions will be discussed. PMID:22303205

  8. Host-parasite genetic interactions and virulence-transmission relationships in natural populations of monarch butterflies.

    PubMed

    de Roode, Jacobus C; Altizer, Sonia

    2010-02-01

    Evolutionary models predict that parasite virulence (parasite-induced host mortality) can evolve as a consequence of natural selection operating on between-host parasite transmission. Two major assumptions are that virulence and transmission are genetically related and that the relative virulence and transmission of parasite genotypes remain similar across host genotypes. We conducted a cross-infection experiment using monarch butterflies and their protozoan parasites from two populations in eastern and western North America. We tested each of 10 host family lines against each of 18 parasite genotypes and measured virulence (host life span) and parasite transmission potential (spore load). Consistent with virulence evolution theory, we found a positive relationship between virulence and transmission across parasite genotypes. However, the absolute values of virulence and transmission differed among host family lines, as did the rank order of parasite clones along the virulence-transmission relationship. Population-level analyses showed that parasites from western North America caused higher infection levels and virulence, but there was no evidence of local adaptation of parasites on sympatric hosts. Collectively, our results suggest that host genotypes can affect the strength and direction of selection on virulence in natural populations, and that predicting virulence evolution may require building genotype-specific interactions into simpler trade-off models.

  9. Host parasite communications-Messages from helminths for the immune system: Parasite communication and cell-cell interactions.

    PubMed

    Coakley, Gillian; Buck, Amy H; Maizels, Rick M

    2016-07-01

    Helminths are metazoan organisms many of which have evolved parasitic life styles dependent on sophisticated manipulation of the host environment. Most notably, they down-regulate host immune responses to ensure their own survival, by exporting a range of immuno-modulatory mediators that interact with host cells and tissues. While a number of secreted immunoregulatory parasite proteins have been defined, new work also points to the release of extracellular vesicles, or exosomes, that interact with and manipulate host gene expression. These recent results are discussed in the overall context of how helminths communicate effectively with the host organism.

  10. Host parasite communications-Messages from helminths for the immune system: Parasite communication and cell-cell interactions.

    PubMed

    Coakley, Gillian; Buck, Amy H; Maizels, Rick M

    2016-07-01

    Helminths are metazoan organisms many of which have evolved parasitic life styles dependent on sophisticated manipulation of the host environment. Most notably, they down-regulate host immune responses to ensure their own survival, by exporting a range of immuno-modulatory mediators that interact with host cells and tissues. While a number of secreted immunoregulatory parasite proteins have been defined, new work also points to the release of extracellular vesicles, or exosomes, that interact with and manipulate host gene expression. These recent results are discussed in the overall context of how helminths communicate effectively with the host organism. PMID:27297184

  11. On the evolutionary ecology of host-parasite interactions: addressing the question with regard to bumblebees and their parasites

    NASA Astrophysics Data System (ADS)

    Schmid-Hempel, Paul

    2001-05-01

    Over the last decade, there has been a major shift in the study of adaptive patterns and processes towards including the role of host-parasite interactions, informed by concepts from evolutionary ecology. As a consequence, a number of major questions have emerged. For example, how genetics affects host-parasite interactions, whether parasitism selects for offspring diversification, whether parasite virulence is an adaptive trait, and what constrains the use of the host's immune defences. Using bumblebees, Bombus spp, and their parasites as a model system, answers to some of these questions have been found, while at the same time the complexity of the interaction has led expectations away from simple theoretical models. In addition, the results have also led to the unexpected discovery of novel phenomena concerning, for instance, female mating strategies.

  12. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity.

    PubMed

    Bashey, Farrah

    2015-08-19

    Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases.

  13. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity

    PubMed Central

    Bashey, Farrah

    2015-01-01

    Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases. PMID:26150667

  14. Cooperation and conflict in host manipulation: interactions among macro-parasites and micro-organisms

    PubMed Central

    Cézilly, Frank; Perrot-Minnot, Marie-Jeanne; Rigaud, Thierry

    2014-01-01

    Several parasite species are known to manipulate the phenotype of their hosts in ways that enhance their own transmission. Co-occurrence of manipulative parasites, belonging to the same species or to more than one species, in a single host has been regularly observed. Little is known, however, on interactions between co-occurring manipulative parasites with same or different transmission routes. Several models addressing this problem have provided predictions on how cooperation and conflict between parasites could emerge from multiple infections. Here, we review the empirical evidence in favor of the existence of synergistic or antagonistic interactions between co-occurring parasites, and highlight the neglected role of micro-organisms. We particularly discuss the actual importance of selective forces shaping the evolution of interactions between manipulative parasites in relation to parasite prevalence in natural populations, efficiency in manipulation, and type of transmission (i.e., horizontal versus vertical), and we emphasize the potential for future research. PMID:24966851

  15. Interactions between malaria parasites and the host immune system.

    PubMed

    Engwerda, Christian R; Good, Michael F

    2005-08-01

    Malaria remains one of the greatest impediments to development in many tropical regions of the world. Understanding host immune responses to malaria parasites is crucial for the effective design and implementation of new vaccines and drugs. Recent research has seen the identification of the first pattern recognition receptor (TLR9) on dendritic cells for a defined product of malaria infection (hemozoin). In addition, progress has been made in understanding the role of dendritic cell subsets in malaria, and how they promote specific components of the host immune response. Potentially important advances in vaccine design have also been made by inserting a Plasmodium sporozoite epitope into the yellow fever vaccine 17D, as well as using a whole, live-attenuated sporozoite vaccine. PMID:15950450

  16. The Ecology of Parasite-Host Interactions at Montezuma Well National Monument, Arizona - Appreciating the Importance of Parasites

    USGS Publications Warehouse

    O'Brien, Chris; van Riper, Charles

    2009-01-01

    Although parasites play important ecological roles through the direct interactions they have with their hosts, historically that fact has been underappreciated. Today, scientists have a growing appreciation of the scope of such impacts. Parasites have been reported to dominate food webs, alter predator-prey relationships, act as ecosystem engineers, and alter community structure. In spite of this growing awareness in the scientific community, parasites are still often neglected in the consideration of the management and conservation of resources and ecosystems. Given that at least half of the organisms on earth are probably parasitic, it should be evident that the ecological functions of parasites warrant greater attention. In this report, we explore different aspects of parasite-host relationships found at a desert spring pond within Montezuma Well National Monument, Arizona. In three separate but related chapters, we explore interactions between a novel amphipod host and two parasites. First, we identify how host behavior responds to this association and how this association affects interactions with both invertebrate non-host predators and a vertebrate host predator. Second, we look at the human dimension, investigating how human recreation can indirectly affect patterns of disease by altering patterns of vertebrate host space use. Finally - because parasites and diseases are of increasing importance in the management of wildlife species, especially those that are imperiled or of management concern - the third chapter argues that research would benefit from increased attention to the statistical analysis of wildlife disease studies. This report also explores issues of statistical parasitology, providing information that may better inform those designing research projects and analyzing data from studies of wildlife disease. In investigating the nature of parasite-host interactions, the role that relationships play in ecological communities, and how human

  17. Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees

    PubMed Central

    Huang, Qiang; Chen, Yan Ping; Wang, Rui Wu; Cheng, Shang; Evans, Jay D.

    2016-01-01

    To clarify the mechanisms of Nosema ceranae parasitism, we deep-sequenced both honey bee host and parasite mRNAs throughout a complete 6-day infection cycle. By time-series analysis, 1122 parasite genes were significantly differently expressed during the reproduction cycle, clustering into 4 expression patterns. We found reactive mitochondrial oxygen species modulator 1 of the host to be significantly down regulated during the entire infection period. Our data support the hypothesis that apoptosis of honey bee cells was suppressed during infection. We further analyzed genome-wide genetic diversity of this parasite by comparing samples collected from the same site in 2007 and 2013. The number of SNP positions per gene and the proportion of non-synonymous substitutions per gene were significantly reduced over this time period, suggesting purifying selection on the parasite genome and supporting the hypothesis that a subset of N. ceranae strains might be dominating infection. PMID:26840596

  18. Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees.

    PubMed

    Huang, Qiang; Chen, Yan Ping; Wang, Rui Wu; Cheng, Shang; Evans, Jay D

    2016-01-01

    To clarify the mechanisms of Nosema ceranae parasitism, we deep-sequenced both honey bee host and parasite mRNAs throughout a complete 6-day infection cycle. By time-series analysis, 1122 parasite genes were significantly differently expressed during the reproduction cycle, clustering into 4 expression patterns. We found reactive mitochondrial oxygen species modulator 1 of the host to be significantly down regulated during the entire infection period. Our data support the hypothesis that apoptosis of honey bee cells was suppressed during infection. We further analyzed genome-wide genetic diversity of this parasite by comparing samples collected from the same site in 2007 and 2013. The number of SNP positions per gene and the proportion of non-synonymous substitutions per gene were significantly reduced over this time period, suggesting purifying selection on the parasite genome and supporting the hypothesis that a subset of N. ceranae strains might be dominating infection.

  19. Trichomonas vaginalis Exosomes Deliver Cargo to Host Cells and Mediate Host∶Parasite Interactions

    PubMed Central

    Twu, Olivia; Lustig, Gila; Stevens, Grant C.; Vashisht, Ajay A.; Wohlschlegel, James A.

    2013-01-01

    Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential tract where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Here, we use a combination of methodologies including cell fractionation, immunofluorescence and electron microscopy, RNA, proteomic and cytokine analyses and cell adherence assays to examine pathogenic properties of T. vaginalis. We have found that T.vaginalis produces and secretes microvesicles with physical and biochemical properties similar to mammalian exosomes. The parasite-derived exosomes are characterized by the presence of RNA and core, conserved exosomal proteins as well as parasite-specific proteins. We demonstrate that T. vaginalis exosomes fuse with and deliver their contents to host cells and modulate host cell immune responses. Moreover, exosomes from highly adherent parasite strains increase the adherence of poorly adherent parasites to vaginal and prostate epithelial cells. In contrast, exosomes from poorly adherent strains had no measurable effect on parasite adherence. Exosomes from parasite strains that preferentially bind prostate cells increased binding of parasites to these cells relative to vaginal cells. In addition to establishing that parasite exosomes act to modulate host∶parasite interactions, these studies are the first to reveal a potential role for exosomes in promoting parasite∶parasite communication and host cell colonization. PMID:23853596

  20. A walk on the tundra: Host-parasite interactions in an extreme environment.

    PubMed

    Kutz, Susan J; Hoberg, Eric P; Molnár, Péter K; Dobson, Andy; Verocai, Guilherme G

    2014-08-01

    Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host-parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host-parasite interactions elsewhere. We specifically examine the impacts of climate change on host-parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host-parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems.

  1. Avian brood parasitism and ectoparasite richness-scale-dependent diversity interactions in a three-level host-parasite system.

    PubMed

    Vas, Zoltán; Fuisz, Tibor I; Fehérvári, Péter; Reiczigel, Jenő; Rózsa, Lajos

    2013-04-01

    Brood parasitic birds, their foster species and their ectoparasites form a complex coevolving system composed of three hierarchical levels. However, effects of hosts' brood parasitic life-style on the evolution of their louse (Phthiraptera: Amblycera, Ischnocera) lineages have never been tested. We present two phylogenetic analyses of ectoparasite richness of brood parasitic clades. Our hypothesis was that brood parasitic life-style affects louse richness negatively across all avian clades due to the lack of vertical transmission routes. Then, narrowing our scope to brood parasitic cuckoos, we explored macroevolutionary factors responsible for the variability of their louse richness. Our results show that taxonomic richness of lice is lower on brood parasitic clades than on their nonparasitic sister clades. However, we found a positive covariation between the richness of cuckoos' Ischnoceran lice and the number of their foster species, possibly due to the complex and dynamic subpopulation structure of cuckoo species that utilize several host species. We documented diversity interactions across a three-level host parasite system and we found evidence that brood parasitism has opposing effects on louse richness at two slightly differing macroevolutionary scales, namely the species richness and the genera richness.

  2. Experimental Models to Study the Role of Microbes in Host-Parasite Interactions

    PubMed Central

    Hahn, Megan A.; Dheilly, Nolwenn M.

    2016-01-01

    Until recently, parasitic infections have been primarily studied as interactions between the parasite and the host, leaving out crucial players: microbes. The recent realization that microbes play key roles in the biology of all living organisms is not only challenging our understanding of host-parasite evolution, but it also provides new clues to develop new therapies and remediation strategies. In this paper we provide a review of promising and advanced experimental organismal systems to examine the dynamic of host-parasite-microbe interactions. We address the benefits of developing new experimental models appropriate to this new research area and identify systems that offer the best promises considering the nature of the interactions among hosts, parasites, and microbes. Based on these systems, we identify key criteria for selecting experimental models to elucidate the fundamental principles of these complex webs of interactions. It appears that no model is ideal and that complementary studies should be performed on different systems in order to understand the driving roles of microbes in host and parasite evolution. PMID:27602023

  3. Experimental Models to Study the Role of Microbes in Host-Parasite Interactions.

    PubMed

    Hahn, Megan A; Dheilly, Nolwenn M

    2016-01-01

    Until recently, parasitic infections have been primarily studied as interactions between the parasite and the host, leaving out crucial players: microbes. The recent realization that microbes play key roles in the biology of all living organisms is not only challenging our understanding of host-parasite evolution, but it also provides new clues to develop new therapies and remediation strategies. In this paper we provide a review of promising and advanced experimental organismal systems to examine the dynamic of host-parasite-microbe interactions. We address the benefits of developing new experimental models appropriate to this new research area and identify systems that offer the best promises considering the nature of the interactions among hosts, parasites, and microbes. Based on these systems, we identify key criteria for selecting experimental models to elucidate the fundamental principles of these complex webs of interactions. It appears that no model is ideal and that complementary studies should be performed on different systems in order to understand the driving roles of microbes in host and parasite evolution. PMID:27602023

  4. Experimental Models to Study the Role of Microbes in Host-Parasite Interactions

    PubMed Central

    Hahn, Megan A.; Dheilly, Nolwenn M.

    2016-01-01

    Until recently, parasitic infections have been primarily studied as interactions between the parasite and the host, leaving out crucial players: microbes. The recent realization that microbes play key roles in the biology of all living organisms is not only challenging our understanding of host-parasite evolution, but it also provides new clues to develop new therapies and remediation strategies. In this paper we provide a review of promising and advanced experimental organismal systems to examine the dynamic of host-parasite-microbe interactions. We address the benefits of developing new experimental models appropriate to this new research area and identify systems that offer the best promises considering the nature of the interactions among hosts, parasites, and microbes. Based on these systems, we identify key criteria for selecting experimental models to elucidate the fundamental principles of these complex webs of interactions. It appears that no model is ideal and that complementary studies should be performed on different systems in order to understand the driving roles of microbes in host and parasite evolution.

  5. Reaction norms of host immunity, host fitness and parasite performance in a mouse--intestinal nematode interaction.

    PubMed

    Lippens, Cédric; Guivier, Emmanuel; Faivre, Bruno; Sorci, Gabriele

    2016-02-01

    The outcome of the encounter between a host and a parasite depends on the synergistic effects of the genetics of the two partners and the environment (sensulato) where the interaction takes place. Reaction norms can depict how host and parasite traits vary across environmental ranges for different genotypes. Here, we performed a large scale experiment where three strains of laboratory mice (SJL, BALB/c and CBA) were infected with four doses of the intestinal nematode Heligmosomoides polygyrus. An increasing infective dose can be considered as a proxy for the environment-dependent risk incontracting the infection. We looked at the fitness traits of hosts and parasites, and assessed the underlying immunological functions likely to affect the observed pattern of resistance/susceptibility/tolerance. We found that the infective dose had a strong effect on both host fitness and parasite performance. Interestingly, for most traits, host genotypes did not rank consistently across the increasing infective doses and according to the expected pattern of strain-specific resistance/susceptibility/tolerance. Analyses of cytokine production allowed better understanding of the mechanistic basis underlying variations in fitness-linked traits. The infective dose affected the shape of the reaction norms of the cytokines IL-4, IL-10 and IL-6. Dose-dependent variation in cytokine production explained, moreover, the strain-specific pattern of infection cost, host resistance and parasite performance. As long as the infective dose increased, there was a marked shift towards a pro-inflammatory status in the SJL strain of mice that was positively correlated with cost of the infection and parasite performance. Overall, our study strongly suggests that the notion of host resistance is labile and depends on the environmental conditions where the interaction takes place. Moreover, integrating information on fitness-linked traits and the underlying mechanisms seems essential for a better

  6. Malaria proteomics: insights into the parasite-host interactions in the pathogenic space.

    PubMed

    Bautista, José M; Marín-García, Patricia; Diez, Amalia; Azcárate, Isabel G; Puyet, Antonio

    2014-01-31

    Proteomics is improving malaria research by providing global information on relevant protein sets from the parasite and the host in connection with its cellular structures and specific functions. In the last decade, reports have described biologically significant elements in the proteome of Plasmodium, which are selectively targeted and quantified, allowing for sensitive and high-throughput comparisons. The identification of molecules by which the parasite and the host react during the malaria infection is crucial to the understanding of the underlying pathogenic mechanisms. Hence, proteomics is playing a major role by defining the elements within the pathogenic space between both organisms that change across the parasite life cycle in association with the host transformation and response. Proteomics has identified post-translational modifications in the parasite and the host that are discussed in terms of functional interactions in malaria parasitism. Furthermore, the contribution of proteomics to the investigation of immunogens for potential vaccine candidates is summarized. The malaria-specific technological advances in proteomics are particularly suited now for identifying host-parasite interactions that could lead to promising targets for therapy, diagnosis or prevention. In this review, we examine the knowledge gained on the biology, pathogenesis, immunity and diagnosis of Plasmodium infection from recent proteomic studies. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.

  7. Malaria proteomics: insights into the parasite-host interactions in the pathogenic space.

    PubMed

    Bautista, José M; Marín-García, Patricia; Diez, Amalia; Azcárate, Isabel G; Puyet, Antonio

    2014-01-31

    Proteomics is improving malaria research by providing global information on relevant protein sets from the parasite and the host in connection with its cellular structures and specific functions. In the last decade, reports have described biologically significant elements in the proteome of Plasmodium, which are selectively targeted and quantified, allowing for sensitive and high-throughput comparisons. The identification of molecules by which the parasite and the host react during the malaria infection is crucial to the understanding of the underlying pathogenic mechanisms. Hence, proteomics is playing a major role by defining the elements within the pathogenic space between both organisms that change across the parasite life cycle in association with the host transformation and response. Proteomics has identified post-translational modifications in the parasite and the host that are discussed in terms of functional interactions in malaria parasitism. Furthermore, the contribution of proteomics to the investigation of immunogens for potential vaccine candidates is summarized. The malaria-specific technological advances in proteomics are particularly suited now for identifying host-parasite interactions that could lead to promising targets for therapy, diagnosis or prevention. In this review, we examine the knowledge gained on the biology, pathogenesis, immunity and diagnosis of Plasmodium infection from recent proteomic studies. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. PMID:24140976

  8. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants

    PubMed Central

    Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B.; Albert, Markus

    2015-01-01

    By comparison with plant–microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant–plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato. PMID:25699071

  9. MicroRNAs in the Host-Apicomplexan Parasites Interactions: A Review of Immunopathological Aspects

    PubMed Central

    Judice, Carla C.; Bourgard, Catarina; Kayano, Ana C. A. V.; Albrecht, Letusa; Costa, Fabio T. M.

    2016-01-01

    MicroRNAs (miRNAs), a class of small non-coding regulatory RNAs, have been detected in a variety of organisms ranging from ancient unicellular eukaryotes to mammals. They have been associated with numerous molecular mechanisms involving developmental, physiological and pathological changes of cells and tissues. Despite the fact that miRNA-silencing mechanisms appear to be absent in some Apicomplexan species, an increasing number of studies have reported a role for miRNAs in host-parasite interactions. Host miRNA expression can change following parasite infection and the consequences can lead, for instance, to parasite clearance. In this context, the immune system signaling appears to have a crucial role. PMID:26870701

  10. MicroRNAs in the Host-Apicomplexan Parasites Interactions: A Review of Immunopathological Aspects.

    PubMed

    Judice, Carla C; Bourgard, Catarina; Kayano, Ana C A V; Albrecht, Letusa; Costa, Fabio T M

    2016-01-01

    MicroRNAs (miRNAs), a class of small non-coding regulatory RNAs, have been detected in a variety of organisms ranging from ancient unicellular eukaryotes to mammals. They have been associated with numerous molecular mechanisms involving developmental, physiological and pathological changes of cells and tissues. Despite the fact that miRNA-silencing mechanisms appear to be absent in some Apicomplexan species, an increasing number of studies have reported a role for miRNAs in host-parasite interactions. Host miRNA expression can change following parasite infection and the consequences can lead, for instance, to parasite clearance. In this context, the immune system signaling appears to have a crucial role.

  11. 'Seeing is Believing'; the use of novel imaging approaches towards creating a greater understanding of parasite: host interactions.

    PubMed

    Mountford, A P

    2013-01-01

    This editorial highlights some of the key points made in the six invited reviews in this special issue of Parasite Immunology on the use of contemporary imaging technologies to investigate the parasite: host interface. Three of the reviews deal with the protozoa Trypanosoma, Leishmania, and Plasmodium, whilst the remainder focus on helminth parasites particularly Schistosoma. The reviews cover aspects related to how the development of transgenic parasites has vastly advanced our understanding of how parasites interact with host cells, particularly as a cause of pathology. Imaging technologies have also been exploited in revealing parasite localisation within host tissues and identifying novel therapeutic targets. Combined the reviews show how 'state of the art' imaging technologies have resulted in a seismic advance in our understanding of parasite biology and how this has the potential to develop new, and improved, strategies to combat disease caused by parasite infections. PMID:23855726

  12. Helminth fauna of chiropterans in Amazonia: biological interactions between parasite and host.

    PubMed

    de Albuquerque, Ana Cláudia Alexandre; Moraes, Marcela Figueiredo Duarte; Silva, Ana Carolina; Lapera, Ivan Moura; Tebaldi, José Hairton; Lux Hoppe, Estevam G

    2016-08-01

    Amazonia, the largest Brazilian biome, is one of the most diverse biomes around the world. Considering the Brazilian chiropteran species, 120 out of known 167 species are registered in Pará state, with 10 endemic species. Despite the high diversity of bats in Amazonia, studies on their parasites, especially on helminths, are scarce. Therefore, the present study aims to study the helminth fauna of different bats from the Pará state, Amazon biome, determine the descriptors of infection, and evaluate the host-parasite interactions, as well as evaluate differences in ecological indexes in accordance with the feeding guilds. The study was developed on 67 bats of 21 species captured in several areas of the Pará state. The animals were identified, divided into feeding guilds, and necropsied. The parasites obtained were identified and quantified. A total of 182 parasites were found in 20.89 % of the studied bats, representing nine species, as follows: Anenterotrema eduardocaballeroi, Anenterotrema liliputianum, Ochoterenatrema caballeroi, Tricholeiperia sp., Parahistiostrongylus octacanthus, Litomosoides guiterasi, Litomosoides brasiliensis, Capillariinae gen. sp., and Hymenolepididae gen. sp. Also, the results indicated that there was no impact of parasitism on host body condition and no relationship between sex and parasite intensity. In relation to the feeding guilds, the omnivores showed higher prevalence and mean intensity. Animals from regions closer to the equator tend to have greater richness in parasite species, but the present study revealed low diversity and richness in species. In conclusion, the ecological pattern observed for other animal groups, in which higher parasitic diversity are registered in lower latitudes, is not applicable to chiropterans from the study area. PMID:27121257

  13. Helminth fauna of chiropterans in Amazonia: biological interactions between parasite and host.

    PubMed

    de Albuquerque, Ana Cláudia Alexandre; Moraes, Marcela Figueiredo Duarte; Silva, Ana Carolina; Lapera, Ivan Moura; Tebaldi, José Hairton; Lux Hoppe, Estevam G

    2016-08-01

    Amazonia, the largest Brazilian biome, is one of the most diverse biomes around the world. Considering the Brazilian chiropteran species, 120 out of known 167 species are registered in Pará state, with 10 endemic species. Despite the high diversity of bats in Amazonia, studies on their parasites, especially on helminths, are scarce. Therefore, the present study aims to study the helminth fauna of different bats from the Pará state, Amazon biome, determine the descriptors of infection, and evaluate the host-parasite interactions, as well as evaluate differences in ecological indexes in accordance with the feeding guilds. The study was developed on 67 bats of 21 species captured in several areas of the Pará state. The animals were identified, divided into feeding guilds, and necropsied. The parasites obtained were identified and quantified. A total of 182 parasites were found in 20.89 % of the studied bats, representing nine species, as follows: Anenterotrema eduardocaballeroi, Anenterotrema liliputianum, Ochoterenatrema caballeroi, Tricholeiperia sp., Parahistiostrongylus octacanthus, Litomosoides guiterasi, Litomosoides brasiliensis, Capillariinae gen. sp., and Hymenolepididae gen. sp. Also, the results indicated that there was no impact of parasitism on host body condition and no relationship between sex and parasite intensity. In relation to the feeding guilds, the omnivores showed higher prevalence and mean intensity. Animals from regions closer to the equator tend to have greater richness in parasite species, but the present study revealed low diversity and richness in species. In conclusion, the ecological pattern observed for other animal groups, in which higher parasitic diversity are registered in lower latitudes, is not applicable to chiropterans from the study area.

  14. Trace Fossil Evidence of Trematode-Bivalve Parasite-Host Interactions in Deep Time.

    PubMed

    Huntley, John Warren; De Baets, Kenneth

    2015-01-01

    Parasitism is one of the most pervasive phenomena amongst modern eukaryotic life and yet, relative to other biotic interactions, almost nothing is known about its history in deep time. Digenean trematodes (Platyhelminthes) are complex life cycle parasites, which have practically no body fossil record, but induce the growth of characteristic malformations in the shells of their bivalve hosts. These malformations are readily preserved in the fossil record, but, until recently, have largely been overlooked by students of the fossil record. In this review, we present the various malformations induced by trematodes in bivalves, evaluate their distribution through deep time in the phylogenetic and ecological contexts of their bivalve hosts and explore how various taphonomic processes have likely biased our understanding of trematodes in deep time. Trematodes are known to negatively affect their bivalve hosts in a number of ways including castration, modifying growth rates, causing immobilization and, in some cases, altering host behaviour making the host more susceptible to their own predators. Digeneans are expected to be significant agents of natural selection. To that end, we discuss how bivalves may have adapted to their parasites via heterochrony and suggest a practical methodology for testing such hypotheses in deep time.

  15. Involvement of apoptosis in host-parasite interactions in the zebra mussel.

    PubMed

    Minguez, Laëtitia; Brulé, Nelly; Sohm, Bénédicte; Devin, Simon; Giambérini, Laure

    2013-01-01

    The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism. PMID:23785455

  16. Involvement of Apoptosis in Host-Parasite Interactions in the Zebra Mussel

    PubMed Central

    Minguez, Laëtitia; Brulé, Nelly; Sohm, Bénédicte; Devin, Simon; Giambérini, Laure

    2013-01-01

    The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism. PMID:23785455

  17. The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs.

    PubMed

    Coen, Loren D; Bishop, Melanie J

    2015-10-01

    Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to

  18. The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs.

    PubMed

    Coen, Loren D; Bishop, Melanie J

    2015-10-01

    Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to

  19. Cohabitation in the intestine: interactions between helminth parasites, bacterial microbiota and host immunity

    PubMed Central

    Reynolds, Lisa A.; Finlay, B. Brett; Maizels, Rick M.

    2015-01-01

    Both intestinal helminth parasites and certain bacterial microbiota species have been credited with strong immunomodulatory effects. Recent studies have reported that the presence of helminth infection alters the composition of the bacterial intestinal microbiota, and conversely that the presence and composition of the bacterial microbiota affects helminth colonisation and persistence within mammalian hosts. This article reviews recent findings on these reciprocal relationships, in both human populations and mouse models at the level of potential mechanistic pathways, and the implications these bear for immunomodulatory effects on allergic and autoimmune disorders. Understanding the multidirectional complex interactions between intestinal microbes, helminth parasites and the host immune system will allow for a more holistic approach when using pro-, pre-, synbiotics, antibiotics and anthelmintics, and when designing treatments for autoimmune and allergic conditions. PMID:26477048

  20. Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity.

    PubMed

    Reynolds, Lisa A; Finlay, B Brett; Maizels, Rick M

    2015-11-01

    Both intestinal helminth parasites and certain bacterial microbiota species have been credited with strong immunomodulatory effects. Recent studies reported that the presence of helminth infection alters the composition of the bacterial intestinal microbiota and, conversely, that the presence and composition of the bacterial microbiota affect helminth colonization and persistence within mammalian hosts. This article reviews recent findings on these reciprocal relationships, in both human populations and mouse models, at the level of potential mechanistic pathways and the implications these bear for immunomodulatory effects on allergic and autoimmune disorders. Understanding the multidirectional complex interactions among intestinal microbes, helminth parasites, and the host immune system allows for a more holistic approach when using probiotics, prebiotics, synbiotics, antibiotics, and anthelmintics, as well as when designing treatments for autoimmune and allergic conditions.

  1. Host-microbe and microbe-microbe interactions in the evolution of obligate plant parasitism.

    PubMed

    Kemen, Ariane C; Agler, Matthew T; Kemen, Eric

    2015-06-01

    Research on obligate biotrophic plant parasites, which reproduce only on living hosts, has revealed a broad diversity of filamentous microbes that have independently acquired complex morphological structures, such as haustoria. Genome studies have also demonstrated a concerted loss of genes for metabolism and lytic enzymes, and gain of diversity of genes coding for effectors involved in host defense suppression. So far, these traits converge in all known obligate biotrophic parasites, but unexpected genome plasticity remains. This plasticity is manifested as transposable element (TE)-driven increases in genome size, observed to be associated with the diversification of virulence genes under selection pressure. Genome expansion could result from the governing of the pathogen response to ecological selection pressures, such as host or nutrient availability, or to microbial interactions, such as competition, hyperparasitism and beneficial cooperations. Expansion is balanced by alternating sexual and asexual cycles, as well as selfing and outcrossing, which operate to control transposon activity in populations. In turn, the prevalence of these balancing mechanisms seems to be correlated with external biotic factors, suggesting a complex, interconnected evolutionary network in host-pathogen-microbe interactions. Therefore, the next phase of obligate biotrophic pathogen research will need to uncover how this network, including multitrophic interactions, shapes the evolution and diversity of pathogens.

  2. Assessing the Effects of Climate on Host-Parasite Interactions: A Comparative Study of European Birds and Their Parasites

    PubMed Central

    Møller, Anders Pape; Merino, Santiago; Soler, Juan José; Antonov, Anton; Badás, Elisa P.; Calero-Torralbo, Miguel A.; de Lope, Florentino; Eeva, Tapio; Figuerola, Jordi; Flensted-Jensen, Einar; Garamszegi, Laszlo Z.; González-Braojos, Sonia; Gwinner, Helga; Hanssen, Sveinn Are; Heylen, Dieter; Ilmonen, Petteri; Klarborg, Kurt; Korpimäki, Erkki; Martínez, Javier; Martínez-de la Puente, Josue; Marzal, Alfonso; Matthysen, Erik; Matyjasiak, Piotr; Molina-Morales, Mercedes; Moreno, Juan; Mousseau, Timothy A.; Nielsen, Jan Tøttrup; Pap, Péter László; Rivero-de Aguilar, Juan; Shurulinkov, Peter; Slagsvold, Tore; Szép, Tibor; Szöllősi, Eszter; Török, Janos; Vaclav, Radovan; Valera, Francisco; Ziane, Nadia

    2013-01-01

    Background Climate change potentially has important effects on distribution, abundance, transmission and virulence of parasites in wild populations of animals. Methodology/Principal Finding Here we analyzed paired information on 89 parasite populations for 24 species of bird hosts some years ago and again in 2010 with an average interval of 10 years. The parasite taxa included protozoa, feather parasites, diptera, ticks, mites and fleas. We investigated whether change in abundance and prevalence of parasites was related to change in body condition, reproduction and population size of hosts. We conducted analyses based on the entire dataset, but also on a restricted dataset with intervals between study years being 5–15 years. Parasite abundance increased over time when restricting the analyses to datasets with an interval of 5–15 years, with no significant effect of changes in temperature at the time of breeding among study sites. Changes in host body condition and clutch size were related to change in temperature between first and second study year. In addition, changes in clutch size, brood size and body condition of hosts were correlated with change in abundance of parasites. Finally, changes in population size of hosts were not significantly related to changes in abundance of parasites or their prevalence. Conclusions/Significance Climate change is associated with a general increase in parasite abundance. Variation in laying date depended on locality and was associated with latitude while body condition of hosts was associated with a change in temperature. Because clutch size, brood size and body condition were associated with change in parasitism, these results suggest that parasites, perhaps mediated through the indirect effects of temperature, may affect fecundity and condition of their hosts. The conclusions were particularly in accordance with predictions when the restricted dataset with intervals of 5–15 years was used, suggesting that short

  3. Landscape heterogeneity shapes host-parasite interactions and results in apparent plant-virus codivergence.

    PubMed

    Rodelo-Urrego, M; Pagán, I; González-Jara, P; Betancourt, M; Moreno-Letelier, A; Ayllón, M A; Fraile, A; Piñero, D; García-Arenal, F

    2013-04-01

    Knowledge on how landscape heterogeneity shapes host-parasite interactions is central to understand the emergence, dynamics and evolution of infectious diseases. However, this is an underexplored subject, particularly for plant-virus systems. Here, we analyse how landscape heterogeneity influences the prevalence, spatial genetic structure, and temporal dynamics of Pepper golden mosaic and Pepper huasteco yellow vein begomoviruses infecting populations of the wild pepper Capsicum annuum glabriusculum (chiltepin) in Mexico. Environmental heterogeneity occurred at different nested spatial scales (host populations within biogeographical provinces), with levels of human management varying among host population within a province. Results indicate that landscape heterogeneity affects the epidemiology and genetic structure of chiltepin-infecting begomoviruses in a scale-specific manner, probably related to conditions favouring the viruses' whitefly vector and its dispersion. Increased levels of human management of the host populations were associated with higher virus prevalence and erased the spatial genetic structure of the virus populations. Also, environmental heterogeneity similarly shaped the spatial genetic structures of host and viruses. This resulted in the congruence between host and virus phylogenies, which does not seem to be due to host-virus co-evolution. Thus, results provide evidence of the key role of landscape heterogeneity in determining plant-virus interactions.

  4. Control strategies for a stochastic model of host-parasite interaction in a seasonal environment.

    PubMed

    Gómez-Corral, A; López García, M

    2014-08-01

    We examine a nonlinear stochastic model for the parasite load of a single host over a predetermined time interval. We use nonhomogeneous Poisson processes to model the acquisition of parasites, the parasite-induced host mortality, the natural (no parasite-induced) host mortality, and the reproduction and death of parasites within the host. Algebraic results are first obtained on the age-dependent distribution of the number of parasites infesting the host at an arbitrary time t. The interest is in control strategies based on isolation of the host and the use of an anthelmintic at a certain intervention instant t0. This means that the host is free living in a seasonal environment, and it is transferred to a uninfected area at age t0. In the uninfected area, the host does not acquire new parasites, undergoes a treatment to decrease the parasite load, and its natural and parasite-induced mortality are altered. For a suitable selection of t0, we present two control criteria that appropriately balance effectiveness and cost of intervention. Our approach is based on simple probabilistic principles, and it allows us to examine seasonal fluctuations of gastrointestinal nematode burden in growing lambs.

  5. Host-parasite interactions in closed and open microbial cultivation system

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Pechurkin, N. S.

    We studied interaction between bacteria and phages within a host-parasite system the members of the system being continuously and closely cultivated The objects of our research were auxotrophic strain Brevibacterium 22L and bacteriophage Brevibacterium sp strain A discovered in the soil of the Soviet Union Republic of Latvia using enrichment method 1 Closed system We investigated the dependence of bacteriolysis time upon the multiplicity of phage infection It was shown that reduction of phage amount by one bacterium leads to increase of marked lysis Another important factor determining cytolysis in fluid medium is the physiological state of bacterial population Specific growth rate of bacteria at the moment of phage infection was chosen as the index of the physiological state of bacteria It was revealed that the shortest latent period and the maximal phage burst is observed when the bacteria located in a favorable nutrient medium are in the logarithmic phase If the bacterial population has already passed from the logarithmic phase to the stationary one the cells become a bad host for phage reproduction and lysis occurs very slowly or even never starts at all 2 Open system In the process of continuous cultivation the members of the host-parasite system showed an ability to coexist over a long period of time After phage infection there were variations in the size of both populations and then the density of the host population reached the level close to that of the uninfected culture In this situation the phage population

  6. Parasite-host interaction in malaria: genetic clues and copy number variation

    PubMed Central

    2009-01-01

    In humans, infections contribute highly to mortality and morbidity rates worldwide. Malaria tropica is one of the major infectious diseases globally and is caused by the protozoan parasite Plasmodium falciparum. Plasmodia have accompanied human beings since the emergence of humankind. Due to its pathogenicity, malaria is a powerful selective force on the human genome. Genetic epidemiology approaches such as family and twin studies, candidate gene studies, and disease-association studies have identified a number of genes that mediate relative protection against the severest forms of the disease. New molecular approaches, including genome-wide association studies, have recently been performed to expand our knowledge on the functional effect of human variation in malaria. For the future, a systematic determination of gene-dosage effects and expression profiles of protective genes might unveil the functional impact of structural alterations in these genes on either side of the host-parasite interaction. PMID:19725943

  7. Interactions between frequency-dependent and vertical transmission in host-parasite systems.

    PubMed Central

    Altizer, S M; Augustine, D J

    1997-01-01

    We investigate host-pathogen dynamics and conditions for coexistence in two models incorporating frequency-dependent horizontal transmission in conjunction with vertical transmission. The first model combines frequency-dependent and uniparental vertical transmission, while the second addresses parasites transmitted vertically via both parents. For the first model, we ask how the addition of vertical transmission changes the coexistence criteria for parasites transmitted by a frequency-dependent horizontal route, and show that vertical transmission significantly broadens the conditions for parasite invasion. Host-parasite coexistence is further affected by the form of density-dependent host regulation. Numerical analyses demonstrate that within a host population, a parasite strain with horizontal frequency-dependent transmission can be driven to extinction by a parasite strain that is additionally transmitted vertically for a wide range of parameters. Although models of asexual host populations predict that vertical transmission alone cannot maintain a parasite over time, analysis of our second model shows that vertical transmission via both male and female parents can maintain a parasite at a stable equilibrium. These results correspond with the frequent co-occurrence of vertical with sexual transmission in nature and suggest that these transmission modes can lead to host-pathogen coexistence for a wide range of systems involving hosts with high reproductive rates. PMID:9265188

  8. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies.

    PubMed

    Nazzi, Francesco; Brown, Sam P; Annoscia, Desiderato; Del Piccolo, Fabio; Di Prisco, Gennaro; Varricchio, Paola; Della Vedova, Giorgio; Cattonaro, Federica; Caprio, Emilio; Pennacchio, Francesco

    2012-01-01

    The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.

  9. Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies

    PubMed Central

    Nazzi, Francesco; Brown, Sam P.; Annoscia, Desiderato; Del Piccolo, Fabio; Di Prisco, Gennaro; Varricchio, Paola; Della Vedova, Giorgio; Cattonaro, Federica; Caprio, Emilio; Pennacchio, Francesco

    2012-01-01

    The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health. PMID:22719246

  10. Constraining the Deep Origin of Parasitic Flatworms and Host-Interactions with Fossil Evidence.

    PubMed

    De Baets, Kenneth; Dentzien-Dias, Paula; Upeniece, Ieva; Verneau, Olivier; Donoghue, Philip C J

    2015-01-01

    Novel fossil discoveries have contributed to our understanding of the evolutionary appearance of parasitism in flatworms. Furthermore, genetic analyses with greater coverage have shifted our views on the coevolution of parasitic flatworms and their hosts. The putative record of parasitic flatworms is consistent with extant host associations and so can be used to put constraints on the evolutionary origin of the parasites themselves. The future lies in new molecular clock analyses combined with additional discoveries of exceptionally preserved flatworms associated with hosts and coprolites. Besides direct evidence, the host fossil record and biogeography have the potential to constrain their evolutionary history, albeit with caution needed to avoid circularity, and a need for calibrations to be implemented in the most conservative way. This might result in imprecise, but accurate divergence estimates for the evolution of parasitic flatworms.

  11. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions.

    PubMed

    Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C

    2015-10-22

    Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems. PMID:26468247

  12. Contaminant effects on host-parasite interactions: atrazine, frogs, and trematodes.

    PubMed

    Koprivnikar, Janet; Forbes, Mark R; Baker, Robert L

    2007-10-01

    The effects of contaminants on multispecies interactions can be difficult to predict. The herbicide atrazine is commonly used in North America for corn crops, runs off into wetlands, and has been implicated in the increasing susceptibility of larval frogs to trematode parasites. Using experimental challenges with free-living stages of trematodes (cercariae), it was found that Rana sylvatica tadpoles exposed to 30 microg/L of atrazine had significantly higher intensity of parasitism than did larval frogs either not exposed or exposed to 3 microg/L of atrazine. This result could not be explained by high concentrations of atrazine diminishing antiparasite behavior of tadpoles. Furthermore, when tadpoles and cercariae both were exposed to the same concentration of atrazine, either 3 or 30 microg/L, the abundance of formed cysts was not different from the condition in which both were housed at 0 microg/L of atrazine. Atrazine appears to be debilitating to both free-living cercariae and tadpoles. Studies examining relations between parasitism and contaminant levels must account for such combined effects as well as influences on other interacting species (e.g., first intermediate snail hosts).

  13. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions

    PubMed Central

    2011-01-01

    Background Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Results Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Conclusions Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary

  14. Sea lamprey (Petromyzon marinus) parasite-host interactions in the Great Lakes

    USGS Publications Warehouse

    Bence, James R.; Bergstedt, Roger A.; Christie, Gavin C.; Cochran, Phillip A.; Ebener, Mark P.; Koonce, Joseph F.; Rutter, Michael A.; Swink, William D.

    2003-01-01

    Prediction of how host mortality responds to efforts to control sea lampreys (Petromyzon marinus) is central to the integrated management strategy for sea lamprey (IMSL) in the Great Lakes. A parasite-host submodel is used as part of this strategy, and this includes a type-2 multi-species functional response, a developmental response, but no numerical response. General patterns of host species and size selection are consistent with the model assumptions, but some observations appear to diverge. For example, some patterns in sea lamprey marking on hosts suggest increases in selectivity for less preferred hosts and lower host survival when preferred hosts are scarce. Nevertheless, many of the IMSL assumptions may be adequate under conditions targeted by fish community objectives. Of great concern is the possibility that the survival of young parasites (parasitic-phase sea lampreys) varies substantially among lakes or over time. Joint analysis of abundance estimates for parasites being produced in streams and returning spawners could address this. Data on sea lamprey marks is a critical source of information on sea lamprey activity and potential effects. Theory connecting observed marks to sea lamprey feeding activity and host mortality is reviewed. Uncertainties regarding healing and attachment times, the probability of hosts surviving attacks, and problems in consistent classification of marks have led to widely divergent estimates of damages caused by sea lamprey. Laboratory and field studies are recommended to provide a firmer linkage between host blood loss, host mortality, and observed marks on surviving hosts, so as to improve estimates of damage.

  15. Nancy E. Beckage (1950-2012): pioneer in insect host-parasite interactions.

    PubMed

    Riddiford, Lynn M; Webb, Bruce A

    2014-01-01

    Nancy E. Beckage is widely recognized for her pioneering work in the field of insect host-parasitoid interactions beginning with endocrine influences of the tobacco hornworm, Manduca sexta, host and its parasitoid wasp Apanteles congregatus (now Cotesia congregata) on each other's development. Moreover, her studies show that the polydnavirus carried by the parasitoid wasp not only protects the parasitoid from the host's immune defenses, but also is responsible for some of the developmental effects of parasitism. Nancy was a highly regarded mentor of both undergraduate and graduate students and more widely of women students and colleagues in entomology. Her service both to her particular area and to entomology in general through participation on federal grant review panels and in the governance of the Entomological Society of America, organization of symposia at both national and international meetings, and editorship of several different journal issues and of several books is legendary. She has left behind a lasting legacy of increased understanding of multilevel endocrine and physiological interactions among insects and other organisms and a strong network of interacting scientists and colleagues in her area of entomology.

  16. Nancy E. Beckage (1950-2012): pioneer in insect host-parasite interactions.

    PubMed

    Riddiford, Lynn M; Webb, Bruce A

    2014-01-01

    Nancy E. Beckage is widely recognized for her pioneering work in the field of insect host-parasitoid interactions beginning with endocrine influences of the tobacco hornworm, Manduca sexta, host and its parasitoid wasp Apanteles congregatus (now Cotesia congregata) on each other's development. Moreover, her studies show that the polydnavirus carried by the parasitoid wasp not only protects the parasitoid from the host's immune defenses, but also is responsible for some of the developmental effects of parasitism. Nancy was a highly regarded mentor of both undergraduate and graduate students and more widely of women students and colleagues in entomology. Her service both to her particular area and to entomology in general through participation on federal grant review panels and in the governance of the Entomological Society of America, organization of symposia at both national and international meetings, and editorship of several different journal issues and of several books is legendary. She has left behind a lasting legacy of increased understanding of multilevel endocrine and physiological interactions among insects and other organisms and a strong network of interacting scientists and colleagues in her area of entomology. PMID:24112111

  17. A review of the population biology and host-parasite interactions of the sea louse Lepeophtheirus salmonis (Copepoda: Caligidae).

    PubMed

    Tully, O; Nolan, D T

    2002-01-01

    Lepeophtheirus salmonis is a specific parasite of salmonids that occurs in the Atlantic and Pacific Oceans. When infestations are heavy fish mortality can occur although the factors that are responsible for causing epizootics, especially in wild salmonid populations are still largely unknown. Over the past 20 years this parasite has caused significant economic losses in farmed salmon production and possibly in wild salmonid populations locally. Understanding the connectivity between populations is crucial to an understanding of the epidemiology of infections and for management of infections in aquaculture. Data from genetics, pesticide resistance, larval dispersal models and spatial and temporal patterns of infestation in wild and farmed hosts suggests a spatially highly structured metapopulation the components of which have different levels of connectivity, probabilities of extinction and influence on the development of local infestations. The population structure is defined mainly by the dispersal dynamics of the planktonic stages and the behaviour of the host. Until recently virtually nothing was known about the relationship between the parasite and the host, or how the host may influence lice at local or population level. Typically, impacts on the host have usually been reported in terms of pathological lesions caused by attachment and feeding of the adult stages, as well as localised mild epithelial responses to juvenile attachment. However many studies report pathology associated with severe infestation. Recent new studies on the host-parasite interactions of L. salmonis have shown that this parasite induces stress-related responses systemically in the host skin and gills and that the stress response and immune systems are modulated. In the second part of this review, these new studies are presented, together with results from other host-parasite model systems where data for caligid sea lice are missing. One of the most revealing methods reported recently is

  18. Cancer and life-history traits: lessons from host-parasite interactions.

    PubMed

    Ujvari, Beata; Beckmann, Christa; Biro, Peter A; Arnal, Audrey; Tasiemski, Aurelie; Massol, Francois; Salzet, Michel; Mery, Frederic; Boidin-Wichlacz, Celine; Misse, Dorothee; Renaud, Francois; Vittecoq, Marion; Tissot, Tazzio; Roche, Benjamin; Poulin, Robert; Thomas, Frederic

    2016-04-01

    Despite important differences between infectious diseases and cancers, tumour development (neoplasia) can nonetheless be closely compared to infectious disease because of the similarity of their effects on the body. On this basis, we predict that many of the life-history (LH) responses observed in the context of host-parasite interactions should also be relevant in the context of cancer. Parasites are thought to affect LH traits of their hosts because of strong selective pressures like direct and indirect mortality effects favouring, for example, early maturation and reproduction. Cancer can similarly also affect LH traits by imposing direct costs and/or indirectly by triggering plastic adjustments and evolutionary responses. Here, we discuss how and why a LH focus is a potentially productive but under-exploited research direction for cancer research, by focusing our attention on similarities between infectious disease and cancer with respect to their effects on LH traits and their evolution. We raise the possibility that LH adjustments can occur in response to cancer via maternal/paternal effects and that these changes can be heritable to (adaptively) modify the LH traits of their offspring. We conclude that LH adjustments can potentially influence the transgenerational persistence of inherited oncogenic mutations in populations. PMID:26887797

  19. What is a pathogen? Toward a process view of host-parasite interactions

    PubMed Central

    Méthot, Pierre-Olivier; Alizon, Samuel

    2014-01-01

    Until quite recently and since the late 19th century, medical microbiology has been based on the assumption that some micro-organisms are pathogens and others are not. This binary view is now strongly criticized and is even becoming untenable. We first provide a historical overview of the changing nature of host-parasite interactions, in which we argue that large-scale sequencing not only shows that identifying the roots of pathogenesis is much more complicated than previously thought, but also forces us to reconsider what a pathogen is. To address the challenge of defining a pathogen in post-genomic science, we present and discuss recent results that embrace the microbial genetic diversity (both within- and between-host) and underline the relevance of microbial ecology and evolution. By analyzing and extending earlier work on the concept of pathogen, we propose pathogenicity (or virulence) should be viewed as a dynamical feature of an interaction between a host and microbes. PMID:25483864

  20. Interactions among host diet, nutritional status and gastrointestinal parasite infection in wild bovids

    USGS Publications Warehouse

    Ezenwa, V.O.

    2004-01-01

    In this study, I explored the interactions among host diet, nutritional status and gastrointestinal parasitism in wild bovids by examining temporal patterns of nematode faecal egg shedding in species with different diet types during a drought and non-drought year. Study species included three grass and roughage feeders (buffalo, hartebeest, waterbuck), four mixed or intermediate feeders (eland, Grant's gazelle, impala, Thomson's gazelle) and two concentrate selectors (dik-dik, klipspringer). Six out of the nine focal species had higher mean faecal egg counts in the drought year compared to the normal year, and over the course of the dry year, monthly faecal egg counts were correlated with drought intensity in four species with low-quality diets, but no such relationship was found for species with high-quality diets. Comparisons of dietary crude protein and faecal egg count in impala showed that during the dry season, individuals with high faecal egg counts (???1550 eggs/g of faeces) had significantly lower crude protein levels than individuals with low (0-500 eggs/g) or moderate (550-1500 eggs/g) egg counts. These results suggest that under drought conditions, species unable to maintain adequate nutrition, mainly low-quality feeders, are less able to cope with gastrointestinal parasite infections. In particular, during dry periods, reduced protein intake seems to be associated with declining resilience and resistance to infection. ?? 2003 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  1. Host Sexual Dimorphism and Parasite Adaptation

    PubMed Central

    Duneau, David; Ebert, Dieter

    2012-01-01

    In species with separate sexes, parasite prevalence and disease expression is often different between males and females. This effect has mainly been attributed to sex differences in host traits, such as immune response. Here, we make the case for how properties of the parasites themselves can also matter. Specifically, we suggest that differences between host sexes in many different traits, such as morphology and hormone levels, can impose selection on parasites. This selection can eventually lead to parasite adaptations specific to the host sex more commonly encountered, or to differential expression of parasite traits depending on which host sex they find themselves in. Parasites adapted to the sex of the host in this way can contribute to differences between males and females in disease prevalence and expression. Considering those possibilities can help shed light on host–parasite interactions, and impact epidemiological and medical science. PMID:22389630

  2. Parasite-host interactions of bat flies (Diptera: Hippoboscoidea) in Brazilian tropical dry forests.

    PubMed

    de Vasconcelos, Pedro Fonseca; Falcão, Luiz Alberto Dolabela; Graciolli, Gustavo; Borges, Magno Augusto Zazá

    2016-01-01

    Studies on the parasitology of ectoparasitic bat flies are scarce, and they are needed to identify patterns in parasitism. Hence, in the present study, we assessed community composition, prevalence, average infestation intensity, and specificity in the fly-bat associations in Brazilian tropical dry forests. In order to do that, we used the parasitological indices known as prevalence and average infestation intensity, along with an index of host specificity. We collected 1098 bat flies of 38 species. Five of the associations found are new to Brazil, 9 are new to southeastern Brazil, and 10 are new to science. Average infestation intensity varied from 1 to 9 and prevalence 0 to 100 %. In terms of specificity, 76 % of the bat flies were associated to a single host (monoxenic). These results highlight the low capacity of bat flies to survive on a not usual host especially due to an immunological incompatibility between parasites and hosts and dispersal barriers.

  3. Haemonchus contortus P-Glycoproteins Interact with Host Eosinophil Granules: A Novel Insight into the Role of ABC Transporters in Host-Parasite Interaction

    PubMed Central

    Issouf, Mohamed; Guégnard, Fabrice; Koch, Christine; Le Vern, Yves; Blanchard-Letort, Alexandra; Che, Hua; Beech, Robin N.; Kerboeuf, Dominique; Neveu, Cedric

    2014-01-01

    Eosinophils are one of the major mammalian effector cells encountered by helminths during infection. In the present study, we investigated the effects of eosinophil granule exposure on the sheep parasitic nematode Haemonchus contortus as a model. H. contortus eggs exposed to eosinophil granule products showed increased rhodamine 123 efflux and this effect was not due to loss of egg integrity. Rh123 is known to be a specific P-glycoprotein (Pgp) substrate and led to the hypothesis that in addition to their critical role in xenobiotic resistance, helminth ABC transporters such as Pgp may also be involved in the detoxification of host cytotoxic products. We showed by quantitative RT-PCR that, among nine different H. contortus Pgp genes, Hco-pgp-3, Hco-pgp-9.2, Hco-pgp-11 and, Hco-pgp-16 were specifically up-regulated in parasitic life stages suggesting a potential involvement of these Pgps in the detoxification of eosinophil granule products. Using exsheathed L3 larvae that mimic the first life stage in contact with the host, we demonstrated that eosinophil granules induced a dose dependent overexpression of Hco-pgp-3 and the closely related Hco-pgp-16. Taken together, our results provide the first evidence that a subset of helminth Pgps interact with, and could be involved in the detoxification of, host products. This opens the way for further studies aiming to explore the role of helminth Pgps in the host-parasite interaction, including evasion of the host immune response. PMID:24498376

  4. Trichomonas vaginalis and Tritrichomonas foetus: interaction with fibroblasts and muscle cells - new insights into parasite-mediated host cell cytotoxicity.

    PubMed

    Vilela, Ricardo Chaves; Benchimol, Marlene

    2012-09-01

    Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such infections could cause

  5. Getting What Is Served? Feeding Ecology Influencing Parasite-Host Interactions in Invasive Round Goby Neogobius melanostomus

    PubMed Central

    Emde, Sebastian; Kochmann, Judith; Kuhn, Thomas; Plath, Martin; Klimpel, Sven

    2014-01-01

    Freshwater ecosystems are increasingly impacted by alien invasive species which have the potential to alter various ecological interactions like predator-prey and host-parasite relationships. Here, we simultaneously examined predator-prey interactions and parasitization patterns of the highly invasive round goby (Neogobius melanostomus) in the rivers Rhine and Main in Germany. A total of 350 N. melanostomus were sampled between June and October 2011. Gut content analysis revealed a broad prey spectrum, partly reflecting temporal and local differences in prey availability. For the major food type (amphipods), species compositions were determined. Amphipod fauna consisted entirely of non-native species and was dominated by Dikerogammarus villosus in the Main and Echinogammarus trichiatus in the Rhine. However, the availability of amphipod species in the field did not reflect their relative abundance in gut contents of N. melanostomus. Only two metazoan parasites, the nematode Raphidascaris acus and the acanthocephalan Pomphorhynchus sp., were isolated from N. melanostomus in all months, whereas unionid glochidia were only detected in June and October in fish from the Main. To analyse infection pathways, we examined 17,356 amphipods and found Pomphorhynchus sp. larvae only in D. villosus in the river Rhine at a prevalence of 0.15%. Dikerogammarus villosus represented the most important amphipod prey for N. melanostomus in both rivers but parasite intensities differed between rivers, suggesting that final hosts (large predatory fishes) may influence host-parasite dynamics of N. melanostomus in its introduced range. PMID:25338158

  6. Atrazine reduces the transmission of an amphibian trematode by altering snail and ostracod host-parasite interactions.

