Sample records for host range function

  1. Poxviruses and the Evolution of Host Range and Virulence

    PubMed Central

    Haller, Sherry L.; Peng, Chen; McFadden, Grant; Rothenburg, Stefan

    2013-01-01

    Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health. PMID:24161410

  2. Eop1 from a Rubus strain of Erwinia amylovora functions as a host-range limiting factor.

    PubMed

    Asselin, J E; Bonasera, J M; Kim, J F; Oh, C-S; Beer, S V

    2011-08-01

    Strains of Erwinia amylovora, the bacterium causing the disease fire blight of rosaceous plants, are separated into two groups based on host range: Spiraeoideae and Rubus strains. Spiraeoideae strains have wide host ranges, infecting plants in many rosaceous genera, including apple and pear. In the field, Rubus strains infect the genus Rubus exclusively, which includes raspberry and blackberry. Based on comparisons of limited sequence data from a Rubus and a Spiraeoideae strain, the gene eop1 was identified as unusually divergent, and it was selected as a possible host specificity factor. To test this, eop1 genes from a Rubus strain and a Spiraeoideae strain were cloned and mutated. Expression of the Rubus-strain eop1 reduced the virulence of E. amylovora in immature pear fruit and in apple shoots. Sequencing the orfA-eop1 regions of several strains of E. amylovora confirmed that forms of eop1 are conserved among strains with similar host ranges. This work provides evidence that eop1 from a Rubus-specific strain can function as a determinant of host specificity in E. amylovora.

  3. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars

    PubMed Central

    Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica

    2013-01-01

    SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573

  4. Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare.

    PubMed

    Wu, Zilong; Song, Nan; Menz, Ryan; Pingali, Bharadwaj; Yang, Ying-Wei; Zheng, Yuebing

    2015-05-01

    Synthetic macrocyclic host compounds can interact with suitable guest molecules via noncovalent interactions to form functional supramolecular systems. With the synergistic integration of the response of molecules and the unique properties at the nanoscale, nanoparticles functionalized with the host-guest supramolecular systems have shown great potentials for a broad range of applications in the fields of nanoscience and nanotechnology. In this review article, we focus on the applications of the nanoparticles functionalized with supramolecular host-guest systems in nanomedicine and healthcare, including therapeutic delivery, imaging, sensing and removal of harmful substances. A large number of examples are included to elucidate the working mechanisms, advantages, limitations and future developments of the nanoparticle-supramolecule systems in these applications.

  5. Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    PubMed Central

    2013-01-01

    Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions. PMID:23302495

  6. Reproductive Biology and Functional Response of Dineulophus phtorimaeae, a Natural Enemy of the Tomato Moth, Tuta absoluta

    PubMed Central

    Savino, Vivina; Coviella, Carlos E.; Luna, María G.

    2012-01-01

    The tomato moth, Tuta absoluta (Lepidoptera: Gelechiidae), is a major pest in South America and is at present an important invasive species in the Mediterranean Basin. The larval stadium mines leaves, stems, and fruits, and chemical control is the most used control method in both its original range and the invaded distribution regions. Since current T. absoluta control strategies seem limited, biological control is a prominent tool to be applied abroad. The naturally occurring larval ectoparasitoid in Argentina and Chile Dineulophus phtorimaeae (Hymenoptera: Eulophidae) has been reported to have potential biocontrol efficiency. In this study, the ovigeny strategy of D. phtorimaeae was analyzed throughout the adult female lifetime, and the functional response of females offered a range of 2–15 T. absoluta larvae was measured over a 48-hour period. Mean D. phtorimaeae egg load was 4.15 eggs, and egg production resulted in extremely synovigenic behavior. Meanwhile, a decreasing number of eggs, due to resorption, was found. Proportions of attacked (host-fed and/or parasitized) and only host-fed hosts by the ectoparasitoid were density independent for the tested host range, exhibiting a type I functional response to T. absoluta, with an attack rate of 0.20 host larvae. Meanings of this reproductive strategy in evolutionary time as well as the consequences for augmentative biological control programs are discussed. PMID:23464576

  7. Alteration of a second putative fusion peptide of structural glycoprotein E2 of Classical Swine Fever Virus alters virus replication and virulence in swine

    USDA-ARS?s Scientific Manuscript database

    E2, the major envelope glycoprotein of Classical Swine Fever Virus (CSFV), is involved in several critical virus functions including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on Wimley-White interfacial hydrophobicity dis...

  8. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas.

    PubMed

    Neave, Matthew J; Apprill, Amy; Ferrier-Pagès, Christine; Voolstra, Christian R

    2016-10-01

    Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.

  9. Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems: Variable phage-host infection interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina

    Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less

  10. Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems: Variable phage-host infection interactions

    DOE PAGES

    Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina; ...

    2016-06-28

    Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less

  11. Lack of Host Specialization on Winter Annual Grasses in the Fungal Seed Bank Pathogen Pyrenophora semeniperda

    PubMed Central

    Beckstead, Julie; Meyer, Susan E.; Ishizuka, Toby S.; McEvoy, Kelsey M.; Coleman, Craig E.

    2016-01-01

    Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora semeniperda by reciprocally inoculating pathogen strains from Bromus tectorum and from four other winter annual grass weeds (Bromus diandrus, Bromus rubens, Bromus arvensis and Taeniatherum caput-medusae) onto dormant seeds of B. tectorum and each alternate host. We found that host species varied in resistance and pathogen strains varied in aggressiveness, but there was no evidence for host specialization. Most variation in aggressiveness was among strains within populations and was expressed similarly on both hosts, resulting in a positive correlation between strain-level disease incidence on B. tectorum and on the alternate host. In spite of this lack of host specialization, we detected weak but significant population genetic structure as a function of host species using two neutral marker systems that yielded similar results. This genetic structure is most likely due to founder effects, as the pathogen is known to be dispersed with host seeds. All host species were highly susceptible to their own pathogen races. Tolerance to infection (i.e., the ability to germinate even when infected and thereby avoid seed mortality) increased as a function of seed germination rate, which in turn increased as dormancy was lost. Pyrenophora semeniperda apparently does not require host specialization to fully exploit these winter annual grass species, which share many life history features that make them ideal hosts for this pathogen. PMID:26950931

  12. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts*

    PubMed Central

    Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  13. Myxoma Virus M064 Is a Novel Member of the Poxvirus C7L Superfamily of Host Range Factors That Controls the Kinetics of Myxomatosis in European Rabbits

    PubMed Central

    Liu, Jia; Wennier, Sonia; Moussatche, Nissin; Reinhard, Mary; Condit, Richard

    2012-01-01

    The myxoma virus (MYXV) carries three tandem C7L-like host range genes (M062R, M063R, and M064R). However, despite the fact that the sequences of these three genes are similar, they possess very distinctive functions in vivo. The role of M064 in MYXV pathogenesis was investigated and compared to the roles of M062 and M063. We report that M064 is a virulence factor that contributes to MYXV pathogenesis but lacks the host range properties associated with M062 and M063. PMID:22379095

  14. Myxoma virus M064 is a novel member of the poxvirus C7L superfamily of host range factors that controls the kinetics of myxomatosis in European rabbits.

    PubMed

    Liu, Jia; Wennier, Sonia; Moussatche, Nissin; Reinhard, Mary; Condit, Richard; McFadden, Grant

    2012-05-01

    The myxoma virus (MYXV) carries three tandem C7L-like host range genes (M062R, M063R, and M064R). However, despite the fact that the sequences of these three genes are similar, they possess very distinctive functions in vivo. The role of M064 in MYXV pathogenesis was investigated and compared to the roles of M062 and M063. We report that M064 is a virulence factor that contributes to MYXV pathogenesis but lacks the host range properties associated with M062 and M063.

  15. Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus).

    PubMed

    Rasmann, Sergio; Agrawal, Anurag A

    2011-06-01

    Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.

  16. Diverse Broad-Host-Range Plasmids from Freshwater Carry Few Accessory Genes

    PubMed Central

    Sen, Diya; Yano, Hirokazu; Bauer, Matthew L.; Rogers, Linda M.; Van der Auwera, Geraldine A.

    2013-01-01

    Broad-host-range self-transferable plasmids are known to facilitate bacterial adaptation by spreading genes between phylogenetically distinct hosts. These plasmids typically have a conserved backbone region and a variable accessory region that encodes host-beneficial traits. We do not know, however, how well plasmids that do not encode accessory functions can survive in nature. The goal of this study was to characterize the backbone and accessory gene content of plasmids that were captured from freshwater sources without selecting for a particular phenotype or cultivating their host. To do this, triparental matings were used such that the only required phenotype was the plasmid's ability to mobilize a nonconjugative plasmid. Based on complete genome sequences of 10 plasmids, only 5 carried identifiable accessory gene regions, and none carried antibiotic resistance genes. The plasmids belong to four known incompatibility groups (IncN, IncP-1, IncU, and IncW) and two potentially new groups. Eight of the plasmids were shown to have a broad host range, being able to transfer into alpha-, beta-, and gammaproteobacteria. Because of the absence of antibiotic resistance genes, we resampled one of the sites and compared the proportion of captured plasmids that conferred antibiotic resistance to their hosts with the proportion of such plasmids captured from the effluent of a local wastewater treatment plant. Few of the captured plasmids from either site encoded antibiotic resistance. A high diversity of plasmids that encode no or unknown accessory functions is thus readily found in freshwater habitats. The question remains how the plasmids persist in these microbial communities. PMID:24096417

  17. Attack on all fronts: functional relationships between aerial and root parasitic plants and their woody hosts and consequences for ecosystems.

    PubMed

    Bell, T L; Adams, M A

    2011-01-01

    This review discusses how understanding of functional relationships between parasitic plants and their woody hosts have benefited from a range of approaches to their study. Gross comparisons of nutrient content between infected and uninfected hosts, or parts of hosts, have been widely used to infer basic differences or similarities between hosts and parasites. Coupling of nutrient information with additional evidence of key processes such as transpiration, respiration and photosynthesis has helped elucidate host-parasite relationships and, in some cases, the anatomical nature of their connection and even the physiology of plants in general. For example, detailed analysis of xylem sap from hosts and parasites has increased our understanding of the spatial and temporal movement of solutes within plants. Tracer experiments using natural abundance or enriched application of stable isotopes ((15)N, (13)C, (18)O) have helped us to understand the extent and form of heterotrophy, including the effect of the parasite on growth and functioning of the host (and its converse) as well as environmental effects on the parasite. Nutritional studies of woody hosts and parasites have provided clues to the distribution of parasitic plants and their roles in ecosystems. This review also provides assessment of several corollaries to the host-parasite association.

  18. Galaxy and Mass Assembly (GAMA): the red fraction and radial distribution of satellite galaxies

    NASA Astrophysics Data System (ADS)

    Prescott, Matthew; Baldry, I. K.; James, P. A.; Bamford, S. P.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Driver, S. P.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Hopkins, A. M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Liske, J.; Loveday, J.; Nichol, R. C.; Norberg, P.; Parkinson, H. R.; Peacock, J. A.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2011-10-01

    We investigate the properties of satellite galaxies that surround isolated hosts within the redshift range 0.01 < z < 0.15, using data taken as part of the Galaxy And Mass Assembly survey. Making use of isolation and satellite criteria that take into account stellar mass estimates, we find 3514 isolated galaxies of which 1426 host a total of 2998 satellites. Separating the red and blue populations of satellites and hosts, using colour-mass diagrams, we investigate the radial distribution of satellite galaxies and determine how the red fraction of satellites varies as a function of satellite mass, host mass and the projected distance from their host. Comparing the red fraction of satellites to a control sample of small neighbours at greater projected radii, we show that the increase in red fraction is primarily a function of host mass. The satellite red fraction is about 0.2 higher than the control sample for hosts with ?, while the red fractions show no difference for hosts with ?. For the satellites of more massive hosts, the red fraction also increases as a function of decreasing projected distance. Our results suggest that the likely main mechanism for the quenching of star formation in satellites hosted by isolated galaxies is strangulation.

  19. Experimental Adaptation of Burkholderia cenocepacia to Onion Medium Reduces Host Range ▿ † ‡

    PubMed Central

    Ellis, Crystal N.; Cooper, Vaughn S.

    2010-01-01

    It is unclear whether adaptation to a new host typically broadens or compromises host range, yet the answer bears on the fate of emergent pathogens and symbionts. We investigated this dynamic using a soil isolate of Burkholderia cenocepacia, a species that normally inhabits the rhizosphere, is related to the onion pathogen B. cepacia, and can infect the lungs of cystic fibrosis patients. We hypothesized that adaptation of B. cenocepacia to a novel host would compromise fitness and virulence in alternative hosts. We modeled adaptation to a specific host by experimentally evolving 12 populations of B. cenocepacia in liquid medium composed of macerated onion tissue for 1,000 generations. The mean fitness of all populations increased by 78% relative to the ancestor, but significant variation among lines was observed. Populations also varied in several phenotypes related to host association, including motility, biofilm formation, and quorum-sensing function. Together, these results suggest that each population adapted by fixing different sets of adaptive mutations. However, this adaptation was consistently accompanied by a loss of pathogenicity to the nematode Caenorhabditis elegans; by 500 generations most populations became unable to kill nematodes. In conclusion, we observed a narrowing of host range as a consequence of prolonged adaptation to an environment simulating a specific host, and we suggest that emergent pathogens may face similar consequences if they become host-restricted. PMID:20154121

  20. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection

    PubMed Central

    Ko, Ya-Ping; Flick, Matthew J.

    2017-01-01

    Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment. PMID:27056151

  1. Parasitoid flies exploiting acoustic communication of insects-comparative aspects of independent functional adaptations.

    PubMed

    Lakes-Harlan, Reinhard; Lehmann, Gerlind U C

    2015-01-01

    Two taxa of parasitoid Diptera have independently evolved tympanal hearing organs to locate sound producing host insects. Here we review and compare functional adaptations in both groups of parasitoids, Ormiini and Emblemasomatini. Tympanal organs in both groups originate from a common precursor organ and are somewhat similar in morphology and physiology. In terms of functional adaptations, the hearing thresholds are largely adapted to the frequency spectra of the calling song of the hosts. The large host ranges of some parasitoids indicate that their neuronal filter for the temporal patterns of the calling songs are broader than those found in intraspecific communication. For host localization the night active Ormia ochracea and the day active E. auditrix are able to locate a sound source precisely in space. For phonotaxis flight and walking phases are used, whereby O. ochracea approaches hosts during flight while E. auditrix employs intermediate landings and re-orientation, apparently separating azimuthal and vertical angles. The consequences of the parasitoid pressure are discussed for signal evolution and intraspecific communication of the host species. This natural selection pressure might have led to different avoidance strategies in the hosts: silent males in crickets, shorter signals in tettigoniids and fluctuating population abundances in cicadas.

  2. Functional microbiomics: Evaluation of gut microbiota-bile acid metabolism interactions in health and disease.

    PubMed

    Mullish, Benjamin H; Pechlivanis, Alexandros; Barker, Grace F; Thursz, Mark R; Marchesi, Julian R; McDonald, Julie A K

    2018-04-26

    There is an ever-increasing recognition that bile acids are not purely simple surfactant molecules that aid in lipid digestion, but are a family of molecules contributing to a diverse range of key systemic functions in the host. It is now also understood that the specific composition of the bile acid milieu within the host is related to the expression and activity of bacterially-derived enzymes within the gastrointestinal tract, as such creating a direct link between the physiology of the host and the gut microbiota. Coupled to the knowledge that perturbation of the structure and/or function of the gut microbiota may contribute to the pathogenesis of a range of diseases, there is a high level of interest in the potential for manipulation of the gut microbiota-host bile acid axis as a novel approach to therapeutics. Much of the growing understanding of the biology of this area reflects the recent development and refinement of a range of novel techniques; this study applies a number of those techniques to the analysis of human samples, aiming to illustrate their strengths, drawbacks and biological significance at all stages. Specifically, we used microbial profiling (using 16S rRNA gene sequencing), bile acid profiling (using liquid chromatography-mass spectrometry), bsh and baiCD qPCR, and a BSH enzyme activity assay to demonstrate differences in the gut microbiota and bile metabolism in stool samples from healthy and antibiotic-exposed individuals. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Experimental investigation of alternative transmission functions: Quantitative evidence for the importance of nonlinear transmission dynamics in host-parasite systems.

    PubMed

    Orlofske, Sarah A; Flaxman, Samuel M; Joseph, Maxwell B; Fenton, Andy; Melbourne, Brett A; Johnson, Pieter T J

    2018-05-01

    Understanding pathogen transmission is crucial for predicting and managing disease. Nonetheless, experimental comparisons of alternative functional forms of transmission remain rare, and those experiments that are conducted are often not designed to test the full range of possible forms. To differentiate among 10 candidate transmission functions, we used a novel experimental design in which we independently varied four factors-duration of exposure, numbers of parasites, numbers of hosts and parasite density-in laboratory infection experiments. We used interactions between amphibian hosts and trematode parasites as a model system and all candidate models incorporated parasite depletion. An additional manipulation involving anaesthesia addressed the effects of host behaviour on transmission form. Across all experiments, nonlinear transmission forms involving either a power law or a negative binomial function were the best-fitting models and consistently outperformed the linear density-dependent and density-independent functions. By testing previously published data for two other host-macroparasite systems, we also found support for the same nonlinear transmission forms. Although manipulations of parasite density are common in transmission studies, the comprehensive set of variables tested in our experiments revealed that variation in density alone was least likely to differentiate among competing transmission functions. Across host-pathogen systems, nonlinear functions may often more accurately represent transmission dynamics and thus provide more realistic predictions for infection. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  4. Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History

    PubMed Central

    Brooks, Andrew W.; Kohl, Kevin D.; Brucker, Robert M.; van Opstal, Edward J.; Bordenstein, Seth R.

    2016-01-01

    Phylosymbiosis was recently proposed to describe the eco-evolutionary pattern, whereby the ecological relatedness of host-associated microbial communities parallels the phylogeny of related host species. Here, we test the prevalence of phylosymbiosis and its functional significance under highly controlled conditions by characterizing the microbiota of 24 animal species from four different groups (Peromyscus deer mice, Drosophila flies, mosquitoes, and Nasonia wasps), and we reevaluate the phylosymbiotic relationships of seven species of wild hominids. We demonstrate three key findings. First, intraspecific microbiota variation is consistently less than interspecific microbiota variation, and microbiota-based models predict host species origin with high accuracy across the dataset. Interestingly, the age of host clade divergence positively associates with the degree of microbial community distinguishability between species within the host clades, spanning recent host speciation events (~1 million y ago) to more distantly related host genera (~108 million y ago). Second, topological congruence analyses of each group's complete phylogeny and microbiota dendrogram reveal significant degrees of phylosymbiosis, irrespective of host clade age or taxonomy. Third, consistent with selection on host–microbiota interactions driving phylosymbiosis, there are survival and performance reductions when interspecific microbiota transplants are conducted between closely related and divergent host species pairs. Overall, these findings indicate that the composition and functional effects of an animal's microbial community can be closely allied with host evolution, even across wide-ranging timescales and diverse animal systems reared under controlled conditions. PMID:27861590

  5. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.

    PubMed

    Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L

    2015-10-01

    The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Host Range Restriction of Insect-Specific Flaviviruses Occurs at Several Levels of the Viral Life Cycle.

    PubMed

    Junglen, Sandra; Korries, Marvin; Grasse, Wolfgang; Wieseler, Janett; Kopp, Anne; Hermanns, Kyra; León-Juárez, Moises; Drosten, Christian; Kümmerer, Beate Mareike

    2017-01-01

    The genus Flavivirus contains emerging arthropod-borne viruses (arboviruses) infecting vertebrates, as well as insect-specific viruses (ISVs) (i.e., viruses whose host range is restricted to insects). ISVs are evolutionary precursors to arboviruses. Knowledge of the nature of the ISV infection block in vertebrates could identify functions necessary for the expansion of the host range toward vertebrates. Mapping of host restrictions by complementation of ISV and arbovirus genome functions could generate knowledge critical to predicting arbovirus emergence. Here we isolated a novel flavivirus, termed Niénokoué virus (NIEV), from mosquitoes sampled in Côte d'Ivoire. NIEV groups with insect-specific flaviviruses (ISFs) in phylogeny and grows in insect cells but not in vertebrate cells. We generated an infectious NIEV cDNA clone and a NIEV reporter replicon to study growth restrictions of NIEV in comparison to yellow fever virus (YFV), for which the same tools are available. Efficient RNA replication of the NIEV reporter replicon was observed in insect cells but not in vertebrate cells. Initial translation of the input replicon RNA in vertebrate cells was functional, but RNA replication did not occur. Chimeric YFV carrying the envelope proteins of NIEV was recovered via electroporation in C6/36 insect cells but did not infect vertebrate cells, indicating a block at the level of entry. Since the YF/NIEV chimera readily produced infectious particles in insect cells but not in vertebrate cells despite efficient RNA replication, restriction is also determined at the level of assembly/release. Taking the results together, the ability of ISF to infect vertebrates is blocked at several levels, including attachment/entry and RNA replication as well as assembly/release. IMPORTANCE Most viruses of the genus Flavivirus , e.g., YFV and dengue virus, are mosquito borne and transmitted to vertebrates during blood feeding of mosquitoes. Within the last decade, an increasing number of viruses with a host range exclusively restricted to insects in close relationship to the vertebrate-pathogenic flaviviruses were discovered in mosquitoes. To identify barriers that could block the arboviral vertebrate tropism, we set out to identify the steps at which the ISF replication cycle fails in vertebrates. Our studies revealed blocks at several levels, suggesting that flavivirus host range expansion from insects to vertebrates was a complex process that involved overcoming multiple barriers.

  7. Host Range Restriction of Insect-Specific Flaviviruses Occurs at Several Levels of the Viral Life Cycle

    PubMed Central

    Junglen, Sandra; Korries, Marvin; Grasse, Wolfgang; Wieseler, Janett; Kopp, Anne; Hermanns, Kyra; León-Juárez, Moises; Drosten, Christian

    2017-01-01

    ABSTRACT The genus Flavivirus contains emerging arthropod-borne viruses (arboviruses) infecting vertebrates, as well as insect-specific viruses (ISVs) (i.e., viruses whose host range is restricted to insects). ISVs are evolutionary precursors to arboviruses. Knowledge of the nature of the ISV infection block in vertebrates could identify functions necessary for the expansion of the host range toward vertebrates. Mapping of host restrictions by complementation of ISV and arbovirus genome functions could generate knowledge critical to predicting arbovirus emergence. Here we isolated a novel flavivirus, termed Niénokoué virus (NIEV), from mosquitoes sampled in Côte d’Ivoire. NIEV groups with insect-specific flaviviruses (ISFs) in phylogeny and grows in insect cells but not in vertebrate cells. We generated an infectious NIEV cDNA clone and a NIEV reporter replicon to study growth restrictions of NIEV in comparison to yellow fever virus (YFV), for which the same tools are available. Efficient RNA replication of the NIEV reporter replicon was observed in insect cells but not in vertebrate cells. Initial translation of the input replicon RNA in vertebrate cells was functional, but RNA replication did not occur. Chimeric YFV carrying the envelope proteins of NIEV was recovered via electroporation in C6/36 insect cells but did not infect vertebrate cells, indicating a block at the level of entry. Since the YF/NIEV chimera readily produced infectious particles in insect cells but not in vertebrate cells despite efficient RNA replication, restriction is also determined at the level of assembly/release. Taking the results together, the ability of ISF to infect vertebrates is blocked at several levels, including attachment/entry and RNA replication as well as assembly/release. IMPORTANCE Most viruses of the genus Flavivirus, e.g., YFV and dengue virus, are mosquito borne and transmitted to vertebrates during blood feeding of mosquitoes. Within the last decade, an increasing number of viruses with a host range exclusively restricted to insects in close relationship to the vertebrate-pathogenic flaviviruses were discovered in mosquitoes. To identify barriers that could block the arboviral vertebrate tropism, we set out to identify the steps at which the ISF replication cycle fails in vertebrates. Our studies revealed blocks at several levels, suggesting that flavivirus host range expansion from insects to vertebrates was a complex process that involved overcoming multiple barriers. PMID:28101536

  8. Infectious disease agents mediate interaction in food webs and ecosystems

    PubMed Central

    Selakovic, Sanja; de Ruiter, Peter C.; Heesterbeek, Hans

    2014-01-01

    Infectious agents are part of food webs and ecosystems via the relationship with their host species that, in turn, interact with both hosts and non-hosts. Through these interactions, infectious agents influence food webs in terms of structure, functioning and stability. The present literature shows a broad range of impacts of infectious agents on food webs, and by cataloguing that range, we worked towards defining the various mechanisms and their specific effects. To explore the impact, a direct approach is to study changes in food-web properties with infectious agents as separate species in the web, acting as additional nodes, with links to their host species. An indirect approach concentrates not on adding new nodes and links, but on the ways that infectious agents affect the existing links across host and non-host nodes, by influencing the ‘quality’ of consumer–resource interaction as it depends on the epidemiological state host involved. Both approaches are natural from an ecological point of view, but the indirect approach may connect more straightforwardly to commonly used tools in infectious disease dynamics. PMID:24403336

  9. A novel, broad-range, CTXΦ-derived stable integrative expression vector for functional studies.

    PubMed

    Das, Bhabatosh; Kumari, Reena; Pant, Archana; Sen Gupta, Sourav; Saxena, Shruti; Mehta, Ojasvi; Nair, Gopinath Balakrish

    2014-12-01

    CTXΦ, a filamentous vibriophage encoding cholera toxin, uses a unique strategy for its lysogeny. The single-stranded phage genome forms intramolecular base-pairing interactions between two inversely oriented XerC and XerD binding sites (XBS) and generates a functional phage attachment site, attP(+), for integration. The attP(+) structure is recognized by the host-encoded tyrosine recombinases XerC and XerD (XerCD), which enables irreversible integration of CTXΦ into the chromosome dimer resolution site (dif) of Vibrio cholerae. The dif site and the XerCD recombinases are widely conserved in bacteria. We took advantage of these conserved attributes to develop a broad-host-range integrative expression vector that could irreversibly integrate into the host chromosome using XerCD recombinases without altering the function of any known open reading frame (ORF). In this study, we engineered two different arabinose-inducible expression vectors, pBD62 and pBD66, using XBS of CTXΦ. pBD62 replicates conditionally and integrates efficiently into the dif of the bacterial chromosome by site-specific recombination using host-encoded XerCD recombinases. The expression level of the gene of interest could be controlled through the PBAD promoter by modulating the functions of the vector-encoded transcriptional factor AraC. We validated the irreversible integration of pBD62 into a wide range of pathogenic and nonpathogenic bacteria, such as V. cholerae, Vibrio fluvialis, Vibrio parahaemolyticus, Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae. Gene expression from the PBAD promoter of integrated vectors was confirmed in V. cholerae using the well-studied reporter genes mCherry, eGFP, and lacZ. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. The Luminosity Function of QSO Host Galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.

  11. Eilat virus host range restriction is present at multiple levels of the virus life cycle.

    PubMed

    Nasar, Farooq; Gorchakov, Rodion V; Tesh, Robert B; Weaver, Scott C

    2015-01-15

    Most alphaviruses are mosquito-borne and exhibit a broad host range, infecting many different vertebrates, including birds, rodents, equids, humans, and nonhuman primates. This ability of most alphaviruses to infect arthropods and vertebrates is essential for their maintenance in nature. Recently, a new alphavirus, Eilat virus (EILV), was described, and in contrast to all other mosquito-borne viruses, it is unable to replicate in vertebrate cell lines. Investigations into the nature of its host range restriction showed the inability of genomic EILV RNA to replicate in vertebrate cells. Here, we investigated whether the EILV host range restriction is present at the entry level and further explored the viral factors responsible for the lack of genomic RNA replication. Utilizing Sindbis virus (SINV) and EILV chimeras, we show that the EILV vertebrate host range restriction is also manifested at the entry level. Furthermore, the EILV RNA replication restriction is independent of the 3' untranslated genome region (UTR). Complementation experiments with SINV suggested that RNA replication is restricted by the inability of the EILV nonstructural proteins to form functional replicative complexes. These data demonstrate that the EILV host range restriction is multigenic, involving at least one gene from both nonstructural protein (nsP) and structural protein (sP) open reading frames (ORFs). As EILV groups phylogenetically within the mosquito-borne virus clade of pathogenic alphaviruses, our findings have important evolutionary implications for arboviruses. Our work explores the nature of host range restriction of the first "mosquito-only alphavirus," EILV. EILV is related to pathogenic mosquito-borne viruses (Eastern equine encephalitis virus [EEEV], Western equine encephalitis virus [WEEV], Venezuelan equine encephalitis virus [VEEV], and Chikungunya virus [CHIKV]) that cause severe disease in humans. Our data demonstrate that EILV is restricted both at entry and genomic RNA replication levels in vertebrate cells. These findings have important implications for arbovirus evolution and will help elucidate the viral factors responsible for the broad host range of pathogenic mosquito-borne alphaviruses, facilitate vaccine development, and inform potential strategies to reduce/prevent alphavirus transmission. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Gut microbiomes of free-ranging and captive Namibian cheetahs: Diversity, putative functions and occurrence of potential pathogens.

    PubMed

    Wasimuddin; Menke, Sebastian; Melzheimer, Jörg; Thalwitzer, Susanne; Heinrich, Sonja; Wachter, Bettina; Sommer, Simone

    2017-10-01

    Although the significance of the gut microbiome for host health is well acknowledged, the impact of host traits and environmental factors on the interindividual variation of gut microbiomes of wildlife species is not well understood. Such information is essential; however, as changes in the composition of these microbial communities beyond the natural range might cause dysbiosis leading to increased susceptibility to infections. We examined the potential influence of sex, age, genetic relatedness, spatial tactics and the environment on the natural range of the gut microbiome diversity in free-ranging Namibian cheetahs (Acinonyx jubatus). We further explored the impact of an altered diet and frequent contact with roaming dogs and cats on the occurrence of potential bacterial pathogens by comparing free-ranging and captive individuals living under the same climatic conditions. Abundance patterns of particular bacterial genera differed between the sexes, and bacterial diversity and richness were higher in older (>3.5 years) than in younger individuals. In contrast, male spatial tactics, which probably influence host exposure to environmental bacteria, had no discernible effect on the gut microbiome. The profound resemblance of the gut microbiome of kin in contrast to nonkin suggests a predominant role of genetics in shaping bacterial community characteristics and functional similarities. We also detected various Operational Taxonomic Units (OTUs) assigned to potential pathogenic bacteria known to cause diseases in humans and wildlife species, such as Helicobacter spp., and Clostridium perfringens. Captive individuals did not differ in their microbial alpha diversity but exhibited higher abundances of OTUs related to potential pathogenic bacteria and shifts in disease-associated functional pathways. Our study emphasizes the need to integrate ecological, genetic and pathogenic aspects to improve our comprehension of the main drivers of natural variation and shifts in gut microbial communities possibly affecting host health. This knowledge is essential for in situ and ex situ conservation management. © 2017 John Wiley & Sons Ltd.

  13. Differential patterns of acquired virulence genes distinguish Salmonella strains

    PubMed Central

    Conner, Christopher P.; Heithoff, Douglas M.; Julio, Steven M.; Sinsheimer, Robert L.; Mahan, Michael J.

    1998-01-01

    Analysis of several Salmonella typhimurium in vivo-induced genes located in regions of atypical base composition has uncovered acquired genetic elements that cumulatively engender pathogenicity. Many of these regions are associated with mobile elements, encode predicted adhesin and invasin-like functions, and are required for full virulence. Some of these regions distinguish broad host range from host-adapted Salmonella serovars and may contribute to inherent differences in host specificity, tissue tropism, and disease manifestation. Maintenance of this archipelago of acquired sequence by selection in specific hosts reveals a fossil record of the evolution of pathogenic species. PMID:9539791

  14. LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0

    NASA Astrophysics Data System (ADS)

    Williams, W. L.; Calistro Rivera, G.; Best, P. N.; Hardcastle, M. J.; Röttgering, H. J. A.; Duncan, K. J.; de Gasperin, F.; Jarvis, M. J.; Miley, G. K.; Mahony, E. K.; Morabito, L. K.; Nisbet, D. M.; Prandoni, I.; Smith, D. J. B.; Tasse, C.; White, G. J.

    2018-04-01

    This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Boötes field. To achieve this we match low-frequency radio sources from deep 150-MHz LOFAR (LOw Frequency ARray) observations to an I-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses, and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as high- versus low-excitation radio galaxies (HERGs and LERGs) or star-forming galaxies. Based on these classifications, we construct luminosity functions for the separate redshift ranges going out to z = 2. From the matched radio-optical catalogues, we select a sub-sample of 624 high power (P150 MHz > 1025 W Hz-1) radio sources between 0.5 ≤ z < 2. For this sample, we study the fraction of galaxies hosting HERGs and LERGs as a function of stellar mass and host galaxy colour. The fraction of HERGs increases with redshift, as does the fraction of sources in galaxies with lower stellar masses. We find that the fraction of galaxies that host LERGs is a strong function of stellar mass as it is in the local Universe. This, combined with the strong negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.

  15. How pathogens use linear motifs to perturb host cell networks.

    PubMed

    Via, Allegra; Uyar, Bora; Brun, Christine; Zanzoni, Andreas

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. RNA mobility in parasitic plant - host interactions.

    PubMed

    Westwood, James H; Kim, Gunjune

    2017-04-03

    The parasitic plant Cuscuta exchanges mRNAs with its hosts. Systemic mobility of mRNAs within plants is well documented, and has gained increasing attention as studies using grafted plant systems have revealed new aspects of mobile mRNA regulation and function. But parasitic plants take this phenomenon to a new level by forming seamless connections to a wide range of host species, and raising questions about how mRNAs might function after transfer to a different species. Cuscuta and other parasitic plant species also take siRNAs from their hosts, indicating that multiple types of RNA are capable of trans-specific movement. Parasitic plants are intriguing systems for studying RNA mobility, in part because such exchange opens new possibilities for control of parasitic weeds, but also because they provide a fresh perspective into understanding roles of RNAs in inter-organismal communication.

  17. Peptidase inhibitors in tick physiology.

    PubMed

    Parizi, L F; Ali, A; Tirloni, L; Oldiges, D P; Sabadin, G A; Coutinho, M L; Seixas, A; Logullo, C; Termignoni, C; DA Silva Vaz, I

    2018-06-01

    Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction. © 2017 The Royal Entomological Society.

  18. Amphibian chytridiomycosis: a review with focus on fungus-host interactions.

    PubMed

    Van Rooij, Pascale; Martel, An; Haesebrouck, Freddy; Pasmans, Frank

    2015-11-25

    Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host's skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.

  19. The C-terminal sequence of several human serine proteases encodes host defense functions.

    PubMed

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Walse, Björn; Svensson, Bo; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2011-01-01

    Serine proteases of the S1 family have maintained a common structure over an evolutionary span of more than one billion years, and evolved a variety of substrate specificities and diverse biological roles, involving digestion and degradation, blood clotting, fibrinolysis and epithelial homeostasis. We here show that a wide range of C-terminal peptide sequences of serine proteases, particularly from the coagulation and kallikrein systems, share characteristics common with classical antimicrobial peptides of innate immunity. Under physiological conditions, these peptides exert antimicrobial effects as well as immunomodulatory functions by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, selected peptides are protective against lipopolysaccharide-induced shock. Moreover, these S1-derived host defense peptides exhibit helical structures upon binding to lipopolysaccharide and also permeabilize liposomes. The results uncover new and fundamental aspects on host defense functions of serine proteases present particularly in blood and epithelia, and provide tools for the identification of host defense molecules of therapeutic interest. Copyright © 2011 S. Karger AG, Basel.

  20. High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken.

    PubMed

    Xu, Yunhe; Yang, Huixin; Zhang, Lili; Su, Yuhong; Shi, Donghui; Xiao, Haidi; Tian, Yumin

    2016-11-04

    The chicken gut microbiota is an important and complicated ecosystem for the host. They play an important role in converting food into nutrient and energy. The coding capacity of microbiome vastly surpasses that of the host's genome, encoding biochemical pathways that the host has not developed. An optimal gut microbiota can increase agricultural productivity. This study aims to explore the composition and function of cecal microbiota in Dagu chicken under two feeding modes, free-range (outdoor, OD) and cage (indoor, ID) raising. Cecal samples were collected from 24 chickens across 4 groups (12-w OD, 12-w ID, 18-w OD, and 18-w ID). We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions to characterize the cecal microbiota of Dagu chicken and compare the difference of cecal microbiota between free-range and cage raising chickens. It was found that 34 special operational taxonomic units (OTUs) in OD groups and 4 special OTUs in ID groups. 24 phyla were shared by the 24 samples. Bacteroidetes was the most abundant phylum with the largest proportion, followed by Firmicutes and Proteobacteria. The OD groups showed a higher proportion of Bacteroidetes (>50 %) in cecum, but a lower Firmicutes/Bacteroidetes ratio in both 12-w old (0.42, 0.62) and 18-w old groups (0.37, 0.49) compared with the ID groups. Cecal microbiota in the OD groups have higher abundance of functions involved in amino acids and glycan metabolic pathway. The composition and function of cecal microbiota in Dagu chicken under two feeding modes, free-range and cage raising are different. The cage raising mode showed a lower proportion of Bacteroidetes in cecum, but a higher Firmicutes/Bacteroidetes ratio compared with free-range mode. Cecal microbiota in free-range mode have higher abundance of functions involved in amino acids and glycan metabolic pathway.

  1. All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation.

    PubMed

    Al-Saadi, Abdulwahid; Reddy, Joseph D; Duan, Yong P; Brunings, Asha M; Yuan, Qiaoping; Gabriel, Dean W

    2007-08-01

    Citrus canker disease is caused by five groups of Xanthomonas citri strains that are distinguished primarily by host range: three from Asia (A, A*, and A(w)) and two that form a phylogenetically distinct clade and originated in South America (B and C). Every X. citri strain carries multiple DNA fragments that hybridize with pthA, which is essential for the pathogenicity of wide-host-range X. citri group A strain 3213. DNA fragments that hybridized with pthA were cloned from a representative strain from all five groups. Each strain carried one and only one pthA homolog that functionally complemented a knockout mutation of pthA in 3213. Every complementing homolog was of identical size to pthA and carried 17.5 nearly identical, direct tandem repeats, including three new genes from narrow-host-range groups C (pthC), A(w) (pthAW), and A* (pthA*). Every noncomplementing paralog was of a different size; one of these was sequenced from group A* (pthA*-2) and was found to have an intact promoter and full-length reading frame but with 15.5 repeats. None of the complementing homologs nor any of the noncomplementing paralogs conferred avirulence to 3213 on grapefruit or suppressed avirulence of a group A* strain on grapefruit. A knockout mutation of pthC in a group C strain resulted in loss of pathogenicity on lime, but the strain was unaffected in ability to elicit an HR on grapefruit. This pthC- mutant was fully complemented by pthA, pthB, or pthC. Analysis of the predicted amino-acid sequences of all functional pthA homologs and nonfunctional paralogs indicated that the specific sequence of the 17th repeat may be essential for pathogenicity of X. citri on citrus.

  2. Prediction of Steps in the Evolution of Variola Virus Host Range

    PubMed Central

    Smithson, Chad; Purdy, Alex; Verster, Adrian J.; Upton, Chris

    2014-01-01

    Variola virus, the agent of smallpox, has a severely restricted host range (humans) but a devastatingly high mortality rate. Although smallpox has been eradicated by a World Health Organization vaccination program, knowledge of the evolutionary processes by which human super-pathogens such as variola virus arise is important. By analyzing the evolution of variola and other closely related poxviruses at the level of single nucleotide polymorphisms we detected a hotspot of genome variation within the smallpox ortholog of the vaccinia virus O1L gene, which is known to be necessary for efficient replication of vaccinia virus in human cells. These mutations in the variola virus ortholog and the subsequent loss of the functional gene from camelpox virus and taterapox virus, the two closest relatives of variola virus, strongly suggest that changes within this region of the genome may have played a key role in the switch to humans as a host for the ancestral virus and the subsequent host-range restriction that must have occurred to create the phenotype exhibited by smallpox. PMID:24626337

  3. Prediction of steps in the evolution of variola virus host range.

    PubMed

    Smithson, Chad; Purdy, Alex; Verster, Adrian J; Upton, Chris

    2014-01-01

    Variola virus, the agent of smallpox, has a severely restricted host range (humans) but a devastatingly high mortality rate. Although smallpox has been eradicated by a World Health Organization vaccination program, knowledge of the evolutionary processes by which human super-pathogens such as variola virus arise is important. By analyzing the evolution of variola and other closely related poxviruses at the level of single nucleotide polymorphisms we detected a hotspot of genome variation within the smallpox ortholog of the vaccinia virus O1L gene, which is known to be necessary for efficient replication of vaccinia virus in human cells. These mutations in the variola virus ortholog and the subsequent loss of the functional gene from camelpox virus and taterapox virus, the two closest relatives of variola virus, strongly suggest that changes within this region of the genome may have played a key role in the switch to humans as a host for the ancestral virus and the subsequent host-range restriction that must have occurred to create the phenotype exhibited by smallpox.

  4. RNA mobility in parasitic plant – host interactions

    PubMed Central

    Kim, Gunjune

    2017-01-01

    ABSTRACT The parasitic plant Cuscuta exchanges mRNAs with its hosts. Systemic mobility of mRNAs within plants is well documented, and has gained increasing attention as studies using grafted plant systems have revealed new aspects of mobile mRNA regulation and function. But parasitic plants take this phenomenon to a new level by forming seamless connections to a wide range of host species, and raising questions about how mRNAs might function after transfer to a different species. Cuscuta and other parasitic plant species also take siRNAs from their hosts, indicating that multiple types of RNA are capable of trans-specific movement. Parasitic plants are intriguing systems for studying RNA mobility, in part because such exchange opens new possibilities for control of parasitic weeds, but also because they provide a fresh perspective into understanding roles of RNAs in inter-organismal communication. PMID:28277936

  5. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    USDA-ARS?s Scientific Manuscript database

    E2, along with E^rns and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions including cell attachment, host range susceptibility and virulence in natural hosts. In infected cells, E2 forms homodimers as well as heterodimers with E1, media...

  6. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans.

    PubMed

    Peng, J B; Yan, W M; Bao, X Z

    1994-07-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host.

  7. Advances in understanding tree fruit-rhizosphere microbiome relationships for enhanced plant health

    USDA-ARS?s Scientific Manuscript database

    Host-microbe interactions in the rhizosphere influence numerous processes that determine plant productivity and health. The importance of the rhizo-microbiome for plant function is well known, influencing functions ranging from protection of the plant from pathogen attack to enhanced nutrient avail...

  8. Factors affecting host range in a generalist seed pathogen of semi-arid shrublands

    Treesearch

    Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg

    2014-01-01

    Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...

  9. Mechanisms and use of neural transplants for brain repair.

    PubMed

    Dunnett, Stephen B; Björklund, Anders

    2017-01-01

    Under appropriate conditions, neural tissues transplanted into the adult mammalian brain can survive, integrate, and function so as to influence the behavior of the host, opening the prospect of repairing neuronal damage, and alleviating symptoms associated with neuronal injury or neurodegenerative disease. Alternative mechanisms of action have been postulated: nonspecific effects of surgery; neurotrophic and neuroprotective influences on disease progression and host plasticity; diffuse or locally regulated pharmacological delivery of deficient neurochemicals, neurotransmitters, or neurohormones; restitution of the neuronal and glial environment necessary for proper host neuronal support and processing; promoting local and long-distance host and graft axon growth; formation of reciprocal connections and reconstruction of local circuits within the host brain; and up to full integration and reconstruction of fully functional host neuronal networks. Analysis of neural transplants in a broad range of anatomical systems and disease models, on simple and complex classes of behavioral function and information processing, have indicated that all of these alternative mechanisms are likely to contribute in different circumstances. Thus, there is not a single or typical mode of graft function; rather grafts can and do function in multiple ways, specific to each particular context. Consequently, to develop an effective cell-based therapy, multiple dimensions must be considered: the target disease pathogenesis; the neurodegenerative basis of each type of physiological dysfunction or behavioral symptom; the nature of the repair required to alleviate or remediate the functional impairments of particular clinical relevance; and identification of a suitable cell source or delivery system, along with the site and method of implantation, that can achieve the sought for repair and recovery. © 2017 Elsevier B.V. All rights reserved.

  10. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens.

    PubMed

    John Von Freyend, Simona; Kwok-Schuelein, Terry; Netter, Hans J; Haqshenas, Gholamreza; Semblat, Jean-Philippe; Doerig, Christian

    2017-04-21

    Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.

  11. Tomato golden mosaic virus open reading frame AL4 is genetically distinct from its C4 analogue in monopartite geminiviruses.

    PubMed

    Pooma, W; Petty, I T

    1996-08-01

    Tomato golden mosaic virus (TGMV) is a bipartite geminivirus with six well-characterized genes. An additional open reading frame (ORF), AL4, lies within the essential AL1 gene. Recent studies of monopartite, dicot-infecting geminiviruses have revealed that mutations in their analogous C4 ORFs have host-specific effects on infectivity, symptomatology, virus movement and/or viral DNA accumulation. We have investigated whether TGMV has a similar host-specific requirement for AL4. The phenotypes of three TGMV al4 mutants were determined in a range of hosts, which included species that revealed c4 mutant phenotypes for monopartite geminiviruses. Each TGMV al4 mutant was indistinguishable from wild-type TGMV in all hosts tested. Additional analyses of double mutants revealed no evidence for functional redundancy between AL4 and the AL3, or AR1 genes. In contrast to the putative C4 proteins of monpartite geminiviruses, TGMV AL4, if it is expressed, is either non-functional, or functionally redundant with an essential TGMV gene product.

  12. Understanding the undelaying mechanism of HA-subtyping in the level of physic-chemical characteristics of protein.

    PubMed

    Ebrahimi, Mansour; Aghagolzadeh, Parisa; Shamabadi, Narges; Tahmasebi, Ahmad; Alsharifi, Mohammed; Adelson, David L; Hemmatzadeh, Farhid; Ebrahimie, Esmaeil

    2014-01-01

    The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and predicting possible future structure of influenza pandemics.

  13. Understanding the Underlying Mechanism of HA-Subtyping in the Level of Physic-Chemical Characteristics of Protein

    PubMed Central

    Ebrahimi, Mansour; Aghagolzadeh, Parisa; Shamabadi, Narges; Tahmasebi, Ahmad; Alsharifi, Mohammed; Adelson, David L.

    2014-01-01

    The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and predicting possible future structure of influenza pandemics. PMID:24809455

  14. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans

    PubMed Central

    Peng, Ji-Bin; Yan, Wang-Ming; Bao, Xue-Zhen

    1994-01-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host. PMID:16349341

  15. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    PubMed

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  16. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria

    PubMed Central

    Chahales, Peter; Thanassi, David G.

    2015-01-01

    Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities such as biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hairlike fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections. PMID:26542038

  17. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication

    PubMed Central

    Gu, Haidong

    2016-01-01

    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced “conquer and compromise” strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host. PMID:26870669

  18. Multiscale assemblage of an ectomycorrhizal fungal community: the influence of host functional traits and soil properties in a 10-ha miombo forest.

    PubMed

    Bauman, David; Raspé, Olivier; Meerts, Pierre; Degreef, Jérôme; Ilunga Muledi, Jonathan; Drouet, Thomas

    2016-10-01

    Ectomycorrhizal fungi (EMF) are highly diversified and dominant in a number of forest ecosystems. Nevertheless, their scales of spatial distribution and the underlying ecological processes remain poorly understood. Although most EMF are considered to be generalists regarding host identity, a preference toward functional strategies of host trees has never been tested. Here, the EMF community was characterised by DNA sequencing in a 10-ha tropical dry season forest-referred to as miombo-an understudied ecosystem from a mycorrhizal perspective. We used 36 soil parameters and 21 host functional traits (FTs) as candidate explanatory variables in spatial constrained ordinations for explaining the EMF community assemblage. Results highlighted that the community variability was explained by host FTs related to the 'leaf economics spectrum' (adjusted R(2) = 11%; SLA, leaf area, foliar Mg content), and by soil parameters (adjusted R(2) = 17%), notably total forms of micronutrients or correlated available elements (Al, N, K, P). Both FTs and soil generated patterns in the community at scales ranging from 75 to 375 m. Our results indicate that soil is more important than previously thought for EMF in miombo woodlands, and show that FTs of host species can be better predictors of symbiont distribution than taxonomical identity. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Morphological and Molecular Revision of the Genus Ozirhincus (Diptera: Cecidomyiidae)—Long-Snouted Seed-Feeding Gall Midges on Asteraceae

    PubMed Central

    Dorchin, Netta; Astrin, Jonas J.; Bodner, Levona; Harris, Keith M.

    2015-01-01

    The Palaearctic gall-midge genus Ozirhincus is unique among the Cecidomyiidae for its morphology and biology. Unlike most other phytophagous gall midges, species in this genus do not induce galls but develop inside achenes of Asteraceae plants. The heads of adults are characterized by an unusually elongate proboscis, the function of which is unclear. Despite a lot of attention from taxonomists in the 19th and early 20th century, a proper revision of the genus has been hindered by complex host associations, the loss of most relevant type material, and the lack of a thorough comparative study of all life stages. The present revision integrated morphological, molecular, and life-history data to clearly define species boundaries within Ozirhincus, and delimit host-plant ranges for each of them. A phylogenetic analysis based on the mitochondrial COI and 16S genes confirmed the validity of four distinct species but did not resolve the relationships among them. All species are oligophages, and some may occur together on the same host plant. Species with wider host-plant ranges have wider European and circum-Mediterranean distribution ranges, whereas species with narrower host ranges are limited to Europe and the Russian Far East. As part of the present work, O. hungaricus is reinstated from synonymy, O. tanaceti is synonymized under O. longicollis, neotypes are designated for O. longicollis and O. millefolii, and a lectotype is designated for O. anthemidis. PMID:26134526

  20. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health.

    PubMed

    Ha, Connie W Y; Lam, Yan Y; Holmes, Andrew J

    2014-11-28

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging.

  1. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    PubMed Central

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  2. Host defence related responses in bovine milk during an experimentally induced Streptococcus uberis infection

    PubMed Central

    2014-01-01

    Background Milk contains a range of proteins of moderate or low abundance that contribute to host defence. Characterisation of these proteins, the extent to which their abundance is regulated by pathogenic stimuli, and the variability of their response between and within individual animals would facilitate a better understanding of the molecular basis for this important function of milk. Results We have characterised the host defence proteins in bovine milk and their responses to intra-mammary infection by a common Gram positive mastitis pathogen, Streptococcus uberis, using a combination of 2D gel electrophoresis and GeLC mass spectrometry. In total, 68 host defence-associated proteins were identified, 18 of which have a direct antimicrobial function, 23 of which have a pathogen-recognition function, and 27 of which have a role in modulating inflammatory or immune signalling. The responsiveness of seven proteins was quantified by western blotting; validating the proteomic analyses, quantifying the within- and between animal variability of the responses, and demonstrating the complexity and specificity of the responses to this pathogen. Conclusions These data provide a foundation for understanding the role of milk in host-microbe interaction. Furthermore they provide candidate biomarkers for mastitis diagnosis, and will inform efforts to develop dairy products with improved health-promoting properties. PMID:24721702

  3. Avian host defense peptides.

    PubMed

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review

    PubMed Central

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-01-01

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165

  5. Comparative Genome Analysis of Campylobacter fetus Subspecies Revealed Horizontally Acquired Genetic Elements Important for Virulence and Niche Specificity

    PubMed Central

    Kienesberger, Sabine; Sprenger, Hanna; Wolfgruber, Stella; Halwachs, Bettina; Thallinger, Gerhard G.; Perez-Perez, Guillermo I.; Blaser, Martin J.; Zechner, Ellen L.; Gorkiewicz, Gregor

    2014-01-01

    Campylobacter fetus are important animal and human pathogens and the two major subspecies differ strikingly in pathogenicity. C. fetus subsp. venerealis is highly niche-adapted, mainly infecting the genital tract of cattle. C. fetus subsp. fetus has a wider host-range, colonizing the genital- and intestinal-tract of animals and humans. We report the complete genomic sequence of C. fetus subsp. venerealis 84-112 and comparisons to the genome of C. fetus subsp. fetus 82-40. Functional analysis of genes predicted to be involved in C. fetus virulence was performed. The two subspecies are highly syntenic with 92% sequence identity but C. fetus subsp. venerealis has a larger genome and an extra-chromosomal element. Aside from apparent gene transfer agents and hypothetical proteins, the unique genes in both subspecies comprise two known functional groups: lipopolysaccharide production, and type IV secretion machineries. Analyses of lipopolysaccharide-biosynthesis genes in C. fetus isolates showed linkage to particular pathotypes, and mutational inactivation demonstrated their roles in regulating virulence and host range. The comparative analysis presented here broadens knowledge of the genomic basis of C. fetus pathogenesis and host specificity. It further highlights the importance of surface-exposed structures to C. fetus pathogenicity and demonstrates how evolutionary forces optimize the fitness and host-adaptation of these pathogens. PMID:24416416

  6. Getting there and around: Host range oscillations during colonization of the Canary Islands by the parasitic nematode Spauligodon.

    PubMed

    Jorge, Fátima; Perera, Ana; Poulin, Robert; Roca, Vicente; Carretero, Miguel A

    2018-01-01

    Episodes of expansion and isolation in geographic range over space and time, during which parasites have the opportunity to expand their host range, are linked to the development of host-parasite mosaic assemblages and parasite diversification. In this study, we investigated whether island colonization events lead to host range oscillations in a taxon of host-specific parasitic nematodes of the genus Spauligodon in the Canary Islands. We further investigated whether range oscillations also resulted in shifts in host breadth (i.e., specialization), as expected for parasites on islands. Parasite phylogeny and divergence time estimates were inferred from molecular data with Bayesian methods. Host divergence times were set as calibration priors after a priori evaluation with a global-fit method of which individual host-parasite associations likely represent cospeciation links. Parasite colonization history was reconstructed, followed by an estimation of oscillation events and specificity level. The results indicate the presence of four Spauligodon clades in the Canary Islands, which originated from at least three different colonization events. We found evidence of host range oscillations to truly novel hosts, which in one case led to higher diversification. Contemporary host-parasite associations show strong host specificity, suggesting that changes in host breadth were limited to the shift period. Lineages with more frequent and wider taxonomic host range oscillations prior to the initial colonization event showed wider range oscillations during colonization and diversification within the archipelago. Our results suggest that a lineage's evolutionary past may be the best indicator of a parasite's potential for future range expansions. © 2017 John Wiley & Sons Ltd.

  7. Recombinant protein subunit vaccine synthesis in microbes: a role for yeast?

    PubMed

    Bill, Roslyn M

    2015-03-01

    Recombinant protein subunit vaccines are formulated using protein antigens that have been synthesized in heterologous host cells. Several host cells are available for this purpose, ranging from Escherichia coli to mammalian cell lines. This article highlights the benefits of using yeast as the recombinant host. The yeast species, Saccharomyces cerevisiae and Pichia pastoris, have been used to optimize the functional yields of potential antigens for the development of subunit vaccines against a wide range of diseases caused by bacteria and viruses. Saccharomyces cerevisiae has also been used in the manufacture of 11 approved vaccines against hepatitis B virus and one against human papillomavirus; in both cases, the recombinant protein forms highly immunogenic virus-like particles. Advances in our understanding of how a yeast cell responds to the metabolic load of producing recombinant proteins will allow us to identify host strains that have improved yield properties and enable the synthesis of more challenging antigens that cannot be produced in other systems. Yeasts therefore have the potential to become important host organisms for the production of recombinant antigens that can be used in the manufacture of subunit vaccines or in new vaccine development. © 2014 Royal Pharmaceutical Society.

  8. Pathogen evolution and disease emergence in carnivores.

    PubMed

    McCarthy, Alex J; Shaw, Marie-Anne; Goodman, Simon J

    2007-12-22

    Emerging infectious diseases constitute some of the most pressing problems for both human and domestic animal health, and biodiversity conservation. Currently it is not clear whether the removal of past constraints on geographical distribution and transmission possibilities for pathogens alone are sufficient to give rise to novel host-pathogen combinations, or whether pathogen evolution is also generally required for establishment in novel hosts. Canine distemper virus (CDV) is a morbillivirus that is prevalent in the world dog population and poses an important conservation threat to a diverse range of carnivores. We performed an extensive phylogenetic and molecular evolution analysis on complete sequences of all CDV genes to assess the role of selection and recombination in shaping viral genetic diversity and driving the emergence of CDV in non-dog hosts. We tested the specific hypothesis that molecular adaptation at known receptor-binding sites of the haemagglutinin gene is associated with independent instances of the spread of CDV to novel non-dog hosts in the wild. This hypothesis was upheld, providing compelling evidence that repeated evolution at known functional sites (in this case residues 530 and 549 of the haemagglutinin molecule) is associated with multiple independent occurrences of disease emergence in a range of novel host species.

  9. A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments.

    PubMed

    Munson-McGee, Jacob H; Peng, Shengyun; Dewerff, Samantha; Stepanauskas, Ramunas; Whitaker, Rachel J; Weitz, Joshua S; Young, Mark J

    2018-06-01

    The application of viral and cellular metagenomics to natural environments has expanded our understanding of the structure, functioning, and diversity of microbial and viral communities. The high diversity of many communities, e.g., soils, surface ocean waters, and animal-associated microbiomes, make it difficult to establish virus-host associations at the single cell (rather than population) level, assign cellular hosts, or determine the extent of viral host range from metagenomics studies alone. Here, we combine single-cell sequencing with environmental metagenomics to characterize the structure of virus-host associations in a Yellowstone National Park (YNP) hot spring microbial community. Leveraging the relatively low diversity of the YNP environment, we are able to overlay evidence at the single-cell level with contextualized viral and cellular community structure. Combining evidence from hexanucelotide analysis, single cell read mapping, network-based analytics, and CRISPR-based inference, we conservatively estimate that >60% of cells contain at least one virus type and a majority of these cells contain two or more virus types. Of the detected virus types, nearly 50% were found in more than 2 cellular clades, indicative of a broad host range. The new lens provided by the combination of metaviromics and single-cell genomics reveals a network of virus-host interactions in extreme environments, provides evidence that extensive virus-host associations are common, and further expands the unseen impact of viruses on cellular life.

  10. Species difference in ANP32A underlies influenza A virus polymerase host restriction

    PubMed Central

    Long, Jason S.; Giotis, Efstathios S.; Moncorgé, Olivier; Frise, Rebecca; Mistry, Bhakti; James, Joe; Morisson, Mireille; Iqbal, Munir; Vignal, Alain; Skinner, Michael A.; Barclay, Wendy S.

