Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars
Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica
2013-01-01
SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573
USDA-ARS?s Scientific Manuscript database
Open-field host-specificity testing assesses the host-range of a biological control agent in a setting that permits the agent to use its full complement of host-seeking behaviors. This form of testing, particularly when it includes a no-choice phase in which the target weed is killed, may provide th...
Eop1 from a Rubus strain of Erwinia amylovora functions as a host-range limiting factor.
Asselin, J E; Bonasera, J M; Kim, J F; Oh, C-S; Beer, S V
2011-08-01
Strains of Erwinia amylovora, the bacterium causing the disease fire blight of rosaceous plants, are separated into two groups based on host range: Spiraeoideae and Rubus strains. Spiraeoideae strains have wide host ranges, infecting plants in many rosaceous genera, including apple and pear. In the field, Rubus strains infect the genus Rubus exclusively, which includes raspberry and blackberry. Based on comparisons of limited sequence data from a Rubus and a Spiraeoideae strain, the gene eop1 was identified as unusually divergent, and it was selected as a possible host specificity factor. To test this, eop1 genes from a Rubus strain and a Spiraeoideae strain were cloned and mutated. Expression of the Rubus-strain eop1 reduced the virulence of E. amylovora in immature pear fruit and in apple shoots. Sequencing the orfA-eop1 regions of several strains of E. amylovora confirmed that forms of eop1 are conserved among strains with similar host ranges. This work provides evidence that eop1 from a Rubus-specific strain can function as a determinant of host specificity in E. amylovora.
Methods of expanding bacteriophage host-range and bacteriophage produced by the methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crown, Kevin K.; Santarpia, Joshua
A method of producing novel bacteriophages with expanded host-range and bacteriophages with expanded host ranges are disclosed. The method produces mutant phage strains which are infectious to a second host and can be more infectious to their natural host than in their natural state. The method includes repeatedly passaging a selected phage strain into bacterial cultures that contain varied ratios of its natural host bacterial strain with a bacterial strain that the phage of interest is unable to infect; the target-host. After each passage the resulting phage are purified and screened for activity against the target-host via double-overlay assays. Whenmore » mutant phages that are shown to infect the target-host are discovered, they are further propagated in culture that contains only the target-host to produce a stock of the resulting mutant phage.« less
USDA-ARS?s Scientific Manuscript database
Pathogenic leptospires colonize the renal tubules of reservoir hosts of infection and are excreted via urine into the environment. Reservoir hosts include a wide range of domestic and wild animal species and include cattle, dogs and rats which can persistently excrete large numbers of pathogenic lep...
Castro, Ruth M.; Moreira, Lisela; Rojas, María R.; Gilbertson, Robert L.; Hernández, Eduardo; Mora, Floribeth; Ramírez, Pilar
2013-01-01
Leaf samples of Solanum lycopersicum, Capsicum annuum, Cucurbita moschata, Cucurbita pepo, Sechium edule and Erythrina spp. were collected. All samples were positive for begomoviruses using polymerase chain reaction and degenerate primers. A sequence of ∼1,100 bp was obtained from the genomic component DNA-A of 14 samples. In addition, one sequence of ∼580 bp corresponding to the coat protein (AV1) was obtained from a chayote (S. edule) leaf sample. The presence of Squash yellow mild mottle virus (SYMMoV) and Pepper golden mosaic virus (PepGMV) were confirmed. The host range reported for SYMMoV includes species of the Cucurbitaceae, Caricaceae and Fabaceae families. This report extends the host range of SYMMoV to include the Solanaceae family, and extends the host range of PepGMV to include C. moschata, C. pepo and the Fabaceae Erythrina spp. This is the first report of a begomovirus (PepGMV) infecting chayote in the Western Hemisphere. PMID:25288955
Castro, Ruth M; Moreira, Lisela; Rojas, María R; Gilbertson, Robert L; Hernández, Eduardo; Mora, Floribeth; Ramírez, Pilar
2013-09-01
Leaf samples of Solanum lycopersicum, Capsicum annuum, Cucurbita moschata, Cucurbita pepo, Sechium edule and Erythrina spp. were collected. All samples were positive for begomoviruses using polymerase chain reaction and degenerate primers. A sequence of ∼1,100 bp was obtained from the genomic component DNA-A of 14 samples. In addition, one sequence of ∼580 bp corresponding to the coat protein (AV1) was obtained from a chayote (S. edule) leaf sample. The presence of Squash yellow mild mottle virus (SYMMoV) and Pepper golden mosaic virus (PepGMV) were confirmed. The host range reported for SYMMoV includes species of the Cucurbitaceae, Caricaceae and Fabaceae families. This report extends the host range of SYMMoV to include the Solanaceae family, and extends the host range of PepGMV to include C. moschata, C. pepo and the Fabaceae Erythrina spp. This is the first report of a begomovirus (PepGMV) infecting chayote in the Western Hemisphere.