    PubMed

    Gustafson, Kyle D; Belden, Jason B; Bolek, Matthew G

    2016-04-01

    Trematodes are ubiquitous members of aquatic environments, have many functional roles in ecosystems, and can cause diseases in humans, livestock, and wild animals. Despite their importance and reports of parasite population declines, few studies have concurrently assessed the effects of aquatic contaminants on multiple hosts, multiple parasite life cycle stages, and on transmission-related host-parasite interactions. Here, we test the effects of environmentally relevant concentrations of the herbicide atrazine (0, 3, 30 μg/L) on the establishment and development of an amphibian trematode (Halipegus eccentricus) in a first-intermediate snail host (Physa acuta) and in a second-intermediate ostracod host (Cypridopsis sp.). Additionally, we test the interactive effects of atrazine and parasitism on snail and ostracod survival. Our results indicate that atrazine negatively affects trematode transmission by altering snail and ostracod host-parasite interactions. Although atrazine did not affect the survival of uninfected snails alone, atrazine acted synergistically with parasitism to reduce the longevity of infected snails. As a result, the number of cercariae (i.e., larval trematodes) produced by snails was 50.7 % (3 μg/L) and 14.9 % (30 μg/L) relative to controls. Atrazine exhibited direct negative effects on ostracod survival at 30 μg/L. However, when ostracods were also exposed to trematodes, the negative effects of atrazine on survival were diminished. Although infected ostracod survival remained high, trematode development was significantly reduced, resulting in reduced infectivity of metacercariae (i.e., nongravid adult cysts infective to definite host) to 32.2 % (3 μg/L) and 28.6 % (30 μg/L) relative to the controls. The combination of reduced cercaria production and reduced metacercarial infectivity in the 3 and 30 μg/L atrazine treatment groups reduced the net number of infective worms produced to 16.4 and 4.3 % (respectively) relative to the control

  7. Atrazine reduces the transmission of an amphibian trematode by altering snail and ostracod host-parasite interactions.

    PubMed

    Gustafson, Kyle D; Belden, Jason B; Bolek, Matthew G

    2016-04-01

    Trematodes are ubiquitous members of aquatic environments, have many functional roles in ecosystems, and can cause diseases in humans, livestock, and wild animals. Despite their importance and reports of parasite population declines, few studies have concurrently assessed the effects of aquatic contaminants on multiple hosts, multiple parasite life cycle stages, and on transmission-related host-parasite interactions. Here, we test the effects of environmentally relevant concentrations of the herbicide atrazine (0, 3, 30 μg/L) on the establishment and development of an amphibian trematode (Halipegus eccentricus) in a first-intermediate snail host (Physa acuta) and in a second-intermediate ostracod host (Cypridopsis sp.). Additionally, we test the interactive effects of atrazine and parasitism on snail and ostracod survival. Our results indicate that atrazine negatively affects trematode transmission by altering snail and ostracod host-parasite interactions. Although atrazine did not affect the survival of uninfected snails alone, atrazine acted synergistically with parasitism to reduce the longevity of infected snails. As a result, the number of cercariae (i.e., larval trematodes) produced by snails was 50.7 % (3 μg/L) and 14.9 % (30 μg/L) relative to controls. Atrazine exhibited direct negative effects on ostracod survival at 30 μg/L. However, when ostracods were also exposed to trematodes, the negative effects of atrazine on survival were diminished. Although infected ostracod survival remained high, trematode development was significantly reduced, resulting in reduced infectivity of metacercariae (i.e., nongravid adult cysts infective to definite host) to 32.2 % (3 μg/L) and 28.6 % (30 μg/L) relative to the controls. The combination of reduced cercaria production and reduced metacercarial infectivity in the 3 and 30 μg/L atrazine treatment groups reduced the net number of infective worms produced to 16.4 and 4.3 % (respectively) relative to the control

  8. Learned parasite avoidance is driven by host personality and resistance to infection in a fish-trematode interaction.

    PubMed

    Klemme, Ines; Karvonen, Anssi

    2016-09-14

    Cognitive abilities related to the assessment of risk improve survival. While earlier studies have examined the ability of animals to learn to avoid predators, learned parasite avoidance has received little interest. In a series of behavioural trials with the trematode parasite Diplostomum pseudospathaceum, we asked whether sea trout (Salmo trutta trutta) hosts show associative learning in the context of parasitism and if so, whether learning capacity is related to the likelihood of infection mediated through host personality and resistance. We show that animals are capable of learning to avoid visual cues associated with the presence of parasites. However, avoidance behaviour ceased after the likely activation of host resistance following consecutive exposures during learning, suggesting that resistance to infection outweighs avoidance. Further, we found a positive relationship between learning ability and boldness, suggesting a compensation of risky lifestyles through increased investment in cognitive abilities. By contrast, an increased risk of infection due to low resistance was not balanced by learning ability. Instead, these traits were positively related, which may be explained by inherent physiological qualities controlling both traits. Overall, the results demonstrate that parasitism, in addition to other biological interactions such as predation, is an important selective factor in the evolution of animal cognition. PMID:27605504

  9. Learned parasite avoidance is driven by host personality and resistance to infection in a fish-trematode interaction.

    PubMed

    Klemme, Ines; Karvonen, Anssi

    2016-09-14

    Cognitive abilities related to the assessment of risk improve survival. While earlier studies have examined the ability of animals to learn to avoid predators, learned parasite avoidance has received little interest. In a series of behavioural trials with the trematode parasite Diplostomum pseudospathaceum, we asked whether sea trout (Salmo trutta trutta) hosts show associative learning in the context of parasitism and if so, whether learning capacity is related to the likelihood of infection mediated through host personality and resistance. We show that animals are capable of learning to avoid visual cues associated with the presence of parasites. However, avoidance behaviour ceased after the likely activation of host resistance following consecutive exposures during learning, suggesting that resistance to infection outweighs avoidance. Further, we found a positive relationship between learning ability and boldness, suggesting a compensation of risky lifestyles through increased investment in cognitive abilities. By contrast, an increased risk of infection due to low resistance was not balanced by learning ability. Instead, these traits were positively related, which may be explained by inherent physiological qualities controlling both traits. Overall, the results demonstrate that parasitism, in addition to other biological interactions such as predation, is an important selective factor in the evolution of animal cognition.

  10. Mechanisms of host seeking by parasitic nematodes.

    PubMed

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors.

  11. Mechanisms of host seeking by parasitic nematodes.

    PubMed

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. PMID:27211240

  12. Urbanization breaks up host-parasite interactions: a case study on parasite community ecology of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient.

    PubMed

    Calegaro-Marques, Cláudia; Amato, Suzana B

    2014-01-01

    Urbanization drastically alters natural ecosystems and the structure of their plant and animal communities. Whereas some species cope successfully with these environmental changes, others may go extinct. In the case of parasite communities, the expansion of urban areas has a critical effect by changing the availability of suitable substrates for the eggs or free-larval stages of those species with direct life cycles or for the range of hosts of those species with complex cycles. In this study we investigated the influence of the degree of urbanization and environmental heterogeneity on helminth richness, abundance and community structure of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient in the metropolitan region of Porto Alegre, State of Rio Grande do Sul, Brazil. This common native bird species of southern Brazil hosts 15 endoparasite species at the study region. A total of 144 thrushes were collected with mist nets at 11 sites. The degree of urbanization and environmental heterogeneity were estimated by quantifying five landscape elements: buildings, woodlands, fields, bare lands, and water. Landscape analyses were performed at two spatial scales (10 and 100 ha) taking into account home range size and the potential dispersal distance of thrushes and their prey (intermediate hosts). Mean parasite richness showed an inverse relationship with the degree of urbanization, but a positive relationship with environmental heterogeneity. Changes in the structure of component communities along the rural-urban gradient resulted from responses to the availability of particular landscape elements that are compatible with the parasites' life cycles. We found that the replacement of natural environments with buildings breaks up host-parasite interactions, whereas a higher environmental (substrate) diversity allows the survival of a wider range of intermediate hosts and vectors and their associated parasites.

  13. Urbanization Breaks Up Host-Parasite Interactions: A Case Study on Parasite Community Ecology of Rufous-Bellied Thrushes (Turdus rufiventris) along a Rural-Urban Gradient

    PubMed Central

    Calegaro-Marques, Cláudia; Amato, Suzana B.

    2014-01-01

    Urbanization drastically alters natural ecosystems and the structure of their plant and animal communities. Whereas some species cope successfully with these environmental changes, others may go extinct. In the case of parasite communities, the expansion of urban areas has a critical effect by changing the availability of suitable substrates for the eggs or free-larval stages of those species with direct life cycles or for the range of hosts of those species with complex cycles. In this study we investigated the influence of the degree of urbanization and environmental heterogeneity on helminth richness, abundance and community structure of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient in the metropolitan region of Porto Alegre, State of Rio Grande do Sul, Brazil. This common native bird species of southern Brazil hosts 15 endoparasite species at the study region. A total of 144 thrushes were collected with mist nets at 11 sites. The degree of urbanization and environmental heterogeneity were estimated by quantifying five landscape elements: buildings, woodlands, fields, bare lands, and water. Landscape analyses were performed at two spatial scales (10 and 100 ha) taking into account home range size and the potential dispersal distance of thrushes and their prey (intermediate hosts). Mean parasite richness showed an inverse relationship with the degree of urbanization, but a positive relationship with environmental heterogeneity. Changes in the structure of component communities along the rural-urban gradient resulted from responses to the availability of particular landscape elements that are compatible with the parasites' life cycles. We found that the replacement of natural environments with buildings breaks up host-parasite interactions, whereas a higher environmental (substrate) diversity allows the survival of a wider range of intermediate hosts and vectors and their associated parasites. PMID:25068271

  14. Urbanization breaks up host-parasite interactions: a case study on parasite community ecology of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient.

    PubMed

    Calegaro-Marques, Cláudia; Amato, Suzana B

    2014-01-01

    Urbanization drastically alters natural ecosystems and the structure of their plant and animal communities. Whereas some species cope successfully with these environmental changes, others may go extinct. In the case of parasite communities, the expansion of urban areas has a critical effect by changing the availability of suitable substrates for the eggs or free-larval stages of those species with direct life cycles or for the range of hosts of those species with complex cycles. In this study we investigated the influence of the degree of urbanization and environmental heterogeneity on helminth richness, abundance and community structure of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient in the metropolitan region of Porto Alegre, State of Rio Grande do Sul, Brazil. This common native bird species of southern Brazil hosts 15 endoparasite species at the study region. A total of 144 thrushes were collected with mist nets at 11 sites. The degree of urbanization and environmental heterogeneity were estimated by quantifying five landscape elements: buildings, woodlands, fields, bare lands, and water. Landscape analyses were performed at two spatial scales (10 and 100 ha) taking into account home range size and the potential dispersal distance of thrushes and their prey (intermediate hosts). Mean parasite richness showed an inverse relationship with the degree of urbanization, but a positive relationship with environmental heterogeneity. Changes in the structure of component communities along the rural-urban gradient resulted from responses to the availability of particular landscape elements that are compatible with the parasites' life cycles. We found that the replacement of natural environments with buildings breaks up host-parasite interactions, whereas a higher environmental (substrate) diversity allows the survival of a wider range of intermediate hosts and vectors and their associated parasites. PMID:25068271

  15. Coevolution of parasitic fungi and insect hosts.

    PubMed

    Joop, Gerrit; Vilcinskas, Andreas

    2016-08-01

    Parasitic fungi and their insect hosts provide an intriguing model system for dissecting the complex co-evolutionary processes, which result in Red Queen dynamics. To explore the genetic basis behind host-parasite coevolution we chose two parasitic fungi (Beauveria bassiana and Metarhizium anisopliae, representing the most important entomopathogenic fungi used in the biological control of pest or vector insects) and two established insect model hosts (the greater wax moth Galleria mellonella and the red flour beetle Tribolium castaneum) for which sequenced genomes or comprehensive transcriptomes are available. Focusing on these model organisms, we review the knowledge about the interactions between fungal molecules operating as virulence factors and insect host-derived defense molecules mediating antifungal immunity. Particularly the study of the intimate interactions between fungal proteinases and corresponding host-derived proteinase inhibitors elucidated novel coevolutionary mechanisms such as functional shifts or diversification of involved effector molecules. Complementarily, we compared the outcome of coevolution experiments using the parasitic fungus B. bassiana and two different insect hosts which were initially either susceptible (Galleria mellonella) or resistant (Tribolium castaneum). Taking a snapshot of host-parasite coevolution, we show that parasitic fungi can overcome host barriers such as external antimicrobial secretions just as hosts can build new barriers, both within a relatively short time of coevolution. PMID:27448694

  16. Developmental cycle and host interaction of Rhabdochlamydia porcellionis, an intracellular parasite of terrestrial isopods.

    PubMed

    Sixt, Barbara S; Kostanjšek, Rok; Mustedanagic, Azra; Toenshoff, Elena R; Horn, Matthias

    2013-11-01

    Environmental chlamydiae are a diverse group of obligate intracellular bacteria related to well-known pathogens of humans. To date, only very little is known about chlamydial species infecting arthropods. In this study, we used cocultivation with insect cells for recovery and maintenance of Rhabdochlamydia porcellionis, a parasite of the crustacean host Porcellio scaber. In vitro, the infection cycle of R. porcellionis was completed within 7 days, resulting in the release of infectious particles by host cell lysis. Lack of apoptosis induction during the entire course of infection, combined with a reduced sensitivity of infected cultures to experimentally induced programmed cell death, indicates that R. porcellionis like its human pathogenic relatives counteracts this host defence mechanism. Interestingly, the rod-shaped variant of R. porcellionis, proposed to represent their mature infective stage, was not detected in cell culture, suggesting that its development may require prolonged maturation or may be triggered by specific conditions encountered only in the animal host. This first cell culture-based system for the cultivation and investigation of an arthropod-associated chlamydial species will help to better understand the biology of a so far neglected group of chlamydiae and its recently suggested potential to cause disease in humans.

  17. Hosts and parasites as aliens.

    PubMed

    Taraschewski, H

    2006-06-01

    Over the past decades, various free-living animals (hosts) and their parasites have invaded recipient areas in which they had not previously occurred, thus gaining the status of aliens or exotics. In general this happened to a low extent for hundreds of years. With variable frequency, invasions have been followed by the dispersal and establishment of non-indigenous species, whether host or parasite. In the literature thus far, colonizations by both hosts and parasites have not been treated and reviewed together, although both are usually interwoven in various ways. As to those factors permitting invasive success and colonization strength, various hypotheses have been put forward depending on the scientific background of respective authors and on the conspicuousness of certain invasions. Researchers who have tried to analyse characteristic developmental patterns, the speed of dispersal or the degree of genetic divergence in populations of alien species have come to different conclusions. Among parasitologists, the applied aspects of parasite invasions, such as the negative effects on economically important hosts, have long been at the centre of interest. In this contribution, invasions by hosts as well as parasites are considered comparatively, revealing many similarities and a few differences. Two helminths, the liver fluke, Fasciola hepatica, of cattle and sheep and the swimbladder nematode, Anguillicola crassus, of eels are shown to be useful as model parasites for the study of animal invasions and environmental global change. Introductions of F. hepatica have been associated with imports of cattle or other grazing animals. In various target areas, susceptible lymnaeid snails serving as intermediate hosts were either naturally present and/or were introduced from the donor continent of the parasite (Europe) and/or from other regions which were not within the original range of the parasite, partly reflecting progressive stages of a global biota change. In several

  18. Host–parasite interactions during a biological invasion: The fate of lungworms (Rhabdias spp.) inside native and novel anuran hosts

    PubMed Central

    Nelson, Felicity B.L.; Brown, Gregory P.; Shilton, Catherine; Shine, Richard

    2015-01-01

    The cane toad invasion in Australia provides a robust opportunity to clarify the infection process in co-evolved versus de novo host–parasite interactions. We investigated these infection dynamics through histological examination following experimental infections of metamorphs of native frogs (Cyclorana australis) and cane toads (Rhinella marina) with Rhabdias hylae (the lungworm found in native frogs) and Rhabdias pseudosphaerocephala (the lungworm found in cane toads). Cane toads reared under continuous exposure to infective larvae of the frog lungworm were examined after periods of 2, 6, 10 and 15 days. Additionally, both toads and frogs were exposed for 24 h to larvae of either the toad or the frog lungworm, and examined 2, 5, 10 and 20 days post-treatment. R. hylae (frog) lungworms entered cane toads and migrated through the body but were not found in the target tissue, the lungs. Larvae of both lungworm species induced inflammation in both types of hosts, although the immune response (relative numbers of different cell types) differed between hosts and between parasite species. Co-evolution has modified the immune response elicited by infection and (perhaps for that reason) has enhanced the parasite's ability to survive and to reach the host's lungs. PMID:25973392

  19. Myxidium mackiei (Myxosporea) in Indo-Gangetic flap-shelled turtles Lissemys punctata andersonii: parasite-host interaction and ultrastructure.

    PubMed

    Helke, K L; Poynton, S L

    2005-02-28

    Myxosporeans are common parasites of fish, and uncommon parasites of amphibians, reptiles and invertebrates, that can cause significant morbidity and mortality. The common genus Myxidium infects the excretory system of turtles, yet knowledge of its pathogenicity in these hosts is limited. We offer new knowledge of morphological and ultrastructural aspects of host-parasite interactions in Myxidium infections from our recent diagnostic investigations on captive freshwater turtles listed in CITES (Appendix II). We investigated the cause of death of 2 adult Indo-Gangetic flap-shelled turtles Lissemys punctata andersonii from a zoo collection. After post-mortem examination, tissues were processed for histopathology, and special stains were used to demonstrate morphology of myxosporean spores. Additional kidney tissue, immersion-fixed in formalin, was processed for transmission electron microscopy. Both turtles were infected with a myxosporidian, Myxidium mackiei, in the kidney, which occluded 5 to 10% of the renal proximal convoluted tubules. The polysporic plasmodia contained pairs of developing and mature spores. Each mature, spindle-shaped spore had 2 asymmetric valves (1 overlapping, 1 overlapped), with 10 to 13 and 10 to 14 longitudinal ridges per valve, and 2 polar capsules each containing a polar filament with 4 to 5 turns. A pair of spores, each surrounded by a membrane-bound electron-lucent matrix, lay in an enclosing cell within the plasmodium. Regions of the parasite-host interface consisted of undulations of the parasite surface, with intense pinocytotic activity beneath, intermingled with the hosts' microvilli, and endocytotic channels at the apex of renal epithelial cells. The microvilli of the renal epithelial cells of infected tubules were frequently sheared or compressed, or occasionally missing; we did not detect other pathology induced by the parasite. Our report of M. mackiei in L. punctata is a new host record. Both individuals also had disseminated

  20. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VI. Entamoeba histolytica: parasite-host interactions.

    PubMed

    Stanley, S L; Reed, S L

    2001-06-01

    The protozoan intestinal parasite Entamoeba histolytica remains a significant cause of morbidity and mortality worldwide. E. histolytica causes two major clinical syndromes, amebic colitis and amebic liver abscess. Recent advances in the development of in vitro and in vivo models of disease, new genetic approaches, the identification of key E. histolytica virulence factors, and the recognition of crucial elements of the host response to infection have led to significant insights into the pathogenesis of amebic infection. E. histolytica virulence factors include 1) a surface galactose binding lectin that mediates E. histolytica binding to host cells and may contribute to amebic resistance to complement, 2) amebapores, small peptides capable of lysing cells, which may play a role in killing intestinal epithelial cells, hepatocytes, and host defense cells, and 3) a family of secreted cysteine proteinases that play a key role in E. histolytica tissue invasion, evasion of host defenses, and parasite induction of gut inflammation. Amebae can both lyse host cells and induce their suicide through programmed cell death. The host response is also an important factor in the outcome of infection, and neutrophils may play a key role in contributing to the tissue damage seen in amebiasis and in controlling amebic infection.

  1. Population structure of a parasitic plant and its perennial host.

    PubMed

    Mutikainen, P; Koskela, T

    2002-10-01

    Characterization of host and parasite population genetic structure and estimation of gene flow among populations are essential for the understanding of parasite local adaptation and coevolutionary interactions between hosts and parasites. We examined two aspects of population structure in a parasitic plant, the greater dodder (Cuscuta europaea) and its host plant, the stinging nettle (Urtica dioica), using allozyme data from 12 host and eight parasite populations. First, we examined whether hosts exposed to parasitism in the past contain higher levels of genetic variation. Second, we examined whether host and parasite populations differ in terms of population structure and if their population structures are correlated. There was no evidence that host populations differed in terms of gene diversity or heterozygosity according to their history of parasitism. Host populations were genetically more differentiated (F(ST) = 0.032) than parasite populations (F(ST) = 0.009). Based on these F(ST) values, gene flow was high for both host and parasite. Such high levels of gene flow could counteract selection for local adaptation of the parasite. We found no significant correlation between geographic and genetic distance (estimated as pairwise F(ST)), either for the host or for the parasite. Furthermore, host and parasite genetic distance matrices were uncorrelated, suggesting that sites with genetically similar host populations are unlikely to have genetically similar parasite populations. PMID:12242649

  2. Molecular characterization of S. japonicum exosome-like vesicles reveals their regulatory roles in parasite-host interactions

    PubMed Central

    Zhu, Lihui; Liu, Juntao; Dao, Jinwei; Lu, Ke; Li, Hao; Gu, Huiming; Liu, Jinming; Feng, Xingang; Cheng, Guofeng

    2016-01-01

    Secreted extracellular vesicles play an important role in pathogen-host interactions. Increased knowledge of schistosome extracellular vesicles could provide insights into schistosome-host interactions and enable the development of novel intervention strategies to inhibit parasitic processes and lessen disease transmission. Here, we describe biochemical characterization of Schistosoma japonicum exosome-like vesicles (S. japonicum EVs). A total of 403 proteins were identified in S. japonicum EVs, and bioinformatics analyses indicated that these proteins were mainly involved in binding, catalytic activity, and translation regulatory activity. Next, we characterized the population of small RNAs associated with S. japonicum EVs. Further studies demonstrated that mammalian cells could internalize S. japonicum EVs and transfer their cargo miRNAs to recipient cells. Additionally, we found that a specific miRNA, likely originating from a final host, ocu-miR-191–5p, is also associated with S. japonicum EVs. Overall, our findings demonstrate that S. japonicum EVs could be implicated in the pathogenesis of schistosomiasis via a mechanism involving the transfer of their cargo miRNAs to hosts. Our findings provide novel insights into the mechanisms of schistosome-host interactions. PMID:27172881

  3. Fossil Crustaceans as Parasites and Hosts.

    PubMed

    Klompmaker, Adiël A; Boxshall, Geoff A

    2015-01-01

    Numerous crustacean lineages have independently moved into parasitism as a mode of life. In modern marine ecosystems, parasitic crustaceans use representatives from many metazoan phyla as hosts. Crustaceans also serve as hosts to a rich diversity of parasites, including other crustaceans. Here, we show that the fossil record of such parasitic interactions is sparse, with only 11 examples, one dating back to the Cambrian. This may be due to the limited preservation potential and small size of parasites, as well as to problems with ascribing traces to parasitism with certainty, and to a lack of targeted research. Although the confirmed stratigraphic ranges are limited for nearly every example, evidence of parasitism related to crustaceans has become increasingly more complete for isopod-induced swellings in decapods so that quantitative analyses can be carried out. Little attention has yet been paid to the origin of parasitism in deep time, but insight can be generated by integrating data on fossils with molecular studies on modern parasites. In addition, there are other traces left by parasites that could fossilize, but have not yet been recognized in the fossil record.

  4. Hookworm SCP/TAPS protein structure--A key to understanding host-parasite interactions and developing new interventions.

    PubMed

    Osman, Asiah; Wang, Conan K; Winter, Anja; Loukas, Alex; Tribolet, Leon; Gasser, Robin B; Hofmann, Andreas

    2012-01-01

    SCP/TAPS proteins are a diverse family of molecules in eukaryotes, including parasites. Despite their abundant occurrence in parasite secretomes, very little is known about their functions in parasitic nematodes, including blood-feeding hookworms. Current information indicates that SCP/TAPS proteins (called Ancylostoma-secreted proteins, ASPs) of the canine hookworm, Ancylostoma caninum, represent at least three distinct groups of proteins. This information, combined with comparative modelling, indicates that all known ASPs have an equatorial groove that binds extended structures, such as peptides or glycans. To elucidate structure-function relationships, we explored the three-dimensional crystal structure of an ASP (called Ac-ASP-7), which is highly up-regulated in expression in the transition of A. caninum larvae from a free-living to a parasitic stage. The topology of the N-terminal domain is consistent with pathogenesis-related proteins, and the C-terminal extension that resembles the fold of the Hinge domain. By anomalous diffraction, we identified a new metal binding site in the C-terminal extension of the protein. Ac-ASP-7 is in a monomer-dimer equilibrium, and crystal-packing analysis identified a dimeric structure which might resemble the homo-dimer in solution. The dimer interaction interface includes a novel binding site for divalent metal ions, and is proposed to serve as a binding site for proteins involved in the parasite-host interplay at the molecular level. Understanding this interplay and the integration of structural and functional data could lead to the design of new approaches for the control of parasitic diseases, with biotechnological outcomes. PMID:22120067

  5. Hookworm SCP/TAPS protein structure--A key to understanding host-parasite interactions and developing new interventions.

    PubMed

    Osman, Asiah; Wang, Conan K; Winter, Anja; Loukas, Alex; Tribolet, Leon; Gasser, Robin B; Hofmann, Andreas

    2012-01-01

    SCP/TAPS proteins are a diverse family of molecules in eukaryotes, including parasites. Despite their abundant occurrence in parasite secretomes, very little is known about their functions in parasitic nematodes, including blood-feeding hookworms. Current information indicates that SCP/TAPS proteins (called Ancylostoma-secreted proteins, ASPs) of the canine hookworm, Ancylostoma caninum, represent at least three distinct groups of proteins. This information, combined with comparative modelling, indicates that all known ASPs have an equatorial groove that binds extended structures, such as peptides or glycans. To elucidate structure-function relationships, we explored the three-dimensional crystal structure of an ASP (called Ac-ASP-7), which is highly up-regulated in expression in the transition of A. caninum larvae from a free-living to a parasitic stage. The topology of the N-terminal domain is consistent with pathogenesis-related proteins, and the C-terminal extension that resembles the fold of the Hinge domain. By anomalous diffraction, we identified a new metal binding site in the C-terminal extension of the protein. Ac-ASP-7 is in a monomer-dimer equilibrium, and crystal-packing analysis identified a dimeric structure which might resemble the homo-dimer in solution. The dimer interaction interface includes a novel binding site for divalent metal ions, and is proposed to serve as a binding site for proteins involved in the parasite-host interplay at the molecular level. Understanding this interplay and the integration of structural and functional data could lead to the design of new approaches for the control of parasitic diseases, with biotechnological outcomes.

  6. Castrating parasites and colonial hosts.

    PubMed

    Hartikainen, H; Okamura, B

    2012-04-01

    Trajectories of life-history traits such as growth and reproduction generally level off with age and increasing size. However, colonial animals may exhibit indefinite, exponential growth via modular iteration thus providing a long-lived host source for parasite exploitation. In addition, modular iteration entails a lack of germ line sequestration. Castration of such hosts by parasites may therefore be impermanent or precluded, unlike the general case for unitary animal hosts. Despite these intriguing correlates of coloniality, patterns of colonial host exploitation have not been well studied. We examined these patterns by characterizing the responses of a myxozoan endoparasite, Tetracapsuloides bryosalmonae, and its colonial bryozoan host, Fredericella sultana, to 3 different resource levels. We show that (1) the development of infectious stages nearly always castrates colonies regardless of host condition, (2) castration reduces partial mortality and (3) development of transmission stages is resource-mediated. Unlike familiar castrator-host systems, this system appears to be characterized by periodic rather than permanent castration. Periodic castration may be permitted by 2 key life history traits: developmental cycling of the parasite between quiescent (covert infections) and virulent infectious stages (overt infections) and the absence of germ line sequestration which allows host reproduction in between bouts of castration.

  7. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale.

    PubMed

    Striberny, Bernd; Krause, Kirsten

    2015-01-01

    The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas.

  8. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale.

    PubMed

    Striberny, Bernd; Krause, Kirsten

    2015-01-01

    The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas. PMID:26367804

  9. From parasitism to mutualism: unexpected interactions between a cuckoo and its host.

    PubMed

    Canestrari, Daniela; Bolopo, Diana; Turlings, Ted C J; Röder, Gregory; Marcos, José M; Baglione, Vittorio

    2014-03-21

    Avian brood parasites lay eggs in the nests of other birds, which raise the unrelated chicks and typically suffer partial or complete loss of their own brood. However, carrion crows Corvus corone corone can benefit from parasitism by the great spotted cuckoo Clamator glandarius. Parasitized nests have lower rates of predation-induced failure due to production of a repellent secretion by cuckoo chicks, but among nests that are successful, those with cuckoo chicks fledge fewer crows. The outcome of these counterbalancing effects fluctuates between parasitism and mutualism each season, depending on the intensity of predation pressure.

  10. Parasite species richness and intensity of interspecific interactions increase with latitude in two wide-ranging hosts.

    PubMed

    Torchin, Mark E; Miura, Osamu; Hechinger, Ryan F

    2015-11-01

    Although the latitudinal diversity gradient is a well-known and general pattern, the mechanisms structuring it remain elusive. Two key issues limit differentiating these. First, habitat type usually varies with latitude, precluding a standardized evaluation of species richness. Second, broad-scale and local factors hypothesized to shape diversity patterns covary with one another, making it difficult to tease apart independent effects. Examining communities of parasites in widely distributed hosts can eliminate some of these confounding factors. We quantified diversity and interspecific interactions for trematode parasites infecting two similar snail species across 27 degrees of latitude from 43 locations in tropical and temperate oceans. Counter to typical patterns, we found that species richness, levels of parasitism, and intensity of intraguild predation increased with latitude. Because speciation rates are precluded from driving diversity gradients in this particular system, the reversed gradients are likely due to local ecological factors, specifically, increased productivity and stability. We highlight how this system may serve as a useful tool to provide insight into what processes drive diversity gradients in general. PMID:27070022

  11. Parasite species richness and intensity of interspecific interactions increase with latitude in two wide-ranging hosts.

    PubMed

    Torchin, Mark E; Miura, Osamu; Hechinger, Ryan F

    2015-11-01

    Although the latitudinal diversity gradient is a well-known and general pattern, the mechanisms structuring it remain elusive. Two key issues limit differentiating these. First, habitat type usually varies with latitude, precluding a standardized evaluation of species richness. Second, broad-scale and local factors hypothesized to shape diversity patterns covary with one another, making it difficult to tease apart independent effects. Examining communities of parasites in widely distributed hosts can eliminate some of these confounding factors. We quantified diversity and interspecific interactions for trematode parasites infecting two similar snail species across 27 degrees of latitude from 43 locations in tropical and temperate oceans. Counter to typical patterns, we found that species richness, levels of parasitism, and intensity of intraguild predation increased with latitude. Because speciation rates are precluded from driving diversity gradients in this particular system, the reversed gradients are likely due to local ecological factors, specifically, increased productivity and stability. We highlight how this system may serve as a useful tool to provide insight into what processes drive diversity gradients in general.

  12. Niche construction: evolutionary implications for parasites and hosts.

    PubMed

    Lymbery, Alan J

    2015-04-01

    Organisms can determine the environment they experience through the process of niche construction. This may have important evolutionary consequences by exposing them to new selection pressures, producing a faster response to selection, and building suites of coadapted traits. Traits of the parasite which influence the likelihood of encountering different host environments, or which change the host environment, can be regarded as niche construction traits, as can traits of the host which influence the likelihood of the host being infected by parasites. A niche construction perspective may provide new insights into the evolution of host/parasite interactions; this is illustrated with several examples from the viewpoint of both parasite and host traits.

  13. Parasite calcineurin regulates host cell recognition and attachment by apicomplexans

    PubMed Central

    Paul, Aditya S.; Saha, Sudeshna; Engelberg, Klemens; Jiang, Rays H.Y.; Coleman, Bradley I.; Kosber, Aziz L.; Chen, Chun-Ti; Ganter, Markus; Espy, Nicole; Gilberger, Tim W.; Gubbels, Marc-Jan; Duraisingh, Manoj T.

    2015-01-01

    SUMMARY Apicomplexans invade a variety of metazoan host cells through mechanisms involving host cell receptor engagement and secretion of parasite factors to facilitate cellular attachment. We find that the parasite homolog of calcineurin, a calcium-regulated phosphatase complex central to signal transduction in eukaryotes, also contributes to host cell invasion by the malaria parasite Plasmodium falciparum and related Toxoplasma gondii. Using reverse genetic and chemical-genetic approaches, we determine that calcineurin critically regulates and stabilizes attachment of extracellular P. falciparum to host erythrocytes before intracellular entry and has similar functions in host cell engagement by T. gondii. Calcineurin-mediated Plasmodium invasion is strongly associated with host receptors required for host cell recognition and calcineurin function distinguishes this form of receptor-mediated attachment from a second mode of host-parasite adhesion independent of host receptors. This specific role of calcineurin in coordinating physical interactions with host cells highlights an ancestral mechanism for parasitism used by apicomplexans. PMID:26118996

  14. Comparing mechanisms of host manipulation across host and parasite taxa.

    PubMed

    Lafferty, Kevin D; Shaw, Jenny C

    2013-01-01

    Parasites affect host behavior in several ways. They can alter activity, microhabitats or both. For trophically transmitted parasites (the focus of our study), decreased activity might impair the ability of hosts to respond to final-host predators, and increased activity and altered microhabitat choice might increase contact rates between hosts and final-host predators. In an analysis of trophically transmitted parasites, more parasite groups altered activity than altered microhabitat choice. Parasites that infected vertebrates were more likely to impair the host's reaction to predators, whereas parasites that infected invertebrates were more likely to increase the host's contact with predators. The site of infection might affect how parasites manipulate their hosts. For instance, parasites in the central nervous system seem particularly suited to manipulating host behavior. Manipulative parasites commonly occupy the body cavity, muscles and central nervous systems of their hosts. Acanthocephalans in the data set differed from other taxa in that they occurred exclusively in the body cavity of invertebrates. In addition, they were more likely to alter microhabitat choice than activity. Parasites in the body cavity (across parasite types) were more likely to be associated with increased host contact with predators. Parasites can manipulate the host through energetic drain, but most parasites use more sophisticated means. For instance, parasites target four physiological systems that shape behavior in both invertebrates and vertebrates: neural, endocrine, neuromodulatory and immunomodulatory. The interconnections between these systems make it difficult to isolate specific mechanisms of host behavioral manipulation.

  15. When parasites disagree: evidence for parasite-induced sabotage of host manipulation.

    PubMed

    Hafer, Nina; Milinski, Manfred

    2015-03-01

    Host manipulation is a common parasite strategy to alter host behavior in a manner to enhance parasite fitness usually by increasing the parasite's transmission to the next host. In nature, hosts often harbor multiple parasites with agreeing or conflicting interests over host manipulation. Natural selection might drive such parasites to cooperation, compromise, or sabotage. Sabotage would occur if one parasite suppresses the manipulation of another. Experimental studies on the effect of multi-parasite interactions on host manipulation are scarce, clear experimental evidence for sabotage is elusive. We tested the effect of multiple infections on host manipulation using laboratory-bred copepods experimentally infected with the trophically transmitted tapeworm Schistocephalus solidus. This parasite is known to manipulate its host depending on its own developmental stage. Coinfecting parasites with the same aim enhance each other's manipulation but only after reaching infectivity. If the coinfecting parasites disagree over host manipulation, the infective parasite wins this conflict: the noninfective one has no effect. The winning (i.e., infective) parasite suppresses the manipulation of its noninfective competitor. This presents conclusive experimental evidence for both cooperation in and sabotage of host manipulation and hence a proof of principal that one parasite can alter and even neutralize manipulation by another.

  16. When parasites disagree: Evidence for parasite-induced sabotage of host manipulation

    PubMed Central

    Hafer, Nina; Milinski, Manfred

    2015-01-01

    Host manipulation is a common parasite strategy to alter host behavior in a manner to enhance parasite fitness usually by increasing the parasite's transmission to the next host. In nature, hosts often harbor multiple parasites with agreeing or conflicting interests over host manipulation. Natural selection might drive such parasites to cooperation, compromise, or sabotage. Sabotage would occur if one parasite suppresses the manipulation of another. Experimental studies on the effect of multi-parasite interactions on host manipulation are scarce, clear experimental evidence for sabotage is elusive. We tested the effect of multiple infections on host manipulation using laboratory-bred copepods experimentally infected with the trophically transmitted tapeworm Schistocephalus solidus. This parasite is known to manipulate its host depending on its own developmental stage. Coinfecting parasites with the same aim enhance each other's manipulation but only after reaching infectivity. If the coinfecting parasites disagree over host manipulation, the infective parasite wins this conflict: the noninfective one has no effect. The winning (i.e., infective) parasite suppresses the manipulation of its noninfective competitor. This presents conclusive experimental evidence for both cooperation in and sabotage of host manipulation and hence a proof of principal that one parasite can alter and even neutralize manipulation by another. PMID:25643621

  17. Comparing mechanisms of host manipulation across host and parasite taxa

    USGS Publications Warehouse

    Lafferty, Kevin D.; Shaw, Jenny C.

    2013-01-01

    Parasites affect host behavior in several ways. They can alter activity, microhabitats or both. For trophically transmitted parasites (the focus of our study), decreased activity might impair the ability of hosts to respond to final-host predators, and increased activity and altered microhabitat choice might increase contact rates between hosts and final-host predators. In an analysis of trophically transmitted parasites, more parasite groups altered activity than altered microhabitat choice. Parasites that infected vertebrates were more likely to impair the host’s reaction to predators, whereas parasites that infected invertebrates were more likely to increase the host’s contact with predators. The site of infection might affect how parasites manipulate their hosts. For instance, parasites in the central nervous system seem particularly suited to manipulating host behavior. Manipulative parasites commonly occupy the body cavity, muscles and central nervous systems of their hosts. Acanthocephalans in the data set differed from other taxa in that they occurred exclusively in the body cavity of invertebrates. In addition, they were more likely to alter microhabitat choice than activity. Parasites in the body cavity (across parasite types) were more likely to be associated with increased host contact with predators. Parasites can manipulate the host through energetic drain, but most parasites use more sophisticated means. For instance, parasites target four physiological systems that shape behavior in both invertebrates and vertebrates: neural, endocrine, neuromodulatory and immunomodulatory. The interconnections between these systems make it difficult to isolate specific mechanisms of host behavioral manipulation.

  18. Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction

    PubMed Central

    Nichol, Sarah; Tracey, Alan; Holroyd, Nancy; Cotton, James A.; Stanley, Eleanor J.; Zarowiecki, Magdalena; Liu, Jimmy Z.; Huckvale, Thomas; Cooper, Philip J.; Grencis, Richard K.; Berriman, Matthew

    2014-01-01

    Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. Here we present the genome sequences of the human-infective Trichuris trichiura and the murine laboratory model T. muris. Based on whole transcriptome analyses we identify many genes that are expressed in a gender- or life stage-specific manner and characterise the transcriptional landscape of a morphological region with unique biological adaptations, namely bacillary band and stichosome, found only in whipworms and related parasites. Using RNAseq data from whipworm-infected mice we describe the regulated Th1-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identifies numerous potential new drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection. PMID:24929830

  19. Missing links: testing the completeness of host-parasite checklists.

    PubMed

    Poulin, Robert; Besson, Anne A; Morin, Mathieu B; Randhawa, Haseeb S

    2016-01-01

    Host-parasite checklists are essential resources in ecological parasitology, and are regularly used as sources of data in comparative studies of parasite species richness across host species, or of host specificity among parasite species. However, checklists are only useful datasets if they are relatively complete, that is, close to capturing all host-parasite associations occurring in a particular region. Here, we use three approaches to assess the completeness of 25 checklists of metazoan parasites in vertebrate hosts from various geographic regions. First, treating checklists as interaction networks between a set of parasite species and a set of host species, we identify networks with a greater connectance (proportion of realized host-parasite associations) than expected for their size. Second, assuming that the cumulative rise over time in the number of known host-parasite associations in a region tends toward an asymptote as their discovery progresses, we attempt to extrapolate the estimated total number of existing associations. Third, we test for a positive correlation between the number of published reports mentioning an association and the time since its first record, which is expected because observing and reporting host-parasite associations are frequency-dependent processes. Overall, no checklist fared well in all three tests, and only three of 25 passed two of the tests. These results suggest that most checklists, despite being useful syntheses of regional host-parasite associations, cannot be used as reliable sources of data for comparative analyses.

  20. Host social behavior and parasitic infection: A multifactorial approach

    USGS Publications Warehouse

    Ezenwa, V.O.

    2004-01-01

    I examined associations between several components of host social organization, including group size and gregariousness, group stability, territoriality and social class, and gastrointestinal parasite load in African bovids. At an intraspecific level, group size was positively correlated with parasite prevalence, but only when the parasite was relatively host specific and only among host species living in stable groups. Social class was also an important predictor of infection rates. Among gazelles, territorial males had higher parasite intensities than did either bachelor males or females and juveniles, suggesting that highly territorial individuals may be either more exposed or more susceptible to parasites. Associations among territoriality, grouping, and parasitism were also found across taxa. Territorial host genera were more likely to be infected with strongyle nematodes than were nonterritorial hosts, and gregarious hosts were more infected than were solitary hosts. Analyses also revealed that gregariousness and territoriality had an interactive effect on individual parasite richness, whereby hosts with both traits harbored significantly more parasite groups than did hosts with only one or neither trait. Overall, study results indicate that multiple features of host social behavior influence infection risk and suggest that synergism between traits also has important effects on host parasite load.

  1. Fundamental factors determining the nature of parasite aggregation in hosts.

    PubMed

    Gourbière, Sébastien; Morand, Serge; Waxman, David

    2015-01-01

    The distribution of parasites in hosts is typically aggregated: a few hosts harbour many parasites, while the remainder of hosts are virtually parasite free. The origin of this almost universal pattern is central to our understanding of host-parasite interactions; it affects many facets of their ecology and evolution. Despite this, the standard statistical framework used to characterize parasite aggregation does not describe the processes generating such a pattern. In this work, we have developed a mathematical framework for the distribution of parasites in hosts, starting from a simple statistical description in terms of two fundamental processes: the exposure of hosts to parasites and the infection success of parasites. This description allows the level of aggregation of parasites in hosts to be related to the random variation in these two processes and to true host heterogeneity. We show that random variation can generate an aggregated distribution and that the common view, that encounters and success are two equivalent filters, applies to the average parasite burden under neutral assumptions but it does not apply to the variance of the parasite burden, and it is not true when heterogeneity between hosts is incorporated in the model. We find that aggregation decreases linearly with the number of encounters, but it depends non-linearly on parasite success. We also find additional terms in the variance of the parasite burden which contribute to the actual level of aggregation in specific biological systems. We have derived the formal expressions of these contributions, and these provide new opportunities to analyse empirical data and tackle the complexity of the origin of aggregation in various host-parasite associations.

  2. Evolution of host specificity in monogeneans parasitizing African cichlid fish

    PubMed Central

    2014-01-01

    Background The patterns and processes linked to the host specificity of parasites represent one of the central themes in the study of host-parasite interactions. We investigated the evolution and determinants of host specificity in gill monogeneans of Cichlidogyrus and Scutogyrus species parasitizing African freshwater fish of Cichlidae. Methods We analyzed (1) the link between host specificity and parasite phylogeny, (2) potential morphometric correlates of host specificity (i.e. parasite body size and the morphometrics of the attachment apparatus), and (3) potential determinants of host specificity following the hypothesis of ecological specialization and the hypothesis of specialization on predictable resources (i.e. host body size and longevity were considered as measures of host predictability), and (4) the role of brooding behavior of cichlids in Cichlidogyrus and Scutogyrus diversification. Results No significant relationships were found between host specificity and phylogeny of Cichlidogyrus and Scutogyrus species. The mapping of host specificity onto the parasite phylogenetic tree revealed that an intermediate specialist parasitizing congeneric cichlid hosts represents the ancestral state for the Cichlidogyrus/Scutogyrus group. Only a weak relationship was found between the morphometry of the parasites’ attachment apparatus and host specificity. Our study did not support the specialization on predictable resources or ecological specialization hypotheses. Nevertheless, host specificity was significantly related to fish phylogeny and form of parental care. Conclusions Our results confirm that host specificity is not a derived condition for Cichlidogyrus/Scutogyrus parasites and may reflect other than historical constraints. Attachment apparatus morphometry reflects only partially (if at all) parasite adaptation to the host species, probably because of the morphological similarity of rapidly evolved cichlids (analyzed in our study). However, we showed that

  3. Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence

    PubMed Central

    Rigaud, Thierry; Perrot-Minnot, Marie-Jeanne; Brown, Mark J. F.

    2010-01-01

    Interactions involving several parasite species (multi-parasitized hosts) or several host species (multi-host parasites) are the rule in nature. Only a few studies have investigated these realistic, but complex, situations from an evolutionary perspective. Consequently, their impact on the evolution of parasite virulence and transmission remains poorly understood. The mechanisms by which multiple infections may influence virulence and transmission include the dynamics of intrahost competition, mediation by the host immune system and an increase in parasite genetic recombination. Theoretical investigations have yet to be conducted to determine which of these mechanisms are likely to be key factors in the evolution of virulence and transmission. In contrast, the relationship between multi-host parasites and parasite virulence and transmission has seen some theoretical investigation. The key factors in these models are the trade-off between virulence across different host species, variation in host species quality and patterns of transmission. The empirical studies on multi-host parasites suggest that interspecies transmission plays a central role in the evolution of virulence, but as yet no complete picture of the phenomena involved is available. Ultimately, determining how complex host–parasite interactions impact the evolution of host–parasite relationships will require the development of cross-disciplinary studies linking the ecology of quantitative networks with the evolution of virulence. PMID:20667874

  4. Potential Parasite Transmission in Multi-Host Networks Based on Parasite Sharing

    PubMed Central

    Pilosof, Shai; Morand, Serge; Krasnov, Boris R.; Nunn, Charles L.

    2015-01-01

    Epidemiological networks are commonly used to explore dynamics of parasite transmission among individuals in a population of a given host species. However, many parasites infect multiple host species, and thus multi-host networks may offer a better framework for investigating parasite dynamics. We investigated the factors that influence parasite sharing – and thus potential transmission pathways – among rodent hosts in Southeast Asia. We focused on differences between networks of a single host species and networks that involve multiple host species. In host-parasite networks, modularity (the extent to which the network is divided into subgroups of rodents that interact with similar parasites) was higher in the multi-species than in the single-species networks. This suggests that phylogeny affects patterns of parasite sharing, which was confirmed in analyses showing that it predicted affiliation of individuals to modules. We then constructed “potential transmission networks” based on the host-parasite networks, in which edges depict the similarity between a pair of individuals in the parasites they share. The centrality of individuals in these networks differed between multi- and single-species networks, with species identity and individual characteristics influencing their position in the networks. Simulations further revealed that parasite dynamics differed between multi- and single-species networks. We conclude that multi-host networks based on parasite sharing can provide new insights into the potential for transmission among hosts in an ecological community. In addition, the factors that determine the nature of parasite sharing (i.e. structure of the host-parasite network) may impact transmission patterns. PMID:25748947

  5. Thiacloprid-Nosema ceranae interactions in honey bees: host survivorship but not parasite reproduction is dependent on pesticide dose.

    PubMed

    Retschnig, Gina; Neumann, Peter; Williams, Geoffrey R

    2014-05-01

    Interactions between stressors contribute to the recently reported increase in losses of honey bee colonies. Here we demonstrated that a synergistic effect on mortality by the low toxic, commonly used neonicotinoid thiacloprid and the nearly ubiquitous gut parasite Nosemaceranae is dependent on the pesticide dose. Furthermore, thiacloprid had a negative influence on N.ceranae reproduction. Our results highlight that interactions among honey bee health stressors can be dynamic and should be studied across a broader range of combinations.

  6. Echinococcus multilocularis phosphoglucose isomerase (EmPGI): a glycolytic enzyme involved in metacestode growth and parasite-host cell interactions.

    PubMed

    Stadelmann, Britta; Spiliotis, Markus; Müller, Joachim; Scholl, Sabrina; Müller, Norbert; Gottstein, Bruno; Hemphill, Andrew

    2010-11-01

    In Echinococcus multilocularis metacestodes, the surface-associated and highly glycosylated laminated layer, and molecules associated with this structure, is believed to be involved in modulating the host-parasite interface. We report on the molecular and functional characterisation of E. multilocularis phosphoglucose isomerase (EmPGI), which is a component of this laminated layer. The EmPGI amino acid sequence is virtually identical to that of its homologue in Echinococcus granulosus, and shares 64% identity and 86% similarity with human PGI. Mammalian PGI is a multi-functional protein which, besides its glycolytic function, can also act as a cytokine, growth factor and inducer of angiogenesis, and plays a role in tumour growth, development and metastasis formation. Recombinant EmPGI (recEmPGI) is also functionally active as a glycolytic enzyme and was found to be present, besides the laminated layer, in vesicle fluid and in germinal layer cell extracts. EmPGI is released from metacestodes and induces a humoral immune response in experimentally infected mice, and vaccination of mice with recEmPGI renders these mice more resistant towards secondary challenge infection, indicating that EmPGI plays an important role in parasite development and/or in modulating the host-parasite relationship. We show that recEmPGI stimulates the growth of isolated E. multilocularis germinal layer cells in vitro and selectively stimulates the proliferation of bovine adrenal cortex endothelial cells but not of human fibroblasts and rat hepatocytes. Thus, besides its role in glycolysis, EmPGI could also act as a factor that stimulates parasite growth and potentially induces the formation of novel blood vessels around the developing metacestode in vivo.

  7. [How does the apicomplexan parasite Theileria control host cell identity?].

    PubMed

    Marsolier, Justine; Weitzman, Jonathan B

    2014-01-01

    Infectious agents, like bacteria or virus, are responsible for a large number of pathologies in mammals. Microbes have developed mechanisms for interacting with host cell pathways and hijacking cellular machinery to change the phenotypic state. In this review, we focus on an interesting apicomplexan parasite called Theileria. Infection by the tick-transmitted T. annulata parasite causes Tropical Theileriosis in North Africa and Asia, and the related T. parva parasite causes East Coast Fever in Sub-Saharan Africa. This parasite is the only eukaryote known to induce the transformation of its mammalian host cells. Indeed, T. annulata and T. parva infect bovine leukocytes leading to transforming phenotypes, which partially mirror human lymphoma pathologies. Theileria infection causes hyperproliferation, invasiveness and escape from apoptosis, presumably through the manipulation of host cellular pathways. Several host-signaling mechanisms have been implicated. Here we describe the mechanisms involved in parasite-induced transformation phenotypes.

  8. Mammalian apoptotic signalling pathways: multiple targets of protozoan parasites to activate or deactivate host cell death.

    PubMed

    Graumann, Kristin; Hippe, Diana; Gross, Uwe; Lüder, Carsten G K

    2009-11-01

    Programmed cell death is an essential mechanism of the host to combat infectious agents and to regulate immunity during infection. Consequently, activation and deactivation of the hosts' cell death pathways by protozoan parasites play critical roles in parasite control, pathogenesis, immune evasion and parasite dissemination within the host. Here, we discuss advances in the understanding of these fascinating host-parasite interactions with special emphasis on how protozoa can modulate the cell death apparatus of its host.

  9. Parasitism, host immune function, and sexual selection.

    PubMed

    Møller, A P; Christe, P; Lux, E

    1999-03-01

    Parasite-mediated sexual selection may arise as a consequence of 1) females avoiding mates with directly transmitted parasites, 2) females choosing less-parasitized males that provide parental care of superior quality, or 3) females choosing males with few parasites in order to obtain genes for parasite resistance in their offspring. Studies of specific host-parasite systems and comparative analyses have revealed both supportive and conflicting evidence for these hypotheses. A meta-analysis of the available evidence revealed a negative relationship between parasite load and the expression of male secondary sexual characters. Experimental studies yielded more strongly negative relationships than observations did, and the relationships were more strongly negative for ectoparasites than for endoparasites. There was no significant difference in the magnitude of the negative effect for species with and without male parental care, or between behavioral and morphological secondary sexual characters. There was a significant difference between studies based on host immune function and those based on parasite loads, with stronger effects for measures of immune function, suggesting that the many negative results from previous analyses of parasite-mediated sexual selection may be explained because relatively benign parasites were studied. The multivariate analyses demonstrating strong effect sizes of immune function in relation to the expression of secondary sexual characters, and for species with male parental care as compared to those without, suggest that parasite resistance may be a general determinant of parasite-mediated sexual selection. PMID:10081812

  10. Coevolution in host-parasite systems: behavioural strategies of slave-making ants and their hosts.

    PubMed

    Foitzik, S; DeHeer, C J; Hunjan, D N; Herbers, J M

    2001-06-01

    Recently, avian brood parasites and their hosts have emerged as model systems for the study of host-parasite coevolution. However, empirical studies of the highly analogous social parasites, which use the workers of another eusocial species to raise their own young, have never explicitly examined the dynamics of these systems from a coevolutionary perspective. Here, we demonstrate interpopulational variation in behavioural interactions between a socially parasitic slave-maker ant and its host that is consistent with the expectations of host-parasite coevolution. Parasite pressure, as inferred by the size, abundance and raiding frequency of Protomognathus americanus colonies, was highest in a New York population of the host Leptothorax longispinosus and lowest in a West Virginia population. As host-parasite coevolutionary theory would predict, we found that the slave-makers and the hosts from New York were more effective at raiding and defending against raiders, respectively, than were conspecifics from the West Virginia population. Some of these variations in efficacy were brought about by apparently simple shifts in behaviour. These results demonstrate that defence mechanisms against social parasites can evolve, and they give the first indications of the existence of a coevolutionary arms race between a social parasite and its host.

  11. Host diversity begets parasite diversity: Bird final hosts and trematodes in snail intermediate hosts

    USGS Publications Warehouse

    Hechinger, R.F.; Lafferty, K.D.

    2005-01-01

    An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management. ?? 2005 The Royal Society.

  12. Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    PubMed Central

    2013-01-01

    Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the

  13. Host population bottlenecks drive parasite extinction during antagonistic coevolution

    PubMed Central

    Hesse, Elze; Buckling, Angus

    2015-01-01

    Host–parasite interactions are often characterized by large fluctuations in host population size, and we investigated how such host bottlenecks affected coevolution between a bacterium and a virus. Previous theory suggests that host bottlenecks should provide parasites with an evolutionary advantage, but instead we found that phages were rapidly driven to extinction when coevolving with hosts exposed to large genetic bottlenecks. This was caused by the stochastic loss of sensitive bacteria, which are required for phage persistence and infectivity evolution. Our findings emphasize the importance of feedbacks between ecological and coevolutionary dynamics, and how this feedback can qualitatively alter coevolutionary dynamics. PMID:26661325

  14. Parasitism and phenotypic change in colonial hosts.

    PubMed

    Hartikainen, Hanna; Fontes, Inês; Okamura, Beth

    2013-09-01

    Changes in host phenotype are often attributed to manipulation that enables parasites to complete trophic transmission cycles. We characterized changes in host phenotype in a colonial host–endoparasite system that lacks trophic transmission (the freshwater bryozoan Fredericella sultana and myxozoan parasite Tetracapsuloides bryosalmonae). We show that parasitism exerts opposing phenotypic effects at the colony and module levels. Thus, overt infection (the development of infectious spores in the host body cavity) was linked to a reduction in colony size and growth rate, while colony modules exhibited a form of gigantism. Larger modules may support larger parasite sacs and increase metabolite availability to the parasite. Host metabolic rates were lower in overtly infected relative to uninfected hosts that were not investing in propagule production. This suggests a role for direct resource competition and active parasite manipulation (castration) in driving the expression of the infected phenotype. The malformed offspring (statoblasts) of infected colonies had greatly reduced hatching success. Coupled with the severe reduction in statoblast production this suggests that vertical transmission is rare in overtly infected modules. We show that although the parasite can occasionally infect statoblasts during overt infections, no infections were detected in the surviving mature offspring, suggesting that during overt infections, horizontal transmission incurs a trade-off with vertical transmission.