    2015-01-01

    Influenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans 1. Incompatibilities between avian virus components and the human host limit host range breaches. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells 2. Mutants of the heterotrimeric viral polymerase components, particularly PB2 protein, are selected during mammalian adaptation, but their mode of action is unknown 3–6. We show that a species-specific difference in host protein ANP32A accounts for the suboptimal function of avian virus polymerase in mammalian cells. Avian ANP32A possesses an additional 33 amino acids between the LRR and LCAR domains. In mammalian cells, avian ANP32A rescued the suboptimal function of avian virus polymerase to levels similar to mammalian adapted polymerase. Deletion of the avian-specific sequence from chicken ANP32A abrogated this activity whereas its insertion into human ANP32A, or closely related ANP32B, supported avian virus polymerase function. Substitutions, such as PB2 E627K, rapidly selected upon infection of humans with avian H5N1 or H7N9 influenza viruses, adapt the viral polymerase for the shorter mammalian ANP32A. Thus ANP32A represents an essential host partner co-opted to support influenza virus replication and is a candidate host target for novel antivirals. PMID:26738596

  11. The Cucumber vein yellowing virus silencing suppressor P1b can functionally replace HCPro in Plum pox virus infection in a host-specific manner.

    PubMed

    Carbonell, Alberto; Dujovny, Gabriela; García, Juan Antonio; Valli, Adrian

    2012-02-01

    Plant viruses of the genera Potyvirus and Ipomovirus (Potyviridae family) use unrelated RNA silencing suppressors (RSS) to counteract antiviral RNA silencing responses. HCPro is the RSS of Potyvirus spp., and its activity is enhanced by the upstream P1 protein. Distinctively, the ipomovirus Cucumber vein yellowing virus (CVYV) lacks HCPro but contains two P1 copies in tandem (P1aP1b), the second of which functions as RSS. Using chimeras based on the potyvirus Plum pox virus (PPV), we found that P1b can functionally replace HCPro in potyviral infections of Nicotiana plants. Interestingly, P1a, the CVYV protein homologous to potyviral P1, disrupted the silencing suppression activity of P1b and reduced the infection efficiency of PPV in Nicotiana benthamiana. Testing the influence of RSS in host specificity, we found that a P1b-expressing chimera poorly infected PPV's natural host, Prunus persica. Conversely, P1b conferred on PPV chimeras the ability to replicate locally in cucumber, CVYV's natural host. The deleterious effect of P1a on PPV infection is host dependent, because the P1aP1b-expressing PPV chimera accumulated in cucumber to higher levels than PPV expressing P1b alone. These results demonstrate that a potyvirus can use different RSS, and that particular RSS and upstream P1-like proteins contribute to defining the virus host range.

  12. Influenza virus sequence feature variant type analysis: evidence of a role for NS1 in influenza virus host range restriction.

    PubMed

    Noronha, Jyothi M; Liu, Mengya; Squires, R Burke; Pickett, Brett E; Hale, Benjamin G; Air, Gillian M; Galloway, Summer E; Takimoto, Toru; Schmolke, Mirco; Hunt, Victoria; Klem, Edward; García-Sastre, Adolfo; McGee, Monnie; Scheuermann, Richard H

    2012-05-01

    Genetic drift of influenza virus genomic sequences occurs through the combined effects of sequence alterations introduced by a low-fidelity polymerase and the varying selective pressures experienced as the virus migrates through different host environments. While traditional phylogenetic analysis is useful in tracking the evolutionary heritage of these viruses, the specific genetic determinants that dictate important phenotypic characteristics are often difficult to discern within the complex genetic background arising through evolution. Here we describe a novel influenza virus sequence feature variant type (Flu-SFVT) approach, made available through the public Influenza Research Database resource (www.fludb.org), in which variant types (VTs) identified in defined influenza virus protein sequence features (SFs) are used for genotype-phenotype association studies. Since SFs have been defined for all influenza virus proteins based on known structural, functional, and immune epitope recognition properties, the Flu-SFVT approach allows the rapid identification of the molecular genetic determinants of important influenza virus characteristics and their connection to underlying biological functions. We demonstrate the use of the SFVT approach to obtain statistical evidence for effects of NS1 protein sequence variations in dictating influenza virus host range restriction.

  13. Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions

    PubMed Central

    Van Horn, Christopher R.

    2017-01-01

    ABSTRACT The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa, but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb, putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 (X. fastidiosa subsp. fastidiosa) or Dixon (X. fastidiosa subsp. multiplex) as the donor strain and Temecula (X. fastidiosa subsp. fastidiosa) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa, possibly facilitating adaptation to new environments or different hosts. IMPORTANCE Xylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa, or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence in this diverse pathogen. PMID:28808128

  14. Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions.

    PubMed

    Burbank, Lindsey P; Van Horn, Christopher R

    2017-11-01

    The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa , but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb , putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 ( X. fastidiosa subsp. fastidiosa ) or Dixon ( X. fastidiosa subsp. multiplex ) as the donor strain and Temecula ( X. fastidiosa subsp. fastidiosa ) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa , possibly facilitating adaptation to new environments or different hosts. IMPORTANCE Xylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa , or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence in this diverse pathogen.

  15. Novel application of species richness estimators to predict the host range of parasites.

    PubMed

    Watson, David M; Milner, Kirsty V; Leigh, Andrea

    2017-01-01

    Host range is a critical life history trait of parasites, influencing prevalence, virulence and ultimately determining their distributional extent. Current approaches to measure host range are sensitive to sampling effort, the number of known hosts increasing with more records. Here, we develop a novel application of results-based stopping rules to determine how many hosts should be sampled to yield stable estimates of the number of primary hosts within regions, then use species richness estimation to predict host ranges of parasites across their distributional ranges. We selected three mistletoe species (hemiparasitic plants in the Loranthaceae) to evaluate our approach: a strict host specialist (Amyema lucasii, dependent on a single host species), an intermediate species (Amyema quandang, dependent on hosts in one genus) and a generalist (Lysiana exocarpi, dependent on many genera across multiple families), comparing results from geographically-stratified surveys against known host lists derived from herbarium specimens. The results-based stopping rule (stop sampling bioregion once observed host richness exceeds 80% of the host richness predicted using the Abundance-based Coverage Estimator) worked well for most bioregions studied, being satisfied after three to six sampling plots (each representing 25 host trees) but was unreliable in those bioregions with high host richness or high proportions of rare hosts. Although generating stable predictions of host range with minimal variation among six estimators trialled, distribution-wide estimates fell well short of the number of hosts known from herbarium records. This mismatch, coupled with the discovery of nine previously unrecorded mistletoe-host combinations, further demonstrates the limited ecological relevance of simple host-parasite lists. By collecting estimates of host range of constrained completeness, our approach maximises sampling efficiency while generating comparable estimates of the number of primary hosts, with broad applicability to many host-parasite systems. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  16. Double level selection in a constitutional dynamic library of coordination driven supramolecular polygons.

    PubMed

    Rancan, Marzio; Tessarolo, Jacopo; Casarin, Maurizio; Zanonato, Pier Luigi; Quici, Silvio; Armelao, Lidia

    2014-07-21

    A constitutional dynamic library (CDL) of Cu(II) metallo-supramolecular polygons has been studied as a bench test to examine an interesting selection case based on molecular recognition. Sorting of the CDL polygons is achieved through a proper guest that is hosted into the triangular metallo-macrocycle constituent. Two selection mechanisms are observed, a guest induced path and a guest templated self-assembly (virtual library approach). Remarkably, the triangular host can accommodate several guests with a degree of selectivity ranging from ∼1 to ∼10(4) for all possible guest pairs. A double level selection operates: guests drive the CDL toward the triangular polygon, and, at the same time, this is able to pick a specific guest from a set of competitive molecules, according to a selectivity-affinity correlation. Association constants of the host-guest systems have been determined. Guest competition and exchange studies have been analyzed through variable temperature UV-Vis absorption spectroscopy and single crystal X-ray diffraction studies. Molecular structures and electronic properties of the triangular polygon and of the host-guest systems also have been studied by means of all electrons density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations including dispersive contributions. DFT outcomes ultimately indicate the dispersive nature of the host-guest interactions, while TDDFT results allow a thorough assignment of the host and host-guests spectral features.

  17. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens

    PubMed Central

    Meliopoulos, Victoria A.; Andersen, Lauren E.; Birrer, Katherine F.; Simpson, Kaylene J.; Lowenthal, John W.; Bean, Andrew G. D.; Stambas, John; Stewart, Cameron R.; Tompkins, S. Mark; van Beusechem, Victor W.; Fraser, Iain; Mhlanga, Musa; Barichievy, Samantha; Smith, Queta; Leake, Devin; Karpilow, Jon; Buck, Amy; Jona, Ghil; Tripp, Ralph A.

    2012-01-01

    Influenza virus encodes only 11 viral proteins but replicates in a broad range of avian and mammalian species by exploiting host cell functions. Genome-wide RNA interference (RNAi) has proven to be a powerful tool for identifying the host molecules that participate in each step of virus replication. Meta-analysis of findings from genome-wide RNAi screens has shown influenza virus to be dependent on functional nodes in host cell pathways, requiring a wide variety of molecules and cellular proteins for replication. Because rapid evolution of the influenza A viruses persistently complicates the effectiveness of vaccines and therapeutics, a further understanding of the complex host cell pathways coopted by influenza virus for replication may provide new targets and strategies for antiviral therapy. RNAi genome screening technologies together with bioinformatics can provide the ability to rapidly identify specific host factors involved in resistance and susceptibility to influenza virus, allowing for novel disease intervention strategies.—Meliopoulos, V. A., Andersen, L. E., Birrer, K. F., Simpson, K. J., Lowenthal, J. W., Bean, A. G. D., Stambas, J., Stewart, C. R., Tompkins, S. M., van Beusechem, V. W., Fraser, I., Mhlanga, M., Barichievy, S., Smith, Q., Leake, D., Karpilow, J., Buck, A., Jona, G., Tripp, R. A. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. PMID:22247330

  18. Host range phenotype induced by mutations in the internal ribosomal entry site of poliovirus RNA.

    PubMed Central

    Shiroki, K; Ishii, T; Aoki, T; Ota, Y; Yang, W X; Komatsu, T; Ami, Y; Arita, M; Abe, S; Hashizume, S; Nomoto, A

    1997-01-01

    Most poliovirus strains infect only primates. The host range (HR) of poliovirus is thought to be primarily determined by a cell surface molecule that functions as poliovirus receptor (PVR), since it has been shown that transgenic mice are made poliovirus sensitive by introducing the human PVR gene into the genome. The relative levels of neurovirulence of polioviruses tested in these transgenic mice were shown to correlate well with the levels tested in monkeys (H. Horie et al., J. Virol. 68:681-688, 1994). Mutants of the virulent Mahoney strain of poliovirus have been generated by disruption of nucleotides 128 to 134, at stem-loop II within the 5' noncoding region, and four of these mutants multiplicated well in human HeLa cells but poorly in mouse TgSVA cells that had been established from the kidney of the poliovirus-sensitive transgenic mouse. Neurovirulence tests using the two animal models revealed that these mutants were strongly attenuated only in tests with the mouse model and were therefore HR mutants. The virus infection cycle in TgSVA cells was restricted by an internal ribosomal entry site (IRES)-dependent initiation process of translation. Viral protein synthesis and the associated block of cellular protein synthesis were not observed in TgSVA cells infected with three of four HR mutants and was evident at only a low level in the remaining mutant. The mutant RNAs were functional in a cell-free protein synthesis system from HeLa cells but not in those from TgSVA and mouse neuroblastoma NS20Y cells. These results suggest that host factor(s) affecting IRES-dependent translation of poliovirus differ between human and mouse cells and that the mutant IRES constructs detect species differences in such host factor(s). The IRES could potentially be a host range determinant for poliovirus infection. PMID:8985316

  19. Patterns of genome evolution that have accompanied host adaptation in Salmonella

    PubMed Central

    Langridge, Gemma C.; Fookes, Maria; Connor, Thomas R.; Feltwell, Theresa; Feasey, Nicholas; Parsons, Bryony N.; Seth-Smith, Helena M. B.; Barquist, Lars; Stedman, Anna; Humphrey, Tom; Wigley, Paul; Peters, Sarah E.; Maskell, Duncan J.; Corander, Jukka; Chabalgoity, Jose A.; Barrow, Paul; Parkhill, Julian; Dougan, Gordon; Thomson, Nicholas R.

    2015-01-01

    Many bacterial pathogens are specialized, infecting one or few hosts, and this is often associated with more acute disease presentation. Specific genomes show markers of this specialization, which often reflect a balance between gene acquisition and functional gene loss. Within Salmonella enterica subspecies enterica, a single lineage exists that includes human and animal pathogens adapted to cause infection in different hosts, including S. enterica serovar Enteritidis (multiple hosts), S. Gallinarum (birds), and S. Dublin (cattle). This provides an excellent evolutionary context in which differences between these pathogen genomes can be related to host range. Genome sequences were obtained from ∼60 isolates selected to represent the known diversity of this lineage. Examination and comparison of the clades within the phylogeny of this lineage revealed signs of host restriction as well as evolutionary events that mark a path to host generalism. We have identified the nature and order of events for both evolutionary trajectories. The impact of functional gene loss was predicted based upon position within metabolic pathways and confirmed with phenotyping assays. The structure of S. Enteritidis is more complex than previously known, as a second clade of S. Enteritidis was revealed that is distinct from those commonly seen to cause disease in humans or animals, and that is more closely related to S. Gallinarum. Isolates from this second clade were tested in a chick model of infection and exhibited a reduced colonization phenotype, which we postulate represents an intermediate stage in pathogen–host adaptation. PMID:25535353

  20. The targeting of plant cellular systems by injected type III effector proteins.

    PubMed

    Lewis, Jennifer D; Guttman, David S; Desveaux, Darrell

    2009-12-01

    The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector-host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.

  1. Narrow-Host-Range Bacteriophages That Infect Rhizobium etli Associate with Distinct Genomic Types

    PubMed Central

    Santamaría, Rosa Isela; Bustos, Patricia; Sepúlveda-Robles, Omar; Lozano, Luis; Rodríguez, César; Fernández, José Luis; Juárez, Soledad; Kameyama, Luis; Guarneros, Gabriel; Dávila, Guillermo

    2014-01-01

    In this work, we isolated and characterized 14 bacteriophages that infect Rhizobium etli. They were obtained from rhizosphere soil of bean plants from agricultural lands in Mexico using an enrichment method. The host range of these phages was narrow but variable within a collection of 48 R. etli strains. We obtained the complete genome sequence of nine phages. Four phages were resistant to several restriction enzymes and in vivo cloning, probably due to nucleotide modifications. The genome size of the sequenced phages varied from 43 kb to 115 kb, with a median size of ∼45 to 50 kb. A large proportion of open reading frames of these phage genomes (65 to 70%) consisted of hypothetical and orphan genes. The remainder encoded proteins needed for phage morphogenesis and DNA synthesis and processing, among other functions, and a minor percentage represented genes of bacterial origin. We classified these phages into four genomic types on the basis of their genomic similarity, gene content, and host range. Since there are no reports of similar sequences, we propose that these bacteriophages correspond to novel species. PMID:24185856

  2. Novel Virulent and Broad-Host-Range Erwinia amylovora Bacteriophages Reveal a High Degree of Mosaicism and a Relationship to Enterobacteriaceae Phages ▿†

    PubMed Central

    Born, Yannick; Fieseler, Lars; Marazzi, Janine; Lurz, Rudi; Duffy, Brion; Loessner, Martin J.

    2011-01-01

    A diverse set of 24 novel phages infecting the fire blight pathogen Erwinia amylovora was isolated from fruit production environments in Switzerland. Based on initial screening, four phages (L1, M7, S6, and Y2) with broad host ranges were selected for detailed characterization and genome sequencing. Phage L1 is a member of the Podoviridae, with a 39.3-kbp genome featuring invariable genome ends with direct terminal repeats. Phage S6, another podovirus, was also found to possess direct terminal repeats but has a larger genome (74.7 kbp), and the virus particle exhibits a complex tail fiber structure. Phages M7 and Y2 both belong to the Myoviridae family and feature long, contractile tails and genomes of 84.7 kbp (M7) and 56.6 kbp (Y2), respectively, with direct terminal repeats. The architecture of all four phage genomes is typical for tailed phages, i.e., organized into function-specific gene clusters. All four phages completely lack genes or functions associated with lysogeny control, which correlates well with their broad host ranges and indicates strictly lytic (virulent) lifestyles without the possibility for host lysogenization. Comparative genomics revealed that M7 is similar to E. amylovora virus ΦEa21-4, whereas L1, S6, and Y2 are unrelated to any other E. amylovora phage. Instead, they feature similarities to enterobacterial viruses T7, N4, and ΦEcoM-GJ1. In a series of laboratory experiments, we provide proof of concept that specific two-phage cocktails offer the potential for biocontrol of the pathogen. PMID:21764969

  3. Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates

    PubMed Central

    Romanchuk, Artur; Chang, Jeff H.; Mukhtar, M. Shahid; Cherkis, Karen; Roach, Jeff; Grant, Sarah R.; Jones, Corbin D.; Dangl, Jeffery L.

    2011-01-01

    Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species. PMID:21799664

  4. Novel virulent and broad-host-range Erwinia amylovora bacteriophages reveal a high degree of mosaicism and a relationship to Enterobacteriaceae phages.

    PubMed

    Born, Yannick; Fieseler, Lars; Marazzi, Janine; Lurz, Rudi; Duffy, Brion; Loessner, Martin J

    2011-09-01

    A diverse set of 24 novel phages infecting the fire blight pathogen Erwinia amylovora was isolated from fruit production environments in Switzerland. Based on initial screening, four phages (L1, M7, S6, and Y2) with broad host ranges were selected for detailed characterization and genome sequencing. Phage L1 is a member of the Podoviridae, with a 39.3-kbp genome featuring invariable genome ends with direct terminal repeats. Phage S6, another podovirus, was also found to possess direct terminal repeats but has a larger genome (74.7 kbp), and the virus particle exhibits a complex tail fiber structure. Phages M7 and Y2 both belong to the Myoviridae family and feature long, contractile tails and genomes of 84.7 kbp (M7) and 56.6 kbp (Y2), respectively, with direct terminal repeats. The architecture of all four phage genomes is typical for tailed phages, i.e., organized into function-specific gene clusters. All four phages completely lack genes or functions associated with lysogeny control, which correlates well with their broad host ranges and indicates strictly lytic (virulent) lifestyles without the possibility for host lysogenization. Comparative genomics revealed that M7 is similar to E. amylovora virus ΦEa21-4, whereas L1, S6, and Y2 are unrelated to any other E. amylovora phage. Instead, they feature similarities to enterobacterial viruses T7, N4, and ΦEcoM-GJ1. In a series of laboratory experiments, we provide proof of concept that specific two-phage cocktails offer the potential for biocontrol of the pathogen.

  5. Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands

    NASA Astrophysics Data System (ADS)

    Sullivan, Matthew R.; Sokkalingam, Punidha; Nguyen, Thong; Donahue, James P.; Gibb, Bruce C.

    2017-01-01

    In participation of the fifth statistical assessment of modeling of proteins and ligands (SAMPL5), the strength of association of six guests ( 3- 8) to two hosts ( 1 and 2) were measured by 1H NMR and ITC. Each host possessed a unique and well-defined binding pocket, whilst the wide array of amphiphilic guests possessed binding moieties that included: a terminal alkyne, nitro-arene, alkyl halide and cyano-arene groups. Solubilizing head groups for the guests included both positively charged trimethylammonium and negatively charged carboxylate functionality. Measured association constants ( K a ) covered five orders of magnitude, ranging from 56 M-1 for guest 6 binding with host 2 up to 7.43 × 106 M-1 for guest 6 binding to host 1.

  6. The Swift GRB Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.

    2015-01-01

    I introduce the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population across its entire redshift range. Using unbiased selection criteria we have designated a subset of 130 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, and Gemini to obtain complementary optical/NIR photometry to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass functions and their evolution with redshift between z=0 and z=5, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to probe cosmic star-formation.

  7. Leishmania exosomes and other virulence factors: Impact on innate immune response and macrophage functions.

    PubMed

    Atayde, Vanessa Diniz; Hassani, Kasra; da Silva Lira Filho, Alonso; Borges, Andrezza Raposo; Adhikari, Anupam; Martel, Caroline; Olivier, Martin

    2016-11-01

    Leishmania parasites are the causative agents of the leishmaniases, a collection of vector-borne diseases that range from simple cutaneous to fatal visceral forms. Employing potent immune modulation mechanisms, Leishmania is able to render the host macrophage inactive and persist inside its phagolysosome. In the last few years, the role of exosomes in Leishmania-host interactions has been increasingly investigated. For instance, it was reported that Leishmania exosome release is augmented following temperature shift, a condition mimicking parasite's entry into its mammalian host. Leishmania exosomes were found to strongly affect macrophage cell signaling and functions, similarly to whole parasites. Importantly, these vesicles were shown to be pro-inflammatory, capable to recruit neutrophils at their inoculation site exacerbating the pathology. In this review, we provide the most recent insights on the role of exosomes and other virulence factors, especially the surface protease GP63, in Leishmania-host interactions, deepening our knowledge on leishmaniasis and paving the way for the development of new therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Hidden state prediction: a modification of classic ancestral state reconstruction algorithms helps unravel complex symbioses.

    PubMed

    Zaneveld, Jesse R R; Thurber, Rebecca L V

    2014-01-01

    Complex symbioses between animal or plant hosts and their associated microbiotas can involve thousands of species and millions of genes. Because of the number of interacting partners, it is often impractical to study all organisms or genes in these host-microbe symbioses individually. Yet new phylogenetic predictive methods can use the wealth of accumulated data on diverse model organisms to make inferences into the properties of less well-studied species and gene families. Predictive functional profiling methods use evolutionary models based on the properties of studied relatives to put bounds on the likely characteristics of an organism or gene that has not yet been studied in detail. These techniques have been applied to predict diverse features of host-associated microbial communities ranging from the enzymatic function of uncharacterized genes to the gene content of uncultured microorganisms. We consider these phylogenetically informed predictive techniques from disparate fields as examples of a general class of algorithms for Hidden State Prediction (HSP), and argue that HSP methods have broad value in predicting organismal traits in a variety of contexts, including the study of complex host-microbe symbioses.

  9. Cell biology and immunology lessons taught by Legionella pneumophila.

    PubMed

    Zhu, Wenhan; Luo, Zhao-Qing

    2016-01-01

    Legionella pneumophila is a facultative intracellular pathogen capable of replicating within a broad range of hosts. One unique feature of this pathogen is the cohort of ca. 300 virulence factors (effectors) delivered into host cells via its Dot/Icm type IV secretion system. Study of these proteins has produced novel insights into the mechanisms of host function modulation by pathogens, the regulation of essential processes of eukaryotic cells and of immunosurveillance. In this review, we will briefly discuss the roles of some of these effectors in the creation of a niche permissive for bacterial replication in phagocytes and recent advancements in the dissection of the innate immune detection mechanisms by challenging immune cells with L. pneumophila.

  10. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution

    PubMed Central

    Price, Christopher T. D.; Richards, Ashley M.; Von Dwingelo, Juanita E.; Samara, Hala A.; Kwaik, Yousef Abu

    2013-01-01

    Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, invades and proliferates within a diverse range of free-living amoeba in the environment but upon transmission to humans the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. L. pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. PMID:24112119

  11. Scavenger Receptors: Emerging Roles in Cancer Biology and Immunology

    PubMed Central

    Yu, Xiaofei; Guo, Chunqing; Fisher, Paul B.; Subjeck, John R.; Wang, Xiang-Yang

    2015-01-01

    Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted. PMID:26216637

  12. The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors

    NASA Astrophysics Data System (ADS)

    Roizman, Bernard

    1996-10-01

    Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.

  13. INFLUENZA VIRUS HOST RESISTANCE MODELS IN MICE AND RATS: UTILIZATION FOR UMMUNE FUNCTION ASSESSMENT AND IMMUNOTOXICOLOGY

    EPA Science Inventory

    Each year influenza viruses are responsible for epidemic respiratory diseases with excess morbidity and mortality. he severity of influenza disease ranges from mid upper respiratory tract infections to severe lower respiratory tract infections involving pneumonia, bronchiolitis a...

  14. A Rhizobium radiobacter Histidine Kinase Can Employ Both Boolean AND and OR Logic Gates to Initiate Pathogenesis.

    PubMed

    Fang, Fang; Lin, Yi-Han; Pierce, B Daniel; Lynn, David G

    2015-10-12

    The molecular logic gates that regulate gene circuits are necessarily intricate and highly regulated, particularly in the critical commitments necessary for pathogenesis. We now report simple AND and OR logic gates to be accessible within a single protein receptor. Pathogenesis by the bacterium Rhizobium radiobacter is mediated by a single histidine kinase, VirA, which processes multiple small molecule host signals (phenol and sugar). Mutagenesis analyses converged on a single signal integration node, and finer functional analyses revealed that a single residue could switch VirA from a functional AND logic gate to an OR gate where each of two signals activate independently. Host range preferences among natural strains of R. radiobacter correlate with these gate logic strategies. Although the precise mechanism for the signal integration node requires further analyses, long-range signal transmission through this histidine kinase can now be exploited for synthetic signaling circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Heterologous Protein Secretion in Lactobacilli with Modified pSIP Vectors

    PubMed Central

    Karlskås, Ingrid Lea; Maudal, Kristina; Axelsson, Lars; Rud, Ida; Eijsink, Vincent G. H.; Mathiesen, Geir

    2014-01-01

    We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species. PMID:24614815

  16. Developing a Bacteroides System for Function-Based Screening of DNA from the Human Gut Microbiome.

    PubMed

    Lam, Kathy N; Martens, Eric C; Charles, Trevor C

    2018-01-01

    Functional metagenomics is a powerful method that allows the isolation of genes whose role may not have been predicted from DNA sequence. In this approach, first, environmental DNA is cloned to generate metagenomic libraries that are maintained in Escherichia coli, and second, the cloned DNA is screened for activities of interest. Typically, functional screens are carried out using E. coli as a surrogate host, although there likely exist barriers to gene expression, such as lack of recognition of native promoters. Here, we describe efforts to develop Bacteroides thetaiotaomicron as a surrogate host for screening metagenomic DNA from the human gut. We construct a B. thetaiotaomicron-compatible fosmid cloning vector, generate a fosmid clone library using DNA from the human gut, and show successful functional complementation of a B. thetaiotaomicron glycan utilization mutant. Though we were unable to retrieve the physical fosmid after complementation, we used genome sequencing to identify the complementing genes derived from the human gut microbiome. Our results demonstrate that the use of B. thetaiotaomicron to express metagenomic DNA is promising, but they also exemplify the challenges that can be encountered in the development of new surrogate hosts for functional screening. IMPORTANCE Human gut microbiome research has been supported by advances in DNA sequencing that make it possible to obtain gigabases of sequence data from metagenomes but is limited by a lack of knowledge of gene function that leads to incomplete annotation of these data sets. There is a need for the development of methods that can provide experimental data regarding microbial gene function. Functional metagenomics is one such method, but functional screens are often carried out using hosts that may not be able to express the bulk of the environmental DNA being screened. We expand the range of current screening hosts and demonstrate that human gut-derived metagenomic libraries can be introduced into the gut microbe Bacteroides thetaiotaomicron to identify genes based on activity screening. Our results support the continuing development of genetically tractable systems to obtain information about gene function.

  17. Novel approach for identification of influenza virus host range and zoonotic transmissible sequences by determination of host-related associative positions in viral genome segments.

    PubMed

    Kargarfard, Fatemeh; Sami, Ashkan; Mohammadi-Dehcheshmeh, Manijeh; Ebrahimie, Esmaeil

    2016-11-16

    Recent (2013 and 2009) zoonotic transmission of avian or porcine influenza to humans highlights an increase in host range by evading species barriers. Gene reassortment or antigenic shift between viruses from two or more hosts can generate a new life-threatening virus when the new shuffled virus is no longer recognized by antibodies existing within human populations. There is no large scale study to help understand the underlying mechanisms of host transmission. Furthermore, there is no clear understanding of how different segments of the influenza genome contribute in the final determination of host range. To obtain insight into the rules underpinning host range determination, various supervised machine learning algorithms were employed to mine reassortment changes in different viral segments in a range of hosts. Our multi-host dataset contained whole segments of 674 influenza strains organized into three host categories: avian, human, and swine. Some of the sequences were assigned to multiple hosts. In point of fact, the datasets are a form of multi-labeled dataset and we utilized a multi-label learning method to identify discriminative sequence sites. Then algorithms such as CBA, Ripper, and decision tree were applied to extract informative and descriptive association rules for each viral protein segment. We found informative rules in all segments that are common within the same host class but varied between different hosts. For example, for infection of an avian host, HA14V and NS1230S were the most important discriminative and combinatorial positions. Host range identification is facilitated by high support combined rules in this study. Our major goal was to detect discriminative genomic positions that were able to identify multi host viruses, because such viruses are likely to cause pandemic or disastrous epidemics.

  18. Sympatric diversification vs. immigration: deciphering host-plant specialization in a polyphagous insect, the stolbur phytoplasma vector Hyalesthes obsoletus (Cixiidae).

    PubMed

    Imo, Miriam; Maixner, Michael; Johannesen, Jes

    2013-04-01

    The epidemiology of vector transmitted plant diseases is highly influenced by dispersal and the host-plant range of the vector. Widening the vector's host range may increase transmission potential, whereas specialization may induce specific disease cycles. The process leading to a vector's host shift and its epidemiological outcome is therefore embedded in the frameworks of sympatric evolution vs. immigration of preadapted populations. In this study, we analyse whether a host shift of the stolbur phytoplasma vector, Hyalesthes obsoletus from field bindweed to stinging nettle in its northern distribution range evolved sympatrically or by immigration. The exploitation of stinging nettle has led to outbreaks of the grapevine disease bois noir caused by a stinging nettle-specific phytoplasma strain. Microsatellite data from populations from northern and ancestral ranges provide strong evidence for sympatric host-race evolution in the northern range: Host-plant associated populations were significantly differentiated among syntopic sites (0.054 < F(HT) < 0.098) and constant over 5 years. While gene flow was asymmetric from the old into the predicted new host race, which had significantly reduced genetic diversity, the genetic identity between syntopic host-race populations in the northern range was higher than between these populations and syntopic populations in ancestral ranges, where there was no evidence for genetic host races. Although immigration was detected in the northern field bindweed population, it cannot explain host-race diversification but suggests the introduction of a stinging nettle-specific phytoplasma strain by plant-unspecific vectors. The evolution of host races in the northern range has led to specific vector-based bois noir disease cycles. © 2013 Blackwell Publishing Ltd.

  19. Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework

    PubMed Central

    Kong, Eric F.; Tsui, Christina; Nguyen, M. Hong; Clancy, Cornelius J.; Fidel, Paul L.; Noverr, Mairi

    2016-01-01

    Historically, the nature and extent of host damage by a microbe were considered highly dependent on virulence attributes of the microbe. However, it has become clear that disease is a complex outcome which can arise because of pathogen-mediated damage, host-mediated damage, or both, with active participation from the host microbiota. This awareness led to the formulation of the damage response framework (DRF), a revolutionary concept that defined microbial virulence as a function of host immunity. The DRF outlines six classifications of host damage outcomes based on the microbe and the strength of the immune response. In this review, we revisit this concept from the perspective of Candida albicans, a microbial pathogen uniquely adapted to its human host. This fungus commonly colonizes various anatomical sites without causing notable damage. However, depending on environmental conditions, a diverse array of diseases may occur, ranging from mucosal to invasive systemic infections resulting in microbe-mediated and/or host-mediated damage. Remarkably, C. albicans infections can fit into all six DRF classifications, depending on the anatomical site and associated host immune response. Here, we highlight some of these diverse and site-specific diseases and how they fit the DRF classifications, and we describe the animal models available to uncover pathogenic mechanisms and related host immune responses. PMID:27430274

  20. Host range, host specificity and hypothesized host shift events among viruses of lower vertebrates

    PubMed Central

    2011-01-01

    The successful replication of a viral agent in a host is a complex process that often leads to a species specificity of the virus and can make interspecies transmission difficult. Despite this difficulty, natural host switch seems to have been frequent among viruses of lower vertebrates, especially fish viruses, since there are several viruses known to be able to infect a wide range of species. In the present review we will focus on well documented reports of broad host range, variations in host specificity, and host shift events hypothesized for viruses within the genera Ranavirus, Novirhabdovirus, Betanodavirus, Isavirus, and some herpesvirus. PMID:21592358

  1. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata.

    PubMed

    Yang, Haishui; Zang, Yanyan; Yuan, Yongge; Tang, Jianjun; Chen, Xin

    2012-04-12

    Arbuscular mycorrhizal fungi (AMF) can form obligate symbioses with the vast majority of land plants, and AMF distribution patterns have received increasing attention from researchers. At the local scale, the distribution of AMF is well documented. Studies at large scales, however, are limited because intensive sampling is difficult. Here, we used ITS rDNA sequence metadata obtained from public databases to study the distribution of AMF at continental and global scales. We also used these sequence metadata to investigate whether host plant is the main factor that affects the distribution of AMF at large scales. We defined 305 ITS virtual taxa (ITS-VTs) among all sequences of the Glomeromycota by using a comprehensive maximum likelihood phylogenetic analysis. Each host taxonomic order averaged about 53% specific ITS-VTs, and approximately 60% of the ITS-VTs were host specific. Those ITS-VTs with wide host range showed wide geographic distribution. Most ITS-VTs occurred in only one type of host functional group. The distributions of most ITS-VTs were limited across ecosystem, across continent, across biogeographical realm, and across climatic zone. Non-metric multidimensional scaling analysis (NMDS) showed that AMF community composition differed among functional groups of hosts, and among ecosystem, continent, biogeographical realm, and climatic zone. The Mantel test showed that AMF community composition was significantly correlated with plant community composition among ecosystem, among continent, among biogeographical realm, and among climatic zone. The structural equation modeling (SEM) showed that the effects of ecosystem, continent, biogeographical realm, and climatic zone were mainly indirect on AMF distribution, but plant had strongly direct effects on AMF. The distribution of AMF as indicated by ITS rDNA sequences showed a pattern of high endemism at large scales. This pattern indicates high specificity of AMF for host at different scales (plant taxonomic order and functional group) and high selectivity from host plants for AMF. The effects of ecosystemic, biogeographical, continental and climatic factors on AMF distribution might be mediated by host plants.

  2. Cross-species infection trials reveal cryptic parasite varieties and a putative polymorphism shared among host species.

    PubMed

    Luijckx, Pepijn; Duneau, David; Andras, Jason P; Ebert, Dieter

    2014-02-01

    A parasite's host range can have important consequences for ecological and evolutionary processes but can be difficult to infer. Successful infection depends on the outcome of multiple steps and only some steps of the infection process may be critical in determining a parasites host range. To test this hypothesis, we investigated the host range of the bacterium Pasteuria ramosa, a Daphnia parasite, and determined the parasites success in different stages of the infection process. Multiple genotypes of Daphnia pulex, Daphnia longispina and Daphnia magna were tested with four Pasteuria genotypes using infection trials and an assay that determines the ability of the parasite to attach to the hosts esophagus. We find that attachment is not specific to host species but is specific to host genotype. This may suggest that alleles on the locus controlling attachment are shared among different host species that diverged 100 million year. However, in our trials, Pasteuria was never able to reproduce in nonnative host species, suggesting that Pasteuria infecting different host species are different varieties, each with a narrow host range. Our approach highlights the explanatory power of dissecting the steps of the infection process and resolves potentially conflicting reports on parasite host ranges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  3. 50-plus years of fungal viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghabrial, Said A., E-mail: saghab00@email.uky.edu; Castón, José R.; Jiang, Daohong

    2015-05-15

    Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, thosemore » that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution. - Highlights: • Historical perspective of fungal virus research. • Description, classification and diversity of fungal virus families. • Structural features of fungal virus particles. • Hypovirulence and exploitation of mycoviruses in biological control of plant pathogenic fungi.« less

  4. Do-or-die life cycles and diverse post-infection resistance mechanisms limit the evolution of parasite host ranges.

    PubMed

    Sieber, Michael; Gudelj, Ivana

    2014-04-01

    In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host-use trade-offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade-offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria-phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade-offs. © 2014 John Wiley & Sons Ltd/CNRS.

  5. Extending the Host Range of Bacteriophage Particles for DNA Transduction.

    PubMed

    Yosef, Ido; Goren, Moran G; Globus, Rea; Molshanski-Mor, Shahar; Qimron, Udi

    2017-06-01

    A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts.

    PubMed

    De Maayer, Pieter; Chan, Wai Yin; Rubagotti, Enrico; Venter, Stephanus N; Toth, Ian K; Birch, Paul R J; Coutinho, Teresa A

    2014-05-27

    Pantoea ananatis is found in a wide range of natural environments, including water, soil, as part of the epi- and endophytic flora of various plant hosts, and in the insect gut. Some strains have proven effective as biological control agents and plant-growth promoters, while other strains have been implicated in diseases of a broad range of plant hosts and humans. By analysing the pan-genome of eight sequenced P. ananatis strains isolated from different sources we identified factors potentially underlying its ability to colonize and interact with hosts in both the plant and animal Kingdoms. The pan-genome of the eight compared P. ananatis strains consisted of a core genome comprised of 3,876 protein coding sequences (CDSs) and a sizeable accessory genome consisting of 1,690 CDSs. We estimate that ~106 unique CDSs would be added to the pan-genome with each additional P. ananatis genome sequenced in the future. The accessory fraction is derived mainly from integrated prophages and codes mostly for proteins of unknown function. Comparison of the translated CDSs on the P. ananatis pan-genome with the proteins encoded on all sequenced bacterial genomes currently available revealed that P. ananatis carries a number of CDSs with orthologs restricted to bacteria associated with distinct hosts, namely plant-, animal- and insect-associated bacteria. These CDSs encode proteins with putative roles in transport and metabolism of carbohydrate and amino acid substrates, adherence to host tissues, protection against plant and animal defense mechanisms and the biosynthesis of potential pathogenicity determinants including insecticidal peptides, phytotoxins and type VI secretion system effectors. P. ananatis has an 'open' pan-genome typical of bacterial species that colonize several different environments. The pan-genome incorporates a large number of genes encoding proteins that may enable P. ananatis to colonize, persist in and potentially cause disease symptoms in a wide range of plant and animal hosts.

  7. The Microbial Signature Provides Insight into the Mechanistic Basis of Coral Success across Reef Habitats

    PubMed Central

    Leggat, William; Bongaerts, Pim

    2016-01-01

    ABSTRACT For ecosystems vulnerable to environmental change, understanding the spatiotemporal stability of functionally crucial symbioses is fundamental to determining the mechanisms by which these ecosystems may persist. The coral Pachyseris speciosa is a successful environmental generalist that succeeds in diverse reef habitats. The generalist nature of this coral suggests it may have the capacity to form functionally significant microbial partnerships to facilitate access to a range of nutritional sources within different habitats. Here, we propose that coral is a metaorganism hosting three functionally distinct microbial interactions: a ubiquitous core microbiome of very few symbiotic host-selected bacteria, a microbiome of spatially and/or regionally explicit core microbes filling functional niches (<100 phylotypes), and a highly variable bacterial community that is responsive to biotic and abiotic processes across spatial and temporal scales (>100,000 phylotypes). We find that this coral hosts upwards of 170,000 distinct phylotypes and provide evidence for the persistence of a select group of bacteria in corals across environmental habitats of the Great Barrier Reef and Coral Sea. We further show that a higher number of bacteria are consistently associated with corals on mesophotic reefs than on shallow reefs. An increase in microbial diversity with depth suggests reliance by this coral on bacteria for nutrient acquisition on reefs exposed to nutrient upwelling. Understanding the complex microbial communities of host organisms across broad biotic and abiotic environments as functionally distinct microbiomes can provide insight into those interactions that are ubiquitous niche symbioses and those that provide competitive advantage within the hosts’ environment. PMID:27460792

  8. Lattice Response Functions of Imperfect Crystals: Effects Due to a Local Change of Mass and Short-Range Interaction

    NASA Astrophysics Data System (ADS)

    Benedek, G.; Nardelli, G. F.

    1967-03-01

    Lattice response functions, such as the thermal conductivity and dielectric susceptibility of an imperfect crystal with rocksalt structure, are evaluated in terms of the irreducible T matrix accounting for the phonon scattering. It is shown that the effect of defects on thermal conductivity and dielectric susceptibility can be accounted for by expressions which have essentially the same structure. The T matrix for a defect which affects both the mass and the short-range interaction is analyzed according to the irreducible representations of the point group which pertains to the perturbation, and the resonance conditions for Γ1, Γ12, and Γ15 irreducible representations are considered in detail for any positive impurity in KBr crystals. Hardy's deformation-dipole (DD) model is employed for the description of the host-lattice dynamics. A comparison is made with simplified models, such as diatomic linear chains with nearest-neighbor interaction; it is shown that in polar crystals an effective-force constant has to be used in order to give a reliable description of the short-range interaction between the impurity and the host lattice. An attempt is made to define such effective force constants in the framework of the DD model. The numerical calculations concern positive monovalent impurities in KBr crystals. Γ1, Γ12, and Γ15 resonance frequencies are evaluated as a function of the change of mass and nearest-neighbor force constant. For KBr:Li+ and KBr:Ag+ we also evaluate the band shape of the absorption spectrum at infrared frequencies; good agreement is found between the theoretical prediction and the experimental data on KBr:Li+. It is shown that some structures actually observed in the spectrum are due to peaks in the projected density of states of the host lattice, and have nothing to do with resonance scattering. Good agreement is found between the impurity-host-lattice interaction as estimated from a priori calculations and as deduced by fitting the Γ15 resonance frequency to the experimental data. A simple explanation of the off-center position of small ions is also suggested. Finally, concentration and stress effects on the absorption coefficient are briefly discussed.

  9. The Microbial Signature Provides Insight into the Mechanistic Basis of Coral Success across Reef Habitats.

    PubMed

    Hernandez-Agreda, Alejandra; Leggat, William; Bongaerts, Pim; Ainsworth, Tracy D

    2016-07-26

    For ecosystems vulnerable to environmental change, understanding the spatiotemporal stability of functionally crucial symbioses is fundamental to determining the mechanisms by which these ecosystems may persist. The coral Pachyseris speciosa is a successful environmental generalist that succeeds in diverse reef habitats. The generalist nature of this coral suggests it may have the capacity to form functionally significant microbial partnerships to facilitate access to a range of nutritional sources within different habitats. Here, we propose that coral is a metaorganism hosting three functionally distinct microbial interactions: a ubiquitous core microbiome of very few symbiotic host-selected bacteria, a microbiome of spatially and/or regionally explicit core microbes filling functional niches (<100 phylotypes), and a highly variable bacterial community that is responsive to biotic and abiotic processes across spatial and temporal scales (>100,000 phylotypes). We find that this coral hosts upwards of 170,000 distinct phylotypes and provide evidence for the persistence of a select group of bacteria in corals across environmental habitats of the Great Barrier Reef and Coral Sea. We further show that a higher number of bacteria are consistently associated with corals on mesophotic reefs than on shallow reefs. An increase in microbial diversity with depth suggests reliance by this coral on bacteria for nutrient acquisition on reefs exposed to nutrient upwelling. Understanding the complex microbial communities of host organisms across broad biotic and abiotic environments as functionally distinct microbiomes can provide insight into those interactions that are ubiquitous niche symbioses and those that provide competitive advantage within the hosts' environment. Corals have been proposed as the most diverse microbial biosphere. The high variability of microbial communities has hampered the identification of bacteria playing key functional roles that contribute to coral survival. Exploring the bacterial community in a coral with a broad environmental distribution, we found a group of bacteria present across all environments and a higher number of bacteria consistently associated with mesophotic corals (60 to 80 m). These results provide evidence of consistent and ubiquitous coral-bacterial partnerships and support the consideration of corals as metaorganisms hosting three functionally distinct microbiomes: a ubiquitous core microbiome, a microbiome filling functional niches, and a highly variable bacterial community. Copyright © 2016 Hernandez-Agreda et al.

  10. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution.

    PubMed

    Price, Christopher T D; Richards, Ashley M; Von Dwingelo, Juanita E; Samara, Hala A; Abu Kwaik, Yousef

    2014-02-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis.

    PubMed

    Zeng, Tian; Holmer, Rens; Hontelez, Jan; Te Lintel-Hekkert, Bas; Marufu, Lucky; de Zeeuw, Thijs; Wu, Fangyuan; Schijlen, Elio; Bisseling, Ton; Limpens, Erik

    2018-05-01

    Arbuscular mycorrhizal fungi form the most wide-spread endosymbiosis with plants. There is very little host specificity in this interaction, however host preferences as well as varying symbiotic efficiencies have been observed. We hypothesize that secreted proteins (SPs) may act as fungal effectors to control symbiotic efficiency in a host-dependent manner. Therefore, we studied whether arbuscular mycorrhizal (AM) fungi adjust their secretome in a host- and stage-dependent manner to contribute to their extremely wide host range. We investigated the expression of SP-encoding genes of Rhizophagus irregularis in three evolutionary distantly related plant species, Medicago truncatula, Nicotiana benthamiana and Allium schoenoprasum. In addition we used laser microdissection in combination with RNA-seq to study SP expression at different stages of the interaction in Medicago. Our data indicate that most expressed SPs show roughly equal expression levels in the interaction with all three host plants. In addition, a subset shows significant differential expression depending on the host plant. Furthermore, SP expression is controlled locally in the hyphal network in response to host-dependent cues. Overall, this study presents a comprehensive analysis of the R. irregularis secretome, which now offers a solid basis to direct functional studies on the role of fungal SPs in AM symbiosis. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  12. TEs or not TEs? That is the evolutionary question.

    PubMed

    Vaknin, Keren; Goren, Amir; Ast, Gil

    2009-10-23

    Transposable elements (TEs) have contributed a wide range of functional sequences to their host genomes. A recent paper in BMC Molecular Biology discusses the creation of new transcripts by transposable element insertion upstream of retrocopies and the involvement of such insertions in tissue-specific post-transcriptional regulation.

  13. A bitter aftertaste: unintended effects of artificial sweeteners on the gut microbiome

    PubMed Central

    Bokulich, Nicholas A.; Blaser, Martin J.

    2015-01-01

    Intestinal microbial communities regulate a range of host physiological functions, from energy harvest and glucose homeostasis to immune development and regulation. Suez and colleagues (2014) recently demonstrated that artificial sweeteners alter gut microbial communities, leading to glucose intolerance in both mice and humans. PMID:25440050

  14. Macronutrients mediate the functional relationship between Drosophila and Wolbachia

    PubMed Central

    Ponton, Fleur; Wilson, Kenneth; Holmes, Andrew; Raubenheimer, David; Robinson, Katie L.; Simpson, Stephen J.

    2015-01-01

    Wolbachia are maternally inherited bacterial endosymbionts that naturally infect a diverse array of arthropods. They are primarily known for their manipulation of host reproductive biology, and recently, infections with Wolbachia have been proposed as a new strategy for controlling insect vectors and subsequent human-transmissible diseases. Yet, Wolbachia abundance has been shown to vary greatly between individuals and the magnitude of the effects of infection on host life-history traits and protection against infection is correlated to within-host Wolbachia abundance. It is therefore essential to better understand the factors that modulate Wolbachia abundance and effects on host fitness. Nutrition is known to be one of the most important mediators of host–symbiont interactions. Here, we used nutritional geometry to quantify the role of macronutrients on insect–Wolbachia relationships in Drosophila melanogaster. Our results show fundamental interactions between diet composition, host diet selection, Wolbachia abundance and effects on host lifespan and fecundity. The results and methods described here open a new avenue in the study of insect–Wolbachia relationships and are of general interest to numerous research disciplines, ranging from nutrition and life-history theory to public health. PMID:25520356

  15. Hidden state prediction: a modification of classic ancestral state reconstruction algorithms helps unravel complex symbioses

    PubMed Central

    Zaneveld, Jesse R. R.; Thurber, Rebecca L. V.

    2014-01-01

    Complex symbioses between animal or plant hosts and their associated microbiotas can involve thousands of species and millions of genes. Because of the number of interacting partners, it is often impractical to study all organisms or genes in these host-microbe symbioses individually. Yet new phylogenetic predictive methods can use the wealth of accumulated data on diverse model organisms to make inferences into the properties of less well-studied species and gene families. Predictive functional profiling methods use evolutionary models based on the properties of studied relatives to put bounds on the likely characteristics of an organism or gene that has not yet been studied in detail. These techniques have been applied to predict diverse features of host-associated microbial communities ranging from the enzymatic function of uncharacterized genes to the gene content of uncultured microorganisms. We consider these phylogenetically informed predictive techniques from disparate fields as examples of a general class of algorithms for Hidden State Prediction (HSP), and argue that HSP methods have broad value in predicting organismal traits in a variety of contexts, including the study of complex host-microbe symbioses. PMID:25202302

  16. Genomic Changes Associated with the Evolutionary Transitions of Nostoc to a Plant Symbiont.

    PubMed

    Warshan, Denis; Liaimer, Anton; Pederson, Eric; Kim, Sea-Yong; Shapiro, Nicole; Woyke, Tanja; Altermark, Bjørn; Pawlowski, Katharina; Weyman, Philip D; Dupont, Christopher L; Rasmussen, Ulla

    2018-05-01

    Cyanobacteria belonging to the genus Nostoc comprise free-living strains and also facultative plant symbionts. Symbiotic strains can enter into symbiosis with taxonomically diverse range of host plants. Little is known about genomic changes associated with evolutionary transition of Nostoc from free-living to plant symbiont. Here, we compared the genomes derived from 11 symbiotic Nostoc strains isolated from different host plants and infer phylogenetic relationships between strains. Phylogenetic reconstructions of 89 Nostocales showed that symbiotic Nostoc strains with a broad host range, entering epiphytic and intracellular or extracellular endophytic interactions, form a monophyletic clade indicating a common evolutionary history. A polyphyletic origin was found for Nostoc strains which enter only extracellular symbioses, and inference of transfer events implied that this trait was likely acquired several times in the evolution of the Nostocales. Symbiotic Nostoc strains showed enriched functions in transport and metabolism of organic sulfur, chemotaxis and motility, as well as the uptake of phosphate, branched-chain amino acids, and ammonium. The genomes of the intracellular clade differ from that of other Nostoc strains, with a gain/enrichment of genes encoding proteins to generate l-methionine from sulfite and pathways for the degradation of the plant metabolites vanillin and vanillate, and of the macromolecule xylan present in plant cell walls. These compounds could function as C-sources for members of the intracellular clade. Molecular clock analysis indicated that the intracellular clade emerged ca. 600 Ma, suggesting that intracellular Nostoc symbioses predate the origin of land plants and the emergence of their extant hosts.

  17. Genomic Changes Associated with the Evolutionary Transitions of Nostoc to a Plant Symbiont

    PubMed Central

    Liaimer, Anton; Pederson, Eric; Kim, Sea-Yong; Shapiro, Nicole; Woyke, Tanja; Altermark, Bjørn; Pawlowski, Katharina; Weyman, Philip D; Dupont, Christopher L

    2018-01-01

    Abstract Cyanobacteria belonging to the genus Nostoc comprise free-living strains and also facultative plant symbionts. Symbiotic strains can enter into symbiosis with taxonomically diverse range of host plants. Little is known about genomic changes associated with evolutionary transition of Nostoc from free-living to plant symbiont. Here, we compared the genomes derived from 11 symbiotic Nostoc strains isolated from different host plants and infer phylogenetic relationships between strains. Phylogenetic reconstructions of 89 Nostocales showed that symbiotic Nostoc strains with a broad host range, entering epiphytic and intracellular or extracellular endophytic interactions, form a monophyletic clade indicating a common evolutionary history. A polyphyletic origin was found for Nostoc strains which enter only extracellular symbioses, and inference of transfer events implied that this trait was likely acquired several times in the evolution of the Nostocales. Symbiotic Nostoc strains showed enriched functions in transport and metabolism of organic sulfur, chemotaxis and motility, as well as the uptake of phosphate, branched-chain amino acids, and ammonium. The genomes of the intracellular clade differ from that of other Nostoc strains, with a gain/enrichment of genes encoding proteins to generate l-methionine from sulfite and pathways for the degradation of the plant metabolites vanillin and vanillate, and of the macromolecule xylan present in plant cell walls. These compounds could function as C-sources for members of the intracellular clade. Molecular clock analysis indicated that the intracellular clade emerged ca. 600 Ma, suggesting that intracellular Nostoc symbioses predate the origin of land plants and the emergence of their extant hosts. PMID:29554291

  18. Lack of host specialization on winter annual grasses in the fungal seed bank pathogen Pyrenophora semeniperda

    Treesearch

    Julie Beckstead; Susan E. Meyer; Toby S. Ishizuka; Kelsey M. McEvoy; Craig E. Coleman

    2016-01-01

    Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora...

  19. Mechanisms of cross-talk between the diet, the intestinal microbiome, and the undernourished host

    PubMed Central

    Velly, Helene; Britton, Robert A.; Preidis, Geoffrey A.

    2017-01-01

    ABSTRACT Undernutrition remains one of the most pressing global health challenges today, contributing to nearly half of all deaths in children under five years of age. Although insufficient dietary intake and environmental enteric dysfunction are often inciting factors, evidence now suggests that unhealthy gut microbial populations perpetuate the vicious cycle of pathophysiology that results in persistent growth impairment in children. The metagenomics era has facilitated new research identifying an altered microbiome in undernourished hosts and has provided insight into a number of mechanisms by which these alterations may affect growth. This article summarizes a range of observational studies that highlight differences in the composition and function of gut microbiota between undernourished and healthy children; discusses dietary, environmental and host factors that shape this altered microbiome; examines the consequences of these changes on host physiology; and considers opportunities for microbiome-targeting therapies to combat the global challenge of child undernutrition. PMID:27918230

  20. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens

    PubMed Central

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-01-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231

  1. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens.

    PubMed

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-12-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.

  2. IgA Function in Relation to the Intestinal Microbiota.

    PubMed

    Macpherson, Andrew J; Yilmaz, Bahtiyar; Limenitakis, Julien P; Ganal-Vonarburg, Stephanie C

    2018-04-26

    IgA is the dominant immunoglobulin isotype produced in mammals, largely secreted across the intestinal mucosal surface. Although induction of IgA has been a hallmark feature of microbiota colonization following colonization in germ-free animals, until recently appreciation of the function of IgA in host-microbial mutualism has depended mainly on indirect evidence of alterations in microbiota composition or penetration of microbes in the absence of somatic mutations in IgA (or compensatory IgM). Highly parallel sequencing techniques that enable high-resolution analysis of either microbial consortia or IgA sequence diversity are now giving us new perspectives on selective targeting of microbial taxa and the trajectory of IgA diversification according to induction mechanisms, between different individuals and over time. The prospects are to link the range of diversified IgA clonotypes to specific antigenic functions in modulating the microbiota composition, position and metabolism to ensure host mutualism.

  3. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects.

    PubMed

    Zumla, Alimuddin; Rao, Martin; Wallis, Robert S; Kaufmann, Stefan H E; Rustomjee, Roxana; Mwaba, Peter; Vilaplana, Cris; Yeboah-Manu, Dorothy; Chakaya, Jeremiah; Ippolito, Giuseppe; Azhar, Esam; Hoelscher, Michael; Maeurer, Markus

    2016-04-01

    Despite extensive global efforts in the fight against killer infectious diseases, they still cause one in four deaths worldwide and are important causes of long-term functional disability arising from tissue damage. The continuing epidemics of tuberculosis, HIV, malaria, and influenza, and the emergence of novel zoonotic pathogens represent major clinical management challenges worldwide. Newer approaches to improving treatment outcomes are needed to reduce the high morbidity and mortality caused by infectious diseases. Recent insights into pathogen-host interactions, pathogenesis, inflammatory pathways, and the host's innate and acquired immune responses are leading to identification and development of a wide range of host-directed therapies with different mechanisms of action. Host-directed therapeutic strategies are now becoming viable adjuncts to standard antimicrobial treatment. Host-directed therapies include commonly used drugs for non-communicable diseases with good safety profiles, immunomodulatory agents, biologics (eg monoclonal antibodies), nutritional products, and cellular therapy using the patient's own immune or bone marrow mesenchymal stromal cells. We discuss clinically relevant examples of progress in identifying host-directed therapies as adjunct treatment options for bacterial, viral, and parasitic infectious diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Chitinase-like proteins as regulators of innate immunity and tissue repair: helpful lessons for asthma?

    PubMed

    Sutherland, Tara E

    2018-02-19

    Chitinases and chitinase-like proteins (CLPs) belong to the glycoside hydrolase family 18 of proteins. Chitinases are expressed in mammals and lower organisms, facilitate chitin degradation, and hence act as host-defence enzymes. Gene duplication and loss-of-function mutations of enzymatically active chitinases have resulted in the expression of a diverse range of CLPs across different species. CLPs are genes that are increasingly associated with inflammation and tissue remodelling not only in mammals but also across distant species. While the focus has remained on understanding the functions and expression patterns of CLPs during disease in humans, studies in mouse and lower organisms have revealed important and overlapping roles of the CLP family during physiology, host defence and pathology. This review will summarise recent insights into the regulatory functions of CLPs on innate immune pathways and discuss how these effects are not only important for host defence and tissue injury/repair after pathogen invasion, but also how they have extensive implications for pathological processes involved in diseases such as asthma. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Adding the Third Dimension to Virus Life Cycles: Three-Dimensional Reconstruction of Icosahedral Viruses from Cryo-Electron Micrographs

    PubMed Central

    Baker, T. S.; Olson, N. H.; Fuller, S. D.

    1999-01-01

    Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-Å) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical. PMID:10585969

  6. Here, there and everywhere: Resistin-like molecules in infection, inflammation, and metabolic disorders.

    PubMed

    Pine, Gabrielle M; Batugedara, Hashini M; Nair, Meera G

    2018-06-01

    The Resistin-Like Molecules (RELM) α, β, and γ and their namesake, resistin, share structural and sequence homology but exhibit significant diversity in expression and function within their mammalian host. RELM proteins are expressed in a wide range of diseases, such as: microbial infections (eg. bacterial and helminth), inflammatory diseases (eg. asthma, fibrosis) and metabolic disorders (eg. diabetes). While the expression pattern and molecular regulation of RELM proteins are well characterized, much controversy remains over their proposed functions, with evidence of host-protective and pathogenic roles. Moreover, the receptors for RELM proteins are unclear, although three receptors for resistin, decorin, adenylyl cyclase-associated protein 1 (CAP1), and Toll-like Receptor 4 (TLR4) have recently been proposed. In this review, we will first summarize the molecular regulation of the RELM gene family, including transcription regulation and tissue expression in humans and mouse disease models. Second, we will outline the function and receptor-mediated signaling associated with RELM proteins. Finally, we will discuss recent studies suggesting that, despite early misconceptions that these proteins are pathogenic, RELM proteins have a more nuanced and potentially beneficial role for the host in certain disease settings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Methods of expanding bacteriophage host-range and bacteriophage produced by the methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crown, Kevin K.; Santarpia, Joshua

    A method of producing novel bacteriophages with expanded host-range and bacteriophages with expanded host ranges are disclosed. The method produces mutant phage strains which are infectious to a second host and can be more infectious to their natural host than in their natural state. The method includes repeatedly passaging a selected phage strain into bacterial cultures that contain varied ratios of its natural host bacterial strain with a bacterial strain that the phage of interest is unable to infect; the target-host. After each passage the resulting phage are purified and screened for activity against the target-host via double-overlay assays. Whenmore » mutant phages that are shown to infect the target-host are discovered, they are further propagated in culture that contains only the target-host to produce a stock of the resulting mutant phage.« less

  8. Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches.