Comparative whole genome analysis of six diagnostic brucellaphages.
Farlow, Jason; Filippov, Andrey A; Sergueev, Kirill V; Hang, Jun; Kotorashvili, Adam; Nikolich, Mikeljon P
2014-05-15
Whole genome sequencing of six diagnostic brucellaphages, Tbilisi (Tb), Firenze (Fz), Weybridge (Wb), S708, Berkeley (Bk) and R/C, was followed with genomic comparisons including recently described genomes of the Tb phage from Mexico (TbM) and Pr phage to elucidate genomic diversity and candidate host range determinants. Comparative whole genome analysis revealed high sequence homogeneity among these brucellaphage genomes and resolved three genetic groups consistent with defined host range phenotypes. Group I was composed of Tb and Fz phages that are predominantly lytic for Brucella abortus and Brucella neotomae; Group II included Bk, R/C, and Pr phages that are lytic mainly for B. abortus, Brucella melitensis and Brucella suis; Group III was composed of Wb and S708 phages that are lytic for B. suis, B. abortus and B. neotomae. We found that the putative phage collar protein is a variable locus with features that may be contributing to the host specificities exhibited by different brucellaphage groups. The presence of several candidate host range determinants is illustrated herein for future dissection of the differential host specificity observed among these phages. Published by Elsevier B.V.
Association of Neonectria macrodidyma with dry root rot of citrus in California
USDA-ARS?s Scientific Manuscript database
The fungal genus Cylindrocarpon (teleomorph: Neonectria Wolenw.) include ubiquitous soilborne pathogens that cause black foot disease on a wide range of hosts, including grapevine, strawberry, apple, and conifers. Hosts typically become infected through natural wounds on roots and other below ground...
Runge, Fabian; Ndambi, Beninweck; Thines, Marco
2012-01-01
Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation.
Runge, Fabian; Ndambi, Beninweck; Thines, Marco
2012-01-01
Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation. PMID:23166582
Sampling methods of Myllocerus undecimpustulatus undatus (Coleoptera: Curculionidae) adults
USDA-ARS?s Scientific Manuscript database
An exotic weevil Myllocerus undecimpustulatus undatus Marshall was first found in south Florida in 1995. The adults have a broad host range that includes foliage of fruit trees, ornamentals and vegetables, but little is known about their basic biology, including larval host plants. Studies were co...
Xie, Yicheng; Wahab, Laith; Gill, Jason J
2018-04-12
Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format.
Xie, Yicheng; Wahab, Laith
2018-01-01
Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format. PMID:29649135
Vision-Mediated exploitation of a novel host plant by a tephritid fruit fly
USDA-ARS?s Scientific Manuscript database
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera cucurbitae (Coquillett)(Diptera:Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female ...