  15. Parasitism and phenotypic change in colonial hosts.

    PubMed

    Hartikainen, Hanna; Fontes, Inês; Okamura, Beth

    2013-09-01

    Changes in host phenotype are often attributed to manipulation that enables parasites to complete trophic transmission cycles. We characterized changes in host phenotype in a colonial host–endoparasite system that lacks trophic transmission (the freshwater bryozoan Fredericella sultana and myxozoan parasite Tetracapsuloides bryosalmonae). We show that parasitism exerts opposing phenotypic effects at the colony and module levels. Thus, overt infection (the development of infectious spores in the host body cavity) was linked to a reduction in colony size and growth rate, while colony modules exhibited a form of gigantism. Larger modules may support larger parasite sacs and increase metabolite availability to the parasite. Host metabolic rates were lower in overtly infected relative to uninfected hosts that were not investing in propagule production. This suggests a role for direct resource competition and active parasite manipulation (castration) in driving the expression of the infected phenotype. The malformed offspring (statoblasts) of infected colonies had greatly reduced hatching success. Coupled with the severe reduction in statoblast production this suggests that vertical transmission is rare in overtly infected modules. We show that although the parasite can occasionally infect statoblasts during overt infections, no infections were detected in the surviving mature offspring, suggesting that during overt infections, horizontal transmission incurs a trade-off with vertical transmission. PMID:23965820

  16. Parasitology: parasite survives predation on its host.

    PubMed

    Ponton, Fleur; Lebarbenchon, Camille; Lefèvre, Thierry; Biron, David G; Duneau, David; Hughes, David P; Thomas, Frédéric

    2006-04-01

    As prisoners in their living habitat, parasites should be vulnerable to destruction by the predators of their hosts. But we show here that the parasitic gordian worm Paragordius tricuspidatus is able to escape not only from its insect host after ingestion by a fish or frog but also from the digestive tract of the predator. This remarkable tactic enables the worm to continue its life cycle.

  17. Differential reproductive success favours strong host preference in a highly specialized brood parasite

    PubMed Central

    De Mársico, María C; Reboreda, Juan C

    2008-01-01

    Obligate avian brood parasites show dramatic variation in the degree to which they are host specialists or host generalists. The screaming cowbird Molothrus rufoaxillaris is one of the most specialized brood parasites, using a single host, the bay-winged cowbird (Agelaioides badius) over most of its range. Coevolutionary theory predicts increasing host specificity the longer the parasite interacts with a particular avian community, as hosts evolve defences that the parasite cannot counteract. According to this view, host specificity can be maintained if screaming cowbirds avoid parasitizing potentially suitable hosts that have developed effective defences against parasitic females or eggs. Specialization may also be favoured, even in the absence of host defences, if the parasite's reproductive success in alternative hosts is lower than that in the main host. We experimentally tested these hypotheses using as alternative hosts two suitable but unparasitized species: house wrens (Troglodytes aedon) and chalk-browed mockingbirds (Mimus saturninus). We assessed host defences against parasitic females and eggs, and reproductive success of the parasite in current and alternative hosts. Alternative hosts did not discriminate against screaming cowbird females or eggs. Egg survival and hatching success were similarly high in current and alternative hosts, but the survival of parasitic chicks was significantly lower in alternative hosts. Our results indicate that screaming cowbirds have the potential to colonize novel hosts, but higher reproductive success in the current host may favour host fidelity. PMID:18647716

  18. Differential reproductive success favours strong host preference in a highly specialized brood parasite.

    PubMed

    De Mársico, María C; Reboreda, Juan C

    2008-11-01

    Obligate avian brood parasites show dramatic variation in the degree to which they are host specialists or host generalists. The screaming cowbird Molothrus rufoaxillaris is one of the most specialized brood parasites, using a single host, the bay-winged cowbird (Agelaioides badius) over most of its range. Coevolutionary theory predicts increasing host specificity the longer the parasite interacts with a particular avian community, as hosts evolve defences that the parasite cannot counteract. According to this view, host specificity can be maintained if screaming cowbirds avoid parasitizing potentially suitable hosts that have developed effective defences against parasitic females or eggs. Specialization may also be favoured, even in the absence of host defences, if the parasite's reproductive success in alternative hosts is lower than that in the main host. We experimentally tested these hypotheses using as alternative hosts two suitable but unparasitized species: house wrens (Troglodytes aedon) and chalk-browed mockingbirds (Mimus saturninus). We assessed host defences against parasitic females and eggs, and reproductive success of the parasite in current and alternative hosts. Alternative hosts did not discriminate against screaming cowbird females or eggs. Egg survival and hatching success were similarly high in current and alternative hosts, but the survival of parasitic chicks was significantly lower in alternative hosts. Our results indicate that screaming cowbirds have the potential to colonize novel hosts, but higher reproductive success in the current host may favour host fidelity.

  19. The evolution of acceptance and tolerance in hosts of avian brood parasites.

    PubMed

    Medina, Iliana; Langmore, Naomi E

    2016-08-01

    Avian brood parasites lay their eggs in the nests of their hosts, which rear the parasite's progeny. The costs of parasitism have selected for the evolution of defence strategies in many host species. Most research has focused on resistance strategies, where hosts minimize the number of successful parasitism events using defences such as mobbing of adult brood parasites or rejection of parasite eggs. However, many hosts do not exhibit resistance. Here we explore why some hosts accept parasite eggs in their nests and how this is related to the virulence of the parasite. We also explore the extent to which acceptance of parasites can be explained by the evolution of tolerance; a strategy in which the host accepts the parasite but adjusts its life history or other traits to minimize the costs of parasitism. We review examples of tolerance in hosts of brood parasites (such as modifications to clutch size and multi-broodedness), and utilize the literature on host-pathogen interactions and plant herbivory to analyse the prevalence of each type of defence (tolerance or resistance) and their evolution. We conclude that (i) the interactions between brood parasites and their hosts provide a highly tractable system for studying the evolution of tolerance, (ii) studies of host defences against brood parasites should investigate both resistance and tolerance, and (iii) tolerance and resistance can lead to contrasting evolutionary scenarios. PMID:25765722

  20. Evans Blue Staining Reveals Vascular Leakage Associated with Focal Areas of Host-Parasite Interaction in Brains of Pigs Infected with Taenia solium

    PubMed Central

    Paredes, Adriana; Cangalaya, Carla; Rivera, Andrea; Gonzalez, Armando E.; Mahanty, Siddhartha; Garcia, Hector H.; Nash, Theodore E.

    2014-01-01

    Cysticidal drug treatment of viable Taenia solium brain parenchymal cysts leads to an acute pericystic host inflammatory response and blood brain barrier breakdown (BBB), commonly resulting in seizures. Naturally infected pigs, untreated or treated one time with praziquantel were sacrificed at 48 hr and 120 hr following the injection of Evans blue (EB) to assess the effect of treatment on larval parasites and surrounding tissue. Examination of harvested non encapsulated muscle cysts unexpectedly revealed one or more small, focal round region(s) of Evans blue dye infiltration (REBI) on the surface of otherwise non dye-stained muscle cysts. Histopathological analysis of REBI revealed focal areas of eosinophil-rich inflammatory infiltrates that migrated from the capsule into the tegument and internal structures of the parasite. In addition some encapsulated brain cysts, in which the presence of REBI could not be directly assessed, showed histopathology identical to that of the REBI. Muscle cysts with REBI were more frequent in pigs that had received praziquantel (6.6% of 3736 cysts; n = 6 pigs) than in those that were untreated (0.2% of 3172 cysts; n = 2 pigs). Similar results were found in the brain, where 20.7% of 29 cysts showed histopathology identical to muscle REBI cysts in praziquantel-treated pigs compared to the 4.3% of 47 cysts in untreated pigs. Closer examination of REBI infiltrates showed that EB was taken up only by eosinophils, a major component of the cellular infiltrates, which likely explains persistence of EB in the REBI. REBI likely represent early damaging host responses to T. solium cysts and highlight the focal nature of this initial host response and the importance of eosinophils at sites of host-parasite interaction. These findings suggest new avenues for immunomodulation to reduce inflammatory side effects of anthelmintic therapy. PMID:24915533

  1. Parasites, immunology of hosts, and host sexual selection.

    PubMed

    Møller, A P; Saino, N

    1994-12-01

    Parasite-mediated sexual selection is reviewed with special emphasis on the bird literature. Choosy females may benefit from choosing parasite-free mates if such males provide better parental care, do not transmit contagious parasites, or provide resistance genes to offspring. There is evidence in support of each of these mechanisms. The immunocompetence handicap hypothesis posits that secondary sexual characters reliably reveal the ability of males to resist parasites due to the immunosuppressive effects of testosterone and other biochemicals. Several aspects of these negative feedback mechanisms are supported by laboratory studies, but evidence from free-living animals is almost completely absent. Corticosterone rather than testosterone may potentially mediate the immunocompetence handicap mechanism. A simple version of the immunocompetence handicap is developed suggesting that body condition of male hosts is a sufficient mediator of the handicap mechanism of reliable sexual signaling. Sexual selection appears to be more intense in sexually dichromatic bird species, and comparative studies using pairwise comparisons of closely related taxa reveal that sexually dichromatic bird species have larger spleens, larger bursa of Fabricius, and higher concentrations of leukocytes than monochromatic species. Parasite-mediated sexual selection is proposed to affect parasite biology by increasing (1) the variance-to-mean ratio in parasite abundance, (2) variance in the intensity of natural selection affecting hosts, and (3) speciation rates among parasites exploiting hosts subject to intense sexual selection as compared to those subject to less intense selection. PMID:7799157

  2. Host genetics and parasitic infections.

    PubMed

    Mangano, V D; Modiano, D

    2014-12-01

    Parasites still impose a high death and disability burden on human populations, and are therefore likely to act as selective factors for genetic adaptations. Genetic epidemiological investigation of parasitic diseases is aimed at disentangling the mechanisms underlying immunity and pathogenesis by looking for associations or linkages between loci and susceptibility phenotypes. Until recently, most studies used a candidate gene approach and were relatively underpowered, with few attempts at replicating findings in different populations. However, in the last 5 years, genome-wide and/or multicentre studies have been conducted for severe malaria, visceral leishmaniasis, and cardiac Chagas disease, providing some novel important insights. Furthermore, studies of helminth infections have repeatedly shown the involvement of common loci in regulating susceptibility to distinct diseases such as schistosomiasis, ascariasis, trichuriasis, and onchocherciasis. As more studies are conducted, evidence is increasing that at least some of the identified susceptibility loci are shared not only among parasitic diseases but also with immunological disorders such as allergy or autoimmune disease, suggesting that parasites may have played a role in driving the evolution of the immune system. PMID:25273270

  3. Host genetics and parasitic infections.

    PubMed

    Mangano, V D; Modiano, D

    2014-12-01

    Parasites still impose a high death and disability burden on human populations, and are therefore likely to act as selective factors for genetic adaptations. Genetic epidemiological investigation of parasitic diseases is aimed at disentangling the mechanisms underlying immunity and pathogenesis by looking for associations or linkages between loci and susceptibility phenotypes. Until recently, most studies used a candidate gene approach and were relatively underpowered, with few attempts at replicating findings in different populations. However, in the last 5 years, genome-wide and/or multicentre studies have been conducted for severe malaria, visceral leishmaniasis, and cardiac Chagas disease, providing some novel important insights. Furthermore, studies of helminth infections have repeatedly shown the involvement of common loci in regulating susceptibility to distinct diseases such as schistosomiasis, ascariasis, trichuriasis, and onchocherciasis. As more studies are conducted, evidence is increasing that at least some of the identified susceptibility loci are shared not only among parasitic diseases but also with immunological disorders such as allergy or autoimmune disease, suggesting that parasites may have played a role in driving the evolution of the immune system.

  4. [The parasite capacity of the host population].

    PubMed

    Kozminskiĭ, E V

    2002-01-01

    The estimation of parasitic pressure on the host populations is frequently required in parasitological investigations. The empirical values of prevalence of infection are used for this, however the latter one as an estimation of parasitic pressure on the host population is insufficient. For example, the same prevalence of infection can be insignificant for the population with high reproductive potential and excessive for the population with the low reproductive potential. Therefore the development of methods of an estimation of the parasitic pressure on the population, which take into account the features the host population, is necessary. Appropriate parameters are to be independent on view of the researcher, have a clear biological sense and be based on easily available characteristics. The methods of estimation of parasitic pressure on the host at the organism level are based on various individual viability parameters: longevity, resistance to difficult environment etc. The natural development of this approach for population level is the analysis of viability parameters of groups, namely, the changing of extinction probability of host population under the influence of parasites. Obviously, some critical values of prevalence of infection should exist; above theme the host population dies out. Therefore the heaviest prevalence of infection, at which the probability of host population size decreases during the some period is less than probability of that increases or preserves, can serve as an indicator of permissible parasitic pressure on the host population. For its designation the term "parasite capacity of the host population" is proposed. The real parasitic pressure on the host population should be estimated on the comparison with its parasite capacity. Parasite capacity of the host population is the heaviest possible prevalence of infection, at which, with the generation number T approaching infinity, there exists at least one initial population size ni(0

  5. In vitro modeling of host-parasite interactions: the 'subgingival' biofilm challenge of primary human epithelial cells

    PubMed Central

    2009-01-01

    Background Microbial biofilms are known to cause an increasing number of chronic inflammatory and infectious conditions. A classical example is chronic periodontal disease, a condition initiated by the subgingival dental plaque biofilm on gingival epithelial tissues. We describe here a new model that permits the examination of interactions between the bacterial biofilm and host cells in general. We use primary human gingival epithelial cells (HGEC) and an in vitro grown biofilm, comprising nine frequently studied and representative subgingival plaque bacteria. Results We describe the growth of a mature 'subgingival' in vitro biofilm, its composition during development, its ability to adapt to aerobic conditions and how we expose in vitro a HGEC monolayer to this biofilm. Challenging the host derived HGEC with the biofilm invoked apoptosis in the epithelial cells, triggered release of pro-inflammatory cytokines and in parallel induced rapid degradation of the cytokines by biofilm-generated enzymes. Conclusion We developed an experimental in vitro model to study processes taking place in the gingival crevice during the initiation of inflammation. The new model takes into account that the microbial challenge derives from a biofilm community and not from planktonically cultured bacterial strains. It will facilitate easily the introduction of additional host cells such as neutrophils for future biofilm:host cell challenge studies. Our methodology may generate particular interest, as it should be widely applicable to other biofilm-related chronic inflammatory diseases. PMID:20043840

  6. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction.

    PubMed

    Jackson, Andrew P; Otto, Thomas D; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B; Moussa, Ehab; Nair, Mridul; Reid, Adam J; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A; Weir, William; Wastling, Jonathan M; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R; Pain, Arnab

    2014-06-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct.

  7. Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation

    PubMed Central

    Picard, Marion A. L.; Boissier, Jérôme; Roquis, David; Grunau, Christoph; Allienne, Jean-François; Duval, David; Toulza, Eve; Arancibia, Nathalie; Caffrey, Conor R.; Long, Thavy; Nidelet, Sabine; Rohmer, Marine; Cosseau, Céline

    2016-01-01

    Background Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage- and sex-comparative manner. Methodology/ Principal Findings We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae) and after (in adults) the phenotypic sexual dimorphism appearance. In this paper we present (i) candidate determinants of the sexual differentiation, (ii) sex-biased players of the interaction with the vertebrate host, and (iii) different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes. Conclusions/ Significance Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a

  8. Complex Daphnia interactions with parasites and competitors.

    PubMed

    Cáceres, C E; Davis, G; Duple, S; Hall, S R; Koss, A; Lee, P; Rapti, Z

    2014-12-01

    Species interactions can strongly influence the size and dynamics of epidemics in populations of focal hosts. The "dilution effect" provides a particularly interesting type of interaction from a biological standpoint. Diluters - other host species which resist infection but remove environmentally-distributed propagules of parasites (spores) - should reduce disease prevalence in focal hosts. However, diluters and focal hosts may compete for shared resources. This combination of positive (dilution) and negative (competition) effects could greatly complicate, even undermine, the benefits of dilution and diluter species from the perspective of the focal host. Motivated by an example from the plankton (i.e., zooplankton hosts, a fungal parasite, and algal resources), we study a model of dilution and competition. Our model reveals a suite of five results: • A diluter that is a superior competitor wipes out the host, regardless of parasitism. Although expected, this outcome is an ever-present danger in strategies that might use diluters to control disease. • If the diluter is an inferior competitor, it can reduce disease prevalence, despite the competition, as parameterized in our model. However, competition may also reduce density of susceptible hosts to levels below that seen in focal host-parasite systems alone. • As they decrease disease prevalence, diluters destabilize dynamics of the focal host and their resources. Thus, diluters undermine the stabilizing effects of disease. • The four species combination can generate very complex dynamics, including period-doubling bifurcations and torus (Neimark-Sacker) bifurcations. • At lower resource carrying capacity, the diluter’s dilution of spores is 'helpful' to the focal host, i.e., dilution can elevate host density by reducing disease. But, as the resource carrying capacity increases further, the equilibrium density of the diluter increases while the density of the focal host decreases, despite competition

  9. Host specificity of parasite manipulation

    PubMed Central

    2012-01-01

    Recently we presented how Camponotus ants in Thailand infected with the fungus Ophiocordyceps unilateralis are behaviorally manipulated into dying where the conditions are optimal for fungal development. Death incurred in a very narrow zone of space and here we compare this highly specific manipulation with a related system in Brazil. We show that the behavioral manipulation is less fine-tuned and discuss the potential explanations for this by examining differences in ant host and environmental characteristics. PMID:22808322

  10. Host dispersal as the driver of parasite genetic structure: a paradigm lost?

    PubMed

    Mazé-Guilmo, Elise; Blanchet, Simon; McCoy, Karen D; Loot, Géraldine

    2016-03-01

    Understanding traits influencing the distribution of genetic diversity has major ecological and evolutionary implications for host-parasite interactions. The genetic structure of parasites is expected to conform to that of their hosts, because host dispersal is generally assumed to drive parasite dispersal. Here, we used a meta-analysis to test this paradigm and determine whether traits related to host dispersal correctly predict the spatial co-distribution of host and parasite genetic variation. We compiled data from empirical work on local adaptation and host-parasite population genetic structure from a wide range of taxonomic groups. We found that genetic differentiation was significantly lower in parasites than in hosts, suggesting that dispersal may often be higher for parasites. A significant correlation in the pairwise genetic differentiation of hosts and parasites was evident, but surprisingly weak. These results were largely explained by parasite reproductive mode, the proportion of free-living stages in the parasite life cycle and the geographical extent of the study; variables related to host dispersal were poor predictors of genetic patterns. Our results do not dispel the paradigm that parasite population genetic structure depends on host dispersal. Rather, we highlight that alternative factors are also important in driving the co-distribution of host and parasite genetic variation.

  11. Host and parasite diversity jointly control disease risk in complex communities.

    PubMed

    Johnson, Pieter T J; Preston, Daniel L; Hoverman, Jason T; LaFonte, Bryan E

    2013-10-15

    Host-parasite interactions are embedded within complex communities composed of multiple host species and a cryptic assemblage of other parasites. To date, however, surprisingly few studies have explored the joint effects of host and parasite richness on disease risk, despite growing interest in the diversity-disease relationship. Here, we combined field surveys and mechanistic experiments to test how transmission of the virulent trematode Ribeiroia ondatrae was affected by the diversity of both amphibian hosts and coinfecting parasites. Within natural wetlands, host and parasite species richness correlated positively, consistent with theoretical predictions. Among sites that supported Ribeiroia, however, host and parasite richness interacted to negatively affect Ribeiroia transmission between its snail and amphibian hosts, particularly in species-poor assemblages. In laboratory and outdoor experiments designed to decouple the relative contributions of host and parasite diversity, increases in host richness decreased Ribeiroia infection by 11-65%. Host richness also tended to decrease total infections by other parasite species (four of six instances), such that more diverse host assemblages exhibited ∼40% fewer infections overall. Importantly, parasite richness further reduced both per capita and total Ribeiroia infection by 15-20%, possibly owing to intrahost competition among coinfecting species. These findings provide evidence that parasitic and free-living diversity jointly regulate disease risk, help to resolve apparent contradictions in the diversity-disease relationship, and emphasize the challenges of integrating research on coinfection and host heterogeneity to develop a community ecology-based approach to infectious diseases.

  12. Host behaviour-parasite feedback: an essential link between animal behaviour and disease ecology.

    PubMed

    Ezenwa, Vanessa O; Archie, Elizabeth A; Craft, Meggan E; Hawley, Dana M; Martin, Lynn B; Moore, Janice; White, Lauren

    2016-04-13

    Animal behaviour and the ecology and evolution of parasites are inextricably linked. For this reason, animal behaviourists and disease ecologists have been interested in the intersection of their respective fields for decades. Despite this interest, most research at the behaviour-disease interface focuses either on how host behaviour affects parasites or how parasites affect behaviour, with little overlap between the two. Yet, the majority of interactions between hosts and parasites are probably reciprocal, such that host behaviour feeds back on parasites and vice versa. Explicitly considering these feedbacks is essential for understanding the complex connections between animal behaviour and parasite ecology and evolution. To illustrate this point, we discuss how host behaviour-parasite feedbacks might operate and explore the consequences of feedback for studies of animal behaviour and parasites. For example, ignoring the feedback of host social structure on parasite dynamics can limit the accuracy of predictions about parasite spread. Likewise, considering feedback in studies of parasites and animal personalities may provide unique insight about the maintenance of variation in personality types. Finally, applying the feedback concept to links between host behaviour and beneficial, rather than pathogenic, microbes may shed new light on transitions between mutualism and parasitism. More generally, accounting for host behaviour-parasite feedbacks can help identify critical gaps in our understanding of how key host behaviours and parasite traits evolve and are maintained.

  13. Host behaviour–parasite feedback: an essential link between animal behaviour and disease ecology

    PubMed Central

    Archie, Elizabeth A.; Craft, Meggan E.; Hawley, Dana M.; Martin, Lynn B.; Moore, Janice; White, Lauren

    2016-01-01

    Animal behaviour and the ecology and evolution of parasites are inextricably linked. For this reason, animal behaviourists and disease ecologists have been interested in the intersection of their respective fields for decades. Despite this interest, most research at the behaviour–disease interface focuses either on how host behaviour affects parasites or how parasites affect behaviour, with little overlap between the two. Yet, the majority of interactions between hosts and parasites are probably reciprocal, such that host behaviour feeds back on parasites and vice versa. Explicitly considering these feedbacks is essential for understanding the complex connections between animal behaviour and parasite ecology and evolution. To illustrate this point, we discuss how host behaviour–parasite feedbacks might operate and explore the consequences of feedback for studies of animal behaviour and parasites. For example, ignoring the feedback of host social structure on parasite dynamics can limit the accuracy of predictions about parasite spread. Likewise, considering feedback in studies of parasites and animal personalities may provide unique insight about the maintenance of variation in personality types. Finally, applying the feedback concept to links between host behaviour and beneficial, rather than pathogenic, microbes may shed new light on transitions between mutualism and parasitism. More generally, accounting for host behaviour–parasite feedbacks can help identify critical gaps in our understanding of how key host behaviours and parasite traits evolve and are maintained. PMID:27053751

  14. Social learning of a brood parasite by its host.

    PubMed

    Feeney, William E; Langmore, Naomi E

    2013-08-23

    Arms races between brood parasites and their hosts provide model systems for studying the evolutionary repercussions of species interactions. However, how naive hosts identify brood parasites as enemies remains poorly understood, despite its ecological and evolutionary significance. Here, we investigate whether young, cuckoo-naive superb fairy-wrens, Malurus cyaneus, can learn to recognize cuckoos as a threat through social transmission of information. Naive individuals were initially unresponsive to a cuckoo specimen, but after observing conspecifics mob a cuckoo, they made more whining and mobbing alarm calls, and spent more time physically mobbing the cuckoo. This is the first direct evidence that naive hosts can learn to identify brood parasites as enemies via social learning. PMID:23760171

  15. Social learning of a brood parasite by its host

    PubMed Central

    Feeney, William E.; Langmore, Naomi E.

    2013-01-01

    Arms races between brood parasites and their hosts provide model systems for studying the evolutionary repercussions of species interactions. However, how naive hosts identify brood parasites as enemies remains poorly understood, despite its ecological and evolutionary significance. Here, we investigate whether young, cuckoo-naive superb fairy-wrens, Malurus cyaneus, can learn to recognize cuckoos as a threat through social transmission of information. Naive individuals were initially unresponsive to a cuckoo specimen, but after observing conspecifics mob a cuckoo, they made more whining and mobbing alarm calls, and spent more time physically mobbing the cuckoo. This is the first direct evidence that naive hosts can learn to identify brood parasites as enemies via social learning. PMID:23760171

  16. Host life history and host-parasite syntopy predict behavioural resistance and tolerance of parasites.

    PubMed

    Sears, Brittany F; Snyder, Paul W; Rohr, Jason R

    2015-05-01

    There is growing interest in the role that life-history traits of hosts, such as their 'pace-of-life', play in the evolution of resistance and tolerance to parasites. Theory suggests that, relative to host species that have high syntopy (local spatial and temporal overlap) with parasites, host species with low syntopy should have lower selection pressures for more constitutive (always present) and costly defences, such as tolerance, and greater reliance on more inducible and cheaper defences, such as behaviour. Consequently, we postulated that the degree of host-parasite syntopy, which is negatively correlated with host pace-of-life (an axis reflecting the developmental rate of tadpoles and the inverse of their size at metamorphosis) in our tadpole-parasitic cercarial (trematode) system, would be a negative and positive predictor of behavioural resistance and tolerance, respectively. To test these hypotheses, we exposed seven tadpole species to a range of parasite (cercarial) doses crossed with anaesthesia treatments that controlled for anti-parasite behaviour. We quantified host behaviour, successful and unsuccessful infections, and each species' reaction norm for behavioural resistance and tolerance, defined as the slope between cercarial exposure (or attempted infections) and anti-cercarial behaviours and mass change, respectively. Hence, tolerance is capturing any cost of parasite exposure. As hypothesized, tadpole pace-of-life was a significant positive predictor of behavioural resistance and negative predictor of tolerance, a result that is consistent with a trade-off between behavioural resistance and tolerance across species that warrants further investigation. Moreover, these results were robust to considerations of phylogeny, all possible re-orderings of the three fastest or slowest paced species, and various measurements of tolerance. These results suggest that host pace-of-life and host-parasite syntopy are powerful drivers of both the strength and type

  17. Host life history and host-parasite syntopy predict behavioural resistance and tolerance of parasites.

    PubMed

    Sears, Brittany F; Snyder, Paul W; Rohr, Jason R

    2015-05-01

    There is growing interest in the role that life-history traits of hosts, such as their 'pace-of-life', play in the evolution of resistance and tolerance to parasites. Theory suggests that, relative to host species that have high syntopy (local spatial and temporal overlap) with parasites, host species with low syntopy should have lower selection pressures for more constitutive (always present) and costly defences, such as tolerance, and greater reliance on more inducible and cheaper defences, such as behaviour. Consequently, we postulated that the degree of host-parasite syntopy, which is negatively correlated with host pace-of-life (an axis reflecting the developmental rate of tadpoles and the inverse of their size at metamorphosis) in our tadpole-parasitic cercarial (trematode) system, would be a negative and positive predictor of behavioural resistance and tolerance, respectively. To test these hypotheses, we exposed seven tadpole species to a range of parasite (cercarial) doses crossed with anaesthesia treatments that controlled for anti-parasite behaviour. We quantified host behaviour, successful and unsuccessful infections, and each species' reaction norm for behavioural resistance and tolerance, defined as the slope between cercarial exposure (or attempted infections) and anti-cercarial behaviours and mass change, respectively. Hence, tolerance is capturing any cost of parasite exposure. As hypothesized, tadpole pace-of-life was a significant positive predictor of behavioural resistance and negative predictor of tolerance, a result that is consistent with a trade-off between behavioural resistance and tolerance across species that warrants further investigation. Moreover, these results were robust to considerations of phylogeny, all possible re-orderings of the three fastest or slowest paced species, and various measurements of tolerance. These results suggest that host pace-of-life and host-parasite syntopy are powerful drivers of both the strength and type

  18. Pollination niche overlap between a parasitic plant and its host.

    PubMed

    Ollerton, Jeff; Stott, Adrian; Allnutt, Emma; Shove, Sam; Taylor, Chloe; Lamborn, Ellen

    2007-03-01

    Niche theory predicts that species which share resources should evolve strategies to minimise competition for those resources, or the less competitive species would be extirpated. Some plant species are constrained to co-occur, for example parasitic plants and their hosts, and may overlap in their pollination niche if they flower at the same time and attract the same pollinators. Using field observations and experiments between 1996 and 2006, we tested a series of hypotheses regarding pollination niche overlap between a specialist parasitic plant Orobanche elatior (Orobanchaceae) and its host Centaurea scabiosa (Asteraceae). These species flower more or less at the same time, with some year-to-year variation. The host is pollinated by a diverse range of insects, which vary in their effectiveness, whilst the parasite is pollinated by a single species of bumblebee, Bombus pascuorum, which is also an effective pollinator of the host plant. The two species therefore have partially overlapping pollination niches. These niches are not finely subdivided by differential pollen placement, or by diurnal segregation of the niches. We therefore found no evidence of character displacement within the pollination niches of these species, possibly because pollinators are not a limiting resource for these plants. Direct observation of pollinator movements, coupled with experimental manipulations of host plant inflorescence density, showed that Bombus pascuorum only rarely moves between inflorescences of the host and the parasite and therefore the presence of one plant is unlikely to be facilitating pollination in the other. This is the first detailed examination of pollination niche overlap in a plant parasite system and we suggest avenues for future research in relation to pollination and other shared interactions between parasitic plants and their hosts.

  19. Host-Parasite interactions in Entamoeba histolytica and Entamoeba dispar: what have we learned from their genomes?

    PubMed

    Wilson, I W; Weedall, G D; Hall, N

    2012-01-01

    Invasive amoebiasis caused by Entamoeba histolytica is a major global health problem. Virulence is a rare outcome of infection, occurring in fewer than 1 in 10 infections. Not all strains of the parasite are equally virulent, and understanding the mechanisms and causes of virulence is an important goal of Entamoeba research. The sequencing of the genome of E. histolytica and the related avirulent species Entamoeba dispar has allowed whole-genome-scale analyses of genetic divergence and differential gene expression to be undertaken. These studies have helped elucidate mechanisms of virulence and identified genes differentially expressed in virulent and avirulent parasites. Here, we review the current status of the E. histolytica and E. dispar genomes and the findings of a number of genome-scale studies comparing parasites of different virulence.

  20. Expanding the antimalarial toolkit: Targeting host–parasite interactions

    PubMed Central

    Duffy, Patrick E.

    2016-01-01

    Recent successes in malaria control are threatened by drug-resistant Plasmodium parasites and insecticide-resistant Anopheles mosquitoes, and first generation vaccines offer only partial protection. New research approaches have highlighted host as well as parasite molecules or pathways that could be targeted for interventions. In this study, we discuss host–parasite interactions at the different stages of the Plasmodium life cycle within the mammalian host and the potential for therapeutics that prevent parasite migration, invasion, intracellular growth, or egress from host cells, as well as parasite-induced pathology. PMID:26834158

  1. Immune response to sympatric and allopatric parasites in a snail-trematode interaction

    PubMed Central

    Osnas, Erik E; Lively, Curtis M

    2005-01-01

    Background The outcome of parasite exposure depends on the (1) genetic specificity of the interaction, (2) induction of host defenses, and (3) parasite counter defenses. We studied both the genetic specificity for infection and the specificity for the host-defense response in a snail-trematode interaction (Potamopyrgus antipodarum-Microphallus sp.) by conducting a reciprocal cross-infection experiment between two populations of host and parasite. Results We found that infection was greater in sympatric host-parasite combinations. We also found that the host-defense response (hemocyte concentration) was induced by parasite exposure, but the response did not increase with increased parasite dose nor did it depend on parasite source, host source, or host-parasite combination. Conclusion The results are consistent with a genetically specific host-parasite interaction, but inconsistent with a general arms-race type interaction where allocation to defense is the main determinant of host resistance. PMID:15927050

  2. Random parasite encounters coupled with condition-linked immunity of hosts generate parasite aggregation.

    PubMed

    Morrill, André; Forbes, Mark R

    2012-06-01

    Parasite aggregation is viewed as a natural law in parasite-host ecology but is a paradox insofar as parasites should follow the Poisson distribution if hosts are encountered randomly. Much research has focused on whether parasite aggregation in or on hosts is explained by aggregation of infective parasite stages in the environment, or by heterogeneity within host samples in terms of host responses to infection (e.g., through representation of different age classes of hosts). In this paper, we argue that the typically aggregated distributions of parasites may be explained simply. We propose that aggregated distributions can be derived from parasites encountering hosts randomly, but subsequently by parasites being 'lost' from hosts based on condition-linked escape or immunity of hosts. Host condition should be a normally distributed trait even among otherwise homogeneous sets of hosts. Our model shows that mean host condition and variation in host condition have different effects on the different metrics of parasite aggregation. Our model further predicts that as host condition increases, parasites become more aggregated but numbers of attending parasites are reduced overall and this is important for parasite population dynamics. The effects of deviation from random encounter are discussed with respect to the relationship between host condition and final parasite numbers.

  3. SPARC (secreted protein acidic and rich in cysteine) of the intestinal nematode Strongyloides ratti is involved in mucosa-associated parasite-host interaction.

    PubMed

    Anandarajah, Emmanuela M; Ditgen, Dana; Hansmann, Jan; Erttmann, Klaus D; Liebau, Eva; Brattig, Norbert W

    2016-06-01

    The secreted protein acidic and rich in cysteine (SPARC), found in the excretory/secretory products of Strongyloides ratti, is most strongly expressed in parasitic females. Since SPARC proteins are involved in the modulation of cell-matrix interactions, a role of the secreted S. ratti SPARC (Sr-SPARC) in the manifestation of the parasite in the host's intestine is postulated. The full-length cDNA of Sr-SPARC was identified and the protein was recombinantly expressed. The purified protein was biologically active, able to bind calcium, and to attach to mucosa-associated human cells. Addition of Sr-SPARC to an in vitro mucosal three-dimensional-cell culture model led to a time-dependent release of the cytokines TNF-α, IL-22, IL-10 and TSLP. Of importance, exposure with Sr-SPARC fostered wound closure in an intestinal epithelial cell model. Here, we demonstrate for the first time that SPARC released from the nematode is a multifunctional protein affecting the mucosal immune system. PMID:27268729

  4. Host range, host ecology, and distribution of more than 11800 fish parasite species

    USGS Publications Warehouse

    Strona, Giovanni; Palomares, Maria Lourdes D.; Bailly, Nicholas; Galli, Paolo; Lafferty, Kevin D.

    2013-01-01

    Our data set includes 38 008 fish parasite records (for Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda) compiled from the scientific literature, Internet databases, and museum collections paired to the corresponding host ecological, biogeographical, and phylogenetic traits (maximum length, growth rate, life span, age at maturity, trophic level, habitat preference, geographical range size, taxonomy). The data focus on host features, because specific parasite traits are not consistently available across records. For this reason, the data set is intended as a flexible resource able to extend the principles of ecological niche modeling to the host–parasite system, providing researchers with the data to model parasite niches based on their distribution in host species and the associated host features. In this sense, the database offers a framework for testing general ecological, biogeographical, and phylogenetic hypotheses based on the identification of hosts as parasite habitat. Potential applications of the data set are, for example, the investigation of species–area relationships or the taxonomic distribution of host-specificity. The provided host–parasite list is that currently used by Fish Parasite Ecology Software Tool (FishPEST, http://purl.oclc.org/fishpest), which is a website that allows researchers to model several aspects of the relationships between fish parasites and their hosts. The database is intended for researchers who wish to have more freedom to analyze the database than currently possible with FishPEST. However, for readers who have not seen FishPEST, we recommend using this as a starting point for interacting with the database.

  5. Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites.

    PubMed

    Ellis, Vincenzo A; Collins, Michael D; Medeiros, Matthew C I; Sari, Eloisa H R; Coffey, Elyse D; Dickerson, Rebecca C; Lugarini, Camile; Stratford, Jeffrey A; Henry, Donata R; Merrill, Loren; Matthews, Alix E; Hanson, Alison A; Roberts, Jackson R; Joyce, Michael; Kunkel, Melanie R; Ricklefs, Robert E

    2015-09-01

    The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily.

  6. Can host ecology and kin selection predict parasite virulence?

    PubMed

    Gleichsner, Alyssa M; Minchella, Dennis J

    2014-07-01

    Parasite virulence, or the damage a parasite does to its host, is measured in terms of both host costs (reductions in host growth, reproduction and survival) and parasite benefits (increased transmission and parasite numbers) in the literature. Much work has shown that ecological and genetic factors can be strong selective forces in virulence evolution. This review uses kin selection theory to explore how variations in host ecological parameters impact the genetic relatedness of parasite populations and thus virulence. We provide a broad overview of virulence and population genetics studies and then draw connections to existing knowledge about natural parasite populations. The impact of host movement (transporting parasites) and host resistance (filtering parasites) on the genetic structure and virulence of parasite populations is explored, and empirical studies of these factors using Plasmodium and trematode systems are proposed.

  7. Parasite-Parasite Interactions in the Wild: How To Detect Them?

    PubMed

    Hellard, Eléonore; Fouchet, David; Vavre, Fabrice; Pontier, Dominique

    2015-12-01

    Inter-specific interactions between parasites impact on parasite intra-host dynamics, host health, and disease management. Identifying and understanding interaction mechanisms in the wild is crucial for wildlife disease management. It is however complex because several scales are interlaced. Parasite-parasite interactions are likely to occur via mechanisms at the within-host level, but also at upper levels (host population and community). Furthermore, interactions occurring at one level of organization spread to upper levels through cascade effects. Even if cascade effects are important confounding factors, we argue that we can also benefit from them because upper scales often provide a way to survey a wider range of parasites at lower cost. New protocols and theoretical studies (especially across scales) are necessary to take advantage of this opportunity.

  8. From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.

    PubMed

    Nagler, Christina; Haug, Joachim T

    2015-01-01

    Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species.

  9. Modelling parasite transmission in a grazing system: the importance of host behaviour and immunity.

    PubMed

    Fox, Naomi J; Marion, Glenn; Davidson, Ross S; White, Piran C L; Hutchings, Michael R

    2013-01-01

    Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts' immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites' free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance) can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes is required to

  10. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses.

    PubMed

    Di Genova, Bruno M; Tonelli, Renata R

    2016-01-01

    Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term complications. The cellular and molecular mechanisms underlying the pathogenesis of diarrhea associated with these three pathogens are being unraveled, with knowledge of both the strategies explored by the parasites to establish infection and the methods evolved by hosts to avoid it. Special attention is being given to molecules participating in parasite-host interaction and in the mechanisms implicated in the diseases' pathophysiologic processes. This review focuses on cell mechanisms that are modulated during infection, including gene transcription, cytoskeleton rearrangements, signal transduction pathways, and cell death. PMID:26973630

  11. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses.

    PubMed

    Di Genova, Bruno M; Tonelli, Renata R

    2016-01-01

    Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term complications. The cellular and molecular mechanisms underlying the pathogenesis of diarrhea associated with these three pathogens are being unraveled, with knowledge of both the strategies explored by the parasites to establish infection and the methods evolved by hosts to avoid it. Special attention is being given to molecules participating in parasite-host interaction and in the mechanisms implicated in the diseases' pathophysiologic processes. This review focuses on cell mechanisms that are modulated during infection, including gene transcription, cytoskeleton rearrangements, signal transduction pathways, and cell death.

  12. Ecological genomics of host behavior manipulation by parasites.

    PubMed

    Hébert, François Olivier; Aubin-Horth, Nadia

    2014-01-01

    Among the vast array of niche exploitation strategies exhibited by millions of different species on Earth, parasitic lifestyles are characterized by extremely successful evolutionary outcomes. Some parasites even seem to have the ability to 'control' their host's behavior to fulfill their own vital needs. Research efforts in the past decades have focused on surveying the phylogenetic diversity and ecological nature of these host-parasite interactions, and trying to understand their evolutionary significance. However, to understand the proximal and ultimate causes of these behavioral alterations triggered by parasitic infections, the underlying molecular mechanisms governing them must be uncovered. Studies using ecological genomics approaches have identified key candidate molecules involved in host-parasite molecular cross-talk, but also molecules not expected to alter behavior. These studies have shown the importance of following up with functional analyses, using a comparative approach and including a time-series analysis. High-throughput methods surveying different levels of biological information, such as the transcriptome and the epigenome, suggest that specific biologically-relevant processes are affected by infection, that sex-specific effects at the level of behavior are recapitulated at the level of transcription, and that epigenetic control represents a key factor in managing life cycle stages of the parasite through temporal regulation of gene expression. Post-translational processes, such as protein-protein interactions (interactome) and post translational modifications (e.g. protein phosphorylation, phosphorylome), and processes modifying gene expression and translation, such as interactions with microRNAs (microRNAome), are examples of promising avenues to explore to obtain crucial insights into the proximal and ultimate causes of these fascinating and complex inter-specific interactions.

  13. Rapid evolution of antimicrobial peptide genes in an insect host-social parasite system.

    PubMed

    Erler, Silvio; Lhomme, Patrick; Rasmont, Pierre; Lattorff, H Michael G

    2014-04-01

    Selection, as a major driver for evolution in host-parasite interactions, may act on two levels; the virulence of the pathogen, and the hosts' defence system. Effectors of the host defence system might evolve faster than other genes e.g. those involved in adaptation to changes in life history or environmental fluctuations. Host-parasite interactions at the level of hosts and their specific social parasites, present a special setting for evolutionarily driven selection, as both share the same environmental conditions and pathogen pressures. Here, we study the evolution of antimicrobial peptide (AMP) genes, in six host bumblebee and their socially parasitic cuckoo bumblebee species. The selected AMP genes evolved much faster than non-immune genes, but only defensin-1 showed significant differences between host and social parasite. Nucleotide diversity and codon-by-codon analyses confirmed that purifying selection is the main selective force acting on bumblebee defence genes.

  14. Cross-talk in host-parasite associations: What do past and recent proteomics approaches tell us?

    PubMed

    Chetouhi, Chérif; Panek, Johan; Bonhomme, Ludovic; ElAlaoui, Hicham; Texier, Catherine; Langin, Thierry; de Bekker, Charissa; Urbach, Serge; Demettre, Edith; Missé, Dorothée; Holzmuller, Philippe; Hughes, David P; Zanzoni, Andreas; Brun, Christine; Biron, David G

    2015-07-01

    A cross-talk in host-parasite associations begins when a host encounters a parasite. For many host-parasite relationships, this cross-talk has been taking place for hundreds of millions of years. The co-evolution of hosts and parasites, the familiar 'arms race' results in fascinating adaptations. Over the years, host-parasite interactions have been studied extensively from both the host and parasitic point of view. Proteomics studies have led to new insights into host-parasite cross-talk and suggest that the molecular strategies used by parasites attacking animals and plants share many similarities. Likewise, animals and plants use several common molecular tactics to counter parasite attacks. Based on proteomics surveys undertaken since the post-genomic era, a synthesis is presented on the molecular strategies used by intra- and extracellular parasites to invade and create the needed habitat for growth inside the host, as well as strategies used by hosts to counter these parasite attacks. Pitfalls in deciphering host-parasite cross-talk are also discussed. To conclude, helpful advice is given with regard to new directions that are needed to discover the generic and specific molecular strategies used by the host against parasite invasion as well as by the parasite to invade, survive, and grow inside their hosts, and to finally discover parasitic molecular signatures associated with their development.

  15. Inflammasomes in host response to protozoan parasites.

    PubMed

    Zamboni, Dario S; Lima-Junior, Djalma S

    2015-05-01

    Inflammasomes are multimeric complexes of proteins that are assembled in the host cell cytoplasm in response to specific stress signals or contamination of the cytoplasm by microbial molecules. The canonical inflammasomes are composed of at least three main components: an inflammatory caspase (caspase-1, caspase-11), an adapter molecule (such as ASC), and a sensor protein (such as NLRP1, NLRP3, NLRP12, NAIP1, NAIP2, NAIP5, or AIM2). The sensor molecule determines the inflammasome specificity by detecting specific microbial products or cell stress signals. Upon activation, these molecular platforms facilitate restriction of microbial replication and trigger an inflammatory form of cell death called pyroptosis, thus accounting for the genesis of inflammatory processes. Inflammasome activation has been widely reported in response to pathogenic bacteria. However, recent reports have highlighted the important role of the inflammasomes in the host response to the pathogenesis of infections caused by intracellular protozoan parasites. Herein, we review the activation and specific roles of inflammasomes in recognition and host responses to intracellular protozoan parasites such as Trypanosoma cruzi, Toxoplasma gondii, Plasmodium spp., and Leishmania spp.

  16. Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races.

    PubMed

    McCoy, Karen D; Boulinier, Thierry; Tirard, Claire; Michalakis, Yannis

    2003-02-01

    Despite the fact that parasite dispersal is likely to be one of the most important processes influencing the dynamics and coevolution of host-parasite interactions, little information is available on the factors that affect it. In most cases, opportunities for parasite dispersal should be closely linked to host biology. Here we use microsatellite genetic markers to compare the population structure and dispersal of two host races of the seabird tick Ixodes uriae at the scale of the North Atlantic. Interestingly, tick populations showed high within-population genetic variation and relatively low population differentiation. However, gene flow at different spatial scales seemed to depend on the host species exploited. The black-legged kittiwake (Rissa tridactyla) had structured tick populations showing patterns of isolation by distance, whereas tick populations of the Atlantic puffin (Fratercula arctica) were only weakly structured at the largest scale considered. Host-dependent rates of tick dispersal between colonies will alter infestation probabilities and local dynamics and may thus modify the adaptation potential of ticks to local hosts. Moreover, as I. uriae is a vector of the Lyme disease agent Borrelia burgdorferi sensu lato in both hemispheres, the large-scale movements of birds and the subsequent dispersal of ticks will have important consequences for the dynamics and coevolutionary interactions of this microparasite with its different vertebrate and invertebrate hosts. PMID:12683525

  17. Host density drives the postglacial migration of the tree parasite, Epifagus virginiana

    PubMed Central

    Tsai, Yi-Hsin Erica; Manos, Paul S.

    2010-01-01

    To survive changes in climate, successful species shift their geographic ranges to remain in suitable habitats. For parasites and other highly specialized species, distributional changes not only are dictated by climate but can also be engineered by their hosts. The extent of host control on parasite range expansion is revealed through comparisons of host and parasite migration and demographic histories. However, understanding the codistributional history of entire forest communities is complicated by challenges in synthesizing datasets from multiple interacting species of differing datatypes. Here we integrate genetic and fossil pollen datasets from a host–parasite pair; specifically, the population structure of the parasitic plant (Epifagus virginiana) was compared with both its host (Fagus grandifolia) genetic patterns and abundance data from the paleopollen record of the last 21,000 y. Through tests of phylogeographic structure and spatial linear regression models we find, surprisingly, host range changes had little effect on the parasite's range expansion and instead host density is the main driver of parasite spread. Unlike other symbionts that have been used as proxies to track their host's movements, this parasite's migration routes are incongruent with the host and instead reflect the greater importance of host density in this community's assembly. Furthermore, these results confirm predictions of disease ecological models regarding the role of host density in the spread of pathogens. Due to host density constraints, highly specialized species may have low migration capacities and long lag times before colonization of new areas. PMID:20841421

  18. Why do parasitized hosts look different? Resolving the "chicken-egg" dilemma.

    PubMed

    Blanchet, Simon; Méjean, Lionel; Bourque, Jean-François; Lek, Sovan; Thomas, Frédéric; Marcogliese, David J; Dodson, Julian J; Loot, Géraldine

    2009-05-01

    Phenotypic differences between infected and non-infected hosts are often assumed to be the consequence of parasite infection. However, pre-existing differences in hosts' phenotypes may promote differential susceptibility to infection. The phenotypic variability observed within the host population may therefore be a cause rather than a consequence of infection. In this study, we aimed at disentangling the causes and the consequences of parasite infection by calculating the value of a phenotypic trait (i.e., the growth rate) of the hosts both before and after infection occurred. That procedure was applied to two natural systems of host-parasite interactions. In the first system, the infection level of an ectoparasite (Tracheliastes polycolpus) decreases the growth rate of its fish host (the rostrum dace, Leuciscus leuciscus). Reciprocally, this same phenotypic trait before infection modulated the future level of host sensitivity to the direct pathogenic effect of the parasite, namely the level of fin degradation. In the second model, causes and consequences linked the growth rate of the fish host (the rainbow smelt, Osmerus mordax) and the level of endoparasite infection (Proteocephalus tetrastomus). Indeed, the host's growth rate before infection determined the number of parasites later in life, and the parasite biovolume then decreased the host's growth rate of heavily infected hosts. We demonstrated that reciprocal effects between host phenotypes and parasite infection can occur simultaneously in the wild, and that the observed variation in the host phenotype population was not necessarily a consequence of parasite infection. Disentangling the causality of host-parasite interactions should contribute substantially to evaluating the role of parasites in ecological and evolutionary processes.

  19. The evolution of reduced antagonism--A role for host-parasite coevolution.

    PubMed

    Gibson, A K; Stoy, K S; Gelarden, I A; Penley, M J; Lively, C M; Morran, L T

    2015-11-01

    Why do some host-parasite interactions become less antagonistic over evolutionary time? Vertical transmission can select for reduced antagonism. Vertical transmission also promotes coevolution between hosts and parasites. Therefore, we hypothesized that coevolution itself may underlie transitions to reduced antagonism. To test the coevolution hypothesis, we selected for reduced antagonism between the host Caenorhabditis elegans and its parasite Serratia marcescens. This parasite is horizontally transmitted, which allowed us to study coevolution independently of vertical transmission. After 20 generations, we observed a response to selection when coevolution was possible: reduced antagonism evolved in the copassaged treatment. Reduced antagonism, however, did not evolve when hosts or parasites were independently selected without coevolution. In addition, we found strong local adaptation for reduced antagonism between replicate host/parasite lines in the copassaged treatment. Taken together, these results strongly suggest that coevolution was critical to the rapid evolution of reduced antagonism.

  20. Strong neutral genetic differentiation in a host, but not in its parasite.

    PubMed

    Rahn, Anna K; Krassmann, Johannes; Tsobanidis, Kostas; MacColl, Andrew D C; Bakker, Theo C M

    2016-10-01

    The genetic diversity and population structure of a parasite with a complex life cycle generally depends on the dispersal by its most motile host. Given that high gene flow is assumed to hinder local adaptation, this can impose significant constraints on a parasite's potential to adapt to local environmental conditions, intermediate host populations, and ultimately to host-parasite coevolution. Here, we aimed to examine the population genetic basis for local host-parasite interactions between the eye fluke Diplostomum lineage 6, a digenean trematode with a multi-host life cycle (including a snail, a fish, and a bird) and its second intermediate host, the three-spined stickleback Gasterosteus aculeatus L. We developed the first microsatellite primers for D. lineage 6 and used them together with published stickleback markers to analyse host and parasite population structures in 19 freshwater lakes, which differ in their local environmental characteristics regarding water chemistry and Diplostomum abundance. Our analyses suggest that one parasite population successfully infects a range of genetically differentiated stickleback populations. The lack of neutral genetic differentiation in D. lineage 6, which could be attributed to the motility of the parasite's definitive host as well as its life cycle characteristics, makes local host-parasite co-adaptations seem more likely on a larger geographical scale than among the lakes of our study site. Our study provides a suitable background for future studies in this system and the first microsatellite primers for a widespread fish parasite. PMID:27421211

  1. Interaction between Parasitophorous Vacuolar Membrane-associated GRA3 and Calcium Modulating Ligand of Host Cell Endoplasmic Reticulum in the Parasitism of Toxoplasma gondii

    PubMed Central

    Kim, Ji Yeon; Ahn, Hye-Jin; Ryu, Kyung Ju

    2008-01-01

    A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5'-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii. PMID:19127325

  2. Review on Trypanosoma cruzi: Host Cell Interaction

    PubMed Central

    de Souza, Wanderley; de Carvalho, Tecia Maria Ulisses; Barrias, Emile Santos

    2010-01-01

    Trypanosoma cruzi, the causative agent of Chagas' disease, which affects a large number of individuals in Central and South America, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are metacyclic and bloodstream trypomastigote and amastigote. Metacyclic trypomastigotes are released with the feces of the insect while amastigotes and bloodstream trypomastigotes are released from the infected host cells of the vertebrate host after a complex intracellular life cycle. The recognition between parasite and mammalian host cell involves numerous molecules present in both cell types. Here, we present a brief review of the interaction between Trypanosoma cruzi and its host cells, mainly emphasizing the mechanisms and molecules that participate in the T. cruzi invasion process of the mammalian cells. PMID:20811486

  3. A mutualism-parasitism system modeling host and parasite with mutualism at low density.

    PubMed

    Wang, Yuanshi; Deangelis, Donald L

    2012-04-01

    A mutualism-parasitism system of two species is considered, where mutualism is the dominant interaction when the predators (parasites) are at low density while parasitism is dominant when the predators are at high density. Our aim is to show that mutualism at low density promotes coexistence of the species and leads to high production of the prey (host). The mutualism-parasitism system presented here is a combination of the Lotka-Volterra cooperative model and Lotka-Volterra predator-prey model. By comparing dynamics of this system with those of the Lotka-Volterra predator-prey model, we present the mechanisms by which the mutualism improves the coexistence of the species and production of the prey. Then the parameter space is divided into six regions, which correspond to the four outcomes of mutualism, commensalism, predation/parasitism and neutralism, respectively. When the parameters are varied continuously among the six regions, it is shown that the interaction outcomes of the system transition smoothly among the four outcomes. By comparing the dynamics of the specific system with those of the Lotka-Volterra cooperative model, we show that the parasitism at high density promotes stability of the system. A novel aspect of this paper is the simplicity of the model, which allows rigorous and thorough analysis and transparency of the results.

  4. Species formation by host shifting in avian malaria parasites.

    PubMed

    Ricklefs, Robert E; Outlaw, Diana C; Svensson-Coelho, Maria; Medeiros, Matthew C I; Ellis, Vincenzo A; Latta, Steven

    2014-10-14

    The malaria parasites (Apicomplexa: Haemosporida) of birds are believed to have diversified across the avian host phylogeny well after the origin of most major host lineages. Although many symbionts with direct transmission codiversify with their hosts, mechanisms of species formation in vector-borne parasites, including the role of host shifting, are poorly understood. Here, we examine the hosts of sister lineages in a phylogeny of 181 putative species of malaria parasites of New World terrestrial birds to determine the role of shifts between host taxa in the formation of new parasite species. We find that host shifting, often across host genera and families, is the rule. Sympatric speciation by host shifting would require local reproductive isolation as a prerequisite to divergent selection, but this mechanism is not supported by the generalized host-biting behavior of most vectors of avian malaria parasites. Instead, the geographic distribution of individual parasite lineages in diverse hosts suggests that species formation is predominantly allopatric and involves host expansion followed by local host-pathogen coevolution and secondary sympatry, resulting in local shifting of parasite lineages across hosts.

  5. Possible mechanism of host manipulation resulting from a diel behaviour pattern of eye-dwelling parasites?

    PubMed

    Stumbo, Anthony D; Poulin, Robert

    2016-09-01

    Parasitic infection often results in alterations to the host's phenotype, and may modify selection pressures for host populations. Elucidating the mechanisms underlying these changes is essential to understand the evolution of host-parasite interactions. A variety of mechanisms may result in changes in the host's behavioural phenotype, ranging from simple by-products of infection to chemicals directly released by the parasite to alter behaviour. Another possibility may involve parasites freely moving to certain sites within tissues, at specific times of the day to induce behavioural changes in the host. We tested the hypothesis that parasites shift to certain sites within the host by quantifying the location and activity of the trematode Tylodelphys sp., whose mobile metacercarial stages remain unencysted in the eyes of the second intermediate fish host, the common bully (Gobiomorphus cotidianus). This parasite's definitive host is a piscivorous bird feeding exclusively during daytime. Ocular obstruction and metacercarial activity were assessed within the sedated host's eye at three time points 24 h-1 period, using video captured via an ophthalmoscope. Although observed metacercarial activity did not change between time periods, ocular obstruction was significantly reduced at night. Increased visual obstruction specifically during the foraging time of the parasite's definitive host strongly suggests that the parasite's activity pattern is adaptive. PMID:27216502

  6. Echinococcus multilocularis and Its Intermediate Host: A Model of Parasite-Host Interplay

    PubMed Central

    Vuitton, Dominique Angèle; Gottstein, Bruno

    2010-01-01

    Host-parasite interactions in the E. multilocularis-intermediate host model depend on a subtle balance between cellular immunity, which is responsible for host's resistance towards the metacestode, the larval stage of the parasite, and tolerance induction and maintenance. The pathological features of alveolar echinococcosis. the disease caused by E. multilocularis, are related both to parasitic growth and to host's immune response, leading to fibrosis and necrosis, The disease spectrum is clearly dependent on the genetic background of the host as well as on acquired disturbances of Th1-related immunity. The laminated layer of the metacestode, and especially its carbohydrate components, plays a major role in tolerance induction. Th2-type and anti-inflammatory cytokines, IL-10 and TGF-β, as well as nitric oxide, are involved in the maintenance of tolerance and partial inhibition of cytotoxic mechanisms. Results of studies in the experimental mouse model and in patients suggest that immune modulation with cytokines, such as interferon-α, or with specific antigens could be used in the future to treat patients with alveolar echinococcosis and/or to prevent this very severe parasitic disease. PMID:20339517

  7. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses

    PubMed Central

    Di Genova, Bruno M.; Tonelli, Renata R.