    PubMed

    Chassard, Christophe; Scott, Karen P; Marquet, Perrine; Martin, Jennifer C; Del'homme, Christophe; Dapoigny, Michel; Flint, Harry J; Bernalier-Donadille, Annick

    2008-12-01

    The human gut harbours a wide range of bacterial communities that play key roles in supplying nutrients and energy to the host through anaerobic fermentation of dietary components and host secretions. This fermentative process involves different functional groups of microorganisms linked in a trophic chain. Although the diversity of the intestinal microbiota has been studied extensively using molecular techniques, the functional aspects of this biodiversity remain mostly unexplored. The aim of the present work was to enumerate the principal metabolic groups of microorganisms involved in the fermentative process in the gut of healthy humans. These functional groups of microorganisms were quantified by a cultural approach, while the taxonomic composition of the microbiota was assessed by in situ hybridization on the same faecal samples. The functional groups of microorganisms that predominated in the gut were the polysaccharide-degrading populations involved in the breakdown of the most readily available exogenous and endogenous substrates and the predominant butyrate-producing species. Most of the functional groups of microorganisms studied appeared to be present at rather similar levels in all healthy volunteers, suggesting that optimal numbers of these various bacterial groups are crucial for efficient gut fermentation, as well as for host nutrition and health. Significant interindividual differences were, however, confirmed with respect to the numbers of methanogenic archaea, filter paper-degrading and acetogenic bacteria and the products formed by lactate-utilizing bacteria.

  9. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.

    PubMed

    Hu, Jinming; Liu, Shiyong

    2014-07-15

    CONSPECTUS: All living organisms and soft matter are intrinsically responsive and adaptive to external stimuli. Inspired by this fact, tremendous effort aiming to emulate subtle responsive features exhibited by nature has spurred the invention of a diverse range of responsive polymeric materials. Conventional stimuli-responsive polymers are constructed via covalent bonds and can undergo reversible or irreversible changes in chemical structures, physicochemical properties, or both in response to a variety of external stimuli. They have been imparted with a variety of emerging applications including drug and gene delivery, optical sensing and imaging, diagnostics and therapies, smart coatings and textiles, and tissue engineering. On the other hand, in comparison with molecular chemistry held by covalent bonds, supramolecular chemistry built on weak and reversible noncovalent interactions has emerged as a powerful and versatile strategy for materials fabrication due to its facile accessibility, extraordinary reversibility and adaptivity, and potent applications in diverse fields. Typically involving more than one type of noncovalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic association, electrostatic interactions, van der Waals forces, and π-π stacking), host-guest recognition refers to the formation of supramolecular inclusion complexes between two or more entities connected together in a highly controlled and cooperative manner. The inherently reversible and adaptive nature of host-guest molecular recognition chemistry, stemming from multiple noncovalent interactions, has opened up a new platform to construct novel types of stimuli-responsive materials. The introduction of host-guest chemistry not only enriches the realm of responsive materials but also confers them with promising new applications. Most intriguingly, the integration of responsive polymer building blocks with host-guest recognition motifs will endow the former with further broadened responsiveness to external stimuli and accordingly more sophisticated functions. In this Account, we summarize recent progress in the field of responsive polymeric materials containing host-guest recognition motifs with selected examples and highlight their versatile functional applications, whereas small molecule-oriented host-guest supramolecular systems are excluded. We demonstrate how the introduction of host-guest chemistry into conventional polymer systems can modulate their responsive modes to external stimuli. Moreover, the responsive specificity and selectivity of polymeric systems can also be inherited from the host-guest recognition motifs, and these features provide extra advantages in terms of function integration. The following discussions are categorized in terms of design and functions, namely, host-guest chemistry toward the fabrication of responsive polymers and assemblies, optical sensing and imaging, drug and gene delivery, and self-healing materials. A concluding remark on future developments is also presented. We wish this prosperous field would incur more original and evolutionary ideas and benefit fundamental research and our daily life in a more convenient way.

  10. Global genomics and proteomics approaches to identify host factors as targets to induce resistance against Tomato bushy stunt virus.

    PubMed

    Nagy, Peter D; Pogany, Judit

    2010-01-01

    The success of RNA viruses as pathogens of plants, animals, and humans depends on their ability to reprogram the host cell metabolism to support the viral infection cycle and to suppress host defense mechanisms. Plus-strand (+)RNA viruses have limited coding potential necessitating that they co-opt an unknown number of host factors to facilitate their replication in host cells. Global genomics and proteomics approaches performed with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have led to the identification of 250 host factors affecting TBSV RNA replication and recombination or bound to the viral replicase, replication proteins, or the viral RNA. The roles of a dozen host factors involved in various steps of the replication process have been validated in yeast as well as a plant host. Altogether, the large number of host factors identified and the great variety of cellular functions performed by these factors indicate the existence of a truly complex interaction between TBSV and the host cell. This review summarizes the advantages of using a simple plant virus and yeast as a model host to advance our understanding of virus-host interactions at the molecular and cellular levels. The knowledge of host factors gained can potentially be used to inhibit virus replication via gene silencing, expression of dominant negative mutants, or design of specific chemical inhibitors leading to novel specific or broad-range resistance and antiviral tools against (+)RNA plant viruses. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Two-Way Communication Using RFID Equipment and Techniques

    NASA Technical Reports Server (NTRS)

    Jedry, Thomas; Archer, Eric

    2007-01-01

    Equipment and techniques used in radio-frequency identification (RFID) would be extended, according to a proposal, to enable short-range, two-way communication between electronic products and host computers. In one example of a typical contemplated application, the purpose of the short-range radio communication would be to transfer image data from a user s digital still or video camera to the user s computer for recording and/or processing. The concept is also applicable to consumer electronic products other than digital cameras (for example, cellular telephones, portable computers, or motion sensors in alarm systems), and to a variety of industrial and scientific sensors and other devices that generate data. Until now, RFID has been used to exchange small amounts of mostly static information for identifying and tracking assets. Information pertaining to an asset (typically, an object in inventory to be tracked) is contained in miniature electronic circuitry in an RFID tag attached to the object. Conventional RFID equipment and techniques enable a host computer to read data from and, in some cases, to write data to, RFID tags, but they do not enable such additional functions as sending commands to, or retrieving possibly large quantities of dynamic data from, RFID-tagged devices. The proposal would enable such additional functions. The figure schematically depicts an implementation of the proposal for a sensory device (e.g., a digital camera) that includes circuitry that converts sensory information to digital data. In addition to the basic sensory device, there would be a controller and a memory that would store the sensor data and/or data from the controller. The device would also be equipped with a conventional RFID chipset and antenna, which would communicate with a host computer via an RFID reader. The controller would function partly as a communication interface, implementing two-way communication protocols at all levels (including RFID if needed) between the sensory device and the memory and between the host computer and the memory. The controller would perform power V

  12. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines.

    PubMed

    Wool-Lewis, R J; Bates, P

    1998-04-01

    Studies analyzing Ebola virus replication have been severely hampered by the extreme pathogenicity of this virus. To permit analysis of the host range and function of the Ebola virus glycoprotein (Ebo-GP), we have developed a system for pseudotyping these glycoproteins into murine leukemia virus (MLV). This pseudotyped virus, MLV(Ebola), can be readily concentrated to titers which exceed 5 x 10(6) infectious units/ml and is effectively neutralized by antibodies specific for Ebo-GP. Analysis of MLV(Ebola) infection revealed that the host range conferred by Ebo-GP is very broad, extending to cells of a variety of species. Notably, all lymphoid cell lines tested were completely resistant to infection; we speculate that this is due to the absence of a cellular receptor for Ebo-GP on B and T cells. The generation of high-titer MLV(Ebola) pseudotypes will be useful for the analysis of immune responses to Ebola virus infection, development of neutralizing antibodies, analysis of glycoprotein function, and isolation of the cellular receptor(s) for the Ebola virus.

  13. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes

    PubMed Central

    Pierson, Elizabeth A.

    2010-01-01

    Phenazines constitute a large group of nitrogen-containing heterocyclic compounds produced by a diverse range of bacteria. Both natural and synthetic phenazine derivatives are studied due their impacts on bacterial interactions and biotechnological processes. Phenazines serve as electron shuttles to alternate terminal acceptors, modify cellular redox states, act as cell signals that regulate patterns of gene expression, contribute to biofilm formation and architecture, and enhance bacterial survival. Phenazines have diverse effects on eukaryotic hosts and host tissues, including the modification of multiple host cellular responses. In plants, phenazines also may influence growth and elicit induced systemic resistance. Here, we discuss emerging evidence that phenazines play multiple roles for the producing organism and contribute to their behavior and ecological fitness. PMID:20352425

  14. A method to quantify infection and colonization of holm oak (Quercus ilex) roots by Phytophthora cinnamomi

    PubMed Central

    2012-01-01

    Phytophthora cinnamomi Rands. is an important root rot pathogen widely distributed in the north hemisphere, with a large host range. Among others diseases, it is known to be a principal factor in the decline of holm oak and cork oak, the most important tree species in the “dehesa” ecosystem of south-western Spain. Previously, the focus of studies on P. cinnamomi and holm oak have been on molecular tools for identification, functional responses of the host, together with other physiological and morphological host variables. However, a microscopic index to describe the degree of infection and colonization in the plant tissues has not yet been developed. A colonization or infection index would be a useful tool for studies that examine differences between individuals subjected to different treatments or to individuals belonging to different breeding accessions, together with their specific responses to the pathogen. This work presents a methodology based on the capture and digital treatment of microscopic images, using simple and accessible software, together with a range of variables that quantify the infection and colonization process. PMID:22974221

  15. Coupled range dynamics of brood parasites and their hosts responding to climate and vegetation changes.

    PubMed

    Péron, Guillaume; Altwegg, Res; Jamie, Gabriel A; Spottiswoode, Claire N

    2016-09-01

    As populations shift their ranges in response to global change, local species assemblages can change, setting the stage for new ecological interactions, community equilibria and evolutionary responses. Here, we focus on the range dynamics of four avian brood parasite species and their hosts in southern Africa, in a context of bush encroachment (increase in woody vegetation density in places previously occupied by savanna-grassland mosaics) favouring some species at the expense of others. We first tested whether hosts and parasites constrained each other's ability to expand or maintain their ranges. Secondly, we investigated whether range shifts represented an opportunity for new host-parasite and parasite-parasite interactions. We used multispecies dynamic occupancy models with interactions, fitted to citizen science data, to estimate the contribution of interspecific interactions to range shifts and to quantify the change in species co-occurrence probability over a 25-year period. Parasites were able to track their hosts' range shifts. We detected no deleterious effect of the parasites' presence on either the local population viability of host species or the hosts' ability to colonize newly suitable areas. In the recently diversified indigobird radiation (Vidua spp.), following bush encroachment, the new assemblages presented more potential opportunities for speciation via host switch, but also more potential for hybridization between extant lineages, also via host switch. Multispecies dynamic occupancy models with interactions brought new insights into the feedbacks between range shifts, biotic interactions and local demography: brood parasitism had little detected impact on extinction or colonization processes, but inversely the latter processes affected biotic interactions via the modification of co-occurrence patterns. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  16. Complete Genome sequence of Burkholderia phymatum STM815T, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species

    PubMed Central

    Moulin, Lionel; Klonowska, Agnieszka; Caroline, Bournaud; Booth, Kristina; Vriezen, Jan A.C.; Melkonian, Rémy; James, Euan K.; Young, J. Peter W.; Bena, Gilles; Hauser, Loren; Land, Miriam; Kyrpides, Nikos; Bruce, David; Chain, Patrick; Copeland, Alex; Pitluck, Sam; Woyke, Tanja; Lizotte-Waniewski, Michelle; Bristow, Jim; Riley, Margaret

    2014-01-01

    Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T, was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp). PMID:25197461

  17. Complete Genome sequence of Burkholderia phymatum STM815, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moulin, Lionel; Klonowska, Agnieszka; Caroline, Bournaud

    Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T, was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp)more » and a plasmid hosting the symbiotic functions (595,108 bp).« less

  18. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.

    PubMed

    Braschler, Brigitte; Hill, Jane K

    2007-05-01

    1. Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2. We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18-28.5 degrees C) in populations from core and range margin sites. 3. In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra > or = U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4. Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5. Current range expansion of P. c-album is associated with the exploitation of more widespread host plants on which performance is improved. This study demonstrates how polyphagy may enhance the ability of species to track climate change. Our findings suggest that observed differences in climate-driven range shifts of generalist vs. specialist species may increase in the future and are likely to lead to greatly altered community composition.

  19. Shifts in Host Range of a Promiscuous Plasmid through Parallel Evolution of its Replication Initiation Protein

    PubMed Central

    Sota, Masahiro; Yano, Hirokazu; Hughes, Julie; Daughdrill, Gary W.; Abdo, Zaid; Forney, Larry J.; Top, Eva M.

    2011-01-01

    The ability of bacterial plasmids to adapt to novel hosts and thereby shift their host range is key to their long-term persistence in bacterial communities. Promiscuous plasmids of the IncP-1 group can colonize a wide range of hosts, but it is not known if and how they can contract, shift or further expand their host range. To understand the evolutionary mechanisms of host range shifts of IncP-1 plasmids, an IncP-1β mini-replicon was experimentally evolved in four hosts wherein it was initially unstable. After 1000 generations in serial batch cultures under antibiotic selection for plasmid maintenance (kanamycin resistance), the stability of the mini-plasmid had dramatically improved in all coevolved hosts. However, only plasmids evolved in Shewanella oneidensis showed improved stability in the ancestor, indicating that adaptive mutations had occurred in the plasmid itself. Complete genome sequence analysis of nine independently evolved plasmids showed seven unique plasmid genotypes that had various kinds of single mutations at one locus, namely the N-terminal region of the replication initiation protein TrfA. Such parallel evolution indicates that this region was under strong selection. In five of the seven evolved plasmids these trfA mutations resulted in a significantly higher plasmid copy number. Evolved plasmids were found to be stable in four other naïve hosts, but could no longer replicate in Pseudomonas aeruginosa. This study demonstrates that plasmids can specialize to a novel host through trade-offs between improved stability in the new host and the ability to replicate in a previously permissive host. PMID:20520653

  20. Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria

    PubMed Central

    Taton, Arnaud; Unglaub, Federico; Wright, Nicole E.; Zeng, Wei Yue; Paz-Yepes, Javier; Brahamsha, Bianca; Palenik, Brian; Peterson, Todd C.; Haerizadeh, Farzad; Golden, Susan S.; Golden, James W.

    2014-01-01

    Inspired by the developments of synthetic biology and the need for improved genetic tools to exploit cyanobacteria for the production of renewable bioproducts, we developed a versatile platform for the construction of broad-host-range vector systems. This platform includes the following features: (i) an efficient assembly strategy in which modules released from 3 to 4 donor plasmids or produced by polymerase chain reaction are assembled by isothermal assembly guided by short GC-rich overlap sequences. (ii) A growing library of molecular devices categorized in three major groups: (a) replication and chromosomal integration; (b) antibiotic resistance; (c) functional modules. These modules can be assembled in different combinations to construct a variety of autonomously replicating plasmids and suicide plasmids for gene knockout and knockin. (iii) A web service, the CYANO-VECTOR assembly portal, which was built to organize the various modules, facilitate the in silico construction of plasmids, and encourage the use of this system. This work also resulted in the construction of an improved broad-host-range replicon derived from RSF1010, which replicates in several phylogenetically distinct strains including a new experimental model strain Synechocystis sp. WHSyn, and the characterization of nine antibiotic cassettes, four reporter genes, four promoters, and a ribozyme-based insulator in several diverse cyanobacterial strains. PMID:25074377

  1. A comparison of two embedded programming techniques for high rep rate coherent Doppler lidars

    NASA Astrophysics Data System (ADS)

    Arend, Mark F.; Abdelazim, Sameh; Lopez, Miguel; Moshary, Fred

    2013-05-01

    Two FPGA embedded programming approaches are considered and compared for a 20 kHz pulse repetition rate coherent Doppler lidar system which acquires return signals at 400 Msamples/second and operates with signal to noise ratios as low as -20 dB. In the first approach, the acquired return signal is gated in time and the square modulus of the fast Fourier transform is accumulated for each of the range gates, producing a series of power spectra as a function of range. Wind speed decisions based on numerical estimators can then be made after transferring the range gated accumulated power spectra to a host computer, enabling the line of sight wind speed as a function of range gate to be calculated and stored for additional processing. In the second FPGA approach, a digital IQ demodulator and down sampler reduces the data flow requirements so that an autocorrelation matrix representing a pre-selected number of lags can be accumulated, allowing for the process of range gating to be explored on the host computer. The added feature of the second approach is that it allows for an additional capability to adjust the range gate period dynamically as the state of the atmospheric boundary layer (e.g. backscatter coefficient and stability condition) changes. A simple manual beam scanning technique is used to calculate the wind field vector which is graphically displayed on time-height cross section plots. A comparison to other observed and modeled information is presented suggesting the usefulness for the characterization of microscale meteorology.

  2. Leaf morphophysiology of a Neotropical mistletoe is shaped by seasonal patterns of host leaf phenology.

    PubMed

    Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar

    2016-04-01

    Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.

  3. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, Allan M.

    1996-01-01

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.

  4. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, A.M.

    1997-12-09

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.

  5. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, Allan M.

    1999-01-01

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.

  6. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, A.M.

    1996-08-06

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.

  7. Remote information service access system based on a client-server-service model

    DOEpatents

    Konrad, Allan M.

    1997-01-01

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.

  8. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway

    PubMed Central

    López-Ráez, Juan A.; Verhage, Adriaan; Fernández, Iván; García, Juan M.; Azcón-Aguilar, Concepción; Flors, Victor; Pozo, María J.

    2010-01-01

    Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal characters, and plant hormones are believed to orchestrate the modifications in the host plant. Using tomato as a model, an integrative analysis of the host response to different mycorrhizal fungi was performed combining multiple hormone determination and transcriptional profiling. Analysis of ethylene-, abscisic acid-, salicylic acid-, and jasmonate-related compounds evidenced common and divergent responses of tomato roots to Glomus mosseae and Glomus intraradices, two fungi differing in their colonization abilities and impact on the host. Both hormonal and transcriptional analyses revealed, among others, regulation of the oxylipin pathway during the AM symbiosis and point to a key regulatory role for jasmonates. In addition, the results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses. PMID:20378666

  9. Host range of Caloptilia triadicae (Lepidoptera: Gracillariidae): an adventive herbivore of Chinese tallowtree (Malpighiales: Euphorbiaceae)

    USDA-ARS?s Scientific Manuscript database

    In its native range the invasive weed, Rhodomyrtus tomentosa is host to a suite of herbivores. One, Strepsicrates sp. (Lepidoptera: Tortricidae) was collected in China in 2014, introduced under quarantine in Florida, USA and tested against related species to determine its host range and suitability ...

  10. Monitoring system including an electronic sensor platform and an interrogation transceiver

    DOEpatents

    Kinzel, Robert L.; Sheets, Larry R.

    2003-09-23

    A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.

  11. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carriedmore » out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.« less

  12. G Protein-Coupled Receptor Kinase 2 Promotes Flaviviridae Entry and Replication

    PubMed Central

    Le Sommer, Caroline; Barrows, Nicholas J.; Bradrick, Shelton S.; Pearson, James L.; Garcia-Blanco, Mariano A.

    2012-01-01

    Flaviviruses cause a wide range of severe diseases ranging from encephalitis to hemorrhagic fever. Discovery of host factors that regulate the fate of flaviviruses in infected cells could provide insight into the molecular mechanisms of infection and therefore facilitate the development of anti-flaviviral drugs. We performed genome-scale siRNA screens to discover human host factors required for yellow fever virus (YFV) propagation. Using a 2×2 siRNA pool screening format and a duplicate of the screen, we identified a high confidence list of YFV host factors. To find commonalities between flaviviruses, these candidates were compared to host factors previously identified for West Nile virus (WNV) and dengue virus (DENV). This comparison highlighted a potential requirement for the G protein-coupled receptor kinase family, GRKs, for flaviviral infection. The YFV host candidate GRK2 (also known as ADRBK1) was validated both in siRNA-mediated knockdown HuH-7 cells and in GRK−/− mouse embryonic fibroblasts. Additionally, we showed that GRK2 was required for efficient propagation of DENV and Hepatitis C virus (HCV) indicating that GRK2 requirement is conserved throughout the Flaviviridae. Finally, we found that GRK2 participates in multiple distinct steps of the flavivirus life cycle by promoting both entry and RNA synthesis. Together, our findings identified GRK2 as a novel regulator of flavivirus infection and suggest that inhibition of GRK2 function may constitute a new approach for treatment of flavivirus associated diseases. PMID:23029581

  13. G protein-coupled receptor kinase 2 promotes flaviviridae entry and replication.

    PubMed

    Le Sommer, Caroline; Barrows, Nicholas J; Bradrick, Shelton S; Pearson, James L; Garcia-Blanco, Mariano A

    2012-01-01

    Flaviviruses cause a wide range of severe diseases ranging from encephalitis to hemorrhagic fever. Discovery of host factors that regulate the fate of flaviviruses in infected cells could provide insight into the molecular mechanisms of infection and therefore facilitate the development of anti-flaviviral drugs. We performed genome-scale siRNA screens to discover human host factors required for yellow fever virus (YFV) propagation. Using a 2 × 2 siRNA pool screening format and a duplicate of the screen, we identified a high confidence list of YFV host factors. To find commonalities between flaviviruses, these candidates were compared to host factors previously identified for West Nile virus (WNV) and dengue virus (DENV). This comparison highlighted a potential requirement for the G protein-coupled receptor kinase family, GRKs, for flaviviral infection. The YFV host candidate GRK2 (also known as ADRBK1) was validated both in siRNA-mediated knockdown HuH-7 cells and in GRK(-/-) mouse embryonic fibroblasts. Additionally, we showed that GRK2 was required for efficient propagation of DENV and Hepatitis C virus (HCV) indicating that GRK2 requirement is conserved throughout the Flaviviridae. Finally, we found that GRK2 participates in multiple distinct steps of the flavivirus life cycle by promoting both entry and RNA synthesis. Together, our findings identified GRK2 as a novel regulator of flavivirus infection and suggest that inhibition of GRK2 function may constitute a new approach for treatment of flavivirus associated diseases.

  14. The Single-Nucleotide Resolution Transcriptome of Pseudomonas aeruginosa Grown in Body Temperature

    PubMed Central

    Dandekar, Ajai A.; Edelheit, Sarit; Greenberg, E. Peter; Sorek, Rotem; Lory, Stephen

    2012-01-01

    One of the hallmarks of opportunistic pathogens is their ability to adjust and respond to a wide range of environmental and host-associated conditions. The human pathogen Pseudomonas aeruginosa has an ability to thrive in a variety of hosts and cause a range of acute and chronic infections in individuals with impaired host defenses or cystic fibrosis. Here we report an in-depth transcriptional profiling of this organism when grown at host-related temperatures. Using RNA-seq of samples from P. aeruginosa grown at 28°C and 37°C we detected genes preferentially expressed at the body temperature of mammalian hosts, suggesting that they play a role during infection. These temperature-induced genes included the type III secretion system (T3SS) genes and effectors, as well as the genes responsible for phenazines biosynthesis. Using genome-wide transcription start site (TSS) mapping by RNA-seq we were able to accurately define the promoters and cis-acting RNA elements of many genes, and uncovered new genes and previously unrecognized non-coding RNAs directly controlled by the LasR quorum sensing regulator. Overall we identified 165 small RNAs and over 380 cis-antisense RNAs, some of which predicted to perform regulatory functions, and found that non-coding RNAs are preferentially localized in pathogenicity islands and horizontally transferred regions. Our work identifies regulatory features of P. aeruginosa genes whose products play a role in environmental adaption during infection and provides a reference transcriptional landscape for this pathogen. PMID:23028334

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbanus, Malene L.; Quaile, Andrew T.; Stogios, Peter J.

    Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, tomore » query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila–translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Here, metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.« less

  16. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila

    DOE PAGES

    Urbanus, Malene L.; Quaile, Andrew T.; Stogios, Peter J.; ...

    2016-12-16

    Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, tomore » query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila–translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Here, metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.« less

  17. Host density drives the postglacial migration of the tree parasite, Epifagus virginiana.

    PubMed

    Tsai, Yi-Hsin Erica; Manos, Paul S

    2010-09-28

    To survive changes in climate, successful species shift their geographic ranges to remain in suitable habitats. For parasites and other highly specialized species, distributional changes not only are dictated by climate but can also be engineered by their hosts. The extent of host control on parasite range expansion is revealed through comparisons of host and parasite migration and demographic histories. However, understanding the codistributional history of entire forest communities is complicated by challenges in synthesizing datasets from multiple interacting species of differing datatypes. Here we integrate genetic and fossil pollen datasets from a host-parasite pair; specifically, the population structure of the parasitic plant (Epifagus virginiana) was compared with both its host (Fagus grandifolia) genetic patterns and abundance data from the paleopollen record of the last 21,000 y. Through tests of phylogeographic structure and spatial linear regression models we find, surprisingly, host range changes had little effect on the parasite's range expansion and instead host density is the main driver of parasite spread. Unlike other symbionts that have been used as proxies to track their host's movements, this parasite's migration routes are incongruent with the host and instead reflect the greater importance of host density in this community's assembly. Furthermore, these results confirm predictions of disease ecological models regarding the role of host density in the spread of pathogens. Due to host density constraints, highly specialized species may have low migration capacities and long lag times before colonization of new areas.

  18. The SAGA Survey. I. Satellite Galaxy Populations around Eight Milky Way Analogs

    NASA Astrophysics Data System (ADS)

    Geha, Marla; Wechsler, Risa H.; Mao, Yao-Yuan; Tollerud, Erik J.; Weiner, Benjamin; Bernstein, Rebecca; Hoyle, Ben; Marchi, Sebastian; Marshall, Phil J.; Muñoz, Ricardo; Lu, Yu

    2017-09-01

    We present the survey strategy and early results of the “Satellites Around Galactic Analogs” (SAGA) Survey. The SAGA Survey’s goal is to measure the distribution of satellite galaxies around 100 systems analogous to the Milky Way down to the luminosity of the Leo I dwarf galaxy ({M}r< -12.3). We define a Milky Way analog based on K-band luminosity and local environment. Here, we present satellite luminosity functions for eight Milky-Way-analog galaxies between 20 and 40 Mpc. These systems have nearly complete spectroscopic coverage of candidate satellites within the projected host virial radius down to {r}o< 20.75 using low-redshift gri color criteria. We have discovered a total of 25 new satellite galaxies: 14 new satellite galaxies meet our formal criteria around our complete host systems, plus 11 additional satellites in either incompletely surveyed hosts or below our formal magnitude limit. Combined with 13 previously known satellites, there are a total of 27 satellites around 8 complete Milky-Way-analog hosts. We find a wide distribution in the number of satellites per host, from 1 to 9, in the luminosity range for which there are 5 Milky Way satellites. Standard abundance matching extrapolated from higher luminosities predicts less scatter between hosts and a steeper luminosity function slope than observed. We find that the majority of satellites (26 of 27) are star-forming. These early results indicate that the Milky Way has a different satellite population than typical in our sample, potentially changing the physical interpretation of measurements based only on the Milky Way’s satellite galaxies.

  19. Codon optimization underpins generalist parasitism in fungi

    PubMed Central

    Badet, Thomas; Peyraud, Remi; Mbengue, Malick; Navaud, Olivier; Derbyshire, Mark; Oliver, Richard P; Barbacci, Adelin; Raffaele, Sylvain

    2017-01-01

    The range of hosts that parasites can infect is a key determinant of the emergence and spread of disease. Yet, the impact of host range variation on the evolution of parasite genomes remains unknown. Here, we show that codon optimization underlies genome adaptation in broad host range parasites. We found that the longer proteins encoded by broad host range fungi likely increase natural selection on codon optimization in these species. Accordingly, codon optimization correlates with host range across the fungal kingdom. At the species level, biased patterns of synonymous substitutions underpin increased codon optimization in a generalist but not a specialist fungal pathogen. Virulence genes were consistently enriched in highly codon-optimized genes of generalist but not specialist species. We conclude that codon optimization is related to the capacity of parasites to colonize multiple hosts. Our results link genome evolution and translational regulation to the long-term persistence of generalist parasitism. DOI: http://dx.doi.org/10.7554/eLife.22472.001 PMID:28157073

  20. An Aspartic Protease of the Scabies Mite Sarcoptes scabiei Is Involved in the Digestion of Host Skin and Blood Macromolecules

    PubMed Central

    Mahmood, Wajahat; Viberg, Linda T.; Fischer, Katja; Walton, Shelley F.; Holt, Deborah C.

    2013-01-01

    Background Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. Methodology/Principle Findings We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. Conclusions/Significance The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival. PMID:24244770

  1. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations

    PubMed Central

    Weimer, Paul J.

    2015-01-01

    The ruminal microbial community is remarkably diverse, containing 100s of different bacterial and archaeal species, plus many species of fungi and protozoa. Molecular studies have identified a “core microbiome” dominated by phyla Firmicutes and Bacteroidetes, but also containing many other taxa. The rumen provides an ideal laboratory for studies on microbial ecology and the demonstration of ecological principles. In particular, the microbial community demonstrates both redundancy (overlap of function among multiple species) and resilience (resistance to, and capacity to recover from, perturbation). These twin properties provide remarkable stability that maintains digestive function for the host across a range of feeding and management conditions, but they also provide a challenge to engineering the rumen for improved function (e.g., improved fiber utilization or decreased methane production). Direct ruminal dosing or feeding of probiotic strains often fails to establish the added strains, due to intensive competition and amensalism from the indigenous residents that are well-adapted to the historical conditions within each rumen. Known exceptions include introduced strains that can fill otherwise unoccupied niches, as in the case of specialist bacteria that degrade phytotoxins such as mimosine or fluoroacetate. An additional complicating factor in manipulating the ruminal fermentation is the individuality or host specificity of the microbiota, in which individual animals contain a particular community whose species composition is capable of reconstituting itself, even following a near-total exchange of ruminal contents from another herd mate maintained on the same diet. Elucidation of the interactions between the microbial community and the individual host that establish and maintain this specificity may provide insights into why individual hosts vary in production metrics (e.g., feed efficiency or milk fat synthesis), and how to improve herd performance. PMID:25914693

  2. Arabidopsis thaliana is a susceptible host plant for the holoparasite Cuscuta spec.

    PubMed

    Birschwilks, Mandy; Sauer, Norbert; Scheel, Dierk; Neumann, Stefanie

    2007-10-01

    Arabidopsis thaliana and Cuscuta spec. represent a compatible host-parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host-parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP-ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP-ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP-ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A. thaliana covering the entire range of its genetic diversity, as well as Arabidopsis halleri, were found to be susceptible towards Cuscuta reflexa.

  3. Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host.

    PubMed

    Shan, Hongying; Pasin, Fabio; Tzanetakis, Ioannis E; Simón-Mateo, Carmen; García, Juan Antonio; Rodamilans, Bernardo

    2018-06-01

    The Potyviridae family is a major group of plant viruses that includes c. 200 species, most of which have narrow host ranges. The potyvirid P1 leader proteinase self-cleaves from the remainder of the viral polyprotein and shows large sequence variability linked to host adaptation. P1 proteins can be classified as Type A or Type B on the basis, amongst other things, of their dependence or not on a host factor to develop their protease activity. In this work, we studied Type A proteases from the Potyviridae family, characterizing their host factor requirements. Our in vitro cleavage analyses of potyvirid P1 proteases showed that the N-terminal domain is relevant for host factor interaction and suggested that the C-terminal domain is also involved. In the absence of plant factors, the N-terminal end of Plum pox virus P1 antagonizes protease self-processing. We performed extended deletion mutagenesis analysis to define the N-terminal antagonistic domain of P1. In viral infections, removal of the P1 protease antagonistic domain led to a gain-of-function phenotype, strongly increasing local infection in a non-permissive host. Altogether, our results shed new insights into the adaptation and evolution of potyvirids. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  4. A bitter aftertaste: unintended effects of artificial sweeteners on the gut microbiome.

    PubMed

    Bokulich, Nicholas A; Blaser, Martin J

    2014-11-04

    Intestinal microbial communities regulate a range of host physiological functions, from energy harvest and glucose homeostasis to immune development and regulation. Suez et al. (2014) recently demonstrated that artificial sweeteners alter gut microbial communities, leading to glucose intolerance in both mice and humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. An emergent disease causes directional changes in forest species composition in coastal California

    Treesearch

    Margaret Metz; Kerri Frangioso; Allison Wickland; Ross Meentemeyer; David Rizzo

    2012-01-01

    Non-native forest pathogens can cause dramatic and long-lasting changes to the composition of forests, and these changes may have cascading impacts on community interactions and ecosystem functioning. Phytophthora ramorum, the causal agent of the emergent forest disease sudden oak death (SOD), has a wide host range, but mortality is concentrated in...

  6. The potential for host switching via ecological fitting in the emerald ash borer-host plant system.

    PubMed

    Cipollini, Don; Peterson, Donnie L

    2018-02-27

    The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.

  7. From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.

    PubMed

    Nagler, Christina; Haug, Joachim T

    2015-01-01

    Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Molecular and genomic characterization of pathogenic traits of group A Streptococcus pyogenes

    PubMed Central

    HAMADA, Shigeyuki; KAWABATA, Shigetada; NAKAGAWA, Ichiro

    2015-01-01

    Group A streptococcus (GAS) or Streptococcus pyogenes causes various diseases ranging from self-limiting sore throat to deadly invasive diseases. The genome size of GAS is 1.85–1.9 Mb, and genomic rearrangement has been demonstrated. GAS possesses various surface-associated substances such as hyaluronic capsule, M proteins, and fibronectin/laminin/immunoglobulin-binding proteins. These are related to the virulence and play multifaceted and mutually reflected roles in the pathogenesis of GAS infections. Invasion of GAS into epithelial cells and deeper tissues provokes immune and non-immune defense or inflammatory responses including the recruitment of neutrophils, macrophages, and dendritic cells in hosts. GAS frequently evades host defense mechanisms by using its virulence factors. Extracellular products of GAS may perturb cellular and subcellular functions and degrade tissues enzymatically, which leads to the aggravation of local and/or systemic disorders in the host. In this review, we summarize some important cellular and extracellular substances that may affect pathogenic processes during GAS infections, and the host responses to these. PMID:26666305

  9. A unifying theory for genetic epidemiological analysis of binary disease data

    PubMed Central

    2014-01-01

    Background Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Results Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. Conclusions We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness. PMID:24552188

  10. A unifying theory for genetic epidemiological analysis of binary disease data.

    PubMed

    Lipschutz-Powell, Debby; Woolliams, John A; Doeschl-Wilson, Andrea B

    2014-02-19

    Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness.

  11. When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases

    PubMed Central

    2011-01-01

    Background Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data. Results Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This in silico model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 diabetes mellitus. Conclusions The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases. PMID:21255393

  12. Bartonella entry mechanisms into mammalian host cells.

    PubMed

    Eicher, Simone C; Dehio, Christoph

    2012-08-01

    The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment. © 2012 Blackwell Publishing Ltd.

  13. Evolutionary interpretations of mycobacteriophage biodiversity and host-range through the analysis of codon usage bias.

    PubMed

    Esposito, Lauren A; Gupta, Swati; Streiter, Fraida; Prasad, Ashley; Dennehy, John J

    2016-10-01

    In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis , a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis , but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species.

  14. Evolutionary interpretations of mycobacteriophage biodiversity and host-range through the analysis of codon usage bias

    PubMed Central

    Esposito, Lauren A.; Gupta, Swati; Streiter, Fraida; Prasad, Ashley

    2016-01-01

    In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis, a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis, but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species. PMID:28348827

  15. Genomic Variation, Host Range, and Infection Kinetics of Closely Related Cyanopodoviruses from New England Coastal Waters

    NASA Astrophysics Data System (ADS)

    Veglia, A. J.; Milford, C. R.; Marston, M.

    2016-02-01

    Viruses infecting marine Synechococcus are abundant in coastal marine environments and influence the community composition and abundance of their cyanobacterial hosts. In this study, we focused on the cyanopodoviruses which have smaller genomes and narrower host ranges relative to cyanomyoviruses. While previous studies have compared the genomes of diverse podoviruses, here we analyzed the genomic variation, host ranges, and infection kinetics of podoviruses within the same OTU. The genomes of fifty-five podoviral isolates from the coastal waters of New England were fully sequenced. Based on DNA polymerase gene sequences, these isolates fall into five discrete OTUs (termed RIP - Rhode Island Podovirus). Although all the isolates belonging to the same RIP have very similar DNA polymerase gene sequences (>98% sequence identity), differences in genome content, particularly in regions associated with tail fiber genes, were observed among isolates in the same RIP. Host range tests reveal variation both across and within RIPs. Notably within RIP1, isolates that had similar tail fiber regions also had similar host ranges. Isolates belonging to RIP4 do not contain the host-derived psbA photosynthesis gene, while isolates in the other four RIPs do possess a psbA gene. Nevertheless, infection kinetic experiments suggest that the latent period and burst size for RIP4 isolates are similar to RIP1 isolates. We are continuing to investigate the correlations among genome content, host range, and infection kinetics of isolates belonging to the same OTU. Our results to date suggest that there is substantial genomic variation within an OTU and that this variation likely influences cyanopodoviral - host interactions.

  16. Community assembly of a euryhaline fish microbiome during salinity acclimation.

    PubMed

    Schmidt, Victor T; Smith, Katherine F; Melvin, Donald W; Amaral-Zettler, Linda A

    2015-05-01

    Microbiomes play a critical role in promoting a range of host functions. Microbiome function, in turn, is dependent on its community composition. Yet, how microbiome taxa are assembled from their regional species pool remains unclear. Many possible drivers have been hypothesized, including deterministic processes of competition, stochastic processes of colonization and migration, and physiological 'host-effect' habitat filters. The contribution of each to assembly in nascent or perturbed microbiomes is important for understanding host-microbe interactions and host health. In this study, we characterized the bacterial communities in a euryhaline fish and the surrounding tank water during salinity acclimation. To assess the relative influence of stochastic versus deterministic processes in fish microbiome assembly, we manipulated the bacterial species pool around each fish by changing the salinity of aquarium water. Our results show a complete and repeatable turnover of dominant bacterial taxa in the microbiomes from individuals of the same species after acclimation to the same salinity. We show that changes in fish microbiomes are not correlated with corresponding changes to abundant taxa in tank water communities and that the dominant taxa in fish microbiomes are rare in the aquatic surroundings, and vice versa. Our results suggest that bacterial taxa best able to compete within the unique host environment at a given salinity appropriate the most niche space, independent of their relative abundance in tank water communities. In this experiment, deterministic processes appear to drive fish microbiome assembly, with little evidence for stochastic colonization. © 2015 John Wiley & Sons Ltd.

  17. Lyman-α emitters gone missing: the different evolution of the bright and faint populations

    NASA Astrophysics Data System (ADS)

    Weinberger, Lewis H.; Kulkarni, Girish; Haehnelt, Martin G.; Choudhury, Tirthankar Roy

    2018-06-01

    We model the transmission of the Lyman-α line through the circum- and intergalactic media around dark matter haloes expected to host Lyman-alpha emitters (LAEs) at z ≥ 5.7, using the high-dynamic-range Sherwood simulations. We find very different CGM environments around more massive haloes (˜1011M⊙) compared to less massive haloes (˜109M⊙) at these redshifts, which can contribute to a different evolution of the Lyα transmission from LAEs within these haloes. Additionally we confirm that part of the differential evolution could result from bright LAEs being more likely to reside in larger ionized regions. We conclude that a combination of the CGM environment and the IGM ionization structure is likely to be responsible for the differential evolution of the bright and faint ends of the LAE luminosity function at z ≥ 6. More generally, we confirm the suggestion that the self-shielded neutral gas in the outskirts of the host halo can strongly attenuate the Lyα emission from high redshift galaxies. We find that this has a stronger effect on the more massive haloes hosting brighter LAEs. The faint-end of the LAE luminosity function is thus a more reliable probe of the average ionization state of the IGM. Comparing our model for LAEs with a range of observational data we find that the favoured reionization histories are our previously advocated `Late' and `Very Late' reionization histories, in which reionization finishes rather rapidly at around z ≃ 6.

  18. INTEGRATING PARASITES AND PATHOGENS INTO THE STUDY OF GEOGRAPHIC RANGE LIMITS.

    PubMed

    Bozick, Brooke A; Real, Leslie A

    2015-12-01

    The geographic distributions of all species are limited, and the determining factors that set these limits are of fundamental importance to the fields of ecology and evolutionary biology. Plant and animal ranges have been of primary concern, while those of parasites, which represent much of the Earth's biodiversity, have been neglected. Here, we review the determinants of the geographic ranges of parasites and pathogens, and explore how parasites provide novel systems with which to investigate the ecological and evolutionary processes governing host/parasite spatial distributions. Although there is significant overlap in the causative factors that determine range borders of parasites and free-living species, parasite distributions are additionally constrained by the geographic range and ecology of the host species' population, as well as by evolutionary factors that promote host-parasite coevolution. Recently, parasites have been used to infer population demographic and ecological information about their host organisms and we conclude that this strategy can be further exploited to understand geographic range limitations of both host and parasite populations.

  19. Kupffer cell complement receptor clearance function and host defense.

    PubMed

    Loegering, D J

    1986-01-01

    Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.

  20. Fulfillment of Koch’s postulates and partial host range of Septoria lepidii Desm., a fungal pathogen for potential biological control of hoary cress (Lepidium spp.)

    USDA-ARS?s Scientific Manuscript database

    We have fulfilled Koch’s postulates and conducted host range tests with Septoria lepidii Desm. on five geographical accessions of hoary cress. Host range results showed the fungus specific to Lepidium spp. and damaging to hoary cress. This fungus is potentially an important biological control agent ...

  1. Development of an aggressive bark beetle on novel hosts: Implications for outbreaks in an invaded range

    Treesearch

    Derek W. Rosenberger; Robert C. Venette; Brian H. Aukema; Jörg Müller

    2018-01-01

    Some subcortical insects have devastating effects on native tree communities in new ranges, despite benign interactions with their historical hosts. Examples of how insects, aggressive in their native habitat might respond in novel host environs are less common. One aggressive tree-killing insect undergoing a dramatic range shift is the mountain pine beetle (...

  2. Host and ecology both play a role in shaping distribution of digenean parasites of New Zealand whelks (Gastropoda: Buccinidae: Cominella).

    PubMed

    Donald, Kirsten M; Spencer, Hamish G

    2016-08-01

    Digenean parasites infecting four Cominella whelk species (C. glandiformis, C. adspersa, C. maculosa and C. virgata), which inhabit New Zealand's intertidal zone, were analysed using molecular techniques. Mitochondrial 16S and cytochrome oxidase 1 (COI) and nuclear rDNA ITS1 sequences were used to infer phylogenetic relationships amongst digenea. Host species were parasitized by a diverse range of digenea (Platyhelminthes, Trematoda), representing seven families: Echinostomatidae, Opecoelidae, Microphallidae, Strigeidae and three, as yet, undetermined families A, B and C. Each parasite family infected between one and three host whelk species, and infection levels were typically low (average infection rates ranged from 1·4 to 3·6%). Host specificity ranged from highly species-specific amongst the echinostomes, which were only ever observed infecting C. glandiformis, to the more generalist opecoelids and strigeids, which were capable of infecting three out of four of the Cominella species analysed. Digeneans displayed a highly variable geographic range; for example, echinostomes had a large geographic range stretching the length of New Zealand, from Northland to Otago, whereas Family B parasites were restricted to fairly small areas of the North Island. Our results add to a growing body of research identifying wide ranges in both host specificity and geographic range amongst intertidal, multi-host parasite systems.

  3. Ecological host-range of Lilioceris cheni (Coleoptera: Chrysomelidae), a biological control agent of Dioscorea bulbifera L.

    USDA-ARS?s Scientific Manuscript database

    Open-field host-specificity testing assesses the host-range of a biological control agent in a setting that permits the agent to use its full complement of host-seeking behaviors. This form of testing, particularly when it includes a no-choice phase in which the target weed is killed, may provide th...

  4. MYR1-Dependent Effectors Are the Major Drivers of a Host Cell's Early Response to Toxoplasma, Including Counteracting MYR1-Independent Effects.

    PubMed

    Naor, Adit; Panas, Michael W; Marino, Nicole; Coffey, Michael J; Tonkin, Christopher J; Boothroyd, John C

    2018-04-03

    The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV) by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5) and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma , we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT), RHΔ myr1 , and RHΔ asp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, "hidden" responses arising in RHΔ myr1 - but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite's ability to co-opt host cell functions. IMPORTANCE Toxoplasma gondii is unique in its ability to successfully invade and replicate in a broad range of host species and cells within those hosts. The complex interplay of effector proteins exported by Toxoplasma is key to its success in co-opting the host cell to create a favorable replicative niche. Here we show that a majority of the transcriptomic effects in tachyzoite-infected cells depend on the activity of a novel translocation system involving MYR1 and that the effectors delivered by this system are part of an intricate interplay of activators and suppressors. Removal of all MYR1-dependent effectors reveals previously unknown activities that are masked or hidden by the action of these proteins. Copyright © 2018 Naor et al.

  5. Distributional Patterns of Pseudacteon Associated with the Solenopsis saevissima Complex in South America

    PubMed Central

    Patrock, Richard J. W.; Porter, Sanford D.; Gilbert, Lawrence E.; Folgarait, Patricia J.

    2009-01-01

    Classical biological control efforts against imported fire ants have largely involved the use of Pseudacteon parasitoids. To facilitate further exploration for species and population biotypes a database of collection records for Pseudacteon species was organized, including those from the literature and other sources. These data were then used to map the geographical ranges of species associated with the imported fire ants in their native range in South America. In addition, we found geographical range metrics for all species in the genus and related these metrics to latitude and host use. Approximately equal numbers of Pseudacteon species were found in temperate and tropical regions, though the majority of taxa found only in temperate areas were found in the Northern Hemisphere. No significant differences in sizes of geographical ranges were found between Pseudacteon associated with the different host complexes of fire ants despite the much larger and systemic collection effort associated with the S. saevissima host group. The geographical range of the flies was loosely associated with both the number of hosts and the geographical range of their hosts. Pseudacteon with the most extensive ranges had either multiple hosts or hosts with broad distributions. Mean species richnesses of Pseudacteon in locality species assemblages associated with S. saevissima complex ants was 2.8 species, but intensively sampled locations were usually much higher. Possible factors are discussed related to variation in the size of geographical range, and areas in southern South America are outlined that are likely to have been under-explored for Pseudacteon associated with imported fire ants. PMID:20050779

  6. Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence.

    PubMed

    Xie, Yicheng; Wahab, Laith; Gill, Jason J

    2018-04-12

    Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format.

  7. Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence

    PubMed Central

    Xie, Yicheng; Wahab, Laith

    2018-01-01

    Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format. PMID:29649135

  8. Host selection and lethality of attacks by sea lampreys (Petromyzon marinus) in laboratory studies

    USGS Publications Warehouse

    Swink, William D.

    2003-01-01

    Parasitic-phase sea lampreys (Petromyzon marinus) are difficult to study in the wild. A series of laboratory studies (1984-1995) of single attacks on lake trout (Salvelinus namaycush), rainbow trout (Oncorhynchus mykiss), and burbot (Lota lota) examined host size selection; determined the effects of host size, host species, host strain, and temperature on host mortality; and estimated the weight of hosts killed per lamprey. Rainbow trout were more able and burbot less able to survive attacks than lake trout. Small sea lampreys actively selected the larger of two small hosts; larger sea lampreys attacked larger hosts in proportion to the hosts' body sizes, but actively avoided shorter hosts (a?? 600 mm) when larger were available. Host mortality was significantly less for larger (43-44%) than for smaller hosts (64%). However, the yearly loss of hosts per sea lamprey was less for small hosts (range, 6.8-14.2 kg per sea lamprey) than larger hosts (range, 11.4-19.3 kg per sea lamprey). Attacks at the lower of two temperature ranges (6.1-11.8A?C and 11.1-15.0A?C) did not significantly reduce the percentage of hosts killed (54% vs. 69%, p > 0.21), but longer attachment times at lower temperatures reduced the number of hosts attacked (33 vs. 45), and produced the lowest loss of hosts (6.6 kg per sea lamprey). Low temperature appeared to offset other factors that increase host mortality. Reanalysis of 789 attacks pooled from these studies, using forward stepwise logistic regression, also identified mean daily temperature as the dominant factor affecting host mortality. Observations in Lakes Superior, Huron, and Ontario support most laboratory results.

  9. Duck Interferon-Inducible Transmembrane Protein 3 Mediates Restriction of Influenza Viruses.

    PubMed

    Blyth, Graham A D; Chan, Wing Fuk; Webster, Robert G; Magor, Katharine E

    2016-01-01

    Interferon-inducible transmembrane proteins (IFITMs) can restrict the entry of a wide range of viruses. IFITM3 localizes to endosomes and can potently restrict the replication of influenza A viruses (IAV) and several other viruses that also enter host cells through the endocytic pathway. Here, we investigate whether IFITMs are involved in protection in ducks, the natural host of influenza virus. We identify and sequence duck IFITM1, IFITM2, IFITM3, and IFITM5. Using quantitative PCR (qPCR), we demonstrate the upregulation of these genes in lung tissue in response to highly pathogenic IAV infection by 400-fold, 30-fold, 30-fold, and 5-fold, respectively. We express each IFITM in chicken DF-1 cells and show duck IFITM1 localizes to the cell surface, while IFITM3 localizes to LAMP1-containing compartments. DF-1 cells stably expressing duck IFITM3 (but not IFITM1 or IFITM2) show increased restriction of replication of H1N1, H6N2, and H11N9 IAV strains but not vesicular stomatitis virus. Although duck and human IFITM3 share only 38% identity, critical residues for viral restriction are conserved. We generate chimeric and mutant IFITM3 proteins and show duck IFITM3 does not require its N-terminal domain for endosomal localization or antiviral function; however, this N-terminal end confers endosomal localization and antiviral function on IFITM1. In contrast to mammalian IFITM3, the conserved YXXθ endocytosis signal sequence in the N-terminal domain of duck IFITM3 is not essential for correct endosomal localization. Despite significant structural and amino acid divergence, presumably due to host-virus coevolution, duck IFITM3 is functional against IAV. Immune IFITM genes are poorly conserved across species, suggesting that selective pressure from host-specific viruses has driven this divergence. We wondered whether coevolution between viruses and their natural host would result in the evasion of IFITM restriction. Ducks are the natural host of avian influenza A viruses and display few or no disease symptoms upon infection with most strains, including highly pathogenic avian influenza. We have characterized the duck IFITM locus and identified IFITM3 as an important restrictor of several influenza A viruses, including avian strains. With only 38% amino acid identity to human IFITM3, duck IFITM3 possesses antiviral function against influenza virus. Thus, despite long coevolution of virus and host effectors in the natural host, influenza virus evasion of IFITM3 restriction in ducks is not apparent. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Human gut microbiota community structures in urban and rural populations in Russia

    PubMed Central

    Tyakht, Alexander V.; Kostryukova, Elena S.; Popenko, Anna S.; Belenikin, Maxim S.; Pavlenko, Alexander V.; Larin, Andrey K.; Karpova, Irina Y.; Selezneva, Oksana V.; Semashko, Tatyana A.; Ospanova, Elena A.; Babenko, Vladislav V.; Maev, Igor V.; Cheremushkin, Sergey V.; Kucheryavyy, Yuriy A.; Shcherbakov, Petr L.; Grinevich, Vladimir B.; Efimov, Oleg I.; Sas, Evgenii I.; Abdulkhakov, Rustam A.; Abdulkhakov, Sayar R.; Lyalyukova, Elena A.; Livzan, Maria A.; Vlassov, Valentin V.; Sagdeev, Renad Z.; Tsukanov, Vladislav V.; Osipenko, Marina F.; Kozlova, Irina V.; Tkachev, Alexander V.; Sergienko, Valery I.; Alexeev, Dmitry G.; Govorun, Vadim M.

    2013-01-01

    The microbial community of the human gut has a crucial role in sustaining host homeostasis. High-throughput DNA sequencing has delineated the structural and functional configurations of gut metagenomes in world populations. The microbiota of the Russian population is of particular interest to researchers, because Russia encompasses a uniquely wide range of environmental conditions and ethnogeographical cohorts. Here we conduct a shotgun metagenomic analysis of gut microbiota samples from 96 healthy Russian adult subjects, which reveals novel microbial community structures. The communities from several rural regions display similarities within each region and are dominated by the bacterial taxa associated with the healthy gut. Functional analysis shows that the metabolic pathways exhibiting differential abundance in the novel types are primarily associated with the trade-off between the Bacteroidetes and Firmicutes phyla. The specific signatures of the Russian gut microbiota are likely linked to the host diet, cultural habits and socioeconomic status. PMID:24036685

  11. Harvesting of novel polyhydroxyalkanaote (PHA) synthase encoding genes from a soil metagenome library using phenotypic screening.

    PubMed

    Schallmey, Marcus; Ly, Anh; Wang, Chunxia; Meglei, Gabriela; Voget, Sonja; Streit, Wolfgang R; Driscoll, Brian T; Charles, Trevor C

    2011-08-01

    We previously reported the construction of metagenomic libraries in the IncP cosmid vector pRK7813, enabling heterologous expression of these broad-host-range libraries in multiple bacterial hosts. Expressing these libraries in Sinorhizobium meliloti, we have successfully complemented associated phenotypes of polyhydroxyalkanoate synthesis mutants. DNA sequence analysis of three clones indicates that the complementing genes are homologous to, but substantially different from, known polyhydroxyalkanaote synthase-encoding genes. Thus we have demonstrated the ability to isolate diverse genes for polyhydroxyalkanaote synthesis by functional complementation of defined mutants. Such genes might be of use in the engineering of more efficient systems for the industrial production of bioplastics. The use of functional complementation will also provide a vehicle to probe the genetics of polyhydroxyalkanaote metabolism and its relation to carbon availability in complex microbial assemblages. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Serine Proteases of Parasitic Helminths

    PubMed Central

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-01-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  13. Plasmids foster diversification and adaptation of bacterial populations in soil.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2012-11-01

    It is increasingly being recognized that the transfer of conjugative plasmids across species boundaries plays a vital role in the adaptability of bacterial populations in soil. There are specific driving forces and constraints of plasmid transfer within bacterial communities in soils. Plasmid-mediated genetic variation allows bacteria to respond rapidly with adaptive responses to challenges such as irregular antibiotic or metal concentrations, or opportunities such as the utilization of xenobiotic compounds. Cultivation-independent detection and capture of plasmids from soil bacteria, and complete sequencing have provided new insights into the role and ecology of plasmids. Broad host range plasmids such as those belonging to IncP-1 transfer a wealth of accessory functions which are carried by similar plasmid backbones. Plasmids with a narrower host range can be more specifically adapted to particular species and often transfer genes which complement chromosomally encoded functions. Plasmids seem to be an ancient and successful strategy to ensure survival of a soil population in spatial and temporal heterogeneous conditions with various environmental stresses or opportunities that occur irregularly or as a novel challenge in soil. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis.

    PubMed

    Simpson, A J; Reinach, F C; Arruda, P; Abreu, F A; Acencio, M; Alvarenga, R; Alves, L M; Araya, J E; Baia, G S; Baptista, C S; Barros, M H; Bonaccorsi, E D; Bordin, S; Bové, J M; Briones, M R; Bueno, M R; Camargo, A A; Camargo, L E; Carraro, D M; Carrer, H; Colauto, N B; Colombo, C; Costa, F F; Costa, M C; Costa-Neto, C M; Coutinho, L L; Cristofani, M; Dias-Neto, E; Docena, C; El-Dorry, H; Facincani, A P; Ferreira, A J; Ferreira, V C; Ferro, J A; Fraga, J S; França, S C; Franco, M C; Frohme, M; Furlan, L R; Garnier, M; Goldman, G H; Goldman, M H; Gomes, S L; Gruber, A; Ho, P L; Hoheisel, J D; Junqueira, M L; Kemper, E L; Kitajima, J P; Krieger, J E; Kuramae, E E; Laigret, F; Lambais, M R; Leite, L C; Lemos, E G; Lemos, M V; Lopes, S A; Lopes, C R; Machado, J A; Machado, M A; Madeira, A M; Madeira, H M; Marino, C L; Marques, M V; Martins, E A; Martins, E M; Matsukuma, A Y; Menck, C F; Miracca, E C; Miyaki, C Y; Monteriro-Vitorello, C B; Moon, D H; Nagai, M A; Nascimento, A L; Netto, L E; Nhani, A; Nobrega, F G; Nunes, L R; Oliveira, M A; de Oliveira, M C; de Oliveira, R C; Palmieri, D A; Paris, A; Peixoto, B R; Pereira, G A; Pereira, H A; Pesquero, J B; Quaggio, R B; Roberto, P G; Rodrigues, V; de M Rosa, A J; de Rosa, V E; de Sá, R G; Santelli, R V; Sawasaki, H E; da Silva, A C; da Silva, A M; da Silva, F R; da Silva, W A; da Silveira, J F; Silvestri, M L; Siqueira, W J; de Souza, A A; de Souza, A P; Terenzi, M F; Truffi, D; Tsai, S M; Tsuhako, M H; Vallada, H; Van Sluys, M A; Verjovski-Almeida, S; Vettore, A L; Zago, M A; Zatz, M; Meidanis, J; Setubal, J C

    2000-07-13

    Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis--a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to 47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.

  15. Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin

    PubMed Central

    Kisiela, Dagmara I.; Chattopadhyay, Sujay; Libby, Stephen J.; Karlinsey, Joyce E.; Fang, Ferric C.; Tchesnokova, Veronika; Kramer, Jeremy J.; Beskhlebnaya, Viktoriya; Samadpour, Mansour; Grzymajlo, Krzysztof; Ugorski, Maciej; Lankau, Emily W.; Mackie, Roderick I.; Clegg, Steven; Sokurenko, Evgeni V.

    2012-01-01

    Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella. PMID:22685400

  16. Be together, not the same: Spatiotemporal organization of different cilia types generates distinct transport functions

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Guo, Hanliang; Ruby, Edward; Dabiri, John; McFall-Ngai, Margaret; Kanso, Eva

    2016-11-01

    Motile cilia are microscopic, hair-like structures on the cell surface that can sense and propel the extracellular fluid environment. Cilia are often thought to be limited to stereotypic morphologies, beat kinematics and non-discriminatory clearance functions, but we find that the spatiotemporal organization of different cilia types and beat behaviors can generate complex flow patterns and transport functions. Here, we present a case study in the Hawaiian bobtail squid where collective ciliary activity and resulting flow fields help recruit symbiont bacteria to the animal host. In particular, we demonstrate empirically and computationally how the squid's internal cilia act like a microfluidic device that actively filters the water for potential bacterial candidates and also provides a sheltered zone allowing for accumulation of mucus and bacteria into a biofilm. Moreover, in this sheltered zone, different cilia-driven flows enhance diffusion of biochemical signals, which could accelerate specific bacteria-host recognition. These results suggest that studying cilia activity on the population level might reveal a diverse range of biological transport and sensing functions. Moreover, understanding cilia as functional building blocks could inspire the design of ciliated robots and devices.