Aphids (Hemiptera, Aphididae) on ornamental plants in greenhouses in Bulgaria
Yovkova, Mariya; Petrović-Obradović, Olivera; Tasheva-Terzieva, Elena; Pencheva, Aneliya
2013-01-01
Abstract Investigations on the species composition and host range of aphids on ornamental greenhouse plants in Bulgaria was conducted over a period of five years, from 2008 to 2012. Twenty greenhouses, growing ornamentals for landscaping, plant collections and other purposes were observed. They were located in the regions of Sofia, Plovdiv, Smolyan, Pavlikeni, Varna and Burgas. The total number of collected aphid samples was 279. Their composition included 33 aphid species and one subspecies from 13 genera and 5 subfamilies. Twenty-eight species were found to belong to subfamily Aphidinae. Almost 70 % of all recorded species were polyphagous. The most widespread aphid species was Myzus persicae, detected in 13 greenhouses all year round, followed by Aulacorthum solani (10 greenhouses) and Aphis gossypii (9 greenhouses). The widest host range was shown by Myzus persicae (43 hosts), Aulacorthum solani (32 hosts) and Aulacorthum circumflexum (23 hosts). The list of host plants includes 114 species from 95 genera and 58 families. The greatest variety of aphid species was detected on Hibiscus (9 species). Out of all aphid samples 12.9 % were collected on Hibiscus and 6.8 %, on Dendranthema. The greatest variety of aphid species was detected on Hibiscus (9 species). Periphyllus californiensis and Aphis (Aphis) fabae mordvilkoi are reported for the first time for Bulgaria. Furthermore, Aphis spiraecola has been found in new localities and has widened its host range in this country. PMID:24039530
Amphibian chytridiomycosis: a review with focus on fungus-host interactions.
Van Rooij, Pascale; Martel, An; Haesebrouck, Freddy; Pasmans, Frank
2015-11-25
Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host's skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.
Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.
Braschler, Brigitte; Hill, Jane K
2007-05-01
1. Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2. We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18-28.5 degrees C) in populations from core and range margin sites. 3. In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra > or = U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4. Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5. Current range expansion of P. c-album is associated with the exploitation of more widespread host plants on which performance is improved. This study demonstrates how polyphagy may enhance the ability of species to track climate change. Our findings suggest that observed differences in climate-driven range shifts of generalist vs. specialist species may increase in the future and are likely to lead to greatly altered community composition.
One Health and Food-Borne Disease: Salmonella Transmission between Humans, Animals, and Plants.
Silva, Claudia; Calva, Edmundo; Maloy, Stanley
2014-02-01
There are >2,600 recognized serovars of Salmonella enterica. Many of these Salmonella serovars have a broad host range and can infect a wide variety of animals, including mammals, birds, reptiles, amphibians, fish, and insects. In addition, Salmonella can grow in plants and can survive in protozoa, soil, and water. Hence, broad-host-range Salmonella can be transmitted via feces from wild animals, farm animals, and pets or by consumption of a wide variety of common foods: poultry, beef, pork, eggs, milk, fruit, vegetables, spices, and nuts. Broad-host-range Salmonella pathogens typically cause gastroenteritis in humans. Some Salmonella serovars have a more restricted host range that is associated with changes in the virulence plasmid pSV, accumulation of pseudogenes, and chromosome rearrangements. These changes in host-restricted Salmonella alter pathogen-host interactions such that host-restricted Salmonella organisms commonly cause systemic infections and are transmitted between host populations by asymptomatic carriers. The secondary consequences of efforts to eliminate host-restricted Salmonella serovars demonstrate that basic ecological principles govern the environmental niches occupied by these pathogens, making it impossible to thwart Salmonella infections without a clear understanding of the human, animal, and environmental reservoirs of these pathogens. Thus, transmission of S. enterica provides a compelling example of the One Health paradigm because reducing human infections will require the reduction of Salmonella in animals and limitation of transmission from the environment.
Suzuki, Hiromu C; Ozaki, Katsuhisa; Makino, Takashi; Uchiyama, Hironobu; Yajima, Shunsuke; Kawata, Masakado
2018-06-01
The host plant range of herbivorous insects is a major aspect of insect-plant interaction, but the genetic basis of host range expansion in insects is poorly understood. In butterflies, gustatory receptor genes (GRs) play important roles in host plant selection by ovipositing females. Since several studies have shown associations between the repertoire sizes of chemosensory gene families and the diversity of resource use, we hypothesized that the increase in the number of genes in the GR family is associated with host range expansion in butterflies. Here, we analyzed the evolutionary dynamics of GRs among related species, including the host generalist Vanessa cardui and three specialists. Although the increase of the GR repertoire itself was not observed, we found that the gene birth rate of GRs was the highest in the lineage leading to V. cardui compared with other specialist lineages. We also identified two taxon-specific subfamilies of GRs, characterized by frequent lineage-specific duplications and higher non-synonymous substitution rates. Together, our results suggest that frequent gene duplications in GRs, which might be involved in the detection of plant secondary metabolites, were associated with host range expansion in the V. cardui lineage. These evolutionary patterns imply that the capability to perceive various compounds during host selection was favored during adaptation to diverse host plants.