    2016-01-01

    Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term complications. The cellular and molecular mechanisms underlying the pathogenesis of diarrhea associated with these three pathogens are being unraveled, with knowledge of both the strategies explored by the parasites to establish infection and the methods evolved by hosts to avoid it. Special attention is being given to molecules participating in parasite–host interaction and in the mechanisms implicated in the diseases’ pathophysiologic processes. This review focuses on cell mechanisms that are modulated during infection, including gene transcription, cytoskeleton rearrangements, signal transduction pathways, and cell death. PMID:26973630

  8. Coevolution of parasite virulence and host mating strategies.

    PubMed

    Ashby, Ben; Boots, Michael

    2015-10-27

    Parasites are thought to play an important role in sexual selection and the evolution of mating strategies, which in turn are likely to be critical to the transmission and therefore the evolution of parasites. Despite this clear interdependence we have little understanding of parasite-mediated sexual selection in the context of reciprocal parasite evolution. Here we develop a general coevolutionary model between host mate preference and the virulence of a sexually transmitted parasite. We show when the characteristics of both the host and parasite lead to coevolutionarily stable strategies or runaway selection, and when coevolutionary cycling between high and low levels of host mate choosiness and virulence is possible. A prominent argument against parasites being involved in sexual selection is that they should evolve to become less virulent when transmission depends on host mating success. The present study, however, demonstrates that coevolution can maintain stable host mate choosiness and parasite virulence or indeed coevolutionary cycling of both traits. We predict that choosiness should vary inversely with parasite virulence and that both relatively long and short life spans select against choosy behavior in the host. The model also reveals that hosts can evolve different behavioral responses from the same initial conditions, which highlights difficulties in using comparative analysis to detect parasite-mediated sexual selection. Taken as a whole, our results emphasize the importance of viewing parasite-mediated sexual selection in the context of coevolution. PMID:26430236

  9. Coevolution of parasite virulence and host mating strategies.

    PubMed

    Ashby, Ben; Boots, Michael

    2015-10-27

    Parasites are thought to play an important role in sexual selection and the evolution of mating strategies, which in turn are likely to be critical to the transmission and therefore the evolution of parasites. Despite this clear interdependence we have little understanding of parasite-mediated sexual selection in the context of reciprocal parasite evolution. Here we develop a general coevolutionary model between host mate preference and the virulence of a sexually transmitted parasite. We show when the characteristics of both the host and parasite lead to coevolutionarily stable strategies or runaway selection, and when coevolutionary cycling between high and low levels of host mate choosiness and virulence is possible. A prominent argument against parasites being involved in sexual selection is that they should evolve to become less virulent when transmission depends on host mating success. The present study, however, demonstrates that coevolution can maintain stable host mate choosiness and parasite virulence or indeed coevolutionary cycling of both traits. We predict that choosiness should vary inversely with parasite virulence and that both relatively long and short life spans select against choosy behavior in the host. The model also reveals that hosts can evolve different behavioral responses from the same initial conditions, which highlights difficulties in using comparative analysis to detect parasite-mediated sexual selection. Taken as a whole, our results emphasize the importance of viewing parasite-mediated sexual selection in the context of coevolution.

  10. Coevolution of parasite virulence and host mating strategies

    PubMed Central

    Ashby, Ben; Boots, Michael

    2015-01-01

    Parasites are thought to play an important role in sexual selection and the evolution of mating strategies, which in turn are likely to be critical to the transmission and therefore the evolution of parasites. Despite this clear interdependence we have little understanding of parasite-mediated sexual selection in the context of reciprocal parasite evolution. Here we develop a general coevolutionary model between host mate preference and the virulence of a sexually transmitted parasite. We show when the characteristics of both the host and parasite lead to coevolutionarily stable strategies or runaway selection, and when coevolutionary cycling between high and low levels of host mate choosiness and virulence is possible. A prominent argument against parasites being involved in sexual selection is that they should evolve to become less virulent when transmission depends on host mating success. The present study, however, demonstrates that coevolution can maintain stable host mate choosiness and parasite virulence or indeed coevolutionary cycling of both traits. We predict that choosiness should vary inversely with parasite virulence and that both relatively long and short life spans select against choosy behavior in the host. The model also reveals that hosts can evolve different behavioral responses from the same initial conditions, which highlights difficulties in using comparative analysis to detect parasite-mediated sexual selection. Taken as a whole, our results emphasize the importance of viewing parasite-mediated sexual selection in the context of coevolution. PMID:26430236

  11. mRNA-Seq and microarray development for the Grooved carpet shell clam, Ruditapes decussatus: a functional approach to unravel host -parasite interaction

    PubMed Central

    2013-01-01

    Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An

  12. Species formation by host shifting in avian malaria parasites

    PubMed Central

    Ricklefs, Robert E.; Outlaw, Diana C.; Svensson-Coelho, Maria; Medeiros, Matthew C. I.; Ellis, Vincenzo A.; Latta, Steven

    2014-01-01

    The malaria parasites (Apicomplexa: Haemosporida) of birds are believed to have diversified across the avian host phylogeny well after the origin of most major host lineages. Although many symbionts with direct transmission codiversify with their hosts, mechanisms of species formation in vector-borne parasites, including the role of host shifting, are poorly understood. Here, we examine the hosts of sister lineages in a phylogeny of 181 putative species of malaria parasites of New World terrestrial birds to determine the role of shifts between host taxa in the formation of new parasite species. We find that host shifting, often across host genera and families, is the rule. Sympatric speciation by host shifting would require local reproductive isolation as a prerequisite to divergent selection, but this mechanism is not supported by the generalized host-biting behavior of most vectors of avian malaria parasites. Instead, the geographic distribution of individual parasite lineages in diverse hosts suggests that species formation is predominantly allopatric and involves host expansion followed by local host–pathogen coevolution and secondary sympatry, resulting in local shifting of parasite lineages across hosts. PMID:25271324

  13. Host infection history modifies co-infection success of multiple parasite genotypes.

    PubMed

    Klemme, Ines; Louhi, Katja-Riikka; Karvonen, Anssi

    2016-03-01

    Co-infections by multiple parasite genotypes are common and have important implications for host-parasite ecology and evolution through within-host interactions. Typically, these infections take place sequentially, and therefore, the outcome of co-infection may be shaped by host immune responses triggered by previous infections. For example, in vertebrates, specific immune responses play a central role in protection against disease over the course of life, but co-infection research has mostly focused on previously uninfected individuals. Here, we investigated whether sequential exposure and activation of host resistance in rainbow trout Oncorhynchus mykiss affects infection success and interactions between co-infecting parasite genotypes of the trematode eye-fluke Diplostomum pseudospathaceum. In accordance with earlier results, we show that a simultaneous attack of two parasite genotypes facilitates parasite establishment in previously uninfected hosts. However, we find for the first time that this facilitation in co-infection is lost in hosts with prior infection. We conclude that vertebrate host infection history can affect the direction of within-host-parasite interactions. Our results may have significant implications for the evolution of co-infections and parasite transmission strategies.

  14. Spatial structure, host heterogeneity and parasite virulence: implications for vaccine-driven evolution.

    PubMed

    Zurita-Gutiérrez, Yazmín Hananí; Lion, Sébastien

    2015-08-01

    Natural host-parasite interactions exhibit considerable variation in host quality, with profound consequences for disease ecology and evolution. For instance, treatments (such as vaccination) may select for more transmissible or virulent strains. Previous theory has addressed the ecological and evolutionary impact of host heterogeneity under the assumption that hosts and parasites disperse globally. Here, we investigate the joint effects of host heterogeneity and local dispersal on the evolution of parasite life-history traits. We first formalise a general theoretical framework combining variation in host quality and spatial structure. We then apply this model to the specific problem of parasite evolution following vaccination. We show that, depending on the type of vaccine, spatial structure may select for higher or lower virulence compared to the predictions of non-spatial theory. We discuss the implications of our results for disease management, and their broader fundamental relevance for other causes of host heterogeneity in nature.

  15. On Genetic Specificity in Symbiont-Mediated Host-Parasite Coevolution

    PubMed Central

    Kwiatkowski, Marek; Engelstädter, Jan; Vorburger, Christoph

    2012-01-01

    Existing theory of host-parasite interactions has identified the genetic specificity of interaction as a key variable affecting the outcome of coevolution. The Matching Alleles (MA) and Gene For Gene (GFG) models have been extensively studied as the canonical examples of specific and non-specific interaction. The generality of these models has recently been challenged by uncovering real-world host-parasite systems exhibiting specificity patterns that fit neither MA nor GFG, and by the discovery of symbiotic bacteria protecting insect hosts against parasites. In the present paper we address both challenges, simulating a large number of non-canonical models of host-parasite interactions that explicitly incorporate symbiont-based host resistance. To assess the genetic specialisation in these hybrid models, we develop a quantitative index of specificity applicable to any coevolutionary model based on a fitness matrix. We find qualitative and quantitative effects of host-parasite and symbiont-parasite specificities on genotype frequency dynamics, allele survival, and mean host and parasite fitnesses. PMID:22956894

  16. Ecology of avian brood parasitism at an early interfacing of host and parasite populations

    USGS Publications Warehouse

    Wiley, J.W.

    1982-01-01

    The shiny cowbird (Molothrus bonariensis), a brood parasite, has recently spread into the Greater Antilles from South America via the Lesser Antilles. This species is a host generalist and upon reaching Puerto Rico exploited avian communities with no history of social parasitism. Forty-two percent of the resident non-raptorial land bird species were parasitized in mangrove habitat study areas. Cowbird parasitism affected hosts by (1) depressing nest success an average of 41 percent below non-parasitized nests, and (2) reducing host productivity. Parasitized hosts produced 12 percent fewer eggs and fledged 67 percent fewer of their own chicks than non-parasitized pairs. Growth rates of chicks of some host species were lower in parasitized nests compared with non-parasitized nests while growth of others was not affected by brood parasitism. Cowbird chick growth varied directly with host size; i.e., cowbird chicks grew faster and attained greater fledging weight and body size in nests of larger hosts. Factors important in shiny cowbird host selection were examined within the mangrove study community. Cowbirds did not parasitize avian species in proportion to their abundance. The cowbird breeding season coincided with that of its major hosts, which were high quality foster species, and did not extend into other periods even though nests of poor quality species were available. Food habits and egg size of cowbirds were similar to those of their hosts, suggesting that cowbirds choose hosts partly on the basis of this alignment. Cowbirds locate nests by cryptically watching activities of birds in likely habitat. Despite the recency of the cowbird's arrival in Puerto Rico, some nesting species have effective anti-parasite strategies, including alien egg rejection and nest guarding. Behavior effective in avoiding parasitism is similar to that used by certain birds in evading nest predators. It is suggested that anti-predator behavior is preadaptive to countering cowbird

  17. Host partitioning by parasites in an intertidal crustacean community.

    PubMed

    Koehler, Anson V; Poulin, Robert

    2010-10-01

    Patterns of host use by parasites throughout a guild community of intermediate hosts can depend on several biological and ecological factors, including physiology, morphology, immunology, and behavior. We looked at parasite transmission in the intertidal crustacean community of Lower Portobello Bay, Dunedin, New Zealand, with the intent of: (1) mapping the flow of parasites throughout the major crustacean species, (2) identifying hosts that play the most important transmission role for each parasite, and (3) assessing the impact of parasitism on host populations. The most prevalent parasites found in 14 species of crustaceans (635 specimens) examined were the trematodes Maritrema novaezealandensis and Microphallus sp., the acanthocephalans Profilicollis spp., the nematode Ascarophis sp., and an acuariid nematode. Decapods were compatible hosts for M. novaezealandensis, while other crustaceans demonstrated lower host suitability as shown by high levels of melanized and immature parasite stages. Carapace thickness, gill morphology, and breathing style may contribute to the differential infection success of M. novaezealandensis and Microphallus sp. in the decapod species. Parasite-induced host mortality appears likely with M. novaezealandensis in the crabs Austrohelice crassa, Halicarcinus varius, Hemigrapsus sexdentatus, and Macrophthalmus hirtipes, and also with Microphallus sp. in A. crassa. Overall, the different parasite species make different use of available crustacean intermediate hosts and possibly contribute to intertidal community structure.

  18. Geography and major host evolutionary transitions shape the resource use of plant parasites.

    PubMed

    Calatayud, Joaquín; Hórreo, José Luis; Madrigal-González, Jaime; Migeon, Alain; Rodríguez, Miguel Á; Magalhães, Sara; Hortal, Joaquín

    2016-08-30

    The evolution of resource use in herbivores has been conceptualized as an analog of the theory of island biogeography, assuming that plant species are islands separated by phylogenetic distances. Despite its usefulness, this analogy has paradoxically led to neglecting real biogeographical processes in the study of macroevolutionary patterns of herbivore-plant interactions. Here we show that host use is mostly determined by the geographical cooccurrence of hosts and parasites in spider mites (Tetranychidae), a globally distributed group of plant parasites. Strikingly, geography accounts for most of the phylogenetic signal in host use by these parasites. Beyond geography, only evolutionary transitions among major plant lineages (i.e., gymnosperms, commelinids, and eudicots) shape resource use patterns in these herbivores. Still, even these barriers have been repeatedly overcome in evolutionary time, resulting in phylogenetically diverse parasite communities feeding on similar hosts. Therefore, our results imply that patterns of apparent evolutionary conservatism may largely be a byproduct of the geographic cooccurrence of hosts and parasites.

  19. Host-parasite biology in the real world: the field voles of Kielder.

    PubMed

    Turner, A K; Beldomenico, P M; Bown, K; Burthe, S J; Jackson, J A; Lambin, X; Begon, M

    2014-07-01

    Research on the interactions between the field voles (Microtus agrestis) of Kielder Forest and their natural parasites dates back to the 1930s. These early studies were primarily concerned with understanding how parasites shape the characteristic cyclic population dynamics of their hosts. However, since the early 2000s, research on the Kielder field voles has expanded considerably and the system has now been utilized for the study of host-parasite biology across many levels, including genetics, evolutionary ecology, immunology and epidemiology. The Kielder field voles therefore represent one of the most intensely and broadly studied natural host-parasite systems, bridging theoretical and empirical approaches to better understand the biology of infectious disease in the real world. This article synthesizes the body of work published on this system and summarizes some important insights and general messages provided by the integrated and multidisciplinary study of host-parasite interactions in the natural environment.

  20. Manipulation of host-resource dynamics impacts transmission of trophic parasites.

    PubMed

    Luong, Lien T; Grear, Daniel A; Hudson, Peter J

    2014-09-01

    Many complex life cycle parasites rely on predator-prey interactions for transmission, whereby definitive hosts become infected via the consumption of an infected intermediate host. As such, these trophic parasites are embedded in the larger community food web. We postulated that exposure to infection and, hence, parasite transmission are inherently linked to host foraging ecology, and that perturbation of the host-resource dynamic will impact parasite transmission dynamics. We employed a field manipulation experiment in which natural populations of the eastern chipmunk (Tamias striatus) were provisioned with a readily available food resource in clumped or uniform spatial distributions. Using replicated longitudinal capture-mark-recapture techniques, replicated supplemented and unsupplemented control sites were monitored before and after treatment for changes in infection levels with three gastro-intestinal helminth parasites. We predicted that definitive hosts subject to food supplementation would experience lower rates of exposure to infective intermediate hosts, presumably because they shifted their diet away from the intermediate host towards the more readily available resource (sunflower seeds). As predicted, prevalence of infection by the trophically transmitted parasite decreased in response to supplemental food treatment, but no such change in infection prevalence was detected for the two directly transmitted parasites in the system. The fact that food supplementation only had an impact on the transmission of the trophically transmitted parasite, and not the directly transmitted parasites, supports our hypothesis that host foraging ecology directly affects exposure to parasites that rely on the ingestion of intermediate hosts for transmission. We concluded that the relative availability of different food resources has important consequences for the transmission of parasites and, more specifically, parasites that are embedded in the food web. The broader

  1. Variation for host range within and among populations of the parasitic plant Striga hermonthica

    PubMed Central

    Huang, K; Whitlock, R; Press, M C; Scholes, J D

    2012-01-01

    Striga hermonthica is an angiosperm parasite that causes substantial damage to a wide variety of cereal crop species, and to the livelihoods of subsistence farmers in sub-Saharan Africa. The broad host range of this parasite makes it a fascinating model for the study of host–parasite interactions, and suggests that effective long-term control strategies for the parasite will require an understanding of the potential for host range adaptation in parasite populations. We used a controlled experiment to test the extent to which the success or failure of S. hermonthica parasites to develop on a particular host cultivar (host resistance/compatibility) depends upon the identity of interacting host genotypes and parasite populations. We also tested the hypothesis that there is a genetic component to host range within individual S. hermonthica populations, using three rice cultivars with known, contrasting abilities to resist infection. The developmental success of S. hermonthica parasites growing on different rice-host cultivars (genotypes) depended significantly on a parasite population by host–genotype interaction. Genetic analysis using amplified fragment length polymorphism (AFLP) markers revealed that a small subset of AFLP markers showed ‘outlier' genetic differentiation among sub-populations of S. hermonthica attached to different host cultivars. We suggest that, this indicates a genetic component to host range within populations of S. hermonthica, and that a detailed understanding of the genomic loci involved will be crucial in understanding host–parasite specificity and in breeding crop cultivars with broad spectrum resistance to S. hermonthica. PMID:21731054

  2. The role of epigenetics in host-parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum.

    PubMed

    Vilcinskas, Andreas

    2016-08-01

    Recent studies addressing experimental host-parasite coevolution and transgenerational immune priming in insects provide evidence for heritable shifts in host resistance or parasite virulence. These rapid reciprocal adaptations may thus be transferred to offspring generations by either genetic changes or mechanisms that do not involve changes in the germline DNA sequence. Epigenetic inheritance refers to changes in gene expression that are heritable across generations and mediated by epigenetic modifications passed from parents to offspring. Highlighting the role of epigenetics in host-parasite coevolution, this review discusses the involvement of DNA methylation, histone acetylation/deacetylation and microRNAs in the interactions between bacterial or fungal parasites and model host insects such as the greater wax moth Galleria mellonella and the red flour beetle Tribolium castaneum. These epigenetic mechanisms are thought to participate in generation-spanning transcriptional reprogramming in the host insect, often linking immunity with developmentally related gene expression and contributing to the heredity of acquired adaptations. It is proposed that the interactions during host-parasite coevolution can therefore be expanded beyond reciprocal genetic changes to include reciprocal epigenetic changes. Epigenetics is thus a promising and prospering field in the context of host-parasite coevolution. PMID:27341739

  3. The role of epigenetics in host-parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum.

    PubMed

    Vilcinskas, Andreas

    2016-08-01

    Recent studies addressing experimental host-parasite coevolution and transgenerational immune priming in insects provide evidence for heritable shifts in host resistance or parasite virulence. These rapid reciprocal adaptations may thus be transferred to offspring generations by either genetic changes or mechanisms that do not involve changes in the germline DNA sequence. Epigenetic inheritance refers to changes in gene expression that are heritable across generations and mediated by epigenetic modifications passed from parents to offspring. Highlighting the role of epigenetics in host-parasite coevolution, this review discusses the involvement of DNA methylation, histone acetylation/deacetylation and microRNAs in the interactions between bacterial or fungal parasites and model host insects such as the greater wax moth Galleria mellonella and the red flour beetle Tribolium castaneum. These epigenetic mechanisms are thought to participate in generation-spanning transcriptional reprogramming in the host insect, often linking immunity with developmentally related gene expression and contributing to the heredity of acquired adaptations. It is proposed that the interactions during host-parasite coevolution can therefore be expanded beyond reciprocal genetic changes to include reciprocal epigenetic changes. Epigenetics is thus a promising and prospering field in the context of host-parasite coevolution.

  4. Biological invasions and host-parasite coevolution: different coevolutionary trajectories along separate parasite invasion fronts.

    PubMed

    Feis, Marieke E; Goedknegt, M Anouk; Thieltges, David W; Buschbaum, Christian; Wegner, K Mathias

    2016-08-01

    Host-parasite coevolution has rarely been observed in natural systems. Its study often relies on microparasitic infections introducing a potential bias in the estimation of the evolutionary change of host and parasite traits. Using biological invasions as a tool to study host-parasite coevolution in nature can overcome these biases. We demonstrate this with a cross-infection experiment in the invasive macroparasite Mytilicola intestinalis and its bivalve host, the blue mussel Mytilus edulis. The invasion history of the parasite is well known for the southeastern North Sea and is characterised by two separate invasion fronts that reached opposite ends of the Wadden Sea (i.e. Texel, The Netherlands and Sylt, Germany) in a similar time frame. The species' natural history thus makes this invasion an ideal natural experiment to study host-parasite coevolution in nature. We infected hosts from Texel, Sylt and Kiel (Baltic Sea, where the parasite is absent) with parasites from Texel and Sylt, to form sympatric, allopatric and naïve infestation combinations, respectively. We measured infection rate, host condition and parasite growth to show that sympatric host-parasite combinations diverged in terms of pre- and post-infection traits within <100 generations since their introduction. Texel parasites were more infective and more efficient at exploiting the host's resources. Hosts on Texel, on the other hand, evolved resistance to infection, whereas hosts on Sylt may have evolved tolerance. This illustrates that different coevolutionary trajectories can evolve along separate invasion fronts of the parasite, highlighting the use of biological invasions in studies of host-parasite coevolution in nature. PMID:27373339

  5. Biological invasions and host-parasite coevolution: different coevolutionary trajectories along separate parasite invasion fronts.

    PubMed

    Feis, Marieke E; Goedknegt, M Anouk; Thieltges, David W; Buschbaum, Christian; Wegner, K Mathias

    2016-08-01

    Host-parasite coevolution has rarely been observed in natural systems. Its study often relies on microparasitic infections introducing a potential bias in the estimation of the evolutionary change of host and parasite traits. Using biological invasions as a tool to study host-parasite coevolution in nature can overcome these biases. We demonstrate this with a cross-infection experiment in the invasive macroparasite Mytilicola intestinalis and its bivalve host, the blue mussel Mytilus edulis. The invasion history of the parasite is well known for the southeastern North Sea and is characterised by two separate invasion fronts that reached opposite ends of the Wadden Sea (i.e. Texel, The Netherlands and Sylt, Germany) in a similar time frame. The species' natural history thus makes this invasion an ideal natural experiment to study host-parasite coevolution in nature. We infected hosts from Texel, Sylt and Kiel (Baltic Sea, where the parasite is absent) with parasites from Texel and Sylt, to form sympatric, allopatric and naïve infestation combinations, respectively. We measured infection rate, host condition and parasite growth to show that sympatric host-parasite combinations diverged in terms of pre- and post-infection traits within <100 generations since their introduction. Texel parasites were more infective and more efficient at exploiting the host's resources. Hosts on Texel, on the other hand, evolved resistance to infection, whereas hosts on Sylt may have evolved tolerance. This illustrates that different coevolutionary trajectories can evolve along separate invasion fronts of the parasite, highlighting the use of biological invasions in studies of host-parasite coevolution in nature.

  6. Distribution of common stickleback parasites on North Uist, Scotland, in relation to ecology and host traits.

    PubMed

    Rahn, Anna K; Eßer, Elisabeth; Reher, Stephanie; Ihlow, Flora; MacColl, Andrew D C; Bakker, Theo C M

    2016-08-01

    Analysing spatial differences among macroparasite communities is an important tool in the study of host-parasite interactions. Identifying patterns can shed light on the underlying causes of heterogeneity of parasite distribution and help to better understand ecological constraints and the relative importance of host and parasite adaptations. In the present study, we aimed to find correlational evidence that the macroparasite distribution patterns on the Scottish island of North Uist, which had been described by de Roij and MacColl (2012), are indicative of local processes rather than an unspecific influence of habitat characteristics. We therefore reinvestigated parasite abundances and tested for associations with habitat characteristics and host traits. Distribution patterns of the most common parasites were largely consistent with the observations of de Roij and MacColl (2012). In accordance with the published results, we found that the most obvious abiotic habitat characteristic varying among the lakes on the island, pH, did not statistically explain parasite abundances (except for eye fluke species inside the lens). Instead, we found that genetic differentiation between host populations, measured as pairwise FST values based on available microsatellite data, was significantly correlated with dissimilarity in parasite community composition. Our results indicate that individual lake characteristics rather than physicochemical variables shape parasite distribution on this island, making it an ideal place to study host-parasite interactions. Furthermore, additionally to geographic distance measures taken from maps, we suggest taking into account connectivity among freshwater habitats, indirectly measured via fish population structure, to analyse spatial distribution patterns.

  7. Trans-specific gene silencing between host and parasitic plants.

    PubMed

    Tomilov, Alexey A; Tomilova, Natalia B; Wroblewski, Tadeusz; Michelmore, Richard; Yoder, John I

    2008-11-01

    Species of Orobanchaceae parasitize the roots of nearby host plants to rob them of water and other nutrients. Parasitism can be debilitating to the host plant, and some of the world's most pernicious agricultural pests are parasitic weeds. We demonstrate here that interfering hairpin constructs transformed into host plants can silence expression of the targeted genes in the parasite. Transgenic roots of the hemi-parasitic plant Triphysaria versicolor expressing the GUS reporter gene were allowed to parasitize transgenic lettuce roots expressing a hairpin RNA containing a fragment of the GUS gene (hpGUS). When stained for GUS activity, Triphysaria roots attached to non-transgenic lettuce showed full GUS activity, but those parasitizing transgenic hpGUS lettuce lacked activity in root tissues distal to the haustorium. Transcript quantification indicated a reduction in the steady-state level of GUS mRNA in Triphysaria when they were attached to hpGUS lettuce. These results demonstrate that the GUS silencing signal generated by the host roots was translocated across the haustorium interface and was functional in the parasite. Movement across the haustorium was bi-directional, as demonstrated in double-junction experiments in which non-transgenic Triphysaria concomitantly parasitized two hosts, one transgenic for hpGUS and the other transgenic for a functional GUS gene. Observation of GUS silencing in the second host demonstrated that the silencing trigger could be moved from one host to another using the parasite as a physiological bridge. Silencing of parasite genes by generating siRNAs in the host provides a novel strategy for controlling parasitic weeds. PMID:18643992

  8. Inter- and intraspecific conflicts between parasites over host manipulation

    PubMed Central

    Hafer, Nina; Milinski, Manfred

    2016-01-01

    Host manipulation is a common strategy by which parasites alter the behaviour of their host to enhance their own fitness. In nature, hosts are usually infected by multiple parasites. This can result in a conflict over host manipulation. Studies of such a conflict in experimentally infected hosts are rare. The cestode Schistocephalus solidus (S) and the nematode Camallanus lacustris (C) use copepods as their first intermediate host. They need to grow for some time inside this host before they are infective and ready to be trophically transmitted to their subsequent fish host. Accordingly, not yet infective parasites manipulate to suppress predation. Infective ones manipulate to enhance predation. We experimentally infected laboratory-bred copepods in a manner that resulted in copepods harbouring (i) an infective C plus a not yet infective C or S, or (ii) an infective S plus a not yet infective C. An infective C completely sabotaged host manipulation by any not yet infective parasite. An infective S partially reduced host manipulation by a not yet infective C. We hence show experimentally that a parasite can reduce or even sabotage host manipulation exerted by a parasite from a different species. PMID:26842574

  9. Coupled range dynamics of brood parasites and their hosts responding to climate and vegetation changes.

    PubMed

    Péron, Guillaume; Altwegg, Res; Jamie, Gabriel A; Spottiswoode, Claire N

    2016-09-01

    As populations shift their ranges in response to global change, local species assemblages can change, setting the stage for new ecological interactions, community equilibria and evolutionary responses. Here, we focus on the range dynamics of four avian brood parasite species and their hosts in southern Africa, in a context of bush encroachment (increase in woody vegetation density in places previously occupied by savanna-grassland mosaics) favouring some species at the expense of others. We first tested whether hosts and parasites constrained each other's ability to expand or maintain their ranges. Secondly, we investigated whether range shifts represented an opportunity for new host-parasite and parasite-parasite interactions. We used multispecies dynamic occupancy models with interactions, fitted to citizen science data, to estimate the contribution of interspecific interactions to range shifts and to quantify the change in species co-occurrence probability over a 25-year period. Parasites were able to track their hosts' range shifts. We detected no deleterious effect of the parasites' presence on either the local population viability of host species or the hosts' ability to colonize newly suitable areas. In the recently diversified indigobird radiation (Vidua spp.), following bush encroachment, the new assemblages presented more potential opportunities for speciation via host switch, but also more potential for hybridization between extant lineages, also via host switch. Multispecies dynamic occupancy models with interactions brought new insights into the feedbacks between range shifts, biotic interactions and local demography: brood parasitism had little detected impact on extinction or colonization processes, but inversely the latter processes affected biotic interactions via the modification of co-occurrence patterns.

  10. Coupled range dynamics of brood parasites and their hosts responding to climate and vegetation changes.

    PubMed

    Péron, Guillaume; Altwegg, Res; Jamie, Gabriel A; Spottiswoode, Claire N

    2016-09-01

    As populations shift their ranges in response to global change, local species assemblages can change, setting the stage for new ecological interactions, community equilibria and evolutionary responses. Here, we focus on the range dynamics of four avian brood parasite species and their hosts in southern Africa, in a context of bush encroachment (increase in woody vegetation density in places previously occupied by savanna-grassland mosaics) favouring some species at the expense of others. We first tested whether hosts and parasites constrained each other's ability to expand or maintain their ranges. Secondly, we investigated whether range shifts represented an opportunity for new host-parasite and parasite-parasite interactions. We used multispecies dynamic occupancy models with interactions, fitted to citizen science data, to estimate the contribution of interspecific interactions to range shifts and to quantify the change in species co-occurrence probability over a 25-year period. Parasites were able to track their hosts' range shifts. We detected no deleterious effect of the parasites' presence on either the local population viability of host species or the hosts' ability to colonize newly suitable areas. In the recently diversified indigobird radiation (Vidua spp.), following bush encroachment, the new assemblages presented more potential opportunities for speciation via host switch, but also more potential for hybridization between extant lineages, also via host switch. Multispecies dynamic occupancy models with interactions brought new insights into the feedbacks between range shifts, biotic interactions and local demography: brood parasitism had little detected impact on extinction or colonization processes, but inversely the latter processes affected biotic interactions via the modification of co-occurrence patterns. PMID:27155344

  11. Parasite Rates of Discovery, Global Species Richness and Host Specificity.

    PubMed

    Costello, Mark John

    2016-10-01

    If every metazoan species has at least one host-specific parasite, as several local scale studies have suggested, then half of all species could be parasites. However, host specificity varies significantly depending on host phylogeny, body size, habitat, and geographic distribution. The best studied hosts tend to be vertebrates, larger animals, and/or widespread, and thus have a higher number of parasites and host-specific parasites. Thus, host specificity for these well-known taxa cannot be simply extrapolated to other taxa, notably invertebrates, small sized, and more endemic species, which comprise the major portion of yet to be discovered species. At present, parasites of animals comprise about 5% of named species. This article analyzed the rate of description of several largely parasitic taxa within crustaceans (copepods, amphipods, isopods, pentastomids, cirripeds), marine helminths (nematodes, acanthocephalans, flukes), gastropod molluscs, insects (ticks, fleas, biting flies, strepispterans), and microsporidia. The period of highest discovery has been most recent for the marine helminths and microsporids. The number of people describing parasites has been increasing since the 1960s, as it has for all other taxa. However, the number of species being described per decade relative to the number of authors has been decreasing except for the helminths. The results indicate that more than half of all parasites have been described, and two-thirds of host taxa, although the proportion varies between taxa. It is highly unlikely that the number of named species of parasites will ever approach that of their hosts. This contrast between the proportion that parasites comprise of local and global faunas suggests that parasites are less host specific and more widespread than local scale studies suggest.

  12. Cystatins from filarial parasites: evolution, adaptation and function in the host-parasite relationship.

    PubMed

    Gregory, William F; Maizels, Rick M

    2008-01-01

    Cystatins, together with stefins and kininogens, are members of the cystatin superfamily of cysteine protease inhibitors (CPI) present across the animal and plant kingdoms. Their role in parasitic organisms may encompass both essential developmental processes and specific interactions with the parasite's vector and/or final host. We summarise information gathered on three cystatins from the human filarial nematode Brugia malayi (Bm-CPI-1, -2 and -3), and contrast them those expressed by other parasites and by the free-living nematode Caenorhabditis elegans. Bm-CPI-2 differs from C. elegans cystatin, having acquired the additional function of inhibiting asparaginyl endopeptidase (AEP), in a manner similar to some human cystatins. Thus, we propose that Bm-CPI-2 and orthologues from related filarial parasites represent a new subset of nematode cystatins. Bm-CPI-1 and CPI-3 share only 25% amino acid identity with Bm-CPI-2, and lack an evolutionarily conserved glycine residue in the N-terminal region. These sequences group distantly from the other nematode cystatins, and represent a second novel subset of filarial cystatin-like genes. Expression analyses also show important differences between the CPI-2 and CPI-1/-3 groups. Bm-cpi-2 is expressed at all time points of the parasite life cycle, while Bm-cpi-1 and -3 expression is confined to the late stages of development in the mosquito vector, terminating within 48h of infection of the mammalian host. Hence, we hypothesise that CPI-2 has evolved to block mammalian proteases (including the antigen-processing enzyme AEP) while CPI-1 and -3 function in the milieu of the mosquito vector necessary for transmission of the parasite. PMID:18249028

  13. Interactions between hemiparasitic plants and their hosts

    PubMed Central

    Plavcová, Lenka; Cameron, Duncan D

    2010-01-01

    Hemiparasitic plants display a unique strategy of resource acquisition combining parasitism of other species and own photosynthetic activity. Despite the active photoassimilation and green habit, they acquire substantial amount of carbon from their hosts. The organic carbon transfer has a crucial influence on the nature of the interaction between hemiparasites and their hosts which can oscillate between parasitism and competition for light. In this minireview, we summarize methodical approaches and results of various studies dealing with carbon budget of hemiparasites and the ecological implications of carbon heterotrophy in hemiparasites. PMID:20729638

  14. Anthelmintic treatment alters the parasite community in a wild mouse host.

    PubMed

    Pedersen, Amy B; Antonovics, Janis

    2013-08-23

    Individuals are often co-infected with several parasite species, yet the consequences of drug treatment on the dynamics of parasite communities in wild populations have rarely been measured. Here, we experimentally reduced nematode infection in a wild mouse population and measured the effects on other non-target parasites. A single oral dose of the anthelmintic, ivermectin, significantly reduced nematode infection, but resulted in a reciprocal increase in other gastrointestinal parasites, specifically coccidial protozoans and cestodes. These results highlight the possibility that drug therapy may have unintended consequences for non-target parasites and that host-parasite dynamics cannot always be fully understood in the framework of single host-parasite interactions.

  15. Host-parasite coevolution and optimal mutation rates for semiconservative quasispecies

    NASA Astrophysics Data System (ADS)

    Brumer, Yisroel; Shakhnovich, Eugene I.

    2004-06-01

    In this paper, we extend a model of host-parasite coevolution to incorporate the semiconservative nature of DNA replication for both the host and the parasite. We find that the optimal mutation rate for the semiconservative and conservative hosts converge for realistic genome lengths, thus maintaining the admirable agreement between theory and experiment found previously for the conservative model and justifying the conservative approximation in some cases. We demonstrate that, while the optimal mutation rate for a conservative and semiconservative parasite interacting with a given immune system is similar to that of a conservative parasite, the properties away from this optimum differ significantly. We suspect that this difference, coupled with the requirement that a parasite optimize survival in a range of viable hosts, may help explain why semiconservative viruses are known to have significantly lower mutation rates than their conservative counterparts.

  16. Resource limitation alters the consequences of co-infection for both hosts and parasites.

    PubMed

    Budischak, Sarah A; Sakamoto, Kaori; Megow, Lindsey C; Cummings, Kelly R; Urban, Joseph F; Ezenwa, Vanessa O

    2015-06-01

    Most animals are concurrently infected with multiple parasite species and live in environments with fluctuating resource availability. Resource limitation can influence host immune responses and the degree of competition between co-infecting parasites, yet its effects on individual health and pathogen transmission have not been studied for co-infected hosts. To test how resource limitation affects immune trade-offs and co-infection outcomes, we conducted a factorial experiment using laboratory mice. Mice were given a standard or low protein diet, dosed with two species of helminths (alone and in combination), and then challenged with a microparasite. Using a community ecology trophic framework, we found that co-infection influenced parasite survival and reproduction via host immunity, but the magnitude and direction of responses depended on resources and the combination of co-infecting parasites. Our findings highlight that resources and their consequence for host defenses are a key context that shapes the magnitude and direction of parasite interactions.

  17. Superinfection and the coevolution of parasite virulence and host recovery.

    PubMed

    Kada, S; Lion, S

    2015-12-01

    Parasite strategies of host exploitation may be affected by host defence strategies and multiple infections. In particular, within-host competition between multiple parasite strains has been shown to select for higher virulence. However, little is known on how multiple infections could affect the coevolution between host recovery and parasite virulence. Here, we extend a coevolutionary model introduced by van Baalen (Proc. R. Soc. B, 265, 1998, 317) to account for superinfection. When the susceptibility to superinfection is low, we recover van Baalen's results and show that there are two potential evolutionary endpoints: one with avirulent parasites and poorly defended hosts, and another one with high virulence and high recovery. However, when the susceptibility to superinfection is above a threshold, the only possible evolutionary outcome is one with high virulence and high investment into defence. We also show that within-host competition may select for lower host recovery, as a consequence of selection for more virulent strains. We discuss how different parasite and host strategies (superinfection facilitation, competitive exclusion) as well as demographic and environmental parameters, such as host fecundity or various costs of defence, may affect the interplay between multiple infections and host-parasite coevolution. Our model shows the interplay between coevolutionary dynamics and multiple infections may be affected by crucial mechanistic or ecological details.

  18. Thermal Change and the Dynamics of Multi-Host Parasite Life Cycles in Aquatic Ecosystems

    PubMed Central

    Barber, Iain; Berkhout, Boris W.; Ismail, Zalina

    2016-01-01

    Altered thermal regimes associated with climate change are impacting significantly on the physical, chemical, and biological characteristics of the Earth’s natural ecosystems, with important implications for the biology of aquatic organisms. As well as impacting the biology of individual species, changing thermal regimes have the capacity to mediate ecological interactions between species, and the potential for climate change to impact host–parasite interactions in aquatic ecosystems is now well recognized. Predicting what will happen to the prevalence and intensity of infection of parasites with multiple hosts in their life cycles is especially challenging because the addition of each additional host dramatically increases the potential permutations of response. In this short review, we provide an overview of the diverse routes by which altered thermal regimes can impact the dynamics of multi-host parasite life cycles in aquatic ecosystems. In addition, we examine how experimentally amenable host–parasite systems are being used to determine the consequences of changing environmental temperatures for these different types of mechanism. Our overarching aim is to examine the potential of changing thermal regimes to alter not only the biology of hosts and parasites, but also the biology of interactions between hosts and parasites. We also hope to illustrate the complexity that is likely to be involved in making predictions about the dynamics of infection by multi-host parasites in thermally challenged aquatic ecosystems. PMID:27252219

  19. Interactions of warming and exposure affect susceptibility to parasite infection in a temperate fish species.

    PubMed

    Sheath, Danny J; Andreou, Demetra; Britton, J Robert

    2016-09-01

    Predicting how elevated temperatures from climate change alter host-parasite interactions requires understandings of how warming affects host susceptibility and parasite virulence. Here, the effect of elevated water temperature and parasite exposure level was tested on parasite prevalence, abundance and burden, and on fish growth, using Pomphorhynchus laevis and its fish host Squalius cephalus. At 60 days post-exposure, prevalence was higher at the elevated temperature (22 °C) than ambient temperature (18 °C), with infections achieved at considerably lower levels of exposure. Whilst parasite number was significantly higher in infected fish at 22 °C, both mean parasite weight and parasite burden was significantly higher at 18 °C. There were, however, no significant relationships between fish growth rate and temperature, parasite exposure, and the infection parameters. Thus, whilst elevated temperature significantly influenced parasite infection rates, it also impacted parasite development rates, suggesting warming could have complex implications for parasite dynamics and host resistance.

  20. Parasite transmission in complex communities: predators and alternative hosts alter pathogenic infections in amphibians.

    PubMed

    Orlofske, Sarah A; Jadin, Robert C; Preston, Daniel L; Johnson, Pieter T J

    2012-06-01

    While often studied in isolation, host-parasite interactions are typically embedded within complex communities. Other community members, including predators and alternative hosts, can therefore alter parasite transmission (e.g., the dilution effect), yet few studies have experimentally evaluated more than one such mechanism. Here, we used data from natural wetlands to design experiments investigating how alternative hosts and predators of parasites mediate trematode (Ribeiroia ondatrae) infection in a focal amphibian host (Pseudacris regilla). In short-term predation bioassays involving mollusks, zooplankton, fish, larval insects, or newts, four of seven tested species removed 62-93% of infectious stages. In transmission experiments, damselfly nymphs (predators) and newt larvae (alternative hosts) reduced infection in P. regilla tadpoles by -50%, whereas mosquitofish (potential predators and alternative hosts) did not significantly influence transmission. Additional bioassays indicated that predators consumed parasites even in the presence of alternative prey. In natural wetlands, newts had similar infection intensities as P. regilla, suggesting that they commonly function as alternative hosts despite their unpalatability to downstream hosts, whereas mosquitofish had substantially lower infection intensities and are unlikely to function as hosts. These results underscore the importance of studying host-parasite interactions in complex communities and of broadly linking research on predation, biodiversity loss, and infectious diseases.

  1. Impact of host nutritional status on infection dynamics and parasite virulence in a bird-malaria system.

    PubMed

    Cornet, Stéphane; Bichet, Coraline; Larcombe, Stephen; Faivre, Bruno; Sorci, Gabriele

    2014-01-01

    Host resources can drive the optimal parasite exploitation strategy by offering a good or a poor environment to pathogens. Hosts living in resource-rich habitats might offer a favourable environment to developing parasites because they provide a wealth of resources. However, hosts living in resource-rich habitats might afford a higher investment into costly immune defences providing an effective barrier against infection. Understanding how parasites can adapt to hosts living in habitats of different quality is a major challenge in the light of the current human-driven environmental changes. We studied the role of nutritional resources as a source of phenotypic variation in host exploitation by the avian malaria parasite Plasmodium relictum. We investigated how the nutritional status of birds altered parasite within-host dynamics and virulence, and how the interaction between past and current environments experienced by the parasite accounts for the variation in the infection dynamics. Experimentally infected canaries were allocated to control or supplemented diets. Plasmodium parasites experiencing the two different environments were subsequently transmitted in a full-factorial design to new hosts reared under similar control or supplemented diets. Food supplementation was effective since supplemented hosts gained body mass during a 15-day period that preceded the infection. Host nutrition had strong effects on infection dynamics and parasite virulence. Overall, parasites were more successful in control nonsupplemented birds, reaching larger population sizes and producing more sexual (transmissible) stages. However, supplemented hosts paid a higher cost of infection, and when keeping parasitaemia constant, they had lower haematocrit than control hosts. Parasites grown on control hosts were better able to exploit the subsequent hosts since they reached higher parasitaemia than parasites originating from supplemented hosts. They were also more virulent since they

  2. Homage to Linnaeus: How many parasites? How many hosts?

    PubMed Central

    Dobson, Andy; Lafferty, Kevin D.; Kuris, Armand M.; Hechinger, Ryan F.; Jetz, Walter

    2008-01-01

    Estimates of the total number of species that inhabit the Earth have increased significantly since Linnaeus's initial catalog of 20,000 species. The best recent estimates suggest that there are ≈6 million species. More emphasis has been placed on counts of free-living species than on parasitic species. We rectify this by quantifying the numbers and proportion of parasitic species. We estimate that there are between 75,000 and 300,000 helminth species parasitizing the vertebrates. We have no credible way of estimating how many parasitic protozoa, fungi, bacteria, and viruses exist. We estimate that between 3% and 5% of parasitic helminths are threatened with extinction in the next 50 to 100 years. Because patterns of parasite diversity do not clearly map onto patterns of host diversity, we can make very little prediction about geographical patterns of threat to parasites. If the threats reflect those experienced by avian hosts, then we expect climate change to be a major threat to the relatively small proportion of parasite diversity that lives in the polar and temperate regions, whereas habitat destruction will be the major threat to tropical parasite diversity. Recent studies of food webs suggest that ≈75% of the links in food webs involve a parasitic species; these links are vital for regulation of host abundance and potentially for reducing the impact of toxic pollutants. This implies that parasite extinctions may have unforeseen costs that impact the health and abundance of a large number of free-living species. PMID:18695218

  3. Brood parasite eggs enhance egg survivorship in a multiply parasitized host

    PubMed Central

    Gloag, Ros; Fiorini, Vanina D.; Reboreda, Juan C.; Kacelnik, Alex

    2012-01-01

    Despite the costs to avian parents of rearing brood parasitic offspring, many species do not reject foreign eggs from their nests. We show that where multiple parasitism occurs, rejection itself can be costly, by increasing the risk of host egg loss during subsequent parasite attacks. Chalk-browed mockingbirds (Mimus saturninus) are heavily parasitized by shiny cowbirds (Molothrus bonariensis), which also puncture eggs in host nests. Mockingbirds struggle to prevent cowbirds puncturing and laying, but seldom remove cowbird eggs once laid. We filmed cowbird visits to nests with manipulated clutch compositions and found that mockingbird eggs were more likely to escape puncture the more cowbird eggs accompanied them in the clutch. A Monte Carlo simulation of this ‘dilution effect’, comparing virtual hosts that systematically either reject or accept parasite eggs, shows that acceptors enjoy higher egg survivorship than rejecters in host populations where multiple parasitism occurs. For mockingbirds or other hosts in which host nestlings fare well in parasitized broods, this benefit might be sufficient to offset the fitness cost of rearing parasite chicks, making egg acceptance evolutionarily stable. Thus, counterintuitively, high intensities of parasitism might decrease or even reverse selection pressure for host defence via egg rejection. PMID:22158956

  4. Brood parasite eggs enhance egg survivorship in a multiply parasitized host.

    PubMed

    Gloag, Ros; Fiorini, Vanina D; Reboreda, Juan C; Kacelnik, Alex

    2012-05-01

    Despite the costs to avian parents of rearing brood parasitic offspring, many species do not reject foreign eggs from their nests. We show that where multiple parasitism occurs, rejection itself can be costly, by increasing the risk of host egg loss during subsequent parasite attacks. Chalk-browed mockingbirds (Mimus saturninus) are heavily parasitized by shiny cowbirds (Molothrus bonariensis), which also puncture eggs in host nests. Mockingbirds struggle to prevent cowbirds puncturing and laying, but seldom remove cowbird eggs once laid. We filmed cowbird visits to nests with manipulated clutch compositions and found that mockingbird eggs were more likely to escape puncture the more cowbird eggs accompanied them in the clutch. A Monte Carlo simulation of this 'dilution effect', comparing virtual hosts that systematically either reject or accept parasite eggs, shows that acceptors enjoy higher egg survivorship than rejecters in host populations where multiple parasitism occurs. For mockingbirds or other hosts in which host nestlings fare well in parasitized broods, this benefit might be sufficient to offset the fitness cost of rearing parasite chicks, making egg acceptance evolutionarily stable. Thus, counterintuitively, high intensities of parasitism might decrease or even reverse selection pressure for host defence via egg rejection.

  5. The evolution of host specialisation in avian brood parasites.

    PubMed

    Medina, Iliana; Langmore, Naomi E

    2016-09-01

    Traditional ecological theory predicts that specialisation can promote speciation; hence, recently derived species are specialists. However, an alternative view is that new species have broad niches, which become narrower and specialised over time. Here, we test these hypotheses using avian brood parasites and three different measures of host specialisation. Brood parasites provide an ideal system in which to investigate the evolution of specialisation, because some exploit more than 40 host species and others specialise on only one. We find that young brood parasite species are smaller and specialise on a narrower range of host sizes, as expected, if specialisation is linked with the generation of new species. Moreover, we show that highly virulent parasites are more specialised, supporting findings in other host-parasite systems. Finally, we demonstrate that different measures of specialisation can lead to different conclusions, and specialisation indices should be designed taking into account the biology of each system. PMID:27417381

  6. Within-host competition and diversification of macro-parasites.

    PubMed

    Guilhem, Rascalou; Simková, Andrea; Morand, Serge; Gourbière, Sébastien

    2012-11-01

    Although competitive speciation is more and more regarded as a plausible mechanism for sympatric speciation of non-parasite species, virtually no empirical or theoretical study has considered this evolutionary process to explain intra-host diversification of parasites. We expanded the theory of competitive speciation to parasite species looking at the effect of macro-parasite life history on the conditions for sympatric speciation under the so-called pleiotropic scenario. We included within-host competition in the classical Anderson and May framework assuming that individuals exploit within-host resources according to a quantitative trait. We derived the invasion fitness function of mutants considering different distributions of individuals among hosts. Although the mutant fitness depends on parameters describing the key features of macro-parasite life history, and on the relative distributions of mutant and residents in hosts, the conditions for competitive speciation of macro-parasites are exactly the same as those previously established for free-living species. As an interesting by-product, within-host competitive speciation is expected not to depend on the aggregation level of the parasites. This theoretical pattern is confirmed by comparing the speciation rate of weakly and strongly aggregated monogenean parasites.

  7. Disentangling the influence of parasite genotype, host genotype and maternal environment on different stages of bacterial infection in Daphnia magna.

    PubMed

    Hall, Matthew D; Ebert, Dieter

    2012-08-22

    Individuals naturally vary in the severity of infectious disease when exposed to a parasite. Dissecting this variation into genetic and environmental components can reveal whether or not this variation depends on the host genotype, parasite genotype or a range of environmental conditions. Complicating this task, however, is that the symptoms of disease result from the combined effect of a series of events, from the initial encounter between a host and parasite, through to the activation of the host immune system and the exploitation of host resources. Here, we use the crustacean Daphnia magna and its parasite Pasteuria ramosa to show how disentangling genetic and environmental factors at different stages of infection improves our understanding of the processes shaping infectious disease. Using compatible host-parasite combinations, we experimentally exclude variation in the ability of a parasite to penetrate the host, from measures of parasite clearance, the reduction in host fecundity and the proliferation of the parasite. We show how parasite resistance consists of two components that vary in environmental sensitivity, how the maternal environment influences all measured aspects of the within-host infection process and how host-parasite interactions following the penetration of the parasite into the host have a distinct temporal component.

  8. Trypanosoma cruzi parasites fight for control of the JAK-STAT pathway by disarming their host

    PubMed Central

    Stahl, Philipp; Schwarz, Ralph T; Debierre-Grockiego, Françoise; Meyer, Thomas

    2014-01-01

    The zoonotic Chagas’ disease is caused by infections with the hemoflagellate Trypanosoma cruzi (T. cruzi) which is endemic in Latin America. Despite recent advances in our understanding of the pathogenesis of the disease, the underlying molecular processes involved in host-parasite interactions are only poorly understood. In particular, the mechanisms for parasite persistence in host cells remain largely unknown. Cytokine-driven transcription factors from the family of STAT (signal transducer and activator of transcription) proteins appear to play a central role in the fight against T. cruzi infection. However, amastigotes proliferating in the cytoplasm of infected host cells develop effective strategies to circumvent the attack executed by STAT proteins. This review highlights the interactions between T. cruzi parasites and human host cells in terms of cytokine signaling and, in particular, discusses the impact of STATs on the balance between parasite invasion and clearance. PMID:26413423

  9. Selection by parasites may increase host recombination frequency.

    PubMed

    Fischer, O; Schmid-Hempel, P

    2005-06-22

    Meiotic recombination destroys successful genotypes and it is therefore thought to evolve only under a very limited set of conditions. Here, we experimentally show that recombination rates across two linkage groups of the host, the red flour beetle Tribolium castaneum, increase with exposure to the microsporidian parasite, Nosema whitei, particularly when parasites were allowed to coevolve with their hosts. Selection by randomly varied parasites resulted in smaller effects, while directional selection for insecticide resistance initially reduced recombination slightly. These results, at least tentatively, suggest that short-term benefits of recombination--and thus the evolution of sex--may be related to parasitism.

  10. Can caterpillar density or host-plant quality explain host-plant-related parasitism of a generalist forest caterpillar assemblage?

    PubMed

    Farkas, Timothy E; Singer, Michael S

    2013-11-01

    Herbivore-carnivore interactions are influenced by the plants on which herbivores feed. Accordingly, dietary generalist herbivores have been shown to experience differential risk of mortality from carnivores on different host-plant species. Here, we investigate whether caterpillar density and host-plant quality play a role in driving variation in generalist forest caterpillar mortality from insect parasitoids using a large-scale, multi-year observational study. A total of 4,500 polyphagous caterpillars were collected from eight host-tree species in Connecticut deciduous forests over 5 years, and frequencies of mortality from insect parasitoids (flies and wasps) were compared across the eight host-plant species for the entire generalist caterpillar assemblage (76 species). Separate comparisons were made using seven numerically dominant generalist species, allowing us to account for variation in caterpillar species-specific parasitism risk. We find significant variation in parasitism frequencies of generalist caterpillars across the eight host-plant species when accounting for variation in caterpillar density. We find no support for an influence of caterpillar density on parasitism and no clear evidence for an effect of host-plant quality on parasitism. Therefore, the results of this study discount the hypotheses that variation in caterpillar density and host-plant quality are responsible for variation in parasitism frequencies across host-plant species. Instead, our findings point to other plant-related characteristics, such as plant-derived parasitoid attractants, which may have robust, community-wide effects.

  11. Gene expression patterns underlying parasite-induced alterations in host behaviour and life history.

    PubMed

    Feldmeyer, Barbara; Mazur, Johanna; Beros, Sara; Lerp, Hannes; Binder, Harald; Foitzik, Susanne

    2016-01-01

    Many parasites manipulate their hosts' phenotype. In particular, parasites with complex life cycles take control of their intermediate hosts' behaviour and life history to increase transmission to their definitive host. The proximate mechanisms underlying these parasite-induced alterations are poorly understood. The cestode Anomotaenia brevis affects the behaviour, life history and morphology of parasitized Temnothorax nylanderi ants and indirectly of their unparasitized nestmates. To gain insights on how parasites alter host phenotypes, we contrast brain gene expression patterns of T. nylanderi workers parasitized with the cestode, their unparasitized nestmates and unparasitized workers from unparasitized colonies. Over 400 differentially expressed genes between the three groups were identified, with most uniquely expressed genes detected in parasitized workers. Among these are genes that can be linked to the increased lifespan of parasitized workers. Furthermore, many muscle (functionality) genes are downregulated in these workers, potentially causing the observed muscular deformations and their inactive behaviour. Alterations in lifespan and activity could be adaptive for the parasite by increasing the likelihood that infected workers residing in acorns are eaten by their definitive host, a woodpecker. Our transcriptome analysis reveals numerous gene expression changes in parasitized workers and their uninfected nestmates and indicates possible routes of parasite manipulation. Although causality still needs to be established, parasite-induced alterations in lifespan and host behaviour appear to be partly explained by morphological muscle atrophy instead of central nervous system interference, which is often the core of behavioural regulation. Results of this study will shed light upon the molecular basis of antagonistic species interactions.