  17. Functions of tissue-resident eosinophils.

    PubMed

    Weller, Peter F; Spencer, Lisa A

    2017-12-01

    Eosinophils are a prominent cell type in particular host responses such as the response to helminth infection and allergic disease. Their effector functions have been attributed to their capacity to release cationic proteins stored in cytoplasmic granules by degranulation. However, eosinophils are now being recognized for more varied functions in previously underappreciated diverse tissue sites, based on the ability of eosinophils to release cytokines (often preformed) that mediate a broad range of activities into the local environment. In this Review, we consider evolving insights into the tissue distribution of eosinophils and their functional immunobiology, which enable eosinophils to secrete in a selective manner cytokines and other mediators that have diverse, 'non-effector' functions in health and disease.

  18. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila.

    PubMed

    Urbanus, Malene L; Quaile, Andrew T; Stogios, Peter J; Morar, Mariya; Rao, Chitong; Di Leo, Rosa; Evdokimova, Elena; Lam, Mandy; Oatway, Christina; Cuff, Marianne E; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw P; Taipale, Mikko; Savchenko, Alexei; Ensminger, Alexander W

    2016-12-16

    Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Host-Plant Specialization Mediates the Influence of Plant Abundance on Host Use by Flower Head-Feeding Insects.

    PubMed

    Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário

    2016-02-01

    Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.

  20. Agrobacterium-mediated virus-induced gene silencing assay in cotton.

    PubMed

    Gao, Xiquan; Britt, Robert C; Shan, Libo; He, Ping

    2011-08-20

    Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation(1). To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation(2,3). Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies(3,4). As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development(6), and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves(7), providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton.

  1. Agrobacterium-Mediated Virus-Induced Gene Silencing Assay In Cotton

    PubMed Central

    Gao, Xiquan; Britt Jr., Robert C.; Shan, Libo; He, Ping

    2011-01-01

    Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation1. To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation2,3. Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies3,4. As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development6, and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves7, providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton. PMID:21876527

  2. Host–Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants

    PubMed Central

    Abdullah, Araz S.; Moffat, Caroline S.; Lopez-Ruiz, Francisco J.; Gibberd, Mark R.; Hamblin, John; Zerihun, Ayalsew

    2017-01-01

    Studies of plant–pathogen interactions have historically focused on simple models of infection involving single host-single disease systems. However, plant infections often involve multiple species and/or genotypes and exhibit complexities not captured in single host-single disease systems. Here, we review recent insights into co-infection systems focusing on the dynamics of host-multi-pathogen interactions and the implications for host susceptibility/resistance. In co-infection systems, pathogen interactions include: (i) Competition, in which competing pathogens develop physical barriers or utilize toxins to exclude competitors from resource-dense niches; (ii) Cooperation, whereby pathogens beneficially interact, by providing mutual biochemical signals essential for pathogenesis, or through functional complementation via the exchange of resources necessary for survival; (iii) Coexistence, whereby pathogens can stably coexist through niche specialization. Furthermore, hosts are also able to, actively or passively, modulate niche competition through defense responses that target at least one pathogen. Typically, however, virulent pathogens subvert host defenses to facilitate infection, and responses elicited by one pathogen may be modified in the presence of another pathogen. Evidence also exists, albeit rare, of pathogens incorporating foreign genes that broaden niche adaptation and improve virulence. Throughout this review, we draw upon examples of co-infection systems from a range of pathogen types and identify outstanding questions for future innovation in disease control strategies. PMID:29118773

  3. Spitzer Observations of GRB Hosts: A Legacy Approach

    NASA Astrophysics Data System (ADS)

    Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew

    2012-09-01

    The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).

  4. Host Responses to Malassezia spp. in the Mammalian Skin

    PubMed Central

    Sparber, Florian; LeibundGut-Landmann, Salomé

    2017-01-01

    The skin of mammalian organisms is home for a myriad of microbes. Many of these commensals are thought to have beneficial effects on the host by critically contributing to immune homeostasis. Consequently, dysbiosis can have detrimental effects for the host that may manifest with inflammatory diseases at the barrier tissue. Besides bacteria, fungi make an important contribution to the microbiota and among these, the yeast Malassezia widely dominates in most areas of the skin in healthy individuals. There is accumulating evidence that Malassezia spp. are involved in a variety of skin disorders in humans ranging from non- or mildly inflammatory conditions such as dandruff and pityriasis versicolor to more severe inflammatory skin diseases like seborrheic eczema and atopic dermatitis. In addition, Malassezia is strongly linked to the development of dermatitis and otitis externa in dogs. However, the association of Malassezia spp. with such diseases remains poorly characterized. Until now, studies on the fungus–host interaction remain sparse and they are mostly limited to experiments with isolated host cells in vitro. They suggest a multifaceted crosstalk of Malassezia spp. with the skin by direct activation of the host via conserved pattern recognition receptors and indirectly via the release of fungus-derived metabolites that can modulate the function of hematopoietic and/or non-hematopoietic cells in the barrier tissue. In this review, we discuss our current understanding of the host response to Malassezia spp. in the mammalian skin. PMID:29213272

  5. Host Responses to Malassezia spp. in the Mammalian Skin.

    PubMed

    Sparber, Florian; LeibundGut-Landmann, Salomé

    2017-01-01

    The skin of mammalian organisms is home for a myriad of microbes. Many of these commensals are thought to have beneficial effects on the host by critically contributing to immune homeostasis. Consequently, dysbiosis can have detrimental effects for the host that may manifest with inflammatory diseases at the barrier tissue. Besides bacteria, fungi make an important contribution to the microbiota and among these, the yeast Malassezia widely dominates in most areas of the skin in healthy individuals. There is accumulating evidence that Malassezia spp. are involved in a variety of skin disorders in humans ranging from non- or mildly inflammatory conditions such as dandruff and pityriasis versicolor to more severe inflammatory skin diseases like seborrheic eczema and atopic dermatitis. In addition, Malassezia is strongly linked to the development of dermatitis and otitis externa in dogs. However, the association of Malassezia spp. with such diseases remains poorly characterized. Until now, studies on the fungus-host interaction remain sparse and they are mostly limited to experiments with isolated host cells in vitro . They suggest a multifaceted crosstalk of Malassezia spp. with the skin by direct activation of the host via conserved pattern recognition receptors and indirectly via the release of fungus-derived metabolites that can modulate the function of hematopoietic and/or non-hematopoietic cells in the barrier tissue. In this review, we discuss our current understanding of the host response to Malassezia spp. in the mammalian skin.

  6. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys.

    PubMed

    Quattrini, Andrea M; Demopoulos, Amanda W J

    2016-12-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013-2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494-4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities, our results demonstrate that it occurs widely across a variety of habitats, depths, and locations and is a significant component of deep-sea biodiversity.

  7. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys

    USGS Publications Warehouse

    Quattrini, Andrea; Demopoulos, Amanda W.J.

    2016-01-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013–2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494–4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities, our results demonstrate that it occurs widely across a variety of habitats, depths, and locations and is a significant component of deep-sea biodiversity.

  8. The MVMp P4 promoter is a host cell-type range determinant in vivo.

    PubMed

    Meir, Chen; Mincberg, Michal; Rostovsky, Irina; Tal, Saar; Vollmers, Ellen M; Levi, Adi; Tattersall, Peter; Davis, Claytus

    2017-06-01

    The protoparvovirus early promoters, e.g. P4 of Minute Virus of Mice (MVM), play a critical role during infection. Initial P4 activity depends on the host transcription machinery only. Since this is cell-type dependent, it is hypothesized that P4 is a host cell-type range determinant. Yet host range determinants have mapped mostly to capsid, never P4. Here we test the hypothesis using the mouse embryo as a model system. Disruption of the CRE element of P4 drastically decreased infection levels without altering range. However, when we swapped promoter elements of MVM P4 with those from equivalent regions of the closely related H1 virus, we observed elimination of infection in fibroblasts and chondrocytes and the acquisition of infection in skeletal muscle. We conclude that P4 is a host range determinant and a target for modifying the productive infection potential of the virus - an important consideration in adapting these viruses for oncotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Transient dominant host-range selection using Chinese hamster ovary cells to generate marker-free recombinant viral vectors from vaccinia virus.

    PubMed

    Liu, Liang; Cooper, Tamara; Eldi, Preethi; Garcia-Valtanen, Pablo; Diener, Kerrilyn R; Howley, Paul M; Hayball, John D

    2017-04-01

    Recombinant vaccinia viruses (rVACVs) are promising antigen-delivery systems for vaccine development that are also useful as research tools. Two common methods for selection during construction of rVACV clones are (i) co-insertion of drug resistance or reporter protein genes, which requires the use of additional selection drugs or detection methods, and (ii) dominant host-range selection. The latter uses VACV variants rendered replication-incompetent in host cell lines by the deletion of host-range genes. Replicative ability is restored by co-insertion of the host-range genes, providing for dominant selection of the recombinant viruses. Here, we describe a new method for the construction of rVACVs using the cowpox CP77 protein and unmodified VACV as the starting material. Our selection system will expand the range of tools available for positive selection of rVACV during vector construction, and it is substantially more high-fidelity than approaches based on selection for drug resistance.

  10. Broad host range vectors for expression of proteins with (Twin-) Strep-tag, His-tag and engineered, export optimized yellow fluorescent protein

    PubMed Central

    2013-01-01

    Background In current protein research, a limitation still is the production of active recombinant proteins or native protein associations to assess their function. Especially the localization and analysis of protein-complexes or the identification of modifications and small molecule interaction partners by co-purification experiments requires a controllable expression of affinity- and/or fluorescence tagged variants of a protein of interest in its native cellular background. Advantages of periplasmic and/or homologous expressions can frequently not be realized due to a lack of suitable tools. Instead, experiments are often limited to the heterologous production in one of the few well established expression strains. Results Here, we introduce a series of new RK2 based broad host range expression plasmids for inducible production of affinity- and fluorescence tagged proteins in the cytoplasm and periplasm of a wide range of Gram negative hosts which are designed to match the recently suggested modular Standard European Vector Architecture and database. The vectors are equipped with a yellow fluorescent protein variant which is engineered to fold and brightly fluoresce in the bacterial periplasm following Sec-mediated export, as shown from fractionation and imaging studies. Expression of Strep-tag®II and Twin-Strep-tag® fusion proteins in Pseudomonas putida KT2440 is demonstrated for various ORFs. Conclusion The broad host range constructs we have produced enable good and controlled expression of affinity tagged protein variants for single-step purification and qualify for complex co-purification experiments. Periplasmic export variants enable production of affinity tagged proteins and generation of fusion proteins with a novel engineered Aequorea-based yellow fluorescent reporter protein variant with activity in the periplasm of the tested Gram-negative model bacteria Pseudomonas putida KT2440 and Escherichia coli K12 for production, localization or co-localization studies. In addition, the new tools facilitate metabolic engineering and yield assessment for cytoplasmic or periplasmic protein production in a number of different expression hosts when yields in one initially selected are insufficient. PMID:23687945

  11. One Health and Food-Borne Disease: Salmonella Transmission between Humans, Animals, and Plants.

    PubMed

    Silva, Claudia; Calva, Edmundo; Maloy, Stanley

    2014-02-01

    There are >2,600 recognized serovars of Salmonella enterica. Many of these Salmonella serovars have a broad host range and can infect a wide variety of animals, including mammals, birds, reptiles, amphibians, fish, and insects. In addition, Salmonella can grow in plants and can survive in protozoa, soil, and water. Hence, broad-host-range Salmonella can be transmitted via feces from wild animals, farm animals, and pets or by consumption of a wide variety of common foods: poultry, beef, pork, eggs, milk, fruit, vegetables, spices, and nuts. Broad-host-range Salmonella pathogens typically cause gastroenteritis in humans. Some Salmonella serovars have a more restricted host range that is associated with changes in the virulence plasmid pSV, accumulation of pseudogenes, and chromosome rearrangements. These changes in host-restricted Salmonella alter pathogen-host interactions such that host-restricted Salmonella organisms commonly cause systemic infections and are transmitted between host populations by asymptomatic carriers. The secondary consequences of efforts to eliminate host-restricted Salmonella serovars demonstrate that basic ecological principles govern the environmental niches occupied by these pathogens, making it impossible to thwart Salmonella infections without a clear understanding of the human, animal, and environmental reservoirs of these pathogens. Thus, transmission of S. enterica provides a compelling example of the One Health paradigm because reducing human infections will require the reduction of Salmonella in animals and limitation of transmission from the environment.

  12. Evolution of Gustatory Receptor Gene Family Provides Insights into Adaptation to Diverse Host Plants in Nymphalid Butterflies.

    PubMed

    Suzuki, Hiromu C; Ozaki, Katsuhisa; Makino, Takashi; Uchiyama, Hironobu; Yajima, Shunsuke; Kawata, Masakado

    2018-06-01

    The host plant range of herbivorous insects is a major aspect of insect-plant interaction, but the genetic basis of host range expansion in insects is poorly understood. In butterflies, gustatory receptor genes (GRs) play important roles in host plant selection by ovipositing females. Since several studies have shown associations between the repertoire sizes of chemosensory gene families and the diversity of resource use, we hypothesized that the increase in the number of genes in the GR family is associated with host range expansion in butterflies. Here, we analyzed the evolutionary dynamics of GRs among related species, including the host generalist Vanessa cardui and three specialists. Although the increase of the GR repertoire itself was not observed, we found that the gene birth rate of GRs was the highest in the lineage leading to V. cardui compared with other specialist lineages. We also identified two taxon-specific subfamilies of GRs, characterized by frequent lineage-specific duplications and higher non-synonymous substitution rates. Together, our results suggest that frequent gene duplications in GRs, which might be involved in the detection of plant secondary metabolites, were associated with host range expansion in the V. cardui lineage. These evolutionary patterns imply that the capability to perceive various compounds during host selection was favored during adaptation to diverse host plants.

  13. HOST PLANT UTILIZATION, HOST RANGE OSCILLATIONS AND DIVERSIFICATION IN NYMPHALID BUTTERFLIES: A PHYLOGENETIC INVESTIGATION

    PubMed Central

    Nylin, Sören; Slove, Jessica; Janz, Niklas

    2014-01-01

    It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies. PMID:24372598

  14. Xanthomonas TAL effectors hijack host basal transcription factor IIA α and γ subunits for invasion.

    PubMed

    Ma, Ling; Wang, Qiang; Yuan, Meng; Zou, Tingting; Yin, Ping; Wang, Shiping

    2018-02-05

    The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria, which infect a broad range of crops and wild plant species, cause symptoms with leaf blights, streaks, spots, stripes, necrosis, wilt, cankers and gummosis on leaves, stems and fruits in a wide variety of plants via injecting their effector proteins into the host cell during infection. Among these virulent effectors, transcription activator-like effectors (TALEs) interact with the γ subunit of host transcription factor IIA (TFIIAγ) to activate the transcription of host disease susceptibility genes. Functional TFIIA is a ternary complex comprising α, β and γ subunits. However, whether TALEs recruit TFIIAα, TFIIAβ, or both remains unknown. The underlying molecular mechanisms by which TALEs mediate host susceptibility gene activation require full elucidation. Here, we show that TALEs interact with the α+γ binary subcomplex but not the α+β+γ ternary complex of rice TFIIA (holo-OsTFIIA). The transcription factor binding (TFB) regions of TALEs, which are highly conserved in Xanthomonas species, have a dominant role in these interactions. Furthermore, the interaction between TALEs and the α+γ complex exhibits robust DNA binding activity in vitro. These results collectively demonstrate that TALE-carrying pathogens hijack the host basal transcription factors TFIIAα and TFIIAγ, but not TFIIAβ, to enhance host susceptibility during pathogen infection. The uncovered mechanism widens new insights on host-microbe interaction and provide an applicable strategy to breed high-resistance crop varieties. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Bacterial Pneumonia in Patients with Cancer: Novel Risk Factors and Management.

    PubMed

    Wong, Justin L; Evans, Scott E

    2017-06-01

    Bacterial pneumonias exact unacceptable morbidity on patients with cancer. Although the risk is often most pronounced among patients with treatment-induced cytopenias, the numerous contributors to life-threatening pneumonias in cancer populations range from derangements of lung architecture and swallow function to complex immune defects associated with cytotoxic therapies and graft-versus-host disease. These structural and immunologic abnormalities often make the diagnosis of pneumonia challenging in patients with cancer and impact the composition and duration of therapy. This article addresses host factors that contribute to pneumonia susceptibility, summarizes diagnostic recommendations, and reviews current guidelines for management of bacterial pneumonia in patients with cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Molecular basis of viral and microbial pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rott, R.; Goebel, W.

    1988-01-01

    The contents of this book are: Correlation Between Viroid Structure and Pathogenicty; Antigenicity of the Influenza Haemagglutinia Membrane Glycoprotein; Viral Glycoproteins as Determinants of Pathogenicity; Virus Genes Involved in Host Range and Pathogenicity; Molecular Heterogenetiy of Pathogenic Herpus Viruses; Recombination of Foreign (Viral) DNA with Host Genome: Studies in Vivo and in a Cell-Free system; Disorders of Cellular Neuro-Functions by Persistent Viral Infection; Pathogenic Aspects of Measles Virus-Persistent Infections in Man; Analysis of the Dual Lineage Specificity of E26 Avian Leukemia Virus; Mx Gene Control of Influenza Virus Susceptibility; Shiga and Shika-Like Toxins: A Family of Related Cytokinons; and Molecularmore » Mechanisms of Pathogenicity in Shigella Flexneri.« less

  17. Inhibition of Inflammasome-Dependent Interleukin 1β Production by Streptococcal NAD+-Glycohydrolase: Evidence for Extracellular Activity

    PubMed Central

    Hancz, Dóra; Westerlund, Elsa; Bastiat-Sempe, Benedicte; Sharma, Onkar; Valfridsson, Christine; Meyer, Lena; Love, John F.; O’Seaghdha, Maghnus; Wessels, Michael R.

    2017-01-01

    ABSTRACT Group A Streptococcus (GAS) is a common human pathogen and the etiologic agent of a large number of diseases ranging from mild, self-limiting infections to invasive life-threatening conditions. Two prominent virulence factors of this bacterium are the genetically and functionally linked pore-forming toxin streptolysin O (SLO) and its cotoxin NAD+-glycohydrolase (NADase). Overexpression of these toxins has been linked to increased bacterial virulence and is correlated with invasive GAS disease. NADase can be translocated into host cells by a SLO-dependent mechanism, and cytosolic NADase has been assigned multiple properties such as protection of intracellularly located GAS bacteria and induction of host cell death through energy depletion. Here, we used a set of isogenic GAS mutants and a macrophage infection model and report that streptococcal NADase inhibits the innate immune response by decreasing inflammasome-dependent interleukin 1β (IL-1β) release from infected macrophages. Regulation of IL-1β was independent of phagocytosis and ensued also under conditions not allowing SLO-dependent translocation of NADase into the host cell cytosol. Thus, our data indicate that NADase not only acts intracellularly but also has an immune regulatory function in the extracellular niche. PMID:28720729

  18. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid.

    PubMed

    McClelland, Michael; Sanderson, Kenneth E; Clifton, Sandra W; Latreille, Phil; Porwollik, Steffen; Sabo, Aniko; Meyer, Rekha; Bieri, Tamberlyn; Ozersky, Phil; McLellan, Michael; Harkins, C Richard; Wang, Chunyan; Nguyen, Christine; Berghoff, Amy; Elliott, Glendoria; Kohlberg, Sara; Strong, Cindy; Du, Feiyu; Carter, Jason; Kremizki, Colin; Layman, Dan; Leonard, Shawn; Sun, Hui; Fulton, Lucinda; Nash, William; Miner, Tracie; Minx, Patrick; Delehaunty, Kim; Fronick, Catrina; Magrini, Vincent; Nhan, Michael; Warren, Wesley; Florea, Liliana; Spieth, John; Wilson, Richard K

    2004-12-01

    Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their approximately 4,400 protein coding sequences: 173 in Paratyphi A and approximately 210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).

  19. Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes.

    PubMed

    Li, Youguo; Wexler, Margaret; Richardson, David J; Bond, Philip L; Johnston, Andrew W B

    2005-12-01

    A metagenomic cosmid library was constructed, in which the insert DNA was derived from bacteria in a waste-water treatment plant and the vector was the wide host-range cosmid pLAFR3. The library was screened for clones that could correct defined tryptophan auxotrophs of the alpha-proteobacterium Rhizobium leguminosarum and of Escherichia coli. A total of 26 different cosmids that corrected at least one trp mutant in one or both of these species were obtained. Several cosmids corrected the auxotrophy of one or more R. leguminosarum trp mutants, but not the corresponding mutants in E. coli. Conversely, one cosmid corrected trpA, B, C, D and E mutants of E. coli but none of the trp mutants of R. leguminosarum. Two of the Trp+ cosmids were examined in more detail. One contained a trp operon that resembled that of the pathogen Chlamydophila caviae, containing the unusual kynU gene, which specifies kynureninase. The other, whose trp genes functioned in R. leguminosarum but not in E. coli, contained trpDCFBA in an operon that is likely co-transcribed with five other genes, most of which had no known link with tryptophan synthesis. The sequences of these TRP proteins, and the products of nine other genes encoded by this cosmid, failed to affiliate them with any known bacterial lineage. For one metagenomic cosmid, lac reporter fusions confirmed that its cloned trp genes were transcribed in R. leguminosarum, but not in E. coli. Thus, rhizobia, with their many sigma-factors, may be well-suited hosts for metagenomic libraries, cloned in wide host-range vectors.

  20. Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini.

    PubMed

    Janz, N; Nyblom, K; Nylin, S

    2001-04-01

    Two general patterns that have emerged from the intense studies on insect-host plant associations are a predominance of specialists over generalists and a taxonomic conservatism in host-plant use. In most insect-host plant systems, explanations for these patterns must be based on biases in the processes of host colonizations, host shifts, and specialization, rather than cospeciation. In the present paper, we investigate changes in host range in the nymphalid butterfly tribe Nymphalini, using parsimony optimizations of host-plant data on the butterfly phylogeny. In addition, we performed larval establishment tests to search for larval capacity to feed and survive on plants that have been lost from the female egg-laying repertoire. Optimizations suggested an ancestral association with Urticaceae, and most of the tested species showed a capacity to feed on Urtica dioica regardless of actual host-plant use. In addition, there was a bias among the successful establishments on nonhosts toward plants that are used as hosts by other species in the Nymphalini. An increased likelihood of colonizing ancestral or related plants could also provide an alternative explanation for the observed pattern that some plant families appear to have been colonized independently several times in the tribe. We also show that there is no directionality in host range evolution toward increased specialization, that is, specialization is not a dead end. Instead, changes in host range show a very dynamic pattern.

  1. Parasitism and the biodiversity-functioning relationship

    USGS Publications Warehouse

    Frainer, André; McKie, Brendan G.; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D.

    2018-01-01

    Biodiversity affects ecosystem functioning.Biodiversity may decrease or increase parasitism.Parasites impair individual hosts and affect their role in the ecosystem.Parasitism, in common with competition, facilitation, and predation, could regulate BD-EF relationships.Parasitism affects host phenotypes, including changes to host morphology, behavior, and physiology, which might increase intra- and interspecific functional diversity.The effects of parasitism on host abundance and phenotypes, and on interactions between hosts and the remaining community, all have potential to alter community structure and BD-EF relationships.Global change could facilitate the spread of invasive parasites, and alter the existing dynamics between parasites, communities, and ecosystems.Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions – parasitism – has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite–host interactions should be incorporated into the BD-EF framework.

  2. Host range and community structure of avian nest parasites in the genus Philornis (Diptera: Muscidae) on the island of Trinidad.

    PubMed

    Bulgarella, Mariana; Heimpel, George E

    2015-09-01

    Parasite host range can be influenced by physiological, behavioral, and ecological factors. Combining data sets on host-parasite associations with phylogenetic information of the hosts and the parasites involved can generate evolutionary hypotheses about the selective forces shaping host range. Here, we analyzed associations between the nest-parasitic flies in the genus Philornis and their host birds on Trinidad. Four of ten Philornis species were only reared from one species of bird. Of the parasite species with more than one host bird species, P. falsificus was the least specific and P. deceptivus the most specific attacking only Passeriformes. Philornis flies in Trinidad thus include both specialists and generalists, with varying degrees of specificity within the generalists. We used three quantities to more formally compare the host range of Philornis flies: the number of bird species attacked by each species of Philornis, a phylogenetically informed host specificity index (Poulin and Mouillot's S TD), and a branch length-based S TD. We then assessed the phylogenetic signal of these measures of host range for 29 bird species. None of these measures showed significant phylogenetic signal, suggesting that clades of Philornis did not differ significantly in their ability to exploit hosts. We also calculated two quantities of parasite species load for the birds - the parasite species richness, and a variant of the S TD index based on nodes rather than on taxonomic levels - and assessed the signal of these measures on the bird phylogeny. We did not find significant phylogenetic signal for the parasite species load or the node-based S TD index. Finally, we calculated the parasite associations for all bird pairs using the Jaccard index and regressed these similarity values against the number of nodes in the phylogeny separating bird pairs. This analysis showed that Philornis on Trinidad tend to feed on closely related bird species more often than expected by chance.

  3. From flavoenzymes to devices: The role of electronic effects in recognition

    NASA Astrophysics Data System (ADS)

    Deans, Robert

    Acylated aminopyridines provide models for specific flavoenzyme-cofactor interactions, allowing isolation and observation of the effects of hydrogen bonding on flavin NMR. To determine the relative hydrogen bond affinities of O(2) and O(4) of the flavin, a 2-aminopyridine based receptor was investigated. Additionally, this receptor allowed the effects of hydrogen bonding at O(2) and O(4) on the electron distribution in the flavin nucleus to be determined using sp{13}C NMR. A new family of receptors for flavins based on 6-aryl-2,4-(acyldiamino)-s-triazines was synthesized. In these synthetic hosts, systematic variation of the spatially remote substituents on the 6-aryl ring altered the hydrogen bond donating abilities of the amide functionality and the hydrogen bond accepting properties of the triazine N(3). This variation resulted in a strong modulation of the efficiency of flavin binding, with association constants for the receptor flavin complexes ranging over an 8-fold range. In addition, the communication of electronic information over extended distances was also investigated. Polymers can provide relevant media for the modeling of biological processes, including molecular recognition. To explore this possibility, a diaminotriazine-functionalized polymer was synthesized, starting from Merrifield's peptide resin. This polymer selectively bound a flavin derivative through hydrogen bonding, efficiently extracting it from a chloroform solution, as monitored by UV-vis extraction studies. The temperature profile of this polymer-flavin binding was also investigated and compared to the analogous solution-phase triazine-flavin dyad. Hydrogen bonding and aromatic stacking are fundamental interactions in molecular recognition. These interactions are sensitive to the redox states of the components of the host-guest complex. To explore the interplay of recognition and redox processes, a system consisting of two hosts and one guest, where guest binding interactions (hydrogen bonding and aromatic stacking) were modulated via choice of redox state was examined. Proper choice of receptors then provided a device where the competition between the two hosts was controlled by the redox state of the guest. The efficient reversal of host preference in this assembly provided an electrochemically-controlled three-component, two-pole, molecular switch.

  4. Type III Effector Diversification via Both Pathoadaptation and Horizontal Transfer in Response to a Coevolutionary Arms Race

    PubMed Central

    Ma, Wenbo; Dong, Frederick F. T; Stavrinides, John; Guttman, David S

    2006-01-01

    The concept of the coevolutionary arms race holds a central position in our understanding of pathogen–host interactions. Here we identify the molecular mechanisms and follow the stepwise progression of an arms race in a natural system. We show how the evolution and function of the HopZ family of type III secreted effector proteins carried by the plant pathogen Pseudomonas syringae are influenced by a coevolutionary arms race between pathogen and host. We surveyed 96 isolates of P. syringae and identified three homologs (HopZ1, HopZ2, and HopZ3) distributed among ∼45% of the strains. All alleles were sequenced and their expression was confirmed. Evolutionary analyses determined that the diverse HopZ1 homologs are ancestral to P. syringae, and have diverged via pathoadaptive mutational changes into three functional and two degenerate forms, while HopZ2 and HopZ3 have been brought into P. syringae via horizontal transfer from other ecologically similar bacteria. A PAML selection analysis revealed that the C terminus of HopZ1 is under strong positive selection. Despite the extensive genetic variation observed in this family, all three homologs have cysteine–protease activity, although their substrate specificity may vary. The introduction of the ancestral hopZ1 allele into strains harboring alternate alleles results in a resistance protein-mediated defense response in their respective hosts, which is not observed with the endogenous allele. These data indicate that the P. syringae HopZ family has undergone allelic diversification via both pathoadaptive mutational changes and horizontal transfer in response to selection imposed by the host defense system. This genetic diversity permits the pathogen to avoid host defenses while still maintaining a virulence-associated protease, thereby allowing it to thrive on its current host, while simultaneously impacting its host range. PMID:17194219

  5. Host range diversification within the IncP-1 plasmid group

    PubMed Central

    Yano, Hirokazu; Rogers, Linda M.; Knox, Molly G.; Heuer, Holger; Smalla, Kornelia; Brown, Celeste J.

    2013-01-01

    Broad-host-range plasmids play a critical role in the spread of antibiotic resistance and other traits. In spite of increasing information about the genomic diversity of closely related plasmids, the relationship between sequence divergence and host range remains unclear. IncP-1 plasmids are currently classified into six subgroups based on the genetic distance of backbone genes. We investigated whether plasmids from two subgroups exhibit a different host range, using two IncP-1γ plasmids, an IncP-1β plasmid and their minireplicons. Efficiencies of plasmid establishment and maintenance were compared using five species that belong to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. The IncP-1β plasmid replicated and persisted in all five hosts in the absence of selection. Of the two IncP-1γ plasmids, both were unable to replicate in alphaproteobacterial host Sphingobium japonicum, and one established itself in Agrobacterium tumefaciens but was very unstable. In contrast, both IncP-1γ minireplicons, which produced higher levels of replication initiation protein than the wild-type plasmids, replicated in all strains, suggesting that poor establishment of the native plasmids is in part due to suboptimal replication initiation gene regulation. The findings suggest that host ranges of distinct IncP-1 plasmids only partially overlap, which may limit plasmid recombination and thus result in further genome divergence. PMID:24002747

  6. Canine and feline host ranges of canine parvovirus and feline panleukopenia virus: distinct host cell tropisms of each virus in vitro and in vivo.

    PubMed Central

    Truyen, U; Parrish, C R

    1992-01-01

    Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts. Images PMID:1323703

  7. Has Sarcocystis neurona Dubey et al., 1991 (Sporozoa: Apicomplexa: Sarcocystidae) cospeciated with its intermediate hosts?

    PubMed

    Elsheikha, Hany M

    2009-08-26

    The question of how Sarcocystis neurona is able to overcome species barrier and adapt to new hosts is central to the understanding of both the evolutionary origin of S. neurona and the prediction of its field host range. Therefore, it is worth reviewing current knowledge on S. neurona host specificity. The available host range data for S. neurona are discussed in relation to a subject of evolutionary importance-specialist or generalist and its implications to understand the strategies of host adaptation. Current evidences demonstrate that a wide range of hosts exists for S. neurona. This parasite tends to be highly specific for its definitive host but much less so for its intermediate host (I.H.). The unique specificity of S. neurona for its definitive host may be mediated by a probable long coevolutionary relationship of the parasite and carnivores in a restricted ecological niche 'New World'. This might be taken as evidence that carnivores are the 'original' host group for S. neurona. Rather, the capacity of S. neurona to exploit an unusually large number of I.H. species probably indicates that S. neurona maintains non-specificity to its I.H. as an adaptive response to insure the survival of the parasite in areas in which the 'preferred' host is not available. This review concludes with the view that adaptation of S. neurona to a new host is a complex interplay that involves a large number of determinants.

  8. QSO Narrow [OIII] Line Width and Host Galaxy Luminosity

    NASA Astrophysics Data System (ADS)

    Bonning, E. W.; Shields, G. A.; Salviander, S.

    2004-05-01

    Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Sayantan, E-mail: sayantan_bose@hms.harvard.edu; Jardetzky, Theodore S.; Lamb, Robert A., E-mail: ralamb@northwestern.edu

    The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insightsmore » into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. - Highlights: • New structural and functional insights into paramyxovirus entry mechanisms. • Current data on paramyxovirus glycoproteins suggest a core conserved entry mechanism. • Diverse mechanisms preventing premature fusion activation exist in these viruses. • Precise spacio-temporal interplay between paramyxovirus glycoproteins initiate entry.« less

  10. Robustness trade-offs and host–microbial symbiosis in the immune system

    PubMed Central

    Kitano, Hiroaki; Oda, Kanae

    2006-01-01

    The immune system provides organisms with robustness against pathogen threats, yet it also often adversely affects the organism as in autoimmune diseases. Recently, the molecular interactions involved in the immune system have been uncovered. At the same time, the role of the bacterial flora and its interactions with the host immune system have been identified. In this article, we try to reconcile these findings to draw a consistent picture of the host defense system. Specifically, we first argue that the network of molecular interactions involved in immune functions has a bow-tie architecture that entails inherent trade-offs among robustness, fragility, resource limitation, and performance. Second, we discuss the possibility that commensal bacteria and the host immune system constitute an integrated defense system. This symbiotic association has evolved to optimize its robustness against pathogen attacks and nutrient perturbations by harboring a broad range of microorganisms. Owing to the inherent propensity of a host immune system toward hyperactivity, maintenance of bacterial flora homeostasis might be particularly important in the development of preventive strategies against immune disorders such as autoimmune diseases. PMID:16738567

  11. Application of NMR-based metabolomics to the study of gut microbiota in obesity.

    PubMed

    Calvani, Riccardo; Brasili, Elisa; Praticò, Giulia; Sciubba, Fabio; Roselli, Marianna; Finamore, Alberto; Marini, Federico; Marzetti, Emanuele; Miccheli, Alfredo

    2014-01-01

    Lifestyle habits, host gene repertoire, and alterations in the intestinal microbiota concur to the development of obesity. A great deal of research has recently been focused on investigating the role gut microbiota plays in the pathogenesis of metabolic dysfunctions and increased adiposity. Altered microbiota can affect host physiology through several pathways, including enhanced energy harvest, and perturbations in immunity, metabolic signaling, and inflammatory pathways. A broad range of "omics" technologies is now available to help decipher the interactions between the host and the gut microbiota at detailed genetic and functional levels. In particular, metabolomics--the comprehensive analysis of metabolite composition of biological fluids and tissues--could provide breakthrough insights into the links among the gut microbiota, host genetic repertoire, and diet during the development and progression of obesity. Here, we briefly review the most insightful findings on the involvement of gut microbiota in the pathogenesis of obesity. We also discuss how metabolomic approaches based on nuclear magnetic resonance spectroscopy could help understand the activity of gut microbiota in relation to obesity, and assess the effects of gut microbiota modulation in the treatment of this condition.

  12. Using DFT Methods to Study Activators in Optical Materials

    DOE PAGES

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns 2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for newmore » materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn 4+ activated red phosphors, scintillators activated by Ce 3+, Eu 2+, Tl +, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less

  13. Host tree resistance against the polyphagous

    Treesearch

    W. D. Morewood; K. Hoover; P. R. Neiner; J.R. McNeil; J. C. Sellmer

    2004-01-01

    Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiini) is an invasive wood-boring beetle with an unusually broad host range and a proven ability to increase its host range as it colonizes new areas and encounters new tree species. The beetle is native to eastern Asia and has become an invasive pest in North America and Europe,...

  14. Hosts of stolbur phytoplasmas in maize redness affected fields

    USDA-ARS?s Scientific Manuscript database

    The plant host range of a phytoplasma is strongly dependent on the host range of its insect vector. Maize redness in Serbia is caused by stolbur phytoplasma (subgroup 16SrXII-A) and is transmitted by the cixiid planthoper, Reptalus panzeri (Löw). R. panzeri was the only potential vector found to be ...

  15. A model for the energy band gap of GaSbxAs1-x and InSbxAs1-x in the whole composition range

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Ren, He-Yu; Wei, Tong; Wang, Sha-Sha; Wang, Jun

    2018-04-01

    The band gap evolutions of GaSbxAs1-x and InSbxAs1-x in the whole composition range are investigated. It is found that the band gap evolutions of GaSbxAs1-x and InSbxAs1-x are determined by two factors. One is the impurity-host interaction in the As-rich and Sb-rich composition ranges. The other is the intraband coupling within the conduction band and separately within the valence band in the moderate composition range. Based on the band gap evolutions of GaSbxAs1-x and InSbxAs1-x, a model is established. In addition, it is found that the impurity-host interaction is determined by not only the mismatches in size and electronegativity between the introduced atoms in the host material and the anions of the host material, but also the difference in electronegativity between the introduced atoms in the host material and the cations of the host material.

  16. Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions.

    PubMed

    Wagener, Jeanette; MacCallum, Donna M; Brown, Gordon D; Gow, Neil A R

    2017-01-24

    The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host's arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. The availability and metabolism of amino acids are increasingly recognized as crucial regulators of immune functions. In acute infections, the conversion of the "conditionally essential" amino acid l-arginine by the inducible nitric oxide synthase to nitric oxide is a resistance factor that is produced by the host to fight pathogens. Manipulation of these host defense mechanisms by the pathogen can be key to successful host invasion. We show here that the human opportunistic fungal pathogen Candida albicans influences l-arginine availability for nitric oxide production by induction of the substrate-competing host enzyme arginase-1. This led to a reduced production of nitric oxide and, moreover, reduced eradication of the fungus by human macrophages. We demonstrate that blocking of host arginase-1 activity restored nitric oxide production and increased the killing potential of macrophages. These results highlight the therapeutic potential of l-arginine metabolism in fungal diseases. Copyright © 2017 Wagener et al.

  17. Split Personality of a Potyvirus: To Specialize or Not to Specialize?

    PubMed Central

    Kehoe, Monica A.; Coutts, Brenda A.; Buirchell, Bevan J.; Jones, Roger A. C.

    2014-01-01

    Bean yellow mosaic virus (BYMV), genus Potyvirus, has an extensive natural host range encompassing both dicots and monocots. Its phylogenetic groups were considered to consist of an ancestral generalist group and six specialist groups derived from this generalist group during plant domestication. Recombination was suggested to be playing a role in BYMV's evolution towards host specialization. However, in subsequent phylogenetic analysis of whole genomes, group names based on the original hosts of isolates within each of them were no longer supported. Also, nine groups were found and designated I-IX. Recombination analysis was conducted on the complete coding regions of 33 BYMV genomes and two genomes of the related Clover yellow vein virus (CYVV). This analysis found evidence for 12 firm recombination events within BYMV phylogenetic groups I–VI, but none within groups VII–IX or CYVV. The greatest numbers of recombination events within a sequence (two or three each) occurred in four groups, three which formerly constituted the single ancestral generalist group (I, II and IV), and group VI. The individual sequences in groups III and V had one event each. These findings with whole genomes are consistent with recombination being associated with expanding host ranges, and call into question the proposed role of recombination in the evolution of BYMV, where it was previously suggested to play a role in host specialization. Instead, they (i) indicate that recombination explains the very broad natural host ranges of the three BYMV groups which infect both monocots and dicots (I, II, IV), and (ii) suggest that the three groups with narrow natural host ranges (III, V, VI) which also showed recombination now have the potential to reduce host specificity and broaden their natural host ranges. PMID:25148372

  18. New Hepatitis B Virus of Cranes That Has an Unexpected Broad Host Range

    PubMed Central

    Prassolov, Alexej; Hohenberg, Heinz; Kalinina, Tatyana; Schneider, Carola; Cova, Lucyna; Krone, Oliver; Frölich, Kai; Will, Hans; Sirma, Hüseyin

    2003-01-01

    All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation. PMID:12525630

  19. New hepatitis B virus of cranes that has an unexpected broad host range.

    PubMed

    Prassolov, Alexej; Hohenberg, Heinz; Kalinina, Tatyana; Schneider, Carola; Cova, Lucyna; Krone, Oliver; Frölich, Kai; Will, Hans; Sirma, Hüseyin

    2003-02-01

    All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation.

  20. Is the nestedness of metazoan parasite assemblages of marine fishes from the southeastern Pacific coast a pattern associated with the geographical distributional range of the host?

    PubMed

    González, M T; Oliva, M E

    2009-04-01

    Nested structure is a pattern originally described in island biogeography to characterize how a set of species is distributed among a set of islands. In parasite communities, nestedness has been intensively studied among individual fish from a locality. However, nested patterns among parasite assemblages from different host populations (localities) have scarcely been investigated. We recorded the occurrence of parasites in 9 fish species widely distributed along the southeastern Pacific coast to determine whether the ecto- and endoparasite assemblages of marine fishes show a nested structure associated with host distributional range. Nestedness was tested using Brualdi-Sanderson index of discrepancy (BR); and 5 null models incorporated in a 'Nestedness' programme (Ulrich, 2006). The ecto- and endoparasite richness do not show similar patterns of latitudinal gradients among fish hosts, with 33-66% of analysed ectoparasite assemblages, and 25-75% of endoparasite assemblages showing nested structures through the host distributional range. For ectoparasites, species richness gradients and nested structure (when present) might be associated with decreased host densities or could reflect negative environmental conditions in the distributional border of the host species, whereas for endoparasites might be caused by geographical breaks of prey or changes in prey availability (intermediate hosts). The sampled extension of the distributional range of the host species, as well as the lack of specificity of some parasites, could influence the detection of nestedness.

  1. Association and Host Selectivity in Multi-Host Pathogens

    PubMed Central

    Malpica, José M.; Sacristán, Soledad; Fraile, Aurora; García-Arenal, Fernando

    2006-01-01

    The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens. PMID:17183670

  2. Viral impacts on microbial carbon cycling in thawing permafrost soils

    NASA Astrophysics Data System (ADS)

    Trubl, G. G.; Roux, S.; Bolduc, B.; Jang, H. B.; Emerson, J. B.; Solonenko, N.; Li, F.; Solden, L. M.; Vik, D. R.; Wrighton, K. C.; Saleska, S. R.; Sullivan, M. B.; Rich, V. I.

    2017-12-01

    Permafrost contains 30-50% of global soil carbon (C) and is rapidly thawing. While the fate of this C is unknown, it will be shaped in part by microbes and their associated viruses, which modulate host activities via mortality and metabolic control. To date, viral research in soils has been outpaced by that in aquatic environments, due to the technical challenges of accessing viruses as well as the dramatic physicochemical heterogeneity in soils. Here, we describe advances in soil viromics from our research on permafrost-associated soils, and their implications for associated terrestrial C cycling. First, we optimized viral resuspension-DNA extraction methods for a range of soil types. Second, we applied cutting-edge viral-specific informatics methods to recover viral populations, define their gene content, connect them to potential hosts, and analyze their relationships to environmental parameters. A total of 781 viral populations were recovered from size-fractionated virus samples of three soils along a permafrost thaw gradient. Ecological analyses revealed endemism as recovered viral populations were largely unique to each habitat and unlike those in aquatic communities. Genome- and network-based classification assigned these viruses into 226 viral clusters (VCs; genus-level taxonomy), 55% of which were novel. This increases the number of VCs by a third and triples the number of soil viral populations in the RefSeq database (currently contains 256 VCs and 316 soil viral populations). Genomic analyses revealed 85% of the genes were functionally unknown, though 5% of the annotatable genes contained C-related auxiliary metabolic genes (AMGs; e.g. glycoside hydrolases). Using sequence-based features and microbial population genomes, we were able to in silico predict hosts for 30% of the viral populations. The identified hosts spanned 3 phyla and 6 genera but suggested these viruses have species-specific host ranges as >80% of hosts for a given virus were in the same species. Several identified hosts (e.g. Acidobacterium) are dominant community members that play major roles in C cycling through organic matter degradation. Together these findings show that permafrost viruses play a major role in the fate of soil C through infection of key hosts and metabolic reprogramming using specific C cycling AMGs.

  3. The role of belowground plant-microbe interactions in climate change induced range shifts

    NASA Astrophysics Data System (ADS)

    Ramirez, Kelly; Snoek, Basten; van der Putten, Wim

    2017-04-01

    With climate change, plants have been able to shift their ranges into novel environments were conditions have been made suitable due to warming temperature and changes in precipitation. Much belowground range expansion research has focused on either positive plant-soil interactions, such as AMF symbiosis, or on negative plant-soil interactions, such as pathogens. Less focus has been given to the core microbiome of plant hosts. Many unknowns remain in how the soil microbiome may contribute to plant adaptation to climate change, and how this may feedback to plant-soil interactions and ecosystem functions. Using high-throughput Illumina sequencing we assessed soil and root microbial communities under native and range expanding plant species spanning a north-south latitudinal transect in central Europe. As expected, the soil and root microbiomes are both strongly influenced by the plant species under which they grow. Specifically, about 10% of the microbiome could be related to the host plant species. Interestingly, we found that microbiomes associated with range shifting species are less variable than those associated with native species. Further, the enrichment of microbes in roots (from the soil) is stronger with range expanding species than with native plant species. Our research indicates that the soil and root microbiomes can provide insight into plant range shifts and may be important for plant establishment. Our results are also important at a continental and global level, as ecosystems and plant communities worldwide are effected by climate change induced range-expansions.

  4. Functional Response of Eretmocerus delhiensis on Trialeurodes vaporariorum by Parasitism and Host Feeding

    PubMed Central

    Ebrahimifar, Jafar; Allahyari, Hossein

    2017-01-01

    The parasitoid wasp, Eretmocerus delhiensis (Hymenoptera, Aphelinidae) is a thelytokous and syn-ovigenic parasitoid. To evaluate E. delhiensis as a biocontrol agent in greenhouse, the killing efficiency of this parasitoid by parasitism and host-feeding, were studied. Killing efficiency can be compared by estimation of functional response parameters. Laboratory experiments were performed in controllable conditions to evaluate the functional response of E. delhiensis at eight densities (2, 4, 8, 16, 32, 64, 100, and 120 third nymphal stage) of Trialeurodes vaporariorum (Hemiptera, Aleyrodidae) on two hosts including; tomato and prickly lettuce. The maximum likelihood estimates from regression logistic analysis revealed type II functional response for two host plants and the type of functional response was not affected by host plant. Roger’s model was used to fit the data. The attack rate (a) for E. delhiensis was 0.0286 and 0.0144 per hour on tomato and 0.0434 and 0.0170 per hour on prickly lettuce for parasitism and host feeding, respectively. Furthermore, estimated handling times (Th) were 0.4911 and 1.4453 h on tomato and 0.5713 and 1.5001 h on prickly lettuce for parasitism and host feeding, respectively. Based on 95% confidence interval, functional response parameters were significantly different between the host plants solely in parasitism. Results of this study opens new insight in the host parasitoid interactions, subsequently needs further investigation before utilizing it for management and reduction of greenhouse whitefly. PMID:28423420

  5. Cuckoos host range is associated positively with distribution range and negatively with evolutionary uniqueness.

    PubMed

    Morelli, Federico; Benedetti, Yanina; Møller, Anders Pape; Liang, Wei; Carrascal, Luis M

    2018-05-01

    The evolutionary distinctiveness (ED) score is a measure of phylogenetic isolation that quantifies the evolutionary uniqueness of a species. Here, we compared the ED score of parasitic and non-parasitic cuckoo species world-wide, to understand whether parental care or parasitism represents the largest amount of phylogenetic uniqueness. Next, we focused only on 46 cuckoo species characterized by brood parasitism with a known number of host species, and we explored the associations among ED score, number of host species and breeding range size for these species. We assessed these associations using phylogenetic generalized least squares (PGLS) models, taking into account the phylogenetic signal. Parasitic cuckoo species were not more unique in terms of ED than non-parasitic species. However, we found a significant negative association between the evolutionary uniqueness and host range and a positive correlation between the number of host species and range size of parasitic cuckoos, probably suggesting a passive sampling of hosts by parasitic species as the breeding range broadens. The findings of this study showed that more generalist brood parasites occupied very different positions in a phylogenetic tree, suggesting that they have evolved independently within the Cuculiformes order. Finally, we demonstrated that specialist cuckoo species also represent the most evolutionarily unique species in the order of Cuculiformes. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  6. Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology.

    PubMed

    Sommer, Felix; Bäckhed, Fredrik

    2016-05-01

    Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology. © 2016 WILEY Periodicals, Inc.

  7. Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus.

    PubMed

    Wolfe, Benjamin E; Pringle, Anne

    2012-04-01

    The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.

  8. Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus

    PubMed Central

    Wolfe, Benjamin E; Pringle, Anne

    2012-01-01

    The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world. PMID:22134645

  9. Comparative Transcriptomic Analysis of Rectal Tissue from Beef Steers Revealed Reduced Host Immunity in Escherichia coli O157:H7 Super-Shedders

    PubMed Central

    Wang, Ou; Liang, Guanxiang; McAllister, Tim A.; Plastow, Graham; Stanford, Kim; Selinger, Brent; Guan, Le Luo

    2016-01-01

    Super-shedder cattle are a major disseminator of E. coli O157:H7 into the environment, and the terminal rectum has been proposed as the primary E. coli O157:H7 colonization site. This study aimed to identify host factors that are associated with the super-shedding process by comparing transcriptomic profiles in rectal tissue collected from 5 super-shedder cattle and 4 non-shedder cattle using RNA-Seq. In total, 17,859 ± 354 genes and 399 ± 16 miRNAs were detected, and 11,773 genes were expressed in all animals. Fifty-eight differentially expressed (DE) genes (false discovery rate < 0.05) including 11 up-regulated and 47 down-regulated (log 2 (fold change) ranged from -5.5 to 4.2), and 2 up-regulated DE miRNAs (log 2 (fold change) = 2.1 and 2.5, respectively) were identified in super-shedders compared to non-shedders. Functional analysis of DE genes revealed that 31 down-regulated genes were potentially associated with reduced innate and adaptive immune functions in super-shedders, including 13 lymphocytes membrane receptors, 3 transcription factors and 5 cytokines, suggesting the decreased key host immune functions in the rectal tissue of super-shedders, including decreased quantity and migration of immune cells such as lymphocytes, neutrophils and dendritic cells. The up-regulation of bta-miR-29d-3p and the down regulation of its predicted target gene, regulator of G-protein signaling 13, suggested a potential regulatory role of this miRNA in decreased migration of lymphocytes in super-shedders. Based on these findings, the rectal tissue of super-shedders may inherently exhibit less effective innate and adaptive immune protection. Further study is required to confirm if such effect on host immunity is due to the nature of the host itself or due to actions mediated by E. coli O157:H7. PMID:26959367

  10. Comparative Transcriptomic Analysis of Rectal Tissue from Beef Steers Revealed Reduced Host Immunity in Escherichia coli O157:H7 Super-Shedders.

    PubMed

    Wang, Ou; Liang, Guanxiang; McAllister, Tim A; Plastow, Graham; Stanford, Kim; Selinger, Brent; Guan, Le Luo

    2016-01-01

    Super-shedder cattle are a major disseminator of E. coli O157:H7 into the environment, and the terminal rectum has been proposed as the primary E. coli O157:H7 colonization site. This study aimed to identify host factors that are associated with the super-shedding process by comparing transcriptomic profiles in rectal tissue collected from 5 super-shedder cattle and 4 non-shedder cattle using RNA-Seq. In total, 17,859 ± 354 genes and 399 ± 16 miRNAs were detected, and 11,773 genes were expressed in all animals. Fifty-eight differentially expressed (DE) genes (false discovery rate < 0.05) including 11 up-regulated and 47 down-regulated (log 2 (fold change) ranged from -5.5 to 4.2), and 2 up-regulated DE miRNAs (log 2 (fold change) = 2.1 and 2.5, respectively) were identified in super-shedders compared to non-shedders. Functional analysis of DE genes revealed that 31 down-regulated genes were potentially associated with reduced innate and adaptive immune functions in super-shedders, including 13 lymphocytes membrane receptors, 3 transcription factors and 5 cytokines, suggesting the decreased key host immune functions in the rectal tissue of super-shedders, including decreased quantity and migration of immune cells such as lymphocytes, neutrophils and dendritic cells. The up-regulation of bta-miR-29d-3p and the down regulation of its predicted target gene, regulator of G-protein signaling 13, suggested a potential regulatory role of this miRNA in decreased migration of lymphocytes in super-shedders. Based on these findings, the rectal tissue of super-shedders may inherently exhibit less effective innate and adaptive immune protection. Further study is required to confirm if such effect on host immunity is due to the nature of the host itself or due to actions mediated by E. coli O157:H7.

  11. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?

    PubMed

    Arnold, A Elizabeth; Lutzoni, F

    2007-03-01

    Fungal endophytes are found in asymptomatic photosynthetic tissues of all major lineages of land plants. The ubiquity of these cryptic symbionts is clear, but the scale of their diversity, host range, and geographic distributions are unknown. To explore the putative hyperdiversity of tropical leaf endophytes, we compared endophyte communities along a broad latitudinal gradient from the Canadian arctic to the lowland tropical forest of central Panama. Here, we use molecular sequence data from 1403 endophyte strains to show that endophytes increase in incidence, diversity, and host breadth from arctic to tropical sites. Endophyte communities from higher latitudes are characterized by relatively few species from many different classes of Ascomycota, whereas tropical endophyte assemblages are dominated by a small number of classes with a very large number of endophytic species. The most easily cultivated endophytes from tropical plants have wide host ranges, but communities are dominated by a large number of rare species whose host range is unclear. Even when only the most easily cultured species are considered, leaves of tropical trees represent hotspots of fungal species diversity, containing numerous species not yet recovered from other biomes. The challenge remains to recover and identify those elusive and rarely cultured taxa with narrower host ranges, and to elucidate the ecological roles of these little-known symbionts in tropical forests.

  12. Experience-dependent mushroom body plasticity in butterflies: consequences of search complexity and host range

    PubMed Central

    Janz, Niklas; Schäpers, Alexander; Gamberale-Stille, Gabriella

    2017-01-01

    An ovipositing insect experiences many sensory challenges during her search for a suitable host plant. These sensory challenges become exceedingly pronounced when host range increases, as larger varieties of sensory inputs have to be perceived and processed in the brain. Neural capacities can be exceeded upon information overload, inflicting costs on oviposition accuracy. One presumed generalist strategy to diminish information overload is the acquisition of a focused search during its lifetime based on experiences within the current environment, a strategy opposed to a more genetically determined focus expected to be seen in relative specialists. We hypothesized that a broader host range is positively correlated with mushroom body (MB) plasticity, a brain structure related to learning and memory. To test this hypothesis, butterflies with diverging host ranges (Polygonia c-album, Aglais io and Aglais urticae) were subjected to differential environmental complexities for oviposition, after which ontogenetic MB calyx volume differences were compared among species. We found that the relative generalist species exhibited remarkable plasticity in ontogenetic MB volumes; MB growth was differentially stimulated based on the complexity of the experienced environment. For relative specialists, MB volume was more canalized. All in all, this study strongly suggests an impact of host range on brain plasticity in Nymphalid butterflies. PMID:29093221

  13. Suppression of RNA Silencing by a Plant DNA Virus Satellite Requires a Host Calmodulin-Like Protein to Repress RDR6 Expression

    PubMed Central

    Li, Fangfang; Huang, Changjun; Li, Zhenghe; Zhou, Xueping

    2014-01-01

    In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection. PMID:24516387

  14. Effects of host species and population density on Anoplophora glabripennis flight propensity

    Treesearch

    Joseph A. Francese; David R. Lance; Baode Wang; Zhichun Xu; Alan J. Sawyer; Victor C. Mastro

    2007-01-01

    Anoplophora glabripennis Motschulsky (Coleoptera: Cerambycidae), the Asian longhorned beetle (ALB) is a pest of hardwoods in its native range of China. While the host range of this pest has been studied extensively, its mechanisms for host selection are still unknown. Our goal was to study the factors influencing movement and orientation of adult ALB...

  15. Host specialization in ticks and transmission of tick-borne diseases: a review

    PubMed Central

    McCoy, Karen D.; Léger, Elsa; Dietrich, Muriel

    2013-01-01

    Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock. PMID:24109592

  16. Host specialization in ticks and transmission of tick-borne diseases: a review.

    PubMed

    McCoy, Karen D; Léger, Elsa; Dietrich, Muriel

    2013-01-01

    Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock.

  17. Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host

    PubMed Central

    Paniagua Voirol, Luis R.; Frago, Enric; Kaltenpoth, Martin; Hilker, Monika; Fatouros, Nina E.

    2018-01-01

    The insect’s microbiota is well acknowledged as a “hidden” player influencing essential insect traits. The gut microbiome of butterflies and moths (Lepidoptera) has been shown to be highly variable between and within species, resulting in a controversy on the functional relevance of gut microbes in this insect order. Here, we aim to (i) review current knowledge on the composition of gut microbial communities across Lepidoptera and (ii) elucidate the drivers of the variability in the lepidopteran gut microbiome and provide an overview on (iii) routes of transfer and (iv) the putative functions of microbes in Lepidoptera. To find out whether Lepidopterans possess a core gut microbiome, we compared studies of the microbiome from 30 lepidopteran species. Gut bacteria of the Enterobacteriaceae, Bacillaceae, and Pseudomonadaceae families were the most widespread across species, with Pseudomonas, Bacillus, Staphylococcus, Enterobacter, and Enterococcus being the most common genera. Several studies indicate that habitat, food plant, and age of the host insect can greatly impact the gut microbiome, which contributes to digestion, detoxification, or defense against natural enemies. We mainly focus on the gut microbiome, but we also include some examples of intracellular endosymbionts. These symbionts are present across a broad range of insect taxa and are known to exert different effects on their host, mostly including nutrition and reproductive manipulation. Only two intracellular bacteria genera (Wolbachia and Spiroplasma) have been reported to colonize reproductive tissues of Lepidoptera, affecting their host’s reproduction. We explore routes of transmission of both gut microbiota and intracellular symbionts and have found that these microbes may be horizontally transmitted through the host plant, but also vertically via the egg stage. More detailed knowledge about the functions and plasticity of the microbiome in Lepidoptera may provide novel leads for the control of lepidopteran pest species. PMID:29636736

  18. Complete Host Range Testing on Common Reed with Potential Biological Control Agents and Investigation into Biological Control for Flowering Rush

    DTIC Science & Technology

    2016-07-01

    ER D C/ EL C R- 16 -5 Aquatic Plant Control Research Program Complete Host Range Testing on Common Reed with Potential Biological...client/default. Aquatic Plant Control Research Program ERDC/EL CR-16-5 July 2016 Complete Host Range Testing on Common Reed with Potential...and started with sequential no-choice oviposition tests. So far, no eggs were found on any of the 22 test plants offered. The authors also found the

  19. Functional sensorial complementation during host orientation in an Asilidae parasitoid larva.

    PubMed

    Pueyrredon, J M; Crespo, J E; Castelo, M K

    2017-10-01

    Changes in environmental conditions influence the performance of organisms in every aspect of their life. Being capable of accurately sensing these changes allow organisms to better adapt. The detection of environmental conditions involves different sensory modalities. There are many studies on the morphology of different sensory structures but not so many studies showing their function. Here we studied the morphology of different sensory structures in the larva of a dipteran parasitoid. We occluded the putative sensory structures coupling the morphology with their function. First, we could develop a non-invasive method in which we occluded the putative sensorial structures annulling their function temporarily. Regarding their functionality, we found that larvae of Mallophora ruficauda require simultaneously of the sensilla found both in the antennae and those of the maxillary palps in order to orient to its host. When either both antennae or both maxillary palps were occluded, no orientation to the host was observed. We also found that these structures are not involved in the acceptance of the host because high and similar proportion of parasitized hosts was found in host acceptance experiments. We propose that other sensilla could be involved in host acceptance and discuss how the different sensilla in the antennae and maxillary palps complement each other to provide larvae with the information for locating its host.