Blok, Vivian C; Jones, John T; Phillips, Mark S; Trudgill, David L
2008-03-01
This essay considers biotrophic cyst and root-knot nematodes in relation to their biology, host-parasite interactions and molecular genetics. These nematodes have to face the biological consequences of the physical constraints imposed by the soil environment in which they live while their hosts inhabit both above and below ground environments. The two groups of nematodes appear to have adopted radically different solutions to these problems with the result that one group is a host specialist and reproduces sexually while the other has an enormous host range and reproduces by mitotic parthenogenesis. We consider what is known about the modes of parasitism used by these nematodes and how it relates to their host range, including the surprising finding that parasitism genes in both nematode groups have been recruited from bacteria. The nuclear and mitochondrial genomes of these two nematode groups are very different and we consider how these findings relate to the biology of the organisms.
Patrock, Richard J. W.; Porter, Sanford D.; Gilbert, Lawrence E.; Folgarait, Patricia J.
2009-01-01
Classical biological control efforts against imported fire ants have largely involved the use of Pseudacteon parasitoids. To facilitate further exploration for species and population biotypes a database of collection records for Pseudacteon species was organized, including those from the literature and other sources. These data were then used to map the geographical ranges of species associated with the imported fire ants in their native range in South America. In addition, we found geographical range metrics for all species in the genus and related these metrics to latitude and host use. Approximately equal numbers of Pseudacteon species were found in temperate and tropical regions, though the majority of taxa found only in temperate areas were found in the Northern Hemisphere. No significant differences in sizes of geographical ranges were found between Pseudacteon associated with the different host complexes of fire ants despite the much larger and systemic collection effort associated with the S. saevissima host group. The geographical range of the flies was loosely associated with both the number of hosts and the geographical range of their hosts. Pseudacteon with the most extensive ranges had either multiple hosts or hosts with broad distributions. Mean species richnesses of Pseudacteon in locality species assemblages associated with S. saevissima complex ants was 2.8 species, but intensively sampled locations were usually much higher. Possible factors are discussed related to variation in the size of geographical range, and areas in southern South America are outlined that are likely to have been under-explored for Pseudacteon associated with imported fire ants. PMID:20050779
Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário
2016-02-01
Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.
Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.
2016-01-01
Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357
Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.
Jacob, Alison S; Busby, Eloise J; Levy, Abigail D; Komm, Natasha; Clark, C Graham
2016-01-01
Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.
Eight new Arthrinium species from China
Wang, Mei; Tan, Xiao-Ming; Liu, Fang; Cai, Lei
2018-01-01
Abstract The genus Arthrinium includes important plant pathogens, endophytes and saprobes with a wide host range and geographic distribution. In this paper, 74 Arthrinium strains isolated from various substrates such as bamboo leaves, tea plants, soil and air from karst caves in China were examined using a multi-locus phylogeny based on a combined dataset of ITS rDNA, TEF1 and TUB2, in conjunction with morphological characters, host association and ecological distribution. Eight new species were described based on their distinct phylogenetic relationships and morphological characters. Our results indicated a high species diversity of Arthrinium with wide host ranges, amongst which, Poaceae and Cyperaceae were the major host plant families of Arthrinium species. PMID:29755262
Eight new Arthrinium species from China.
Wang, Mei; Tan, Xiao-Ming; Liu, Fang; Cai, Lei
2018-01-01
The genus Arthrinium includes important plant pathogens, endophytes and saprobes with a wide host range and geographic distribution. In this paper, 74 Arthrinium strains isolated from various substrates such as bamboo leaves, tea plants, soil and air from karst caves in China were examined using a multi-locus phylogeny based on a combined dataset of ITS rDNA, TEF1 and TUB2, in conjunction with morphological characters, host association and ecological distribution. Eight new species were described based on their distinct phylogenetic relationships and morphological characters. Our results indicated a high species diversity of Arthrinium with wide host ranges, amongst which, Poaceae and Cyperaceae were the major host plant families of Arthrinium species.
Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L.