  12. Gene expression patterns underlying parasite-induced alterations in host behaviour and life history.

    PubMed

    Feldmeyer, Barbara; Mazur, Johanna; Beros, Sara; Lerp, Hannes; Binder, Harald; Foitzik, Susanne

    2016-01-01

    Many parasites manipulate their hosts' phenotype. In particular, parasites with complex life cycles take control of their intermediate hosts' behaviour and life history to increase transmission to their definitive host. The proximate mechanisms underlying these parasite-induced alterations are poorly understood. The cestode Anomotaenia brevis affects the behaviour, life history and morphology of parasitized Temnothorax nylanderi ants and indirectly of their unparasitized nestmates. To gain insights on how parasites alter host phenotypes, we contrast brain gene expression patterns of T. nylanderi workers parasitized with the cestode, their unparasitized nestmates and unparasitized workers from unparasitized colonies. Over 400 differentially expressed genes between the three groups were identified, with most uniquely expressed genes detected in parasitized workers. Among these are genes that can be linked to the increased lifespan of parasitized workers. Furthermore, many muscle (functionality) genes are downregulated in these workers, potentially causing the observed muscular deformations and their inactive behaviour. Alterations in lifespan and activity could be adaptive for the parasite by increasing the likelihood that infected workers residing in acorns are eaten by their definitive host, a woodpecker. Our transcriptome analysis reveals numerous gene expression changes in parasitized workers and their uninfected nestmates and indicates possible routes of parasite manipulation. Although causality still needs to be established, parasite-induced alterations in lifespan and host behaviour appear to be partly explained by morphological muscle atrophy instead of central nervous system interference, which is often the core of behavioural regulation. Results of this study will shed light upon the molecular basis of antagonistic species interactions. PMID:26615010

  13. The costs of avian brood parasitism explain variation in egg rejection behaviour in hosts.

    PubMed

    Medina, Iliana; Langmore, Naomi E

    2015-07-01

    Many bird species can reject foreign eggs from their nests. This behaviour is thought to have evolved in response to brood parasites, birds that lay their eggs in the nest of other species. However, not all hosts of brood parasites evict parasitic eggs. In this study, we collate data from egg rejection experiments on 198 species, and perform comparative analyses to understand the conditions under which egg rejection evolves. We found evidence, we believe for the first time in a large-scale comparative analysis, that (i) non-current host species have rejection rates as high as current hosts, (ii) egg rejection is more likely to evolve when the parasite is relatively large compared with its host and (iii) egg rejection is more likely to evolve when the parasite chick evicts all the host eggs from the nest, such as in cuckoos. Our results suggest that the interactions between brood parasites and their hosts have driven the evolution of egg rejection and that variation in the costs inflicted by parasites is fundamental to explaining why only some host species evolve egg rejection.

  14. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    PubMed

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  15. Host Lipid Bodies as Platforms for Intracellular Survival of Protozoan Parasites.

    PubMed

    Toledo, Daniel A M; D'Avila, Heloísa; Melo, Rossana C N

    2016-01-01

    Pathogens induce several changes in the host cell signaling and trafficking mechanisms in order to evade and manipulate the immune response. One prominent pathogen-mediated change is the formation of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in the host cell cytoplasm. Protozoan parasites, which contribute expressively to the burden of infectious diseases worldwide, are able to induce LB genesis in non-immune and immune cells, mainly macrophages, key players in the initial resistance to the infection. Under host-parasite interaction, LBs not only accumulate in the host cytoplasm but also relocate around and move into parasitophorous vacuoles. There is increasing evidence that protozoan parasites may target host-derived LBs either for gaining nutrients or for escaping the host immune response. Newly formed, parasite-induced LBs may serve as lipid sources for parasite growth and also produce inflammatory mediators that potentially act in the host immune response deactivation. In this mini review, we summarize current knowledge on the formation and role of host LBs as sites exploited by intracellular protozoan parasites as a strategy to maintain their own survival.

  16. Parasitic castration by Xenos vesparum depends on host gender.

    PubMed

    Cappa, Federico; Manfredini, Fabio; Dallai, Romano; Gottardo, Marco; Beani, Laura

    2014-07-01

    Host castration represents a mechanism used by parasites to exploit energy resources from their hosts by interfering with their reproductive development or to extend host lifespan by removing risks associated with reproductive activity. One of the most intriguing groups of parasitic castrators is represented by the insects belonging to the order Strepsiptera. The macroparasite Xenos vesparum can produce dramatic phenotypic alterations in its host, the paper wasp Polistes dominula. Parasitized female wasps have undeveloped ovaries and desert the colony without performing any social task. However, very little attention has been given to the parasitic impact of X. vesparum on the male phenotype. Here, we investigated the effects of this parasite on the sexual behaviour and the morpho-physiology of P. dominula males. We found that, differently from female wasps, parasitized males are not heavily affected by Xenos: they maintain their sexual behaviour and ability to discriminate between female castes. Furthermore, the structure of their reproductive apparatus is not compromised by the parasite. We think that our results, demonstrating that the definition of X. vesparum as a parasitoid does not apply to infected males of P. dominula, provide a new perspective to discuss and maybe reconsider the traditional view of strepsipteran parasites. PMID:24776461

  17. Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants

    PubMed Central

    Hughes, William OH; Petersen, Klaus S; Ugelvig, Line V; Pedersen, Dorthe; Thomsen, Lene; Poulsen, Michael; Boomsma, Jacobus J

    2004-01-01

    Background Parasite heterogeneity and within-host competition are thought to be important factors influencing the dynamics of host-parasite relationships. Yet, while there have been many theoretical investigations of how these factors may act, empirical data is more limited. We investigated the effects of parasite density and heterogeneity on parasite virulence and fitness using four strains of the entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, and its leaf-cutting ant host Acromyrmex echinatior as the model system. Results The relationship between parasite density and infection was sigmoidal, with there being an invasion threshold for an infection to occur (an Allee effect). Although spore production was positively density-dependent, parasite fitness decreased with increasing parasite density, indicating within-host scramble competition. The dynamics differed little between the four strains tested. In mixed infections of three strains the infection-growth dynamics were unaffected by parasite heterogeneity. Conclusions The strength of within-host competition makes dispersal the best strategy for the parasite. Parasite heterogeneity may not have effected virulence or the infection dynamics either because the most virulent strain outcompeted the others, or because the interaction involved scramble competition that was impervious to parasite heterogeneity. The dynamics observed may be common for virulent parasites, such as Metarhizium, that produce aggregated transmission stages. Such parasites make useful models for investigating infection dynamics and the impact of parasite competition. PMID:15541185

  18. The immunological balance between host and parasite in malaria.

    PubMed

    Deroost, Katrien; Pham, Thao-Thy; Opdenakker, Ghislain; Van den Steen, Philippe E

    2016-03-01

    Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.

  19. Parasite-induced aggression and impaired contest ability in a fish host

    PubMed Central

    2010-01-01

    Background Success of trophically transmitted parasites depends to a great extent on their ability to manipulate their intermediate hosts in a way that makes them easier prey for target hosts. Parasite-induced behavioural changes are the most spectacular and diverse examples of manipulation. Most of the studies have been focused on individual behaviour of hosts including fish. We suggest that agonistic interactions and territoriality in fish hosts may affect their vulnerability to predators and thus the transmission efficiency of trophically transmitted parasites. The parasite Diplostomum spathaceum (Trematoda) and juvenile rainbow trout, Oncorhynchus mykiss, were used to study whether infection can alter aggression rates and territorial behaviour of intermediate fish hosts. Results The changes in behaviour of rainbow trout, Oncorhynchus mykiss, infected with an eye fluke Diplostomum spathaceum (Trematoda), was monitored over the course of an experimental infection for 1.5 months. At the beginning of their development, not yet infective D. spathaceum metacercariae decreased the aggressiveness of rainbow trout. By the time that metacercariae were fully infective to their definitive hosts, the aggressiveness increased and exceeded that of control fish. Despite the increased aggressiveness, the experimentally infected fish lost contests for a territory (dark parts of the bottom) against the control fish. Conclusions The results obtained indicate that the parasitized fish pay the cost of aggressiveness without the benefit of acquiring a territory that would provide them with better protection against predators. This behaviour should increase transmission of the parasite as expected by the parasite manipulation hypothesis. PMID:20226098

  20. Coevolution of an avian host and its parasitic cuckoo.

    PubMed

    Servedio, Maria R; Lande, Russell

    2003-05-01

    We use a quantitative genetic model to examine the coevolution of host and cuckoo egg characters (termed "size" as a proxy for general appearance), host discrimination, and host and cuckoo population dynamics. A host decides whether to discard an egg using a comparison of the sizes of the eggs in her nest, which changes as host and cuckoo eggs evolve. Specifically, we assume that the probability that she discards the largest egg in her nest depends on how much larger it is than the second largest egg. This decision rule (i.e., the acceptable difference in egg sizes) also evolves, changing both the chance of successful rejection of a cuckoo egg in parasitized nests and the chance of mistaken rejection of a host egg in both parasitized and unparasitized nests. We find a stable equilibrium for coexistence of the host and cuckoo where there is cuckoo egg mimicry, evolutionary displacement of the host egg away from the cuckoo egg phenotype, and host discrimination against unusual eggs. Both host discrimination and host egg displacement are fairly weak at the equilibrium. Cuckoo egg mimicry, although imperfect, usually evolves more extensively and quickly than the responses of the host. Our model provides evidence for both the evolutionary equilibrium and evolutionary lag hypotheses of host acceptance of parasitic eggs.

  1. Regulation of the host immune system by helminth parasites.

    PubMed

    Maizels, Rick M; McSorley, Henry J

    2016-09-01

    Helminth parasite infections are associated with a battery of immunomodulatory mechanisms that affect all facets of the host immune response to ensure their persistence within the host. This broad-spectrum modulation of host immunity has intended and unintended consequences, both advantageous and disadvantageous. Thus the host can benefit from suppression of collateral damage during parasite infection and from reduced allergic, autoimmune, and inflammatory reactions. However, helminth infection can also be detrimental in reducing vaccine responses, increasing susceptibility to coinfection and potentially reducing tumor immunosurveillance. In this review we will summarize the panoply of immunomodulatory mechanisms used by helminths, their potential utility in human disease, and prospective areas of future research. PMID:27476889

  2. Selection and refinement: the malaria parasite's infection and exploitation of host hepatocytes.

    PubMed

    Kaushansky, Alexis; Kappe, Stefan Hi

    2015-08-01

    Plasmodium parasites belong to the Apicomplexan phylum, which consists mostly of obligate intracellular pathogens that vary dramatically in host cell tropism. Plasmodium sporozoites are highly hepatophilic. The specific molecular mechanisms, which facilitate sporozoite selection and successful infection of hepatocytes, remain poorly defined. Here, we discuss the parasite and host factors which are critical to hepatocyte infection. We derive a model where sporozoites initially select host cells that constitute a permissive environment and then further refine the chosen hepatocyte during liver stage development, ensuring life cycle progression. While many unknowns of pre-erythrocytic infection remain, advancing models and technologies that enable analysis of human malaria parasites and of single infected cells will catalyze a comprehensive understanding of the interaction between the malaria parasite and its hepatocyte host. PMID:26102161

  3. Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteria‐phage system

    PubMed Central

    Betts, Alex; Gifford, Danna R.; MacLean, R. Craig; King, Kayla C.

    2016-01-01

    Host–parasite evolutionary interactions are typically considered in a pairwise species framework. However, natural infections frequently involve multiple parasites. Altering parasite diversity alters ecological and evolutionary dynamics as parasites compete and hosts resist multiple infection. We investigated the effects of parasite diversity on host–parasite population dynamics and evolution using the pathogen Pseudomonas aeruginosa and five lytic bacteriophage parasites. To manipulate parasite diversity, bacterial populations were exposed for 24 hours to either phage monocultures or diverse communities containing up to five phages. Phage communities suppressed host populations more rapidly but also showed reduced phage density, likely due to interphage competition. The evolution of resistance allowed rapid bacterial recovery that was greater in magnitude with increases in phage diversity. We observed no difference in the extent of resistance with increased parasite diversity, but there was a profound impact on the specificity of resistance; specialized resistance evolved to monocultures through mutations in a diverse set of genes. In summary, we demonstrate that parasite diversity has rapid effects on host–parasite population dynamics and evolution by selecting for different resistance mutations and affecting the magnitude of bacterial suppression and recovery. Finally, we discuss the implications of phage diversity for their use as biological control agents. PMID:27005577

  4. Host-specific races in the holoparasitic angiosperm Orobanche minor: implications for speciation in parasitic plants

    PubMed Central

    Thorogood, C. J.; Rumsey, F. J.; Hiscock, S. J.

    2009-01-01

    Background and Aims Orobanche minor is a root-holoparasitic angiosperm that attacks a wide range of host species, including a number of commonly cultivated crops. The extent to which genetic divergence among natural populations of O. minor is influenced by host specificity has not been determined previously. Here, the host specificity of natural populations of O. minor is quantified for the first time, and evidence that this species may comprise distinct physiological races is provided. Methods A tripartite approach was used to examine the physiological basis for the divergence of populations occurring on different hosts: (1) host–parasite interactions were cultivated in rhizotron bioassays in order to quantify the early stages of the infection and establishment processes; (2) using reciprocal-infection experiments, parasite races were cultivated on their natural and alien hosts, and their fitness determined in terms of biomass; and (3) the anatomy of the host–parasite interface was investigated using histochemical techniques, with a view to comparing the infection process on different hosts. Key Results Races occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota ssp. gummifer) showed distinct patterns of host specificity: parasites cultivated in cross-infection studies showed a higher fitness on their natural hosts, suggesting that races show local adaptation to specific hosts. In addition, histological evidence suggests that clover and carrot roots vary in their responses to infection. Different root anatomy and responses to infection may underpin a physiological basis for host specificity. Conclusions It is speculated that host specificity may isolate races of Orobanche on different hosts, accelerating divergence and ultimately speciation in this genus. The rapid life cycle and broad host range of O. minor make this species an ideal model with which to study the interactions of parasitic plants with their host associates. PMID

  5. Manipulation of host behaviour by parasites: a weakening paradigm?

    PubMed Central

    Poulin, R

    2000-01-01

    New scientific paradigms often generate an early wave of enthusiasm among researchers and a barrage of studies seeking to validate or refute the newly proposed idea. All else being equal, the strength and direction of the empirical evidence being published should not change over time, allowing one to assess the generality of the paradigm based on the gradual accumulation of evidence. Here, I examine the relationship between the magnitude of published quantitative estimates of parasite-induced changes in host behaviour and year of publication from the time the adaptive host manipulation hypothesis was first proposed. Two independent data sets were used, both originally gathered for other purposes. First, across 137 comparisons between the behaviour of infected and uninfected hosts, the estimated relative influence of parasites correlated negatively with year of publication. This effect was contingent upon the transmission mode of the parasites studied. The negative relationship was very strong among studies of parasites which benefit from host manipulation (transmission to the next host occurs by predation on an infected intermediate host), i.e. among studies which were explicit tests of the adaptive manipulation hypothesis. There was no correlation with year of publication among studies on other types of parasites which do not seem to receive benefits from host manipulation. Second, among 14 estimates of the relative, parasite-mediated increase in transmission rate (i.e. increases in predation rates by definitive hosts on intermediate hosts), the estimated influence of parasites again correlated negatively with year of publication. These results have several possible explanations, but tend to suggest biases with regard to what results are published through time as accepted paradigms changed. PMID:10819148

  6. Host Lipid Bodies as Platforms for Intracellular Survival of Protozoan Parasites

    PubMed Central

    Toledo, Daniel A. M.; D’Avila, Heloísa; Melo, Rossana C. N.

    2016-01-01

    Pathogens induce several changes in the host cell signaling and trafficking mechanisms in order to evade and manipulate the immune response. One prominent pathogen-mediated change is the formation of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in the host cell cytoplasm. Protozoan parasites, which contribute expressively to the burden of infectious diseases worldwide, are able to induce LB genesis in non-immune and immune cells, mainly macrophages, key players in the initial resistance to the infection. Under host–parasite interaction, LBs not only accumulate in the host cytoplasm but also relocate around and move into parasitophorous vacuoles. There is increasing evidence that protozoan parasites may target host-derived LBs either for gaining nutrients or for escaping the host immune response. Newly formed, parasite-induced LBs may serve as lipid sources for parasite growth and also produce inflammatory mediators that potentially act in the host immune response deactivation. In this mini review, we summarize current knowledge on the formation and role of host LBs as sites exploited by intracellular protozoan parasites as a strategy to maintain their own survival. PMID:27199996

  7. Swimming against the current: genetic structure, host mobility and the drift paradox in trematode parasites.

    PubMed

    Blasco-Costa, I; Waters, J M; Poulin, R

    2012-01-01

    Life-cycle characteristics and habitat processes can potentially interact to determine gene flow and genetic structuring of parasitic species. In this comparative study, we analysed the genetic structure of two freshwater trematode species with different life histories using cytochrome c oxidase I gene (COI) sequences and examined the effect of a unidirectional river current on their genetic diversity at 10 sites along the river. We found moderate genetic structure consistent with an isolation-by-distance pattern among subpopulations of Coitocaecum parvum but not in Stegodexamene anguillae. These contrasting parasite population structures were consistent with the relative dispersal abilities of their most mobile hosts (i.e. their definitive hosts). Genetic diversity decreased, as a likely consequence of unidirectional river flow, with increasing distance upstream in C. parvum, which utilizes a definitive host with only restricted mobility. The absence of such a pattern in S. anguillae suggests that unidirectional river flow affects parasite species differently depending on the dispersal abilities of their most mobile host. In conclusion, genetic structure, genetic diversity loss and drift are stronger in parasites whose most mobile hosts have low dispersal abilities and small home ranges. An additional prediction can be made for parasites under unidirectional drift: those parasites that stay longer in their benthic intermediate host or have more than one benthic intermediate hosts would have relatively high local recruitment and hence increased retention of upstream genetic diversity.

  8. High intervality explained by phylogenetic constraints in host-parasite webs.

    PubMed

    Mouillot, David; Krasnov, Boris R; Poulin, Robert

    2008-07-01

    The finding of invariant structures in species interaction webs is of central importance for ecology, with the greatest challenge remaining the elucidation of the processes governing these universal web patterns. Here we quantify the degree of intervality of seven fish-metazoan and 33 mammal-flea webs, i.e., the number of irreducible gaps in parasite diets along the host spectrum, and then challenge the idea that some invariant structures may emerge in host-parasite webs. Using a null model of random links between parasite and host species we find that empirical host-parasite webs exhibit a strong bias toward contiguity of parasite diet, i.e., toward intervality. Going one step further, we demonstrate that a null model with phylogenetic constraints on host-parasite links produced webs very similar to empirical ones, particularly when phylogenetic constraints occur at the family level, that is, when two hosts from the same family are more likely to be infected than two random hosts. In addition, we propose a new standardized measure of intervality which describes a novel "facet" of natural networks as it is independent of connectance or web size. We suggest using this measure as a surrogate of web maturity or saturation as phylogenetic constraints can drive webs toward intervality.

  9. Glycoconjugates in Host-Helminth Interactions

    PubMed Central

    Prasanphanich, Nina Salinger; Mickum, Megan L.; Heimburg-Molinaro, Jamie; Cummings, Richard D.

    2013-01-01

    Helminths are multicellular parasitic worms that comprise a major class of human pathogens and cause an immense amount of suffering worldwide. Helminths possess an abundance of complex and unique glycoconjugates that interact with both the innate and adaptive arms of immunity in definitive and intermediate hosts. These glycoconjugates represent a major untapped reservoir of immunomodulatory compounds, which have the potential to treat autoimmune and inflammatory disorders, and antigenic glycans, which could be exploited as vaccines and diagnostics. This review will survey current knowledge of the interactions between helminth glycans and host immunity and highlight the gaps in our understanding which are relevant to advancing therapeutics, vaccine development, and diagnostics. PMID:24009607

  10. Brood parasites lay eggs matching the appearance of host clutches

    PubMed Central

    Honza, Marcel; Šulc, Michal; Jelínek, Václav; Požgayová, Milica; Procházka, Petr

    2014-01-01

    Interspecific brood parasitism represents a prime example of the coevolutionary arms race where each party has evolved strategies in response to the other. Here, we investigated whether common cuckoos (Cuculus canorus) actively select nests within a host population to match the egg appearance of a particular host clutch. To achieve this goal, we quantified the degree of egg matching using the avian vision modelling approach. Randomization tests revealed that cuckoo eggs in naturally parasitized nests showed lower chromatic contrast to host eggs than those assigned randomly to other nests with egg-laying date similar to naturally parasitized clutches. Moreover, egg matching in terms of chromaticity was better in naturally parasitized nests than it would be in the nests of the nearest active non-parasitized neighbour. However, there was no indication of matching in achromatic spectral characteristics whatsoever. Thus, our results clearly indicate that cuckoos select certain host nests to increase matching of their own eggs with host clutches, but only in chromatic characteristics. Our results suggest that the ability of cuckoos to actively choose host nests based on the eggshell appearance imposes a strong selection pressure on host egg recognition. PMID:24258721

  11. Diversity and patterns of interaction of an anuran-parasite network in a neotropical wetland.

    PubMed

    Campião, K M; Ribas, A; Tavares, L E R

    2015-12-01

    We describe the diversity and structure of a host-parasite network of 11 anuran species and their helminth parasites in the Pantanal wetland, Brazil. Specifically, we investigate how the heterogeneous use of space by hosts changes parasite community diversity, and how the local pool of parasites exploits sympatric host species of different habits. We examined 229 anuran specimens, interacting with 32 helminth parasite taxa. Mixed effect models indicated the influence of anuran body size, but not habit, as a determinant of parasite species richness. Variation in parasite taxonomic diversity, however, was not significantly correlated with host size or habit. Parasite community composition was not correlated with host phylogeny, indicating no strong effect of the evolutionary relationships among anurans on the similarities in their parasite communities. Host-parasite network showed a nested and non-modular pattern of interaction, which is probably a result of the low host specificity observed for most helminths in this study. Overall, we found host body size was important in determining parasite community richness, whereas low parasite specificity was important to network structure.

  12. Direct and indirect costs of co-infection in the wild: Linking gastrointestinal parasite communities, host hematology, and immune function☆

    PubMed Central

    Budischak, Sarah A.; Jolles, Anna E.; Ezenwa, Vanessa O.

    2012-01-01

    Most animals are concurrently infected with multiple parasites, and interactions among these parasites may influence both disease dynamics and host fitness. However, the sublethal costs of parasite infections are difficult to measure and the effects of concomitant infections with multiple parasite species on individual physiology and fitness are poorly described for wild hosts. To understand the direct and indirect physiological costs of co-infection, we investigated the relationships among gastrointestinal parasite richness, species identity, and abundance and host hematological parameters, body condition, and investment in lymphocyte defenses. Using aggregate-scale parasite data from African buffalo (Syncerus caffer), we found few direct or indirect associations between infection and hematology in male hosts, and no significant associations were observed in female hosts or with respect to body condition in either sex. These results suggest that only strong physiological effects are detectable with aggregate-scale parasite data, and that hematological variables may be more sensitive to changes in condition than standard body fat condition indices. Analyses accounting for parasite species identity in female buffalo revealed that different parasites show distinct relationships with host hematology, body condition, and immune investment. However, four of six species-specific associations were obscured when parasites were considered in combination. Overall, fitness-related physiological mediators such as hematological indices may provide assessments of direct and indirect effects of parasite infection, particularly when parasite species identity and community composition are considered. PMID:24533308

  13. Consistent pattern of local adaptation during an experimental heat wave in a pipefish-trematode host-parasite system.

    PubMed

    Landis, Susanne H; Kalbe, Martin; Reusch, Thorsten B H; Roth, Olivia

    2012-01-01

    Extreme climate events such as heat waves are expected to increase in frequency under global change. As one indirect effect, they can alter magnitude and direction of species interactions, for example those between hosts and parasites. We simulated a summer heat wave to investigate how a changing environment affects the interaction between the broad-nosed pipefish (Syngnathus typhle) as a host and its digenean trematode parasite (Cryptocotyle lingua). In a fully reciprocal laboratory infection experiment, pipefish from three different coastal locations were exposed to sympatric and allopatric trematode cercariae. In order to examine whether an extreme climatic event disrupts patterns of locally adapted host-parasite combinations we measured the parasite's transmission success as well as the host's adaptive and innate immune defence under control and heat wave conditions. Independent of temperature, sympatric cercariae were always more successful than allopatric ones, indicating that parasites are locally adapted to their hosts. Hosts suffered from heat stress as suggested by fewer cells of the adaptive immune system (lymphocytes) compared to the same groups that were kept at 18°C. However, the proportion of the innate immune cells (monocytes) was higher in the 18°C water. Contrary to our expectations, no interaction between host immune defence, parasite infectivity and temperature stress were found, nor did the pattern of local adaptation change due to increased water temperature. Thus, in this host-parasite interaction, the sympatric parasite keeps ahead of the coevolutionary dynamics across sites, even under increasing temperatures as expected under marine global warming.

  14. Giant Host Red Blood Cell Membrane Mimicking Polymersomes Bind Parasite Proteins and Malaria Parasites.

    PubMed

    Najer, Adrian; Thamboo, Sagana; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2016-01-01

    Malaria is an infectious disease that needs to be addressed using innovative approaches to counteract spread of drug resistance and to establish or optimize vaccination strategies. With our approach, we aim for a dual action with drug- and 'vaccine-like' activity against malaria. By inhibiting entry of malaria parasites into host red blood cells (RBCs) - using polymer vesicle-based (polymersome) nanomimics of RBC membranes - the life cycle of the parasite is interrupted and the exposed parasites are accessible to the host immune system. Here, we describe how host cell-sized RBC membrane mimics, formed with the same block copolymers as nanomimics, also bind the corresponding malaria parasite ligand and whole malaria parasites, similar to nanomimics. This was demonstrated using fluorescence imaging techniques and confirms the suitability of giant polymersomes (GUVs) as simple mimics for RBC membranes.

  15. Biogeography and host-related factors trump parasite life history: limited congruence among the genetic structures of specific ectoparasitic lice and their rodent hosts.

    PubMed

    du Toit, Nina; van Vuuren, Bettine J; Matthee, Sonja; Matthee, Conrad A

    2013-10-01

    Parasites and hosts interact across both micro- and macroevolutionary scales where congruence among their phylogeographic and phylogenetic structures may be observed. Within southern Africa, the four-striped mouse genus, Rhabdomys, is parasitized by the ectoparasitic sucking louse, Polyplax arvicanthis. Molecular data recently suggested the presence of two cryptic species within P. arvicanthis that are sympatrically distributed across the distributions of four putative Rhabdomys species. We tested the hypotheses of phylogeographic congruence and cophylogeny among the two parasite lineages and the four host taxa, utilizing mitochondrial and nuclear sequence data. Despite the documented host-specificity of P. arvicanthis, limited phylogeographic correspondence and nonsignificant cophylogeny was observed. Instead, the parasite-host evolutionary history is characterized by limited codivergence and several duplication, sorting and host-switching events. Despite the elevated mutational rates found for P. arvicanthis, the spatial genetic structure was not more pronounced in the parasite lineages compared with the hosts. These findings may be partly attributed to larger effective population sizes of the parasite lineages, the vagility and social behaviour of Rhabdomys, and the lack of host-specificity observed in areas of host sympatry. Further, the patterns of genetic divergence within parasite and host lineages may also be largely attributed to historical biogeographic changes (expansion-contraction cycles). It is thus evident that the association between P. arvicanthis and Rhabdomys has been shaped by the synergistic effects of parasite traits, host-related factors and biogeography over evolutionary time.

  16. Immigration of susceptible hosts triggers the evolution of alternative parasite defence strategies.

    PubMed

    Chabas, Hélène; van Houte, Stineke; Høyland-Kroghsbo, Nina Molin; Buckling, Angus; Westra, Edze R

    2016-08-31

    Migration of hosts and parasites can have a profound impact on host-parasite ecological and evolutionary interactions. Using the bacterium Pseudomonas aeruginosa UCBPP-PA14 and its phage DMS3vir, we here show that immigration of naive hosts into coevolving populations of hosts and parasites can influence the mechanistic basis underlying host defence evolution. Specifically, we found that at high levels of bacterial immigration, bacteria switched from clustered regularly interspaced short palindromic repeats (CRISPR-Cas) to surface modification-mediated defence. This effect emerges from an increase in the force of infection, which tips the balance from CRISPR to surface modification-based defence owing to the induced and fixed fitness costs associated with these mechanisms, respectively. PMID:27581884

  17. Host-parasite Red Queen dynamics with phase-locked rare genotypes.

    PubMed

    Rabajante, Jomar F; Tubay, Jerrold M; Ito, Hiromu; Uehara, Takashi; Kakishima, Satoshi; Morita, Satoru; Yoshimura, Jin; Ebert, Dieter

    2016-03-01

    Interactions between hosts and parasites have been hypothesized to cause winnerless coevolution, called Red Queen dynamics. The canonical Red Queen dynamics assume that all interacting genotypes of hosts and parasites undergo cyclic changes in abundance through negative frequency-dependent selection, which means that any genotype could become frequent at some stage. However, this prediction cannot explain why many rare genotypes stay rare in natural host-parasite systems. To investigate this, we build a mathematical model involving multihost and multiparasite genotypes. In a deterministic and controlled environment, Red Queen dynamics occur between two genotypes undergoing cyclic dominance changes, whereas the rest of the genotypes remain subordinate for long periods of time in phase-locked synchronized dynamics with low amplitude. However, introduction of stochastic noise in the model might allow the subordinate cyclic host and parasite types to replace dominant cyclic types as new players in the Red Queen dynamics. The factors that influence such evolutionary switching are interhost competition, specificity of parasitism, and degree of stochastic noise. Our model can explain, for the first time, the persistence of rare, hardly cycling genotypes in populations (for example, marine microbial communities) undergoing host-parasite coevolution.

  18. Host-parasite Red Queen dynamics with phase-locked rare genotypes

    PubMed Central

    Rabajante, Jomar F.; Tubay, Jerrold M.; Ito, Hiromu; Uehara, Takashi; Kakishima, Satoshi; Morita, Satoru; Yoshimura, Jin; Ebert, Dieter

    2016-01-01

    Interactions between hosts and parasites have been hypothesized to cause winnerless coevolution, called Red Queen dynamics. The canonical Red Queen dynamics assume that all interacting genotypes of hosts and parasites undergo cyclic changes in abundance through negative frequency-dependent selection, which means that any genotype could become frequent at some stage. However, this prediction cannot explain why many rare genotypes stay rare in natural host-parasite systems. To investigate this, we build a mathematical model involving multihost and multiparasite genotypes. In a deterministic and controlled environment, Red Queen dynamics occur between two genotypes undergoing cyclic dominance changes, whereas the rest of the genotypes remain subordinate for long periods of time in phase-locked synchronized dynamics with low amplitude. However, introduction of stochastic noise in the model might allow the subordinate cyclic host and parasite types to replace dominant cyclic types as new players in the Red Queen dynamics. The factors that influence such evolutionary switching are interhost competition, specificity of parasitism, and degree of stochastic noise. Our model can explain, for the first time, the persistence of rare, hardly cycling genotypes in populations (for example, marine microbial communities) undergoing host-parasite coevolution. PMID:26973878

  19. Brood parasitism selects for no defence in a cuckoo host.

    PubMed

    Krüger, Oliver

    2011-09-22

    In coevolutionary arms races, like between cuckoos and their hosts, it is easy to understand why the host is under selection favouring anti-parasitism behaviour, such as egg rejection, which can lead to parasites evolving remarkable adaptations to 'trick' their host, such as mimetic eggs. But what about cases where the cuckoo egg is not mimetic and where the host does not act against it? Classically, such apparently non-adaptive behaviour is put down to evolutionary lag: given enough time, egg mimicry and parasite avoidance strategies will evolve. An alternative is that absence of egg mimicry and of anti-parasite behaviour is stable. Such stability is at first sight highly paradoxical. I show, using both field and experimental data to parametrize a simulation model, that the absence of defence behaviour by Cape bulbuls (Pycnonotus capensis) against parasitic eggs of the Jacobin cuckoo (Clamator jacobinus) is optimal behaviour. The cuckoo has evolved massive eggs (double the size of bulbul eggs) with thick shells, making it very hard or impossible for the host to eject the cuckoo egg. The host could still avoid brood parasitism by nest desertion. However, higher predation and parasitism risks later in the season makes desertion more costly than accepting the cuckoo egg, a strategy aided by the fact that many cuckoo eggs are incorrectly timed, so do not hatch in time and hence do not reduce host fitness to zero. Selection will therefore prevent the continuation of any coevolutionary arms race. Non-mimetic eggs and absence of defence strategies against cuckoo eggs will be the stable, if at first sight paradoxical, result.

  20. Relative host body condition and food availability influence epidemic dynamics: a Poecilia reticulata-Gyrodactylus turnbulli host-parasite model.

    PubMed

    Tadiri, Christina P; Dargent, Felipe; Scott, Marilyn E

    2013-03-01

    Understanding disease transmission is important to species management and human health. Host body condition, nutrition and disease susceptibility interact in a complex manner, and while the individual effects of these variables are well known, our understanding of how they interact and translate to population dynamics is limited. Our objective was to determine whether host relative body condition influences epidemic dynamics, and how this relationship is affected by food availability. Poecilia reticulata (guppies) of roughly similar size were selected and assembled randomly into populations of 10 guppies assigned to 3 different food availability treatments, and the relative condition index (Kn) of each fish was calculated. We infected 1 individual per group ('source' fish) with Gyrodactyus turnbulli and counted parasites on each fish every other day for 10 days. Epidemic parameters for each population were analysed using generalized linear models. High host Kn-particularly that of the 'source' fish-exerted a positive effect on incidence, peak parasite burden, and the degree of parasite aggregation. Low food availability increased the strength of the associations with peak burden and aggregation. Our findings suggest that host Kn and food availability interact to influence epidemic dynamics, and that the condition of the individual that brings the parasite into the host population has a profound impact on the spread of infection.

  1. Individual patterns of habitat and nest-site use by hosts promote transgenerational transmission of avian brood parasitism status.

    PubMed

    Hoover, Jeffrey P; Hauber, Mark E

    2007-11-01

    Brood parasitic birds impose variable fitness costs upon their hosts by causing the partial or complete loss of the hosts' own brood. Growing evidence from multiple avian host-parasite taxa indicates that exposure of individual hosts to parasitism is not necessarily random and varies with habitat use, nest-site selection, age or other phenotypic attributes. For instance, nonrandom patterns of brood parasitism had similar evolutionary consequences to those of limited horizontal transmission of parasites and pathogens across space and time and altered the dynamics of both population productivity and co-evolutionary interactions of hosts and parasites. We report that brood parasitism status of hosts of brown-headed cowbirds Molothrus ater is also transmitted across generations in individually colour-banded female prothonotary warblers Protonotaria citrea. Warbler daughters were more likely to share their mothers' parasitism status when showing natal philopatry at the scale of habitat patch. Females never bred in their natal nestboxes but daughters of parasitized mothers had shorter natal dispersal distances than daughters of nonparasitized mothers. Daughters of parasitized mothers were more likely to use nestboxes that had been parasitized by cowbirds in both the previous and current years. Although difficult to document in avian systems, different propensities of vertical transmission of parasitism status within host lineages will have critical implications both for the evolution of parasite tolerance in hosts and, if found to be mediated by lineages of parasites themselves, for the difference in virulence between such extremes as the nestmate-tolerant and nestmate-eliminator strategies of different avian brood parasite species.

  2. The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection.

    PubMed

    de Morais, Carlos Gustavo Vieira; Castro Lima, Ana Karina; Terra, Rodrigo; dos Santos, Rosiane Freire; Da-Silva, Silvia Amaral Gonçalves; Dutra, Patrícia Maria Lourenço

    2015-01-01

    The intracellular protozoa Leishmania spp. and Trypanosoma cruzi and the causative agents of Leishmaniasis and Chagas disease, respectively, belong to the Trypanosomatidae family. Together, these two neglected tropical diseases affect approximately 25 million people worldwide. Whether the host can control the infection or develops disease depends on the complex interaction between parasite and host. Parasite surface and secreted molecules are involved in triggering specific signaling pathways essential for parasite entry and intracellular survival. The recognition of the parasite antigens by host immune cells generates a specific immune response. Leishmania spp. and T. cruzi have a multifaceted repertoire of strategies to evade or subvert the immune system by interfering with a range of signal transduction pathways in host cells, which causes the inhibition of the protective response and contributes to their persistence in the host. The current therapeutic strategies in leishmaniasis and trypanosomiasis are very limited. Efficacy is variable, toxicity is high, and the emergence of resistance is increasingly common. In this review, we discuss the molecular basis of the host-parasite interaction of Leishmania and Trypanosoma cruzi infection and their mechanisms of subverting the immune response and how this knowledge can be used as a tool for the development of new drugs.

  3. The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection

    PubMed Central

    de Morais, Carlos Gustavo Vieira; Castro Lima, Ana Karina; dos Santos, Rosiane Freire; Da-Silva, Silvia Amaral Gonçalves; Dutra, Patrícia Maria Lourenço

    2015-01-01

    The intracellular protozoa Leishmania spp. and Trypanosoma cruzi and the causative agents of Leishmaniasis and Chagas disease, respectively, belong to the Trypanosomatidae family. Together, these two neglected tropical diseases affect approximately 25 million people worldwide. Whether the host can control the infection or develops disease depends on the complex interaction between parasite and host. Parasite surface and secreted molecules are involved in triggering specific signaling pathways essential for parasite entry and intracellular survival. The recognition of the parasite antigens by host immune cells generates a specific immune response. Leishmania spp. and T. cruzi have a multifaceted repertoire of strategies to evade or subvert the immune system by interfering with a range of signal transduction pathways in host cells, which causes the inhibition of the protective response and contributes to their persistence in the host. The current therapeutic strategies in leishmaniasis and trypanosomiasis are very limited. Efficacy is variable, toxicity is high, and the emergence of resistance is increasingly common. In this review, we discuss the molecular basis of the host-parasite interaction of Leishmania and Trypanosoma cruzi infection and their mechanisms of subverting the immune response and how this knowledge can be used as a tool for the development of new drugs. PMID:26090399

  4. Distribution of common stickleback parasites on North Uist, Scotland, in relation to ecology and host traits.

    PubMed

    Rahn, Anna K; Eßer, Elisabeth; Reher, Stephanie; Ihlow, Flora; MacColl, Andrew D C; Bakker, Theo C M

    2016-08-01

    Analysing spatial differences among macroparasite communities is an important tool in the study of host-parasite interactions. Identifying patterns can shed light on the underlying causes of heterogeneity of parasite distribution and help to better understand ecological constraints and the relative importance of host and parasite adaptations. In the present study, we aimed to find correlational evidence that the macroparasite distribution patterns on the Scottish island of North Uist, which had been described by de Roij and MacColl (2012), are indicative of local processes rather than an unspecific influence of habitat characteristics. We therefore reinvestigated parasite abundances and tested for associations with habitat characteristics and host traits. Distribution patterns of the most common parasites were largely consistent with the observations of de Roij and MacColl (2012). In accordance with the published results, we found that the most obvious abiotic habitat characteristic varying among the lakes on the island, pH, did not statistically explain parasite abundances (except for eye fluke species inside the lens). Instead, we found that genetic differentiation between host populations, measured as pairwise FST values based on available microsatellite data, was significantly correlated with dissimilarity in parasite community composition. Our results indicate that individual lake characteristics rather than physicochemical variables shape parasite distribution on this island, making it an ideal place to study host-parasite interactions. Furthermore, additionally to geographic distance measures taken from maps, we suggest taking into account connectivity among freshwater habitats, indirectly measured via fish population structure, to analyse spatial distribution patterns. PMID:27370183

  5. Host Density and Competency Determine the Effects of Host Diversity on Trematode Parasite Infection

    PubMed Central

    Wojdak, Jeremy M.; Edman, Robert M.; Wyderko, Jennie A.; Zemmer, Sally A.; Belden, Lisa K.

    2014-01-01

    Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other’s densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts) for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans), in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1) replace the focal host species so that the total number of individuals remains constant (substitution) or (2) add to total host density (addition). For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly) when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns. PMID:25119568

  6. A parasite reveals cryptic phylogeographic history of its host.

    PubMed Central

    Nieberding, C.; Morand, S.; Libois, R.; Michaux, J. R.

    2004-01-01

    This study compares the continental phylogeographic patterns of two wild European species linked by a host-parasite relationship: the field mouse Apodemus sylvaticus and one of its specific parasites, the nematode Heligmosomoides polygyrus. A total of 740 base pairs (bp) of the mitochondrial cytochrome b (cyt b) gene were sequenced in 122 specimens of H. polygyrus and compared with 94 cyt b gene sequences (974 bp) previously acquired for A. sylvaticus. The results reveal partial spatial and temporal congruences in the differentiation of both species' lineages: the parasite and its host present three similar genetic and geographical lineages, i.e. Western European, Italian and Sicilian, and both species recolonized northwestern Europe from the Iberian refuge at the end of the Pleistocene. However, H. polygyrus presents three particular differentiation events. The relative rate of molecular evolution of the cyt b gene was estimated to be 1.5-fold higher in the parasite than in its host. Therefore, the use of H. polygyrus as a biological magnifying glass is discussed as this parasite may highlight previously undetected historical events of its host. The results show how incorporating phylogeographic information of an obligate associate can help to better understand the phylogeographic pattern of its host. PMID:15615681

  7. Host life history and host–parasite syntopy predict behavioural resistance and tolerance of parasites

    PubMed Central

    Sears, Brittany F.; Snyder, Paul W.; Rohr, Jason R.

    2016-01-01

    Summary There is growing interest in the role that life-history traits of hosts, such as their ‘pace-of-life’, play in the evolution of resistance and tolerance to parasites.Theory suggests that, relative to host species that have high syntopy (local spatial and temporal overlap) with parasites, host species with low syntopy should have lower selection pressures for more constitutive (always present) and costly defences, such as tolerance, and greater reliance on more inducible and cheaper defences, such as behaviour. Consequently, we postulated that the degree of host–parasite syntopy, which is negatively correlated with host pace-of-life (an axis reflecting the developmental rate of tadpoles and the inverse of their size at metamorphosis) in our tadpole–parasitic cercarial (trematode) system, would be a negative and positive predictor of behavioural resistance and tolerance, respectively.To test these hypotheses, we exposed seven tadpole species to a range of parasite (cercarial) doses crossed with anaesthesia treatments that controlled for anti-parasite behaviour. We quantified host behaviour, successful and unsuccessful infections, and each species’ reaction norm for behavioural resistance and tolerance, defined as the slope between cercarial exposure (or attempted infections) and anti-cercarial behaviours and mass change, respectively. Hence, tolerance is capturing any cost of parasite exposure.As hypothesized, tadpole pace-of-life was a significant positive predictor of behavioural resistance and negative predictor of tolerance, a result that is consistent with a trade-off between behavioural resistance and tolerance across species that warrants further investigation. Moreover, these results were robust to considerations of phylogeny, all possible re-orderings of the three fastest or slowest paced species, and various measurements of tolerance.These results suggest that host pace-of-life and host–parasite syntopy are powerful drivers of both the

  8. Host-parasite relationship in opportunistic mycoses.

    PubMed

    Waldorf, A R

    1986-01-01

    Aspergillosis and mucormycosis are opportunistic fungal infections that share several unique features. The etiologic agents of aspergillosis and mucormycosis are ubiquitous in the environment, but are opportunistic organisms and usually infect only patients predisposed by some underlying disease or treatment. These infections are typically characterized by hyphal tissue invasion and a predilection of the organism for blood vessel invasion with hemorrhage, necrosis, and infarction. Also, these organisms are not dimorphic, like the true pathogenic dimorphic fungi, as they grow both in the environment and within the host in hyphal forms. However, the host must contend with several forms to successfully eliminate them. Each form displays different antigenic and surface features and elicits different host responses. Finally, if germination and hyphal growth occur, the host must compete with a rapidly growing organism that is too large to be ingested by a single cell and so must be handled by extracellular defense mechanisms.

  9. Maternal androgens in avian brood parasites and their hosts: responses to parasitism and competition?

    USGS Publications Warehouse

    Hahn, Caldwell; Wingfield, John C.; Fox, David M.; Walker, Brian G.; Thomley, Jill E

    2017-01-01

    In the coevolutionary dynamic of avian brood parasites and their hosts, maternal (or transgenerational) effects have rarely been investigated. We examined the potential role of elevated yolk testosterone in eggs of the principal brood parasite in North America, the brown-headed cowbird, and three of its frequent host species. Elevated maternal androgens in eggs are a common maternal effect observed in many avian species when breeding conditions are unfavorable. These steroids accelerate embryo development, shorten incubation period, increase nestling growth rate, and enhance begging vigor, all traits that can increase the survival of offspring. We hypothesized that elevated maternal androgens in host eggs are a defense against brood parasitism. Our second hypothesis was that elevated maternal androgens in cowbird eggs are a defense against intra-specific competition. For host species, we found that elevated yolk testosterone was correlated with parasitized nests of small species, those whose nest success is most reduced by cowbird parasitism. For cowbirds, we found that elevated yolk testosterone was correlated with eggs in multiply-parasitized nests, which indicate intra-specific competition for nests due to high cowbird density. We propose experimental work to further examine the use of maternal effects by cowbirds and their hosts.

  10. Toxoplasma gondii Relies on Both Host and Parasite Isoprenoids and Can Be Rendered Sensitive to Atorvastatin

    PubMed Central

    Li, Zhu-Hong; Ramakrishnan, Srinivasan; Striepen, Boris; Moreno, Silvia N. J.

    2013-01-01

    Intracellular pathogens have complex metabolic interactions with their host cells to ensure a steady supply of energy and anabolic building blocks for rapid growth. Here we use the obligate intracellular parasite Toxoplasma gondii to probe this interaction for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Synthesis of precursors for isoprenoids in Apicomplexa occurs in the apicoplast and is essential. To synthesize longer isoprenoids from these precursors, T. gondii expresses a bifunctional farnesyl diphosphate/geranylgeranyl diphosphate synthase (TgFPPS). In this work we construct and characterize T. gondii null mutants for this enzyme. Surprisingly, these mutants have only a mild growth phenotype and an isoprenoid composition similar to wild type parasites. However, when extracellular, the loss of the enzyme becomes phenotypically apparent. This strongly suggests that intracellular parasite salvage FPP and/or geranylgeranyl diphosphate (GGPP) from the host. We test this hypothesis using inhibitors of host cell isoprenoid synthesis. Mammals use the mevalonate pathway, which is susceptible to statins. We document strong synergy between statin treatment and pharmacological or genetic interference with the parasite isoprenoid pathway. Mice can be cured with atorvastatin (Lipitor) from a lethal infection with the TgFPPs mutant. We propose a double-hit strategy combining inhibitors of host and parasite pathways as a novel therapeutic approach against Apicomplexan parasites. PMID:24146616

  11. Competition promotes the evolution of host generalists in obligate parasites.

    PubMed

    Johnson, Kevin P; Malenke, Jael R; Clayton, Dale H

    2009-11-22

    Ecological theory traditionally predicts that interspecific competition selects for an increase in ecological specialization. Specialization, in turn, is often thought to be an evolutionary 'dead end,' with specialist lineages unlikely to evolve into generalist lineages. In host-parasite systems, this specialization can take the form of host specificity, with more specialized parasites using fewer hosts. We tested the hypothesis that specialists are evolutionarily more derived, and whether competition favours specialization, using the ectoparasitic feather lice of doves. Phylogenetic analyses revealed that complete host specificity is actually the ancestral condition, with generalists repeatedly evolving from specialist ancestors. These multiple origins of generalists are correlated with the presence of potentially competing species of the same genus. A competition experiment with captive doves and lice confirmed that congeneric species of lice do, in fact, have the potential to compete in ecological time. Taken together, these results suggest that interspecific competition can favour the evolution of host generalists, not specialists, over macroevolutionary time.

  12. Inferring host-parasite relationships using stable isotopes: implications for disease transmission and host specificity.

    PubMed

    Stapp, Paul; Salkeld, Daniel J

    2009-11-01

    Identifying the roles of different hosts and vectors is a major challenge in the study of the ecology of diseases caused by multi-host pathogens. Intensive field studies suggested that grasshopper mice (Onychomys leucogaster) help spread the bacterium that causes plague (Yersinia pestis) in prairie dog colonies by sharing fleas with prairie dogs (Cynomys ludovicianus); yet conclusive evidence that prairie dog fleas (Oropsylla hirsuta) feed on grasshopper mice is lacking. Using stable nitrogen isotope analysis, we determined that many blood-engorged O. hirsuta collected from wild grasshopper mice apparently contained blood meals of prairie dogs. These results suggest that grasshopper mice may be infected with Y. pestis via mechanisms other than flea feeding, e.g., early phase or mechanical transmission or scavenging carcasses, and raise questions about the ability of grasshopper mice to maintain Y. pestis in prairie dog colonies during years between plague outbreaks. They also indicate that caution may be warranted when inferring feeding relationships based purely on the occurrence of fleas or other haematophagous ectoparasites on hosts. Stable-isotope analysis may complement or provide a useful alternative to immunological or molecular techniques for identifying hosts of cryptically feeding ectoparasites, and for clarifying feeding relationships in studies of host-parasite interactions. PMID:19967881

  13. Host density and the evolution of parasite virulence.

    PubMed

    Knolle, H

    1989-01-23

    Social and cultural habits of human populations affect the biological evolution of the agents of infectious diseases. Measles and similar diseases have evolved in the Old World and cannot have existed in their present form before the rise of the great river valley civilizations. It is suggested that increased virulence of measles in white and indigenous communities in America 1500-1800 may be due to a rare strain of the virus, which was selected during transfer from Europe. The release of viruses for biological pest control has provided new material for the study of the co-evolution of host-parasite systems, which has upset the dogma "evolution tends to avirulence". It is pointed out that this issue is closely related to the group selection debate among ethologists, i.e. to the problem: how can group selection overcome individual selection? A model is proposed in which differential growth of two strains of a parasite within the host and their transmission to new hosts is considered. It is supposed that transmission stages excreted by infectious hosts enter a common pool where they are mixed before infecting new hosts. Under these conditions, selection of the slower strain is possible only if the mean size of parasite inoculum is very small, i.e. if the density of transmission stages in the environment is low. The impact of this result on host pathology depends on the relation between virulence and transmission efficiency of the parasite. PMID:2779267

  14. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding.

    PubMed

    Smith, Jason D; Woldemariam, Melkamu G; Mescher, Mark C; Jander, Georg; De Moraes, Consuelo M

    2016-09-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  15. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding1[OPEN

    PubMed Central

    Mescher, Mark C.; De Moraes, Consuelo M.

    2016-01-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  16. Not to be suppressed? Rethinking the host response at a root-parasite interface.

    PubMed

    Goto, Derek B; Miyazawa, Hikota; Mar, Jessica C; Sato, Masanao

    2013-12-01

    Root-knot nematodes are highly efficient plant parasites that establish permanent feeding sites within host roots. The initiation of this feeding site is critical for parasitic success and requires an interaction with multiple signaling pathways involved in plant development and environmental response. Resistance against root-knot nematodes is relatively rare amongst their broad host range and they remain a major threat to agriculture. The development of effective and sustainable control strategies depends on understanding how host signaling pathways are manipulated during invasion of susceptible hosts. It is generally understood that root-knot nematodes either suppress host defense signaling during infestation or are able to avoid detection altogether, explaining their profound success as parasites. However, when compared to the depth of knowledge from other well-studied pathogen interactions, the published data on host responses to root-knot nematode infestation do not yet provide convincing support for this hypothesis and alternative explanations also exist. It is equally possible that defense-like signaling responses are actually induced and required during the early stages of root-knot nematode infestation. We describe how defense-signaling is highly context-dependent and that caution is necessary when interpreting transcriptional responses in the absence of appropriate control data or stringent validation of gene annotation. Further hypothesis-driven studies on host defense-like responses are required to account for these limitations and advance our understanding of root-knot nematode parasitism of plants.

  17. Macromolecule exchange in Cuscuta-host plant interactions.

    PubMed

    Kim, Gunjune; Westwood, James H

    2015-08-01

    Cuscuta species (dodders) are parasitic plants that are able to grow on many different host plants and can be destructive to crops. The connections between Cuscuta and its hosts allow movement of not only water and small nutrients, but also macromolecules including mRNA, proteins and viruses. Recent studies show that RNAs move bidirectionally between hosts and parasites and involve a large number of different genes. Although the function of mobile mRNAs has not been demonstrated in this system, small RNAs are also transmitted and a silencing construct expressed in hosts is able to affect expression of the target gene in the parasite. High throughput sequencing of host-parasite associations has the potential to greatly accelerate understanding of this remarkable interaction.

  18. Beyond immunity: quantifying the effects of host anti-parasite behavior on parasite transmission.

    PubMed

    Daly, Elizabeth W; Johnson, Pieter T J

    2011-04-01

    A host's first line of defense in response to the threat of parasitic infection is behavior, yet the efficacy of anti-parasite behaviors in reducing infection are rarely quantified relative to immunological defense mechanisms. Larval amphibians developing in aquatic habitats are at risk of infection from a diverse assemblage of pathogens, some of which cause substantial morbidity and mortality, suggesting that behavioral avoidance and resistance could be significant defensive strategies. To quantify the importance of anti-parasite behaviors in reducing infection, we exposed larval Pacific chorus frogs (Pseudacris regilla) to pathogenic trematodes (Ribeiroia and Echinostoma) in one of two experimental conditions: behaviorally active (unmanipulated) or behaviorally impaired (anesthetized). By quantifying both the number of successful and unsuccessful parasites, we show that host behavior reduces infection prevalence and intensity for both parasites. Anesthetized hosts were 20-39% more likely to become infected and, when infected, supported 2.8-fold more parasitic cysts. Echinostoma had a 60% lower infection success relative to the more deadly Ribeiroia and was also more vulnerable to behaviorally mediated reductions in transmission. For Ribeiroia, increases in host mass enhanced infection success, consistent with epidemiological theory, but this relationship was eroded among active hosts. Our results underscore the importance of host behavior in mitigating disease risk and suggest that, in some systems, anti-parasite behaviors can be as or more effective than immune-mediated defenses in reducing infection. Considering the severe pathologies induced by these and other pathogens of amphibians, we emphasize the value of a broader understanding of anti-parasite behaviors and how co-occurring stressors affect them.

  19. Chemical interrogation of malarial host and parasite kinomes

    PubMed Central

    Zuzarte-Luís, Vanessa; Magalhães, Andreia D.; Kato, Nobutaka; Sanschagrin, Paul C.; Wang, Jinhua; Zhou, Wenjun; Miduturu, Chandrasekhar V.; Mazitschek, Ralph; Sliz, Piotr; Mota, Maria M.; Gray, Nathanael S.

    2014-01-01

    Malaria, an infectious disease caused by eukaryotic parasites from the genus Plasmodium, afflicts hundreds of millions of people every year. Both the parasite and its host utilize protein kinases to regulate essential cellular processes. Bioinformatic analyses of parasite genomes predict at least 65 protein kinases, but their biological functions and therapeutic potential are largely unknown. We profiled 1,358 small molecule kinase inhibitors to evaluate the role of both the human and malaria kinomes in Plasmodium infection of liver cells, the parasites’ obligatory but transient developmental stage that precedes the symptomatic blood stage. The screen identified several small molecules that inhibit parasite load in liver cells, some with nanomolar efficacy, and each compound was subsequently assessed for activity against blood stage malaria. Most of the screening hits inhibited both liver and blood stage malaria parasites, which have dissimilar gene expression profiles and infect different host cells. Evaluation of existing kinase activity profiling data for the library members suggests several kinases are essential to malaria parasites, including cyclin-dependent kinases, glycogen synthase kinases, and phosphoinositide-3-kinases. CDK inhibitors were found to bind to Plasmodium protein kinase 5, but it is likely that these compounds target multiple parasite kinases. The dual stage inhibition of the identified kinase inhibitors makes them useful chemical probes and promising starting points for antimalarial development. PMID:25111632

  20. The path to host extinction can lead to loss of generalist parasites.

    PubMed

    Farrell, Maxwell J; Stephens, Patrick R; Berrang-Ford, Lea; Gittleman, John L; Davies, T Jonathan

    2015-07-01

    Host extinction can alter disease transmission dynamics, influence parasite extinction and ultimately change the nature of host-parasite systems. While theory predicts that single-host parasites are among the parasite species most susceptible to extinction following declines in their hosts, documented parasite extinctions are rare. Using a comparative approach, we investigate how the richness of single-host and multi-host parasites is influenced by extinction risk among ungulate and carnivore hosts. Host-parasite associations for free-living carnivores (order Carnivora) and terrestrial ungulates (orders Perissodactyla + Cetartiodactyla minus cetaceans) were merged with host trait data and IUCN Red List status to explore the distribution of single-host and multi-host parasites among threatened and non-threatened hosts. We find that threatened ungulates harbour a higher proportion of single-host parasites compared to non-threatened ungulates, which is explained by decreases in the richness of multi-host parasites. However, among carnivores threat status is not a significant predictor of the proportion of single-host parasites, or the richness of single-host or multi-host parasites. The loss of multi-host parasites from threatened ungulates may be explained by decreased cross-species contact as hosts decline and habitats become fragmented. Among carnivores, threat status may not be important in predicting patterns of parasite specificity because host decline results in equal losses of both single-host parasites and multi-host parasites through reduction in average population density and frequency of cross-species contact. Our results contrast with current models of parasite coextinction and highlight the need for updated theories that are applicable across host groups and account for both inter- and intraspecific contact. PMID:25640629

  1. The path to host extinction can lead to loss of generalist parasites.

    PubMed

    Farrell, Maxwell J; Stephens, Patrick R; Berrang-Ford, Lea; Gittleman, John L; Davies, T Jonathan

    2015-07-01

    Host extinction can alter disease transmission dynamics, influence parasite extinction and ultimately change the nature of host-parasite systems. While theory predicts that single-host parasites are among the parasite species most susceptible to extinction following declines in their hosts, documented parasite extinctions are rare. Using a comparative approach, we investigate how the richness of single-host and multi-host parasites is influenced by extinction risk among ungulate and carnivore hosts. Host-parasite associations for free-living carnivores (order Carnivora) and terrestrial ungulates (orders Perissodactyla + Cetartiodactyla minus cetaceans) were merged with host trait data and IUCN Red List status to explore the distribution of single-host and multi-host parasites among threatened and non-threatened hosts. We find that threatened ungulates harbour a higher proportion of single-host parasites compared to non-threatened ungulates, which is explained by decreases in the richness of multi-host parasites. However, among carnivores threat status is not a significant predictor of the proportion of single-host parasites, or the richness of single-host or multi-host parasites. The loss of multi-host parasites from threatened ungulates may be explained by decreased cross-species contact as hosts decline and habitats become fragmented. Among carnivores, threat status may not be important in predicting patterns of parasite specificity because host decline results in equal losses of both single-host parasites and multi-host parasites through reduction in average population density and frequency of cross-species contact. Our results contrast with current models of parasite coextinction and highlight the need for updated theories that are applicable across host groups and account for both inter- and intraspecific contact.