  20. Food for contagion: synthesis and future directions for studying host-parasite responses to resource shifts in anthropogenic environments.

    PubMed

    Altizer, Sonia; Becker, Daniel J; Epstein, Jonathan H; Forbes, Kristian M; Gillespie, Thomas R; Hall, Richard J; Hawley, Dana M; Hernandez, Sonia M; Martin, Lynn B; Plowright, Raina K; Satterfield, Dara A; Streicker, Daniel G

    2018-05-05

    Human-provided resource subsidies for wildlife are diverse, common and have profound consequences for wildlife-pathogen interactions, as demonstrated by papers in this themed issue spanning empirical, theoretical and management perspectives from a range of study systems. Contributions cut across scales of organization, from the within-host dynamics of immune function, to population-level impacts on parasite transmission, to landscape- and regional-scale patterns of infection. In this concluding paper, we identify common threads and key findings from author contributions, including the consequences of resource subsidies for (i) host immunity; (ii) animal aggregation and contact rates; (iii) host movement and landscape-level infection patterns; and (iv) interspecific contacts and cross-species transmission. Exciting avenues for future work include studies that integrate mechanistic modelling and empirical approaches to better explore cross-scale processes, and experimental manipulations of food resources to quantify host and pathogen responses. Work is also needed to examine evolutionary responses to provisioning, and ask how diet-altered changes to the host microbiome influence infection processes. Given the massive public health and conservation implications of anthropogenic resource shifts, we end by underscoring the need for practical recommendations to manage supplemental feeding practices, limit human-wildlife conflicts over shared food resources and reduce cross-species transmission risks, including to humans.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).

  1. RNA trafficking in parasitic plant systems

    PubMed Central

    LeBlanc, Megan; Kim, Gunjune; Westwood, James H.

    2012-01-01

    RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs, and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host–parasite connections and the potential significance of host RNAs for the parasite. Additional research on host–parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking. PMID:22936942

  2. Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage-host interactions.

    PubMed

    Colangelo-Lillis, Jesse R; Deming, Jody W

    2013-01-01

    The 104 kb genome of cold-active bacteriophage 9A, which replicates in the marine psychrophilic gamma-proteobacterium Colwellia psychrerythraea strain 34H (between -12 and 8 °C), was sequenced and analyzed to investigate elements of molecular adaptation to low temperature and phage-host interactions in the cold. Most characterized ORFs indicated closest similarity to gamma-proteobacteria and their phages, though no single module provided definitive phylogenetic grouping. A subset of primary structural features linked to psychrophily suggested that the majority of annotated phage proteins were not psychrophilic; those that were, primarily serve phage-specific functions and may also contribute to 9A's restricted temperature range for replication as compared to host. Comparative analyses suggest ribonucleotide reductase genes were acquired laterally from host. Neither restriction modification nor the CRISPR-Cas system appeared to be the predominant phage defense mechanism of Cp34H or other cold-adapted bacteria; we hypothesize that psychrophilic hosts rely more on the use of extracellular polymeric material to block cell surface receptors recognized by phages. The relative dearth of evidence for genome-specific defenses, genetic transfer events or auxiliary metabolic genes suggest that the 9A-Cp34H system may be less tightly coupled than are other genomically characterized marine phage-host systems, with possible implications for phage specificity under different environmental conditions.

  3. A few good reasons why species-area relationships do not work for parasites.

    PubMed

    Strona, Giovanni; Fattorini, Simone

    2014-01-01

    Several studies failed to find strong relationships between the biological and ecological features of a host and the number of parasite species it harbours. In particular, host body size and geographical range are generally only weak predictors of parasite species richness, especially when host phylogeny and sampling effort are taken into account. These results, however, have been recently challenged by a meta-analytic study that suggested a prominent role of host body size and range extent in determining parasite species richness (species-area relationships). Here we argue that, in general, results from meta-analyses should not discourage researchers from investigating the reasons for the lack of clear patterns, thus proposing a few tentative explanations to the fact that species-area relationships are infrequent or at least difficult to be detected in most host-parasite systems. The peculiar structure of host-parasite networks, the enemy release hypothesis, the possible discrepancy between host and parasite ranges, and the evolutionary tendency of parasites towards specialization may explain why the observed patterns often do not fit those predicted by species-area relationships.

  4. Identification of Specialists and Abundance-Occupancy Relationships among Intestinal Bacteria of Aves, Mammalia, and Actinopterygii.

    PubMed

    Green, Hyatt C; Fisher, Jenny C; McLellan, Sandra L; Sogin, Mitchell L; Shanks, Orin C

    2015-12-28

    The coalescence of next-generation DNA sequencing methods, ecological perspectives, and bioinformatics analysis tools is rapidly advancing our understanding of the evolution and function of vertebrate-associated bacterial communities. Delineation of host-microbe associations has applied benefits ranging from clinical treatments to protecting our natural waters. Microbial communities follow some broad-scale patterns observed for macroorganisms, but it remains unclear how the specialization of intestinal vertebrate-associated communities to a particular host environment influences broad-scale patterns in microbial abundance and distribution. We analyzed the V6 region of 16S rRNA genes amplified from 106 fecal samples spanning Aves, Mammalia, and Actinopterygii (ray-finned fish). We investigated the interspecific abundance-occupancy relationship, where widespread taxa tend to be more abundant than narrowly distributed taxa, among operational taxonomic units (OTUs) within and among host species. In a separate analysis, we identified specialist OTUs that were highly abundant in a single host and rare in all other hosts by using a multinomial model without excluding undersampled OTUs a priori. We show that intestinal microbes in humans and other vertebrates display abundance-occupancy relationships, but because intestinal host-associated communities have undergone intense specialization, this trend is violated by a disproportionately large number of specialist taxa. Although it is difficult to distinguish the effects of dispersal limitations, host selection, historical contingency, and stochastic processes on community assembly, results suggest that intestinal bacteria can be shared among diverse hosts in ways that resemble the distribution of "free-living" bacteria in the extraintestinal environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Expression patterns of bark beetle cytochromes P450 during host colonization: Likely physiological functions and potential targets for pest management

    Treesearch

    Dezene P. W. Huber; Melissa Erickson; Christian Leutenegger; Joerg Bohlmann; Steven J. Seybold

    2007-01-01

    Cytochromes P450 family genes (P450s) are found in a diverse array of organisms ranging from bacteria to mammals to plants to arthropods. Although there are exceptions to this rule, organisms generally contain a fairly large number of P450 genes and pseudogenes in their genomes. For instance, among arthropods whose genomes are well characterized, the mosquito,

  6. The roles of geography and founder effects in promoting host-associated differentiation in the generalist bogus yucca moth Prodoxus decipiens.

    PubMed

    Darwell, C T; Fox, K A; Althoff, D M

    2014-12-01

    There is ample evidence that host shifts in plant-feeding insects have been instrumental in generating the enormous diversity of insects. Changes in host use can cause host-associated differentiation (HAD) among populations that may lead to reproductive isolation and eventual speciation. The importance of geography in facilitating this process remains controversial. We examined the geographic context of HAD in the wide-ranging generalist yucca moth Prodoxus decipiens. Previous work demonstrated HAD among sympatric moth populations feeding on two different Yucca species occurring on the barrier islands of North Carolina, USA. We assessed the genetic structure of P. decipiens across its entire geographic and host range to determine whether HAD is widespread in this generalist herbivore. Population genetic analyses of microsatellite and mtDNA sequence data across the entire range showed genetic structuring with respect to host use and geography. In particular, genetic differentiation was relatively strong between mainland populations and those on the barrier islands of North Carolina. Finer scale analyses, however, among sympatric populations using different host plant species only showed significant clustering based on host use for populations on the barrier islands. Mainland populations did not form population clusters based on host plant use. Reduced genetic diversity in the barrier island populations, especially on the derived host, suggests that founder effects may have been instrumental in facilitating HAD. In general, results suggest that the interplay of local adaptation, geography and demography can determine the tempo of HAD. We argue that future studies should include comprehensive surveys across a wide range of environmental and geographic conditions to elucidate the contribution of various processes to HAD. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  7. Probiotics: properties, examples, and specific applications.

    PubMed

    Behnsen, Judith; Deriu, Elisa; Sassone-Corsi, Martina; Raffatellu, Manuela

    2013-03-01

    Probiotics are beneficial components of the microbiota that have been used for centuries because of the health benefits they confer to the host. Only recently, however, has the contribution of probiotics to modulation of immunological, respiratory, and gastrointestinal functions started to be fully appreciated and scientifically evaluated. Probiotics such as Escherichia coli Nissle 1917 and lactic acid bacteria are currently used to, or have been evaluated for use to, prevent or treat a range of intestinal maladies including inflammatory bowel disease, constipation, and colon cancer. Engineering these natural probiotics to produce immunomodulatory molecules may help to further increase the benefit to the host. In this article, we will discuss some of the mechanisms of action of probiotics as well as advances in the rational design of probiotics.

  8. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition.

    PubMed

    Tang, Cong; Qian, Zhaosheng; Huang, Yuanyuan; Xu, Jiamin; Ao, Hang; Zhao, Meizhi; Zhou, Jin; Chen, Jianrong; Feng, Hui

    2016-09-15

    A convenient, reliable and highly sensitive assay for alkaline phosphatase (ALP) activity in the real-time manner is developed based on β-cyclodextrin-modified carbon quantum dots (β-CD-CQDs) nanoprobe through specific host-guest recognition. Carbon quantum dots were first functionalized with 3-aminophenyl boronic acid to produce boronic acid-functionalized CQDs, and then further modified with hydropropyl β-cyclodextrins (β-CD) through B-O bonds to form β-CD-CQDs nanoprobe. p-Nitrophenol phosphate disodium salt is used as the substrate of ALP, and can hydrolyze to p-nitrophenol under the catalysis of ALP. The resulting p-nitrophenol can enter the cavity of β-CD moiety in the nanoprobe due to their specific host-guest recognition, where photoinduced electron transfer process between p-nitrophenol and CQDs takes place to efficiently quench the fluorescence of the probe. The correlation between quenched fluorescence and ALP level can be used to establish quantitative evaluation of ALP activity in a broad range from 3.4 to 100.0U/L with the detection limit of 0.9U/L. This assay shows a high sensitivity to ALP even in the presence of a very high concentration of glucose. This study demonstrates a good electron donor/acceptor pair, which can be used to design general detection strategy through PET process, and also broadens the application of host-guest recognition for enzymes detection in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Genome and transcriptome adaptation accompanying emergence of the definitive type 2 host-restricted Salmonella enterica serovar Typhimurium pathovar.

    PubMed

    Kingsley, Robert A; Kay, Sally; Connor, Thomas; Barquist, Lars; Sait, Leanne; Holt, Kathryn E; Sivaraman, Karthi; Wileman, Thomas; Goulding, David; Clare, Simon; Hale, Christine; Seshasayee, Aswin; Harris, Simon; Thomson, Nicholas R; Gardner, Paul; Rabsch, Wolfgang; Wigley, Paul; Humphrey, Tom; Parkhill, Julian; Dougan, Gordon

    2013-08-27

    Salmonella enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to Columba livia (rock or feral pigeon) but is also closely related to S. Typhimurium isolates that circulate in livestock and cause a zoonosis characterized by gastroenteritis in humans. DT2 isolates formed a distinct phylogenetic cluster within S. Typhimurium based on whole-genome-sequence polymorphisms. Comparative genome analysis of DT2 94-213 and S. Typhimurium SL1344, DT104, and D23580 identified few differences in gene content with the exception of variations within prophages. However, DT2 94-213 harbored 22 pseudogenes that were intact in other closely related S. Typhimurium strains. We report a novel in silico approach to identify single amino acid substitutions in proteins that have a high probability of a functional impact. One polymorphism identified using this method, a single-residue deletion in the Tar protein, abrogated chemotaxis to aspartate in vitro. DT2 94-213 also exhibited an altered transcriptional profile in response to culture at 42°C compared to that of SL1344. Such differentially regulated genes included a number involved in flagellum biosynthesis and motility. IMPORTANCE Whereas Salmonella enterica serovar Typhimurium can infect a wide range of animal species, some variants within this serovar exhibit a more limited host range and altered disease potential. Phylogenetic analysis based on whole-genome sequences can identify lineages associated with specific virulence traits, including host adaptation. This study represents one of the first to link pathogen-specific genetic signatures, including coding capacity, genome degradation, and transcriptional responses to host adaptation within a Salmonella serovar. We performed comparative genome analysis of reference and pigeon-adapted definitive type 2 (DT2) S. Typhimurium isolates alongside phenotypic and transcriptome analyses, to identify genetic signatures linked to host adaptation within the DT2 lineage.

  10. The Effects of Captivity on the Mammalian Gut Microbiome

    PubMed Central

    McKenzie, Valerie J.; Song, Se Jin; Delsuc, Frédéric; Prest, Tiffany L.; Oliverio, Angela M.; Korpita, Timothy M.; Alexiev, Alexandra; Amato, Katherine R.; Metcalf, Jessica L.; Kowalewski, Martin; Avenant, Nico L.; Link, Andres; Di Fiore, Anthony; Seguin-Orlando, Andaine; Feh, Claudia; Orlando, Ludovic; Mendelson, Joseph R.; Sanders, Jon; Knight, Rob

    2017-01-01

    Synopsis Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host. PMID:28985326

  11. Functional paralysis of GM-CSF-derived bone marrow cells productively infected with ectromelia virus.

    PubMed

    Szulc-Dąbrowska, Lidia; Struzik, Justyna; Ostrowska, Agnieszka; Guzera, Maciej; Toka, Felix N; Bossowska-Nowicka, Magdalena; Gieryńska, Małgorzata M; Winnicka, Anna; Nowak, Zuzanna; Niemiałtowski, Marek G

    2017-01-01

    Ectromelia virus (ECTV) is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV). ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response. In the present study we investigated the influence of ECTV infection on immune functions of murine GM-CSF-derived bone marrow cells (GM-BM), comprised of conventional dendritic cells (cDCs) and macrophages. Our results showed for the first time that ECTV is able to replicate productively in GM-BM and severely impaired their innate and adaptive immune functions. Infected GM-BM exhibited dramatic changes in morphology and increased apoptosis during the late stages of infection. Moreover, GM-BM cells were unable to uptake and process antigen, reach full maturity and mount a proinflammatory response. Inhibition of cytokine/chemokine response may result from the alteration of nuclear translocation of NF-κB, IRF3 and IRF7 transcription factors and down-regulation of many genes involved in TLR, RLR, NLR and type I IFN signaling pathways. Consequently, GM-BM show inability to stimulate proliferation of purified allogeneic CD4+ T cells in a primary mixed leukocyte reaction (MLR). Taken together, our data clearly indicate that ECTV induces immunosuppressive mechanisms in GM-BM leading to their functional paralysis, thus compromising their ability to initiate downstream T-cell activation events.

  12. Parasitism genes and host range disparities in biotrophic nematodes: the conundrum of polyphagy versus specialisation.

    PubMed

    Blok, Vivian C; Jones, John T; Phillips, Mark S; Trudgill, David L

    2008-03-01

    This essay considers biotrophic cyst and root-knot nematodes in relation to their biology, host-parasite interactions and molecular genetics. These nematodes have to face the biological consequences of the physical constraints imposed by the soil environment in which they live while their hosts inhabit both above and below ground environments. The two groups of nematodes appear to have adopted radically different solutions to these problems with the result that one group is a host specialist and reproduces sexually while the other has an enormous host range and reproduces by mitotic parthenogenesis. We consider what is known about the modes of parasitism used by these nematodes and how it relates to their host range, including the surprising finding that parasitism genes in both nematode groups have been recruited from bacteria. The nuclear and mitochondrial genomes of these two nematode groups are very different and we consider how these findings relate to the biology of the organisms.

  13. Spread of butternut canker in North America, host range, evidence of resistance within butternut populations and conservation genetics

    Treesearch

    M. E. Ostry; K. Woeste

    2004-01-01

    Butternut canker is killing trees throughout the range of butternut in North America and is threatening the viability of many populations in several areas. Although butternut is the primary host, other Juglans species and some hardwood species also are potential hosts. Evidence is building that genetic resistance within butternut populations may be...

  14. Molecular and Morphological Analysis Reveals Five New Species of Zygophiala Associated with Flyspeck Signs on Plant Hosts from China

    PubMed Central

    Gao, Liu; Zhang, Mian; Zhao, Wanyu; Hao, Lu; Chen, Hongcai; Zhang, Rong; Batzer, Jean C.; Gleason, Mark L.; Sun, Guangyu

    2014-01-01

    Species in the genus Zygophiala are associated with sooty blotch and flyspeck disease on a wide range of hosts. In this study, 63 Zygophiala isolates collected from flyspeck colonies on a range of plants from several regions of China were used for phylogeny, host range and geographic distribution analysis. Phylogenetic trees were constructed on four genes - internal transcribed spacer (ITS), partial translation elongation factor 1-alpha (TEF), β-tubulin (TUB2), and actin (ACT) – both individually and in combination. Isolates were grouped into 11 clades among which five new species, Z. emperorae, Z. trispora, Z. musae, Z. inaequalis and Z. longispora, were described. Species of Zygophiala differed in observed host range and geographic distribution. Z. wisconsinensis and Z. emperorae were the most prevalent throughout the sampled regions of China, whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were collected only in southern China. The hosts of Z. wisconsinensis and Z. emperorae were mainly in the family Rosaceae whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were found mainly on banana (Musa spp.). Cross inoculation tests provided evidence of host specificity among SBFS species. PMID:25329930

  15. Comparing Microbiome Sampling Methods in a Wild Mammal: Fecal and Intestinal Samples Record Different Signals of Host Ecology, Evolution

    PubMed Central

    Ingala, Melissa R.; Simmons, Nancy B.; Wultsch, Claudia; Krampis, Konstantinos; Speer, Kelly A.; Perkins, Susan L.

    2018-01-01

    The gut microbiome is a community of host-associated symbiotic microbes that fulfills multiple key roles in host metabolism, immune function, and tissue development. Given the ability of the microbiome to impact host fitness, there is increasing interest in studying the microbiome of wild animals to better understand these communities in the context of host ecology and evolution. Human microbiome research protocols are well established, but wildlife microbiome research is still a developing field. Currently, there is no standardized set of best practices guiding the collection of microbiome samples from wildlife. Gut microflora are typically sampled either by fecal collection, rectal swabbing, or by destructively sampling the intestinal contents of the host animal. Studies rarely include more than one sampling technique and no comparison of these methods currently exists for a wild mammal. Although some studies have hypothesized that the fecal microbiome is a nested subset of the intestinal microbiome, this hypothesis has not been formally tested. To address these issues, we examined guano (feces) and distal intestinal mucosa from 19 species of free-ranging bats from Lamanai, Belize, using 16S rRNA amplicon sequencing to compare microbial communities across sample types. We found that the diversity and composition of intestine and guano samples differed substantially. In addition, we conclude that signatures of host evolution are retained by studying gut microbiomes based on mucosal tissue samples, but not fecal samples. Conversely, fecal samples retained more signal of host diet than intestinal samples. These results suggest that fecal and intestinal sampling methods are not interchangeable, and that these two microbiotas record different information about the host from which they are isolated. PMID:29765359

  16. Comparing Microbiome Sampling Methods in a Wild Mammal: Fecal and Intestinal Samples Record Different Signals of Host Ecology, Evolution.

    PubMed

    Ingala, Melissa R; Simmons, Nancy B; Wultsch, Claudia; Krampis, Konstantinos; Speer, Kelly A; Perkins, Susan L

    2018-01-01

    The gut microbiome is a community of host-associated symbiotic microbes that fulfills multiple key roles in host metabolism, immune function, and tissue development. Given the ability of the microbiome to impact host fitness, there is increasing interest in studying the microbiome of wild animals to better understand these communities in the context of host ecology and evolution. Human microbiome research protocols are well established, but wildlife microbiome research is still a developing field. Currently, there is no standardized set of best practices guiding the collection of microbiome samples from wildlife. Gut microflora are typically sampled either by fecal collection, rectal swabbing, or by destructively sampling the intestinal contents of the host animal. Studies rarely include more than one sampling technique and no comparison of these methods currently exists for a wild mammal. Although some studies have hypothesized that the fecal microbiome is a nested subset of the intestinal microbiome, this hypothesis has not been formally tested. To address these issues, we examined guano (feces) and distal intestinal mucosa from 19 species of free-ranging bats from Lamanai, Belize, using 16S rRNA amplicon sequencing to compare microbial communities across sample types. We found that the diversity and composition of intestine and guano samples differed substantially. In addition, we conclude that signatures of host evolution are retained by studying gut microbiomes based on mucosal tissue samples, but not fecal samples. Conversely, fecal samples retained more signal of host diet than intestinal samples. These results suggest that fecal and intestinal sampling methods are not interchangeable, and that these two microbiotas record different information about the host from which they are isolated.

  17. Revisiting Trypanosoma rangeli Transmission Involving Susceptible and Non-Susceptible Hosts

    PubMed Central

    Ferreira, Luciana de Lima; Pereira, Marcos Horácio; Guarneri, Alessandra Aparecida

    2015-01-01

    Trypanosoma rangeli infects several triatomine and mammal species in South America. Its transmission is known to occur when a healthy insect feeds on an infected mammal or when an infected insect bites a healthy mammal. In the present study we evaluated the classic way of T. rangeli transmission started by the bite of a single infected triatomine, as well as alternative ways of circulation of this parasite among invertebrate hosts. The number of metacyclic trypomastigotes eliminated from salivary glands during a blood meal was quantified for unfed and recently fed nymphs. The quantification showed that ~50,000 parasites can be liberated during a single blood meal. The transmission of T. rangeli from mice to R. prolixus was evaluated using infections started through the bite of a single infected nymph. The mice that served as the blood source for single infected nymphs showed a high percentage of infection and efficiently transmitted the infection to new insects. Parasites were recovered by xenodiagnosis in insects fed on mice with infections that lasted approximately four months. Hemolymphagy and co-feeding were tested to evaluate insect-insect T. rangeli transmission. T. rangeli was not transmitted during hemolymphagy. However, insects that had co-fed on mice with infected conspecifics exhibited infection rates of approximately 80%. Surprisingly, 16% of the recipient nymphs became infected when pigeons were used as hosts. Our results show that T. rangeli is efficiently transmitted between the evaluated hosts. Not only are the insect-mouse-insect transmission rates high, but parasites can also be transmitted between insects while co-feeding on a living host. We show for the first time that birds can be part of the T. rangeli transmission cycle as we proved that insect-insect transmission is feasible during a co-feeding on these hosts. PMID:26469403

  18. Forest fragments as barriers to fruit fly dispersal: Anastrepha (Diptera: Tephritidae) populations in orchards and adjacent forest fragments in Puerto Rico.

    PubMed

    Jenkins, David A; Kendra, Paul E; Van Bloem, Skip; Whitmire, Stefanie; Mizell, Russ; Goenaga, Ricardo

    2013-04-01

    McPhail-type traps baited with ammonium acetate and putrescine were used to monitor populations of Anastrepha obliqua (Macquart) and Anastrepha suspensa (Loew) in two orchards with hosts of these flies (mango, Mangifera indica L., and carambola, Averrhoa carambola L.), as well as in forest fragments bordering these orchards. Contour maps were constructed to measure population distributions in and around orchards. Our results indicate that Anastrepha populations are focused around host fruit in both space and time, that traps do not draw fruit flies away from hosts, even when placed within 15 m of the host, and that lures continue to function for 6 mo in the field. The contour mapping analyses reveal that populations of fruit flies are focused around ovipositional hosts. Although the trapping system does not have a very long effective sampling range, it is ideal, when used in combination with contour analyses, for assessing fine-scale (on the order of meters) population distributions, including identifying resources around which fly populations are focused or, conversely, assessing the effectiveness of management tools. The results are discussed as they pertain to monitoring and detecting Anastrepha spp. with the McPhail-type trap and ammonium acetate and putrescine baiting system and the dispersal of these flies within Puerto Rico.

  19. Food for contagion: Synthesis and future directions for studying host–parasite responses to resource shifts in anthropogenic environments

    PubMed Central

    Altizer, Sonia. M.; Becker, Daniel J.; Epstein, Jonathan H.; Forbes, Kristian M.; Gillespie, Thomas R.; Hall, Richard J.; Hawley, Dana; Hernandez, Sonia M.; Martin, Lynn B.; Plowright, Raina K.; Satterfield, Dara A.; Streicker, Daniel G.

    2018-01-01

    Human-provided resource subsidies for wildlife are diverse, common, and have profound consequences for wildlife–pathogen interactions, as demonstrated by papers in this themed issue spanning empirical, theoretical, and management perspectives from a range of study systems. Contributions cut across scales of organization, from the within-host dynamics of immune function, to population-level impacts on parasite transmission, to landscape- and regional-scale patterns of infection. In this concluding paper, we identify common threads and key findings from author contributions, including the consequences of resource subsidies for (i) host immunity; (ii) animal aggregation and contact rates; (iii) host movement and landscape-level infection patterns; and (iv) inter-specific contacts and cross-species transmission. Exciting avenues for future work include studies that integrate mechanistic modeling and empirical approaches to better explore cross-scale processes, and experimental manipulations of food resources to quantify host and pathogen responses. Work is also needed to examine evolutionary responses to provisioning, and ask how diet-altered changes to the host microbiome influence infection processes. Given the massive public health and conservation implications of anthropogenic resource shifts, we end by underscoring the need for practical recommendations to manage supplemental feeding practices, limit human–wildlife conflicts over shared food resources, and reduce cross-species transmission risks, including to humans. PMID:29531154

  20. The Pathogen-Host Interactions database (PHI-base): additions and future developments

    PubMed Central

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340

  1. Genome-Wide Identification and Evolutionary Analysis of Sarcocystis neurona Protein Kinases.

    PubMed

    Murungi, Edwin K; Kariithi, Henry M

    2017-03-21

    The apicomplexan parasite Sarcocystis neurona causes equine protozoal myeloencephalitis (EPM), a degenerative neurological disease of horses. Due to its host range expansion, S. neurona is an emerging threat that requires close monitoring. In apicomplexans, protein kinases (PKs) have been implicated in a myriad of critical functions, such as host cell invasion, cell cycle progression and host immune response evasion. Here, we used various bioinformatics methods to define the kinome of S. neurona and phylogenetic relatedness of its PKs to other apicomplexans. We identified 97 putative PKs clustering within the various eukaryotic kinase groups. Although containing the universally-conserved PKA (AGC group), S. neurona kinome was devoid of PKB and PKC. Moreover, the kinome contains the six-conserved apicomplexan CDPKs (CAMK group). Several OPK atypical kinases, including ROPKs 19A, 27, 30, 33, 35 and 37 were identified. Notably, S. neurona is devoid of the virulence-associated ROPKs 5, 6, 18 and 38, as well as the Alpha and RIO kinases. Two out of the three S. neurona CK1 enzymes had high sequence similarities to Toxoplasma gondii TgCK1-α and TgCK1-β and the Plasmodium PfCK1. Further experimental studies on the S. neurona putative PKs identified in this study are required to validate the functional roles of the PKs and to understand their involvement in mechanisms that regulate various cellular processes and host-parasite interactions. Given the essentiality of apicomplexan PKs in the survival of apicomplexans, the current study offers a platform for future development of novel therapeutics for EPM, for instance via application of PK inhibitors to block parasite invasion and development in their host.

  2. Genome-Wide Identification and Evolutionary Analysis of Sarcocystis neurona Protein Kinases

    PubMed Central

    Murungi, Edwin K.; Kariithi, Henry M.

    2017-01-01

    The apicomplexan parasite Sarcocystis neurona causes equine protozoal myeloencephalitis (EPM), a degenerative neurological disease of horses. Due to its host range expansion, S. neurona is an emerging threat that requires close monitoring. In apicomplexans, protein kinases (PKs) have been implicated in a myriad of critical functions, such as host cell invasion, cell cycle progression and host immune response evasion. Here, we used various bioinformatics methods to define the kinome of S. neurona and phylogenetic relatedness of its PKs to other apicomplexans. We identified 97 putative PKs clustering within the various eukaryotic kinase groups. Although containing the universally-conserved PKA (AGC group), S. neurona kinome was devoid of PKB and PKC. Moreover, the kinome contains the six-conserved apicomplexan CDPKs (CAMK group). Several OPK atypical kinases, including ROPKs 19A, 27, 30, 33, 35 and 37 were identified. Notably, S. neurona is devoid of the virulence-associated ROPKs 5, 6, 18 and 38, as well as the Alpha and RIO kinases. Two out of the three S. neurona CK1 enzymes had high sequence similarities to Toxoplasma gondii TgCK1-α and TgCK1-β and the Plasmodium PfCK1. Further experimental studies on the S. neurona putative PKs identified in this study are required to validate the functional roles of the PKs and to understand their involvement in mechanisms that regulate various cellular processes and host-parasite interactions. Given the essentiality of apicomplexan PKs in the survival of apicomplexans, the current study offers a platform for future development of novel therapeutics for EPM, for instance via application of PK inhibitors to block parasite invasion and development in their host. PMID:28335576

  3. Co-invading symbiotic mutualists of Medicago polymorpha retain high ancestral diversity and contain diverse accessory genomes.

    PubMed

    Porter, Stephanie S; Faber-Hammond, Joshua J; Friesen, Maren L

    2018-01-01

    Exotic, invasive plants and animals can wreak havoc on ecosystems by displacing natives and altering environmental conditions. However, much less is known about the identities or evolutionary dynamics of the symbiotic microbes that accompany invasive species. Most leguminous plants rely upon symbiotic rhizobium bacteria to fix nitrogen and are incapable of colonizing areas devoid of compatible rhizobia. We compare the genomes of symbiotic rhizobia in a portion of the legume's invaded range with those of the rhizobium symbionts from across the legume's native range. We show that in an area of California the legume Medicago polymorpha has invaded, its Ensifer medicae symbionts: (i) exhibit genome-wide patterns of relatedness that together with historical evidence support host-symbiont co-invasion from Europe into California, (ii) exhibit population genomic patterns consistent with the introduction of the majority of deep diversity from the native range, rather than a genetic bottleneck during colonization of California and (iii) harbor a large set of accessory genes uniquely enriched in binding functions, which could play a role in habitat invasion. Examining microbial symbiont genome dynamics during biological invasions is critical for assessing host-symbiont co-invasions whereby microbial symbiont range expansion underlies plant and animal invasions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Impact of Vector Dispersal and Host-Plant Fidelity on the Dissemination of an Emerging Plant Pathogen

    PubMed Central

    Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael

    2012-01-01

    Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector. PMID:23284774

  5. Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen.

    PubMed

    Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael

    2012-01-01

    Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.

  6. Surveying N2O-producing pathways in bacteria.

    PubMed

    Stein, Lisa Y

    2011-01-01

    Nitrous oxide (N(2)O) is produced by bacteria as an intermediate of both dissimilatory and detoxification pathways under a range of oxygen levels, although the majority of N(2)O is released in suboxic to anoxic environments. N(2)O production under physiologically relevant conditions appears to require the reduction of nitric oxide (NO) produced from the oxidation of hydroxylamine (nitrification), reduction of nitrite (denitrification), or by host cells of pathogenic bacteria. In a single bacterial isolate, N(2)O-producing pathways can be complex, overlapping, involve multiple enzymes with the same function, and require multiple layers of regulatory machinery. This overview discusses how to identify known N(2)O-producing inventory and regulatory sequences within bacterial genome sequences and basic physiological approaches for investigating the function of that inventory. A multitude of review articles have been published on individual enzymes, pathways, regulation, and environmental significance of N(2)O-production encompassing a large diversity of bacterial isolates. The combination of next-generation deep sequencing platforms, emerging proteomics technologies, and basic microbial physiology can be used to expand what is known about N(2)O-producing pathways in individual bacterial species to discover novel inventory and unifying features of pathways. A combination of approaches is required to understand and generalize the function and control of N(2)O production across a range of temporal and spatial scales within natural and host environments. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Switchable host-guest systems on surfaces.

    PubMed

    Yang, Ying-Wei; Sun, Yu-Long; Song, Nan

    2014-07-15

    CONSPECTUS: For device miniaturization, nanotechnology follows either the "top-down" approach scaling down existing larger-scale devices or the "bottom-up' approach assembling the smallest possible building blocks to functional nanoscale entities. For synthetic nanodevices, self-assembly on surfaces is a superb method to achieve useful functions and enable their interactions with the surrounding world. Consequently, adaptability and responsiveness to external stimuli are other prerequisites for their successful operation. Mechanically interlocked molecules such as rotaxanes and catenanes, and their precursors, that is, molecular switches and supramolecular switches including pseudorotaxanes, are molecular machines or prototypes of machines capable of mechanical motion induced by chemical signals, biological inputs, light or redox processes as the external stimuli. Switching of these functional host-guest systems on surfaces becomes a fundamental requirement for artificial molecular machines to work, mimicking the molecular machines in nature, such as proteins and their assemblies operating at dynamic interfaces such as the surfaces of cell membranes. Current research endeavors in material science and technology are focused on developing either a new class of materials or materials with novel/multiple functionalities by shifting host-guest chemistry from solution phase to surfaces. In this Account, we present our most recent attempts of building monolayers of rotaxanes/pseudorotaxanes on surfaces, providing stimuli-induced macroscopic effects and further understanding on the switchable host-guest systems at interfaces. Biocompatible versions of molecular machines based on synthetic macrocycles, such as cucurbiturils, pillararenes, calixarenes, and cyclodextrins, have been employed to form self-assembled monolayers of gates on the surfaces of mesoporous silica nanoparticles to regulate the controlled release of cargo/drug molecules under a range of external stimuli, such as light, pH variations, competitive binding, and enzyme. Rotaxanes have also been assembled onto the surfaces of gold nanodisks and microcantilevers to realize active molecular plasmonics and synthetic molecular actuators for device fabrication and function. Pillararenes have been successfully used to control and aid the synthesis of gold nanoparticles, semiconducting quantum dots, and magnetic nanoparticles. The resulting organic-inorganic hydrid nanomaterials have been successfully used for controlled self-assembly, herbicide sensing and detection, pesticide removal, and so forth, taking advantage of the selective binding of pillarenes toward target molecules. Cyclodextrins have also been successfully functionalized onto the surface of gold nanoparticles to serve as recycling extractors for C60. Many interesting prototypes of nanodevices based on synthetic macrocycles and their host-guest chemistry have been constructed and served for different potential applications. This Account will be a summary of the efforts made mainly by us, and others, on the host-guest chemistry of synthetic macrocyclic compounds on the surfaces of different solid supports.

  8. Host compatibility rather than vector–host-encounter rate determines the host range of avian Plasmodium parasites

    PubMed Central

    Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.

    2013-01-01

    Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266

  9. Antimicrobial proteins: From old proteins, new tricks.

    PubMed

    Smith, Valerie J; Dyrynda, Elisabeth A

    2015-12-01

    This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. The review further considers proteins or protein fragments from crustaceans that have antimicrobial properties but are more usually associated with other biological functions, or are derived from such proteins. It discusses how these unconventional AMPs might be generated at, or delivered to, sites of infection and how they might contribute to crustacean host defence in vivo. It also highlights recent work that is starting to reveal the extent of multi-functionality displayed by some decapod AMPs, particularly their participation in other aspects of host protection. Examples of such activities include proteinase inhibition, phagocytosis, antiviral activity and haematopoiesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Multiscale model within-host and between-host for viral infectious diseases.

    PubMed

    Almocera, Alexis Erich S; Nguyen, Van Kinh; Hernandez-Vargas, Esteban A

    2018-05-08

    Multiscale models possess the potential to uncover new insights into infectious diseases. Here, a rigorous stability analysis of a multiscale model within-host and between-host is presented. The within-host model describes viral replication and the respective immune response while disease transmission is represented by a susceptible-infected model. The bridging of scales from within- to between-host considered transmission as a function of the viral load. Consequently, stability and bifurcation analyses were developed coupling the two basic reproduction numbers [Formula: see text] and [Formula: see text] for the within- and the between-host subsystems, respectively. Local stability results for each subsystem, including a unique stable equilibrium point, recapitulate classical approaches to infection and epidemic control. Using a Lyapunov function, global stability of the between-host system was obtained. Our main result was the derivation of the [Formula: see text] as an increasing function of [Formula: see text]. Numerical analyses reveal that a Michaelis-Menten form based on the virus is more likely to recapitulate the behavior between the scales than a form directly proportional to the virus. Our work contributes basic understandings of the two models and casts light on the potential effects of the coupling function on linking the two scales.

  11. Comparison of field-collected ascovirus isolates by DNA hybridization, host range, and histopathology.

    PubMed

    Hamm, J J; Styer, E L; Federici, B A

    1998-09-01

    Six field-collected ascovirus isolates obtained from five noctuid species in the continental United States were compared with respect to the general relatedness of their DNA, host range, and histopathology. Two isolates were from Spodoptera frugiperda, and the other four were from Autographa precationis, Heliothis virescens, Helicoverpa zea, and Trichoplusia ni. DNA-DNA hybridization studies showed that the six isolates belonged to three distinct viral species, with the isolates from S. frugiperda composing one species, those from A. precationis and H. virescens a second species, and those from H. zea and T. ni a third species. The host range and histopathology of each isolate was studied in eight noctuid species, S. frugiperda, Spodoptera ornithogalli, Spodoptera exigua, Spodoptera eridania, H. virescens, H. zea, A. precationis, and Feltia subterranea. Though some variation existed between the different isolates of each viral species, distinct patterns were apparent for each. The viral species from S. frugiperda had a host range that was limited primarily to Spodoptera species and both isolates of this virus only replicated and caused significant pathology in the fat body, whereas the viral species from A. precationis and H. virescens had a much broader host range that included most of the species tested, but also had a tissue tropism primarily restricted to the fat body. The viral species from T. ni and H. zea readily infected all the hosts tested, where the principal site of replication and significant pathology was the epidermis. In many test hosts, however, this viral species also replicated and caused significant pathology in the tracheal epithelium and to a lesser extent in the fat body. Aside from contributing to knowledge of ascovirus biology, these studies indicate that DNA hybridization profiles combined with studies of host range and tissue tropism can be used as characters for defining ascovirus species. Copyright 1998 Academic Press.

  12. Evolution of Compatibility Range in the Rice-Magnaporthe oryzae System: An Uneven Distribution of R Genes Between Rice Subspecies.

    PubMed

    Gallet, Romain; Fontaine, Colin; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Fournier, Elisabeth; Tharreau, Didier

    2016-04-01

    Efficient strategies for limiting the impact of pathogens on crops require a good understanding of the factors underlying the evolution of compatibility range for the pathogens and host plants, i.e., the set of host genotypes that a particular pathogen genotype can infect and the set of pathogen genotypes that can infect a particular host genotype. Until now, little is known about the evolutionary and ecological factors driving compatibility ranges in systems implicating crop plants. We studied the evolution of host and pathogen compatibility ranges for rice blast disease, which is caused by the ascomycete Magnaporthe oryzae. We challenged 61 rice varieties from three rice subspecies with 31 strains of M. oryzae collected worldwide from all major known genetic groups. We determined the compatibility range of each plant variety and pathogen genotype and the severity of each plant-pathogen interaction. Compatibility ranges differed between rice subspecies, with the most resistant subspecies selecting for pathogens with broader compatibility ranges and the least resistant subspecies selecting for pathogens with narrower compatibility ranges. These results are consistent with a nested distribution of R genes between rice subspecies.

  13. Host range, immunity and antigenic properties of lambdoid coliphage HK97.

    PubMed

    Dhillon, E K; Dhillon, T S; Lai, A N; Linn, S

    1980-09-01

    Temperate coliphage HK97 was isolated from pig dung. Although HK97 is antigenically unrelated to coliphage lambda, it has similar morphology, host range and immunity properties, and can recombine with it.

  14. SAMHD1 host restriction factor: a link with innate immune sensing of retrovirus infection.

    PubMed

    Sze, Alexandre; Olagnier, David; Lin, Rongtuan; van Grevenynghe, Julien; Hiscott, John

    2013-12-13

    SAMHD1 [sterile alpha motif and histidine-aspartic domain (HD) containing protein 1] is the most recent addition to a unique group of host restriction factors that limit retroviral replication at distinct stages of the viral life cycle. SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase that degrades the intracellular pool of deoxynucleoside triphosphates available during early reverse transcription. SAMHD1 activity is blocked by the Vpx accessory function present in human immunodeficiency virus type 2 and SIVsm. Mutations in SAMHD1 are associated with the autoimmune disorder Aicardi-Goutières syndrome, thus emphasizing its role in regulation of the immune response. SAMHD1 antiretroviral activity is modulated by post-translational modifications, cell-cycle-dependent functions and cytokine-mediated changes. Innate receptors that sense retroviral DNA intermediates are the focus of intense study, and recent studies have established a link among SAMHD1 restriction, innate sensing of DNA and protective immune responses. Cell-cycle-dependent regulation of SAMHD1 by phosphorylation and the increasingly broad range of viruses inhibited by SAMHD1 further emphasize the importance of these mechanisms of host restriction. This review highlights current knowledge regarding SAMHD1 regulation and its impact on innate immune signaling and retroviral restriction. © 2013.

  15. Pichia pastoris is a Suitable Host for the Heterologous Expression of Predicted Class I and Class II Hydrophobins for Discovery, Study, and Application in Biotechnology

    PubMed Central

    Gandier, Julie-Anne; Master, Emma R.

    2018-01-01

    The heterologous expression of proteins is often a crucial first step in not only investigating their function, but also in their industrial application. The functional assembly and aggregation of hydrophobins offers intriguing biotechnological applications from surface modification to drug delivery, yet make developing systems for their heterologous expression challenging. In this article, we describe the development of Pichia pastoris KM71H strains capable of solubly producing the full set of predicted Cordyceps militaris hydrophobins CMil1 (Class IA), CMil2 (Class II), and CMil3 (IM) at mg/L yields with the use of 6His-tags not only for purification but for their detection. This result further demonstrates the feasibility of using P. pastoris as a host organism for the production of hydrophobins from all Ascomycota Class I subdivisions (a classification our previous work defined) as well as Class II. We highlight the specific challenges related to the production of hydrophobins, notably the challenge in detecting the protein that will be described, in particular during the screening of transformants. Together with the literature, our results continue to show that P. pastoris is a suitable host for the soluble heterologous expression of hydrophobins with a wide range of properties. PMID:29303996

  16. Pichia pastoris is a Suitable Host for the Heterologous Expression of Predicted Class I and Class II Hydrophobins for Discovery, Study, and Application in Biotechnology.

    PubMed

    Gandier, Julie-Anne; Master, Emma R

    2018-01-05

    The heterologous expression of proteins is often a crucial first step in not only investigating their function, but also in their industrial application. The functional assembly and aggregation of hydrophobins offers intriguing biotechnological applications from surface modification to drug delivery, yet make developing systems for their heterologous expression challenging. In this article, we describe the development of Pichia pastoris KM71H strains capable of solubly producing the full set of predicted Cordyceps militaris hydrophobins CMil1 (Class IA), CMil2 (Class II), and CMil3 (IM) at mg/L yields with the use of 6His-tags not only for purification but for their detection. This result further demonstrates the feasibility of using P. pastoris as a host organism for the production of hydrophobins from all Ascomycota Class I subdivisions (a classification our previous work defined) as well as Class II. We highlight the specific challenges related to the production of hydrophobins, notably the challenge in detecting the protein that will be described, in particular during the screening of transformants. Together with the literature, our results continue to show that P. pastoris is a suitable host for the soluble heterologous expression of hydrophobins with a wide range of properties.

  17. Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem.

    PubMed

    Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya

    2014-02-01

    Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Targeting the gut microbiota by dietary nutrients: A new avenue for human health.

    PubMed

    Li, Daotong; Wang, Pan; Wang, Pengpu; Hu, Xiaosong; Chen, Fang

    2017-08-28

    The gut microbiota is a complex ecosystem consisted of trillions of microbes that have co-evolved with their host for hundreds of millions of years. During the last decade, a growing body of knowledge has suggested that there is a compelling set of connections among diet, gut microbiota and human health. Various physiological functions of the host, ranging from metabolic and immune regulation to nerve and endocrine development, are possibly mediated by the structural components of microbial cell or the products of microbial metabolism, which are greatly influenced by dietary macronutrients and micronutrients. Thus, governing the production and activity of these microbial-associated small molecules and metabolites through dietary intervention may provide promising strategies for the improvement of human health and disease. In this review article, we first provide an overview of current findings about the intimate interrelationships between diet and gut microbiota. We also introduce the physiological effects of some microbial-associated small molecules and metabolites on the host as well as the detailed signaling mechanisms.

  19. Single-round selection yields a unique retroviral envelope utilizing GPR172A as its host receptor.

    PubMed

    Mazari, Peter M; Linder-Basso, Daniela; Sarangi, Anindita; Chang, Yehchung; Roth, Monica J

    2009-04-07

    The recognition by a viral envelope of its cognate host-cell receptor is the initial critical step in defining the viral host-range and tissue specificity. This study combines a single-round of selection of a random envelope library with a parallel cDNA screen for receptor function to identify a distinct retroviral envelope/receptor pair. The 11-aa targeting domain of the modified feline leukemia virus envelope consists of a constrained peptide. Critical to the binding of the constrained peptide envelope to its cellular receptor are a pair of internal cysteines and an essential Trp required for maintenance of titers >10(5) lacZ staining units per milliliter. The receptor used for viral entry is the human GPR172A protein, a G-protein-coupled receptor isolated from osteosarcoma cells. The ability to generate unique envelopes capable of using tissue- or disease-specific receptors marks an advance in the development of efficient gene-therapy vectors.

  20. Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host† †Electronic supplementary information (ESI) available. CCDC 1504685–1504693. See DOI: 10.1039/c6sc04343g Click here for additional data file. Click here for additional data file.

    PubMed Central

    Morris, Christopher G.; Jacques, Nicholas M.; Godfrey, Harry G. W.; Mitra, Tamoghna; Fritsch, Detlev; Lu, Zhenzhong; Murray, Claire A.; Potter, Jonathan; Cobb, Tom M.; Yuan, Fajin

    2017-01-01

    The identification of preferred binding domains within a host structure provides important insights into the function of materials. State-of-the-art reports mostly focus on crystallographic studies of empty and single component guest-loaded host structures to determine the location of guests. However, measurements of material properties (e.g., adsorption and breakthrough of substrates) are usually performed for a wide range of pressure (guest coverage) and/or using multi-component gas mixtures. Here we report the development of a multifunctional gas dosing system for use in X-ray powder diffraction studies on Beamline I11 at Diamond Light Source. This facility is fully automated and enables in situ crystallographic studies of host structures under (i) unlimited target gas loadings and (ii) loading of multi-component gas mixtures. A proof-of-concept study was conducted on a hydroxyl-decorated porous material MFM-300(VIII) under (i) five different CO2 pressures covering the isotherm range and (ii) the loading of equimolar mixtures of CO2/N2. The study has successfully captured the structural dynamics underpinning CO2 uptake as a function of surface coverage. Moreover, MFM-300(VIII) was incorporated in a mixed matrix membrane (MMM) with PIM-1 in order to evaluate the CO2/N2 separation potential of this material. Gas permeation measurements on the MMM show a great improvement over the bare PIM-1 polymer for CO2/N2 separation based on the ideal selectivity. PMID:28507700

  1. Impaired functioning of immune defenses to infection in premature and term infants and their implications for vaccination.

    PubMed

    Baxter, David

    2010-06-01

    Newborn infants, particularly those born prematurely are at increased risk of infections, including vaccine preventable ones, resulting in an increased morbidity and mortality risk. Defects associated with higher mortality may involve external barriers and the innate and adaptive systems. The available evidence suggests a complex situation that ranges from pathogen/immunogen non-responsiveness to fully mature adult-equivalent functionality depending on both host and vaccine characteristics. This review considers potential qualitative and quantitative differences with respect to immune defences between premature/term infants and adults and evaluates implications of such differences for immunization outcomes.

  2. Functional Materials from Polymeric Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Segalman, Rachel; Sanoja, Gabriel; Michenfelder-Schauser, Nicole; Mitragotri, Samir; Seshadri, Ram

    Ionic liquids (IL's) have been suggested for applications as diverse as solubilizing cellulose, antimicrobial treatments, and electrolytes in batteries due to their molten salt properties. A polymeric cation (such as imidazolium) is an excellent host for any associated anion. As a result, polymerized ionic liquids are not just solid counterparts to IL's, but are shown to be vectors for the inclusion of a wide variety of functionalities ranging from multi-valent ions to magnetic anions. Moreover, PIL block copolymers allow orthogonal control over mechanical and morphological properties, ultimately leading to a conceptual framework for processable, tunable, multifunctional materials.

  3. Transcriptome of an Armillaria root disease pathogen reveals candidate genes involved in host substrate utilization at the host­-pathogen interface

    Treesearch

    A. L. Ross-Davis; J. E. Stewart; J. W. Hanna; M.-S. Kim; B. J. Knaus; R. Cronn; H. Rai; B. A. Richardson; G. I. McDonald; N. B. Klopfenstein

    2013-01-01

    Armillaria species display diverse ecological roles ranging from beneficial saprobe to virulent pathogen. Armillaria solidipes (formerly A. ostoyae), a causal agent of Armillaria root disease, is a virulent primary pathogen with a broad host range of woody plants across the Northern Hemisphere. This white-rot pathogen grows between trees as rhizomorphs and attacks...

  4. Functional variation in the gut microbiome of wild Drosophila populations.

    PubMed

    Bost, Alyssa; Martinson, Vincent G; Franzenburg, Soeren; Adair, Karen L; Albasi, Alice; Wells, Martin T; Douglas, Angela E

    2018-05-26

    Most of the evidence that the gut microbiome of animals is functionally variable, with consequences for the health and fitness of the animal host, is based on laboratory studies, often using inbred animals under tightly controlled conditions. It is largely unknown whether these microbiome effects would be evident in outbred animal populations under natural conditions. In this study, we quantified the functional traits of the gut microbiota (metagenome) and host (gut transcriptome) and the taxonomic composition of the gut microorganisms (16S rRNA gene sequence) in natural populations of three mycophagous Drosophila species. Variation in microbiome function and composition was driven principally by the period of sample collection, while host function varied mostly with Drosophila species, indicating that variation in microbiome traits is determined largely by environmental factors, and not host taxonomy. Despite this, significant correlations between microbiome and host functional traits were obtained. In particular, microbiome functions dominated by metabolism were positively associated with host functions relating to gut epithelial turnover. Much of the functional variation in the microbiome could be attributed to variation in abundance of Bacteroidetes, rather than the two other abundant groups, the γ-Proteobacteria or Lactobacillales. We conclude that functional variation in the interactions between animals and their gut microbiome can be detectable in natural populations and, in mycophagous Drosophila, this variation relates primarily to metabolism and homeostasis of the gut epithelium. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Which morphological characteristics are most influenced by the host matrix in downy mildews? A case study in Pseudoperonospora cubensis.

    PubMed

    Runge, Fabian; Ndambi, Beninweck; Thines, Marco

    2012-01-01

    Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation.

  6. Which Morphological Characteristics Are Most Influenced by the Host Matrix in Downy Mildews? A Case Study in Pseudoperonospora cubensis

    PubMed Central

    Runge, Fabian; Ndambi, Beninweck; Thines, Marco

    2012-01-01

    Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation. PMID:23166582

  7. Patterns of host specificity among the helminth parasite fauna of freshwater siluriforms: testing the biogeographical core parasite fauna hypothesis.

    PubMed

    Rosas-Valdez, Rogelio; de León, Gerardo Pérez-Ponce

    2011-04-01

    Host specificity plays an essential role in shaping the evolutionary history of host-parasite associations. In this study, an index of host specificity recently proposed was used to test, quantitatively, the hypothesis that some groups of parasites are characteristics of some host fish families along their distribution range. A database with all published records on the helminth parasites of freshwater siluriforms of Mexico was used. The host specificity index was used considering its advantage to measure the taxonomic heterogeneity of the host assemblages and its appropriateness for unequal sampling data. The helminth parasite fauna of freshwater siluriforms in Mexico seems to be specific for different host taxonomic categories. However, a relatively high number of species (47% of the total helminth fauna) is specific to their respective host family. This result provides further corroboration for the biogeographic hypothesis of the core helminth fauna proposed previously. The statistical values for host specificity obtained herein seem to be independent of host range. However, the accurate taxonomic identification of the parasites is fundamental for the evaluation of host specificity and the accurate evolutionary interpretation of this phenomenon.

  8. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.

    PubMed

    Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W

    2017-06-01

    Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.

  9. Parasites and marine invasions: Ecological and evolutionary perspectives

    NASA Astrophysics Data System (ADS)

    Goedknegt, M. Anouk; Feis, Marieke E.; Wegner, K. Mathias; Luttikhuizen, Pieternella C.; Buschbaum, Christian; Camphuysen, Kees (C. J.); van der Meer, Jaap; Thieltges, David W.

    2016-07-01

    Worldwide, marine and coastal ecosystems are heavily invaded by introduced species and the potential role of parasites in the success and impact of marine invasions has been increasingly recognized. In this review, we link recent theoretical developments in invasion ecology with empirical studies from marine ecosystems in order to provide a conceptual framework for studying the role of parasites and their hosts in marine invasions. Based on an extensive literature search, we identified six mechanisms in which invaders directly or indirectly affect parasite and host populations and communities: I) invaders can lose some or all of their parasites during the invasion process (parasite release or reduction), often causing a competitive advantage over native species; II) invaders can also act as a host for native parasites, which may indirectly amplify the parasite load of native hosts (parasite spillback); III) invaders can also be parasites themselves and be introduced without needing co-introduction of the host (introduction of free-living infective stages); IV) alternatively, parasites may be introduced together with their hosts (parasite co-introduction with host); V) consequently, these co-introduced parasites can sometimes also infect native hosts (parasite spillover); and VI) invasive species may be neither a host nor a parasite, but nevertheless affect native parasite host interactions by interfering with parasite transmission (transmission interference). We discuss the ecological and evolutionary implications of each of these mechanisms and generally note several substantial effects on natural communities and ecosystems via i) mass mortalities of native populations creating strong selection gradients, ii) indirect changes in species interactions within communities and iii) trophic cascading and knock-on effects in food webs that may affect ecosystem function and services. Our review demonstrates a wide range of ecological and evolutionary implications of marine invasions for parasite-host interactions and suggests that parasite-mediated impacts should be integrated in assessing the risks and consequences of biological invasions.

  10. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity.

    PubMed

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between RipTAL repeats allows for a reconstruction of repeat array biogenesis, for example through slipped strand mispairing or gene conversion. Using these studies we show how RipTALs of broad host range strains evolved convergently toward a shared target sequence. Finally, we discuss the differences between TALE-likes of plant pathogens in the context of disease ecology.

  11. Evasion and Immuno-Endocrine Regulation in Parasite Infection: Two Sides of the Same Coin in Chagas Disease?

    PubMed

    Morrot, Alexandre; Villar, Silvina R; González, Florencia B; Pérez, Ana R

    2016-01-01

    Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease.

  12. Silage Collected from Dairy Farms Harbors an Abundance of Listeriaphages with Considerable Host Range and Genome Size Diversity

    PubMed Central

    Vongkamjan, Kitiya; Switt, Andrea Moreno; den Bakker, Henk C.; Fortes, Esther D.

    2012-01-01

    Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools. PMID:23042180

  13. Living on the Edge: Parasite Prevalence Changes Dramatically across a Range Edge in an Invasive Gecko.

    PubMed

    Coates, Andrew; Barnett, Louise K; Hoskin, Conrad; Phillips, Ben L

    2017-02-01

    Species interactions can determine range limits, and parasitism is the most intimate of such interactions. Intriguingly, the very conditions on range edges likely change host-parasite dynamics in nontrivial ways. Range edges are often associated with clines in host density and with environmental transitions, both of which may affect parasite transmission. On advancing range edges, founder events and fitness/dispersal costs of parasitism may also cause parasites to be lost on range edges. Here we examine the prevalence of three species of parasite across the range edge of an invasive gecko, Hemidactylus frenatus, in northeastern Australia. The gecko's range edge spans the urban-woodland interface at the edge of urban areas. Across this edge, gecko abundance shows a steep decline, being lower in the woodland. Two parasite species (a mite and a pentastome) are coevolved with H. frenatus, and these species become less prevalent as the geckos become less abundant. A third species of parasite (another pentastome) is native to Australia and has no coevolutionary history with H. frenatus. This species became more prevalent as the geckos become less abundant. These dramatic shifts in parasitism (occurring over 3.5 km) confirm that host-parasite dynamics can vary substantially across the range edge of this gecko host.

  14. Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)

    NASA Astrophysics Data System (ADS)

    Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter

    2008-06-01

    The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.

  15. Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory.

    PubMed

    Dammeyer, Thorben; Steinwand, Miriam; Krüger, Sarah-C; Dübel, Stefan; Hust, Michael; Timmis, Kenneth N

    2011-02-21

    Recombinant antibody fragments have a wide range of applications in research, diagnostics and therapy. For many of these, small fragments like single chain fragment variables (scFv) function well and can be produced inexpensively in bacterial expression systems. Although Escherichia coli K-12 production systems are convenient, yields of different fragments, even those produced from codon-optimized expression systems, vary significantly. Where yields are inadequate, alternative production systems are needed. Pseudomonas putida strain KT2440 is a versatile biosafety strain known for good expression of heterologous genes, so we have explored its utility as a cell factory for production of scFvs. We have generated new broad host range scFv expression constructs and assessed their production in the Pseudomonas putida KT2440 host. Two scFvs bind either to human C-reactive protein or to mucin1, proteins of significant medical diagnostic and therapeutic interest, whereas a third is a model anti-lysozyme scFv. The KT2440 antibody expression systems produce scFvs targeted to the periplasmic space that were processed precisely and were easily recovered and purified by single-step or tandem affinity chromatography. The influence of promoter system, codon optimization for P. putida, and medium on scFv yield was examined. Yields of up to 3.5 mg/l of pure, soluble, active scFv fragments were obtained from shake flask cultures of constructs based on the original codon usage and expressed from the Ptac expression system, yields that were 2.5-4 times higher than those from equivalent cultures of an E. coli K-12 expression host. Pseudomonas putida KT2440 is a good cell factory for the production of scFvs, and the broad host range constructs we have produced allow yield assessment in a number of different expression hosts when yields in one initially selected are insufficient. High cell density cultivation and further optimization and refinement of the KT2440 cell factory will achieve additional increases in the yields of scFvs.

  16. The Role of Evolutionary Intermediates in the Host Adaptation of Canine Parvovirus

    PubMed Central

    Stucker, Karla M.; Pagan, Israel; Cifuente, Javier O.; Kaelber, Jason T.; Lillie, Tyler D.; Hafenstein, Susan; Holmes, Edward C.