Hernandez-Lucas, I; Segovia, L; Martinez-Romero, E; Pueppke, S G
1995-07-01
We determined the nucleotide sequences of 16S rRNA gene segments from five Rhizobium strains that have been isolated from tropical legume species. All share the capacity to nodulate Phaseolus vulgaris L., the common bean. Phylogenetic analysis confirmed that these strains are of two different chromosomal lineages. We defined the host ranges of two strains of Rhizobium etli and three strains of R. tropici, comparing them with those of the two most divergently related new strains. Twenty-two of the 43 tested legume species were nodulated by three or more of these strains. All seven strains have broad host ranges that include woody species such as Albizia lebbeck, Gliricidia maculata, and Leucaena leucocephala.
Experimental Adaptation of Burkholderia cenocepacia to Onion Medium Reduces Host Range ▿ † ‡
Ellis, Crystal N.; Cooper, Vaughn S.
2010-01-01
It is unclear whether adaptation to a new host typically broadens or compromises host range, yet the answer bears on the fate of emergent pathogens and symbionts. We investigated this dynamic using a soil isolate of Burkholderia cenocepacia, a species that normally inhabits the rhizosphere, is related to the onion pathogen B. cepacia, and can infect the lungs of cystic fibrosis patients. We hypothesized that adaptation of B. cenocepacia to a novel host would compromise fitness and virulence in alternative hosts. We modeled adaptation to a specific host by experimentally evolving 12 populations of B. cenocepacia in liquid medium composed of macerated onion tissue for 1,000 generations. The mean fitness of all populations increased by 78% relative to the ancestor, but significant variation among lines was observed. Populations also varied in several phenotypes related to host association, including motility, biofilm formation, and quorum-sensing function. Together, these results suggest that each population adapted by fixing different sets of adaptive mutations. However, this adaptation was consistently accompanied by a loss of pathogenicity to the nematode Caenorhabditis elegans; by 500 generations most populations became unable to kill nematodes. In conclusion, we observed a narrowing of host range as a consequence of prolonged adaptation to an environment simulating a specific host, and we suggest that emergent pathogens may face similar consequences if they become host-restricted. PMID:20154121
Pathogenic and host range determinants of the feline aplastic anemia retrovirus.
Riedel, N; Hoover, E A; Dornsife, R E; Mullins, J I
1988-01-01
Feline leukemia virus (FeLV) C-Sarma (or FSC) is a prototype of subgroup C FeLVs, which induce fatal aplastic anemia in outbred specific-pathogen-free (SPF) cats. FeLV C isolates also possess an extended host range in vitro, including an ability, unique among FeLVs, to replicate in guinea pig cells. To identify the viral determinants responsible for the pathogenicity and host range of FSC we constructed a series of proviral DNAs by exchanging gene fragments between FSC and FeLV-61E (or F6A), the latter of which is minimally pathogenic and whose host range in vitro is restricted to feline cells. Transfer of an 886-base-pair (bp) fragment of FSC, encompassing the codons for 73 amino acids at the 3' end of pol (the integrase/endonuclease gene) and the codons for 241 amino acids of the N-terminal portion of env [the extracellular glycoprotein (gp70) gene], into the F6A genome was sufficient to confer onto chimeric viruses the ability to induce fatal aplastic anemia in SPF cats. In contrast, no chimera lacking this sequence induced disease. When assayed in vitro, all chimeric viruses containing the 886-bp fragment of FSC acquired the ability to replicate in heterologous cells, including dog and guinea pig cells. Thus, the pathogenic and the host range determinants of the feline aplastic anemia retrovirus colocalize to a 3' pol-5' env region of the FSC genome and likely reside within a region encoding 241 amino acid residues of the N terminus of the extracellular glycoprotein. Images PMID:2833751
Bulgarella, Mariana; Heimpel, George E
2015-09-01
Parasite host range can be influenced by physiological, behavioral, and ecological factors. Combining data sets on host-parasite associations with phylogenetic information of the hosts and the parasites involved can generate evolutionary hypotheses about the selective forces shaping host range. Here, we analyzed associations between the nest-parasitic flies in the genus Philornis and their host birds on Trinidad. Four of ten Philornis species were only reared from one species of bird. Of the parasite species with more than one host bird species, P. falsificus was the least specific and P. deceptivus the most specific attacking only Passeriformes. Philornis flies in Trinidad thus include both specialists and generalists, with varying degrees of specificity within the generalists. We used three quantities to more formally compare the host range of Philornis flies: the number of bird species attacked by each species of Philornis, a phylogenetically informed host specificity index (Poulin and Mouillot's S TD), and a branch length-based S TD. We then assessed the phylogenetic signal of these measures of host range for 29 bird species. None of these measures showed significant phylogenetic signal, suggesting that clades of Philornis did not differ significantly in their ability to exploit hosts. We also calculated two quantities of parasite species load for the birds - the parasite species richness, and a variant of the S TD index based on nodes rather than on taxonomic levels - and assessed the signal of these measures on the bird phylogeny. We did not find significant phylogenetic signal for the parasite species load or the node-based S TD index. Finally, we calculated the parasite associations for all bird pairs using the Jaccard index and regressed these similarity values against the number of nodes in the phylogeny separating bird pairs. This analysis showed that Philornis on Trinidad tend to feed on closely related bird species more often than expected by chance.