  2. Nocardia species: host-parasite relationships.

    PubMed Central

    Beaman, B L; Beaman, L

    1994-01-01

    The nocardiae are bacteria belonging to the aerobic actinomycetes. They are an important part of the normal soil microflora worldwide. The type species, Nocardia asteroides, and N. brasiliensis, N. farcinica, N. otitidiscaviarum, N. nova, and N. transvalensis cause a variety of diseases in both normal and immunocompromised humans and animals. The mechanisms of pathogenesis are complex, not fully understood, and include the capacity to evade or neutralize the myriad microbicidal activities of the host. The relative virulence of N. asteroides correlates with the ability to inhibit phagosome-lysosome fusion in phagocytes; to neutralize phagosomal acidification; to detoxify the microbicidal products of oxidative metabolism; to modify phagocyte function; to grow within phagocytic cells; and to attach to, penetrate, and grow within host cells. Both activated macrophages and immunologically specific T lymphocytes constitute the major mechanisms for host resistance to nocardial infection, whereas B lymphocytes and humoral immunity do not appear to be as important in protecting the host. Thus, the nocardiae are facultative intracellular pathogens that can persist within the host, probably in a cryptic form (L-form), for life. Silent invasion of brain cells by some Nocardia strains can induce neurodegeneration in experimental animals; however, the role of nocardiae in neurodegenerative diseases in humans needs to be investigated. Images PMID:8055469

  3. Feeding guild of non-host community members affects host-foraging efficiency of a parasitic wasp.

    PubMed

    De Rijk, Marjolein; Yang, Daowei; Engel, Bas; Dicke, Marcel; Poelman, Erik H

    2016-06-01

    Interactions between predator and prey, or parasitoid and host, are shaped by trait- and density-mediated processes involving other community members. Parasitoids that lay their eggs in herbivorous insects locate their hosts through infochemicals such as herbivore-induced plant volatiles (HIPVs) and host-produced kairomones. Hosts are frequently accompanied by non-host herbivores that are unsuitable for the parasitoid. These non-hosts may interfere with host location primarily through trait-mediated processes, by their own infochemicals, and their induction of the emission of plant volatiles. Although it is known that single non-hosts can interfere with parasitoid host location, it is still unknown whether the observed effects are due to species specific characteristics or to the feeding habits of the non-host herbivores. Here we addressed whether the feeding guild of non-host herbivores differentially affects foraging of the parasitoid Cotesia glomerata for its common host, caterpillars of Pieris brassicae feeding on Brassica oleracea plants. We used different phloem-feeding and leaf-chewing non-hosts to study their effects on host location by the parasitoid when searching for host-infested plants based on HIPVs and when searching for hosts on the plant using infochemicals. To evaluate the ultimate effect of these two phases in host location, we studied parasitism efficiency of parasitoids in small plant communities under field-tent conditions. We show that leaf-chewing non-hosts primarily affected host location through trait-mediated effects via plant volatiles, whereas phloem-feeding non-hosts exerted trait-mediated effects by affecting foraging efficiency of the parasitoid on the plant. These trait-mediated effects resulted in associational susceptibility of hosts in environments with phloem feeders and associational resistance in environments with non-host leaf chewers. PMID:27459770

  4. Using Proteomics to Understand How Leishmania Parasites Survive inside the Host and Establish Infection.

    PubMed

    Veras, Patrícia Sampaio Tavares; Bezerra de Menezes, Juliana Perrone

    2016-08-19

    Leishmania is a protozoan parasite that causes a wide range of different clinical manifestations in mammalian hosts. It is a major public health risk on different continents and represents one of the most important neglected diseases. Due to the high toxicity of the drugs currently used, and in the light of increasing drug resistance, there is a critical need to develop new drugs and vaccines to control Leishmania infection. Over the past few years, proteomics has become an important tool to understand the underlying biology of Leishmania parasites and host interaction. The large-scale study of proteins, both in parasites and within the host in response to infection, can accelerate the discovery of new therapeutic targets. By studying the proteomes of host cells and tissues infected with Leishmania, as well as changes in protein profiles among promastigotes and amastigotes, scientists hope to better understand the biology involved in the parasite survival and the host-parasite interaction. This review demonstrates the feasibility of proteomics as an approach to identify new proteins involved in Leishmania differentiation and intracellular survival.

  5. Using Proteomics to Understand How Leishmania Parasites Survive inside the Host and Establish Infection.

    PubMed

    Veras, Patrícia Sampaio Tavares; Bezerra de Menezes, Juliana Perrone

    2016-01-01

    Leishmania is a protozoan parasite that causes a wide range of different clinical manifestations in mammalian hosts. It is a major public health risk on different continents and represents one of the most important neglected diseases. Due to the high toxicity of the drugs currently used, and in the light of increasing drug resistance, there is a critical need to develop new drugs and vaccines to control Leishmania infection. Over the past few years, proteomics has become an important tool to understand the underlying biology of Leishmania parasites and host interaction. The large-scale study of proteins, both in parasites and within the host in response to infection, can accelerate the discovery of new therapeutic targets. By studying the proteomes of host cells and tissues infected with Leishmania, as well as changes in protein profiles among promastigotes and amastigotes, scientists hope to better understand the biology involved in the parasite survival and the host-parasite interaction. This review demonstrates the feasibility of proteomics as an approach to identify new proteins involved in Leishmania differentiation and intracellular survival. PMID:27548150

  6. Using Proteomics to Understand How Leishmania Parasites Survive inside the Host and Establish Infection

    PubMed Central

    Veras, Patrícia Sampaio Tavares; Bezerra de Menezes, Juliana Perrone

    2016-01-01

    Leishmania is a protozoan parasite that causes a wide range of different clinical manifestations in mammalian hosts. It is a major public health risk on different continents and represents one of the most important neglected diseases. Due to the high toxicity of the drugs currently used, and in the light of increasing drug resistance, there is a critical need to develop new drugs and vaccines to control Leishmania infection. Over the past few years, proteomics has become an important tool to understand the underlying biology of Leishmania parasites and host interaction. The large-scale study of proteins, both in parasites and within the host in response to infection, can accelerate the discovery of new therapeutic targets. By studying the proteomes of host cells and tissues infected with Leishmania, as well as changes in protein profiles among promastigotes and amastigotes, scientists hope to better understand the biology involved in the parasite survival and the host-parasite interaction. This review demonstrates the feasibility of proteomics as an approach to identify new proteins involved in Leishmania differentiation and intracellular survival. PMID:27548150

  7. Phylogeny, host-parasite relationship and zoogeography

    PubMed Central

    1999-01-01

    Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates. PMID:10634036

  8. Regulation of host workers' oviposition by the social parasite ant Polyergus samurai.

    PubMed

    Tsuneoka, Yousuke

    2014-07-01

    Polyergus samurai, an obligatory social parasite ant, lacks the ability to perform usual colony tasks. It depends completely on host Formica japonica workers. In the mixed colony, arrhenotokous reproduction by host workers must be detrimental to the parasites. This study, conducted under artificial rearing conditions, investigated the behavioral influence by P. samurai worker on the production of host workers' male eggs. Host workers started laying eggs when the P. samurai queen was removed, but most eggs were destroyed by P. samurai workers. In a queenless condition, P. samurai workers showed frequent intraspecific dominance interactions, but few interspecific ones. After a short while the P. samurai worker started laying eggs, the F. japonica worker stopped laying eggs. The ovary had no mature oocyte. These results suggest that both the P. samurai queen and dominant workers can inhibit host workers' oviposition. A mesh experiment revealed that the dominant P. samurai workers were able to inhibit host workers' oviposition without contacts. The dominant workers and queens of P. samurai frequently received grooming and trophallaxis from host workers just as a host queen does, suggesting that the parasites secreted similar products to those of the host queen to inhibit the host workers' oviposition. PMID:25001911

  9. Live Imaging of Host-Parasite Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous System Invasion

    PubMed Central

    Tenor, Jennifer L.; Oehlers, Stefan H.; Yang, Jialu L.

    2015-01-01

    ABSTRACT The human fungal pathogen Cryptococcus neoformans is capable of infecting a broad range of hosts, from invertebrates like amoebas and nematodes to standard vertebrate models such as mice and rabbits. Here we have taken advantage of a zebrafish model to investigate host-pathogen interactions of Cryptococcus with the zebrafish innate immune system, which shares a highly conserved framework with that of mammals. Through live-imaging observations and genetic knockdown, we establish that macrophages are the primary immune cells responsible for responding to and containing acute cryptococcal infections. By interrogating survival and cryptococcal burden following infection with a panel of Cryptococcus mutants, we find that virulence factors initially identified as important in causing disease in mice are also necessary for pathogenesis in zebrafish larvae. Live imaging of the cranial blood vessels of infected larvae reveals that C. neoformans is able to penetrate the zebrafish brain following intravenous infection. By studying a C. neoformans FNX1 gene mutant, we find that blood-brain barrier invasion is dependent on a known cryptococcal invasion-promoting pathway previously identified in a murine model of central nervous system invasion. The zebrafish-C. neoformans platform provides a visually and genetically accessible vertebrate model system for cryptococcal pathogenesis with many of the advantages of small invertebrates. This model is well suited for higher-throughput screening of mutants, mechanistic dissection of cryptococcal pathogenesis in live animals, and use in the evaluation of therapeutic agents. PMID:26419880

  10. Host responses to historical climate change shape parasite communities in North America’s intermountain west

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-parasite co-speciation, in which parasite divergence occurs in response to host divergence, is commonly proposed as a driver of parasite diversification, yet few empirical examples of strict co-speciation exist. Host-parasite co-evolutionary histories commonly reflect complex mosaics of co-spe...

  11. Parasite fitness traits under environmental variation: disentangling the roles of a chytrid's immediate host and external environment.

    PubMed

    Van den Wyngaert, Silke; Vanholsbeeck, Olivier; Spaak, Piet; Ibelings, Bas W

    2014-10-01

    Parasite environments are heterogeneous at different levels. The first level of variability is the host itself. The second level represents the external environment for the hosts, to which parasites may be exposed during part of their life cycle. Both levels are expected to affect parasite fitness traits. We disentangle the main and interaction effects of variation in the immediate host environment, here the diatom Asterionella formosa (variables host cell volume and host condition through herbicide pre-exposure) and variation in the external environment (variables host density and acute herbicide exposure) on three fitness traits (infection success, development time and reproductive output) of a chytrid parasite. Herbicide exposure only decreased infection success in a low host density environment. This result reinforces the hypothesis that chytrid zoospores use photosynthesis-dependent chemical cues to locate its host. At high host densities, chemotaxis becomes less relevant due to increasing chance contact rates between host and parasite, thereby following the mass-action principle in epidemiology. Theoretical support for this finding is provided by an agent-based simulation model. The immediate host environment (cell volume) substantially affected parasite reproductive output and also interacted with the external herbicide exposed environment. On the contrary, changes in the immediate host environment through herbicide pre-exposure did not increase infection success, though it had subtle effects on zoospore development time and reproductive output. This study shows that both immediate host and external environment as well as their interaction have significant effects on parasite fitness. Disentangling these effects improves our understanding of the processes underlying parasite spread and disease dynamics.

  12. Volatile chemical cues guide host location and host selection by parasitic plants.

    PubMed

    Runyon, Justin B; Mescher, Mark C; De Moraes, Consuelo M

    2006-09-29

    The importance of plant volatiles in mediating interactions between plant species is much debated. Here, we demonstrate that the parasitic plant Cuscuta pentagona (dodder) uses volatile cues for host location. Cuscuta pentagona seedlings exhibit directed growth toward nearby tomato plants (Lycopersicon esculentum) and toward extracted tomato-plant volatiles presented in the absence of other cues. Impatiens (Impatiens wallerana) and wheat plants (Triticum aestivum) also elicit directed growth. Moreover, seedlings can distinguish tomato and wheat volatiles and preferentially grow toward the former. Several individual compounds from tomato and wheat elicit directed growth by C. pentagona, whereas one compound from wheat is repellent. These findings provide compelling evidence that volatiles mediate important ecological interactions among plant species.

  13. Horizontal transmission of a parasite is influenced by infected host phenotype and density.

    PubMed

    Roberts, K E; Hughes, W O H

    2015-02-01

    Transmission is a key determinant of parasite fitness, and understanding the dynamics of transmission is fundamental to the ecology and evolution of host-parasite interactions. Successful transmission is often reliant on contact between infected individuals and susceptible hosts. The social insects consist of aggregated groups of genetically similar hosts, making them particularly vulnerable to parasite transmission. Here we investigate how the ratio of infected to susceptible individuals impacts parasite transmission, using the honey bee, Apis mellifera and its microsporidian parasite Nosema ceranae. We used 2 types of infected hosts found simultaneously in colonies; sterile female workers and sexual males. We found a higher ratio of infected to susceptible individuals in groups resulted in a greater proportion of susceptibles becoming infected, but this effect was non-linear and interestingly, the ratio also affected the spore production of infected individuals. The transmission level was much greater in an experiment where the infected individuals were drones than in an experiment where they were workers, suggesting drones may act as intracolonial 'superspreaders'. Understanding the subtleties of transmission and how it is influenced by the phenotype of the infected/susceptible individuals is important for understanding pathogen transmission at population level, and for optimum targeting of parasite control strategies. PMID:25111753

  14. Multiple host shifts by the emerging honeybee parasite, Varroa jacobsoni.

    PubMed

    Roberts, J M K; Anderson, D L; Tay, W T

    2015-05-01

    Host shifts are a key mechanism of parasite evolution and responsible for the emergence of many economically important pathogens. Varroa destructor has been a major factor in global honeybee (Apis mellifera) declines since shifting hosts from the Asian honeybee (Apis cerana) > 50 years ago. Until recently, only two haplotypes of V. destructor (Korea and Japan) had successfully host shifted to A. mellifera. In 2008, the sister species V. jacobsoni was found for the first time parasitizing A. mellifera in Papua New Guinea (PNG). This recent host shift presents a serious threat to world apiculture but also provides the opportunity to examine host shifting in this system. We used 12 microsatellites to compare genetic variation of V. jacobsoni on A. mellifera in PNG with mites on A. cerana in both PNG and surrounding regions. We identified two distinct lineages of V. jacobsoni reproducing on A. mellifera in PNG. Our analysis indicated independent host shift events have occurred through small numbers of mites shifting from local A. cerana populations. Additional lineages were found in the neighbouring Papua and Solomon Islands that had partially host shifted to A. mellifera, that is producing immature offspring on drone brood only. These mites were likely in transition to full colonization of A. mellifera. Significant population structure between mites on the different hosts suggested host shifted V. jacobsoni populations may not still reproduce on A. cerana, although limited gene flow may exist. Our studies provide further insight into parasite host shift evolution and help characterize this new Varroa mite threat to A. mellifera worldwide. PMID:25846956

  15. Multiple host shifts by the emerging honeybee parasite, Varroa jacobsoni.

    PubMed

    Roberts, J M K; Anderson, D L; Tay, W T

    2015-05-01

    Host shifts are a key mechanism of parasite evolution and responsible for the emergence of many economically important pathogens. Varroa destructor has been a major factor in global honeybee (Apis mellifera) declines since shifting hosts from the Asian honeybee (Apis cerana) > 50 years ago. Until recently, only two haplotypes of V. destructor (Korea and Japan) had successfully host shifted to A. mellifera. In 2008, the sister species V. jacobsoni was found for the first time parasitizing A. mellifera in Papua New Guinea (PNG). This recent host shift presents a serious threat to world apiculture but also provides the opportunity to examine host shifting in this system. We used 12 microsatellites to compare genetic variation of V. jacobsoni on A. mellifera in PNG with mites on A. cerana in both PNG and surrounding regions. We identified two distinct lineages of V. jacobsoni reproducing on A. mellifera in PNG. Our analysis indicated independent host shift events have occurred through small numbers of mites shifting from local A. cerana populations. Additional lineages were found in the neighbouring Papua and Solomon Islands that had partially host shifted to A. mellifera, that is producing immature offspring on drone brood only. These mites were likely in transition to full colonization of A. mellifera. Significant population structure between mites on the different hosts suggested host shifted V. jacobsoni populations may not still reproduce on A. cerana, although limited gene flow may exist. Our studies provide further insight into parasite host shift evolution and help characterize this new Varroa mite threat to A. mellifera worldwide.

  16. Habitat selection for parasite-free space by hosts of parasitic cowbirds

    USGS Publications Warehouse

    Forsman, J.T.; Martin, T.E.

    2009-01-01

    Choice of breeding habitat can have a major impact on fitness. Sensitivity of habitat choice to environmental cues predicting reproductive success, such as density of harmful enemy species, should be favored by natural selection. Yet, experimental tests of this idea are in short supply. Brown-headed cowbirds Molothrus ater commonly reduce reproductive success of a wide diversity of birds by parasitizing their nests. We used song playbacks to simulate high cowbird density and tested whether cowbird hosts avoid such areas in habitat selection. Host species that made settlement decisions during manipulations were significantly less abundant in the cowbird treatment as a group. In contrast, hosts that settled before manipulations started and non-host species did not respond to treatments. These results suggest that hosts of cowbirds can use vocal cues to assess parasitism risk among potential habitat patches and avoid high risk habitats. This can affect community structure by affecting habitat choices of species with differential vulnerability.

  17. Geography and major host evolutionary transitions shape the resource use of plant parasites.

    PubMed

    Calatayud, Joaquín; Hórreo, José Luis; Madrigal-González, Jaime; Migeon, Alain; Rodríguez, Miguel Á; Magalhães, Sara; Hortal, Joaquín

    2016-08-30

    The evolution of resource use in herbivores has been conceptualized as an analog of the theory of island biogeography, assuming that plant species are islands separated by phylogenetic distances. Despite its usefulness, this analogy has paradoxically led to neglecting real biogeographical processes in the study of macroevolutionary patterns of herbivore-plant interactions. Here we show that host use is mostly determined by the geographical cooccurrence of hosts and parasites in spider mites (Tetranychidae), a globally distributed group of plant parasites. Strikingly, geography accounts for most of the phylogenetic signal in host use by these parasites. Beyond geography, only evolutionary transitions among major plant lineages (i.e., gymnosperms, commelinids, and eudicots) shape resource use patterns in these herbivores. Still, even these barriers have been repeatedly overcome in evolutionary time, resulting in phylogenetically diverse parasite communities feeding on similar hosts. Therefore, our results imply that patterns of apparent evolutionary conservatism may largely be a byproduct of the geographic cooccurrence of hosts and parasites. PMID:27535932

  18. Effects of a native parasitic plant on an exotic invader decrease with increasing host age

    PubMed Central

    Li, Junmin; Yang, Beifen; Yan, Qiaodi; Zhang, Jing; Yan, Min; Li, Maihe

    2015-01-01

    Understanding changes in the interactions between parasitic plants and their hosts in relation to ontogenetic changes in the hosts is crucial for successful use of parasitic plants as biological controls. We investigated growth, photosynthesis and chemical defences in different-aged Bidens pilosa plants in response to infection by Cuscuta australis. We were particularly interested in whether plant responses to parasite infection change with changes in the host plant age. Compared with the non-infected B. pilosa, parasite infection reduced total host biomass and net photosynthetic rates, but these deleterious effects decreased with increasing host age. Parasite infection reduced the concentrations of total phenolics, total flavonoids and saponins in the younger B. pilosa but not in the older B. pilosa. Compared with the relatively older and larger plants, younger and smaller plants suffered from more severe damage and are likely less to recover from the infection, suggesting that C. australis is only a viable biocontrol agent for younger B. pilosa plants. PMID:25838325

  19. Cowbird removals unexpectedly increase productivity of a brood parasite and the songbird host.

    PubMed

    Kosciuch, Karl L; Sandercock, Brett K

    2008-03-01

    Generalist brood parasites reduce productivity and population growth of avian hosts and have been implicated in population declines of several songbirds of conservation concern. To estimate the demographic effects of brood parasitism on Bell's Vireos (Vireo bellii), we removed Brown-headed Cowbirds (Molothrus ater) in a replicated switchback experimental design. Cowbird removals decreased parasitism frequency from 77% and 85% at unmanipulated plots to 58% and 47% at removal plots in 2004 and 2005, respectively. Vireo productivity per pair was higher at cowbird removal plots when years were pooled (mean = 2.6 +/- 0.2 [SE] young per pair) compared to unmanipulated plots (1.2 +/- 0.1). Nest desertion frequency was lower at cowbird removal plots (35% of parasitized nests) compared to unmanipulated plots (69%) because removal of host eggs was the proximate cue for nest desertion, and vireos experienced lower rates of egg loss at cowbird removal plots. Nest success was higher among unparasitized than parasitized nests, and parasitized nests at cowbird removal plots had a higher probability of success than parasitized nests at unmanipulated plots. Unexpectedly, cowbird productivity from vireo pairs was higher at cowbird removal plots (mean = 0.3 +/- 0.06 young per pair) than at unmanipulated plots (0.1 +/- 0.03) because fewer parasitized nests were deserted and the probability of nest success was higher. Our study provides the first evidence that increases in cowbird productivity may be an unintended consequence of cowbird control programs, especially during the initial years of trapping when parasitism may only be moderately reduced. Thus, understanding the demographic impacts of cowbird removals requires an informed understanding of the behavioral ecology of host-parasite interactions. PMID:18488614

  20. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite

    PubMed Central

    Schulte, Rebecca D.; Makus, Carsten; Hasert, Barbara; Michiels, Nico K.; Schulenburg, Hinrich

    2010-01-01

    The coevolution between hosts and parasites is predicted to have complex evolutionary consequences for both antagonists, often within short time periods. To date, conclusive experimental support for the predictions is available mainly for microbial host systems, but for only a few multicellular host taxa. We here introduce a model system of experimental coevolution that consists of the multicellular nematode host Caenorhabditis elegans and the microbial parasite Bacillus thuringiensis. We demonstrate that 48 host generations of experimental coevolution under controlled laboratory conditions led to multiple changes in both parasite and host. These changes included increases in the traits of direct relevance to the interaction such as parasite virulence (i.e., host killing rate) and host resistance (i.e., the ability to survive pathogens). Importantly, our results provide evidence of reciprocal effects for several other central predictions of the coevolutionary dynamics, including (i) possible adaptation costs (i.e., reductions in traits related to the reproductive rate, measured in the absence of the antagonist), (ii) rapid genetic changes, and (iii) an overall increase in genetic diversity across time. Possible underlying mechanisms for the genetic effects were found to include increased rates of genetic exchange in the parasite and elevated mutation rates in the host. Taken together, our data provide comprehensive experimental evidence of the consequences of host–parasite coevolution, and thus emphasize the pace and complexity of reciprocal adaptations associated with these antagonistic interactions. PMID:20368449

  1. The Relationship between Parasite Fitness and Host Condition in an Insect - Virus System

    PubMed Central

    Tseng, Michelle; Myers, Judith H.

    2014-01-01

    Research in host-parasite evolutionary ecology has demonstrated that environmental variation plays a large role in mediating the outcome of parasite infection. For example, crowding or low food availability can reduce host condition and make them more vulnerable to parasite infection. This observation that poor-condition hosts often suffer more from parasite infection compared to healthy hosts has led to the assumption that parasite productivity is higher in poor-condition hosts. However, the ubiquity of this negative relationship between host condition and parasite fitness is unknown. Moreover, examining the effect of environmental variation on parasite fitness has been largely overlooked in the host-parasite literature. Here we investigate the relationship between parasite fitness and host condition by using a laboratory experiment with the cabbage looper Trichoplusia ni and its viral pathogen, AcMNPV, and by surveying published host-parasite literature. Our experiments demonstrated that virus productivity was positively correlated with host food availability and the literature survey revealed both positive and negative relationships between host condition and parasite fitness. Together these data demonstrate that contrary to previous assumptions, parasite fitness can be positively or negatively correlated with host fitness. We discuss the significance of these findings for host-parasite population biology. PMID:25208329

  2. The impact of host starvation on parasite development and population dynamics in an intestinal trypanosome parasite of bumble bees.

    PubMed

    Logan, A; Ruiz-González, M X; Brown, M J F

    2005-06-01

    Host nutrition plays an important role in determining the development and success of parasitic infections. While studies of vertebrate hosts are accumulating, little is known about how host nutrition affects parasites of invertebrate hosts. Crithidia bombi is a gut trypanosome parasite of the bumble bee, Bombus terrestris and here we use it as a model system to determine the impact of host nutrition on the population dynamics and development of micro-parasites in invertebrates. Pollen-starved bees supported significantly smaller populations of the parasite. In pollen-fed bees the parasite showed a temporal pattern in development, with promastigote transmission stages appearing at the start of the infection and gradually being replaced by choanomastigote and amastigote forms. In pollen-starved bees this developmental process was disrupted, and there was no pattern in the appearance of these three forms. We discuss the implications of these results for parasite transmission, and speculate about the mechanisms behind these changes.

  3. Host-parasite arms races and rapid changes in bird egg appearance.

    PubMed

    Spottiswoode, Claire N; Stevens, Martin

    2012-05-01

    Coevolutionary arms races are a powerful force driving evolution, adaptation, and diversification. They can generate phenotypic polymorphisms that render it harder for a coevolving parasite or predator to exploit any one individual of a given species. In birds, egg polymorphisms should be an effective defense against mimetic brood parasites and are extreme in the African tawny-flanked prinia (Prinia subflava) and its parasite, the cuckoo finch (Anomalospiza imberbis). Here we use models of avian visual perception to analyze the appearance of prinia and cuckoo finch eggs from the same location over 40 years. We show that the two interacting populations have experienced rapid changes in egg traits. Egg colors of both species have diversified over time, expanding into avian color space as expected under negative frequency-dependent selection. Egg pattern showed signatures of both frequency-dependent and directional selection in different traits, which appeared to be evolving independently of one another. Host and parasite appear to be closely tracking one another's evolution, since parasites showed closer color mimicry of contemporaneous hosts. This correlational evidence suggests that hosts and parasites are locked in an ongoing arms race in egg appearance, driven by constant change in the selective advantage of different phenotypes, and that coevolutionary arms races can generate remarkably rapid phenotypic change.

  4. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites.

    PubMed

    Najer, Adrian; Wu, Dalin; Bieri, Andrej; Brand, Françoise; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2014-12-23

    The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response. PMID:25435059

  5. Malaria parasites tolerate a broad range of ionic environments and do not require host cation remodelling.

    PubMed

    Pillai, Ajay D; Addo, Rachel; Sharma, Paresh; Nguitragool, Wang; Srinivasan, Prakash; Desai, Sanjay A

    2013-04-01

    Malaria parasites grow within erythrocytes, but are also free in host plasma between cycles of asexual replication. As a result, the parasite is exposed to fluctuating levels of Na(+) and K(+) , ions assumed to serve important roles for the human pathogen, Plasmodium falciparum. We examined these assumptions and the parasite's ionic requirements by establishing continuous culture in novel sucrose-based media. With sucrose as the primary osmoticant and K(+) and Cl(-) as the main extracellular ions, we obtained parasite growth and propagation at rates indistinguishable from those in physiological media. These conditions abolish long-known increases in intracellular Na(+) via parasite-induced channels, excluding a requirement for erythrocyte cation remodelling. We also dissected Na(+) , K(+) and Cl(-) requirements and found that unexpectedly low concentrations of each ion meet the parasite's demands. Surprisingly, growth was not adversely affected by up to 148 mM K(+) , suggesting that low extracellular K(+) is not an essential trigger for erythrocyte invasion. At the same time, merozoite egress and invasion required a threshold ionic strength, suggesting critical electrostatic interactions between macromolecules at these stages. These findings provide insights into transmembrane signalling in malaria and reveal fundamental differences between host and parasite ionic requirements.

  6. Susceptible hosts: a resort for parasites right in the eye of the immune response.

    PubMed

    DosReis, G A

    2000-01-01

    Trypanosomatid protozoan parasites express an aggressive strategy of parasitism by infecting host macrophages and inducing extensive T-lymphocyte activation. One goal of such strategy is to drive the immune response of genetically susceptible hosts to a state of unresponsiveness regarding parasite killing. Unresponsiveness is achieved through different mechanisms, depending on the parasite species. In this brief review, recent findings on the molecular and cellular bases of the parasites' exploitation of host immune responses are discussed.

  7. Trade-offs in host choice of an herbivorous insect based on parasitism and larval performance.

    PubMed

    Murphy, Shannon M; Loewy, Katrina J

    2015-11-01

    Herbivore diet breadth is predicted to evolve in response to both bottom-up and top-down selective pressures, including host plant abundance, quality and natural enemy pressure. As the relative importance and strength of interactions change over an herbivore's geographic range, local patterns of host plant use should change in response, altering local diet breadths. Fall webworm (Hyphantria cunea) is a widespread, polyphagous moth species that feeds on hundreds of plant species worldwide. Populations of fall webworm in Colorado remain polyphagous, but their diet breadth is restricted compared to other populations and thus present an ideal opportunity to test the ecological drivers of host use by a polyphagous herbivore. We investigated how host abundance, larval performance, and parasitism affect host use for fall webworm to test how these selective pressures may act individually or in concert, as well as the role of any trade-offs among fitness components, to explain diet breadth and host use. We found that host abundance was a significant predictor of host use, which suggests a selective pressure to reduce search time for oviposition sites by adult females. We also detected an important trade-off between bottom-up and top-down selective pressures: higher quality host plants also had a greater proportion of larval mortality due to parasitism. Local patterns of host plant abundance appear to narrow the set of hosts used by fall webworms in Colorado, while the trade-off between host quality and risk of parasitism helps explain the maintenance of a generalized feeding strategy within this restricted set of hosts.

  8. Molecular tracking of individual host use in the Shiny Cowbird - a generalist brood parasite.

    PubMed

    de la Colina, Ma Alicia; Hauber, Mark E; Strausberger, Bill M; Reboreda, Juan Carlos; Mahler, Bettina

    2016-07-01

    Generalist parasites exploit multiple host species at the population level, but the individual parasite's strategy may be either itself a generalist or a specialist pattern of host species use. Here, we studied the relationship between host availability and host use in the individual parasitism patterns of the Shiny Cowbird Molothrus bonariensis, a generalist avian obligate brood parasite that parasitizes an extreme range of hosts. Using five microsatellite markers and an 1120-bp fragment of the mtDNA control region, we reconstructed full-sibling groups from 359 cowbird eggs and chicks found in nests of the two most frequent hosts in our study area, the Chalk-browed Mockingbird Mimus saturninus and the House Wren Troglodytes aedon. We were able to infer the laying behavior of 17 different females a posteriori and found that they were mostly faithful to a particular laying area and host species along the entire reproductive season and did not avoid using previously parasitized nests (multiple parasitism) even when other nests were available for parasitism. Moreover, we found females using the same host nest more than once (repeated parasitism), which had not been previously reported for this species. We also found few females parasitizing more than one host species. The use of an alternative host was not related to the main hosts' nest availability. Overall, female shiny cowbirds use a spatially structured and host species specific approach for parasitism, but they do so nonexclusively, resulting in both detectable levels of multiple parasitism and generalism at the level of individual parasites.

  9. Parasite Manipulation of Host Behaviour: Acanthocephalans and Shrimps in the Laboratory.

    ERIC Educational Resources Information Center

    Brown, A. F.; Thompson, D. B. A.

    1986-01-01

    Describes three experiments for undergraduates which illustrate associations of parasites with their host. Includes a table of parasite-induced alterations of selected host species. Instructional suggestions are also provided. (ML)

  10. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation.

    PubMed

    Marsolier, J; Perichon, M; DeBarry, J D; Villoutreix, B O; Chluba, J; Lopez, T; Garrido, C; Zhou, X Z; Lu, K P; Fritsch, L; Ait-Si-Ali, S; Mhadhbi, M; Medjkane, S; Weitzman, J B

    2015-04-16

    Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack their genetic and epigenetic machinery to change host cell phenotypic states. Among the Apicomplexa phylum of obligate intracellular parasites, which cause veterinary and human diseases, Theileria is the only genus that transforms its mammalian host cells. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-1 (ref. 2). The transformed phenotypes are reversed by treatment with the theilericidal drug buparvaquone. We used comparative genomics to identify a homologue of the peptidyl-prolyl isomerase PIN1 in T. annulata (TaPIN1) that is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPIN1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7, leading to its degradation and subsequent stabilization of c-JUN, which promotes transformation. We performed in vitro and in silico analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPIN1 is directly inhibited by the anti-parasite drug buparvaquone (and other known PIN1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerization is thus a conserved mechanism that is important in cancer and is used by Theileria parasites to manipulate host oncogenic signalling.

  11. Do Parasitic Trematode Cercariae Demonstrate a Preference for Susceptible Host Species?

    PubMed Central

    Sears, Brittany F.; Schlunk, Andrea D.; Rohr, Jason R.

    2012-01-01

    Many parasites are motile and exhibit behavioural preferences for certain host species. Because hosts can vary in their susceptibility to infections, parasites might benefit from preferentially detecting and infecting the most susceptible host, but this mechanistic hypothesis for host-choice has rarely been tested. We evaluated whether cercariae (larval trematode parasites) prefer the most susceptible host species by simultaneously presenting cercariae with four species of tadpole hosts. Cercariae consistently preferred hosts in the following order: Anaxyrus ( = Bufo) terrestris (southern toad), Hyla squirella (squirrel tree frog), Lithobates ( = Rana) sphenocephala (southern leopard frog), and Osteopilus septentrionalis (Cuban tree frog). These host species varied in susceptibility to cercariae in an order similar to their attractiveness with a correlation that approached significance. Host attractiveness to parasites also varied consistently and significantly among individuals within a host species. If heritable, this individual-level host variation would represent the raw material upon which selection could act, which could promote a Red Queen “arms race” between host cues and parasite detection of those cues. If, in general, motile parasites prefer to infect the most susceptible host species, this phenomenon could explain aggregated distributions of parasites among hosts and contribute to parasite transmission rates and the evolution of virulence. Parasite preferences for hosts belie the common assumption of disease models that parasites seek and infect hosts at random. PMID:23272084

  12. A Large Repertoire of Parasite Epitopes Matched by a Large Repertoire of Host Immune Receptors in an Invertebrate Host/Parasite Model

    PubMed Central

    Moné, Yves; Gourbal, Benjamin; Duval, David; Du Pasquier, Louis; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume

    2010-01-01

    For many decades, invertebrate immunity was believed to be non-adaptive, poorly specific, relying exclusively on sometimes multiple but germ-line encoded innate receptors and effectors. But recent studies performed in different invertebrate species have shaken this paradigm by providing evidence for various types of somatic adaptations at the level of putative immune receptors leading to an enlarged repertoire of recognition molecules. Fibrinogen Related Proteins (FREPs) from the mollusc Biomphalaria glabrata are an example of these putative immune receptors. They are known to be involved in reactions against trematode parasites. Following not yet well understood somatic mechanisms, the FREP repertoire varies considerably from one snail to another, showing a trend towards an individualization of the putative immune repertoire almost comparable to that described from vertebrate adaptive immune system. Nevertheless, their antigenic targets remain unknown. In this study, we show that a specific set of these highly variable FREPs from B. glabrata forms complexes with similarly highly polymorphic and individually variable mucin molecules from its specific trematode parasite S. mansoni (Schistosoma mansoni Polymorphic Mucins: SmPoMucs). This is the first evidence of the interaction between diversified immune receptors and antigenic variant in an invertebrate host/pathogen model. The same order of magnitude in the diversity of the parasite epitopes and the one of the FREP suggests co-evolutionary dynamics between host and parasite regarding this set of determinants that could explain population features like the compatibility polymorphism observed in B. glabrata/S. mansoni interaction. In addition, we identified a third partner associated with the FREPs/SmPoMucs in the immune complex: a Thioester containing Protein (TEP) belonging to a molecular category that plays a role in phagocytosis or encapsulation following recognition. The presence of this last partner in this

  13. Redox sensing and signaling by malaria parasite in vertebrate host.

    PubMed

    Tripathy, Satyajit; Roy, Somenath

    2015-09-01

    Plasmodium parasites, which is responsible to cause malaria, are also exceedingly receptive to oxidative stress during their intraerythrocytic life stage as they devour haemoglobin inside their food vacuoles and engender toxic haem moieties and reactive oxygen species (ROS). Other than, several studies suggest that the generation of reactive oxygen and nitrogen species (ROS and RNS) associated with oxidative stress, plays a decisive role in the ripeness of systemic complications caused by malaria. Malaria infection provokes the generation of hydroxyl radicals (OH(•)), which most probably is the main reason for the induction of oxidative stress and apoptosis. In this study, it has been described to understand how redox molecules and NO carry out their diverse functions in both parasites and host. It is very important to understand the chemical reactions that produce those outcomes and how its regulation carried out by parasite during erythrocytic phase.

  14. Blending in with the crowd: social parasites integrate into their host colonies using a flexible chemical signature.

    PubMed

    D'Ettorre, P; Mondy, N; Lenoir, A; Errard, C

    2002-09-22

    Social parasites are able to exploit their host's communication code and achieve social integration. For colony foundation, a newly mated slave-making ant queen must usurp a host colony. The parasite's brood is cared for by the hosts and newly eclosed slave-making workers integrate to form a mixed ant colony. To elucidate the social integration strategy of the slave-making workers, Polyergus rufescens, behavioural and chemical analyses were carried out. Cocoons of P. rufescens were introduced into subcolonies of four potential host species: Formica subgenus Serviformica (Formica cunicularia and F. rufibarbis, usual host species; F. gagates, rare host; F. selysi, non-natural host). Slave-making broods were cared for and newly emerged workers showed several social interactions with adult Formica. We recorded the occurrence of abdominal trophallaxis, in which P. rufescens, the parasite, was the donor. Social integration of P. rufescens workers into host colonies appears to rely on the ability of the parasite to modify its cuticular hydrocarbon profile to match that of the rearing species. To study the specific P. rufescens chemical profile, newly emerged callows were reared in isolation from the mother colony (without any contact with adult ants). The isolated P. rufescens workers exhibited a chemical profile closely matching that of the primary host species, indicating the occurrence of local host adaptation in the slave-maker population. However, the high flexibility in the ontogeny of the parasite's chemical signature could allow for host switching. PMID:12350253

  15. Surface antigen cross-linking triggers forced exit of a protozoan parasite from its host.

    PubMed

    Clark, T G; Lin, T L; Dickerson, H W

    1996-06-25

    We used the common fish pathogen Ichthyophthirius multifiliis as a model for studying interactions between parasitic ciliates and their vertebrate hosts. Although highly pathogenic, Ichthyophthirius can elicit a strong protective immune response in fish after exposure to controlled infections. To investigate the mechanisms underlying host resistance, a series of passive immunization experiments were carried out using mouse monoclonal antibodies against a class of surface membrane proteins, known as immobilization antigens (or i-antigens), thought to play a role in the protective response. Such antibodies bind to cilia and immobilize I. multifiliis in vitro. Surprisingly, we found that passive antibody transfer in vivo caused rapid exit of parasites from the host. The effect was highly specific for a given I. multifiliis serotype. F(ab)2 subfragments had the same effect as intact antibody, whereas monovalent Fab fragments failed to protect. The activity of Fab could, nevertheless, be restored after subsequent i.p. injection of bivalent goat anti-mouse IgG. Parasites that exit the host had detectable antibody on their surface and appeared viable in all respects. These findings represent a novel instance among protists in which protective immunity (and evasion of the host response) result from an effect of antibody on parasite behavior.

  16. Does multiple hosts mean multiple parasites? Population genetic structure of Schistosoma japonicum between definitive host species.

    PubMed

    Wang, T P; Shrivastava, J; Johansen, M V; Zhang, S Q; Wang, F F; Webster, J P

    2006-10-01

    Multi-host parasites, those capable of infecting more than one species of host, are responsible for the majority of all zoonotic, emerging or persistent human and animal diseases and are considered one of the major challenges for the biomedical sciences in the 21st century. We characterized the population structure of the multi-host parasite Schistosoma japonicum in relation to its definitive host species by genotyping miracidia collected from humans and domestic animals across five villages around the Yangtze River in Anhui Province, mainland China, using microsatellite markers. High levels of polymorphisms were observed and two main genetic clusters were identified which separated water buffalo, cattle and humans from goats, pigs, dogs and cats. We thereby believe that we present the first evidence of definitive host-based genetic variation in Schistosoma japonicum which has important epidemiological, evolutionary, medical and veterinary implications.

  17. Host responses to interspecific brood parasitism: a by-product of adaptations to conspecific parasitism?

    PubMed Central

    2014-01-01

    Background Why have birds evolved the ability to reject eggs? Typically, foreign egg discrimination is interpreted as evidence that interspecific brood parasitism (IP) has selected for the host’s ability to recognize and eliminate foreign eggs. Fewer studies explore the alternative hypothesis that rejection of interspecific eggs is a by-product of host defenses, evolved against conspecific parasitism (CP). We performed a large scale study with replication across taxa (two congeneric Turdus thrushes), space (populations), time (breeding seasons), and treatments (three types of experimental eggs), using a consistent design of egg rejection experiments (n = 1057 nests; including controls), in areas with potential IP either present (Europe; native populations) or absent (New Zealand; introduced populations). These comparisons benefited from the known length of allopatry (one and a half centuries), with no gene flow between native and introduced populations, which is rarely available in host-parasite systems. Results Hosts rejected CP at unusually high rates for passerines (up to 60%). CP rejection rates were higher in populations with higher conspecific breeding densities and no risks of IP, supporting the CP hypothesis. IP rejection rates did not covary geographically with IP risk, contradicting the IP hypothesis. High egg rejection rates were maintained in the relatively long-term isolation from IP despite non-trivial rejection costs and errors. Conclusions These egg rejection patterns, combined with recent findings that these thrushes are currently unsuitable hosts of the obligate parasitic common cuckoo (Cuculus canorus), are in agreement with the hypothesis that the rejection of IP is a by-product of fine-tuned egg discrimination evolved due to CP. Our study highlights the importance of considering both IP and CP simultaneously as potential drivers in the evolution of egg discrimination, and illustrates how populations introduced to novel ecological contexts

  18. Parasite infection and host group size: a meta-analytical review.

    PubMed

    Patterson, Jesse E H; Ruckstuhl, Kathreen E

    2013-06-01

    Many studies have identified various host behavioural and ecological traits that are associated with parasite infection, including host gregariousness. By use of meta-analyses, we investigated to what degree parasite prevalence, intensity and species richness are correlated with group size in gregarious species. We predicted that larger groups would have more parasites and higher parasite species richness. We analysed a total of 70 correlations on parasite prevalence, intensity and species richness across different host group sizes. Parasite intensity and prevalence both increased positively with group size, as expected. No significant relationships were found between host group size and parasite species richness, suggesting that larger groups do not harbour more rare or novel parasite species than smaller groups. We further predicted that the mobility of the host (mobile, sedentary) and the mode of parasite transmission (direct, indirect, mobile) would be important predictors of the effects of group sizes on parasite infection. It was found that group size was positively correlated with the prevalence and intensity of directly and indirectly transmitted parasites. However, a negative relationship was observed between group size and mobile parasite intensity, with larger groups having lower parasite intensities. Further, intensities of parasites did not increase with group size of mobile hosts, suggesting that host mobility may negate parasite infection risk. The implications for the evolution and maintenance of sociality in host species are discussed, and future research directions are highlighted.

  19. Social hackers: integration in the host chemical recognition system by a paper wasp social parasite.

    PubMed

    Turillazzi, S; Sledge, M F; Dani, F R; Cervo, R; Massolo, A; Fondelli, L

    2000-04-01

    Obligate social parasites in the social insects have lost the worker caste and the ability to establish nests. As a result, parasites must usurp a host nest, overcome the host recognition system, and depend on the host workers to rear their offspring. We analysed cuticular hydrocarbon profiles of live parasite females of the paper wasp social parasite Polistes sulcifer before and after usurpation of host nests, using the non-destructive technique of solid-phase micro-extraction. Our results reveal that hydrocarbon profiles of parasites change after usurpation of host nests to match the cuticular profile of the host species. Chemical evidence further shows that the parasite queen changes the odour of the nest by the addition of a parasite-specific hydrocarbon. We discuss the possible role of this in the recognition and acceptance of the parasite and its offspring in the host colony.

  20. Social Hackers: Integration in the Host Chemical Recognition System by a Paper Wasp Social Parasite

    NASA Astrophysics Data System (ADS)

    Turillazzi, S.; Sledge, M. F.; Dani, F. R.; Cervo, R.; Massolo, A.; Fondelli, L.

    Obligate social parasites in the social insects have lost the worker caste and the ability to establish nests. As a result, parasites must usurp a host nest, overcome the host recognition system, and depend on the host workers to rear their offspring. We analysed cuticular hydrocarbon profiles of live parasite females of the paper wasp social parasite Polistes sulcifer before and after usurpation of host nests, using the non-destructive technique of solid-phase micro-extraction. Our results reveal that hydrocarbon profiles of parasites change after usurpation of host nests to match the cuticular profile of the host species. Chemical evidence further shows that the parasite queen changes the odour of the nest by the addition of a parasite-specific hydrocarbon. We discuss the possible role of this in the recognition and acceptance of the parasite and its offspring in the host colony.

  1. Host genetics and population structure effects on parasitic disease.

    PubMed

    Williams-Blangero, Sarah; Criscione, Charles D; VandeBerg, John L; Correa-Oliveira, Rodrigo; Williams, Kimberly D; Subedi, Janardan; Kent, Jack W; Williams, Jeff; Kumar, Satish; Blangero, John

    2012-03-19

    Host genetic factors exert significant influences on differential susceptibility to many infectious diseases. In addition, population structure of both host and parasite may influence disease distribution patterns. In this study, we assess the effects of population structure on infectious disease in two populations in which host genetic factors influencing susceptibility to parasitic disease have been extensively studied. The first population is the Jirel population of eastern Nepal that has been the subject of research on the determinants of differential susceptibility to soil-transmitted helminth infections. The second group is a Brazilian population residing in an area endemic for Trypanosoma cruzi infection that has been assessed for genetic influences on differential disease progression in Chagas disease. For measures of Ascaris worm burden, within-population host genetic effects are generally more important than host population structure factors in determining patterns of infectious disease. No significant influences of population structure on measures associated with progression of cardiac disease in individuals who were seropositive for T. cruzi infection were found.

  2. Mimetic host shifts in an endangered social parasite of ants.

    PubMed

    Thomas, Jeremy A; Elmes, Graham W; Sielezniew, Marcin; Stankiewicz-Fiedurek, Anna; Simcox, David J; Settele, Josef; Schönrogge, Karsten

    2013-01-22

    An emerging problem in conservation is whether listed morpho-species with broad distributions, yet specialized lifestyles, consist of more than one cryptic species or functionally distinct forms that have different ecological requirements. We describe extreme regional divergence within an iconic endangered butterfly, whose socially parasitic young stages use non-visual, non-tactile cues to infiltrate and supplant the brood in ant societies. Although indistinguishable morphologically or when using current mitochondrial and nuclear sequence-, or microsatellite data, Maculinea rebeli from Spain and southeast Poland exploit different Myrmica ant species and experience 100 per cent mortality with each other's hosts. This reflects major differences in the hydrocarbons synthesized from each region by the larvae, which so closely mimic the recognition profiles of their respective hosts that nurse ants afford each parasite a social status above that of their own kin larvae. The two host ants occupy separate niches within grassland; thus, conservation management must differ in each region. Similar cryptic differentiation may be common, yet equally hard to detect, among the approximately 10 000 unstudied morpho-species of social parasite that are estimated to exist, many of which are Red Data Book listed.

  3. Mimetic host shifts in an endangered social parasite of ants

    PubMed Central

    Thomas, Jeremy A.; Elmes, Graham W.; Sielezniew, Marcin; Stankiewicz-Fiedurek, Anna; Simcox, David J.; Settele, Josef; Schönrogge, Karsten

    2013-01-01

    An emerging problem in conservation is whether listed morpho-species with broad distributions, yet specialized lifestyles, consist of more than one cryptic species or functionally distinct forms that have different ecological requirements. We describe extreme regional divergence within an iconic endangered butterfly, whose socially parasitic young stages use non-visual, non-tactile cues to infiltrate and supplant the brood in ant societies. Although indistinguishable morphologically or when using current mitochondrial and nuclear sequence-, or microsatellite data, Maculinea rebeli from Spain and southeast Poland exploit different Myrmica ant species and experience 100 per cent mortality with each other's hosts. This reflects major differences in the hydrocarbons synthesized from each region by the larvae, which so closely mimic the recognition profiles of their respective hosts that nurse ants afford each parasite a social status above that of their own kin larvae. The two host ants occupy separate niches within grassland; thus, conservation management must differ in each region. Similar cryptic differentiation may be common, yet equally hard to detect, among the approximately 10 000 unstudied morpho-species of social parasite that are estimated to exist, many of which are Red Data Book listed. PMID:23193127

  4. Parasitism in optima forma: exploiting the host fibrinolytic system for invasion.

    PubMed

    Figuera, Lourdes; Gómez-Arreaza, Amaranta; Avilán, Luisana

    2013-10-01

    The interaction of pathogenic bacteria with the host fibrinolytic system through the plasminogen molecule has been well documented. It has been shown, using animal models, to be important in invasion into the host and establishment of the infection. From a number of recent observations with parasitic protists and helminths, emerges evidence that also in these organisms the interaction with plasminogen may be important for infection and virulence. A group of molecules that act as plasminogen receptors have been identified in parasites. This group comprises the glycolytic enzymes enolase, glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-biphosphate aldolase, in common with the plasminogen receptors known in prokaryotic pathogens. The interaction with the fibrinolytic system may arm the parasites with the host protease plasmin, thus helping them to migrate and cross barriers, infect cells and avoid clot formation. In this context, plasminogen receptors on the parasite surface or as secreted molecules, may be considered virulence factors. A possible evolutionary scenario for the recruitment of glycolytic enzymes as plasminogen receptors by widely different pathogens is discussed.

  5. Conflict between parasites with different transmission strategies infecting an amphipod host.

    PubMed

    Haine, Eleanor R; Boucansaud, Karelle; Rigaud, Thierry

    2005-12-01

    Competition between parasites within a host can influence the evolution of parasite virulence and host resistance, but few studies examine the effects of unrelated parasites with conflicting transmission strategies infecting the same host. Vertically transmitted (VT) parasites, transmitted from mother to offspring, are in conflict with virulent, horizontally transmitted (HT) parasites, because healthy hosts are necessary to maximize VT parasite fitness. Resolution of the conflict between these parasites should lead to the evolution of one of two strategies: avoidance, or sabotage of HT parasite virulence by the VT parasite. We investigated two co-infecting parasites in the amphipod host, Gammarus roeseli: VT microsporidia have little effect on host fitness, but acanthocephala modify host behaviour, increasing the probability that the amphipod is predated by the acanthocephalan's definitive host. We found evidence for sabotage: the behavioural manipulation induced by the Acanthocephala Polymorphus minutus was weaker in hosts also infected by the microsporidia Dictyocoela sp. (roeselum) compared to hosts infected by P. minutus alone. Such conflicts may explain a significant portion of the variation generally observed in behavioural measures, and since VT parasites are ubiquitous in invertebrates, often passing undetected, conflict via transmission may be of great importance in the study of host-parasite relationships.

  6. Host and parasite thermal acclimation responses depend on the stage of infection.

    PubMed

    Altman, Karie A; Paull, Sara H; Johnson, Pieter T J; Golembieski, Michelle N; Stephens, Jeffrey P; LaFonte, Bryan E; Raffel, Thomas R

    2016-07-01

    Global climate change is expected to alter patterns of temperature variability, which could influence species interactions including parasitism. Species interactions can be difficult to predict in variable-temperature environments because of thermal acclimation responses, i.e. physiological changes that allow organisms to adjust to a new temperature following a temperature shift. The goal of this study was to determine how thermal acclimation influences host resistance to infection and to test for parasite acclimation responses, which might differ from host responses in important ways. We tested predictions of three, non-mutually exclusive hypotheses regarding thermal acclimation effects on infection of green frog tadpoles (Lithobates clamitans) by the trematode parasite Ribeiroia ondatrae with fully replicated controlled-temperature experiments. Trematodes or tadpoles were independently acclimated to a range of 'acclimation temperatures' prior to shifting them to new 'performance temperatures' for experimental infections. Trematodes that were acclimated to intermediate temperatures (19-22 °C) had greater encystment success across temperatures than either cold- or warm-acclimated trematodes. However, host acclimation responses varied depending on the stage of infection (encystment vs. clearance): warm- (22-28 °C) and cold-acclimated (13-19 °C) tadpoles had fewer parasites encyst at warm and cold performance temperatures, respectively, whereas intermediate-acclimated tadpoles (19-25 °C) cleared the greatest proportion of parasites in the week following exposure. These results suggest that tadpoles use different immune mechanisms to resist different stages of trematode infection, and that each set of mechanisms has unique responses to temperature variability. Our results highlight the importance of considering thermal responses of both parasites and hosts when predicting disease patterns in variable-temperature environments. PMID:27040618

  7. Host and parasite thermal acclimation responses depend on the stage of infection.

    PubMed

    Altman, Karie A; Paull, Sara H; Johnson, Pieter T J; Golembieski, Michelle N; Stephens, Jeffrey P; LaFonte, Bryan E; Raffel, Thomas R

    2016-07-01

    Global climate change is expected to alter patterns of temperature variability, which could influence species interactions including parasitism. Species interactions can be difficult to predict in variable-temperature environments because of thermal acclimation responses, i.e. physiological changes that allow organisms to adjust to a new temperature following a temperature shift. The goal of this study was to determine how thermal acclimation influences host resistance to infection and to test for parasite acclimation responses, which might differ from host responses in important ways. We tested predictions of three, non-mutually exclusive hypotheses regarding thermal acclimation effects on infection of green frog tadpoles (Lithobates clamitans) by the trematode parasite Ribeiroia ondatrae with fully replicated controlled-temperature experiments. Trematodes or tadpoles were independently acclimated to a range of 'acclimation temperatures' prior to shifting them to new 'performance temperatures' for experimental infections. Trematodes that were acclimated to intermediate temperatures (19-22 °C) had greater encystment success across temperatures than either cold- or warm-acclimated trematodes. However, host acclimation responses varied depending on the stage of infection (encystment vs. clearance): warm- (22-28 °C) and cold-acclimated (13-19 °C) tadpoles had fewer parasites encyst at warm and cold performance temperatures, respectively, whereas intermediate-acclimated tadpoles (19-25 °C) cleared the greatest proportion of parasites in the week following exposure. These results suggest that tadpoles use different immune mechanisms to resist different stages of trematode infection, and that each set of mechanisms has unique responses to temperature variability. Our results highlight the importance of considering thermal responses of both parasites and hosts when predicting disease patterns in variable-temperature environments.