    2012-01-01

    The adaptation of viruses to new hosts is a poorly understood process likely involving a variety of viral structures and functions that allow efficient replication and spread. Canine parvovirus (CPV) emerged in the late 1970s as a host-range variant of a virus related to feline panleukopenia virus (FPV). Within a few years of its emergence in dogs, there was a worldwide replacement of the initial virus strain (CPV type 2) by a variant (CPV type 2a) characterized by four amino acid differences in the capsid protein. However, the evolutionary processes that underlie the acquisition of these four mutations, as well as their effects on viral fitness, both singly and in combination, are still uncertain. Using a comprehensive experimental analysis of multiple intermediate mutational combinations, we show that these four capsid mutations act in concert to alter antigenicity, cell receptor binding, and relative in vitro growth in feline cells. Hence, host adaptation involved complex interactions among both surface-exposed and buried capsid mutations that together altered cell infection and immune escape properties of the viruses. Notably, most intermediate viral genotypes containing different combinations of the four key amino acids possessed markedly lower fitness than the wild-type viruses. PMID:22114336

  17. Characterization of the Population of the Sulfur-Oxidizing Symbiont of Codakia orbicularis (Bivalvia, Lucinidae) by Single-Cell Analyses▿ †

    PubMed Central

    Caro, Audrey; Gros, Olivier; Got, Patrice; De Wit, Rutger; Troussellier, Marc

    2007-01-01

    We investigated the characteristics of the sulfur-oxidizing symbiont hosted in the gills of Codakia orbicularis, a bivalve living in shallow marine tropical environments. Special attention was paid to describing the heterogeneity of the population by using single-cell approaches including flow cytometry (FCM) and different microscopic techniques and by analyzing a cell size fractionation experiment. Up to seven different subpopulations were distinguished by FCM based on nucleic acid content and light side scattering of the cells. The cell size analysis of symbionts showed that the symbiotic population was very heterogeneous in size, i.e., ranging from 0.5 to 5 μm in length, with variable amounts of intracellular sulfur. The side-scatter signal analyzed by FCM, which is often taken as a proxy of cell size, was greatly influenced by the sulfur content of the symbionts. FCM revealed an important heterogeneity in the relative nucleic acid content among the subclasses. The larger cells contained exceptionally high levels of nucleic acids, suggesting that these cells contained multiple copies of their genome, i.e., ranging from one copy for the smaller cells to more than four copies for the larger cells. The proportion of respiring symbionts (5-cyano-2,3-ditolyl-terazolium chloride positive) in the bacteriocytes of Codakia revealed that around 80% of the symbionts hosted by Codakia maintain respiratory activity throughout the year. These data allowed us to gain insight into the functioning of the symbionts within the host and to propose some hypotheses on how the growth of the symbionts is controlled by the host. PMID:17259363

  18. Chemical and behavioral integration of army ant-associated rove beetles - a comparison between specialists and generalists.

    PubMed

    von Beeren, Christoph; Brückner, Adrian; Maruyama, Munetoshi; Burke, Griffin; Wieschollek, Jana; Kronauer, Daniel J C

    2018-01-01

    Host-symbiont interactions are embedded in ecological communities and range from unspecific to highly specific relationships. Army ants and their arthropod guests represent a fascinating example of species-rich host-symbiont associations where host specificity ranges across the entire generalist - specialist continuum. In the present study, we compared the behavioral and chemical integration mechanisms of two extremes of the generalist - specialist continuum: generalist ant-predators in the genus Tetradonia (Staphylinidae: Aleocharinae: Athetini), and specialist ant-mimics in the genera Ecitomorpha and Ecitophya (Staphylinidae: Aleocharinae: Ecitocharini). Similar to a previous study of Tetradonia beetles, we combined DNA barcoding with morphological studies to define species boundaries in ant-mimicking beetles. This approach found four ant-mimicking species at our study site at La Selva Biological Station in Costa Rica. Community sampling of Eciton army ant parasites revealed that ant-mimicking beetles were perfect host specialists, each beetle species being associated with a single Eciton species. These specialists were seamlessly integrated into the host colony, while generalists avoided physical contact to host ants in behavioral assays. Analysis of the ants' nestmate recognition cues, i.e. cuticular hydrocarbons (CHCs), showed close similarity in CHC composition and CHC concentration between specialists and Eciton burchellii foreli host ants. On the contrary, the chemical profiles of generalists matched host profiles less well, indicating that high accuracy in chemical host resemblance is only accomplished by socially integrated species. Considering the interplay between behavior, morphology, and cuticular chemistry, specialists but not generalists have cracked the ants' social code with respect to various sensory modalities. Our results support the long-standing idea that the evolution of host-specialization in parasites is a trade-off between the range of potential host species and the level of specialization on any particular host.

  19. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage

    PubMed Central

    Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko

    2016-01-01

    Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729

  20. “Parasite-induced aposematism” protects entomopathogenic nematode parasites against invertebrate enemies

    PubMed Central

    Fenton, Andy; Speed, Michael P.

    2016-01-01

    Aposematism is a well-known strategy in which prey defend themselves from predation by pairing defenses such as toxins, with warning signals that are often visually conspicuous color patterns. Here, we examine the possibility that aposematism can be induced in a host by colonies of infectious parasites in order to protect the parasites from the consequences of attacks on the host. Earlier studies show that avian predators are reluctant to feed on carcasses of host prey that are infected with the entomopathogenic nematode, Heterorhabditis bacteriophora. As the age of infection increases, the parasites kill and preserve the host and subsequently cause its color to change, becoming bright pink then red. Nematode colonies in dead hosts may also be vulnerable, however, to nocturnally active foragers that do not use vision in prey detection. Here, then we test a novel hypothesis that the nematode parasites also produce a warning odor, which functions to repel nocturnally active predators (in this case, the beetle Pterostichus madidus). We show that beetles decrease their feeding on infected insect prey as the age of infection increases and that olfactory cues associated with the infections are effective mechanisms for deterring beetle predation, even at very early stages of infection. We propose that “parasite-induced aposematism” from the nematodes serves to replace the antipredator defenses of the recently killed host. Because sessile carcasses are exposed to a greater range of predators than the live hosts, several alternative defense mechanisms are required to protect the colony, hence aposematic signals are likely diverse in such “parasite-induced aposematism.” PMID:27004015

  1. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment.

    PubMed

    Lovelock, Catherine E; Andersen, Kelly; Morton, Joseph B

    2003-04-01

    Arbuscular mycorrhizal (AM) fungi are mutualists with plant roots that are proposed to enhance plant community diversity. Models indicate that AM fungal communities could maintain plant diversity in forests if functionally different communities are spatially separated. In this study we assess the spatial and temporal distribution of the AM fungal community in a wet tropical rainforest in Costa Rica. We test whether distinct fungal communities correlate with variation in tree life history characteristics, with host tree species, and the relative importance of soil type, seasonality and rainfall. Host tree species differ in their associated AM fungal communities, but differences in the AM community between hosts could not be generalized over life history groupings of hosts. Changes in the relative abundance of a few common AM fungal species were the cause of differences in AM fungal communities for different host tree species instead of differences in the presence and absence of AM fungal species. Thus, AM fungal communities are spatially distinguishable in the forest, even though all species are widespread. Soil fertility ranging between 5 and 9 Mg/ha phosphorus did not affect composition of AM fungal communities, although sporulation was more abundant in lower fertility soils. Sampling soils over seasons revealed that some AM fungal species sporulate profusely in the dry season compared to the rainy season. On one host tree species sampled at two sites with vastly different rainfall, relative abundance of spores from Acaulospora was lower and that of Glomus was relatively higher at the site with lower and more seasonal rainfall.

  2. Parasite-altered feeding behavior in insects: integrating functional and mechanistic research frontiers.

    PubMed

    Bernardo, Melissa A; Singer, Michael S

    2017-08-15

    Research on parasite-altered feeding behavior in insects is contributing to an emerging literature that considers possible adaptive consequences of altered feeding behavior for the host or the parasite. Several recent ecoimmunological studies show that insects can adaptively alter their foraging behavior in response to parasitism. Another body of recent work shows that infection by parasites can change the behavior of insect hosts to benefit the parasite; manipulations of host feeding behavior may be part of this phenomenon. Here, we address both the functional and the underlying physiological frontiers of parasite-altered feeding behavior in order to spur research that better integrates the two. Functional categories of parasite-altered behavior that are adaptive for the host include prophylaxis, therapy and compensation, while host manipulation is adaptive for the parasite. To better understand and distinguish prophylaxis, therapy and compensation, further study of physiological feedbacks affecting host sensory systems is especially needed. For host manipulation in particular, research on mechanisms by which parasites control host feedbacks will be important to integrate with functional approaches. We see this integration as critical to advancing the field of parasite-altered feeding behavior, which may be common in insects and consequential for human and environmental health. © 2017. Published by The Company of Biologists Ltd.

  3. Signaling in Parasitic Nematodes: Physicochemical Communication Between Host and Parasite and Endogenous Molecular Transduction Pathways Governing Worm Development and Survival.

    PubMed

    Lok, James B

    2016-12-01

    Signaling or communication between host and parasite may occur over relatively long ranges to enable host finding and acquisition by infective parasitic nematode larvae. Innate behaviors in infective larvae transmitted from the soil that enhance the likelihood of host contact, such as negative geotaxis and hypermotility, are likely mediated by mechanoreception and neuromuscular signaling. Host cues such as vibration of the substratum, elevated temperature, exhaled CO 2 , and other volatile odorants are perceived by mechanosensory and chemosensory neurons of the amphidial complex. Beyond this, the molecular systems that transduce these external cues within the worm are unknown at this time. Overall, the signal transduction mechanisms that regulate switching between dauer and continuous reproductive development in Caenorhabditis elegans , and doubtless other free-living nematodes, have provided a useful framework for testing hypotheses about how the morphogenesis and development of infective parasitic nematode larvae and the lifespan of adult parasites are regulated. In C. elegans , four major signal transduction pathways, G protein-coupled receptor signaling, insulin/insulin-like growth factor signaling, TGFβ-like signaling and steroid-nuclear hormone receptor signaling govern the switch between dauer and continuous development and regulate adult lifespan. Parasitic nematodes appear to have conserved the functions of G-protein-coupled signaling, insulin-like signaling and steroid-nuclear hormone receptor signaling to regulate larval development before and during the infective process. By contrast, TGFβ-like signaling appears to have been adapted for some other function, perhaps modulation of the host immune response. Of the three signal transduction pathways that appear to regulate development in parasitic nematodes, steroid-nuclear hormone signaling is the most straightforward to manipulate with administered small molecules and may form the basis of new chemotherapeutic strategies. Signaling between parasites and their hosts' immune systems also occurs and serves to modulate these responses to allow chronic infection and down regulate acute inflammatory responses. Knowledge of the precise nature of this signaling may form the basis of immunological interventions to protect against parasitism or related lesions and to alleviate inflammatory diseases of various etiologies.

  4. Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe 1-xM xSi, M=Ir,Os

    DOE PAGES

    Delaire, O.; Al-Qasir, Iyad I.; May, Andrew F.; ...

    2015-03-31

    The vibrational behavior of heavy substitutional impurities (M=Ir,Os) in Fe 1-xM xSi (x = 0, 0.02, 0.04, 0.1) was investigated with a combination of inelastic neutron scattering (INS), transport measurements, and first-principles simulations. In this paper, our INS measurements on single-crystals mapped the four-dimensional dynamical structure factor, S(Q;E), for several compositions and temperatures. Our results show that both Ir and Os impurities lead to the formation of a weakly dispersive resonance vibrational mode, in the energy range of the acoustic phonon dispersions of the FeSi host. We also show that Ir doping, which introduces free carriers and increases electron-phonon coupling,more » leads to softened interatomic force-constants compared to doping with Os, which is isoelectronic to Fe. We analyze the phonon S(Q,E) from INS through a Green's function model incorporating the phonon self-energy based on first-principles density functional theory (DFT) simulations. Calculations of the quasiparticle spectral functions in the doped system reveal the hybridization between the resonance and the acoustic phonon modes. Finally, our results demonstrate a strong interaction of the host acoustic dispersions with the resonance mode, likely leading to the large observed suppression in lattice thermal conductivity.« less

  5. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest

    PubMed Central

    Kembel, Steven W.; O’Connor, Timothy K.; Arnold, Holly K.; Hubbell, Stephen P.; Wright, S. Joseph; Green, Jessica L.

    2014-01-01

    The phyllosphere—the aerial surfaces of plants, including leaves—is a ubiquitous global habitat that harbors diverse bacterial communities. Phyllosphere bacterial communities have the potential to influence plant biogeography and ecosystem function through their influence on the fitness and function of their hosts, but the host attributes that drive community assembly in the phyllosphere are poorly understood. In this study we used high-throughput sequencing to quantify bacterial community structure on the leaves of 57 tree species in a neotropical forest in Panama. We tested for relationships between bacterial communities on tree leaves and the functional traits, taxonomy, and phylogeny of their plant hosts. Bacterial communities on tropical tree leaves were diverse; leaves from individual trees were host to more than 400 bacterial taxa. Bacterial communities in the phyllosphere were dominated by a core microbiome of taxa including Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria, and Sphingobacteria. Host attributes including plant taxonomic identity, phylogeny, growth and mortality rates, wood density, leaf mass per area, and leaf nitrogen and phosphorous concentrations were correlated with bacterial community structure on leaves. The relative abundances of several bacterial taxa were correlated with suites of host plant traits related to major axes of plant trait variation, including the leaf economics spectrum and the wood density–growth/mortality tradeoff. These correlations between phyllosphere bacterial diversity and host growth, mortality, and function suggest that incorporating information on plant–microbe associations will improve our ability to understand plant functional biogeography and the drivers of variation in plant and ecosystem function. PMID:25225376

  6. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador

    PubMed Central

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C. Miguel; Vallejo, Gustavo A.

    2015-01-01

    Abstract Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(−)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579

  7. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador.

    PubMed

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J

    2015-12-01

    Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru.

  8. Morphological variation and host range of two Ganoderma species from Papua New Guinea.

    PubMed

    Pilotti, Carmel A; Sanderson, Frank R; Aitken, Elizabeth A B; Armstrong, Wendy

    2004-08-01

    Two species of Ganoderma belonging to different subgenera which cause disease on oil palms in PNG are identified by basidiome morphology and the morphology of their basidiospores. The names G. boninense and G. tornatum have been applied. Significant pleiomorphy was observed in basidiome characters amongst the specimens examined. This variation in most instances did not correlate well with host or host status. Spore morphology appeared uniform within a species and spore indices varied only slightly. G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms in Papua New Guinea.

  9. Complete Genome Sequence of the Broad-Host-Range Vibriophage KVP40: Comparative Genomics of a T4-Related Bacteriophage

    PubMed Central

    Miller, Eric S.; Heidelberg, John F.; Eisen, Jonathan A.; Nelson, William C.; Durkin, A. Scott; Ciecko, Ann; Feldblyum, Tamara V.; White, Owen; Paulsen, Ian T.; Nierman, William C.; Lee, Jong; Szczypinski, Bridget; Fraser, Claire M.

    2003-01-01

    The complete genome sequence of the T4-like, broad-host-range vibriophage KVP40 has been determined. The genome sequence is 244,835 bp, with an overall G+C content of 42.6%. It encodes 386 putative protein-encoding open reading frames (CDSs), 30 tRNAs, 33 T4-like late promoters, and 57 potential rho-independent terminators. Overall, 92.1% of the KVP40 genome is coding, with an average CDS size of 587 bp. While 65% of the CDSs were unique to KVP40 and had no known function, the genome sequence and organization show specific regions of extensive conservation with phage T4. At least 99 KVP40 CDSs have homologs in the T4 genome (Blast alignments of 45 to 68% amino acid similarity). The shared CDSs represent 36% of all T4 CDSs but only 26% of those from KVP40. There is extensive representation of the DNA replication, recombination, and repair enzymes as well as the viral capsid and tail structural genes. KVP40 lacks several T4 enzymes involved in host DNA degradation, appears not to synthesize the modified cytosine (hydroxymethyl glucose) present in T-even phages, and lacks group I introns. KVP40 likely utilizes the T4-type sigma-55 late transcription apparatus, but features of early- or middle-mode transcription were not identified. There are 26 CDSs that have no viral homolog, and many did not necessarily originate from Vibrio spp., suggesting an even broader host range for KVP40. From these latter CDSs, an NAD salvage pathway was inferred that appears to be unique among bacteriophages. Features of the KVP40 genome that distinguish it from T4 are presented, as well as those, such as the replication and virion gene clusters, that are substantially conserved. PMID:12923095

  10. Benefits of fidelity: does host specialization impact nematode parasite life history and fecundity?

    PubMed

    Koprivnikar, J; Randhawa, H S

    2013-04-01

    The range of hosts used by a parasite is influenced by macro-evolutionary processes (host switching, host-parasite co-evolution), as well as 'encounter filters' and 'compatibility filters' at the micro-evolutionary level driven by host/parasite ecology and physiology. Host specialization is hypothesized to result in trade-offs with aspects of parasite life history (e.g. reproductive output), but these have not been well studied. We used previously published data to create models examining general relationships among host specificity and important aspects of life history and reproduction for nematodes parasitizing animals. Our results indicate no general trade-off between host specificity and the average pre-patent period (time to first reproduction), female size, egg size, or fecundity of these nematodes. However, female size was positively related to egg size, fecundity, and pre-patent period. Host compatibility may thus not be the primary determinant of specificity in these parasitic nematodes if there are few apparent trade-offs with reproduction, but rather, the encounter opportunities for new host species at the micro-evolutionary level, and other processes at the macro-evolutionary level (i.e. phylogeny). Because host specificity is recognized as a key factor determining the spread of parasitic diseases understanding factors limiting host use are essential to predict future changes in parasite range and occurrence.

  11. Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation

    NASA Astrophysics Data System (ADS)

    Chua, Kun Ting Eddie; Pillepich, Annalisa; Rodriguez-Gomez, Vicente; Vogelsberger, Mark; Bird, Simeon; Hernquist, Lars

    2017-12-01

    We study the abundance of subhaloes in the hydrodynamical cosmological simulation Illustris, which includes both baryons and dark matter in a cold dark matter volume 106.5 Mpc a side. We compare Illustris to its dark-matter only (DMO) analogue, Illustris-Dark and quantify the effects of baryonic processes on the demographics of subhaloes in the host mass range 1011-3 × 1014 M⊙. We focus on both the evolved (z = 0) subhalo cumulative mass functions (SHMF) and the statistics of subhaloes ever accreted, i.e. infall SHMF. We quantify the variance in subhalo abundance at fixed host mass and investigate the physical reasons responsible for such scatter. We find that in Illustris, baryonic physics impacts both the infall and z = 0 subhalo abundance by tilting the DMO function and suppressing the abundance of low-mass subhaloes. The breaking of self-similarity in the subhalo abundance at z = 0 is enhanced by the inclusion of baryonic physics. The non-monotonic alteration of the evolved subhalo abundances can be explained by the modification of the concentration-mass relation of Illustris hosts compared to Illustris-Dark. Interestingly, the baryonic implementation in Illustris does not lead to an increase in the halo-to-halo variation compared to Illustris-Dark. In both cases, the normalized intrinsic scatter today is larger for Milky Way-like haloes than for cluster-sized objects. For Milky Way-like haloes, it increases from about eight per cent at infall to about 25 per cent at the current epoch. In both runs, haloes of fixed mass formed later host more subhaloes than early formers.

  12. The N- and C-terminal carbohydrate recognition domains of Haemonchus contortus galectin bind to distinct receptors of goat PBMC and contribute differently to its immunomodulatory functions in host-parasite interactions.

    PubMed

    Lu, MingMin; Tian, XiaoWei; Yang, XinChao; Yuan, Cheng; Ehsan, Muhammad; Liu, XinChao; Yan, RuoFeng; Xu, LiXin; Song, XiaoKai; Li, XiangRui

    2017-09-05

    Hco-gal-m is a tandem-repeat galectin isolated from the adult worm of Haemonchus contortus. A growing body of studies have demonstrated that Hco-gal-m could exert its immunomodulatory effects on host peripheral blood mononuclear cells (PBMC) to facilitate the immune evasion. Our previous work revealed that C-terminal and N-terminal carbohydrate recognition domains (CRD) of Hco-gal-m had different sugar binding abilities. However, whether different domains of Hco-gal-m account differently for its multiple immunomodulatory functions in the host-parasite interaction remains to be elucidated. We found that the N-terminal CRD of Hco-gal-m (MNh) and the C-terminal CRD (MCh) could bind to goat peripheral blood mononuclear cells by distinct receptors: transmembrane protein 63A (TMEM63A) was a binding receptor of MNh, while transmembrane protein 147 (TMEM147) was a binding receptor of MCh. In addition, MCh was much more potent than MNh in inhibiting cell proliferation and inducing apoptosis, while MNh was much more effective in inhibiting NO production. Moreover, MNh could suppress the transcription of interferon-γ (IFN-γ), but MCh not. Our data suggested that these two CRDs of Hco-gal-m bind to distinct receptors and contributed differently to its ability to downregulate host immune response. These results will improve our understanding of galectins from parasitic nematodes contributing to the mechanism of parasitic immune evasion and continue to illustrate the diverse range of biological activities attributable to the galectin family.

  13. Modulation of macrophage functions by sheeppox virus provides clues to understand interaction of the virus with host immune system.

    PubMed

    Abu-El-Saad, Abdel-Aziz S; Abdel-Moneim, Ahmed S

    2005-03-22

    Poxviruses encode a range of immunomodulatory genes to subvert or evade the challenges posed by the innate and adaptive immune responses. However, the inactivated poxviruses possessed immunostimulating capacity and were used as a prophylactic or metaphylactic application that efficiently reduced susceptibility to infectious diseases in different species. This fact is intensively studied in different genera of poxviruses. However, little is known about the basic mechanisms adopted by sheeppox virus (SPPV). SPPV causes an acute disease of sheep that recently, has been observed to reinfect its host in spite of vaccination. By injecting inactivated or attenuated sheeppox virus SPPV vaccine in adult male Swiss mice, SPPV was found to reduce macrophages' functions in a local event that occurs at the site of application 12 h after vaccine administration as indicated by increased level of IL-10 and decreased level of SOD from cultured peritoneal macrophages. In contrast increased levels of IL-12, and SOD activity from cultured splenic macrophages, lymphocyte response to PHA-P, and in-vivo response to T-dependant Ag were detected. These effects were observed in both attenuated and inactivated SPPV, but more prominent in attenuated one. The results of this study help to elucidate, the phenomenon of existence natural SPPV infections in sheep instead of vaccination and the basic mechanisms responsible for the immunostimulating capacity of sheeppox virus. Locally, SPPV shows evidence for an immune escape mechanism that alleviates the host's immune response. Later and systemically, the virus protects the host from any fatal consequences of the immune system suppression.

  14. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages.

    PubMed

    Zeng, Shenzheng; Huang, Zhijian; Hou, Dongwei; Liu, Jian; Weng, Shaoping; He, Jianguo

    2017-01-01

    Intestinal microbiota is an integral component of the host and plays important roles in host health. The pacific white shrimp is one of the most profitable aquaculture species commercialized in the world market with the largest production in shrimp consumption. Many studies revealed that the intestinal microbiota shifted significantly during host development in other aquaculture animals. In the present study, 22 shrimp samples were collected every 15 days from larval stage (15 day post-hatching, dph) to adult stage (75 dph) to investigate the intestinal microbiota at different culture stages by targeting the V4 region of 16S rRNA gene, and the microbial function prediction was conducted by PICRUSt. The operational taxonomic unit (OTU) was assigned at 97% sequence identity. A total of 2,496 OTUs were obtained, ranging from 585 to 1,239 in each sample. Forty-three phyla were identified due to the classifiable sequence. The most abundant phyla were Proteobacteria, Cyanobacteria, Tenericutes, Fusobacteria, Firmicutes, Verrucomicrobia, Bacteroidetes, Planctomycetes, Actinobacteria and Chloroflexi. OTUs belonged to 289 genera and the most abundant genera were Candidatus_Xiphinematobacter , Propionigenium , Synechococcus , Shewanella and Cetobacterium . Fifty-nine OTUs were detected in all samples, which were considered as the major microbes in intestine of shrimp. The intestinal microbiota was enriched with functional potentials that were related to transporters, ABC transporters, DNA repair and recombination proteins, two component system, secretion system, bacterial motility proteins, purine metabolism and ribosome. All the results showed that the intestinal microbial composition, diversity and functions varied significantly at different culture stages, which indicated that shrimp intestinal microbiota depended on culture stages. These findings provided new evidence on intestinal microorganism microecology and greatly enhanced our understanding of stage-specific community in the shrimp intestinal ecosystem.

  15. Phylogenetic relatedness and host plant growth form influence gene expression of the polyphagous comma butterfly (Polygonia c-album)

    PubMed Central

    Heidel-Fischer, Hanna M; Freitak, Dalial; Janz, Niklas; Söderlind, Lina; Vogel, Heiko; Nylin, Sören

    2009-01-01

    Background The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. Results In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. Conclusion Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies. PMID:19878603

  16. Phylogenetic relatedness and host plant growth form influence gene expression of the polyphagous comma butterfly (Polygonia c-album).

    PubMed

    Heidel-Fischer, Hanna M; Freitak, Dalial; Janz, Niklas; Söderlind, Lina; Vogel, Heiko; Nylin, Sören

    2009-10-31

    The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies.

  17. Computational phase diagrams of noble gas hydrates under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeratchanan, Pattanasak, E-mail: s1270872@sms.ed.ac.uk; Hermann, Andreas, E-mail: a.hermann@ed.ac.uk

    2015-10-21

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-I{sub h}, ice-I{sub c}, ice-II, and C{sub 0} interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogenmore » hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C{sub 0} water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C{sub 0} hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.« less

  18. Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer

    NASA Astrophysics Data System (ADS)

    Vallé, Karine; Belleville, Philippe; Pereira, Franck; Sanchez, Clément

    2006-02-01

    The elaborate performances characterizing natural materials result from functional hierarchical constructions at scales ranging from nanometres to millimetres, each construction allowing the material to fit the physical or chemical demands occurring at these different levels. Hierarchically structured materials start to demonstrate a high input in numerous promising applied domains such as sensors, catalysis, optics, fuel cells, smart biologic and cosmetic vectors. In particular, hierarchical hybrid materials permit the accommodation of a maximum of elementary functions in a small volume, thereby optimizing complementary possibilities and properties between inorganic and organic components. The reported strategies combine sol-gel chemistry, self-assembly routes using templates that tune the material's architecture and texture with the use of larger inorganic, organic or biological templates such as latex, organogelator-derived fibres, nanolithographic techniques or controlled phase separation. We propose an approach to forming transparent hierarchical hybrid functionalized membranes using in situ generation of mesostructured hybrid phases inside a non-porogenic hydrophobic polymeric host matrix. We demonstrate that the control of the multiple affinities existing between organic and inorganic components allows us to design the length-scale partitioning of hybrid nanomaterials with tuned functionalities and desirable size organization from ångström to centimetre. After functionalization of the mesoporous hybrid silica component, the resulting membranes have good ionic conductivity offering interesting perspectives for the design of solid electrolytes, fuel cells and other ion-transport microdevices.

  19. Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes.

    PubMed

    Baldo, Laura; Pretus, Joan Lluís; Riera, Joan Lluís; Musilova, Zuzana; Bitja Nyom, Arnold Roger; Salzburger, Walter

    2017-09-01

    Ecoevolutionary dynamics of the gut microbiota at the macroscale level, that is, in across-species comparisons, are largely driven by ecological variables and host genotype. The repeated explosive radiations of African cichlid fishes in distinct lakes, following a dietary diversification in a context of reduced genetic diversity, provide a natural setup to explore convergence, divergence and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny and environment. Here we characterized by 16S rRNA amplicon sequencing the gut microbiota of 29 cichlid species from two distinct lakes/radiations (Tanganyika and Barombi Mbo) and across a broad dietary and phylogenetic range. Within each lake, a significant deviation between a carnivorous and herbivorous lifestyle was found. Herbivore species were characterized by an increased bacterial taxonomic and functional diversity and converged in key compositional and functional community aspects. Despite a significant lake effect on the microbiota structure, this process has occurred with remarkable parallels in the two lakes. A metabolic signature most likely explains this trend, as indicated by a significant enrichment in herbivores/omnivores of bacterial taxa and functions associated with fiber degradation and detoxification of plant chemical compounds. Overall, compositional and functional aspects of the gut microbiota individually and altogether validate and predict main cichlid dietary habits, suggesting a fundamental role of gut bacteria in cichlid niche expansion and adaptation.

  20. Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes

    PubMed Central

    Baldo, Laura; Pretus, Joan Lluís; Riera, Joan Lluís; Musilova, Zuzana; Bitja Nyom, Arnold Roger; Salzburger, Walter

    2017-01-01

    Ecoevolutionary dynamics of the gut microbiota at the macroscale level, that is, in across-species comparisons, are largely driven by ecological variables and host genotype. The repeated explosive radiations of African cichlid fishes in distinct lakes, following a dietary diversification in a context of reduced genetic diversity, provide a natural setup to explore convergence, divergence and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny and environment. Here we characterized by 16S rRNA amplicon sequencing the gut microbiota of 29 cichlid species from two distinct lakes/radiations (Tanganyika and Barombi Mbo) and across a broad dietary and phylogenetic range. Within each lake, a significant deviation between a carnivorous and herbivorous lifestyle was found. Herbivore species were characterized by an increased bacterial taxonomic and functional diversity and converged in key compositional and functional community aspects. Despite a significant lake effect on the microbiota structure, this process has occurred with remarkable parallels in the two lakes. A metabolic signature most likely explains this trend, as indicated by a significant enrichment in herbivores/omnivores of bacterial taxa and functions associated with fiber degradation and detoxification of plant chemical compounds. Overall, compositional and functional aspects of the gut microbiota individually and altogether validate and predict main cichlid dietary habits, suggesting a fundamental role of gut bacteria in cichlid niche expansion and adaptation. PMID:28509910

  1. Characterizing the avian gut microbiota: membership, driving influences, and potential function.

    PubMed

    Waite, David W; Taylor, Michael W

    2014-01-01

    Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.

  2. Population Fluctuation of Ceratitis capitata (Diptera: Tephritidae) as a Function of Altitude in Eastern Guatemala.

    PubMed

    Flores, S; Montoya, P; Ruiz-Montoya, L; Villaseñor, A; Valle, A; Enkerlin, W; Liedo, P

    2016-08-01

    Population fluctuations of Ceratitis capitata (Wiedemann) were evaluated over a period of 12 mo in four altitudinal strata (400-750, 750-1,100, 1,100-1,450, and 1,450-1,800 meters above sea level, masl) in Eastern Guatemala. Within each altitudinal range, sampling plots were established in coffee plantations and adjacent areas, in which Jackson traps were set and baited with Trimedlure. Coffee berries and other host fruits were collected. Population density was lowest at the 400-750 masl stratum and highest at 1,450-1,800 masl. At every altitudinal range, the fluctuations of the pest were associated mainly with the availability of ripe coffee berries as a primary host. From 750-1,450 masl, the pest was also associated with the availability of sweet orange and mandarins in commercial and backyard orchards. The highest densities of the pest were recorded in the dry season. Citrus were the main alternate host where ripe coffee berries were not available. This knowledge on population dynamics of C. capitata will contribute to develop more effective area-wide pest management strategies including the use of sterile insects, natural enemies, and bait sprays. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Characterizing the avian gut microbiota: membership, driving influences, and potential function

    PubMed Central

    Waite, David W.; Taylor, Michael W.

    2014-01-01

    Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area. PMID:24904538

  4. Discordant coral-symbiont structuring: factors shaping geographical variation of Symbiodinium communities in a facultative zooxanthellate coral genus, Oculina

    NASA Astrophysics Data System (ADS)

    Leydet, Karine Posbic; Hellberg, Michael E.

    2016-06-01

    Understanding the factors that help shape the association between corals and their algal symbionts, zooxanthellae ( Symbiodinium), is necessary to better understand the functional diversity and acclimatization potential of the coral host. However, most studies focus on tropical zooxanthellate corals and their obligate algal symbionts, thus limiting our full comprehension of coral-algal symbiont associations. Here, we examine algal associations in a facultative zooxanthellate coral. We survey the Symbiodinium communities associated with Oculina corals in the western North Atlantic and the Mediterranean using one clade-level marker ( psbA coding region) and three fine-scale markers ( cp23S- rDNA, b7sym15 flanking region, and b2sym17). We ask whether Oculina spp. harbor geographically different Symbiodinium communities across their geographic range and, if so, whether the host's genetics or habitat differences are correlated with this geographical variation. We found that Oculina corals harbor different Symbiodinium communities across their geographical range. Of the habitat differences (including chlorophyll a concentration and depth), sea surface temperature is better correlated with this geographical variation than the host's genetics, a pattern most evident in the Mediterranean. Our results suggest that although facultative zooxanthellate corals may be less dependent on their algal partners compared to obligate zooxanthellate corals, the Symbiodinium communities that they harbor may nevertheless reflect acclimatization to environmental variation among habitats.

  5. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease

    PubMed Central

    Hoberg, Eric P.; Brooks, Daniel R.

    2015-01-01

    Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host–parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)—phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference—provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. PMID:25688014

  6. Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas putida host.

    PubMed

    Heuer, Holger; Fox, Randal E; Top, Eva M

    2007-03-01

    IncP-1 plasmids are known to be promiscuous, but it is not understood if they are equally well adapted to various species within their host range. Moreover, little is known about their fate in bacterial communities. We determined if the IncP-1beta plasmid pB10 was unstable in some Proteobacteria, and whether plasmid stability was enhanced after long-term carriage in a single host and when regularly switched between isogenic hosts. Plasmid pB10 was found to be very unstable in Pseudomonas putida H2, and conferred a high cost (c. 20% decrease in fitness relative to the plasmid-free host). H2(pB10) was then evolved under conditions that selected for plasmid maintenance, with or without regular plasmid transfer (host-switching). When tested in the ancestral host, the evolved plasmids were more stable and their cost was significantly reduced (9% and 16% for plasmids from host-switched and nonswitched lineages, respectively). Our findings suggest that IncP-1 plasmids can rapidly adapt to an unfavorable host by improving their overall stability, and that regular conjugative transfer accelerates this process.

  7. Celticecis, a Genus of Gall Midges (Diptera: Cecidomyiidae), Newly Reported for the Western Palearctic Region

    Treesearch

    Raymond J. Gagné; John C. Moser

    1997-01-01

    Many Holarctic genera of trees and shrubs are host over much of their ranges to particular genera of Cecidomyiidae. As examples, willows host gall midges of Rabdophaga and Iteomyia, oaks host Macrodiplosis and Polystepha, and birches host Semudobia in both the Nearctic and...

  8. Identification of Mycobacterium avium subsp. hominissuis Isolated From Drinking Water

    EPA Science Inventory

    Mycobacterium avium (MA) is divided into four subspecies based primarily on host-range and consists of MA subsp. avium (birds), MA subsp. silvaticum (wood pigeons), MA subsp. paratuberculosis (broad, poorly-defined host range), and the recently described MA subsp. hominissuis (hu...

  9. Rotaxane and catenane host structures for sensing charged guest species.

    PubMed

    Langton, Matthew J; Beer, Paul D

    2014-07-15

    CONSPECTUS: The promise of mechanically interlocked architectures, such as rotaxanes and catenanes, as prototypical molecular switches and shuttles for nanotechnological applications, has stimulated an ever increasing interest in their synthesis and function. The elaborate host cavities of interlocked structures, however, can also offer a novel approach toward molecular recognition: this Account describes the use of rotaxane and catenane host systems for binding charged guest species, and for providing sensing capability through an integrated optical or electrochemical reporter group. Particular attention is drawn to the exploitation of the unusual dynamic properties of interlocked molecules, such as guest-induced shuttling or conformational switching, as a sophisticated means of achieving a selective and functional sensor response. We initially survey interlocked host systems capable of sensing cationic guests, before focusing on our accomplishments in synthesizing rotaxanes and catenanes designed for the more challenging task of selective anion sensing. In our group, we have developed the use of discrete anionic templation to prepare mechanically interlocked structures for anion recognition applications. Removal of the anion template reveals an interlocked host system, possessing a unique three-dimensional geometrically restrained binding cavity formed between the interlocked components, which exhibits impressive selectivity toward complementary anionic guest species. By incorporating reporter groups within such systems, we have developed both electrochemical and optical anion sensors which can achieve highly selective sensing of anionic guests. Transition metals, lanthanides, and organic fluorophores integrated within the mechanically bonded structural framework of the receptor are perturbed by the binding of the guest, with a concomitant change in the emission profile. We have also exploited the unique dynamics of interlocked hosts by demonstrating that an anion-induced conformational change can be used as a means of signal transduction. Electrochemical sensing has been realized by integration of the redox-active ferrocene functionality within a range of rotaxane and catenanes; binding of an anion perturbs the metallocene, leading to a cathodic shift in the ferrocene/ferrocenium redox couple. In order to obtain practical sensors for target charged guest species, confinement of receptors at a surface is necessary in order to develop robust, reuseable devices. Surface confinement also offers advantages over solution based receptors, including amplification of signal, enhanced guest binding thermodynamics and the negation of solubility problems. We have fabricated anion-templated rotaxanes and catenanes on gold electrode surfaces and demonstrated that the resulting mechanically bonded self-assembled monolayers are electrochemically responsive to the binding of anions, a crucial first step toward the advancement of sophisticated, highly selective, anion sensory devices. Rotaxane and catenane host molecules may be engineered to offer a superior level of molecular recognition, and the incorporation of optical or electrochemical reporter groups within these interlocked frameworks can allow for guest sensing. Advances in synthetic templation strategies has facilitated the synthesis of interlocked architectures and widened their interest as prototype molecular machines. However, their unique host-guest properties are only now beginning to be exploited as a sophisticated approach to chemical sensing. The development of functional host-guest sensory systems such as these is of great interest to the interdisciplinary field of supramolecular chemistry.

  10. Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae

    PubMed Central

    Laue, Bridget E.; Sharp, Paul M.; Green, Sarah

    2016-01-01

    Summary The diversification of lineages within Pseudomonas syringae has involved a number of adaptive shifts from herbaceous hosts onto various species of tree, resulting in the emergence of highly destructive diseases such as bacterial canker of kiwi and bleeding canker of horse chestnut. This diversification has involved a high level of gene gain and loss, and these processes are likely to play major roles in the adaptation of individual lineages onto their host plants. In order to better understand the evolution of P. syringae onto woody plants, we have generated de novo genome sequences for 26 strains from the P. syringae species complex that are pathogenic on a range of woody species, and have looked for statistically significant associations between gene presence and host type (i.e. woody or herbaceous) across a phylogeny of 64 strains. We have found evidence for a common set of genes associated with strains that are able to colonize woody plants, suggesting that divergent lineages have acquired similarities in genome composition that may form the genetic basis of their adaptation to woody hosts. We also describe in detail the gain, loss and rearrangement of specific loci that may be functionally important in facilitating this adaptive shift. Overall, our analyses allow for a greater understanding of how gene gain and loss may contribute to adaptation in P. syringae. PMID:27145446

  11. The Pathogen-Host Interactions database (PHI-base): additions and future developments.

    PubMed

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G; Pedro, Helder; Hammond-Kosack, Kim E

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. European Scientific Notes. Volume 35. Number 1.

    DTIC Science & Technology

    1981-01-31

    thermotropic polymers, primar- formed smectic phases. She also studied ily with aromatic polyesters. Dr. R.W. the orientation of liquid crystal ...booster synchrotron and Linac are switched studies of crystals where a very good off and the electrons are allowed to approximation to a point source...compounds in the temperature Cr in a MgO host crystal in magnetic range of 1 to 25 K and as a function of fields up to 2*S T at temperatures between

  13. Genome editing in Kluyveromyces and Ogataea yeasts using a broad-host-range Cas9/gRNA co-expression plasmid.

    PubMed

    Juergens, Hannes; Varela, Javier A; Gorter de Vries, Arthur R; Perli, Thomas; Gast, Veronica J M; Gyurchev, Nikola Y; Rajkumar, Arun S; Mans, Robert; Pronk, Jack T; Morrissey, John P; Daran, Jean-Marc G

    2018-05-01

    While CRISPR-Cas9-mediated genome editing has transformed yeast research, current plasmids and cassettes for Cas9 and guide-RNA expression are species specific. CRISPR tools that function in multiple yeast species could contribute to the intensifying research on non-conventional yeasts. A plasmid carrying a pangenomic origin of replication and two constitutive expression cassettes for Cas9 and ribozyme-flanked gRNAs was constructed. Its functionality was tested by analyzing inactivation of the ADE2 gene in four yeast species. In two Kluyveromyces species, near-perfect targeting (≥96%) and homologous repair (HR) were observed in at least 24% of transformants. In two Ogataea species, Ade- mutants were not observed directly after transformation, but prolonged incubation of transformed cells resulted in targeting efficiencies of 9% to 63% mediated by non-homologous end joining (NHEJ). In an Ogataea parapolymorpha ku80 mutant, deletion of OpADE2 mediated by HR was achieved, albeit at low efficiencies (<1%). Furthermore the expression of a dual polycistronic gRNA array enabled simultaneous interruption of OpADE2 and OpYNR1 demonstrating flexibility of ribozyme-flanked gRNA design for multiplexing. While prevalence of NHEJ prevented HR-mediated editing in Ogataea, such targeted editing was possible in Kluyveromyces. This broad-host-range CRISPR/gRNA system may contribute to exploration of Cas9-mediated genome editing in other Saccharomycotina yeasts.

  14. Evasion and Immuno-Endocrine Regulation in Parasite Infection: Two Sides of the Same Coin in Chagas Disease?

    PubMed Central

    Morrot, Alexandre; Villar, Silvina R.; González, Florencia B.; Pérez, Ana R.

    2016-01-01

    Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease. PMID:27242726

  15. Ecology of coliphages in southern California coastal waters.

    PubMed

    Reyes, V C; Jiang, S C

    2010-08-01

    This study aims to investigate the ecology of coliphages, an important microbial pollution indicator. Specifically, our experiments address (i) the ability of environmental Escherichia coli (E. coli) to serve as hosts for coliphage replication, and (ii) the temporal and spatial distribution of coliphages in coastal waters. Water samples from three locations in California's Newport Bay watershed were tested for the presence of coliphages every 2 weeks for an entire year. A total of nine E. coli strains isolated from various sources served as hosts for coliphage detection. Coliphage occurrence was significantly different between freshwater, estuarine and coastal locations and correlated with water temperature, salinity and rainfall in the watershed. The coliphages isolated on the environmental hosts had a broad host-range relative to the coliphages isolated on an E. coli strain from sewage and a US EPA recommended strain for coliphage detection. Coliphage occurrence was related to the temperature, rainfall and salinity within the bay. The adaptation to a broad host-range may enable the proliferation of coliphages in the aquatic environment. Understanding the seasonal variation of phages is useful for establishing a background level of coliphage presence in coastal waters. The broad host-range of coliphages isolated on the environmental E. coli host calls for investigation of coliphage replication in the aquatic environment.

  16. The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey

    DOE PAGES

    Bufanda, E.; Hollowood, D.; Jeltema, T. E.; ...

    2016-12-13

    The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. Here, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 10 43 ergs s -1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.10.7. Our resultmore » is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. But, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.« less

  17. In situ Low-temperature Pair Distribution Function (PDF) Analysis of CH4 and CO2 Hydrates

    NASA Astrophysics Data System (ADS)

    Cladek, B.; Everett, M.; McDonnell, M.; Tucker, M.; Keffer, D.; Rawn, C.

    2017-12-01

    Gas hydrates occur in ocean floor and sub-surface permafrost deposits and are stable at moderate to high pressures and low temperatures. They are a clathrate structure composed of hydrogen bonded water cages that accommodate a wide variety of guest molecules. CO2 and CH4 hydrates both crystallize as the cubic sI hydrate and can form a solid solution. Natural gas hydrates are interesting as a potential methane source and for CO2 sequestration. Long-range diffraction studies on gas hydrates give valuable structural information but do not provide a detailed understanding of the disordered gas molecule interactions with the host lattice. In-situ low temperature total scattering experiments combined with pair distribution function (PDF) analysis are used to investigate the gas molecule motions and guest-cage interactions. CO2 and methane hydrates exhibit different decomposition behavior, and CO2 hydrate has a smaller lattice parameter despite it being a relatively larger molecule. Total scattering studies characterizing both the short- and long-range order simultaneously help to elucidate the structural source of these phenomena. Low temperature neutron total scattering data were collected using the Nanoscale Ordered MAterials Diffractometer (NOMAD) beamline at the Spallation Neutron Source (SNS) on CO2 and CH4 hydrates synthesized with D2O. Guest molecule motion within cages and interactions between gases and cages are investigated through the hydrate stability and decomposition regions. Data were collected from 2-80 K at a pressure of 55 mbar on CO2 and CH4 hydrates, and from 80-270 K at 25 bar on CH4 hydrate. The hydrate systems were modeled with classical molecular dynamic (MD) simulations to provide an analysis of the total energy into guest-guest, guest-host and host-host contributions. Combined Reitveld and Reverse Monte Carlo (RMC) structure refinement were used to fit models of the data. This combined modeling and simulation characterizes the effects of CO2 and CH4 as guest molecules on the structure and decomposition of gas hydrates. Structure and thermodynamic studies will provide a more comprehensive understanding of CO2-CH4 solid solutions, exchange kinetics, and implications on hydrate structure.

  18. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease.

    PubMed

    Hoberg, Eric P; Brooks, Daniel R

    2015-04-05

    Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host-parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)--phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference--provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Determinants of host species range in plant viruses.

    PubMed

    Moury, Benoît; Fabre, Frédéric; Hébrard, Eugénie; Froissart, Rémy

    2017-04-01

    Prediction of pathogen emergence is an important field of research, both in human health and in agronomy. Most studies of pathogen emergence have focused on the ecological or anthropic factors involved rather than on the role of intrinsic pathogen properties. The capacity of pathogens to infect a large set of host species, i.e. to possess a large host range breadth (HRB), is tightly linked to their emergence propensity. Using an extensive plant virus database, we found that four traits related to virus genome or transmission properties were strongly and robustly linked to virus HRB. Broader host ranges were observed for viruses with single-stranded genomes, those with three genome segments and nematode-transmitted viruses. Also, two contrasted groups of seed-transmitted viruses were evidenced. Those with a single-stranded genome had larger HRB than non-seed-transmitted viruses, whereas those with a double-stranded genome (almost exclusively RNA) had an extremely small HRB. From the plant side, the family taxonomic rank appeared as a critical threshold for virus host range, with a highly significant increase in barriers to infection between plant families. Accordingly, the plant-virus infectivity matrix shows a dual structure pattern: a modular pattern mainly due to viruses specialized to infect plants of a given family and a nested pattern due to generalist viruses. These results contribute to a better prediction of virus host jumps and emergence risks.

  20. Host specific glycans are correlated with susceptibility to infection by lagoviruses, but not with their virulence.

    PubMed

    Lopes, Ana M; Breiman, Adrien; Lora, Mónica; Le Moullac-Vaidye, Béatrice; Galanina, Oxana; Nyström, Kristina; Marchandeau, Stephane; Le Gall-Reculé, Ghislaine; Strive, Tanja; Neimanis, Aleksija; Bovin, Nicolai V; Ruvoën-Clouet, Nathalie; Esteves, Pedro J; Abrantes, Joana; Le Pendu, Jacques

    2017-11-29

    The rabbit hemorrhagic disease virus (RHDV) and the European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus , respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged and many non-pathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, non-pathogenic lagoviruses and EBHSV potentially play a role in determining host range and virulence of lagoviruses. We observed binding to A, B or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits ( Oryctolagus cuniculus ), that have recently been classified as GI strains. Yet, we could not explain the emergence of virulence since similar glycan specificities were found between several pathogenic and non-pathogenic strains. By contrast, EBHSV, recently classified as GII.1, bound to terminal β-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species ( Oryctolagus cuniculus, Lepus europaeus and Sylvilagus floridanus ) showed species-specific patterns regarding the susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagoviruses host specificity and range. IMPORTANCE Lagoviruses constitute a genus of the Caliciviridae family, comprising highly pathogenic viruses, RHDV and EBHSV, which infect rabbits and hares, respectively. Recently, non-pathogenic strains were discovered and new pathogenic strains have emerged. In addition, host jumps between lagomorphs are observed. The mechanisms responsible for the emergence of pathogenicity and host-species range are unknown. Previous studies showed that RHDV strains attach to glycans expressed in the upper respiratory and digestive tracts of rabbits, the likely doors of virus entry. Here we studied the glycan-binding properties of novel pathogenic and non-pathogenic strains looking for a link between glycan-binding and virulence or between glycan specificity and host range. We found that glycan binding did not correlate with virulence. However, expression of glycan motifs in the upper respiratory and digestive tracts of lagomorphs revealed species-specific patterns associated with the host range of the virus strains, suggesting that glycan diversity contributes to lagoviruses' host range. Copyright © 2017 American Society for Microbiology.

  1. Novel narrow-host-range vectors for direct cloning of foreign DNA in Pseudomonas.

    PubMed

    Boivin, R; Bellemare, G; Dion, P

    1994-01-01

    Narrow-host-range vectors, based on an indigenous replicon and containing a multiple cloning site, have been constructed in a Pseudomonas host capable of growth on unusual substrates. The new cloning vectors yield sufficient amounts of DNA for preparative purposes and belong to an incompatibility group different from that of the incP and incQ broad-host-range vectors. One of these vectors, named pDB47F, was used to clone, directly in Pseudomonas, DNA fragments from Agrobacterium, Pseudomonas, and Rhizobium. A clone containing Agrobacterium and KmR gene sequences was transformed with a higher efficiency than an RSF1010-derived vector (by as much as 1250-fold) in four out of five Pseudomonas strains tested. The considerable efficiency obtained with this system makes possible the direct cloning and phenotypic selection of foreign DNA in Pseudomonas.

  2. Persistence of Functional Protein Domains in Mycoplasma Species and their Role in Host Specificity and Synthetic Minimal Life.

    PubMed

    Kamminga, Tjerko; Koehorst, Jasper J; Vermeij, Paul; Slagman, Simen-Jan; Martins Dos Santos, Vitor A P; Bijlsma, Jetta J E; Schaap, Peter J

    2017-01-01

    Mycoplasmas are the smallest self-replicating organisms and obligate parasites of a specific vertebrate host. An in-depth analysis of the functional capabilities of mycoplasma species is fundamental to understand how some of simplest forms of life on Earth succeeded in subverting complex hosts with highly sophisticated immune systems. In this study we present a genome-scale comparison, focused on identification of functional protein domains, of 80 publically available mycoplasma genomes which were consistently re-annotated using a standardized annotation pipeline embedded in a semantic framework to keep track of the data provenance. We examined the pan- and core-domainome and studied predicted functional capability in relation to host specificity and phylogenetic distance. We show that the pan- and core-domainome of mycoplasma species is closed. A comparison with the proteome of the "minimal" synthetic bacterium JCVI-Syn3.0 allowed us to classify domains and proteins essential for minimal life. Many of those essential protein domains, essential Domains of Unknown Function (DUFs) and essential hypothetical proteins are not persistent across mycoplasma genomes suggesting that mycoplasma species support alternative domain configurations that bypass their essentiality. Based on the protein domain composition, we could separate mycoplasma species infecting blood and tissue. For selected genomes of tissue infecting mycoplasmas, we could also predict whether the host is ruminant, pig or human. Functionally closely related mycoplasma species, which have a highly similar protein domain repertoire, but different hosts could not be separated. This study provides a concise overview of the functional capabilities of mycoplasma species, which can be used as a basis to further understand host-pathogen interaction or to design synthetic minimal life.

  3. Persistence of Functional Protein Domains in Mycoplasma Species and their Role in Host Specificity and Synthetic Minimal Life

    PubMed Central

    Kamminga, Tjerko; Koehorst, Jasper J.; Vermeij, Paul; Slagman, Simen-Jan; Martins dos Santos, Vitor A. P.; Bijlsma, Jetta J. E.; Schaap, Peter J.

    2017-01-01

    Mycoplasmas are the smallest self-replicating organisms and obligate parasites of a specific vertebrate host. An in-depth analysis of the functional capabilities of mycoplasma species is fundamental to understand how some of simplest forms of life on Earth succeeded in subverting complex hosts with highly sophisticated immune systems. In this study we present a genome-scale comparison, focused on identification of functional protein domains, of 80 publically available mycoplasma genomes which were consistently re-annotated using a standardized annotation pipeline embedded in a semantic framework to keep track of the data provenance. We examined the pan- and core-domainome and studied predicted functional capability in relation to host specificity and phylogenetic distance. We show that the pan- and core-domainome of mycoplasma species is closed. A comparison with the proteome of the “minimal” synthetic bacterium JCVI-Syn3.0 allowed us to classify domains and proteins essential for minimal life. Many of those essential protein domains, essential Domains of Unknown Function (DUFs) and essential hypothetical proteins are not persistent across mycoplasma genomes suggesting that mycoplasma species support alternative domain configurations that bypass their essentiality. Based on the protein domain composition, we could separate mycoplasma species infecting blood and tissue. For selected genomes of tissue infecting mycoplasmas, we could also predict whether the host is ruminant, pig or human. Functionally closely related mycoplasma species, which have a highly similar protein domain repertoire, but different hosts could not be separated. This study provides a concise overview of the functional capabilities of mycoplasma species, which can be used as a basis to further understand host-pathogen interaction or to design synthetic minimal life. PMID:28224116

  4. Computational approaches to metabolic engineering utilizing systems biology and synthetic biology.

    PubMed

    Fong, Stephen S

    2014-08-01

    Metabolic engineering modifies cellular function to address various biochemical applications. Underlying metabolic engineering efforts are a host of tools and knowledge that are integrated to enable successful outcomes. Concurrent development of computational and experimental tools has enabled different approaches to metabolic engineering. One approach is to leverage knowledge and computational tools to prospectively predict designs to achieve the desired outcome. An alternative approach is to utilize combinatorial experimental tools to empirically explore the range of cellular function and to screen for desired traits. This mini-review focuses on computational systems biology and synthetic biology tools that can be used in combination for prospective in silico strain design.

  5. How to never be wrong.

    PubMed

    Gershman, Samuel J

    2018-05-24

    Human beliefs have remarkable robustness in the face of disconfirmation. This robustness is often explained as the product of heuristics or motivated reasoning. However, robustness can also arise from purely rational principles when the reasoner has recourse to ad hoc auxiliary hypotheses. Auxiliary hypotheses primarily function as the linking assumptions connecting different beliefs to one another and to observational data, but they can also function as a "protective belt" that explains away disconfirmation by absorbing some of the blame. The present article traces the role of auxiliary hypotheses from philosophy of science to Bayesian models of cognition and a host of behavioral phenomena, demonstrating their wide-ranging implications.

  6. Eavesdropping to Find Mates: The Function of Male Hearing for a Cicada-Hunting Parasitoid Fly, Emblemasoma erro (Diptera: Sarcophagidae)

    PubMed Central

    Stucky, Brian J.

    2016-01-01

    Females of several species of dipteran parasitoids use long-range hearing to locate hosts for their offspring by eavesdropping on the acoustic mating calls of other insects. Males of these acoustic eavesdropping parasitoids also have physiologically functional ears, but so far, no adaptive function for male hearing has been discovered. I investigated the function of male hearing for the sarcophagid fly Emblemasoma erro Aldrich, an acoustic parasitoid of cicadas, by testing the hypothesis that both male and female E. erro use hearing to locate potential mates. I found that both male and nongravid female E. erro perform phonotaxis to the sounds of calling cicadas, that male flies engage in short-range, mate-finding behavior once they arrive at a sound source, and that encounters between females and males at a sound source can lead to copulation. Thus, cicada calling songs appear to serve as a mate-finding cue for both sexes of E. erro. Emblemasoma erro’s mate-finding behavior is compared to that of other sarcophagid flies, other acoustic parasitoids, and nonacoustic eavesdropping parasitoids. PMID:27382133

  7. Odontonema cuspidatum and Psychotria punctata, two new cucumber mosaic virus hosts identified in Florida

    USDA-ARS?s Scientific Manuscript database

    The wide host range of Cucumber mosaic virus (CMV) has been expanded by the identification of Odontonema cuspidatum (firespike) and Psychotria punctata (dotted wild coffee) as CMV hosts in Florida....

  8. Host specificity and the probability of discovering species of helminth parasites.

    PubMed

    Poulin, R; Mouillot, D

    2005-06-01

    Different animal species have different probabilities of being discovered and described by scientists, and these probabilities are determined to a large extent by the biological characteristics of these species. For instance, species with broader geographical ranges are more likely to be encountered by collectors than species with restricted distributions; indeed, the size of the geographical range is often the best predictor of a species' date of description. For parasitic organisms, host specificity may be similarly linked to the probability of a species being found. Here, using data on 170 helminth species parasitic in freshwater fishes, we show that host specificity is associated with the year in which the helminths were described. Helminths that exploit more host species, and to a lesser degree those that exploit a broader taxonomic range of host species, tend to be discovered earlier than the more host-specific helminths. This pattern was observed across all helminth species, as well as within the different helminth taxa (trematodes, cestodes, nematodes and acanthocephalans). Our results demonstrate that the parasite species known at any given point in time are not a random subset of existing species, but rather a biased subset with respect to the parasites' biological properties.

  9. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    PubMed Central

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  10. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology.

    PubMed

    DeBlasio, Stacy L; Chavez, Juan D; Alexander, Mariko M; Ramsey, John; Eng, Jimmy K; Mahoney, Jaclyn; Gray, Stewart M; Bruce, James E; Cilia, Michelle

    2016-02-15

    Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology

    PubMed Central

    DeBlasio, Stacy L.; Chavez, Juan D.; Alexander, Mariko M.; Ramsey, John; Eng, Jimmy K.; Mahoney, Jaclyn; Gray, Stewart M.; Bruce, James E.

    2015-01-01

    ABSTRACT Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection—hallmarks of host-pathogen interactions—were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. IMPORTANCE The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy. PMID:26656710

  12. Identification of the same polyomavirus species in different African horseshoe bat species is indicative of short-range host-switching events.

    PubMed

    Carr, Michael; Gonzalez, Gabriel; Sasaki, Michihito; Dool, Serena E; Ito, Kimihito; Ishii, Akihiro; Hang'ombe, Bernard M; Mweene, Aaron S; Teeling, Emma C; Hall, William W; Orba, Yasuko; Sawa, Hirofumi

    2017-10-06

    Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.

  13. The Trw Type IV Secretion System of Bartonella Mediates Host-Specific Adhesion to Erythrocytes

    PubMed Central

    Vayssier-Taussat, Muriel; Le Rhun, Danielle; Deng, Hong Kuan; Biville, Francis; Cescau, Sandra; Danchin, Antoine; Marignac, Geneviève; Lenaour, Evelyne; Boulouis, Henri Jean; Mavris, Maria; Arnaud, Lionel; Yang, Huanming; Wang, Jing; Quebatte, Maxime; Engel, Philipp; Saenz, Henri; Dehio, Christoph

    2010-01-01

    Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The α-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals. PMID:20548954

  14. Species turnover drives β-diversity patterns across multiple spatial scales of plant-galling interactions in mountaintop grasslands.

    PubMed

    Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson

    2018-01-01

    This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.

  15. Colonization behaviors of mountain pine beetle on novel hosts: Implications for range expansion into northeastern North America

    PubMed Central

    Venette, Robert C.; Maddox, Mitchell P.; Aukema, Brian H.

    2017-01-01

    As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death. PMID:28472047

  16. Colonization behaviors of mountain pine beetle on novel hosts: Implications for range expansion into northeastern North America.

    PubMed

    Rosenberger, Derek W; Venette, Robert C; Maddox, Mitchell P; Aukema, Brian H

    2017-01-01

    As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death.

  17. Hybridization between two cestode species and its consequences for intermediate host range

    PubMed Central

    2013-01-01

    Background Many parasites show an extraordinary degree of host specificity, even though a narrow range of host species reduces the likelihood of successful transmission. In this study, we evaluate the genetic basis of host specificity and transmission success of experimental F1 hybrids from two closely related tapeworm species (Schistocephalus solidus and S. pungitii), both highly specific to their respective vertebrate second intermediate hosts (three- and nine-spined sticklebacks, respectively). Methods We used an in vitro breeding system to hybridize Schistocephalus solidus and S. pungitii; hybridization rate was quantified using microsatellite markers. We measured several fitness relevant traits in pure lines of the parental parasite species as well as in their hybrids: hatching rates, infection rates in the copepod first host, and infection rates and growth in the two species of stickleback second hosts. Results We show that the parasites can hybridize in the in vitro system, although the proportion of self-fertilized offspring was higher in the heterospecific breeding pairs than in the control pure parental species. Hybrids have a lower hatching rate, but do not show any disadvantages in infection of copepods. In fish, hybrids were able to infect both stickleback species with equal frequency, whereas the pure lines were only able to infect their normal host species. Conclusions Although not yet documented in nature, our study shows that hybridization in Schistocephalus spp. is in principle possible and that, in respect to their expanded host range, the hybrids are fitter. Further studies are needed to find the reason for the maintenance of the species boundaries in wild populations. PMID:23390985

  18. Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.

    PubMed

    Jacob, Alison S; Busby, Eloise J; Levy, Abigail D; Komm, Natasha; Clark, C Graham

    2016-01-01

    Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  19. Long-term dynamics of Mycoplasma conjunctivae at the wildlife-livestock interface in the Pyrenees

    PubMed Central

    Cabezón, Oscar; Frey, Joachim; Velarde, Roser; Serrano, Emmanuel; Colom-Cadena, Andreu; Gelormini, Giuseppina; Marco, Ignasi; Mentaberre, Gregorio; Lavín, Santiago; López-Olvera, Jorge Ramón

    2017-01-01

    Functional roles of domestic and wild host populations in infectious keratoconjunctivitis (IKC) epidemiology have been extensively discussed claiming a domestic reservoir for the more susceptible wild hosts, however, based on limited data. With the aim to better assess IKC epidemiology in complex host-pathogen alpine systems, the long-term infectious dynamics and molecular epidemiology of Mycoplasma conjunctivae was investigated in all host populations from six study areas in the Pyrenees and one in the Cantabrian Mountains (Northern Spain). Detection of M. conjunctivae was performed by qPCR on 3600 eye swabs collected during seven years from hunted wild ungulates and sympatric domestic sheep (n = 1800 animals), and cluster analyses of the strains were performed including previous reported local strains. Mycoplasma conjunctivae was consistently detected in three Pyrenean chamois (Rupicapra p. pyrenaica) populations, as well as in sheep flocks (17.0% of sheep) and occasionally in mouflon (Ovis aries musimon) from the Pyrenees (22.2% in one year/area); statistically associated with ocular clinical signs only in chamois. Chamois populations showed different infection dynamics with low but steady prevalence (4.9%) and significant yearly fluctuations (0.0%– 40.0%). Persistence of specific M. conjunctivae strain clusters in wild host populations is demonstrated for six and nine years. Cross-species transmission between chamois and sheep and chamois and mouflon were also sporadically evidenced. Overall, independent M. conjunctivae sylvatic and domestic cycles occurred at the wildlife-livestock interface in the alpine ecosystems from the Pyrenees with sheep and chamois as the key host species for each cycle, and mouflon as a spill-over host. Host population characteristics and M. conjunctivae strains resulted in different epidemiological scenarios in chamois, ranging from the fading out of the mycoplasma to the epidemic and endemic long-term persistence. These findings highlight the capacity of M. conjunctivae to establish diverse interactions and persist in host populations, also with different transmission conditions. PMID:29016676

  20. Functional traits help to explain half-century long shifts in pollinator distributions.

    PubMed

    Aguirre-Gutiérrez, Jesús; Kissling, W Daniel; Carvalheiro, Luísa G; WallisDeVries, Michiel F; Franzén, Markus; Biesmeijer, Jacobus C

    2016-04-15

    Changes in climate and land use can have important impacts on biodiversity. Species respond to such environmental modifications by adapting to new conditions or by shifting their geographic distributions towards more suitable areas. The latter might be constrained by species' functional traits that influence their ability to move, reproduce or establish. Here, we show that functional traits related to dispersal, reproduction, habitat use and diet have influenced how three pollinator groups (bees, butterflies and hoverflies) responded to changes in climate and land-use in the Netherlands since 1950. Across the three pollinator groups, we found pronounced areal range expansions (>53%) and modelled range shifts towards the north (all taxa: 17-22 km), west (bees: 14 km) and east (butterflies: 11 km). The importance of specific functional traits for explaining distributional changes varied among pollinator groups. Larval diet preferences (i.e. carnivorous vs. herbivorous/detritivorous and nitrogen values of host plants, respectively) were important for hoverflies and butterflies, adult body size for hoverflies, and flight period length for all groups. Moreover, interactions among multiple traits were important to explain species' geographic range shifts, suggesting that taxon-specific multi-trait analyses are needed to predict how global change will affect biodiversity and ecosystem services.

  1. Photoelectrochemical processes in polymer-tethered CdSe nanocrystals.

    PubMed

    Shallcross, R Clayton; D'Ambruoso, Gemma D; Pyun, Jeffrey; Armstrong, Neal R

    2010-03-03

    We demonstrate the electrochemical capture of CdSe semiconductor nanocrystals (NCs), with thiophene-terminated carboxylic acid capping ligands, at the surfaces of electrodeposited poly(thiophene) films (i) poly((diethyl)propylenedixoythiophene), P(Et)(2)ProDOT; (ii) poly(propylenedioxythiophene), PProDOT; and (iii) poly(ethylenedioxythiophene), PEDOT, coupled with the exploration of their photoelectrochemical properties. Host polymer films were created using a kinetically controlled electrodeposition protocol on activated indium-tin oxide electrodes (ITO), producing conformal films that facilitate high rates of electron transfer. ProDOT-terminated, ligand-capped CdSe-NCs were captured at the outer surface of the host polymer films using a unique pulse-potential step electrodeposition protocol, providing for nearly close-packed monolayers of the NCs at the host polymer/solution interface. These polymer-confined CdSe NCs were used as sensitizers in the photoelectrochemical reduction of methyl viologen (MV(+2)). High internal quantum efficiencies (IQEs) are estimated for photoelectrochemical sensitized MV(+2) reduction using CdSe NCs ranging from 3.1 to 7.0 nm diameters. Cathodic photocurrent at high MV(+2) concentrations are limited by the rate of hole-capture by the host polymer from photoexcited NCs. The rate of this hole-capture process is determined by (a) the onset potential for reductive dedoping of the host polymer film; (b) the concentration ratio of neutral to oxidized forms of the host polymer ([P(n)]/[P(ox)]); and (c) the NC diameter, which controls its valence band energy, E(VB). These relationships are consistent with control of photoinduced electron transfer by Marcus-like excess free energy relationships. Our electrochemical assembly methods provide an enabling route to the capture of functional NCs in conducting polymer hosts in both photoelectrochemical and photovoltaic energy conversion systems.

  2. Combining indoor and outdoor methods for controlling malaria vectors: an ecological model of endectocide-treated livestock and insecticidal bed nets.

    PubMed

    Yakob, Laith; Cameron, Mary; Lines, Jo

    2017-03-13

    Malaria is spread by mosquitoes that are increasingly recognised to have diverse biting behaviours. How a mosquito in a specific environment responds to differing availability of blood-host species is largely unknown and yet critical to vector control efficacy. A parsimonious mathematical model is proposed that accounts for a diverse range of host-biting behaviours and assesses their impact on combining long-lasting insecticidal nets (LLINs) with a novel approach to malaria control: livestock treated with insecticidal compounds ('endectocides') that kill biting mosquitoes. Simulations of a malaria control programme showed marked differences across biting ecologies in the efficacy of both LLINs as a stand-alone tool and the combination of LLINs with endectocide-treated cattle. During the intervals between LLIN mass campaigns, concordant use of endectocides is projected to reduce the bounce-back in malaria prevalence that can occur as LLIN efficacy decays over time, especially if replacement campaigns are delayed. Integrating these approaches can also dramatically improve the attainability of local elimination; endectocidal treatment schedules required to achieve this aim are provided for malaria vectors with different biting ecologies. Targeting blood-feeding mosquitoes by treating livestock with endectocides offers a potentially useful complement to existing malaria control programmes centred on LLIN distribution. This approach is likely to be effective against vectors with a wide range of host-preferences and biting behaviours, with the exception of species that are so strictly anthropophilic that most blood meals are taken on humans even when humans are much less available than non-human hosts. Identifying this functional relationship in wild mosquito populations and ascertaining the extent to which it differs, within as well as between species, is a critical next step before targets can be set for employing this novel approach and combination.

  3. The Effects of Captivity on the Mammalian Gut Microbiome.

    PubMed

    McKenzie, Valerie J; Song, Se Jin; Delsuc, Frédéric; Prest, Tiffany L; Oliverio, Angela M; Korpita, Timothy M; Alexiev, Alexandra; Amato, Katherine R; Metcalf, Jessica L; Kowalewski, Martin; Avenant, Nico L; Link, Andres; Di Fiore, Anthony; Seguin-Orlando, Andaine; Feh, Claudia; Orlando, Ludovic; Mendelson, Joseph R; Sanders, Jon; Knight, Rob

    2017-10-01

    Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  4. Flight Test Results for the NICMOS Cryocooler

    NASA Technical Reports Server (NTRS)

    Dolan, F. X.; McCormick, J. A.; Nellis, G. F.; Sixsmith, H.; Swift, W. L.

    1999-01-01

    In October 1998 a mechanical cryocooler and cryogenic circulator loop were flown on NASA's STS-95 as part of the Hubble Orbital System Test (HOST). The system will be installed on the Hubble Space Telescope (HST) during Service Mission #3 in 2000 and will provide cooling to the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). It will extend the useful life of that instrument by 5 to 10 years. This was the first successful space demonstration of a turbobrayton cryocooler. The cooler is a single stage reverse Brayton type, using low-vibration high-speed miniature turbomachines for the compression and expansion functions. A miniature centrifugal cryogenic circulator is used to deliver refrigerated neon to the instrument. During the mission, the cooler operated without anomalies for approximately 185 hours over a range of conditions to verify its mechanical, thermodynamic and control functions. The cryocooler satisfied all mission objectives including maximum cooldown to near-design operating conditions, warm and cold starts and stops, operation at near-design temperatures, and demonstration of long-term temperature stability. This paper presents a description of the cooler and its operation during the HOST flight.

  5. Long-range ordering of composites for organic electronics: TIPS-pentacene single crystals with incorporated nano-fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huanbin; Xue, Guobiao; Wu, Jiake

    Multi-component active materials are widely used for organic electronic devices, with every component contributing complementary and synergistic optoelectronic functions. Mixing these components generally leads to lowered crystallinity and weakened charge transport. Therefore, preparing the active materials without substantially disrupting the crystalline lattice is highly desired. In this paper, we show that crystallization of TIPS-pentacene from solutions in the presence of fluorescent nanofibers of a perylene bisimide derivative (PBI) leads to formation of composites with nanofiber guest incorporated in the crystal host. In spite of the binary composite structure, the TIPS-pentacene maintains the single-crystalline nature. As a result, the incorporation ofmore » the PBI guest introduces additional fluorescence function but does not significantly reduce the charge transport property of the TIPS-pentacene host, exhibiting field-effect mobility as high as 3.34 cm 2 V -1 s -1 even though 26.4% of the channel area is taken over by the guest. Finally, as such, this work provides a facile approach toward high-performance multifunctional organic electronic materials.« less

  6. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile

    PubMed Central

    Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno

    2015-01-01

    ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515

  7. Isolation and Characterization of Extracellular Vesicles from Adult Schistosoma japonicum.

    PubMed

    Liu, Juntao; Zhu, Lihui; Wang, Lihui; Chen, Yongjun; Giri, Bikash Ranjan; Li, Jianjun; Cheng, Guofeng

    2018-05-22

    Extracellular vesicles (EVs) are membranous vesicles released by a variety of cells into the extracellular microenvironment. EVs represent a population of heterogeneous vesicles, whose size range between 40 and 1,000 nm. Accumulated evidence indicated that EVs play important regulatory roles in pathogen-host interactions. A deep understanding of schistosome EVs should provide insights into the mechanisms underlying schistosome-host interactions, enabling development of novel strategies against schistosomiasis. Here, we aim to further study EVs functions in schistosomes by presenting a protocol for the isolation and characterization of EVs from adult Schistosoma japonicum (S. japonicum). EVs were isolated from in vitro culture medium using centrifugation combined with a commercial exosome isolation kit. The isolated S. japonicum EVs (SjEVs) typically possess a diameter of 100 - 400 nm, and are characterized by transmission electronic microscopy and western blotting. The usage of PKH67 dye-labeled SjEVs has demonstrated that SjEVs are internalized by the recipient cells. Overall, our protocol provides an alternative method for isolating EVs from adult schistosomes; the isolated SjEVs may be suitable for functional analysis.

  8. Bio-inspired formation of functional calcite/metal oxide nanoparticle composites.

    PubMed

    Kim, Yi-Yeoun; Schenk, Anna S; Walsh, Dominic; Kulak, Alexander N; Cespedes, Oscar; Meldrum, Fiona C

    2014-01-21

    Biominerals are invariably composite materials, where occlusion of organic macromolecules within single crystals can significantly modify their properties. In this article, we take inspiration from this biogenic strategy to generate composite crystals in which magnetite (Fe3O4) and zincite (ZnO) nanoparticles are embedded within a calcite single crystal host, thereby endowing it with new magnetic or optical properties. While growth of crystals in the presence of small molecules, macromolecules and particles can lead to their occlusion within the crystal host, this approach requires particles with specific surface chemistries. Overcoming this limitation, we here precipitate crystals within a nanoparticle-functionalised xyloglucan gel, where gels can also be incorporated within single crystals, according to their rigidity. This method is independent of the nanoparticle surface chemistry and as the gel maintains its overall structure when occluded within the crystal, the nanoparticles are maintained throughout the crystal, preventing, for example, their movement and accumulation at the crystal surface during crystal growth. This methodology is expected to be quite general, and could be used to endow a wide range of crystals with new functionalities.

  9. Long-range ordering of composites for organic electronics: TIPS-pentacene single crystals with incorporated nano-fibers

    DOE PAGES

    Li, Huanbin; Xue, Guobiao; Wu, Jiake; ...

    2017-08-18

    Multi-component active materials are widely used for organic electronic devices, with every component contributing complementary and synergistic optoelectronic functions. Mixing these components generally leads to lowered crystallinity and weakened charge transport. Therefore, preparing the active materials without substantially disrupting the crystalline lattice is highly desired. In this paper, we show that crystallization of TIPS-pentacene from solutions in the presence of fluorescent nanofibers of a perylene bisimide derivative (PBI) leads to formation of composites with nanofiber guest incorporated in the crystal host. In spite of the binary composite structure, the TIPS-pentacene maintains the single-crystalline nature. As a result, the incorporation ofmore » the PBI guest introduces additional fluorescence function but does not significantly reduce the charge transport property of the TIPS-pentacene host, exhibiting field-effect mobility as high as 3.34 cm 2 V -1 s -1 even though 26.4% of the channel area is taken over by the guest. Finally, as such, this work provides a facile approach toward high-performance multifunctional organic electronic materials.« less

  10. Accurate atomistic first-principles calculations of electronic stopping

    DOE PAGES

    Schleife, André; Kanai, Yosuke; Correa, Alfredo A.

    2015-01-20

    In this paper, we show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent Kohn-Sham equations for representative systems of H and He projectiles in crystalline aluminum. This approach to simulate nonadiabatic electron-ion interaction provides an accurate framework that allows for quantitative comparison with experiment without introducing ad hoc parameters such as effective charges, or assumptions about the dielectric function. Finally, our work clearlymore » shows that this atomistic first-principles description of electronic stopping is able to disentangle contributions due to tightly bound semicore electrons and geometric aspects of the stopping geometry (channeling versus off-channeling) in a wide range of projectile velocities.« less

  11. Phonon Softening due to Melting of the Ferromagnetic Order in Elemental Iron

    NASA Astrophysics Data System (ADS)

    Han, Qiang; Birol, Turan; Haule, Kristjan

    2018-05-01

    We study the fundamental question of the lattice dynamics of a metallic ferromagnet in the regime where the static long-range magnetic order is replaced by the fluctuating local moments embedded in a metallic host. We use the ab initio density functional theory + embedded dynamical mean-field theory functional approach to address the dynamic stability of iron polymorphs and the phonon softening with an increased temperature. We show that the nonharmonic and inhomogeneous phonon softening measured in iron is a result of the melting of the long-range ferromagnetic order and is unrelated to the first-order structural transition from the bcc to the fcc phase, as is usually assumed. We predict that the bcc structure is dynamically stable at all temperatures at normal pressure and is thermodynamically unstable only between the bcc-α and the bcc-δ phases of iron.

  12. Chemical signaling between plants and plant-pathogenic bacteria.

    PubMed

    Venturi, Vittorio; Fuqua, Clay

    2013-01-01

    Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced compounds interact with bacterial regulatory proteins that then affect gene expression. Similarly, bacterial quorum-sensing signals result in a range of functional responses in plants. This review attempts to highlight current knowledge in chemical signaling that takes place between pathogenic bacteria and plants. This chemical communication between plant and bacteria, also referred to as interkingdom signaling, will likely become a major research field in the future, as it allows the design of specific strategies to create plants that are resistant to plant pathogens.

  13. Free-flight phonotaxis in a parasitoid fly: behavioural thresholds, relative attraction and susceptibility to noise

    NASA Astrophysics Data System (ADS)

    Ramsauer, N.; Robert, D.

    The phonotactic capacity of tachinid flies to acoustically detect and localize a sound source simulating their cricket host was investigated in a large flight room. Acoustic measurements were performed to estimate the actual stimulus delivered to the flies, revealing highly heterogeneous sound fields. When presented with a simulated cricket song in red or infrared light conditions, the flies readily flew to the sound source and landed on it. Behavioural phonotactic thresholds were established as a function of carrier frequency and were found to coincide well with the frequency of the host's natural song (4.5-5.2kHz). Experiments revealed that the same range of frequencies is preferentially attractive to the free-flying flies, and that the reliability of signal detection in the presence of noise is best at behaviourally relevant frequencies.

  14. Cannibalism amplifies the spread of vertically transmitted pathogens.

    PubMed

    Sadeh, Asaf; Rosenheim, Jay A

    2016-08-01

    Cannibalism is a widespread behavior. Abundant empirical evidence demonstrates that cannibals incur a risk of contracting pathogenic infections when they consume infected conspecifics. However, current theory suggests that cannibalism generally impedes disease spread, because each victim is usually consumed by a single cannibal, such that cannibalism does not function as a spreading process. Consequently, cannibalism cannot be the only mode of transmission of most parasites. We develop simple, but general epidemiological models to analyze the interaction of cannibalism and vertical transmission. We show that cannibalism increases the prevalence of vertically transmitted pathogens whenever the host population density is not solely regulated by cannibalism. This mechanism, combined with additional, recently published, theoretical mechanisms, presents a strong case for the role of cannibalism in the spread of infectious diseases across a wide range of parasite-host systems. © 2016 by the Ecological Society of America.

  15. Bar Frequency & Galaxy Host Properties using the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Mizusawa, T.; Kim, T.; Munoz-Mateos, J.; Regan, M. W.; de Swardt, B.; Gadotti, D.; S4G Team

    2011-01-01

    Using the volume limited sample of 2,331 nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G), we have classified the frequency of barred spiral galaxies. The literature abounds with frequency ranges from as low as 20% to as high as 80% but these variations are driven by the quality of the data, the sample size and the methodology of the studies. Using the 3.6 and 4.5 micron IRAC images from S4G, we are able to make a definitive measurement of the local bar fraction as a function of the galaxy host and environment. We present the results from this survey and discuss how the current bar fraction compares to the declining frequency of bars from the present day to z 1.

  16. Epidemiological and clinical aspects on West Nile virus, a globally emerging pathogen.

    PubMed

    David, Shoba; Abraham, Asha Mary

    2016-08-01

    Since the isolation of West Nile virus (WNV) in 1937, in Uganda, it has spread globally, causing significant morbidity and mortality. While birds serve as amplifier hosts, mosquitoes of the Culex genus function as vectors. Humans and horses are dead end hosts. The clinical manifestations of West Nile infection in humans range from asymptomatic illness to West Nile encephalitis. The laboratory offers an array of tests, the preferred method being detection of RNA and serum IgM for WNV, which, if detected, confirms the clinical diagnosis. Although no definitive antiviral therapy and vaccine are available for humans, many approaches are being studied. This article will review the current literature of the natural cycle, geographical distribution, virology, replication cycle, molecular epidemiology, pathogenesis, laboratory diagnosis, clinical manifestations, blood donor screening for WNV, treatment, prevention and vaccines.

  17. Finalizing host range determination of a weed biological control pathogen with BLUPs and damage assessment

    USDA-ARS?s Scientific Manuscript database

    Colletotrichum gloeosporioides f. sp. salsolae (Penz.) Penz. & Sacc. in Penz. (CGS) is a facultative parasitic fungus being evaluated as a classical biological control agent of Russian thistle or tumbleweed (Salsola tragus L.). In initial host range determination tests, Henderson’s mixed model equat...

  18. Fundamental host range of Leptoypha hospita (Hemiptera: Tingidae), a potential biological control agent of Chinese privet

    Treesearch

    Yanzhuo Zhang; James L. Hanula; Scott Horn; Cera Jones; S. Kristine Braman; Jianghua Sun

    2016-01-01

    Chinese privet, Ligustrum sinense Lour., is an invasive shrub within riparian areas of the southeastern United States. Biological control is considered the most suitable management option for Chinese privet. The potential host range of the lace bug, Leptoypha hospita Drake et...

  19. Molecular basis of recognition between phytophthora pathogens and their hosts.

    PubMed

    Tyler, Brett M

    2002-01-01

    Recognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.

  20. Efficient active-template synthesis of calix[6]arene-based oriented pseudorotaxanes and rotaxanes.

    PubMed

    Zanichelli, Valeria; Ragazzon, Giulio; Orlandini, Guido; Venturi, Margherita; Credi, Alberto; Silvi, Serena; Arduini, Arturo; Secchi, Andrea

    2017-08-16

    A substrate can modify its chemical features, including a change of its reactivity, as a consequence of non-covalent interactions upon inclusion within a molecular host. Since the rise of supramolecular chemistry, this phenomenon has stimulated the ingenuity of scientists to emulate the function of enzymes by designing supramolecular systems in which the energetics and selectivity of reactions can be manipulated through programmed host-guest interactions and/or steric confinement. In this paper we investigate how the engulfment of a positively charged pyridinium-based guest inside the π-rich cavity of a tris-(N-phenylureido)calix[6]arene host affects its reactivity towards a S N 2 reaction. We found that the alkylation of complexed substrates leads to the formation of pseudorotaxanes and rotaxanes with faster kinetics and higher yields with respect to the standard procedures exploited so far. More importantly, the strategy described here expands the range of efficient synthetic routes for the formation of mechanically interlocked species with a strict control of the mutual orientation of their non-symmetric molecular components.

  1. Complement C2 receptor inhibitor trispanning: from man to schistosome.

    PubMed

    Inal, Jameel M

    2005-11-01

    Horizontal gene transfer (HGT), in relation to genetic transfer between hosts and parasites, is a little described mechanism. Since the complement inhibitor CRIT was first discovered in the human Schistosoma parasite (the causative agent of Bilharzia) and in Trypanosoma cruzi (a parasite causing Chagas' disease), it has been found to be distributed amongst various species, ranging from the early teleost cod to rats and humans. In terms of evolutionary distance, as measured in a phylogenetic analysis of these CRIT genes at nucleotide level, the parasitic species are as removed from their human host as is the rat sequence, suggesting HGT. The hypotheses that CRIT in humans and schistosomes is orthologous and that the presence of CRIT in schistosomes occurs as a result of host-to-parasite HGT are presented in the light of empirical data and the growing body of data on mobile genetic elements in human and schistosome genomes. In summary, these data indicate phylogenetic proximity between Schistosoma and human CRIT, identity of function, high nucleotide/amino acid identity and secondary protein structure, as well as identical genomic organization.

  2. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    PubMed

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Quantifying Heterogeneity in Host-Vector Contact: Tsetse (Glossina swynnertoni and G. pallidipes) Host Choice in Serengeti National Park, Tanzania

    PubMed Central

    Auty, Harriet; Cleaveland, Sarah; Malele, Imna; Masoy, Joseph; Lembo, Tiziana; Bessell, Paul; Torr, Stephen; Picozzi, Kim; Welburn, Susan C.

    2016-01-01

    Background Identifying hosts of blood-feeding insect vectors is crucial in understanding their role in disease transmission. Rhodesian human African trypanosomiasis (rHAT), also known as acute sleeping sickness is caused by Trypanosoma brucei rhodesiense and transmitted by tsetse flies. The disease is commonly associated with wilderness areas of east and southern Africa. Such areas hold a diverse range of species which form communities of hosts for disease maintenance. The relative importance of different wildlife hosts remains unclear. This study quantified tsetse feeding preferences in a wilderness area of great host species richness, Serengeti National Park, Tanzania, assessing tsetse feeding and host density contemporaneously. Methods Glossina swynnertoni and G. pallidipes were collected from six study sites. Bloodmeal sources were identified through matching Cytochrome B sequences amplified from bloodmeals from recently fed flies to published sequences. Densities of large mammal species in each site were quantified, and feeding indices calculated to assess the relative selection or avoidance of each host species by tsetse. Results The host species most commonly identified in G. swynnertoni bloodmeals, warthog (94/220), buffalo (48/220) and giraffe (46/220), were found at relatively low densities (3-11/km2) and fed on up to 15 times more frequently than expected by their relative density. Wildebeest, zebra, impala and Thomson’s gazelle, found at the highest densities, were never identified in bloodmeals. Commonly identified hosts for G. pallidipes were buffalo (26/46), giraffe (9/46) and elephant (5/46). Conclusions This study is the first to quantify tsetse host range by molecular analysis of tsetse diet with simultaneous assessment of host density in a wilderness area. Although G. swynnertoni and G. pallidipes can feed on a range of species, they are highly selective. Many host species are rarely fed on, despite being present in areas where tsetse are abundant. These feeding patterns, along with the ability of key host species to maintain and transmit T. b. rhodesiense, drive the epidemiology of rHAT in wilderness areas. PMID:27706167

  4. Unravelling the role of host plant expansion in the diversification of a Neotropical butterfly genus.

    PubMed

    McClure, Melanie; Elias, Marianne

    2016-06-16

    Understanding the processes underlying diversification is a central question in evolutionary biology. For butterflies, access to new host plants provides opportunities for adaptive speciation. On the one hand, locally abundant host species can generate ecologically significant selection pressure. But a diversity of host plant species within the geographic range of each population and/or species might also eliminate any advantage conferred by specialization. This paper focuses on four Melinaea species, which are oligophagous on the family Solanaceae: M. menophilus, M. satevis, M. marsaeus, and finally, M. mothone. We examined both female preference and larval performance on two host plant species that commonly occur in this butterfly's native range, Juanulloa parasitica and Trianaea speciosa, to determine whether the different Melinaea species show evidence of local adaptation. In choice experiments, M. mothone females used both host plants for oviposition, whereas all other species used J. parasitica almost exclusively. In no choice experiment, M. mothone was the only species that readily accepted T. speciosa as a larval host plant. Larval survival was highest on J. parasitica (82.0 % vs. 60.9 %) and development took longer on T. speciosa (14.12 days vs. 13.35 days), except for M. mothone, which did equally well on both host plants. For all species, average pupal weight was highest on J. parasitica (450.66 mg vs. 420.01 mg), although this difference was least apparent in M. mothone. We did not find that coexisting species of Melinaea partition host plant resources as expected if speciation is primarily driven by host plant divergence. Although M. mothone shows evidence of local adaptation to a novel host plant, T. speciosa, which co-occurs, it does not preferentially lay more eggs on or perform better on this host plant than on host plants used by other Melinaea species and not present in its distributional range. It is likely that diversification in this genus is driven by co-occurring Müllerian mimics and the resulting predation pressure, although this is also likely made possible by greater niche diversity as a consequence of plasticity for potential hosts.

  5. Partitioning of functional and taxonomic diversity in surface-associated microbial communities.

    PubMed

    Roth-Schulze, Alexandra J; Zozaya-Valdés, Enrique; Steinberg, Peter D; Thomas, Torsten

    2016-12-01

    Surfaces, including those submerged in the marine environment, are subjected to constant interactions and colonisation by surrounding microorganisms. The principles that determine the assembly of those epibiotic communities are however poorly understood. In this study, we employed a hierarchical design to assess the functionality and diversity of microbial communities on different types of host surfaces (e.g. macroalgae, seagrasses). We found that taxonomic diversity was unique to each type of host, but that the majority of functions (> 95%) could be found in any given surface community, suggesting a high degree of functional redundancy. However, some community functions were enriched on certain surfaces and were related to host-specific properties (e.g. the degradation of specific polysaccharides). Together these observations support a model, whereby communities on surfaces are assembled from guilds of microorganisms with a functionality that is partitioned into general properties for a surface-associated life-style, but also specific features that mediate host-specificity. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Eosinophils in helminth infection: defenders and dupes

    PubMed Central

    Huang, Lu; Appleton, Judith A.

    2016-01-01

    Eosinophilia is a central feature of the host response to helminth infection. Larval stages of parasitic worms are killed in vitro by eosinophils in the presence of specific antibodies or complement. These findings established host defense as the paradigm for eosinophil function. Recently, studies in eosinophil-ablated mouse strains have revealed an expanded repertoire of immunoregulatory functions for this cell. Other reports document crucial roles for eosinophils in tissue homeostasis and metabolism, processes that are central to the establishment and maintenance of parasitic worms in their hosts. In this review, we summarize current understanding of the significance of eosinophils at the host-parasite interface, highlighting their distinct functions during primary and secondary exposure. PMID:27262918

  7. Time-Course Study of the Transcriptome of Peripheral Blood Mononuclear Cells (PBMCs) from Sheep Infected with Fasciola hepatica

    PubMed Central

    Scheerlinck, Jean-Pierre; Ansell, Brendan R. E.; Hall, Ross S.; Gasser, Robin B.; Jex, Aaron R.

    2016-01-01

    Fasciola hepatica is a parasitic trematode that infects a wide range of mammalian hosts, including livestock and humans, in temperate and tropical regions globally. This trematode causes the disease fascioliasis, which consists of an acute phase (≤ 12 weeks) during which juvenile parasites migrate through the host liver tissues, and a chronic phase (> 12 weeks) following the establishment of adult parasites in the liver bile ducts. Few studies have explored the progression of the host response over the course of Fasciola infection in the same animals. In this study, we characterized transcriptomic changes in peripheral blood mononuclear cells (PBMCs) collected from sheep at three time points over the first eight weeks of infection relative to uninfected controls. In total, 183 and 76 genes were found to be differentially transcribed at two and eight weeks post-infection respectively. Functional and pathway analysis of differentially transcribed genes revealed changes related to T-cell activation that may underpin a Th2-biased immune response against this parasite. This first insight into the dynamics of host responses during the early stages of infection improves the understanding of the pathogenesis of acute fascioliasis, informs vaccine development and presents a set of PBMC markers with diagnostic potential. PMID:27438474

  8. Comparative genomics using microarrays reveals divergence and loss of virulence-associated genes in host-specific strains of the insect pathogen Metarhizium anisopliae.

    PubMed

    Wang, Sibao; Leclerque, Andreas; Pava-Ripoll, Monica; Fang, Weiguo; St Leger, Raymond J

    2009-06-01

    Many strains of Metarhizium anisopliae have broad host ranges, but others are specialists and adapted to particular hosts. Patterns of gene duplication, divergence, and deletion in three generalist and three specialist strains were investigated by heterologous hybridization of genomic DNA to genes from the generalist strain Ma2575. As expected, major life processes are highly conserved, presumably due to purifying selection. However, up to 7% of Ma2575 genes were highly divergent or absent in specialist strains. Many of these sequences are conserved in other fungal species, suggesting that there has been rapid evolution and loss in specialist Metarhizium genomes. Some poorly hybridizing genes in specialists were functionally coordinated, indicative of reductive evolution. These included several involved in toxin biosynthesis and sugar metabolism in root exudates, suggesting that specialists are losing genes required to live in alternative hosts or as saprophytes. Several components of mobile genetic elements were also highly divergent or lost in specialists. Exceptionally, the genome of the specialist cricket pathogen Ma443 contained extra insertion elements that might play a role in generating evolutionary novelty. This study throws light on the abundance of orphans in genomes, as 15% of orphan sequences were found to be rapidly evolving in the Ma2575 lineage.

  9. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    PubMed Central

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

  10. Fetal functional imaging portrays heterogeneous development of emerging human brain networks.

    PubMed

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.

  11. Geographical variation in parasitism shapes larval immune function in a phytophagous insect

    NASA Astrophysics Data System (ADS)

    Vogelweith, Fanny; Dourneau, Morgane; Thiéry, Denis; Moret, Yannick; Moreau, Jérôme

    2013-12-01

    Two of the central goals of immunoecology are to understand natural variation in the immune system among populations and to identify those selection pressures that shape immune traits. Maintenance of the immune system can be costly, and both food quality and parasitism selection pressure are factors potentially driving immunocompetence. In tritrophic interactions involving phytophagous insects, host plants, and natural enemies, the immunocompetence of phytophagous insects is constrained by selective forces from both the host plants and the natural enemies. Here, we assessed the roles of host plants and natural enemies as selective pressures on immune variation among natural populations of Lobesia botrana. Our results showed marked geographical variation in immune defenses and parasitism among different natural populations. Larval immune functions were dependent of the host plant quality and were positively correlated to parasitism, suggesting that parasitoids select for greater investment into immunity in moth. Furthermore, investment in immune defense was negatively correlated with body size, suggesting that it is metabolically expensive. The findings emphasize the roles of host plants and parasitoids as selective forces shaping host immune functions in natural conditions. We argue that kinds of study are central to understanding natural variations in immune functions, and the selective forces beyond.

  12. Influence of leaf color in a dry bean mapping population on Empoasca sp. populations and host plant resistance.

    USDA-ARS?s Scientific Manuscript database

    Visual cues may be the first line of host plant recognition and an important determining factor when selecting host plants for feeding and oviposition, especially for highly polyphagous insects, such as leafhoppers, which have a broad range of potential host plants. Temperate Empoasca fabae and trop...

  13. Alteration of a Second Putative Fusion Peptide of Structural Glycoprotein E2 of Classical Swine Fever Virus Alters Virus Replication and Virulence in Swine

    PubMed Central

    Holinka, L. G.; Largo, E.; Gladue, D. P.; O'Donnell, V.; Risatti, G. R.; Nieva, J. L.

    2016-01-01

    ABSTRACT E2, the major envelope glycoprotein of classical swine fever virus (CSFV), is involved in several critical virus functions, including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on a Wimley-White interfacial hydrophobicity distribution predicted the involvement of a loop (residues 864 to 881) stabilized by a disulfide bond (869CKWGGNWTCV878, named FPII) in establishing interactions with the host cell membrane. This loop further contains an 872GG873 dipeptide, as well as two aromatic residues (871W and 875W) accessible to solvent. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how amino acid substitutions within FPII may affect replication of BICv in vitro and virus virulence in swine. Recombinant CSFVs containing mutations in different residues of FPII were constructed. A particular construct, harboring amino acid substitutions W871T, W875D, and V878T (FPII.2), demonstrated a significantly decreased ability to replicate in a swine cell line (SK6) and swine macrophage primary cell cultures. Interestingly, mutated virus FPII.2 was completely attenuated in pigs. Also, animals infected with FPII.2 virus were protected against virulent challenge with Brescia virus at 21 days postvaccination. Supporting a role for the E2 the loop from residues 864 to 881 in membrane fusion, only synthetic peptides that were based on the native E2 functional sequence were competent for insertion into model membranes and perturbation of their integrity, and this functionality was lost in synthetic peptides harboring amino acid substitutions W871T, W875D, and V878T in FPII.2. IMPORTANCE This report describes the identification and characterization of a putative fusion peptide (FP) in the major structural protein E2 of classical swine fever virus (CSFV). The FP identification was performed by functional structural analysis of E2. We characterized the functional significance of this FP by using artificial membranes. Replacement of critical amino acid residues within the FP radically alters how it interacts with the artificial membranes. When we introduced the same mutations into the viral sequence, there was a reduction in replication in cell cultures, and when we infected domestic swine, the natural host of CSFV host, we observed that the virus was now completely attenuated in swine. In addition, the virus mutant that was attenuated in vivo efficiently protected pigs against wild-type virus. These results provide the proof of principle to support as a strategy for vaccine development the discovery and manipulation of FPs. PMID:27605674

  14. Molecular epidemiology and evolution of fish Novirhabdoviruses

    USGS Publications Warehouse

    Kurath, Gael

    2014-01-01

    The genus Novirhabdoviridae contains several of the important rhabdoviruses that infect fish hosts. There are four established virus species: Infectious hematopoietic necrosis virus (IHNV), Viral hemorrhagic septicemia virus (VHSV), Hirame rhabdovirus(HIRRV), and Snakehead rhabdovirus (SHRV). Viruses of these species vary in host and geographic range, and they have all been studied at the molecular and genomic level. As globally significant pathogens of cultured fish, IHNV and VHSV have been particularly well studied in terms of molecular epidemiology and evolution. Phylogenic analyses of hundreds of field isolates have defined five major genogroups of IHNV and four major genotypes of VHSV worldwide. These phylogenies are informed by the known histories of IHNV and VHSV, each involving a series of viral emergence events that are sometimes associated with host switches, most often into cultured rainbow trout. In general, IHNV has relatively low genetic diversity and a narrow host range, and has been spread from its endemic source in North American to Europe and Asia due to aquaculture activities. In contrast, VHSV has broad host range and high genetic diversity, and the source of emergence events is virus in widespread marine fish reservoirs in the northern Atlantic and Pacific Oceans. Common mechanisms of emergence and host switch events include use of raw feed, proximity to wild fish reservoirs of virus, and geographic translocations of virus or naive fish hosts associated with aquaculture.

  15. Aphids (Hemiptera, Aphididae) on ornamental plants in greenhouses in Bulgaria

    PubMed Central

    Yovkova, Mariya; Petrović-Obradović, Olivera; Tasheva-Terzieva, Elena; Pencheva, Aneliya

    2013-01-01

    Abstract Investigations on the species composition and host range of aphids on ornamental greenhouse plants in Bulgaria was conducted over a period of five years, from 2008 to 2012. Twenty greenhouses, growing ornamentals for landscaping, plant collections and other purposes were observed. They were located in the regions of Sofia, Plovdiv, Smolyan, Pavlikeni, Varna and Burgas. The total number of collected aphid samples was 279. Their composition included 33 aphid species and one subspecies from 13 genera and 5 subfamilies. Twenty-eight species were found to belong to subfamily Aphidinae. Almost 70 % of all recorded species were polyphagous. The most widespread aphid species was Myzus persicae, detected in 13 greenhouses all year round, followed by Aulacorthum solani (10 greenhouses) and Aphis gossypii (9 greenhouses). The widest host range was shown by Myzus persicae (43 hosts), Aulacorthum solani (32 hosts) and Aulacorthum circumflexum (23 hosts). The list of host plants includes 114 species from 95 genera and 58 families. The greatest variety of aphid species was detected on Hibiscus (9 species). Out of all aphid samples 12.9 % were collected on Hibiscus and 6.8 %, on Dendranthema. The greatest variety of aphid species was detected on Hibiscus (9 species). Periphyllus californiensis and Aphis (Aphis) fabae mordvilkoi are reported for the first time for Bulgaria. Furthermore, Aphis spiraecola has been found in new localities and has widened its host range in this country. PMID:24039530

  16. Predicting the intensity mapping signal for multi-J CO lines

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Sternberg, Amiel; Loeb, Abraham

    2015-11-01

    We present a novel approach to estimating the intensity mapping signal of any CO rotational line emitted during the Epoch of Reionization (EoR). Our approach is based on large velocity gradient (LVG) modeling, a radiative transfer modeling technique that generates the full CO spectral line energy distribution (SLED) for a specified gas kinetic temperature, volume density, velocity gradient, molecular abundance, and column density. These parameters, which drive the physics of CO transitions and ultimately dictate the shape and amplitude of the CO SLED, can be linked to the global properties of the host galaxy, mainly the star formation rate (SFR) and the SFR surface density. By further employing an empirically derived SFR-M relation for high redshift galaxies, we can express the LVG parameters, and thus the specific intensity of any CO rotational transition, as functions of the host halo mass M and redshift z. Integrating over the range of halo masses expected to host CO-luminous galaxies, we predict a mean CO(1-0) brightness temperature ranging from ~ 0.6 μK at z = 6 to ~ 0.03 μK at z = 10 with brightness temperature fluctuations of ΔCO2 ~ 0.1 and 0.005 μK respectively, at k = 0.1 Mpc-1. In this model, the CO emission signal remains strong for higher rotational levels at z = 6, with langle TCO rangle ~ 0.3 and 0.05 μK for the CO J = 6arrow5 and CO J = 10arrow9 transitions respectively. Including the effects of CO photodissociation in these molecular clouds, especially at low metallicities, results in the overall reduction in the amplitude of the CO signal, with the low- and high-J lines weakening by 2-20% and 10-45%, respectively, over the redshift range 4 < z < 10.

  17. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay colloid concentration is expected to be very low (<1ppb, for 10-100nm) which restricts their relevance for radionuclide transport. Copyright © 2016. Published by Elsevier B.V.

  18. Comparative whole genome analysis of six diagnostic brucellaphages.

    PubMed

    Farlow, Jason; Filippov, Andrey A; Sergueev, Kirill V; Hang, Jun; Kotorashvili, Adam; Nikolich, Mikeljon P

    2014-05-15

    Whole genome sequencing of six diagnostic brucellaphages, Tbilisi (Tb), Firenze (Fz), Weybridge (Wb), S708, Berkeley (Bk) and R/C, was followed with genomic comparisons including recently described genomes of the Tb phage from Mexico (TbM) and Pr phage to elucidate genomic diversity and candidate host range determinants. Comparative whole genome analysis revealed high sequence homogeneity among these brucellaphage genomes and resolved three genetic groups consistent with defined host range phenotypes. Group I was composed of Tb and Fz phages that are predominantly lytic for Brucella abortus and Brucella neotomae; Group II included Bk, R/C, and Pr phages that are lytic mainly for B. abortus, Brucella melitensis and Brucella suis; Group III was composed of Wb and S708 phages that are lytic for B. suis, B. abortus and B. neotomae. We found that the putative phage collar protein is a variable locus with features that may be contributing to the host specificities exhibited by different brucellaphage groups. The presence of several candidate host range determinants is illustrated herein for future dissection of the differential host specificity observed among these phages. Published by Elsevier B.V.

  19. The development of a host potential index and its postharvest application to the spotted wing drosophila, Drosophila suzukii (Diptera: Drosophilidae)

    USDA-ARS?s Scientific Manuscript database

    Novel methodology is presented for indexing the relative potential of hosts to function as resources. Results from studies examining host selection, utilization, and physiological development of the organism resourcing the host were combined and quantitatively related via a Host Potential Index (HPI...

  20. Are adaptation costs necessary to build up a local adaptation pattern?

    PubMed

    Magalhães, Sara; Blanchet, Elodie; Egas, Martijn; Olivieri, Isabelle

    2009-08-03

    Ecological specialization is pervasive in phytophagous arthropods. In such specialization mode, limits to host range are imposed by trade-offs preventing adaptation to several hosts. The occurrence of such trade-offs is inferred by a pattern of local adaptation, i.e., a negative correlation between relative performance on different hosts. To establish a causal link between local adaptation and trade-offs, we performed experimental evolution of spider mites on cucumber, tomato and pepper, starting from a population adapted to cucumber. Spider mites adapted to each novel host within 15 generations and no further evolution was observed at generation 25. A pattern of local adaptation was found, as lines evolving on a novel host performed better on that host than lines evolving on other hosts. However, costs of adaptation were absent. Indeed, lines adapted to tomato had similar or higher performance on pepper than lines evolving on the ancestral host (which represent the initial performance of all lines) and the converse was also true, e.g. negatively correlated responses were not observed on the alternative novel host. Moreover, adapting to novel hosts did not result in decreased performance on the ancestral host. Adaptation did not modify host ranking, as all lines performed best on the ancestral host. Furthermore, mites from all lines preferred the ancestral to novel hosts. Mate choice experiments indicated that crosses between individuals from the same or from a different selection regime were equally likely, hence development of reproductive isolation among lines adapted to different hosts is unlikely. Therefore, performance and preference are not expected to impose limits to host range in our study species. Our results show that the evolution of a local adaptation pattern is not necessarily associated with the evolution of an adaptation cost.

  1. Identification of human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale mutual information analysis

    PubMed Central

    Miotto, Olivo; Heiny, AT; Tan, Tin Wee; August, J Thomas; Brusic, Vladimir

    2008-01-01

    Background The identification of mutations that confer unique properties to a pathogen, such as host range, is of fundamental importance in the fight against disease. This paper describes a novel method for identifying amino acid sites that distinguish specific sets of protein sequences, by comparative analysis of matched alignments. The use of mutual information to identify distinctive residues responsible for functional variants makes this approach highly suitable for analyzing large sets of sequences. To support mutual information analysis, we developed the AVANA software, which utilizes sequence annotations to select sets for comparison, according to user-specified criteria. The method presented was applied to an analysis of influenza A PB2 protein sequences, with the objective of identifying the components of adaptation to human-to-human transmission, and reconstructing the mutation history of these components. Results We compared over 3,000 PB2 protein sequences of human-transmissible and avian isolates, to produce a catalogue of sites involved in adaptation to human-to-human transmission. This analysis identified 17 characteristic sites, five of which have been present in human-transmissible strains since the 1918 Spanish flu pandemic. Sixteen of these sites are located in functional domains, suggesting they may play functional roles in host-range specificity. The catalogue of characteristic sites was used to derive sequence signatures from historical isolates. These signatures, arranged in chronological order, reveal an evolutionary timeline for the adaptation of the PB2 protein to human hosts. Conclusion By providing the most complete elucidation to date of the functional components participating in PB2 protein adaptation to humans, this study demonstrates that mutual information is a powerful tool for comparative characterization of sequence sets. In addition to confirming previously reported findings, several novel characteristic sites within PB2 are reported. Sequence signatures generated using the characteristic sites catalogue characterize concisely the adaptation characteristics of individual isolates. Evolutionary timelines derived from signatures of early human influenza isolates suggest that characteristic variants emerged rapidly, and remained remarkably stable through subsequent pandemics. In addition, the signatures of human-infecting H5N1 isolates suggest that this avian subtype has low pandemic potential at present, although it presents more human adaptation components than most avian subtypes. PMID:18315849

  2. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding

    PubMed Central

    Gull, Keith

    2017-01-01

    The shape and form of protozoan parasites are inextricably linked to their pathogenicity. The evolutionary pressure associated with establishing and maintaining an infection and transmission to vector or host has shaped parasite morphology. However, there is not a ‘one size fits all’ morphological solution to these different pressures, and parasites exhibit a range of different morphologies, reflecting the diversity of their complex life cycles. In this review, we will focus on the shape and form of Leishmania spp., a group of very successful protozoan parasites that cause a range of diseases from self-healing cutaneous leishmaniasis to visceral leishmaniasis, which is fatal if left untreated. PMID:28903998

  3. Eight new Arthrinium species from China

    PubMed Central

    Wang, Mei; Tan, Xiao-Ming; Liu, Fang; Cai, Lei

    2018-01-01

    Abstract The genus Arthrinium includes important plant pathogens, endophytes and saprobes with a wide host range and geographic distribution. In this paper, 74 Arthrinium strains isolated from various substrates such as bamboo leaves, tea plants, soil and air from karst caves in China were examined using a multi-locus phylogeny based on a combined dataset of ITS rDNA, TEF1 and TUB2, in conjunction with morphological characters, host association and ecological distribution. Eight new species were described based on their distinct phylogenetic relationships and morphological characters. Our results indicated a high species diversity of Arthrinium with wide host ranges, amongst which, Poaceae and Cyperaceae were the major host plant families of Arthrinium species. PMID:29755262

  4. Eight new Arthrinium species from China.

    PubMed

    Wang, Mei; Tan, Xiao-Ming; Liu, Fang; Cai, Lei

    2018-01-01

    The genus Arthrinium includes important plant pathogens, endophytes and saprobes with a wide host range and geographic distribution. In this paper, 74 Arthrinium strains isolated from various substrates such as bamboo leaves, tea plants, soil and air from karst caves in China were examined using a multi-locus phylogeny based on a combined dataset of ITS rDNA, TEF1 and TUB2, in conjunction with morphological characters, host association and ecological distribution. Eight new species were described based on their distinct phylogenetic relationships and morphological characters. Our results indicated a high species diversity of Arthrinium with wide host ranges, amongst which, Poaceae and Cyperaceae were the major host plant families of Arthrinium species.

  5. Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L.

    PubMed

    Hernandez-Lucas, I; Segovia, L; Martinez-Romero, E; Pueppke, S G

    1995-07-01

    We determined the nucleotide sequences of 16S rRNA gene segments from five Rhizobium strains that have been isolated from tropical legume species. All share the capacity to nodulate Phaseolus vulgaris L., the common bean. Phylogenetic analysis confirmed that these strains are of two different chromosomal lineages. We defined the host ranges of two strains of Rhizobium etli and three strains of R. tropici, comparing them with those of the two most divergently related new strains. Twenty-two of the 43 tested legume species were nodulated by three or more of these strains. All seven strains have broad host ranges that include woody species such as Albizia lebbeck, Gliricidia maculata, and Leucaena leucocephala.

  6. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements.

    PubMed

    Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali

    2018-01-09

    We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period [Formula: see text] Kepler planets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more "puffed up" compared with that around metal-poor hosts. In two period-radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets ([Formula: see text]), dubbed "Hoptunes." Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About [Formula: see text] of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a "valley" at approximately Saturn size (in the range of [Formula: see text]), and this "hot-Saturn valley" represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical "kinship" between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.

  7. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant.

    PubMed

    Zhang, Li; Lilley, Catherine J; Imren, Mustafa; Knox, J Paul; Urwin, Peter E

    2017-01-01

    Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida , Heterodera glycines , Heterodera avenae and Heterodera filipjevi , in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  8. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements

    NASA Astrophysics Data System (ADS)

    Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali

    2018-01-01

    We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period 1d

  9. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant

    PubMed Central

    Zhang, Li; Lilley, Catherine J.; Imren, Mustafa; Knox, J. Paul; Urwin, Peter E.

    2017-01-01

    Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function. PMID:28680436

  10. Influenza A virus PB1-F2 protein prolongs viral shedding in chickens lengthening the transmission window

    PubMed Central

    James, Joe; Howard, Wendy; Iqbal, Munir; Nair, Venugopal K.; Barclay, Wendy S.

    2016-01-01

    Avian influenza is a significant economic burden on the poultry industry in geographical regions where it is enzootic. It also poses a public health concern when avian influenza subtypes infect humans, often with high mortality. Understanding viral genetic factors which positively contribute to influenza A virus (IAV) fitness – infectivity, spread and pathogenesis – is of great importance both for human and livestock health. PB1-F2 is a small accessory protein encoded by IAV and in mammalian hosts has been implicated in a wide range of functions that contribute to increased pathogenesis. In the avian host, the protein has been understudied despite high-level full-length conservation in avian IAV isolates, which is in contrast to the truncations of the PB1-F2 length frequently found in mammalian host isolates. Here we report that the presence of a full-length PB1-F2 protein, from a low pathogenicity H9N2 avian influenza virus, prolongs infectious virus shedding from directly inoculated chickens, thereby enhancing transmission of the virus by lengthening the transmission window to contact birds. As well as extending transmission, the presence of a full-length PB1-F2 suppresses pathogenicity evidenced by an increased minimum lethal dose in embryonated chicken eggs and increasing survival in directly infected birds when compared to a virus lacking an ORF for PB1-F2. We propose that there is a positive pressure to maintain a full-length functional PB1-F2 protein upon infection of avian hosts as it contributes to the effective transmission of IAV in the field. PMID:27558742

  11. Influenza A virus PB1-F2 protein prolongs viral shedding in chickens lengthening the transmission window.

    PubMed

    James, Joe; Howard, Wendy; Iqbal, Munir; Nair, Venugopal K; Barclay, Wendy S; Shelton, Holly

    2016-10-01

    Avian influenza is a significant economic burden on the poultry industry in geographical regions where it is enzootic. It also poses a public health concern when avian influenza subtypes infect humans, often with high mortality. Understanding viral genetic factors which positively contribute to influenza A virus (IAV) fitness - infectivity, spread and pathogenesis - is of great importance both for human and livestock health. PB1-F2 is a small accessory protein encoded by IAV and in mammalian hosts has been implicated in a wide range of functions that contribute to increased pathogenesis. In the avian host, the protein has been understudied despite high-level full-length conservation in avian IAV isolates, which is in contrast to the truncations of the PB1-F2 length frequently found in mammalian host isolates. Here we report that the presence of a full-length PB1-F2 protein, from a low pathogenicity H9N2 avian influenza virus, prolongs infectious virus shedding from directly inoculated chickens, thereby enhancing transmission of the virus by lengthening the transmission window to contact birds. As well as extending transmission, the presence of a full-length PB1-F2 suppresses pathogenicity evidenced by an increased minimum lethal dose in embryonated chicken eggs and increasing survival in directly infected birds when compared to a virus lacking an ORF for PB1-F2. We propose that there is a positive pressure to maintain a full-length functional PB1-F2 protein upon infection of avian hosts as it contributes to the effective transmission of IAV in the field.

  12. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts.

    PubMed

    Freimoser, Florian M; Screen, Steven; Bagga, Savita; Hu, Gang; St Leger, Raymond J

    2003-01-01

    Expressed sequence tag (EST) libraries for Metarhizium anisopliae, the causative agent of green muscardine disease, were developed from the broad host-range pathogen Metarhizium anisopliae sf. anisopliae and the specific grasshopper pathogen, M. anisopliae sf. acridum. Approximately 1,700 5' end sequences from each subspecies were generated from cDNA libraries representing fungi grown under conditions that maximize secretion of cuticle-degrading enzymes. Both subspecies had ESTs for virtually all pathogenicity-related genes cloned to date from M. anisopliae, but many novel genes encoding potential virulence factors were also tagged. Enzymes with potential targets in the insect host included proteases, chitinases, phospholipases, lipases, esterases, phosphatases and enzymes producing toxic secondary metabolites. A diverse array of proteases composed 36 % of all M. anisopliae sf. anisopliae ESTs. Eighty percent of the ESTs that could be clustered into functional groups had significant matches (E<10(-5)) in other ascomycete fungi. These included genes reported to have specific roles in pathogens with plant or vertebrate hosts. Many of the remaining ESTs had their best BLAST match among animal, plant and bacterial sequences. These include genes with plant and microbial counterparts that produce potent antimicrobials. The abundance of transcripts discovered for different functional groups varied between the two subspecies of M. anisopliae in a manner consistent with ecological adaptations of the two pathogens. By hastening gene discovery this project has enhanced development of improved mycoinsecticides. In addition, the M. anisopliae ESTs represent a significant contribution to the extensive database of sequences from ascomycetes that are saprophytes or plant and vertebrate pathogens. Comparative analyses of these sequences is providing important information about the biology and evolutionary history of this clade.

  13. Contrasting determinants of abundance in ancestral and colonized ranges of an invasive brood parasite

    USGS Publications Warehouse

    Hahn, D.C.; O'Connor, R.J.; Scott, J. Michael; Heglund, Patricia J.; Morrison, Michael L.; Haufler, Jonathan B.; Wall, William A.

    2002-01-01

    Avian species distributions are typically regarded as constrained by spatially extensive variables such as climate, habitat, spatial patchiness, and microhabitat attributes. We hypothesized that the distribution of a brood parasite depends as strongly on host distribution patterns as on biophysical factors and examined this hypothesis with respect to the national distribution of the Brown-headed Cowbird (Molothrus ater). We applied a classification and regression (CART) analysis to data from the Breeding Bird Survey (BBS) and the Christmas Bird Count (CBC) and derived hierarchically organized statistical models of the influence of climate and weather, cropping and land use, and host abundance and distribution on the distribution of the Brown-headed Cowbird within the conterminous United States. The model accounted for 47.2% of the variation in cowbird incidence, and host abundance was the top predictor with an R2 of 18.9%. The other predictors identified by the model (crops 15.7%, weather and climate 14.3%, and region 9.6%) fit the ecological profile of this cowbird. We showed that host abundance was independent of these environmental predictors of cowbird distribution. At the regional scale host abundance played a very strong role in determining cowbird abundance in the cowbird?s colonized range east and west of their ancestral range in the Great Plains (26.6%). Crops were not a major predictor for cowbirds in their ancestral range, although they are the most important predictive factor (33%) for the grassland passerines that are the cowbird?s ancestral hosts. Consequently our findings suggest that the distribution of hosts does indeed take precedence over habitat attributes in shaping the cowbird?s distribution at a national scale, within an envelope of constraint set by biophysical factors.

  14. Protein prenylation: a new mode of host-pathogen interaction.

    PubMed

    Amaya, Moushimi; Baranova, Ancha; van Hoek, Monique L

    2011-12-09

    Post translational modifications are required for proteins to be fully functional. The three step process, prenylation, leads to farnesylation or geranylgeranylation, which increase the hydrophobicity of the prenylated protein for efficient anchoring into plasma membranes and/or organellar membranes. Prenylated proteins function in a number of signaling and regulatory pathways that are responsible for basic cell operations. Well characterized prenylated proteins include Ras, Rac and Rho. Recently, pathogenic prokaryotic proteins, such as SifA and AnkB, have been shown to be prenylated by eukaryotic host cell machinery, but their functions remain elusive. The identification of other bacterial proteins undergoing this type of host-directed post-translational modification shows promise in elucidating host-pathogen interactions to develop new therapeutics. This review incorporates new advances in the study of protein prenylation into a broader aspect of biology with a focus on host-pathogen interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Parasite effects on isopod feeding rates can alter the host's functional role in a natural stream ecosystem.