  8. Discrimination of fish populations using parasites: Random Forests on a 'predictable' host-parasite system.

    PubMed

    Pérez-Del-Olmo, A; Montero, F E; Fernández, M; Barrett, J; Raga, J A; Kostadinova, A

    2010-10-01

    We address the effect of spatial scale and temporal variation on model generality when forming predictive models for fish assignment using a new data mining approach, Random Forests (RF), to variable biological markers (parasite community data). Models were implemented for a fish host-parasite system sampled along the Mediterranean and Atlantic coasts of Spain and were validated using independent datasets. We considered 2 basic classification problems in evaluating the importance of variations in parasite infracommunities for assignment of individual fish to their populations of origin: multiclass (2-5 population models, using 2 seasonal replicates from each of the populations) and 2-class task (using 4 seasonal replicates from 1 Atlantic and 1 Mediterranean population each). The main results are that (i) RF are well suited for multiclass population assignment using parasite communities in non-migratory fish; (ii) RF provide an efficient means for model cross-validation on the baseline data and this allows sample size limitations in parasite tag studies to be tackled effectively; (iii) the performance of RF is dependent on the complexity and spatial extent/configuration of the problem; and (iv) the development of predictive models is strongly influenced by seasonal change and this stresses the importance of both temporal replication and model validation in parasite tagging studies.

  9. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation

    PubMed Central

    Marsolier, J.; Perichon, M.; DeBarry, JD.; Villoutreix, BO.; Chluba, J.; Lopez, T.; Garrido, C.; Zhou, XZ.; Lu, KP.; Fritsch, L.; Ait-Si-Ali, S.; Mhadhbi, M; Medjkane, S.; Weitzman, JB.

    2014-01-01

    Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack the genetic and epigenetic machinery to change phenotypic states. Amongst the Apicomplexa phylum of obligate intracellular parasites which cause veterinary and human diseases, Theileria is the only genus which transforms its mammalian host cells1. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-12. The transformed phenotypes are reversed by treatment with the theilericidal drug Buparvaquone3. We used comparative genomics to identify a homologue of the Peptidyl Prolyl Isomerase Pin1 (designated TaPin1) in T. annulata which is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPin1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7 leading to its degradation and subsequent stabilization of c-Jun which promotes transformation. We performed in vitro analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPin1 is directly inhibited by the anti-parasite drug Buparvaquone (and other known Pin1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerisation is thus a conserved mechanism which is important in cancer and is used by Theileria parasites to manipulate host oncogenic signaling. PMID:25624101

  10. Trophic structure in a seabird host-parasite food web: insights from stable isotope analyses.

    PubMed

    Gómez-Díaz, Elena; González-Solís, Jacob

    2010-01-01

    Ecological studies on food webs rarely include parasites, partly due to the complexity and dimensionality of host-parasite interaction networks. Multiple co-occurring parasites can show different feeding strategies and thus lead to complex and cryptic trophic relationships, which are often difficult to disentangle by traditional methods. We analyzed stable isotope ratios of C ((13)C/(12)C, delta(13)C) and N ((15)N/(14)N, delta(15)N) of host and ectoparasite tissues to investigate trophic structure in 4 co-occurring ectoparasites: three lice and one flea species, on two closely related and spatially segregated seabird hosts (Calonectris shearwaters). delta(13)C isotopic signatures confirmed feathers as the main food resource for the three lice species and blood for the flea species. All ectoparasite species showed a significant enrichment in delta(15)N relatively to the host tissue consumed (discrimination factors ranged from 2 to 5 per thousand depending on the species). Isotopic differences were consistent across multiple host-ectoparasite locations, despite of some geographic variability in baseline isotopic levels. Our findings illustrate the influence of both ectoparasite and host trophic ecology in the isotopic structuring of the Calonectris ectoparasite community. This study highlights the potential of stable isotope analyses in disentangling the nature and complexity of trophic relationships in symbiotic systems.

  11. Trophic Structure in a Seabird Host-Parasite Food Web: Insights from Stable Isotope Analyses

    PubMed Central

    Gómez-Díaz, Elena; González-Solís, Jacob

    2010-01-01

    Ecological studies on food webs rarely include parasites, partly due to the complexity and dimensionality of host-parasite interaction networks. Multiple co-occurring parasites can show different feeding strategies and thus lead to complex and cryptic trophic relationships, which are often difficult to disentangle by traditional methods. We analyzed stable isotope ratios of C (13C/12C, δ13C) and N (15N/14N, δ15N) of host and ectoparasite tissues to investigate trophic structure in 4 co-occurring ectoparasites: three lice and one flea species, on two closely related and spatially segregated seabird hosts (Calonectris shearwaters). δ13C isotopic signatures confirmed feathers as the main food resource for the three lice species and blood for the flea species. All ectoparasite species showed a significant enrichment in δ15N relatively to the host tissue consumed (discrimination factors ranged from 2 to 5‰ depending on the species). Isotopic differences were consistent across multiple host-ectoparasite locations, despite of some geographic variability in baseline isotopic levels. Our findings illustrate the influence of both ectoparasite and host trophic ecology in the isotopic structuring of the Calonectris ectoparasite community. This study highlights the potential of stable isotope analyses in disentangling the nature and complexity of trophic relationships in symbiotic systems. PMID:20454612

  12. Direct and correlated responses to selection in a host-parasite system: testing for the emergence of genotype specificity.

    PubMed

    Nidelet, Thibault; Kaltz, Oliver

    2007-08-01

    Genotype x environment interactions can facilitate coexistence of locally adapted specialists. Interactions evolve if adaptation to one environment trades off with performance in others. We investigated whether evolution on one host genotype traded off with performance on others in long-term experimental populations of different genotypes of the protozoan Paramecium caudatum, infected with the bacterial parasite Holospora undulata. A total of nine parasite selection lines evolving on three host genotypes and the ancestral parasite were tested in a cross-infection experiment. We found that evolved parasites produced more infections than did the ancestral parasites, both on host genotypes they had evolved on (positive direct response to selection) and on genotypes they had not evolved on (positive correlated response to selection). On two host genotypes, a negative relationship between direct and correlated responses indicated pleiotropic costs of adaptation. On the third, a positive relationship suggested cost-free adaptation. Nonetheless, on all three hosts, resident parasites tended to be superior to the average nonresident parasite. Thus genotype specificity (i.e., patterns of local adaptation) may evolve without costs of adaptation, as long as direct responses to selection exceed correlated responses.

  13. Predators and patterns of within-host growth can mediate both among-host competition and evolution of transmission potential of parasites.

    PubMed

    Auld, Stuart K J R; Hall, Spencer R; Housley Ochs, Jessica; Sebastian, Mathew; Duffy, Meghan A

    2014-08-01

    Parasite prevalence shows tremendous spatiotemporal variation. Theory indicates that this variation might stem from life-history characteristics of parasites and key ecological factors. Here, we illustrate how the interaction of an important predator and the schedule of transmission potential of two parasites can explain parasite abundance. A field survey showed that a noncastrating fungus (Metschnikowia bicuspidata) commonly infected a dominant zooplankton host (Daphnia dentifera), while a castrating bacterial parasite (Pasteuria ramosa) was rare. This result seemed surprising given that the bacterium produces many more infectious propagules (spores) than the fungus upon host death. The fungus's dominance can be explained by the schedule of within-host growth of parasites (i.e., how transmission potential changes over the course of infection) and the release of spores from "sloppy" predators (Chaoborus spp., who consume Daphnia prey whole and then later regurgitate the carapace and parasite spores). In essence, sloppy predators create a niche that the faster-schedule fungus currently occupies. However, a selection experiment showed that the slower-schedule bacterium can evolve into this faster-schedule, predator-mediated niche (but pays a cost in maximal spore yield to do so). Hence, our study shows how parasite life history can interact with predation to strongly influence the ecology, epidemiology, and evolution of infectious disease.

  14. Tree phylogenetic diversity promotes host-parasitoid interactions.

    PubMed

    Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria

    2016-07-13

    Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish. PMID:27383815

  15. Tree phylogenetic diversity promotes host-parasitoid interactions.

    PubMed

    Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria

    2016-07-13

    Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish.

  16. Marine protected areas facilitate parasite populations among four fished host species of central Chile.

    PubMed

    Wood, Chelsea L; Micheli, Fiorenza; Fernández, Miriam; Gelcich, Stefan; Castilla, Juan Carlos; Carvajal, Juan

    2013-11-01

    1. Parasites comprise a substantial proportion of global biodiversity and exert important ecological influences on hosts, communities and ecosystems, but our knowledge of how parasite populations respond to human impacts is in its infancy. 2. Here, we present the results of a natural experiment in which we used a system of highly successful marine protected areas and matched open-access areas in central Chile to assess the influence of fishing-driven biodiversity loss on parasites of exploited fish and invertebrate hosts. We measured the burden of gill parasites for two reef fishes (Cheilodactylus variegatus and Aplodactylus punctatus), trematode parasites for a keyhole limpet (Fissurella latimarginata), and pinnotherid pea crab parasites for a sea urchin (Loxechinus albus). We also measured host density for all four hosts. 3. We found that nearly all parasite species exhibited substantially greater density (# parasites m(-2)) in protected than in open-access areas, but only one parasite species (a gill monogenean of C. variegatus) was more abundant within hosts collected from protected relative to open-access areas. 4. These data indicate that fishing can drive declines in parasite abundance at the parasite population level by reducing the availability of habitat and resources for parasites, but less commonly affects the abundance of parasites at the infrapopulation level (within individual hosts). 5. Considering the substantial ecological role that many parasites play in marine communities, fishing and other human impacts could exert cryptic but important effects on marine community structure and ecosystem functioning via reductions in parasite abundance.

  17. Host and parasite recruitment correlated at a regional scale.

    PubMed

    Byers, James E; Rogers, Tanya L; Grabowski, Jonathan H; Hughes, A Randall; Piehler, Michael F; Kimbro, David L

    2014-03-01

    Drivers of large-scale variability in parasite prevalence are not well understood. For logistical reasons, explorations of spatial patterns in parasites are often performed as observational studies. However, to understand the mechanisms that underlie these spatial patterns, standardized and controlled comparisons are needed. Here, we examined spatial variability in infection of an important fishery species and ecosystem engineer, the oyster (Crassostrea virginica) by its pea crab parasite (Zaops ostreus) across 700 km of the southeastern USA coastline. To minimize the influence of host genetics on infection patterns, we obtained juvenile oysters from a homogeneous source stock and raised them in situ for 3 months at multiple sites with similar environmental characteristics. We found that prevalence of pea crab infection varied between 24 and 73% across sites, but not systematically across latitude. Of all measured environmental variables, oyster recruitment correlated most strongly (and positively) with pea crab infection, explaining 92% of the variability in infection across sites. Our data ostensibly suggest that regional processes driving variation in oyster recruitment similarly affect the recruitment of one of its common parasites.

  18. Parasite-induced and parasite development-dependent alteration of the swimming behavior of fish hosts.

    PubMed

    Santos, E G N; Santos, C Portes

    2013-07-01

    Parasites with complex life cycles have the ability to change the behavior of their intermediate host in a way that increases their transmission rate to the next host. However, the level of behavioral changes can vary considerably, depending on the stage of parasite development and parasite intensity. To investigate the influence of such parameters, we evaluated the locomotory activity of the fish Poecilia vivipara prior to experimental infections, 7 days post-infection (dpi) and 14dpi with cercariae of the digenean Ascocotyle (Phagicola) pindoramensis. The locomotory activity was monitored using an image system, Videomex(®), linked to with a video camera able to record the swimming behavior of the fishes. At the end of the experiments, fishes were dissected and all metacercariae from the gills and mesenteries, the specific sites utilized by A. (P.) pindoramensis, were recovered and counted. There was a significant decrease in the swimming behavior of fishes after 14dpi. Similarly, we found a significant correlation between the swimming behavior of the fishes and parasite intensity in both sites of infection. It is surmised that the decrease in locomotory activity of P. vivipara caused by A. (P.) pindoramensis can disturb its predator-prey relationship in natural environment.

  19. Parasite diversity declines with host evolutionary distinctiveness: a global analysis of carnivores.

    PubMed

    Huang, Shan; Drake, John M; Gittleman, John L; Altizer, Sonia

    2015-03-01

    Evolutionarily distinctive host lineages might harbor fewer parasite species because they have fewer opportunities for parasite sharing than hosts having extant close relatives, or because diverse parasite assemblages promote host diversification. We evaluate these hypotheses using data from 930 species of parasites reported to infect free-living carnivores. We applied nonparametric richness estimators to estimate parasite diversity among well-sampled carnivore species and assessed how well host evolutionary distinctiveness, relative to other biological and environmental factors, explained variation in estimated parasite diversity. Species richness estimates indicate that the current published literature captures less than 50% of the true parasite diversity for most carnivores. Parasite species richness declined with evolutionary distinctiveness of carnivore hosts (i.e., length of terminal ranches of the phylogeny) and increased with host species body mass and geographic range area. We found no support for the hypothesis that hosts from more diverse lineages support a higher number of generalist parasites, but we did find evidence that parasite assemblages might have driven host lineage diversification through mechanisms linked to sexual selection. Collectively, this work provides strong support for host evolutionary history being an essential predictor of parasite diversity, and offers a simple model for predicting parasite diversity in understudied carnivore species.

  20. Ensuring transmission through dynamic host environments: host-pathogen interactions in Plasmodium sexual development

    PubMed Central

    Dantzler, Kathleen W.; Ravel, Deepali B.; Brancucci, Nicolas M. B.; Marti, Matthias

    2015-01-01

    A renewed global commitment to malaria elimination lends urgency to understanding the biology of Plasmodium transmission stages. Recent progress towards uncovering the mechanisms underlying P. falciparum sexual differentiation and maturation reveals potential targets for transmission-blocking drugs and vaccines. The identification of parasite factors that alter sexual differentiation, including extracellular vesicles and a master transcriptional regulator, suggest that parasites make epigenetically controlled developmental decisions based on environmental cues. New insights into sexual development, especially host cell remodeling and sequestration in the bone marrow, highlight open questions regarding parasite homing to the tissue, transmigration across the vascular endothelium, and maturation in the parenchyma. Novel molecular and translational tools will provide further opportunities to define host-parasite interactions and design effective transmission-blocking therapeutics. PMID:25867628

  1. Evidence of long-term structured cuckoo parasitism on individual magpie hosts.

    PubMed

    Molina-Morales, Mercedes; Gabriel Martínez, Juan; Martín-Gálvez, David; A Dawson, Deborah; Rodríguez-Ruiz, Juan; Burke, Terry; Avilés, Jesús M

    2013-03-01

    Brood parasites usually reduce their host's breeding success, resulting in strong selection for the evolution of host defences. Intriguingly, some host individuals/populations show no defence against parasitism, which has been explained within the frame of three different evolutionary hypotheses. One of these hypotheses posits that intermediate levels of defence at the population level may result from nonrandom distribution of parasitism among host individuals (i.e. structured parasitism). Empirical evidence for structured brood parasitism is, however, lacking for hosts of European cuckoos due to the absence of long-term studies. Here, we seek to identify the patterns of structured parasitism by studying great spotted cuckoo parasitism on individual magpie hosts over five breeding seasons. We also aim to identify whether individual characteristics of female magpies and/or their territories were related to the status of repeated parasitism. We found that 28·3% of the females in our population consistently escaped from cuckoo parasitism. Only 11·3% of females were always parasitized, and the remaining 60·4% changed their parasitism status. The percentage of females that maintained their status of parasitism (i.e. either parasitized or nonparasitized) between consecutive years varied over the study. Females that never suffered cuckoo parasitism built bigger nests than parasitized females at the beginning of the breeding season and smaller nests than those of parasitized females later in the season. Nonparasitized females also moved little from year to year and preferred areas with different characteristics over the course of the breeding season than parasitized females. Overall, females escaping from cuckoo parasitism reared twice as many chicks per year than those that were parasitized. In conclusion, our study reveals for first time the existence of a structured pattern of cuckoo parasitism based on phenotypic characteristics of individual hosts and of their

  2. In vitro infection of host roots by differentiated calli of the parasitic plant Orobanche.

    PubMed

    Zhou, W J; Yoneyama, K; Takeuchi, Y; Iso, S; Rungmekarat, S; Chae, S H; Sato, D; Joel, D M

    2004-04-01

    Root parasites of the genus Orobanche are serious weeds in agriculture. An aseptic infection system of host roots using calli of three Orobanche species was developed for the study of host-parasite interaction. The response of calli to various hormonal combinations was studied, because a requirement for infection is the differentiation of root-like protrusions, which are capable of producing haustorial connections to the host. Infectious root-like protrusions develop under the influence of 0.5-1.0 mg l(-1) IAA, and under the combination of 0.2 mg l(-1) NAA with 5.0 mg l(-1) kinetin. These protocols produced root protrusions with pad-like structures that resembled attachment organs of Orobanche seedlings, and proved effective in parasitizing host roots. Direct contact with the medium inhibited haustorium development and prevented infection. To overcome this problem, certain root portions were isolated from the medium by inserting thin glass plates underneath. Calli were then placed on the raised root portions and successfully infected the roots and developed young Orobanche tubercles with vascular system that directly connected to the host.

  3. Collective defence portfolios of ant hosts shift with social parasite pressure

    PubMed Central

    Jongepier, Evelien; Kleeberg, Isabelle; Job, Sylwester; Foitzik, Susanne

    2014-01-01

    Host defences become increasingly costly as parasites breach successive lines of defence. Because selection favours hosts that successfully resist parasitism at the lowest possible cost, escalating coevolutionary arms races are likely to drive host defence portfolios towards ever more expensive strategies. We investigated the interplay between host defence portfolios and social parasite pressure by comparing 17 populations of two Temnothorax ant species. When successful, collective aggression not only prevents parasitation but also spares host colonies the cost of searching for and moving to a new nest site. However, once parasites breach the host's nest defence, host colonies should resort to flight as the more beneficial resistance strategy. We show that under low parasite pressure, host colonies more likely responded to an intruding Protomognathus americanus slavemaker with collective aggression, which prevented the slavemaker from escaping and potentially recruiting nest-mates. However, as parasite pressure increased, ant colonies of both host species became more likely to flee rather than to fight. We conclude that host defence portfolios shift consistently with social parasite pressure, which is in accordance with the degeneration of frontline defences and the evolution of subsequent anti-parasite strategies often invoked in hosts of brood parasites. PMID:25100690

  4. Inferring host range dynamics from comparative data: the protozoan parasites of new world monkeys.

    PubMed

    Waxman, David; Weinert, Lucy A; Welch, John J

    2014-07-01

    Uncovering the ecological determinants of parasite host range is a central goal of comparative parasitology and infectious disease ecology. But while parasites are often distributed nonrandomly across the host phylogeny, such patterns are difficult to interpret without a genealogy for the parasite samples and without knowing what sorts of ecological dynamics might lead to what sorts of nonrandomness. We investigated inferences from comparative data, using presence/absence records from protozoan parasites of the New World monkeys. We first demonstrate several distinct types of phylogenetic signal in these data, showing, for example, that parasite species are clustered on the host tree and that closely related host species harbor similar numbers of parasite species. We then show that all of these patterns can be generated by a single, simple dynamical model, in which parasite host range changes more rapidly than host speciation/extinction and parasites preferentially colonize uninfected host species that are closely related to their existing hosts. Fitting this model to data, we then estimate its parameters. Finally, we caution that quite different ecological processes can lead to similar signatures but show how phylogenetic variation in host susceptibility can be distinguished from a tendency for parasites to colonize closely related hosts. Our new process-based analyses, which estimate meaningful parameters, should be useful for inferring the determinants of parasite host range and transmission success. PMID:24921601

  5. Platelet interactions with viruses and parasites.

    PubMed

    Alonso, Ana Lopez; Cox, Dermot

    2015-01-01

    While the interactions between Gram-positive bacteria and platelets have been well characterized, there is a paucity of data on the interaction between other pathogens and platelets. However, thrombocytopenia is a common feature with many infections especially viral hemorrhagic fever. The little available data on these interactions indicate a similarity with bacteria-platelet interactions with receptors such as FcγRIIa and Toll-Like Receptors (TLR) playing key roles with many pathogens. This review summarizes the known interactions between platelets and pathogens such as viruses, fungi and parasites.

  6. Host-Parasite Interactions in Chagas Disease: Genetically Unidentical Isolates of a Single Trypanosoma cruzi Strain Identified In Vitro via LSSP-PCR

    PubMed Central

    Nogueira-Paiva, Nívia Carolina; Vieira, Paula Melo de Abreu; Oliveri, Larissa Maris Rezende; Fonseca, Kátia da Silva; Pound-Lana, Gwenaelle; de Oliveira, Maykon Tavares; de Lana, Marta; Veloso, Vanja Maria; Reis, Alexandre Barbosa; Carneiro, Cláudia Martins

    2015-01-01

    The present study aims at establishing whether the diversity in pathogenesis within a genetically diverse host population infected with a single polyclonal strain of Trypanosoma cruzi is due to selection of specific subpopulations within the strain. For this purpose we infected Swiss mice, a genetically diverse population, with the polyclonal strain of Trypanosoma cruzi Berenice-78 and characterized via LSSP-PCR the kinetoplast DNA of subpopulations isolated from blood samples collected from the animals at various times after inoculation (3, 6 and 12 months after inoculation). We examined the biological behavior of the isolates in acellular medium and in vitro profiles of infectivity in Vero cell medium. We compared the characteristics of the isolates with the inoculating strain and with another strain, Berenice 62, isolated from the same patient 16 years earlier. We found that one of the isolates had intermediate behavior in comparison with Berenice-78 and Berenice-62 and a significantly different genetic profile by LSSP-PCR in comparison with the inoculating strain. We hereby demonstrate that genetically distinct Trypanosoma cruzi isolates may be obtained upon experimental murine infection with a single polyclonal Trypanosoma cruzi strain. PMID:26359864

  7. Superinfection reconciles host-parasite association and cross-species transmission.

    PubMed

    Haven, James; Park, Andrew William

    2013-12-01

    Parasites are either dedicated to a narrow host range, or capable of exploiting a wide host range. Understanding how host ranges are determined is very important for public health, as well as wildlife, plant, livestock and agricultural diseases. Our current understanding of host-parasite associations hinges on co-evolution, which assumes evolved host preferences (host specialization) of the parasite. Despite the explanatory power of this framework, we have only a vague understanding of why many parasites routinely cross the host species' barrier. Here we introduce a simple model demonstrating how superinfection (in a heterogeneous community) can promote host-parasite association. Strikingly, the model illustrates that strong host-parasite association occurs in the absence of host specialization, while still permitting cross-species transmission. For decades, host specialization has been foundational in explaining the maintenance of distinct parasites/strains in host species. We argue that host specializations may be exaggerated, and can occur as a byproduct (not necessarily the cause) of host-parasite associations. PMID:24161558

  8. Targeting Protein-Protein Interactions for Parasite Control

    PubMed Central

    Taylor, Christina M.; Fischer, Kerstin; Abubucker, Sahar; Wang, Zhengyuan; Martin, John; Jiang, Daojun; Magliano, Marc; Rosso, Marie-Noëlle; Li, Ben-Wen; Fischer, Peter U.; Mitreva, Makedonka

    2011-01-01

    Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs) offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific ortholgous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank). EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite) and B. malayi (H. sapiens parasite), which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly applicable. PMID

  9. Host-parasite coevolutionary dynamics with generalized success/failure infection genetics.

    PubMed

    Engelstädter, Jan

    2015-05-01

    Host-parasite infection genetics can be more complex than envisioned by classic models such as the gene-for-gene or matching-allele models. By means of a mathematical model, I investigate the coevolutionary dynamics arising from a large set of generalized models of infection genetics in which hosts are either fully resistant or fully susceptible to a parasite, depending on the genotype of both individuals. With a single diploid interaction locus in the hosts, many of the infection genetic models produce stable or neutrally stable genotype polymorphisms. However, only a few models, which are all different versions of the matching-allele model, lead to sustained cycles of genotype frequency fluctuations in both interacting species ("Red Queen" dynamics). By contrast, with two diploid interaction loci in the hosts, many infection genetics models that cannot be classified as one of the standard infection genetics models produce Red Queen dynamics. Sexual versus asexual reproduction and, in the former case, the rate of recombination between the interaction loci have a large impact on whether Red Queen dynamics arise from a given infection genetics model. This may have interesting but as yet unexplored implications with respect to the Red Queen hypothesis for the evolution of sex.

  10. Host age, sex, and reproductive seasonality affect nematode parasitism in wild Japanese macaques.

    PubMed

    MacIntosh, Andrew J J; Hernandez, Alexander D; Huffman, Michael A

    2010-10-01

    Parasites are characteristically aggregated within hosts, but identifying the mechanisms underlying such aggregation can be difficult in wildlife populations. We examined the influence of host age and sex over an annual cycle on the eggs per gram of feces (EPG) of nematode parasites infecting wild Japanese macaques (Macaca fuscata yakui) on Yakushima Island. Five species of nematode were recorded from 434 fecal samples collected from an age-structured group of 50 individually recognizable macaques. All parasites exhibited aggregated EPG distributions. The age-infection profiles of all three directly transmitted species (Oesophagostomum aculeatum, Strongyloides fuelleborni, and Trichuris trichiura) exhibited convex curves, but concavity better characterized the age-infection curves of the two trophically transmitted species (Streptopharagus pigmentatus and Gongylonema pulchrum). There was a male bias in EPG and prevalence of infection with directly transmitted species, except in the prevalence of O. aculeatum, and no sex bias in the other parasites. Infection with O. aculeatum showed a female bias in prevalence among young adults, and additional interactions with sex and seasonality show higher EPG values in males during the mating season (fall) but in females during the birth season (spring). These patterns suggest that an immunosuppressive role by reproductive hormones may be regulating direct, but not indirect, life-cycle parasites. Exposure at an early age may trigger an immune response that affects all nematodes, but trophically transmitted species appear to accumulate thereafter. Although it is difficult to discern clear mechanistic explanations for parasite distributions in wildlife populations, it is critical to begin examining these patterns in host species that are increasingly endangered by anthropogenic threats.

  11. Protozoa lectins and their role in host-pathogen interactions.

    PubMed

    Singh, Ram Sarup; Walia, Amandeep Kaur; Kanwar, Jagat Rakesh

    2016-01-01

    Lectins are proteins/glycoproteins of non-immune origin that agglutinate red blood cells, lymphocytes, fibroblasts, etc., and bind reversibly to carbohydrates present on the apposing cells. They have at least two carbohydrate binding sites and their binding can be inhibited by one or more carbohydrates. Owing to carbohydrate binding specificity of lectins, they mediate cell-cell interactions and play role in protozoan adhesion and host cell cytotoxicity, thus are central to the pathogenic property of the parasite. Several parasitic protozoa possess lectins which mediate parasite adherence to host cells based on their carbohydrate specificities. These interactions could be exploited for development of novel therapeutics, targeting the adherence and thus helpful in eradicating wide spread of protozoan diseases. The current review highlights the present state knowledge with regard to protozoal lectins with an emphasis on their haemagglutination activity, carbohydrate specificity, characteristics and also their role in pathogenesis notably as adhesion molecules, thereby aiding the pathogen in disease establishment.

  12. Molecular tracking of individual host use in the Shiny Cowbird - a generalist brood parasite.

    PubMed

    de la Colina, Ma Alicia; Hauber, Mark E; Strausberger, Bill M; Reboreda, Juan Carlos; Mahler, Bettina

    2016-07-01

    Generalist parasites exploit multiple host species at the population level, but the individual parasite's strategy may be either itself a generalist or a specialist pattern of host species use. Here, we studied the relationship between host availability and host use in the individual parasitism patterns of the Shiny Cowbird Molothrus bonariensis, a generalist avian obligate brood parasite that parasitizes an extreme range of hosts. Using five microsatellite markers and an 1120-bp fragment of the mtDNA control region, we reconstructed full-sibling groups from 359 cowbird eggs and chicks found in nests of the two most frequent hosts in our study area, the Chalk-browed Mockingbird Mimus saturninus and the House Wren Troglodytes aedon. We were able to infer the laying behavior of 17 different females a posteriori and found that they were mostly faithful to a particular laying area and host species along the entire reproductive season and did not avoid using previously parasitized nests (multiple parasitism) even when other nests were available for parasitism. Moreover, we found females using the same host nest more than once (repeated parasitism), which had not been previously reported for this species. We also found few females parasitizing more than one host species. The use of an alternative host was not related to the main hosts' nest availability. Overall, female shiny cowbirds use a spatially structured and host species specific approach for parasitism, but they do so nonexclusively, resulting in both detectable levels of multiple parasitism and generalism at the level of individual parasites. PMID:27547305

  13. Patterns of interactions of a large fish-parasite network in a tropical floodplain.

    PubMed

    Lima, Dilermando P; Giacomini, Henrique C; Takemoto, Ricardo M; Agostinho, Angelo A; Bini, Luis M

    2012-07-01

    1. Describing and explaining the structure of species interaction networks is of paramount importance for community ecology. Yet much has to be learned about the mechanisms responsible for major patterns, such as nestedness and modularity in different kinds of systems, of which large and diverse networks are a still underrepresented and scarcely studied fraction. 2. We assembled information on fishes and their parasites living in a large floodplain of key ecological importance for freshwater ecosystems in the Paraná River basin in South America. The resulting fish-parasite network containing 72 and 324 species of fishes and parasites, respectively, was analysed to investigate the patterns of nestedness and modularity as related to fish and parasite features. 3. Nestedness was found in the entire network and among endoparasites, multiple-host life cycle parasites and native hosts, but not in networks of ectoparasites, single-host life cycle parasites and non-native fishes. All networks were significantly modular. Taxonomy was the major host's attribute influencing both nestedness and modularity: more closely related host species tended to be associated with more nested parasite compositions and had greater chance of belonging to the same network module. Nevertheless, host abundance had a positive relationship with nestedness when only native host species pairs of the same network module were considered for analysis. 4. These results highlight the importance of evolutionary history of hosts in linking patterns of nestedness and formation of modules in the network. They also show that functional attributes of parasites (i.e. parasitism mode and life cycle) and origin of host populations (i.e. natives versus non-natives) are crucial to define the relative contribution of these two network properties and their dependence on other ecological factors (e.g. host abundance), with potential implications for community dynamics and stability.

  14. Host immune constraints on malaria transmission: insights from population biology of within-host parasites

    PubMed Central

    2013-01-01

    Background Plasmodium infections trigger complex immune reactions from their hosts against several life stages of the parasite, including gametocytes. These immune responses are highly variable, depending on age, genetics, and exposure history of the host as well as species and strain of parasite. Although the effects of host antibodies that act against gamete stages in the mosquito (due to uptake in the blood meal) are well documented, the effects of host immunity upon within-host gametocytes are not as well understood. This report consists of a theoretical population biology-based analysis to determine constraints that host immunity impose upon gametocyte population growth. The details of the mathematical models used for the analysis were guided by published reports of clinical and animal studies, incorporated plausible modalities of immune reactions to parasites, and were tailored to the life cycl es of the two most widespread human malaria pathogens, Plasmodium falciparum and Plasmodium vivax. Results For the same ability to bind and clear a target, the model simulations suggest that an antibody attacking immature gametocytes would tend to lower the overall density of transmissible mature gametocytes more than an antibody attacking the mature forms directly. Transmission of P. falciparum would be especially vulnerable to complete blocking by antibodies to its immature forms since its gametocytes take much longer to reach maturity than those of P. vivax. On the other hand, antibodies attacking the mature gametocytes directly would reduce the time the mature forms can linger in the host. Simulation results also suggest that varying the standard deviation in the time necessary for individual asexual parasites to develop and produce schizonts can affect the efficiency of production of transmissible gametocytes. Conclusions If mature gametocyte density determines the probability of transmission, both Plasmodium species, but especially P. falciparum, could bolster

  15. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    PubMed

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system.

  16. Recurrent evolution of host-specialized races in a globally distributed parasite

    PubMed Central

    McCoy, Karen D; Chapuis, Elodie; Tirard, Claire; Boulinier, Thierry; Michalakis, Yannis; Bohec, Céline Le; Maho, Yvon Le; Gauthier-Clerc, Michel

    2005-01-01

    The outcome of coevolutionary interactions is predicted to vary across landscapes depending on local conditions and levels of gene flow, with some populations evolving more extreme specializations than others. Using a globally distributed parasite of colonial seabirds, the tick Ixodes uriae, we examined how host availability and geographic isolation influences this process. In particular, we sampled ticks from 30 populations of six different seabird host species, three in the Southern Hemisphere and three in the Northern Hemisphere. We show that parasite races have evolved independently on hosts of both hemispheres. Moreover, the degree of differentiation between tick races varied spatially within each region and suggests that the divergence of tick races is an ongoing process that has occurred multiple times across isolated areas. As I. uriae is vector to the bacterium responsible for Lyme disease Borrelia burgdorferi sensu lato, these results may have important consequence for the epidemiology of this disease. With the increased occurrence of novel interspecific interactions due to global change, these results also stress the importance of the combined effects of gene flow and selection for parasite diversification. PMID:16243689

  17. Egg color variation, but not egg rejection behavior, changes in a cuckoo host breeding in the absence of brood parasitism.

    PubMed

    Yang, Canchao; Liu, Yang; Zeng, Lijin; Liang, Wei

    2014-06-01

    Interactions between parasitic cuckoos and their songbird hosts form a classical reciprocal "arms race," and are an excellent model for understanding the process of coevolution. Changes in host egg coloration via the evolution of interclutch variation in egg color or intraclutch consistency in egg color are hypothesized counter adaptations that facilitate egg recognition and thus limit brood parasitism. Whether these antiparasitism strategies are maintained when the selective pressure of parasitism is relaxed remains debated. However, introduced species provide unique opportunities for testing the direction and extent of natural selection on phenotypic trait maintenance and variation. Here, we investigated egg rejection behavior and egg color polymorphism in the red-billed leiothrix (Leiothrix lutea), a common cuckoo (Cuculus canorus) host, in a population introduced to Hawaii 100 years ago (breeding without cuckoos) and a native population in China (breeding with cuckoos). We found that egg rejection ability was equally strong in both the native and the introduced populations, but levels of interclutch variation and intraclutch consistency in egg color in the native population were higher than in the introduced population. This suggests that egg rejection behavior in hosts can be maintained in the absence of brood parasitism and that egg appearance is maintained by natural selection as a counter adaptation to brood parasitism. This study provides rare evidence that host antiparasitism strategies can change under parasite-relaxed conditions and reduced selection pressure. PMID:25360264

  18. Egg color variation, but not egg rejection behavior, changes in a cuckoo host breeding in the absence of brood parasitism

    PubMed Central

    Yang, Canchao; Liu, Yang; Zeng, Lijin; Liang, Wei

    2014-01-01

    Interactions between parasitic cuckoos and their songbird hosts form a classical reciprocal “arms race,” and are an excellent model for understanding the process of coevolution. Changes in host egg coloration via the evolution of interclutch variation in egg color or intraclutch consistency in egg color are hypothesized counter adaptations that facilitate egg recognition and thus limit brood parasitism. Whether these antiparasitism strategies are maintained when the selective pressure of parasitism is relaxed remains debated. However, introduced species provide unique opportunities for testing the direction and extent of natural selection on phenotypic trait maintenance and variation. Here, we investigated egg rejection behavior and egg color polymorphism in the red-billed leiothrix (Leiothrix lutea), a common cuckoo (Cuculus canorus) host, in a population introduced to Hawaii 100 years ago (breeding without cuckoos) and a native population in China (breeding with cuckoos). We found that egg rejection ability was equally strong in both the native and the introduced populations, but levels of interclutch variation and intraclutch consistency in egg color in the native population were higher than in the introduced population. This suggests that egg rejection behavior in hosts can be maintained in the absence of brood parasitism and that egg appearance is maintained by natural selection as a counter adaptation to brood parasitism. This study provides rare evidence that host antiparasitism strategies can change under parasite-relaxed conditions and reduced selection pressure. PMID:25360264

  19. Egg color variation, but not egg rejection behavior, changes in a cuckoo host breeding in the absence of brood parasitism.

    PubMed

    Yang, Canchao; Liu, Yang; Zeng, Lijin; Liang, Wei

    2014-06-01

    Interactions between parasitic cuckoos and their songbird hosts form a classical reciprocal "arms race," and are an excellent model for understanding the process of coevolution. Changes in host egg coloration via the evolution of interclutch variation in egg color or intraclutch consistency in egg color are hypothesized counter adaptations that facilitate egg recognition and thus limit brood parasitism. Whether these antiparasitism strategies are maintained when the selective pressure of parasitism is relaxed remains debated. However, introduced species provide unique opportunities for testing the direction and extent of natural selection on phenotypic trait maintenance and variation. Here, we investigated egg rejection behavior and egg color polymorphism in the red-billed leiothrix (Leiothrix lutea), a common cuckoo (Cuculus canorus) host, in a population introduced to Hawaii 100 years ago (breeding without cuckoos) and a native population in China (breeding with cuckoos). We found that egg rejection ability was equally strong in both the native and the introduced populations, but levels of interclutch variation and intraclutch consistency in egg color in the native population were higher than in the introduced population. This suggests that egg rejection behavior in hosts can be maintained in the absence of brood parasitism and that egg appearance is maintained by natural selection as a counter adaptation to brood parasitism. This study provides rare evidence that host antiparasitism strategies can change under parasite-relaxed conditions and reduced selection pressure.

  20. A social parasite evolved reproductive isolation from its fungus-growing ant host in sympatry.

    PubMed

    Rabeling, Christian; Schultz, Ted R; Pierce, Naomi E; Bacci, Maurício

    2014-09-01

    Inquiline social parasitic ant species exploit colonies of other ant species mainly by producing sexual offspring that are raised by the host. Ant social parasites and their hosts are often close relatives (Emery's rule), and two main hypotheses compete to explain the parasites' evolutionary origins: (1) the interspecific hypothesis proposes an allopatric speciation scenario for the parasite, whereas (2) the intraspecific hypothesis postulates that the parasite evolves directly from its host in sympatry [1-10]. Evidence in support of the intraspecific hypothesis has been accumulating for ants [3, 5, 7, 9-12], but sympatric speciation remains controversial as a general speciation mechanism for inquiline parasites. Here we use molecular phylogenetics to assess whether the socially parasitic fungus-growing ant Mycocepurus castrator speciated from its host Mycocepurus goeldii in sympatry. Based on differing patterns of relationship in mitochondrial and individual nuclear genes, we conclude that host and parasite occupy a temporal window in which lineage sorting has taken place in the mitochondrial genes but not yet in the nuclear alleles. We infer that the host originated first and that the parasite originated subsequently from a subset of the host species' populations, providing empirical support for the hypothesis that inquiline parasites can evolve reproductive isolation while living sympatrically with their hosts.

  1. Interactions among four parasite species in an amphipod population from Patagonia.

    PubMed

    Rauque, C A; Semenas, L

    2013-03-01

    Parasites commonly share their hosts with specimens of the same or different parasite species, resulting in multiple parasites obtaining resources from the same host. This could potentially lead to conflicts between co-infecting parasites, especially at high infection intensities. In Pool Los Juncos (Patagonia, Argentina), the amphipod Hyalella patagonica is an intermediate host to three parasites that mature in birds (the acanthocephalan Pseudocorynosoma sp. and larval stages of two Cyclophyllidea cestodes), in addition to a microsporidian (Thelohania sp.), whose life cycle is unknown, but very likely to be monoxenous. The aim of this study was to describe interactions between these parasite species in their amphipod host population. Amphipods were collected monthly between June 2002 and January 2004 to assess parasite infection. Infection prevalence and mean intensity were greatest in larger male amphipods for all parasite species. We also found a positive association between Thelohania sp. and both Pseudocorynosoma sp. and Cyclophyllidea sp. 1 infections, though Pseudocorynosoma sp. and Cyclophyllidea sp. 1 were negatively associated with each other. We conclude that contrasting associations between parasite species may be associated with competition for both food intake and space in the haemocoel.

  2. Host–parasite genotypic interactions in the honey bee: the dynamics of diversity

    PubMed Central

    Evison, Sophie E F; Fazio, Geraldine; Chappell, Paula; Foley, Kirsten; Jensen, Annette B; Hughes, William O H

    2013-01-01

    Parasites are thought to be a major driving force shaping genetic variation in their host, and are suggested to be a significant reason for the maintenance of sexual reproduction. A leading hypothesis for the occurrence of multiple mating (polyandry) in social insects is that the genetic diversity generated within-colonies through this behavior promotes disease resistance. This benefit is likely to be particularly significant when colonies are exposed to multiple species and strains of parasites, but host–parasite genotypic interactions in social insects are little known. We investigated this using honey bees, which are naturally polyandrous and consequently produce genetically diverse colonies containing multiple genotypes (patrilines), and which are also known to host multiple strains of various parasite species. We found that host genotypes differed significantly in their resistance to different strains of the obligate fungal parasite that causes chalkbrood disease, while genotypic variation in resistance to the facultative fungal parasite that causes stonebrood disease was less pronounced. Our results show that genetic variation in disease resistance depends in part on the parasite genotype, as well as species, with the latter most likely relating to differences in parasite life history and host–parasite coevolution. Our results suggest that the selection pressure from genetically diverse parasites might be an important driving force in the evolution of polyandry, a mechanism that generates significant genetic diversity in social insects. PMID:23919163

  3. Spread of an introduced parasite across the Hawaiian archipelago independent of its introduced host

    DOE PAGESBeta

    Gagne, Roderick B.; Hogan, J. Derek; McIntyre, Peter B.; Hain, Ernie F.; Gilliam, James F.; Pracheil, Brenda M.; Blum, Michael J.

    2014-11-11

    1. Co-introductions of non-native parasites with non-native hosts can be a major driver of disease emergence in native species, but the conditions that promote the establishment and spread of nonnative parasites remain poorly understood. Here, we characterise the infection of a native host species by a non-native parasite relative to the distribution and density of the original non-native host species and a suite of organismal and environmental factors that have been associated with parasitism, but not commonly considered within a single system. 2. We examined the native Hawaiian goby Awaous stamineus across 23 catchments on five islands for infection bymore » the non-native nematode parasite Camallanus cotti. We used model selection to test whether parasite infection was associated with the genetic diversity, size and population density of native hosts, the distribution and density of non-native hosts, land use and water quality. 3. We found that the distribution of non-native C. cotti parasites has become decoupled from the non-native hosts that were primary vectors of introduction to the Hawaiian Islands. Although no single intrinsic or extrinsic factor was identified that best explains parasitism of A. stamineus by C. cotti, native host size, population density and water quality were consistently identified as influencing parasite intensity and prevalence. 4. The introduction of non-native species can indirectly influence native species through infection of co-introduced parasites. Here, we show that the effects of enemy addition can extend beyond the range of non-native hosts through the independent spread of non-native parasites. This suggests that control of non-native hosts is not sufficient to halt the spread of introduced parasites. Furthermore, designing importation regulations to prevent host parasite co-introductions can promote native species conservation, even in remote areas that may not seem susceptible to human influence.« less

  4. Inflammation and oxidative stress in vertebrate host-parasite systems.

    PubMed

    Sorci, Gabriele; Faivre, Bruno

    2009-01-12

    Innate, inflammation-based immunity is the first line of vertebrate defence against micro-organisms. Inflammation relies on a number of cellular and molecular effectors that can strike invading pathogens very shortly after the encounter between inflammatory cells and the intruder, but in a non-specific way. Owing to this non-specific response, inflammation can generate substantial costs for the host if the inflammatory response, and the associated oxygen-based damage, get out of control. This imposes strong selection pressure that acts to optimize two key features of the inflammatory response: the timing of activation and resolution (the process of downregulation of the response). In this paper, we review the benefits and costs of inflammation-driven immunity. Our aim is to emphasize the importance of resolution of inflammation as a way of maintaining homeostasis against oxidative stress and to prevent the 'horror autotoxicus' of chronic inflammation. Nevertheless, host immune regulation also opens the way to pathogens to subvert host defences. Therefore, quantifying inflammatory costs requires assessing (i) short-term negative effects, (ii) delayed inflammation-driven diseases, and (iii) parasitic strategies to subvert inflammation. PMID:18930878

  5. Host behaviour drives parasite genetics at multiple geographic scales: population genetics of the chewing louse, Thomomydoecus minor.

    PubMed

    Harper, Sheree E; Spradling, Theresa A; Demastes, James W; Calhoun, Courtney S

    2015-08-01

    Pocket gophers and their symbiotic chewing lice form a host-parasite assemblage known for a high degree of cophylogeny, thought to be driven by life history parameters of both host and parasite that make host switching difficult. However, little work to date has focused on determining whether these life histories actually impact louse populations at the very fine scale of louse infrapopulations (individuals on a single host) at the same or at nearby host localities. We used microsatellite and mtDNA sequence data to make comparisons of chewing-louse (Thomomydoecus minor) population subdivision over time and over geographic space where there are different potential amounts of host interaction surrounding a zone of contact between two hybridizing pocket-gopher subspecies. We found that chewing lice had high levels of population isolation consistent with a paucity of horizontal transmission even at the very fine geographic scale of a single alfalfa field. We also found marked genetic discontinuity in louse populations corresponding with host subspecies and little, if any, admixture in the louse genetic groups even though the lice are closely related. The correlation of louse infrapopulation differentiation with host interaction at multiple scales, including across a discontinuity in pocket-gopher habitat, suggests that host behaviour is the primary driver of parasite genetics. This observation makes sense in light of the life histories of both chewing lice and pocket gophers and provides a powerful explanation for the well-documented pattern of parallel cladogenesis in pocket gophers and chewing lice.

  6. Specific developmental pathways underlie host specificity in the parasitic plant Orobanche

    PubMed Central

    Hiscock, Simon

    2010-01-01

    Parasitic angiosperms are an ecologically and economically important group of plants. However our understanding of the basis for host specificity in these plants is embryonic. Recently we investigated host specificity in the parasitic angiosperm Orobanche minor, and demonstrated that this host generalist parasite comprises genetically defined races that are physiologically adapted to specific hosts. Populations occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota subsp. gummifer) respectively, showed distinct patterns of host specificity at various developmental stages, and a higher fitness on their natural hosts, suggesting these races are locally adapted. Here we discuss the implications of our findings from a broader perspective. We suggest that differences in signal responsiveness and perception by the parasite, as well as qualitative differences in signal production by the host, may elicit host specificity in this parasitic plant. Together with our earlier demonstration that these O. minor races are genetically distinct based on molecular markers, our recent data provide a snapshot of speciation in action, driven by host specificity. Indeed, host specificity may be an underestimated catalyst for speciation in parasitic plants generally. We propose that identifying host specific races using physiological techniques will complement conventional molecular marker-based approaches to provide a framework for delineating evolutionary relationships among cryptic host-specific parasitic plants. PMID:20081361

  7. Indirect effects of parasitism: costs of infection to other individuals can be greater than direct costs borne by the host

    PubMed Central

    Granroth-Wilding, Hanna M. V.; Burthe, Sarah J.; Lewis, Sue; Herborn, Katherine A.; Takahashi, Emi A.; Daunt, Francis; Cunningham, Emma J. A.

    2015-01-01

    Parasitic infection has a direct physiological cost to hosts but may also alter how hosts interact with other individuals in their environment. Such indirect effects may alter both host fitness and the fitness of other individuals in the host's social network, yet the relative impact of direct and indirect effects of infection are rarely quantified. During reproduction, a host's social environment includes family members who may be in conflict over resource allocation. In such situations, infection may alter how resources are allocated, thereby redistributing the costs of parasitism between individuals. Here, we experimentally reduce parasite burdens of parent and/or nestling European shags (Phalacrocorax aristotelis) infected with Contracaecum nematodes in a factorial design, then simultaneously measure the impact of an individual's infection on all family members. We found no direct effect of infection on parent or offspring traits but indirect effects were detected in all group members, with both immediate effects (mass change and survival) and longer-term effects (timing of parents’ subsequent breeding). Our results show that parasite infection can have a major impact on individuals other than the host, suggesting that the effect of parasites on population processes may be greater than previously thought. PMID:26156765

  8. Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites.

    PubMed

    Lutz, Holly L; Hochachka, Wesley M; Engel, Joshua I; Bell, Jeffrey A; Tkach, Vasyl V; Bates, John M; Hackett, Shannon J; Weckstein, Jason D

    2015-01-01

    Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi. PMID:25853491

  9. Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites.

    PubMed

    Lutz, Holly L; Hochachka, Wesley M; Engel, Joshua I; Bell, Jeffrey A; Tkach, Vasyl V; Bates, John M; Hackett, Shannon J; Weckstein, Jason D

    2015-01-01

    Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi.

  10. Parasite Prevalence Corresponds to Host Life History in a Diverse Assemblage of Afrotropical Birds and Haemosporidian Parasites

    PubMed Central

    Lutz, Holly L.; Hochachka, Wesley M.; Engel, Joshua I.; Bell, Jeffrey A.; Tkach, Vasyl V.; Bates, John M.; Hackett, Shannon J.; Weckstein, Jason D.

    2015-01-01

    Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi. PMID:25853491

  11. Movement of protein and macromolecules between host plants and the parasitic weed Phelipanche aegyptiaca Pers.

    PubMed

    Aly, Radi; Hamamouch, Noureddine; Abu-Nassar, Jacklin; Wolf, Shmuel; Joel, Daniel M; Eizenberg, Hanan; Kaisler, Efrat; Cramer, Carole; Gal-On, Amit; Westwood, James H

    2011-12-01

    Little is known about the translocation of proteins and other macromolecules from a host plant to the parasitic weed Phelipanche spp. Long-distance movement of proteins between host and parasite was explored using transgenic tomato plants expressing green fluorescent protein (GFP) in their companion cells. We further used fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite. Accumulation of GFP was observed in the central vascular bundle of leaves and in the root phloem of transgenic tomato plants expressing GFP under the regulation of AtSUC2 promoter. When transgenic tomato plants expressing GFP were parasitized with P. aegyptiaca, extensive GFP was translocated from the host phloem to the parasite phloem and accumulated in both Phelipanche tubercles and shoots. No movement of GFP to the parasite was observed when tobacco plants expressing GFP targeted to the ER were parasitized with P. aegyptiaca. Experiments using fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite demonstrated that Phelipanche absorbs dextrans up to 70 kDa in size from the host and that this movement can be bi-directional. In the present study, we prove for the first time delivery of proteins from host to the parasitic weed P. aegyptiaca via phloem connections, providing information for developing parasite resistance strategies.

  12. Born in an Alien Nest : How Do Social Parasite Male Offspring Escape from Host Aggression?

    PubMed Central

    Lhomme, Patrick; Ayasse, Manfred; Valterová, Irena; Lecocq, Thomas; Rasmont, Pierre

    2012-01-01

    Social parasites exploit the colony resources of social insects. Some of them exploit the host colony as a food resource or as a shelter whereas other species also exploit the brood care behavior of their social host. Some of these species have even lost the worker caste and rely completely on the host's worker force to rear their offspring. To avoid host defenses and bypass their recognition code, these social parasites have developed several sophisticated chemical infiltration strategies. These infiltration strategies have been highly studied in several hymenopterans. Once a social parasite has successfully entered a host nest and integrated its social system, its emerging offspring still face the same challenge of avoiding host recognition. However, the strategy used by the offspring to survive within the host nest without being killed is still poorly documented. In cuckoo bumblebees, the parasite males completely lack the morphological and chemical adaptations to social parasitism that the females possess. Moreover, young parasite males exhibit an early production of species-specific cephalic secretions, used as sexual pheromones. Host workers might thus be able to recognize them. Here we used a bumblebee host-social parasite system to test the hypothesis that social parasite male offspring exhibit a chemical defense strategy to escape from host aggression during their intranidal life. Using behavioral assays, we showed that extracts from the heads of young cuckoo bumblebee males contain a repellent odor that prevents parasite males from being attacked by host workers. We also show that social parasitism reduces host worker aggressiveness and helps parasite offspring acceptance. PMID:23028441

  13. Host immunity shapes the impact of climate changes on the dynamics of parasite infections.

    PubMed

    Mignatti, Andrea; Boag, Brian; Cattadori, Isabella M

    2016-03-15

    Global climate change is predicted to alter the distribution and dynamics of soil-transmitted helminth infections, and yet host immunity can also influence the impact of warming on host-parasite interactions and mitigate the long-term effects. We used time-series data from two helminth species of a natural herbivore and investigated the contribution of climate change and immunity on the long-term and seasonal dynamics of infection. We provide evidence that climate warming increases the availability of infective stages of both helminth species and the proportional increase in the intensity of infection for the helminth not regulated by immunity. In contrast, there is no significant long-term positive trend in the intensity for the immune-controlled helminth, as immunity reduces the net outcome of climate on parasite dynamics. Even so, hosts experienced higher infections of this helminth at an earlier age during critical months in the warmer years. Immunity can alleviate the expected long-term effect of climate on parasite infections but can also shift the seasonal peak of infection toward the younger individuals. PMID:26884194

  14. Host immunity shapes the impact of climate changes on the dynamics of parasite infections.

    PubMed

    Mignatti, Andrea; Boag, Brian; Cattadori, Isabella M

    2016-03-15

    Global climate change is predicted to alter the distribution and dynamics of soil-transmitted helminth infections, and yet host immunity can also influence the impact of warming on host-parasite interactions and mitigate the long-term effects. We used time-series data from two helminth species of a natural herbivore and investigated the contribution of climate change and immunity on the long-term and seasonal dynamics of infection. We provide evidence that climate warming increases the availability of infective stages of both helminth species and the proportional increase in the intensity of infection for the helminth not regulated by immunity. In contrast, there is no significant long-term positive trend in the intensity for the immune-controlled helminth, as immunity reduces the net outcome of climate on parasite dynamics. Even so, hosts experienced higher infections of this helminth at an earlier age during critical months in the warmer years. Immunity can alleviate the expected long-term effect of climate on parasite infections but can also shift the seasonal peak of infection toward the younger individuals.

  15. Identifying the molecular basis of host-parasite coevolution: merging models and mechanisms.

    PubMed

    Dybdahl, Mark F; Jenkins, Christina E; Nuismer, Scott L

    2014-07-01

    Mathematical models of the coevolutionary process have uncovered consequences of host-parasite interactions that go well beyond the traditional realm of the Red Queen, potentially explaining several important evolutionary transitions. However, these models also demonstrate that the specific consequences of coevolution are sensitive to the structure of the infection matrix, which is embedded in models to describe the likelihood of infection in encounters between specific host and parasite genotypes. Traditional cross-infection approaches to estimating infection matrices might be unreliable because evolutionary dynamics and experimental sampling lead to missing genotypes. Consequently, our goal is to identify the likely structure of infection matrices by synthesizing molecular mechanisms of host immune defense and parasite counterdefense with coevolutionary models. This synthesis reveals that the molecular mechanisms of immune reactions, although complex and diverse, conform to two basic models commonly used within coevolutionary theory: matching infection and targeted recognition. Our synthesis also overturns conventional wisdom, revealing that the general models are not taxonomically restricted but are applicable to plants, invertebrates, and vertebrates. Finally, our synthesis identifies several important areas for future research that should improve the explanatory power of coevolutionary models. The most important among these include empirical studies to identify the molecular hotspots of genotypic specificity and theoretical studies examining the consequences of matrices that more accurately represent multistep infection processes and quantitative defenses.

  16. Geographic variation in parasitism rates of two sympatric cuckoo hosts in China.

    PubMed

    Yang, Can-Chao; Li, Dong-Lai; Wang, Long-Wu; Liang, Guo-Xian; Zhang, Zheng-Wang; Liang, Wei

    2014-01-01

    Rates of brood parasitism vary extensively among host species and populations of a single host species. In this study, we documented and compared parasitism rates of two sympatric hosts, the Oriental Reed Warbler (Acrocephalus orientalis) and the Reed Parrotbill (Paradoxornis heudei), in three populations in China. We found that the Common Cuckoo (Cuculus canorus) is the only parasite using both the Oriental Reed Warbler and Reed Parrotbill as hosts, with a parasitism rate of 22.4%-34.3% and 0%-4.6%, respectively. The multiple parasitism rates were positively correlated with local parasitism rates across three geographic populations of Oriental Reed Warbler, which implies that higher pressure of parasitism lead to higher multiple parasitism rate. Furthermore, only one phenotype of cuckoo eggs was found in the nests of these two host species. Our results lead to two conclusions: (1) The Oriental Reed Warbler should be considered the major host of Common Cuckoo in our study sites; and (2) obligate parasitism on Oriental Reed Warbler by Common Cuckoo is specialized but flexible to some extent, i.e., using Reed Parrotbill as a secondary host. Further studies focusing on egg recognition and rejection behaviour of these two host species should be conducted to test our predictions.

  17. Geographic variation in parasitism rates of two sympatric cuckoo hosts in China

    PubMed Central

    YANG, Can-Chao; LI, Dong-Lai; WANG, Long-Wu; LIANG, Guo-Xian; ZHANG, Zheng-Wang; LIANG, Wei

    2014-01-01

    Rates of brood parasitism vary extensively among host species and populations of a single host species. In this study, we documented and compared parasitism rates of two sympatric hosts, the Oriental Reed Warbler (Acrocephalus orientalis) and the Reed Parrotbill (Paradoxornis heudei), in three populations in China. We found that the Common Cuckoo (Cuculus canorus) is the only parasite using both the Oriental Reed Warbler and Reed Parrotbill as hosts, with a parasitism rate of 22.4%-34.3% and 0%-4.6%, respectively. The multiple parasitism rates were positively correlated with local parasitism rates across three geographic populations of Oriental Reed Warbler, which implies that higher pressure of parasitism lead to higher multiple parasitism rate. Furthermore, only one phenotype of cuckoo eggs was found in the nests of these two host species. Our results lead to two conclusions: (1) The Oriental Reed Warbler should be considered the major host of Common Cuckoo in our study sites; and (2) obligate parasitism on Oriental Reed Warbler by Common Cuckoo is specialized but flexible to some extent, i.e., using Reed Parrotbill as a secondary host. Further studies focusing on egg recognition and rejection behaviour of these two host species should be conducted to test our predictions. PMID:24470456

  18. Co-invaders: The effects of alien parasites on native hosts

    PubMed Central

    Lymbery, Alan J.; Morine, Mikayla; Kanani, Hosna Gholipour; Beatty, Stephen J.; Morgan, David L.

    2014-01-01

    We define co-introduced parasites as those which have been transported with an alien host to a new locality, outside of their natural range, and co-invading parasites as those which have been co-introduced and then spread to new, native hosts. Of 98 published studies of co-introductions, over 50% of hosts were freshwater fishes and 49% of parasites were helminths. Although we would expect parasites with simple, direct life cycles to be much more likely to be introduced and establish in a new locality, a substantial proportion (36%) of co-introductions were of parasites with an indirect life cycle. Seventy-eight per cent of co-introduced parasites were found in native host species and can therefore be classed as co-invaders. Host switching was equally common among parasites with direct and indirect life cycles. The magnitude of the threat posed to native species by co-invaders will depend, among other things, on parasite virulence. In 16 cases where co-introduced parasites have switched to native hosts and information was available on relative virulence, 14 (85%) were more virulent in native hosts than in the co-introduced alien host. We argue that this does not necessarily support the naïve host theory that co-invading parasites will have greater pathogenic effects in native hosts with which they have no coevolutionary history, but may instead be a consequence of the greater likelihood for parasites with lower virulence in their natural host to be co-introduced. PMID:25180161

  19. Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts.

    PubMed

    Roy, H E; Steinkraus, D C; Eilenberg, J; Hajek, A E; Pell, J K

    2006-01-01

    Invertebrate pathogens and their hosts are taxonomically diverse. Despite this, there is one unifying concept relevant to all such parasitic associations: Both pathogen and host adapt to maximize their own reproductive output and ultimate fitness. The strategies adopted by pathogens and hosts to achieve this goal are almost as diverse as the organisms themselves, but studies examining such relationships have traditionally concentrated only on aspects of host physiology. Here we review examples of host-altered behavior and consider these within a broad ecological and evolutionary context. Research on pathogen-induced and host-mediated behavioral changes demonstrates the range of altered behaviors exhibited by invertebrates including behaviorally induced fever, elevation seeking, reduced or increased activity, reduced response to semiochemicals, and changes in reproductive behavior. These interactions are sometimes quite bizarre, intricate, and of great scientific interest. PMID:16332215

  20. Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts.

    PubMed

    Roy, H E; Steinkraus, D C; Eilenberg, J; Hajek, A E; Pell, J K

    2006-01-01

    Invertebrate pathogens and their hosts are taxonomically diverse. Despite this, there is one unifying concept relevant to all such parasitic associations: Both pathogen and host adapt to maximize their own reproductive output and ultimate fitness. The strategies adopted by pathogens and hosts to achieve this goal are almost as diverse as the organisms themselves, but studies examining such relationships have traditionally concentrated only on aspects of host physiology. Here we review examples of host-altered behavior and consider these within a broad ecological and evolutionary context. Research on pathogen-induced and host-mediated behavioral changes demonstrates the range of altered behaviors exhibited by invertebrates including behaviorally induced fever, elevation seeking, reduced or increased activity, reduced response to semiochemicals, and changes in reproductive behavior. These interactions are sometimes quite bizarre, intricate, and of great scientific interest.

  1. Spatial covariation of local abundance among different parasite species: the effect of shared hosts.

    PubMed

    Lagrue, C; Poulin, R

    2015-10-01

    Within any parasite species, abundance varies spatially, reaching higher values in certain localities than in others, presumably reflecting the local availability of host resources or the local suitability of habitat characteristics for free-living stages. In the absence of strong interactions between two species of helminths with complex life cycles, we might predict that the degree to which their abundances covary spatially is determined by their common resource requirements, i.e. how many host species they share throughout their life cycles. We test this prediction using five trematode species, all with a typical three-host cycle, from multiple lake sampling sites in New Zealand's South Island: Stegodexamene anguillae, Telogaster opisthorchis, Coitocaecum parvum, Maritrema poulini, and an Apatemon sp. Pairs of species from this set of five share the same host species at either one, two, or all three life cycle stages. Our results show that when two trematode species share the same host species at all three life stages, they show positive spatial covariation in abundance (of metacercarial and adult stages) across localities. When they share hosts at two life stages, they show positive spatial covariation in abundance in some cases but not others. Finally, if two trematode species share only one host species, at a single life stage, their abundances do not covary spatially. These findings indicate that the extent of resource sharing between parasite species can drive the spatial match-mismatch between their abundances, and thus influence their coevolutionary dynamics and the degree to which host populations suffer from additive or synergistic effects of multiple infections. PMID:26113509

  2. Habitat fragmentation alters the properties of a host-parasite network: rodents and their helminths in South-East Asia.

    PubMed

    Bordes, Frédéric; Morand, Serge; Pilosof, Shai; Claude, Julien; Krasnov, Boris R; Cosson, Jean-François; Chaval, Yannick; Ribas, Alexis; Chaisiri, Kittipong; Blasdell, Kim; Herbreteau, Vincent; Dupuy, Stéphane; Tran, Annelise

    2015-09-01

    1. While the effects of deforestation and habitat fragmentation on parasite prevalence or richness are well investigated, host-parasite networks are still understudied despite their importance in understanding the mechanisms of these major disturbances. Because fragmentation may negatively impact species occupancy, abundance and co-occurrence, we predict a link between spatiotemporal changes in habitat and the architecture of host-parasite networks. 2. For this, we used an extensive data set on 16 rodent species and 29 helminth species from seven localities of South-East Asia. We analysed the effects of rapid deforestation on connectance and modularity of helminth-parasite networks. We estimated both the degree of fragmentation and the rate of deforestation through the development of land uses and their changes through the last 20 to 30 years in order to take into account the dynamics of habitat fragmentation in our statistical analyses. 3. We found that rapid fragmentation does not affect helminth species richness per se but impacts host-parasite interactions as the rodent-helminth network becomes less connected and more modular. 4. Our results suggest that parasite sharing among host species may become more difficult to maintain with the increase of habitat disturbance.

  3. Competence of hosts and complex foraging behavior are two cornerstones in the dynamics of trophically transmitted parasites.

    PubMed

    Baudrot, Virgile; Perasso, Antoine; Fritsch, Clémentine; Raoul, Francis

    2016-05-21

    Multi-host trophically transmitted parasite (TTP) is a common life cycle where prey and predators are respectively intermediate and definitive hosts of the parasite. In these systems, the foraging response of the predator toward variations in prey community composition underlies the dynamic of the parasite. Therefore, modeling epidemiological dynamic of infectious diseases considering ecological predator-prey interactions is essential to understand the spreading of parasites in ecosystems. However, two important weaknesses of previous TTP models including feeding interaction can be pointed out: (i) the choice of a linear density-dependent contact rate is faintly realistic as it supposes an unlimited ingestion rate with an increase of prey density and (ii) considering only one host prey species prevents the study of host biodiversity effect due to change in the prey community composition where species have different competences to be infected and to transmit the parasite. This article attempts to address the dynamics of parasite in a context of multiple intermediate hosts differentiated by their competences and of complex foraging behavior of the predator. We present and analyze a deterministic one predator-two prey model, which is then used to explore the transmission cycle of the cestode Echinococcus multilocularis. This study examines the foraging condition for the co-existence of the prey, and then, based on the computation of the threshold measure of disease risk, R0, we show that the pattern of feeding interactions changes the relationship between disease risk and prey community composition. Finally, we disentangle the mechanism leading to the counter-intuitive observation of a decrease of disease risk while the population density of intermediate hosts increases. PMID:26992573

  4. Effects of rearing host species on the host-feeding capacity and parasitism of the whitefly parasitoid Encarsia formosa.

    PubMed

    Dai, Peng; Ruan, Changchun; Zang, Liansheng; Wan, Fanghao; Liu, Linzhou

    2014-01-01

    Parasitoids of the Encarsia genus (Hymenoptera: Aphelinidae) are important biological control agents against whiteflies. Some of the species in this genus not only parasitize their hosts, but also kill them through host feeding. The whitefly parasitoid, Encarsia formosa Gahan, was examined to determine whether the rearing host species affects its subsequent host-feeding capacity and parasitism. E. formosa wasps were reared on Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) and Bemisia tabaci (Gennadius) 'Q', and their subsequent host-feeding capacity and parasitism of T. vaporariorum and B. tabaci were examined. E. formosa reared on T. vaporariorum were significantly larger in body size than those reared on B. tabaci, but these wasps killed a similar number of whitefly nymphs by host feeding when they attacked the same host species on which they were reared. Regardless of the species on which it was reared, E. formosa fed significantly more on the B. tabaci nymphs than on the T. vaporariorum nymphs. The number of whitefly nymphs parasitized by E. formosa differed between the wasps reared on T. vaporariorum and those reared on B. tabaci depending on which whitefly species was offered as a host. In addition, the wasps reared on T. vaporariorum parasitized significantly more on T. vaporariorum than those reared on B. tabaci. The wasps reared on B. tabaci, however, parasitized similar numbers of whiteflies of both host species. The results indicated that the host-feeding capacity of E. formosa was affected more by the host species attacked than by the rearing host species, but the parasitism was affected by the host species attacked and the rearing host species. Generally, E. formosa reared on T. vaporariorum killed more T. vaporariorum nymphs by parasitism and host feeding than those reared on B. tabaci. Additionally, a similar number of B. tabaci nymphs were killed by parasitism and host feeding regardless of the rearing host species. Currently

  5. Maximising fitness in the face of parasites: a review of host tolerance.

    PubMed

    Kutzer, Megan A M; Armitage, Sophie A O

    2016-08-01

    Tolerance, the ability of a host to limit the negative fitness effects of a given parasite load, is now recognised as an important host defence strategy in animals. Together with resistance, the ability of a host to limit parasite load, these two host strategies represent two disparate host responses to parasites, each with different predicted evolutionary consequences: resistance is predicted to reduce parasite prevalence, whereas tolerance could be neutral towards, or increase, parasite prevalence in a population. The distinction between these two strategies might have far-reaching epidemiological consequences. Classically, a reaction norm defines host tolerance because it depicts the change in host fitness as a function of parasite load, where a shallow negative slope indicates that host fitness slowly deteriorates as parasite load increases (i.e., high tolerance). Despite the fact that tolerance was only recently acknowledged to be an important component in an animal's immune repertoire, it is frequently referenced, so our aim is to emphasise the current advances on the topic. We begin by summarising the ways in which biologists measure the two components of tolerance, parasite load and fitness, as well as the ways in which the concept has been defined (i.e., point and range tolerance). It is common to test for variation in host tolerance according to intrinsic, innate factors, where variation exists among populations, genders or genotypes. Such variation in tolerance is pervasive across animal taxa, and we briefly review some of the mechanistic bases of variation that have recently begun to be explored. Three further novel advancements in the tolerance field are the appreciation of the role of extrinsic, environmental factors on tolerance, host tolerance in multi-host-parasite systems and individual-based approaches to tolerance measures. We explore these topics using recent examples and suggest some future perspectives. It is becoming increasingly clear that

  6. [Monoxenous and heteroxenous parasites of fish manipulate behavior of their hosts in different ways].

    PubMed

    Mikheev, V N

    2011-01-01

    Adaptive host manipulation hypothesis is usually supported by case studies on trophically transmitted heteroxenous endoparasites. Trematodes and cestodes are among efficient manipulators of fish, their common intermediate hosts. In this review paper, new data on modifications of host fish behavior caused by monoxenous ectoparasitic crustaceans are provided together with a review of effects caused by heteroxenous parasites. Differences in modifications of host behavior caused by heteroxenous and monoxenous parasites are discussed. Manipulation by heteroxenous parasites enhances availability of infected fish to predators--definitive hosts of the parasites. Fine-tuned synchronization of modified anti-predator behavior with a certain phase of the trematode Diplostomum spathaceum development in the eyes of fish, their second intermediate host, was shown. Modifications of behavior are habitat specific. When juvenile salmonids are in the open water, parasites impair their cooperative anti-predator behavior; in territorial bottom-dwelling salmonids, individual defense behavior such as sheltering is the main target of manipulation. It was shown that monoxenous ectoparasitic crustaceans Argulus spp. decreased motor activity, aggressiveness and increased shoal cohesiveness of infected fish. Such a behavior facilitates host and mate searching in these parasites, which often change their hosts, especially during reproduction. Reviewed experimental data suggest that heteroxenous parasites manipulate their host mainly through impaired defense behavior, e.g. impairing shoaling in fish. Alternatively, monoxenous parasites facilitate shoaling that is profitable for both parasites and hosts. Coordination of modified host behavior with the parasite life cycle, both temporal and spatial, is the most convincing criterion of the adaptive value of host manipulation.

  7. Food stoichiometry affects the outcome of Daphnia–parasite interaction

    PubMed Central

    Aalto, Sanni L; Pulkkinen, Katja

    2013-01-01

    Phosphorus (P) is an essential nutrient for growth in consumers. P-limitation and parasite infection comprise one of the most common stressor pairs consumers confront in nature. We conducted a life-table study using a Daphnia–microsporidian parasite model, feeding uninfected or infected Daphnia with either P-sufficient or P-limited algae, and assessed the impact of the two stressors on life-history traits of the host. Both infection and P-limitation negatively affected some life-history traits tested. However, under P-limitation, infected animals had higher juvenile growth rate as compared with uninfected animals. All P-limited individuals died before maturation, regardless of infection. The numbers of spore clusters of the microsporidian parasite did not differ in P-limited or P-sufficient hosts. P-limitation, but not infection, decreased body phosphorus content and ingestion rates of Daphnia tested in separate experiments. As parasite spore production did not suffer even under extreme P-limitation, our results suggest that parasite was less limited by P than the host. We discuss possible interpretations concerning the stoichiometrical demands of parasite and suggest that our results are explained by parasite-driven changes in carbon (C) allocation of the hosts. We conclude that the impact of nutrient starvation and parasite infection on consumers depends not only on the stoichiometric demands of host but also those of the parasite. PMID:23762513

  8. Pathological and ecological host consequences of infection by an introduced fish parasite.

    PubMed

    Britton, J Robert; Pegg, Josephine; Williams, Chris F

    2011-01-01

    The infection consequences of the introduced cestode fish parasite Bothriocephalus acheilognathi were studied in a cohort of wild, young-of-the-year common carp Cyprinus carpio that lacked co-evolution with the parasite. Within the cohort, parasite prevalence was 42% and parasite burdens were up to 12% body weight. Pathological changes within the intestinal tract of parasitized carp included distension of the gut wall, epithelial compression and degeneration, pressure necrosis and varied inflammatory changes. These were most pronounced in regions containing the largest proportion of mature proglottids. Although the body lengths of parasitized and non-parasitized fish were not significantly different, parasitized fish were of lower body condition and reduced weight compared to non-parasitized conspecifics. Stable isotope analysis (δ(15)N and δ(13)C) revealed trophic impacts associated with infection, particularly for δ(15)N where values for parasitized fish were significantly reduced as their parasite burden increased. In a controlled aquarium environment where the fish were fed ad libitum on an identical food source, there was no significant difference in values of δ(15)N and δ(13)C between parasitized and non-parasitized fish. The growth consequences remained, however, with parasitized fish growing significantly slower than non-parasitized fish, with their feeding rate (items s(-1)) also significantly lower. Thus, infection by an introduced parasite had multiple pathological, ecological and trophic impacts on a host with no experience of the parasite.

  9. Pathological and Ecological Host Consequences of Infection by an Introduced Fish Parasite

    PubMed Central

    Britton, J. Robert; Pegg, Josephine; Williams, Chris F.

    2011-01-01

    The infection consequences of the introduced cestode fish parasite Bothriocephalus acheilognathi were studied in a cohort of wild, young-of-the-year common carp Cyprinus carpio that lacked co-evolution with the parasite. Within the cohort, parasite prevalence was 42% and parasite burdens were up to 12% body weight. Pathological changes within the intestinal tract of parasitized carp included distension of the gut wall, epithelial compression and degeneration, pressure necrosis and varied inflammatory changes. These were most pronounced in regions containing the largest proportion of mature proglottids. Although the body lengths of parasitized and non-parasitized fish were not significantly different, parasitized fish were of lower body condition and reduced weight compared to non-parasitized conspecifics. Stable isotope analysis (δ15N and δ13C) revealed trophic impacts associated with infection, particularly for δ15N where values for parasitized fish were significantly reduced as their parasite burden increased. In a controlled aquarium environment where the fish were fed ad libitum on an identical food source, there was no significant difference in values of δ15N and δ13C between parasitized and non-parasitized fish. The growth consequences remained, however, with parasitized fish growing significantly slower than non-parasitized fish, with their feeding rate (items s−1) also significantly lower. Thus, infection by an introduced parasite had multiple pathological, ecological and trophic impacts on a host with no experience of the parasite. PMID:22022606

  10. The first parasitic copepod from a scaphopod mollusc host.

    PubMed

    Boxshall, Geoffrey Allan; O'Reilly, Myles

    2015-02-01

    A new genus and species of parasitic copepod, Gadilicola daviesi n. g., n. sp., is described based on material found on two different scaphopod host species collected in deep water (2,900-2,910 m) in the Rockall Trough, North East Atlantic. The copepods inhabit the posterior mantle cavity of their scaphopod hosts, Polyschides olivi (Sacchi) and Pulsellum lofotense (M. Sars). Both sexes are described. The female body comprises an unsegmented prosomal trunk and a 2-segmented urosome and is more modified than that of the smaller male which comprises a 4-segmented prosome and 3-segmented urosome. The pattern of sexual dimorphism of the appendages is characteristic of the poecilostomatoid families within the order Cyclopoida. The form of the antenna with the major claws on the second endopodal segment and with the third segment reduced and displaced laterally, is shared with the informal Teredicola-group of genera, but it lacks the distinctive, derived form of mandible shared by these genera. The new genus is treated as the type of a new monotypic family, the Gadilicolidae.

  11. Trophic Relationships between the Parasitic Plant Species Phelipanche ramosa (L.) and Different Hosts Depending on Host Phenological Stage and Host Growth Rate.

    PubMed

    Moreau, Delphine; Gibot-Leclerc, Stéphanie; Girardin, Annette; Pointurier, Olivia; Reibel, Carole; Strbik, Florence; Fernández-Aparicio, Mónica; Colbach, Nathalie

    2016-01-01

    Phelipanche ramosa (L.) Pomel (branched broomrape) is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host's expense so that host-parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L.) (oilseed rape) and two weed species, Capsella bursa-pastoris (L.) Medik. and Geranium dissectum (L.). Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34 to 84%). B. napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per host plant

  12. The Schistosoma japonicum genome reveals features of host-parasite interplay

    PubMed Central

    Zhou, Yan; Zheng, Huajun; Chen, Xiangyi; Zhang, Lei; Wang, Kai; Guo, Jing; Huang, Zhen; Zhang, Bo; Huang, Wei; Jin, Ke; Tonghai, Dou; Hasegawa, Masami; Wang, Li; Zhang, Yuan; Zhou, Jie; Tao, Lin; Cao, Zhiwei; Li, Yixue; Vinar, Tomas; Brejova, Brona; Brown, Dan; Li, Ming; Miller, David J.; Blair, David; Zhong, Yang; Chen, Zhu; Liu, Feng; Hu, Wei; Wang, Zhi-Qin; Zhang, Qin-Hua; Song, Huai-Dong; Chen, Saijuan; Xu, Xuenian; Xu, Bing; Ju, Zhuan; Cheng, Yu; Brindley, Paul J.; McManus, Donald P.; Feng, Zheng; Han, Ze-Guang; Lu, Gang; Ren, Shuangxi; Wang, Yuezhu; Gu, Wenyi; Kang, Hui; Chen, Jie; Chen, Xiaoyun; Chen, Shuting; Wang, Lijun; Yan, Jie; Wang, Biyun; Lv, Xinyan; Jin, Lei; Wang, Bofei; Pu, Shiyin; Zhang, Xianglin; Zhang, Wei; Hu, Qiuping; Zhu, Genfeng; Wang, Jun; Yu, Jun; Wang, Jian; Yang, Huanmin; Ning, Zemin; Beriman, Matthew; Wei, Chia-Lin; Ruan, Yijun; Zhao, Guoping; Wang, Shengyue

    2013-01-01

    Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, a significant cause of morbidity in China and the Philippines. Here we present a draft genomic sequence for the worm, which is the first reported for any flatworm, indeed for the superphylum Lophotrochozoa. The genome provides a global insight into the molecular architecture and host interaction of this complex metazoan pathogen, revealing that it can exploit host nutrients, neuroendocrine hormones and signaling pathways for growth, development and maturation. Having a complex nervous system and a well developed sensory system, S. japonicum can accept stimulation of the corresponding ligands as a physiological response to different environments, such as fresh water or the tissues of its intermediate and mammalian hosts. Numerous proteinases, including cercarial elastase, are implicated in mammalian skin penetration and haemoglobin degradation. The genomic information will serve as a valuable platform to facilitate development of new interventions for schistosomiasis control. PMID:19606140

  13. The Schistosoma japonicum genome reveals features of host-parasite interplay.

    PubMed

    2009-07-16

    Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China and the Philippines. Here we present a draft genomic sequence for the worm. The genome provides a global insight into the molecular architecture and host interaction of this complex metazoan pathogen, revealing that it can exploit host nutrients, neuroendocrine hormones and signalling pathways for growth, development and maturation. Having a complex nervous system and a well-developed sensory system, S. japonicum can accept stimulation of the corresponding ligands as a physiological response to different environments, such as fresh water or the tissues of its intermediate and mammalian hosts. Numerous proteases, including cercarial elastase, are implicated in mammalian skin penetration and haemoglobin degradation. The genomic information will serve as a valuable platform to facilitate development of new interventions for schistosomiasis control. PMID:19606140

  14. The mechanics of malaria parasite invasion of the human erythrocyte - towards a reassessment of the host cell contribution.

    PubMed

    Koch, Marion; Baum, Jake

    2016-03-01

    Despite decades of research, we still know little about the mechanics of Plasmodium host cell invasion. Fundamentally, while the essential or non-essential nature of different parasite proteins is becoming clearer, their actual function and how each comes together to govern invasion are poorly understood. Furthermore, in recent years an emerging world view is shifting focus away from the parasite actin-myosin motor being the sole force responsible for entry to an appreciation of host cell dynamics and forces and their contribution to the process. In this review, we discuss merozoite invasion of the erythrocyte, focusing on the complex set of pre-invasion events and how these might prime the red cell to facilitate invasion. While traditionally parasite interactions at this stage have been viewed simplistically as mediating adhesion only, recent work makes it apparent that by interacting with a number of host receptors and signalling pathways, combined with secretion of parasite-derived lipid material, that the merozoite may initiate cytoskeletal re-arrangements and biophysical changes in the erythrocyte that greatly reduce energy barriers for entry. Seen in this light Plasmodium invasion may well turn out to be a balance between host and parasite forces, much like that of other pathogen infection mechanisms.

  15. The mechanics of malaria parasite invasion of the human erythrocyte - towards a reassessment of the host cell contribution.

    PubMed

    Koch, Marion; Baum, Jake

    2016-03-01

    Despite decades of research, we still know little about the mechanics of Plasmodium host cell invasion. Fundamentally, while the essential or non-essential nature of different parasite proteins is becoming clearer, their actual function and how each comes together to govern invasion are poorly understood. Furthermore, in recent years an emerging world view is shifting focus away from the parasite actin-myosin motor being the sole force responsible for entry to an appreciation of host cell dynamics and forces and their contribution to the process. In this review, we discuss merozoite invasion of the erythrocyte, focusing on the complex set of pre-invasion events and how these might prime the red cell to facilitate invasion. While traditionally parasite interactions at this stage have been viewed simplistically as mediating adhesion only, recent work makes it apparent that by interacting with a number of host receptors and signalling pathways, combined with secretion of parasite-derived lipid material, that the merozoite may initiate cytoskeletal re-arrangements and biophysical changes in the erythrocyte that greatly reduce energy barriers for entry. Seen in this light Plasmodium invasion may well turn out to be a balance between host and parasite forces, much like that of other pathogen infection mechanisms. PMID:26663815

  16. Estimates of coextinction risk: how anuran parasites respond to the extinction of their hosts.

    PubMed

    Campião, Karla Magalhães; de Aquino Ribas, Augusto Cesar; Cornell, Stephen J; Begon, Michael; Tavares, Luiz Eduardo Roland

    2015-12-01

    Amphibians are known as the most threatened vertebrate group. One of the outcomes of a species' extinction is the coextinction of its dependents. Here, we estimate the extinction risk of helminth parasites of South America anurans. Parasite coextinction probabilities were modeled, assuming parasite specificity and host vulnerability to extinction as determinants. Parasite species associated with few hosts were the most prone to extinction, and extinction risk varied amongst helminth species of different taxonomic groups and life cycle complexity. Considering host vulnerability in the model decreased the extinction probability of most parasites species. However, parasite specificity and host vulnerability combined to increase the extinction probabilities of 44% of the helminth species reported in a single anuran species.

  17. The Role of Extracellular Vesicles in Modulating the Host Immune Response during Parasitic Infections

    PubMed Central

    Montaner, Sergio; Galiano, Alicia; Trelis, María; Martin-Jaular, Lorena; del Portillo, Hernando A.; Bernal, Dolores; Marcilla, Antonio

    2014-01-01

    Parasites are the cause of major diseases affecting billions of people. As the inflictions caused by these parasites affect mainly developing countries, they are considered as neglected diseases. These parasitic infections are often chronic and lead to significant immunomodulation of the host immune response by the parasite, which could benefit both the parasite and the host and are the result of millions of years of co-evolution. The description of parasite extracellular vesicles (EVs) in protozoa and helminths suggests that they may play an important role in host–parasite communication. In this review, recent studies on parasitic (protozoa and helminths) EVs are presented and their potential use as novel therapeutical approaches is discussed. PMID:25250031

  18. Role of porcine serum haptoglobin in the host-parasite relationship of Taenia solium cysticercosis.

    PubMed

    Navarrete-Perea, José; Toledano-Magaña, Yanis; De la Torre, Patricia; Sciutto, Edda; Bobes, Raúl José; Soberón, Xavier; Laclette, Juan Pedro

    2016-06-01

    Human and porcine cysticercosis is a parasitic disease caused by the larval stage (cysts) of the tapeworm Taenia solium. Cysts may live in several host tissues such as skeletal muscle or brain. We have previously described the presence of host haptoglobin (Hp) and hemoglobin (Hb) in different protein extracts of the T. solium cysts. Here, we report the binding of host Hp and Hb to a number of cyst proteins, evaluated through measuring electrophoretic and light absorbance changes. In the sera obtained from 18 cysticercotic pigs, Hp-Hb complexes were abundant, whereas free Hp was undetectable. In contrast, in the sera from non 18 cysticercotic pigs, Hp-Hb and free Hp were found. In the soluble protein fraction of cysts tissue, free Hp was detected showing a considerable Hb-binding ability, whereas in the vesicular fluid, Hp is mainly bound to Hb. Interestingly, assays carried out with the insoluble fraction of T. solium cysts tissue, showed binding of Hp and Hp-Hb in a saturable way, suggesting the existence of specific interactions. Our results suggested that the parasite can take advantage of the uptaken host Hp and Hb, either free or in complexes, as a source of iron or as a way to modulate the inflammatory response surrounding the T. solium cysts.

  19. Role of porcine serum haptoglobin in the host-parasite relationship of Taenia solium cysticercosis.

    PubMed

    Navarrete-Perea, José; Toledano-Magaña, Yanis; De la Torre, Patricia; Sciutto, Edda; Bobes, Raúl José; Soberón, Xavier; Laclette, Juan Pedro

    2016-06-01

    Human and porcine cysticercosis is a parasitic disease caused by the larval stage (cysts) of the tapeworm Taenia solium. Cysts may live in several host tissues such as skeletal muscle or brain. We have previously described the presence of host haptoglobin (Hp) and hemoglobin (Hb) in different protein extracts of the T. solium cysts. Here, we report the binding of host Hp and Hb to a number of cyst proteins, evaluated through measuring electrophoretic and light absorbance changes. In the sera obtained from 18 cysticercotic pigs, Hp-Hb complexes were abundant, whereas free Hp was undetectable. In contrast, in the sera from non 18 cysticercotic pigs, Hp-Hb and free Hp were found. In the soluble protein fraction of cysts tissue, free Hp was detected showing a considerable Hb-binding ability, whereas in the vesicular fluid, Hp is mainly bound to Hb. Interestingly, assays carried out with the insoluble fraction of T. solium cysts tissue, showed binding of Hp and Hp-Hb in a saturable way, suggesting the existence of specific interactions. Our results suggested that the parasite can take advantage of the uptaken host Hp and Hb, either free or in complexes, as a source of iron or as a way to modulate the inflammatory response surrounding the T. solium cysts. PMID:27234210

  20. Molecular phylogenies and host-parasite cospeciation: gophers and lice as a model system.

    PubMed

    Hafner, M S; Page, R D

    1995-07-29

    Recent methodological advances permit a rigorous comparison of phylogenetic trees for hosts and their parasites to determine the extent to which these groups have cospeciated through evolutionary time. In cases where significant levels of cospeciation are indicated, comparison of amounts of evolutionary change that have accumulated along analogous branches in the host and parasite trees provides a direct assessment of relative rates of evolution in the two groups. For such a comparison to be meaningful, the features compared in the hosts and parasites should be genetically based, evolutionarily homologous, and should evolve in a roughly time-dependent fashion within each group. Nucleotide sequences encoding homologous genes in hosts and parasites are an ideal source of data for comparative studies of evolutionary rates. Recent studies of pocket gophers and their lice are used to illustrate the variety of questions that can be addressed through phylogenetic study of host-parasite systems.

  1. Locally adapted social parasite affects density, social structure, and life history of its ant hosts.

    PubMed

    Foitzik, Susanne; Achenbach, Alexandra; Brandt, Miriam

    2009-05-01

    Selection and adaptation are important processes in the coevolution between parasites and their hosts. The slave-making ant Protomognathus americanus, an obligate ant social parasite, has previously been shown to evolve morphological, behavioral, and chemical adaptations in the coevolutionary arms race with its Temnothorax hosts. Yet empirical studies have given variable results on the strength of the selection pressure this parasite exerts on its host populations. In this study, we directly investigated the pressure exerted by P. americanus and the reactions of the main host species, T. longispinosus, in two ant communities by manipulating parasite density in the field over several years. In addition, a cross-fostering design with the exchange of parasites between host populations allowed us to investigate local adaptation of parasite or host. We demonstrate a severe impact of the social parasite on the two host populations in West Virginia and New York, but also variation in host reactions between sites, as expected by the geographic mosaic theory of coevolution. Host density decreased at the West Virginia site with the presence of local slave-makers, whereas at the ecologically favorable New York site, density was unaffected. Nevertheless, social organization, colony size, and investment patterns of these host colonies at this site changed in response to our parasite manipulation. The release of P. americanus colonies led to a reduction in the number of resident queens and workers, an increase in intranest relatedness, and lower productivity, but also a higher investment in reproductives. In West Virginia, colony demography did not change, but raiding activity by New York slave-makers caused different investment patterns of host colonies. In addition, the cross-fostering element revealed local adaptation of the parasite P. americanus: slave-making colonies fared better in their sympatric host population, as they contained more slave-making ant workers and slaves

  2. Trophic Relationships between the Parasitic Plant Species Phelipanche ramosa (L.) and Different Hosts Depending on Host Phenological Stage and Host Growth Rate

    PubMed Central

    Moreau, Delphine; Gibot-Leclerc, Stéphanie; Girardin, Annette; Pointurier, Olivia; Reibel, Carole; Strbik, Florence; Fernández-Aparicio, Mónica; Colbach, Nathalie

    2016-01-01

    Phelipanche ramosa (L.) Pomel (branched broomrape) is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host’s expense so that host–parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L.) (oilseed rape) and two weed species, Capsella bursa-pastoris (L.) Medik. and Geranium dissectum (L.). Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34 to 84%). B. napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per host plant

  3. Experimental evidence for chick discrimination without recognition in a brood parasite host.

    PubMed

    Grim, Tomás

    2007-02-01

    Recognition is considered a critical basis for discriminatory behaviours in animals. Theoretically, recognition and discrimination of parasitic chicks are not predicted to evolve in hosts of brood parasitic birds that evict nest-mates. Yet, an earlier study showed that host reed warblers (Acrocephalus scirpaceus) of an evicting parasite, the common cuckoo (Cuculus canorus), can avoid the costs of prolonged care for unrelated young by deserting the cuckoo chick before it fledges. Desertion was not based on specific recognition of the parasite because hosts accept any chick cross-fostered into their nests. Thus, the mechanism of this adaptive host response remains enigmatic. Here, I show experimentally that the cue triggering this 'discrimination without recognition' behaviour is the duration of parental care. Neither the intensity of brood care nor the presence of a single-chick in the nest could explain desertions. Hosts responded similarly to foreign chicks, whether heterospecific or experimental conspecifics. The proposed mechanism of discrimination strikingly differs from those found in other parasite-host systems because hosts do not need an internal recognition template of the parasite's appearance to effectively discriminate. Thus, host defences against parasitic chicks may be based upon mechanisms qualitatively different from those operating against parasitic eggs. I also demonstrate that this discriminatory mechanism is non-costly in terms of recognition errors. Comparative data strongly suggest that parasites cannot counter-evolve any adaptation to mitigate effects of this host defence. These findings have crucial implications for the process and end-result of host-parasite arms races and our understanding of the cognitive basis of discriminatory mechanisms in general.

  4. Alternative mechanisms of increased eggshell hardness of avian brood parasites relative to host species

    PubMed Central

    Igic, Branislav; Braganza, Kim; Hyland, Margaret M.; Silyn-Roberts, Heather; Cassey, Phillip; Grim, Tomas; Rutila, Jarkko; Moskát, Csaba; Hauber, Mark E.

    2011-01-01

    Obligate brood parasitic birds lay their eggs in nests of other species and parasite eggs typically have evolved greater structural strength relative to host eggs. Increased mechanical strength of the parasite eggshell is an adaptation that can interfere with puncture ejection behaviours of discriminating hosts. We investigated whether hardness of eggshells is related to differences between physical and chemical traits from three different races of the parasitic common cuckoo Cuculus canorus, and their respective hosts. Using tools developed for materials science, we discovered a novel correlate of increased strength of parasite eggs: the common cuckoo's egg exhibits a greater microhardness, especially in the inner region of the shell matrix, relative to its host and sympatric non-host species. We then tested predictions of four potential mechanisms of shell strength: (i) increased relative thickness overall, (ii) greater proportion of the structurally harder shell layers, (iii) higher concentration of inorganic components in the shell matrix, and (iv) elevated deposition of a high density compound, MgCO3, in the shell matrix. We confirmed support only for hypothesis (i). Eggshell characteristics did not differ between parasite eggs sampled from different host nests in distant geographical sites, suggesting an evolutionarily shared microstructural mechanism of stronger parasite eggshells across diverse host-races of brood parasitic cuckoos. PMID:21561966

  5. The parasite's long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host.

    PubMed

    Beros, Sara; Jongepier, Evelien; Hagemeier, Felizitas; Foitzik, Susanne

    2015-11-22

    Parasites can induce alterations in host phenotypes in order to enhance their own survival and transmission. Parasites of social insects might not only benefit from altering their individual hosts, but also from inducing changes in uninfected group members. Temnothorax nylanderi ant workers infected with the tapeworm Anomotaenia brevis are known to be chemically distinct from nest-mates and do not contribute to colony fitness, but are tolerated in their colonies and well cared for. Here, we investigated how tapeworm- infected workers affect colony aggression by manipulating their presence in ant colonies and analysing whether their absence or presence resulted in behavioural alterations in their nest-mates. We report a parasite-induced shift in colony aggression, shown by lower aggression of uninfected nest-mates from parasitized colonies towards conspecifics, potentially explaining the tolerance towards infected ants. We also demonstrate that tapeworm-infected workers showed a reduced flight response and higher survival, while their presence caused a decrease in survival of uninfected nest-mates. This anomalous behaviour of infected ants, coupled with their increased survival, could facilitate the parasites' transmission to its definitive hosts, woodpeckers. We conclude that parasites exploiting individuals that are part of a society not only induce phenotypic changes within their individual hosts, but in uninfected group members as well. PMID:26582019

  6. Host immunity shapes the impact of climate changes on the dynamics of parasite infections

    PubMed Central

    Mignatti, Andrea; Boag, Brian; Cattadori, Isabella M.

    2016-01-01

    Global climate change is predicted to alter the distribution and dynamics of soil-transmitted helminth infections, and yet host immunity can also influence the impact of warming on host–parasite interactions and mitigate the long-term effects. We used time-series data from two helminth species of a natural herbivore and investigated the contribution of climate change and immunity on the long-term and seasonal dynamics of infection. We provide evidence that climate warming increases the availability of infective stages of both helminth species and the proportional increase in the intensity of infection for the helminth not regulated by immunity. In contrast, there is no significant long-term positive trend in the intensity for the immune-controlled helminth, as immunity reduces the net outcome of climate on parasite dynamics. Even so, hosts experienced higher infections of this helminth at an earlier age during critical months in the warmer years. Immunity can alleviate the expected long-term effect of climate on parasite infections but can also shift the seasonal peak of infection toward the younger individuals. PMID:26884194

  7. Host genotype and age have no effect on rejection of parasitic eggs.

    PubMed

    Procházka, Petr; Konvičková-Patzenhauerová, Hana; Požgayová, Milica; Trnka, Alfréd; Jelínek, Václav; Honza, Marcel

    2014-05-01

    Egg rejection belongs to a widely used host tactic to prevent the costs incurred by avian brood parasitism. However, the genetic basis of this behaviour and the effect of host age on the probability of rejecting the parasitic egg remain largely unknown. Here, we used a set of 15 polymorphic microsatellite loci, including a previously detected candidate locus (Ase64), to link genotypes of female great reed warblers (Acrocephalus arundinaceus), a known rejecter, with their egg rejection responses in two host populations. We also tested whether host female age, as a measure of the experience with own eggs, plays a role in rejection of common cuckoo (Cuculus canorus) eggs. We failed to find any consistent association of egg rejection responses with host female genotypes or age. It seems that host decisions on egg rejection show high levels of phenotypic plasticity and are likely to depend on the spatiotemporal variation in the parasitism pressure. Future studies exploring the repeatability of host responses towards parasitic eggs and the role of host individual experience with parasitic eggs would greatly improve our understanding of the variations in host behaviours considering the persistence of brood parasitism in host populations with rejecter phenotypes. PMID:24718778

  8. Host genotype and age have no effect on rejection of parasitic eggs

    NASA Astrophysics Data System (ADS)

    Procházka, Petr; Konvičková-Patzenhauerová, Hana; Požgayová, Milica; Trnka, Alfréd; Jelínek, Václav; Honza, Marcel

    2014-05-01

    Egg rejection belongs to a widely used host tactic to prevent the costs incurred by avian brood parasitism. However, the genetic basis of this behaviour and the effect of host age on the probability of rejecting the parasitic egg remain largely unknown. Here, we used a set of 15 polymorphic microsatellite loci, including a previously detected candidate locus (Ase64), to link genotypes of female great reed warblers ( Acrocephalus arundinaceus), a known rejecter, with their egg rejection responses in two host populations. We also tested whether host female age, as a measure of the experience with own eggs, plays a role in rejection of common cuckoo ( Cuculus canorus) eggs. We failed to find any consistent association of egg rejection responses with host female genotypes or age. It seems that host decisions on egg rejection show high levels of phenotypic plasticity and are likely to depend on the spatiotemporal variation in the parasitism pressure. Future studies exploring the repeatability of host responses towards parasitic eggs and the role of host individual experience with parasitic eggs would greatly improve our understanding of the variations in host behaviours considering the persistence of brood parasitism in host populations with rejecter phenotypes.

  9. Hyperdiverse Gene Cluster in Snail Host Conveys Resistance to Human Schistosome Parasites

    PubMed Central

    Tennessen, Jacob A.; Théron, André; Marine, Melanie; Yeh, Jan-Ying; Rognon, Anne; Blouin, Michael S.

    2015-01-01

    Schistosomiasis, a neglected global pandemic, may be curtailed by blocking transmission of the parasite via its intermediate hosts, aquatic snails. Elucidating the genetic basis of snail-schistosome interaction is a key to this strategy. Here we map a natural parasite-resistance polymorphism from a Caribbean population of the snail Biomphalaria glabrata. In independent experimental evolution lines, RAD genotyping shows that the same genomic region responds to selection for resistance to the parasite Schistosoma mansoni. A dominant allele in this region conveys an 8-fold decrease in the odds of infection. Fine-mapping and RNA-Seq characterization reveal a <1Mb region, the Guadeloupe Resistance Complex (GRC), with 15 coding genes. Seven genes are single-pass transmembrane proteins with putative immunological roles, most of which show strikingly high nonsynonymous divergence (5-10%) among alleles. High linkage disequilibrium among three intermediate-frequency (>25%) haplotypes across the GRC, a significantly non-neutral pattern, suggests that balancing selection maintains diversity at the GRC. Thus, the GRC resembles immune gene complexes seen in other taxa and is likely involved in parasite recognition. The GRC is a potential target for controlling transmission of schistosomiasis, including via genetic manipulation of snails. PMID:25775214

  10. Global analysis of a simple parasite-host model with homoclinic orbits.

    PubMed

    Li, Jianquan; Xiao, Yanni; Yang, Yali

    2012-10-01

    In this paper, a simple parasite-host model proposed by Ebert et al.(2000) is reconsidered. The basic epidemiological reproduction number of parasite infection (R0) and the basic demographic reproduction number of infected hosts (R1) are given. The global dynamics of the model is completely investigated, and the existence of heteroclinic and homoclinic orbits is theoretically proved, which implies that the outbreak of parasite infection may happen. The thresholds determining the host extinction in the presence of parasite infection and variation in the equilibrium level of the infected hosts with R0 are found. The effects of R0 and R1 on dynamics of the model are considered and we show that the equilibrium level of the infected host may not be monotone with respect to R0. In particular, it is found that full loss of fecundity of infected hosts may lead to appearance of the singular case.

  11. Suppressing glucose transporter gene expression in schistosomes impairs parasite feeding and decreases survival in the mammalian host.

    PubMed

    Krautz-Peterson, Greice; Simoes, Mariana; Faghiri, Zahra; Ndegwa, David; Oliveira, Guilherme; Shoemaker, Charles B; Skelly, Patrick J

    2010-01-01

    Adult schistosomes live in the host's bloodstream where they import nutrients such as glucose across their body surface (the tegument). The parasite tegument is an unusual structure since it is enclosed not by the typical one but by two closely apposed lipid bilayers. Within the tegument two glucose importing proteins have been identified; these are schistosome glucose transporter (SGTP) 1 and 4. SGTP4 is present in the host interactive, apical tegumental membranes, while SGTP1 is found in the tegumental basal membrane (as well as in internal tissues). The SGTPs act by facilitated diffusion. To examine the importance of these proteins for the parasites, RNAi was employed to knock down expression of both SGTP genes in the schistosomula and adult worm life stages. Both qRT-PCR and western blotting analysis confirmed successful gene suppression. It was found that SGTP1 or SGTP4-suppressed parasites exhibit an impaired ability to import glucose compared to control worms. In addition, parasites with both SGTP1 and SGTP4 simultaneously suppressed showed a further reduction in capacity to import glucose compared to parasites with a single suppressed SGTP gene. Despite this debility, all suppressed parasites exhibited no phenotypic distinction compared to controls when cultured in rich medium. Following prolonged incubation in glucose-depleted medium however, significantly fewer SGTP-suppressed parasites survived. Finally, SGTP-suppressed parasites showed decreased viability in vivo following infection of experimental animals. These findings provide direct evidence for the importance of SGTP1 and SGTP4 for schistosomes in importing exogenous glucose and show that these proteins are important for normal parasite development in the mammalian host.

  12. The specificity of host-bat fly interaction networks across vegetation and seasonal variation.

    PubMed

    Zarazúa-Carbajal, Mariana; Saldaña-Vázquez, Romeo A; Sandoval-Ruiz, César A; Stoner, Kathryn E; Benitez-Malvido, Julieta

    2016-10-01

    Vegetation type and seasonality promote changes in the species composition and abundance of parasite hosts. However, it is poorly known how these variables affect host-parasite interaction networks. This information is important to understand the dynamics of parasite-host relationships according to biotic and abiotic changes. We compared the specialization of host-bat fly interaction networks, as well as bat fly and host species composition between upland dry forest and riparian forest and between dry and rainy seasons in a tropical dry forest in Jalisco, Mexico. Bat flies were surveyed by direct collection from bats. Our results showed that host-bat fly interaction networks were more specialized in upland dry forest compared to riparian forest. Bat fly species composition was different between the dry and rainy seasons, while host species composition was different between upland dry forest and riparian forest. The higher specialization in upland dry forest could be related to the differences in bat host species composition and their respective roosting habits. Variation in the composition of bat fly species between dry and rainy seasons coincides with the seasonal shifts in their species richness. Our study confirms the high specialization of host-bat fly interactions and shows the importance of biotic and abiotic factors to understand the dynamics of parasite-host interactions.

  13. Habitat heterogeneity drives the host-diversity-begets-parasite-diversity relationship: evidence from experimental and field studies.

    PubMed

    Johnson, Pieter T J; Wood, Chelsea L; Joseph, Maxwell B; Preston, Daniel L; Haas, Sarah E; Springer, Yuri P

    2016-07-01

    Despite a century of research into the factors that generate and maintain biodiversity, we know remarkably little about the drivers of parasite diversity. To identify the mechanisms governing parasite diversity, we combined surveys of 8100 amphibian hosts with an outdoor experiment that tested theory developed for free-living species. Our analyses revealed that parasite diversity increased consistently with host diversity due to habitat (i.e. host) heterogeneity, with secondary contributions from parasite colonisation and host abundance. Results of the experiment, in which host diversity was manipulated while parasite colonisation and host abundance were fixed, further reinforced this conclusion. Finally, the coefficient of host diversity on parasite diversity increased with spatial grain, which was driven by differences in their species-area curves: while host richness quickly saturated, parasite richness continued to increase with neighbourhood size. These results offer mechanistic insights into drivers of parasite diversity and provide a hierarchical framework for multi-scale disease research.

  14. Resource limitation alters the consequences of co-infection for both hosts and parasites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most animals are concurrently infected with multiple parasites and live in environments with fluctuating resource availability. Compelling evidence from humans, laboratory model systems, and wildlife suggests that interactions among co-infecting parasites can influence disease dynamics, individual h...

  15. Host-parasite relationships as determinants of heavy metal concentrations in perch (Perca fluviatilis) and its intestinal parasite infection.

    PubMed

    Brázová, Tímea; Hanzelová, Vladimíra; Miklisová, Dana; Šalamún, Peter; Vidal-Martínez, Víctor M

    2015-12-01

    The concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn and their bioconcentration factors (BCFs) were determined in two intestinal parasites, an acanthocephalan, Acanthocephalus lucii, a tapeworm, Proteocephalus percae, present in the same host, the European perch (Perca fluviatilis, L.), in the heavily polluted Ružín reservoir in eastern Slovakia. The bioaccumulation of heavy metals in the fish organs and parasites was studied for acanthocephalan and tapeworm monoinfections or mixed infections by the two parasites and for the size of their parasitic infrapopulations. Bioconcentration factors (c[parasite]/c[muscle tissue]) showed that the concentrations of As, Ni, Pb and Zn were higher in mixed infections than in monoinfections. Negative correlations between heavy metal concentrations in perch organs and the parasites were found. For example, higher concentrations of Ni and Zn in both parasite species corresponded with lower metal concentrations in perch and hard roe. Likewise, significant negative relationships between metal concentrations in fish organs and number of parasites were noticed with lower levels of Pb in fish harbouring higher numbers of tapeworms. Similarly, in both parasite species the concentrations of some essential elements (Cr, Mn) were lower at high infection intensities compared to low intensities. Our study revealed that the differential concentration of heavy metals in perch organs was affected by the type of infection (mono- or mixed-infection), and needs to be considered in field ecotoxicological and parasitological studies as a potentially important factor influencing the pollutant concentrations in fish.

  16. Host-parasite relationships as determinants of heavy metal concentrations in perch (Perca fluviatilis) and its intestinal parasite infection.

    PubMed

    Brázová, Tímea; Hanzelová, Vladimíra; Miklisová, Dana; Šalamún, Peter; Vidal-Martínez, Víctor M

    2015-12-01

    The concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn and their bioconcentration factors (BCFs) were determined in two intestinal parasites, an acanthocephalan, Acanthocephalus lucii, a tapeworm, Proteocephalus percae, present in the same host, the European perch (Perca fluviatilis, L.), in the heavily polluted Ružín reservoir in eastern Slovakia. The bioaccumulation of heavy metals in the fish organs and parasites was studied for acanthocephalan and tapeworm monoinfections or mixed infections by the two parasites and for the size of their parasitic infrapopulations. Bioconcentration factors (c[parasite]/c[muscle tissue]) showed that the concentrations of As, Ni, Pb and Zn were higher in mixed infections than in monoinfections. Negative correlations between heavy metal concentrations in perch organs and the parasites were found. For example, higher concentrations of Ni and Zn in both parasite species corresponded with lower metal concentrations in perch and hard roe. Likewise, significant negative relationships between metal concentrations in fish organs and number of parasites were noticed with lower levels of Pb in fish harbouring higher numbers of tapeworms. Similarly, in both parasite species the concentrations of some essential elements (Cr, Mn) were lower at high infection intensities compared to low intensities. Our study revealed that the differential concentration of heavy metals in perch organs was affected by the type of infection (mono- or mixed-infection), and needs to be considered in field ecotoxicological and parasitological studies as a potentially important factor influencing the pollutant concentrations in fish. PMID:26432028

  17. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence.

    PubMed

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D

    2015-04-01

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. PMID:25761710

  18. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence.

    PubMed

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D

    2015-04-01

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence.

  19. Distance decay of similarity among parasite communities of three marine invertebrate hosts.

    PubMed

    Thieltges, David W; Ferguson, MacNeill A D; Jones, Cathy S; Krakau, Manuela; de Montaudouin, Xavier; Noble, Leslie R; Reise, Karsten; Poulin, Robert

    2009-05-01

    The similarity in species composition between two communities generally decays as a function of increasing distance between them. Parasite communities in vertebrate definitive hosts follow this pattern but the respective relationship in intermediate invertebrate hosts of parasites with complex life cycles is unknown. In intermediate hosts, parasite communities are affected not only by the varying vagility of their definitive hosts (dispersing infective propagules) but also by the necessary coincidence of all their hosts in environmentally suitable localities. As intermediate hosts often hardly move they do not contribute to parasite dispersal. Hence, their parasite assemblages may decrease faster in similarity with increasing distance than those in highly mobile vertebrate definitive hosts. We use published field survey data to investigate distance decay of similarity in trematode communities from three prominent coastal molluscs of the Eastern North-Atlantic: the gastropods Littorina littorea and Hydrobia ulvae, and the bivalve Cerastoderma edule. We found that the similarity of trematode communities in all three hosts decayed with distance, independently of local sampling effort, and whether or not the parasites used the mollusc as first or second intermediate host in their life cycle. In H. ulvae, the halving distance (i.e. the distance that halves the similarity from its initial similarity at 1 km distance) for the trematode species using birds as definitive hosts was approximately two to three times larger than for species using fish. The initial similarities (estimated at 1 km distance) among trematode communities were relatively higher, whereas mean halving distances were lower, compared to published values for parasite communities in vertebrate hosts. We conclude that the vagility of definitive hosts accounts for a high similarity at the local scale, while the strong decay of similarity across regions is a consequence of the low probability that all

  20. Host availability and the evolution of parasite life-history strategies.

    PubMed

    Crossan, Jenny; Paterson, Steve; Fenton, Andy

    2007-03-01

    Parasites exploit an inherently patchy resource, their hosts, which are discrete entities that may only be available for infection within a relatively short time window. However, there has been little consideration of how heterogeneities in host availability may affect the phenotypic or genotypic composition of parasite populations or how parasites may evolve to cope with them. Here we conduct a selection experiment involving an entomopathogenic nematode (Steinernema feltiae) and show for the first time that the infection rate of a parasite can evolve rapidly to maximize the chances of infecting within an environment characterized by the rate of host availability. Furthermore, we show that the parasite's infection rate trades off with other fitness traits, such as fecundity and survival. Crucially, the outcome of competition between strains with different infection strategies depends on the rate of host availability; frequently available hosts favor "fast" infecting nematodes, whereas infrequently available hosts favor "slow" infecting nematodes. A simple evolutionarily stable strategy (ESS) analysis based on classic epidemiological models fails to capture this behavior, predicting instead that the fastest infecting phenotype should always dominate. However, a novel model incorporating more realistic, discrete bouts of host availability shows that strain coexistence is highly likely. Our results demonstrate that heterogeneities in host availability play a key role in the evolution of parasite life-history traits and in the maintenance of phenotypic variability. Parasite life-history strategies are likely to evolve rapidly in response to changes in host availability induced by disease management programs or by natural dynamics in host abundance. Incorporating parasite evolution in response to host availability would therefore enhance the predictive ability of current epidemiological models of infectious disease.

  1. Host specificity shapes population structure of pinworm parasites in Caribbean reptiles.

    PubMed

    Falk, Bryan G; Perkins, Susan L

    2013-09-01

    Host specificity is one of the potential factors affecting parasite diversification because gene flow may be facilitated or constrained by the number of host species that a parasite can exploit. We test this hypothesis using a costructure approach, comparing two sympatric pinworm parasites that differ in host specificity - Parapharyngodon cubensis and Spauligodon anolis - on the Puerto Rican Bank and St. Croix in the Caribbean. Spauligodon anolis specializes on Anolis lizards, whereas P. cubensis parasitizes Anolis lizards as well as many other species of lizards and snakes. We collected lizards from across the Puerto Rican Bank and St. Croix, sampled them for S. anolis and P. cubensis and generated nuclear and mitochondrial sequence data from the parasites. We used these data to show that P. cubensis is comprised of multiple cryptic species that exhibit limited population structure relative to S. anolis, which is consistent with our prediction based on their host specificity. We also provide evidence that the distribution of P. cubensis species is maintained by competitive exclusion, and in contrast to previous theoretical work, the parasites with the greatest number of host species also reach the highest prevalence rates. Overall, our results are consistent with the hypothesis that host specificity shapes parasite diversification, and suggest that even moderate differences in host specificity may contribute to substantial differences in diversification. PMID:23848187

  2. The mechanics of malaria parasite invasion of the human erythrocyte – towards a reassessment of the host cell contribution

    PubMed Central

    Koch, Marion

    2016-01-01

    Summary Despite decades of research, we still know little about the mechanics of Plasmodium host cell invasion. Fundamentally, while the essential or non‐essential nature of different parasite proteins is becoming clearer, their actual function and how each comes together to govern invasion are poorly understood. Furthermore, in recent years an emerging world view is shifting focus away from the parasite actin–myosin motor being the sole force responsible for entry to an appreciation of host cell dynamics and forces and their contribution to the process. In this review, we discuss merozoite invasion of the erythrocyte, focusing on the complex set of pre‐invasion events and how these might prime the red cell to facilitate invasion. While traditionally parasite interactions at this stage have been viewed simplistically as mediating adhesion only, recent work makes it apparent that by interacting with a number of host receptors and signalling pathways, combined with secretion of parasite‐derived lipid material, that the merozoite may initiate cytoskeletal re‐arrangements and biophysical changes in the erythrocyte that greatly reduce energy barriers for entry. Seen in this light Plasmodium invasion may well turn out to be a balance between host and parasite forces, much like that of other pathogen infection mechanisms. PMID:26663815

  3. Life history determines genetic structure and evolutionary potential of host–parasite interactions

    PubMed Central

    Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.

    2009-01-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life