    PubMed

    Hernandez, Alexander D; Sukhdeo, Michael V K

    2008-05-01

    Changes to host behaviour as a consequence of infection are common in many parasite-host associations, but their effects on the functional role hosts play within ecosystems are rarely quantified. This study reports that helminth parasites significantly decrease consumption of detritus by their isopod hosts in laboratory experiments. Natural host and parasite densities across eight contiguous seasons were used to estimate effects on the amount of stream detritus-energy processed. Extrapolations using mass-specific processing rates from laboratory results to field patterns suggest that the effects of the parasites occur year round but the greatest impact on the amount of detritus processed by isopods occurs in the autumn when the bulk of leaf detritus enters the stream, and when parasite prevalence in the isopod population is high. Parasites have a lesser impact on the amount of detritus processed in spring and summer when isopods are most abundant, when parasite prevalence is not high, and when fish predation on isopods is high. These results support the idea that parasites can affect the availability of resources critical to other species by altering behaviours related to the functional role hosts play in ecosystems, and suggest that seasonality may be an important factor to consider in the dynamics of these parasite-host interactions.

  16. Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region

    USGS Publications Warehouse

    Beadell, J.S.; Gering, E.; Austin, J.; Dumbacher, J.P.; Peirce, M.A.; Pratt, T.K.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The degree to which widespread avian blood parasites in the genera Plasmodium and Haemoproteus pose a threat to novel hosts depends in part on the degree to which they are constrained to a particular host or host family. We examined the host distribution and host-specificity of these parasites in birds from two relatively understudied and isolated locations: Australia and Papua New Guinea. Using polymerase chain reaction (PCR), we detected infection in 69 of 105 species, representing 44% of individuals surveyed (n = 428). Across host families, prevalence of Haemoproteus ranged from 13% (Acanthizidae) to 56% (Petroicidae) while prevalence of Plasmodium ranged from 3% (Petroicidae) to 47% (Ptilonorhynchidae). We recovered 78 unique mitochondrial lineages from 155 sequences. Related lineages of Haemoproteus were more likely to derive from the same host family than predicted by chance at shallow (average LogDet genetic distance = 0, n = 12, P = 0.001) and greater depths (average distance = 0.014, n = 11, P < 0.001) within the parasite phylogeny. Within two major Haemoproteus subclades identified in a maximum likelihood phylogeny, host-specificity was evident up to parasite genetic distances of 0.029 and 0.007 based on logistic regression. We found no significant host relationship among lineages of Plasmodium by any method of analysis. These results support previous evidence of strong host-family specificity in Haemoproteus and suggest that lineages of Plasmodium are more likely to form evolutionarily-stable associations with novel hosts.

  17. Functional Diversity as a New Framework for Understanding the Ecology of an Emerging Generalist Pathogen.

    PubMed

    Morris, Aaron; Guégan, Jean-François; Benbow, M Eric; Williamson, Heather; Small, Pamela L C; Quaye, Charles; Boakye, Daniel; Merritt, Richard W; Gozlan, Rodolphe E

    2016-09-01

    Emerging infectious disease outbreaks are increasingly suspected to be a consequence of human pressures exerted on natural ecosystems. Previously, host taxonomic communities have been used as indicators of infectious disease emergence, and the loss of their diversity has been implicated as a driver of increased presence. The mechanistic details in how such pathogen-host systems function, however, may not always be explained by taxonomic variation or loss. Here we used machine learning and methods based on Gower's dissimilarity to quantify metrics of invertebrate functional diversity, in addition to functional groups and their taxonomic diversity at sites endemic and non-endemic for the model generalist pathogen Mycobacterium ulcerans, the causative agent of Buruli ulcer. Changes in these metrics allowed the rapid categorisation of the ecological niche of the mycobacterium's hosts and the ability to relate specific host traits to its presence in aquatic ecosystems. We found that taxonomic diversity of hosts and overall functional diversity loss and evenness had no bearing on the mycobacterium's presence, or whether the site was in an endemic area. These findings, however, provide strong evidence that generalist environmentally persistent bacteria such as M. ulcerans can be associated with specific functional traits rather than taxonomic groups of organisms, increasing our understanding of emerging disease ecology and origin.

  18. Characterization of two biologically distinct variants of Tomato spotted wilt virus

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses result on a wide range of crops due to infection with Tomato spotted wilt virus (TSWV). In this study, two TSWV isolates, one from basil and a second from tomato, were established in a common plant host. Viral proteins were monitored over time, plant host ranges were comp...

  19. Biology and host range of Heterapoderopsis bicallosicollis; a potential biological control agent for Chinese tallow Triadica sebifera

    USDA-ARS?s Scientific Manuscript database

    Chinese tallow, Triadica sebifera, is an invasive weed that infests natural and agricultural areas of the southeastern USA. A candidate for biological control of Chinese tallow has been studied under quarantine conditions. The biology and host range of a primitive leaf feeding beetle, Heterapoderops...

  20. Comparison of transcriptomes between Sclerotinia sclerotiorum and S. trifoliorum using 454 Titanium RNA sequencing

    USDA-ARS?s Scientific Manuscript database

    Sclerotinia sclerotiorum and S. trifoliorum cause Sclerotinia stem and crown rot of chickpea and white mold on many economically important crops. The host range of S. trifoliorum is mainly on cool season forage and grain legumes of about 40 plant species, whereas the host range of S. sclerotiorum ...

  1. Host range of the European leaf sheath mining midge, Lasioptera donacis Coutin, a biological control of giant reed, Arundo donax

    USDA-ARS?s Scientific Manuscript database

    The fundamental host range of the arundo leafminer, Lasioptera donacis a candidate agent for the invasive weed, Arundo donax was evaluated. Lasioptera donacis collects and inserts spores of a saprophytic fungus, Arthrinium arundinis, during oviposition. Larvae feed and develop in the decomposing le...

  2. Anthropogenic drivers of gypsy moth spread

    Treesearch

    Kevin M. Bigsby; Patrick C. Tobin; Erin O. Sills

    2011-01-01

    The gypsy moth, Lymantria dispar (L.), is a polyphagous defoliator introduced to Medford, Massachusetts in 1869. It has spread to over 860,000 km2 in North America, but this still only represents 1/4 of its susceptible host range in the United States. To delay defoliation in the remaining susceptible host range, the government...

  3. NREL to Host Range of Activities for Energy Awareness Month

    Science.gov Websites

    Host Range of Activities for Energy Awareness Month Events devoted to energy savings Golden, Colo., Sept. 20, 2000 - Visitors will get an inside look at advanced energy technologies and learn tips for cutting utility bills when the U.S. Department of Energy's National Renewable Energy

  4. Evolution on the move: specialization on widespread resources associated with rapid range expansion in response to climate change.

    PubMed

    Bridle, Jon R; Buckley, James; Bodsworth, Edward J; Thomas, Chris D

    2014-02-07

    Generalist species and phenotypes are expected to perform best under rapid environmental change. In contrast to this view that generalists will inherit the Earth, we find that increased use of a single host plant is associated with the recent climate-driven range expansion of the UK brown argus butterfly. Field assays of female host plant preference across the UK reveal a diversity of adaptations to host plants in long-established parts of the range, whereas butterflies in recently colonized areas are more specialized, consistently preferring to lay eggs on one host plant species that is geographically widespread throughout the region of expansion, despite being locally rare. By common-garden rearing of females' offspring, we also show an increase in dispersal propensity associated with the colonization of new sites. Range expansion is therefore associated with an increase in the spatial scale of adaptation as dispersive specialists selectively spread into new regions. Major restructuring of patterns of local adaptation is likely to occur across many taxa with climate change, as lineages suited to regional colonization rather than local success emerge and expand.

  5. THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Jonathan; Chatterjee, Suchetana; Nagai, Daisuke

    2012-08-10

    We present an estimate of the projected two-point correlation function (2PCF) of quasars in the Sloan Digital Sky Survey (SDSS) over the full range of one- and two-halo scales, 0.02 h{sup -1} Mpc < r{sub p} < 120 h{sup -1} Mpc. This was achieved by combining data from SDSS DR7 on large scales and Hennawi et al. (with appropriate statistical corrections) on small scales. Our combined clustering sample is the largest spectroscopic quasar clustering sample to date, containing {approx}48, 000 quasars in the redshift range 0.4 {approx}< z {approx}< 2.5 with median redshift 1.4. We interpret these precise 2PCF measurementsmore » within the halo occupation distribution (HOD) framework and constrain the occupation functions of central and satellite quasars in dark matter halos. In order to explain the small-scale clustering, the HOD modeling requires that a small fraction of z {approx} 1.4 quasars, f{sub sat} = (7.4 {+-} 1.4) Multiplication-Sign 10{sup -4}, be satellites in dark matter halos. At z {approx} 1.4, the median masses of the host halos of central and satellite quasars are constrained to be M{sub cen} = 4.1{sup +0.3}{sub -0.4} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun} and M{sub sat} = 3.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 14} h{sup -1} M{sub Sun }, respectively. To investigate the redshift evolution of the quasar-halo relationship, we also perform HOD modeling of the projected 2PCF measured by Shen et al. for SDSS quasars with median redshift 3.2. We find tentative evidence for an increase in the mass scale of quasar host halos-the inferred median mass of halos hosting central quasars at z {approx} 3.2 is M{sub cen} = 14.1{sup +5.8}{sub -6.9} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun }. The cutoff profiles of the mean occupation functions of central quasars reveal that quasar luminosity is more tightly correlated with halo mass at higher redshifts. The average quasar duty cycle around the median host halo mass is inferred to be f{sub q} = 7.3{sup +0.6}{sub -1.5} Multiplication-Sign 10{sup -4} at z {approx} 1.4 and f{sub q} = 8.6{sup +20.4}{sub -7.2} Multiplication-Sign 10{sup -2} at z {approx} 3.2. We discuss the implications of our results for quasar evolution and quasar-galaxy co-evolution.« less

  6. Mountain pine beetle host selection between lodgepole and ponderosa pines in the southern Rocky Mountains

    Treesearch

    Daniel R. West; Jennifer S. Briggs; William R. Jacobi; Jose F. Negron

    2016-01-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for...

  7. Gill monogenean communities (Platyhelminthes, Monogenea, Dactylogyridae) of butterflyfishes from tropical Indo-West Pacific Islands.

    PubMed

    Reverter, Miriam; Cutmore, Scott C; Bray, Rodney; Cribb, Thomas H; Sasal, Pierre

    2016-10-01

    We studied the monogenean communities of 34 species of butterflyfish from the tropical Indo-West Pacific, identifying 13 dactylogyrid species (including two species that are presently undescribed). Monogenean assemblages differed significantly between host species in terms of taxonomic structure, intensity and prevalence. Parasite richness ranged from 0 (Chaetodon lunulatus) to 11 (C. auriga, C. citrinellus and C. lunula). Host specificity varied between the dactylogyrids species, being found on 2-29 of the 34 chaetodontid species examined. Sympatric butterflyfish species were typically parasitized by different combinations of dactylogyrid species, suggesting the existence of complex host-parasite interactions. We identified six clusters of butterflyfish species based on the similarities of their dactylogyrid communities. Dactylogyrid richness and diversity were not related to host size, diet specialization, depth range or phylogeny of butterflyfish species. However, there was a weak positive correlation between monogenean richness and diversity and host geographical range. Most communities of dactylogyrids were dominated by Haliotrema aurigae and H. angelopterum, indicating the importance of the genus Haliotrema in shaping monogenean communities of butterflyfishes. This study casts light on the structure of the monogenean communities of butterflyfishes, suggesting that the diversity and complexity of community structures arises from a combination of host species-specific parameters.

  8. The Influenza A Virus Genotype Determines the Antiviral Function of NF-κB

    PubMed Central

    Dam, Sharmistha; Kracht, Michael; Pleschka, Stephan

    2016-01-01

    ABSTRACT The role of NF-κB in influenza A virus (IAV) infection does not reveal a coherent picture, as pro- and also antiviral functions of this transcription factor have been described. To address this issue, we used clustered regularly interspaced short palindromic repeat with Cas9 (CRISPR-Cas9)-mediated genome engineering to generate murine MLE-15 cells lacking two essential components of the NF-κB pathway. Cells devoid of either the central NF-κB essential modulator (NEMO) scaffold protein and thus defective in IκB kinase (IKK) activation or cells not expressing the NF-κB DNA-binding and transactivation subunit p65 were tested for propagation of the SC35 virus, which has an avian host range, and its mouse-adapted variant, SC35M. While NF-κB was not relevant for replication of SC35M, the absence of NF-κB activity increased replication of the nonadapted SC35 virus. This antiviral effect of NF-κB was most prominent upon infection of cells with low virus titers as they usually occur during the initiation phase of IAV infection. The defect in NF-κB signaling resulted in diminished IAV-triggered phosphorylation of interferon regulatory factor 3 (IRF3) and expression of the antiviral beta interferon (IFN-β) gene. To identify the viral proteins responsible for NF-κB dependency, reassortant viruses were generated by reverse genetics. SC35 viruses containing the SC35M segment encoding neuraminidase (NA) were completely inert to the inhibitory effect of NF-κB, emphasizing the importance of the viral genotype for susceptibility to the antiviral functions of NF-κB. IMPORTANCE This study addresses two different issues. First, we investigated the role of the host cell transcription factor NF-κB in IAV replication by genetic manipulation of IAVs by reverse genetics combined with targeted genome engineering of host cells using CRISPR-Cas9. The analysis of these two highly defined genetic systems indicated that the IAV genotype can influence whether NF-κB displays an antiviral function and thus might in part explain incoherent results from the literature. Second, we found that perturbation of NF-κB function greatly improved the growth of a nonadapted IAV, suggesting that NF-κB may contribute to the maintenance of the host species barrier. PMID:27356900

  9. Dual RNA-seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses.

    PubMed

    Ehret, Totta; Spork, Simone; Dieterich, Christoph; Lucius, Richard; Heitlinger, Emanuel

    2017-09-05

    Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing it to coevolve with its host.

  10. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation.

    PubMed

    de Bekker, Charissa; Ohm, Robin A; Loreto, Raquel G; Sebastian, Aswathy; Albert, Istvan; Merrow, Martha; Brachmann, Andreas; Hughes, David P

    2015-08-19

    Adaptive manipulation of animal behavior by parasites functions to increase parasite transmission through changes in host behavior. These changes can range from slight alterations in existing behaviors of the host to the establishment of wholly novel behaviors. The biting behavior observed in Carpenter ants infected by the specialized fungus Ophiocordyceps unilateralis s.l. is an example of the latter. Though parasitic manipulation of host behavior is generally assumed to be due to the parasite's gene expression, few studies have set out to test this. We experimentally infected Carpenter ants to collect tissue from both parasite and host during the time period when manipulated biting behavior is experienced. Upon observation of synchronized biting, samples were collected and subjected to mixed RNA-Seq analysis. We also sequenced and annotated the O. unilateralis s.l. genome as a reference for the fungal sequencing reads. Our mixed transcriptomics approach, together with a comparative genomics study, shows that the majority of the fungal genes that are up-regulated during manipulated biting behavior are unique to the O. unilateralis s.l. genome. This study furthermore reveals that the fungal parasite might be regulating immune- and neuronal stress responses in the host during manipulated biting, as well as impairing its chemosensory communication and causing apoptosis. Moreover, we found genes up-regulated during manipulation that putatively encode for proteins with reported effects on behavioral outputs, proteins involved in various neuropathologies and proteins involved in the biosynthesis of secondary metabolites such as alkaloids.

  11. Genetically Engineered Virulent Phage Banks in the Detection and Control of Emergent Pathogenic Bacteria

    PubMed Central

    Blois, Hélène; Iris, François

    2010-01-01

    Natural outbreaks of multidrug-resistant microorganisms can cause widespread devastation, and several can be used or engineered as agents of bioterrorism. From a biosecurity standpoint, the capacity to detect and then efficiently control, within hours, the spread and the potential pathological effects of an emergent outbreak, for which there may be no effective antibiotics or vaccines, become key challenges that must be met. We turned to phage engineering as a potentially highly flexible and effective means to both detect and eradicate threats originating from emergent (uncharacterized) bacterial strains. To this end, we developed technologies allowing us to (1) concurrently modify multiple regions within the coding sequence of a gene while conserving intact the remainder of the gene, (2) reversibly interrupt the lytic cycle of an obligate virulent phage (T4) within its host, (3) carry out efficient insertion, by homologous recombination, of any number of engineered genes into the deactivated genomes of a T4 wild-type phage population, and (4) reactivate the lytic cycle, leading to the production of engineered infective virulent recombinant progeny. This allows the production of very large, genetically engineered lytic phage banks containing, in an E. coli host, a very wide spectrum of variants for any chosen phage-associated function, including phage host-range. Screening of such a bank should allow the rapid isolation of recombinant T4 particles capable of detecting (ie, diagnosing), infecting, and destroying hosts belonging to gram-negative bacterial species far removed from the original E. coli host. PMID:20569057

  12. Membrane-shed vesicles from the parasite Trichomonas vaginalis: characterization and their association with cell interaction.

    PubMed

    Nievas, Yesica R; Coceres, Veronica M; Midlej, Victor; de Souza, Wanderley; Benchimol, Marlene; Pereira-Neves, Antonio; Vashisht, Ajay A; Wohlschlegel, James A; Johnson, Patricia J; de Miguel, Natalia

    2018-06-01

    Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract, where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Despite the serious consequences associated with trichomoniasis disease, little is known about parasite or host factors involved in attachment of the parasite-to-host epithelial cells. Here, we report the identification of microvesicle-like structures (MVs) released by T. vaginalis. MVs are considered universal transport vehicles for intercellular communication as they can incorporate peptides, proteins, lipids, miRNA, and mRNA, all of which can be transferred to target cells through receptor-ligand interactions, fusion with the cell membrane, and delivery of a functional cargo to the cytoplasm of the target cell. In the present study, we demonstrated that T. vaginalis release MVs from the plasma and the flagellar membranes of the parasite. We performed proteomic profiling of these structures demonstrating that they possess physical characteristics similar to mammalian extracellular vesicles and might be selectively charged with specific protein content. In addition, we demonstrated that viable T. vaginalis parasites release large vesicles (LVs), membrane structures larger than 1 µm that are able to interact with other parasites and with the host cell. Finally, we show that both populations of vesicles present on the surface of T vaginalis are induced in the presence of host cells, consistent with a role in modulating cell interactions.

  13. Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling

    PubMed Central

    Santos, Sílvio B.; Carvalho, Carla; Azeredo, Joana; Ferreira, Eugénio C.

    2014-01-01

    The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist. PMID:25051248

  14. Regulation of the Host Antiviral State by Intercellular Communications

    PubMed Central

    Assil, Sonia; Webster, Brian; Dreux, Marlène

    2015-01-01

    Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins) and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic. PMID:26295405

  15. Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology

    PubMed Central

    Saxena, Kapil; Blutt, Sarah E.; Ettayebi, Khalil; Zeng, Xi-Lei; Broughman, James R.; Crawford, Sue E.; Karandikar, Umesh C.; Sastri, Narayan P.; Conner, Margaret E.; Opekun, Antone R.; Graham, David Y.; Qureshi, Waqar; Sherman, Vadim; Foulke-Abel, Jennifer; In, Julie; Kovbasnjuk, Olga; Zachos, Nicholas C.; Donowitz, Mark

    2015-01-01

    ABSTRACT Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures. PMID:26446608

  16. Advances in Genomics of Entomopathogenic Fungi.

    PubMed

    Wang, J B; St Leger, R J; Wang, C

    2016-01-01

    Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Fire blight: applied genomic insights of the pathogen and host

    USDA-ARS?s Scientific Manuscript database

    The enterobacterial phytopathogen, Erwinia amylovora, causes fire blight, an invasive disease that threatens a wide range of commercial and ornamental Rosaceae host plants. The response elicited by E. amylovora in its host during disease development is similar to the hypersensitive reaction that ty...

  18. Roles of Long and Short Replication Initiation Proteins in the Fate of IncP-1 Plasmids

    PubMed Central

    Yano, Hirokazu; Deckert, Gail E.; Rogers, Linda M.

    2012-01-01

    Broad-host-range IncP-1 plasmids generally encode two replication initiation proteins, TrfA1 and TrfA2. TrfA2 is produced from an internal translational start site within trfA1. While TrfA1 was previously shown to be essential for replication in Pseudomonas aeruginosa, its role in other bacteria within its broad host range has not been established. To address the role of TrfA1 and TrfA2 in other hosts, efficiency of transformation, plasmid copy number (PCN), and plasmid stability were first compared between a mini-IncP-1β plasmid and its trfA1 frameshift variant in four phylogenetically distant hosts: Escherichia coli, Pseudomonas putida, Sphingobium japonicum, and Cupriavidus necator. TrfA2 was sufficient for replication in these hosts, but the presence of TrfA1 enhanced transformation efficiency and PCN. However, TrfA1 did not contribute to, and even negatively affected, long-term plasmid persistence. When trfA genes were cloned under a constitutive promoter in the chromosomes of the four hosts, strains expressing either both TrfA1 and TrfA2 or TrfA1 alone, again, generally elicited a higher PCN of an IncP1-β replicon than strains expressing TrfA2 alone. When a single species of TrfA was produced at different concentrations in E. coli cells, TrfA1 maintained a 3- to 4-fold higher PCN than TrfA2 at the same TrfA concentrations, indicating that replication mediated by TrfA1 is more efficient than that by TrfA2. These results suggest that the broad-host-range properties of IncP-1 plasmids are essentially conferred by TrfA2 and the intact replication origin alone but that TrfA1 is nonetheless important to efficiently establish plasmid replication upon transfer into a broad range of hosts. PMID:22228734

  19. Cooperative microbial tolerance behaviors in host-microbiota mutualism

    PubMed Central

    Ayres, Janelle S.

    2016-01-01

    Animal defense strategies against microbes are most often thought of as a function of the immune system, the primary function of which is to sense and kill microbes through the execution of resistance mechanisms. However, this antagonistic view creates complications for our understanding of beneficial host-microbe interactions. Pathogenic microbes are described as employing a few common behaviors that promote their fitness at the expense of host health and fitness. Here, a complementary framework is proposed to suggest that in addition to pathogens, beneficial microbes have evolved behaviors to manipulate host processes in order to promote their own fitness and do so through the promotion of host health and fitness. In this Perspective, I explore the idea that patterns or behaviors traditionally ascribed to pathogenic microbes are also employed by beneficial microbes to promote host tolerance defense strategies. Such strategies would promote host health without having a negative impact on microbial fitness and would thereby yield cooperative evolutionary dynamics that are likely required to drive mutualistic co-evolution of hosts and microbes. PMID:27259146

  20. Recruitment of EB1, a Master Regulator of Microtubule Dynamics, to the Surface of the Theileria annulata Schizont

    PubMed Central

    Woods, Kerry L.; Theiler, Romina; Mühlemann, Marcus; Segiser, Adrian; Huber, Sandra; Ansari, Hifzur R.; Pain, Arnab; Dobbelaere, Dirk A. E.

    2013-01-01

    The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton. PMID:23675298

  1. Investigating Differences across Host Species and Scales to Explain the Distribution of the Amphibian Pathogen Batrachochytrium dendrobatidis

    PubMed Central

    Peterson, Anna C.; McKenzie, Valerie J.

    2014-01-01

    Many pathogens infect more than one host species, and clarifying how these different hosts contribute to pathogen dynamics can facilitate the management of pathogens and can lend insight into the functioning of pathogens in ecosystems. In this study, we investigated a suite of native and non-native amphibian hosts of the pathogen Batrachochytrium dendrobatidis (Bd) across multiple scales to identify potential mechanisms that may drive infection patterns in the Colorado study system. Specifically, we aimed to determine if: 1) amphibian populations vary in Bd infection across the landscape, 2) amphibian community composition predicts infection (e.g., does the presence or abundance of any particular species influence infection in others?), 3) amphibian species vary in their ability to produce infectious zoospores in a laboratory infection, 4) heterogeneity in host ability observed in the laboratory scales to predict patterns of Bd prevalence in the landscape. We found that non-native North American bullfrogs (Lithobates catesbeianus) are widespread and have the highest prevalence of Bd infection relative to the other native species in the landscape. Additionally, infection in some native species appears to be related to the density of sympatric L. catesbeianus populations. At the smaller host scale, we found that L. catesbeianus produces more of the infective zoospore stage relative to some native species, but that this zoospore output does not scale to predict infection in sympatric wild populations of native species. Rather, landscape level infection relates most strongly to density of hosts at a wetland as well as abiotic factors. While non-native L. catesbeianus have high levels of Bd infection in the Colorado Front Range system, we also identified Bd infection in a number of native amphibian populations allopatric with L. catesbeianus, suggesting that multiple host species are important contributors to the dynamics of the Bd pathogen in this landscape. PMID:25222375

  2. The Bacteroides fragilis cell envelope: quarterback, linebacker, coach-or all three?

    PubMed

    Pumbwe, Lilian; Skilbeck, Christopher A; Wexler, Hannah M

    2006-01-01

    Bacteroides fragilis is an anaerobic commensal constituting only 1-2% of the micro-flora of the human gastrointestinal tract, yet it is the predominant anaerobic isolate in cases of intraabdominal sepsis and bacteremia. B. fragilis can play two roles in the host: in its role as friendly commensal, it must be able to establish itself in the host intestinal mucosa, to utilize and process polysaccharides for use by the host, and to resist the noxious effects of bile salts. In its role as pathogen, it must be able to attach itself to the site of infection, evade killing mechanisms by host defense, withstand antimicrobial treatment and produce factors that damage host tissue. The cell envelope of B. fragilis, likewise, must be able to function in the roles of aggressor, defender and strategist in allowing the organism to establish itself in the host--whether as friend or foe. Recent studies of the genomes and proteomes of the genus Bacteroides suggest that these organisms have evolved strategies to survive and dominate in the overcrowded gastrointestinal neighborhood. Analysis of the proteomes of B. fragilis and Bacteroides thetaiotaomicron demonstrates both a tremendous capacity to use a wide range of dietary polysaccharides, and the capacity to create variable surface antigenicities by multiple DNA inversion systems. The latter characteristic is particularly pronounced in the species B. fragilis, which is more frequently found at the mucosal surface (i.e., often the site of attack by host defenses). The B. fragilis cell envelope undergoes major protein expression and ultrastructural changes in response to stressors such as bile or antimicrobial agents. These agents may also act as signals for attachment and colonization. Thus the bacterium manages its surface characteristics to enable it to bind to its target, to use the available nutrients, and to avoid or evade hostile forces (host-derived or external) in its multiple roles.

  3. Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy

    NASA Astrophysics Data System (ADS)

    Polishchuk, Iryna; Bracha, Avigail Aronhime; Bloch, Leonid; Levy, Davide; Kozachkevich, Stas; Etinger-Geller, Yael; Kauffmann, Yaron; Burghammer, Manfred; Giacobbe, Carlotta; Villanova, Julie; Hendler, Gordon; Sun, Chang-Yu; Giuffre, Anthony J.; Marcus, Matthew A.; Kundanati, Lakshminath; Zaslansky, Paul; Pugno, Nicola M.; Gilbert, Pupa U. P. A.; Katsman, Alex; Pokroy, Boaz

    2017-12-01

    In contrast to synthetic materials, materials produced by organisms are formed in ambient conditions and with a limited selection of elements. Nevertheless, living organisms reveal elegant strategies for achieving specific functions, ranging from skeletal support to mastication, from sensors and defensive tools to optical function. Using state-of-the-art characterization techniques, we present a biostrategy for strengthening and toughening the otherwise brittle calcite optical lenses found in the brittlestar Ophiocoma wendtii. This intriguing process uses coherent nanoprecipitates to induce compressive stresses on the host matrix, functionally resembling the Guinier-Preston zones known in classical metallurgy. We believe that these calcitic nanoparticles, being rich in magnesium, segregate during or just after transformation from amorphous to crystalline phase, similarly to segregation behavior from a supersaturated quenched alloy.

  4. Is a healthy ecosystem one that is rich in parasites?

    USGS Publications Warehouse

    Hudson, Peter J.; Dobson, Andrew P.; Lafferty, Kevin D.

    2006-01-01

    Historically, the role of parasites in ecosystem functioning has been considered trivial because a cursory examination reveals that their relative biomass is low compared with that of other trophic groups. However there is increasing evidence that parasite-mediated effects could be significant: they shape host population dynamics, alter interspecific competition, influence energy flow and appear to be important drivers of biodiversity. Indeed they influence a range of ecosystem functions and have a major effect on the structure of some food webs. Here, we consider the bottom-up and top-down processes of how parasitism influences ecosystem functioning and show that there is evidence that parasites are important for biodiversity and production; thus, we consider a healthy system to be one that is rich in parasite species.

  5. Evolutionarily conserved odorant receptor function questions ecological context of octenol role in mosquitoes

    PubMed Central

    Dekel, Amir; Pitts, Ronald J.; Yakir, Esther; Bohbot, Jonathan D.

    2016-01-01

    Olfaction is a key insect adaptation to a wide range of habitats. In the last thirty years, the detection of octenol by blood-feeding insects has been primarily understood in the context of animal host-seeking. The recent discovery of a conserved octenol receptor gene in the strictly nectar-feeding elephant mosquito Toxorhynchites amboinensis (TaOr8) suggests a different biological role. Here, we show that TaOR8 is a functional ortholog of its counterparts in blood-feeding mosquitoes displaying selectivity towards the (R)-enantiomer of octenol and susceptibility to the insect repellent DEET. These findings suggest that while the function of OR8 has been maintained throughout mosquito evolution, the context in which this receptor is operating has diverged in blood and nectar-feeding mosquitoes. PMID:27849027

  6. Mobilization Function of the pBHR1 Plasmid, a Derivative of the Broad-Host-Range Plasmid pBBR1

    PubMed Central

    Szpirer, Cédric Y.; Faelen, Michel; Couturier, Martine

    2001-01-01

    The pBHR1 plasmid is a derivative of the small (2.6-kb), mobilizable broad-host-range plasmid pBBR1, which was isolated from the gram-negative bacterium Bordetella bronchiseptica (R. Antoine and C. Locht, Mol. Microbiol. 6:1785–1799, 1992). Plasmid pBBR1 consists of two functional cassettes and presents sequence similarities with the transfer origins of several plasmids and mobilizable transposons from gram-positive bacteria. We show that the Mob protein specifically recognizes a 52-bp sequence which contains, in addition to the transfer origin, the promoter of the mob gene. We demonstrate that this gene is autoregulated. The binding of the Mob protein to the 52-bp sequence could thus allow the formation of a protein-DNA complex with a double function: relaxosome formation and mob gene regulation. We show that the Mob protein is a relaxase, and we located the nic site position in vitro. After sequence alignment, the position of the nic site of pBBR1 corresponds with those of the nick sites of the Bacteroides mobilizable transposon Tn4555 and the streptococcal plasmid pMV158. The oriT of the latter is characteristic of a family of mobilizable plasmids that are found in gram-positive bacteria and that replicate by the rolling-circle mechanism. Plasmid pBBR1 thus appears to be a new member of this group, even though it resides in gram-negative bacteria and does not replicate via a rolling-circle mechanism. In addition, we identified two amino acids of the Mob protein necessary for its activity, and we discuss their involvement in the mobilization mechanism. PMID:11222611

  7. Vision-mediated exploitation of a novel host plant by a tephritid fruit fly.

    PubMed

    Piñero, Jaime C; Souder, Steven K; Vargas, Roger I

    2017-01-01

    Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion.

  8. Vision-mediated exploitation of a novel host plant by a tephritid fruit fly

    PubMed Central

    2017-01-01

    Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion. PMID:28380069

  9. C-type lectins in immunity: recent developments

    PubMed Central

    Dambuza, Ivy M; Brown, Gordon D

    2015-01-01

    C-type lectin receptors (CLRs) comprise a large superfamily of proteins, which recognise a diverse range of ligands, and are defined by the presence of at least one C-type lectin-like domain (CTLD). Of particular interest are the single extracellular CTLD-containing receptors of the ‘Dectin-1’ and ‘Dectin-2’ clusters, which associate with signalling adaptors or possess integral intracellular signalling domains. These CLRs have traditionally been associated with the recognition of fungi, but recent discoveries have revealed diverse and unexpected functions. In this review, we describe their newly identified roles in anti-microbial host defence, homeostasis, autoimmunity, allergy and their functions in the recognition and response to dead and cancerous cells. PMID:25553393

  10. Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi.

    PubMed

    Egan, Martin J; Talbot, Nicholas J

    2008-08-01

    This review describes current advances in our understanding of fungal-plant interactions. The widespread application of whole genome sequencing to a diverse range of fungal species has allowed new insight into the evolution of fungal pathogenesis and the definition of the gene inventories associated with important plant pathogens. This has also led to functional genomic approaches to carry out large-scale gene functional analysis. There has also been significant progress in understanding appressorium-mediated plant infection by fungi and its underlying genetic basis. The nature of biotrophic proliferation of fungal pathogens in host tissue has recently revealed new potential mechanisms for cell-to-cell movement by invading pathogens.

  11. IncC of broad-host-range plasmid RK2 modulates KorB transcriptional repressor activity In vivo and operator binding in vitro.

    PubMed

    Jagura-Burdzy, G; Kostelidou, K; Pole, J; Khare, D; Jones, A; Williams, D R; Thomas, C M

    1999-05-01

    The korAB operon of broad-host-range plasmid RK2 encodes five genes, two of which, incC and korB, belong to the parA and parB families, respectively, of genome partitioning functions. Both korB and a third gene, korA, are responsible for coordinate regulation of operons encoding replication, transfer, and stable inheritance functions. Overexpression of incC alone caused rapid displacement of RK2. Using two different reporter systems, we show that incC modulates the action of KorB. Using promoter fusions to the reporter gene xylE, we show that incC potentiates the repression of transcription by korB. This modulation of korB activity was only observed with incC1, which encodes the full-length IncC (364 amino acids [aa]), whereas no effect was observed with incC2, which encodes a polypeptide of 259 aa that lacks the N-terminal 105 aa. Using bacterial extracts with IncC1 and IncC2 or IncC1 purified through the use of a His6 tail and Ni-agarose chromatography, we showed that IncC1 potentiates the binding of KorB to DNA at representative KorB operators. The ability of IncC to stabilize KorB-DNA complexes suggests that these two proteins work together in the global regulation of many operons on the IncP-1 genomes, as well in plasmid partitioning.

  12. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  13. Repeat-containing protein effectors of plant-associated organisms.

    PubMed

    Mesarich, Carl H; Bowen, Joanna K; Hamiaux, Cyril; Templeton, Matthew D

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  14. Seasonal parasitism and host specificity of Trissolcus japonicus in northern China

    USDA-ARS?s Scientific Manuscript database

    The Asian egg parasitoid Trissolcus japonicus is considered the most promising species for classical biological control of Halyomorpha halys. We investigated the fundamental and ecological host range of T. japonicus in northern China to define its host specificity, and we determined that T. japonicu...

  15. Act together—implications of symbioses in aquatic ciliates

    PubMed Central

    Dziallas, Claudia; Allgaier, Martin; Monaghan, Michael T.; Grossart, Hans-Peter

    2012-01-01

    Mutual interactions in the form of symbioses can increase the fitness of organisms and provide them with the capacity to occupy new ecological niches. The formation of obligate symbioses allows for rapid evolution of new life forms including multitrophic consortia. Microbes are important components of many known endosymbioses and their short generation times and strong potential for genetic exchange may be important drivers of speciation. Hosts provide endo- and ectosymbionts with stable, nutrient-rich environments, and protection from grazers. This is of particular importance in aquatic ecosystems, which are often highly variable, harsh, and nutrient-deficient habitats. It is therefore not surprising that symbioses are widespread in both marine and freshwater environments. Symbioses in aquatic ciliates are good model systems for exploring symbiont-host interactions. Many ciliate species are globally distributed and have been intensively studied in the context of plastid evolution. Their relatively large cell size offers an ideal habitat for numerous microorganisms with different functional traits including commensalism and parasitism. Phagocytosis facilitates the formation of symbiotic relationships, particularly since some ingested microorganisms can escape the digestion. For example, photoautotrophic algae and methanogens represent endosymbionts that greatly extend the biogeochemical functions of their hosts. Consequently, symbiotic relationships between protists and prokaryotes are widespread and often result in new ecological functions of the symbiotic communities. This enables ciliates to thrive under a wide range of environmental conditions including ultraoligotrophic or anoxic habitats. We summarize the current understanding of this exciting research topic to identify the many areas in which knowledge is lacking and to stimulate future research by providing an overview on new methodologies and by formulating a number of emerging questions in this field. PMID:22891065

  16. Associated disease risk from the introduced generalist pathogen Sphaerothecum destruens: management and policy implications.

    PubMed

    Andreou, Demetra; Gozlan, Rodolphe Elie

    2016-08-01

    The rosette agent Sphaerothecum destruens is a novel pathogen, which is currently believed to have been introduced into Europe along with the introduction of the invasive fish topmouth gudgeon Pseudorasbora parva (Temminck & Schlegel, 1846). Its close association with P. parva and its wide host species range and associated host mortalities, highlight this parasite as a potential source of disease emergence in European fish species. Here, using a meta-analysis of the reported S. destruens prevalence across all reported susceptible hosts species; we calculated host-specificity providing support that S. destruens is a true generalist. We have applied all the available information on S. destruens and host-range to an established framework for risk-assessing non-native parasites to evaluate the risks posed by S. destruens and discuss the next steps to manage and prevent disease emergence of this generalist parasite.

  17. Host range determination of Colletotrichum gloeosporioides f. sp. salsolae, a biological control agent of tumbleweed: from BLUPs to biomass loss

    USDA-ARS?s Scientific Manuscript database

    Host range tests were conducted with Colletotrichum gloeosporioides f. sp. salsolae (CGS) in quarantine to determine whether the fungus is safe to release in N. America for biological control of tumbleweed (Salsola tragus L., Chenopodiaceae). Ninety-two accessions were analyzed from 19 families and...

  18. Life history and host range of the leaf blotcher Eucosmophora schinusivora; a candidate for biological control of Schinus terebinthifolius in the USA

    USDA-ARS?s Scientific Manuscript database

    The host range of Eucosmophora schinusivora Davis & Wheeler (Lepidoptera: Gracillariidae) was studied to assess its suitability as a biological control agent of Schinus terebinthifolius Raddi (Anacardiaceae), a serious environmental and agricultural weed in the USA and elsewhere in the world. The l...

  19. Investigation of Host Range, Infectivity, and Spread of Turnip Vein Clearing Virus and a Possible Mechanism for Non-Seed Transmission

    USDA-ARS?s Scientific Manuscript database

    In this study we investigated the host range, transmission and symptom development of TVCV in several species of plants, as a step toward developing management strategy against seed transmissible viruses. While several species of plants failed to show symptoms of TVCV infection, we report that bush ...

  20. A novel bipolar phosphorescent host for highly efficient deep-red OLEDs at a wide luminance range of 1000-10 000 cd m(-2).

    PubMed

    Feng, Yansong; Li, Ping; Zhuang, Xuming; Ye, Kaiqi; Peng, Tai; Liu, Yu; Wang, Yue

    2015-08-14

    A novel phosphorescent host FPYPCA possessing the bipolar charge transporting ability realizes the most efficient deep-red PhOLED, which maintains very high-level EQEs of >23% at rather a high and wide luminance range of 1000-10 000 cd m(-2).

  1. Reproductive biology of Apanteles opuntiarum (Hymenoptera: Braconidae), biological control agent of Cactoblastis cactorum (Lepidoptera: Pyralidae) in Mexico and USA

    USDA-ARS?s Scientific Manuscript database

    Apanteles opuntiarum, a parasitoid of cactus-feeding lepidopteran larvae, was incorrectly identified as A. alexanderi during the last 50 years. The discovery of A. opuntiarum as a new and separate species was followed by studies of its native host range. These studies revealed that the host range o...

  2. Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L.

    PubMed Central

    Hernandez-Lucas, I; Segovia, L; Martinez-Romero, E; Pueppke, S G

    1995-01-01

    We determined the nucleotide sequences of 16S rRNA gene segments from five Rhizobium strains that have been isolated from tropical legume species. All share the capacity to nodulate Phaseolus vulgaris L., the common bean. Phylogenetic analysis confirmed that these strains are of two different chromosomal lineages. We defined the host ranges of two strains of Rhizobium etli and three strains of R. tropici, comparing them with those of the two most divergently related new strains. Twenty-two of the 43 tested legume species were nodulated by three or more of these strains. All seven strains have broad host ranges that include woody species such as Albizia lebbeck, Gliricidia maculata, and Leucaena leucocephala. PMID:7618891

  3. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation

    NASA Astrophysics Data System (ADS)

    Peng, Yongwu; Gong, Tengfei; Zhang, Kang; Lin, Xiaochao; Liu, Yan; Jiang, Jianwen; Cui, Yong

    2014-07-01

    The separation of racemic molecules is of substantial significance not only for basic science but also for technical applications, such as fine chemicals and drug development. Here we report two isostructural chiral metal-organic frameworks decorated with chiral dihydroxy or -methoxy auxiliares from enantiopure tetracarboxylate-bridging ligands of 1,1‧-biphenol and a manganese carboxylate chain. The framework bearing dihydroxy groups functions as a solid-state host capable of adsorbing and separating mixtures of a range of chiral aromatic and aliphatic amines, with high enantioselectivity. The host material can be readily recycled and reused without any apparent loss of performance. The utility of the present adsorption separation is demonstrated in the large-scale resolution of racemic 1-phenylethylamine. Control experiments and molecular simulations suggest that the chiral recognition and separation are attributed to the different orientations and specific binding energies of the enantiomers in the microenvironment of the framework.

  4. Rapid evolutionary response to a transmissible cancer in Tasmanian devils

    PubMed Central

    Epstein, Brendan; Jones, Menna; Hamede, Rodrigo; Hendricks, Sarah; McCallum, Hamish; Murchison, Elizabeth P.; Schönfeld, Barbara; Wiench, Cody; Hohenlohe, Paul; Storfer, Andrew

    2016-01-01

    Although cancer rarely acts as an infectious disease, a recently emerged transmissible cancer in Tasmanian devils (Sarcophilus harrisii) is virtually 100% fatal. Devil facial tumour disease (DFTD) has swept across nearly the entire species' range, resulting in localized declines exceeding 90% and an overall species decline of more than 80% in less than 20 years. Despite epidemiological models that predict extinction, populations in long-diseased sites persist. Here we report rare genomic evidence of a rapid, parallel evolutionary response to strong selection imposed by a wildlife disease. We identify two genomic regions that contain genes related to immune function or cancer risk in humans that exhibit concordant signatures of selection across three populations. DFTD spreads between hosts by suppressing and evading the immune system, and our results suggest that hosts are evolving immune-modulated resistance that could aid in species persistence in the face of this devastating disease. PMID:27575253

  5. Shape-Persistent, Sterically Crowded Star Mesogens: From Exceptional Columnar Dimer Stacks to Supermesogens.

    PubMed

    Lehmann, Matthias; Maier, Philipp

    2015-08-10

    Hexasubstituted C3 -symmetric benzenes with three oligophenylenevinylene (OPV) arms and three pyridyl or phenyl substituents are shape-persistent star mesogens that are sterically crowded in the center. Such molecular structures possess large void spaces between their arms, which have to be filled in condensed phases. For the neat materials, this is accomplished by an exceptional formation of dimers and short-range helical packing in columnar mesophases. The mesophase is thermodynamically stable for the pyridyl compound. Only this derivative forms filled star-shaped supermesogens in the presence of various carboxylic acids. The latter do not arrange as dimers, but as monomers along the columnar stacks. In this liquid crystal (LC) phase, the guests are completely enclosed by the hosts. Therefore, the host can be regarded as a new LC endoreceptor, which allows the design of columnar functional structures in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Underwater energy harvesting from a turbine hosting ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Cellini, Filippo; Pounds, Jason; Peterson, Sean D.; Porfiri, Maurizio

    2014-08-01

    In this study, we explore the possibility of energy harvesting from fluid flow through a turbine hosting ionic polymer metal composites (IPMCs). Specifically, IPMC harvesters are embedded in the blades of a small-scale vertical axis water turbine to convert flow kinetics into electrical power via low-frequency flow-induced IPMC deformations. An in-house fabricated Savonius-Darrieus hybrid active turbine with three IPMCs is tested in a laboratory water tunnel to estimate the energy harvesting capabilities of the device as a function of the shunting electrical load. The turbine is shown to harvest a few nanowatt from a mean flow of 0.43\\;m\\;{{s}^{-1}} for shunting resistances in the range 100-1000\\;\\Omega . To establish a first understanding of the energy harvesting device, we propose a quasi-static hydroelastic model for the bending of the IPMCs and we utilize a black-box model to study their electromechanical response.

  7. Sialoglycans in protozoal diseases: their detection, modes of acquisition and emerging biological roles.

    PubMed

    Chava, Anil K; Bandyopadhyay, Sumi; Chatterjee, Mitali; Mandal, Chitra

    2004-01-01

    Protozoan parasites including Plasmodia, Leishmania, Trypanosoma, Entamoeba, Trichomonas and others cause diseases in humans and domestic livestock having far-reaching socio-economic implications. They show remarkable propensity to survive within hostile environments encountered during their life cycle, and the identification of molecules that enable them to survive in such milieu is a subject of intense research. Currently available knowledge of the parasite cell surface architecture and biochemistry indicates that sialic acid and its principle derivatives are major components of the glycocalyx and assist the parasite to interact with its external environment through functions ranging from parasite survival, infectivity and host-cell recognition. This review highlights the present state of knowledge with regard to parasite sialobiology with an emphasis on its mode(s) of acquisition and their emerging biological roles, notably as an anti-recognition molecule thereby aiding the pathogen to evade host defense mechanisms.

  8. The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective.

    PubMed

    Gilbert, Gregory S; Parker, Ingrid M

    2016-08-04

    An explicit phylogenetic perspective provides useful tools for phytopathology and plant disease ecology because the traits of both plants and microbes are shaped by their evolutionary histories. We present brief primers on phylogenetic signal and the analytical tools of phylogenetic ecology. We review the literature and find abundant evidence of phylogenetic signal in pathogens and plants for most traits involved in disease interactions. Plant nonhost resistance mechanisms and pathogen housekeeping functions are conserved at deeper phylogenetic levels, whereas molecular traits associated with rapid coevolutionary dynamics are more labile at branch tips. Horizontal gene transfer disrupts the phylogenetic signal for some microbial traits. Emergent traits, such as host range and disease severity, show clear phylogenetic signals. Therefore pathogen spread and disease impact are influenced by the phylogenetic structure of host assemblages. Phylogenetically rare species escape disease pressure. Phylogenetic tools could be used to develop predictive tools for phytosanitary risk analysis and reduce disease pressure in multispecies cropping systems.

  9. Nitric oxide synthesis in patients with advanced HIV infection.

    PubMed Central

    Evans, T G; Rasmussen, K; Wiebke, G; Hibbs, J B

    1994-01-01

    The discovery that humans produce nitric oxide and that this molecule plays an important role in cell communication, host resistance to infection, and perhaps in host defence to neoplastic disease, has created much interest in further research on its function in the body. A cytokine-inducible high output L-arginine/nitric oxide pathway was recently detected in patients with advanced malignancy treated with IL-2. The production of nitric oxide was thus examined in patients with advanced HIV infection and in intensive care unit control patients. Extrinsic nitrate and nitrite consumption were carefully controlled in the diet or through the use of total parenteral nutrition. Seven of eight HIV+ patients were placed into positive nitrogen balance. Nitric oxide synthesis was found to be within the normal human range. In contrast, nitric oxide synthesis in extremely ill intensive care unit patients was low normal to depressed. PMID:8033424

  10. Templated deprotonative metalation of polyaryl systems: Facile access to simple, previously inaccessible multi-iodoarenes

    PubMed Central

    Martínez-Martínez, Antonio J.; Justice, Stephen; Fleming, Ben J.; Kennedy, Alan R.; Oswald, Iain D. H.; O’Hara, Charles T.

    2017-01-01

    The development of new methodologies to affect non–ortho-functionalization of arenes has emerged as a globally important arena for research, which is key to both fundamental studies and applied technologies. A range of simple arene feedstocks (namely, biphenyl, meta-terphenyl, para-terphenyl, 1,3,5-triphenylbenzene, and biphenylene) is transformed to hitherto unobtainable multi-iodoarenes via an s-block metal sodium magnesiate templated deprotonative approach. These iodoarenes have the potential to be used in a whole host of high-impact transformations, as precursors to key materials in the pharmaceutical, molecular electronic, and nanomaterials industries. To prove the concept, we transformed biphenyl to 3,5-bis(N-carbazolyl)-1,1′-biphenyl, a novel isomer of 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CPB), a compound which is currently widely used as a host material for organic light-emitting diodes. PMID:28695201

  11. Termites as targets and models for biotechnology.

    PubMed

    Scharf, Michael E

    2015-01-07

    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.

  12. Replication of alfalfa mosaic virus RNA 3 with movement and coat protein genes replaced by corresponding genes of Prunus necrotic ringspot ilarvirus.

    PubMed

    Sánchez-Navarro, J A; Reusken, C B; Bol, J F; Pallás, V

    1997-12-01

    Alfalfa mosaic virus (AMV) and Prunus necrotic ringspot virus (PNRSV) are tripartite positive-strand RNA plant viruses that encode functionally similar translation products. Although the two viruses are phylogenetically closely related, they infect a very different range of natural hosts. The coat protein (CP) gene, the movement protein (MP) gene or both genes in AMV RNA 3 were replaced by the corresponding genes of PNRSV. The chimeric viruses were tested for heterologous encapsidation, replication in protoplasts from plants transformed with AMV replicase genes P1 and P2 (P12 plants) and for cell-to-cell transport in P12 plants. The chimeric viruses exhibited basic competence for encapsidation and replication in P12 protoplasts and for a low level of cell-to-cell movement in P12 plants. The potential involvement of the MP gene in determining host specificity in ilarviruses is discussed.

  13. Molecular Determinants in Phagocyte-Bacteria Interactions.

    PubMed

    Kaufmann, Stefan H E; Dorhoi, Anca

    2016-03-15

    Phagocytes are crucial for host defense against bacterial pathogens. As first demonstrated by Metchnikoff, neutrophils and mononuclear phagocytes share the capacity to engulf, kill, and digest microbial invaders. Generally, neutrophils focus on extracellular, and mononuclear phagocytes on intracellular, pathogens. Reciprocally, extracellular pathogens often capitalize on hindering phagocytosis and killing of phagocytes, whereas intracellular bacteria frequently allow their engulfment and then block intracellular killing. As foreseen by Metchnikoff, phagocytes become highly versatile by acquiring diverse phenotypes, but still retaining some plasticity. Further, phagocytes engage in active crosstalk with parenchymal and immune cells to promote adjunctive reactions, including inflammation, tissue healing, and remodeling. This dynamic network allows the host to cope with different types of microbial invaders. Here we present an update of molecular and cellular mechanisms underlying phagocyte functions in antibacterial defense. We focus on four exemplary bacteria ranging from an opportunistic extracellular to a persistent intracellular pathogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Host range testing of Tamarixia radiata (Hymenoptera: Eulophidae) sourced from the Punjab of Pakistan for classical biological control of Diaphorina citri (Hemiptera: Liviidae: Euphyllurinae: Diaphorinini) in California.

    PubMed

    Hoddle, Mark S; Pandey, Raju

    2014-02-01

    ABSTRACT Tests evaluating the host range of Tamarixia radiata (Waterson) (Hymenoptera: Eulophidae), a parasitoid of the pestiferous Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), sourced from the Punjab of Pakistan, were conducted in quarantine at the University of California, Riverside, CA. Seven nontarget psyllid species (five native and two self-introduced species) representing five families were exposed to T radiata under the following three different exposure scenarios: 1) sequential no-choice tests, 2) static no-choice tests, and 3) choice tests. Nontarget species were selected for testing based on the following criteria: 1) taxonomic relatedness to the target, D. citri; 2) native psyllids inhabiting native host plants related to citrus that could release volatiles attractive to T. radiata; 3) native psyllids with a high probability of occurrence in native vegetation surrounding commercial citrus groves that could be encountered by T. radiata emigrating from D. citri-infested citrus orchards; 4) a common native pest psyllid species; and 5) a beneficial psyllid attacking a noxious weed. The results of host range testing were unambiguous; T radiata exhibited a narrow host range and high host specificity, with just one species of nontarget psyllid, the abundant native pest Bactericera cockerelli Sulc, being parasitized at low levels (< 5%). These results suggest that the likelihood of significant nontarget impacts is low, and the establishment of T. radiata in southern California for the classical biological control of D. citri poses negligible environmental risk.

  15. CRISPR–Cas9 Genetic Analysis of Virus–Host Interactions

    PubMed Central

    Gebre, Makda; Nomburg, Jason L.; Gewurz, Benjamin E.

    2018-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) has greatly expanded the ability to genetically probe virus–host interactions. CRISPR systems enable focused or systematic, genomewide studies of nearly all aspects of a virus lifecycle. Combined with its relative ease of use and high reproducibility, CRISPR is becoming an essential tool in studies of the host factors important for viral pathogenesis. Here, we review the use of CRISPR–Cas9 for the loss-of-function analysis of host dependency factors. We focus on the use of CRISPR-pooled screens for the systematic identification of host dependency factors, particularly in Epstein–Barr virus-transformed B cells. We also discuss the use of CRISPR interference (CRISPRi) and gain-of-function CRISPR activation (CRISPRa) approaches to probe virus–host interactions. Finally, we comment on the future directions enabled by combinatorial CRISPR screens. PMID:29385696

  16. CRISPR-Cas9 Genetic Analysis of Virus-Host Interactions.

    PubMed

    Gebre, Makda; Nomburg, Jason L; Gewurz, Benjamin E

    2018-01-30

    Clustered regularly interspaced short palindromic repeats (CRISPR) has greatly expanded the ability to genetically probe virus-host interactions. CRISPR systems enable focused or systematic, genomewide studies of nearly all aspects of a virus lifecycle. Combined with its relative ease of use and high reproducibility, CRISPR is becoming an essential tool in studies of the host factors important for viral pathogenesis. Here, we review the use of CRISPR-Cas9 for the loss-of-function analysis of host dependency factors. We focus on the use of CRISPR-pooled screens for the systematic identification of host dependency factors, particularly in Epstein-Barr virus-transformed B cells. We also discuss the use of CRISPR interference (CRISPRi) and gain-of-function CRISPR activation (CRISPRa) approaches to probe virus-host interactions. Finally, we comment on the future directions enabled by combinatorial CRISPR screens.

  17. Viral subversion of host functions for picornavirus translation and RNA replication

    PubMed Central

    Chase, Amanda J; Semler, Bert L

    2012-01-01

    Picornavirus infections lead to symptoms that can have serious health and economic implications. The viruses in this family (Picornaviridae) have a small genomic RNA and must rely on host proteins for efficient viral gene expression and RNA replication. To ensure their effectiveness as pathogens, picornaviruses have evolved to utilize and/or alter host proteins for the benefit of the virus life cycle. This review discusses the host proteins that are subverted during infection to aid in virus replication. It will also describe proteins and functions that are altered during infection for the benefit of the virus. PMID:23293659

  18. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra).

    PubMed

    Amato, Katherine R; Leigh, Steven R; Kent, Angela; Mackie, Roderick I; Yeoman, Carl J; Stumpf, Rebecca M; Wilson, Brenda A; Nelson, Karen E; White, Bryan A; Garber, Paul A

    2015-02-01

    For most mammals, including nonhuman primates, diet composition varies temporally in response to differences in food availability. Because diet influences gut microbiota composition, it is likely that the gut microbiota of wild mammals varies in response to seasonal changes in feeding patterns. Such variation may affect host digestive efficiency and, ultimately, host nutrition. In this study, we investigate the temporal variation in diet and gut microbiota composition and function in two groups (N = 13 individuals) of wild Mexican black howler monkeys (Alouatta pigra) over a 10-month period in Palenque National Park, Mexico. Temporal changes in the relative abundances of individual bacterial taxa were strongly correlated with changes in host diet. For example, the relative abundance of Ruminococcaceae was highest during periods when energy intake was lowest, and the relative abundance of Butyricicoccus was highest when young leaves and unripe fruit accounted for 68 % of the diet. Additionally, the howlers exhibited increased microbial production of energy during periods of reduced energy intake from food sources. Because we observed few changes in howler activity and ranging patterns during the course of our study, we propose that shifts in the composition and activity of the gut microbiota provided additional energy and nutrients to compensate for changes in diet. Energy and nutrient production by the gut microbiota appears to provide an effective buffer against seasonal fluctuations in energy and nutrient intake for these primates and is likely to have a similar function in other mammal species.

  19. Host trait combinations drive abundance and canopy distribution of atmospheric bromeliad assemblages

    PubMed Central

    Chaves, Cleber Juliano Neves; Dyonisio, Júlio César; Rossatto, Davi Rodrigo

    2016-01-01

    Epiphytes are strongly dependent on the conditions created by their host's traits and a certain degree of specificity is expected between them, even if these species are largely abundant in a series of tree hosts of a given environment, as in the case of atmospheric bromeliads. Despite their considerable abundance in these environments, we hypothesize that stochasticity alone cannot explain the presence and abundance of atmospheric bromeliads on host trees, since host traits could have a greater influence on the establishment of these bromeliads. We used secondary and reforested seasonal forests and three distinct silvicultures to test whether species richness, phylogenetic diversity and functional diversity of trees can predict the differential presence, abundance and distribution of atmospheric bromeliads on hosts. We compared the observed parameters of their assemblage with null models and performed successive variance hierarchic partitions of abundance and distribution of the assemblage to detect the influence of multiple traits of the tree hosts. Our results do not indicate direct relationships between the abundance of atmospheric bromeliads and phylogenetic or functional diversity of trees, but instead indicate that bromeliads occurred on fewer tree species than expected by chance. We distinguished functional tree patterns that can improve or reduce the abundance of atmospheric bromeliads, and change their distribution on branches and trunk. While individual tree traits are related to increased abundance, species traits are related to the canopy distribution of atmospheric bromeliad assemblages. A balance among these tree functional patterns drives the atmospheric bromeliad assemblage of the forest patches. PMID:26888951

  20. Quantifying the metabolic activities of human-associated microbial communities across multiple ecological scales

    PubMed Central

    Maurice, Corinne Ferrier; Turnbaugh, Peter James

    2013-01-01

    Humans are home to complex microbial communities, whose aggregate genomes and their encoded metabolic activities are referred to as the human microbiome. Recently, researchers have begun to appreciate that different human body habitats and the activities of their resident microorganisms can be better understood in ecological terms, as a range of spatial scales encompassing single cells, guilds of microorganisms responsive to a similar substrate, microbial communities, body habitats, and host populations. However, the bulk of the work to date has focused on studies of culturable microorganisms in isolation or on DNA sequencing-based surveys of microbial diversity in small to moderately sized cohorts of individuals. Here, we discuss recent work that highlights the potential for assessing the human microbiome at a range of spatial scales, and for developing novel techniques that bridge multiple levels: for example, through the combination of single cell methods and metagenomic sequencing. These studies promise to not only provide a much-needed epidemiological and ecological context for mechanistic studies of culturable and genetically tractable microorganisms, but may also lead to the discovery of fundamental rules that govern the assembly and function of host-associated microbial communities. PMID:23550823

Top