Kim, Jaynee R.; Hayes, Kenneth A.; Yeung, Norine W.; Cowie, Robert H.
2014-01-01
Eosinophilic meningitis caused by the parasitic nematode Angiostrongylus cantonensis is an emerging infectious disease with recent outbreaks primarily in tropical and subtropical locations around the world, including Hawaii. Humans contract the disease primarily through ingestion of infected gastropods, the intermediate hosts of Angiostrongylus cantonensis. Effective prevention of the disease and control of the spread of the parasite require a thorough understanding of the parasite's hosts, including their distributions, as well as the human and environmental factors that contribute to transmission. The aim of this study was to screen a large cross section of gastropod species throughout the main Hawaiian Islands to determine which act as hosts of Angiostrongylus cantonensis and to assess the parasite loads in these species. Molecular screening of 7 native and 30 non-native gastropod species revealed the presence of the parasite in 16 species (2 native, 14 non-native). Four of the species tested are newly recorded hosts, two species introduced to Hawaii (Oxychilus alliarius, Cyclotropis sp.) and two native species (Philonesia sp., Tornatellides sp.). Those species testing positive were from a wide diversity of heterobranch taxa as well as two distantly related caenogastropod taxa. Review of the global literature showed that many gastropod species from 34 additional families can also act as hosts. There was a wide range of parasite loads among and within species, with an estimated maximum of 2.8 million larvae in one individual of Laevicaulis alte. This knowledge of the intermediate host range of Angiostrongylus cantonensis and the range of parasite loads will permit more focused efforts to detect, monitor and control the most important hosts, thereby improving disease prevention in Hawaii as well as globally. PMID:24788772
Host Factors in Ebola Infection.
Rasmussen, Angela L
2016-08-31
Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.
Blazejewski, Tomasz; Nursimulu, Nirvana; Pszenny, Viviana; Dangoudoubiyam, Sriveny; Namasivayam, Sivaranjani; Chiasson, Melissa A.; Chessman, Kyle; Tonkin, Michelle; Swapna, Lakshmipuram S.; Hung, Stacy S.; Bridgers, Joshua; Ricklefs, Stacy M.; Boulanger, Martin J.; Dubey, Jitender P.; Porcella, Stephen F.; Kissinger, Jessica C.; Howe, Daniel K.
2015-01-01
ABSTRACT Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. PMID:25670772
Factors affecting host range in a generalist seed pathogen of semi-arid shrublands
Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg
2014-01-01
Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...
Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L.
Hernandez-Lucas, I; Segovia, L; Martinez-Romero, E; Pueppke, S G
1995-01-01
We determined the nucleotide sequences of 16S rRNA gene segments from five Rhizobium strains that have been isolated from tropical legume species. All share the capacity to nodulate Phaseolus vulgaris L., the common bean. Phylogenetic analysis confirmed that these strains are of two different chromosomal lineages. We defined the host ranges of two strains of Rhizobium etli and three strains of R. tropici, comparing them with those of the two most divergently related new strains. Twenty-two of the 43 tested legume species were nodulated by three or more of these strains. All seven strains have broad host ranges that include woody species such as Albizia lebbeck, Gliricidia maculata, and Leucaena leucocephala. PMID:7618891
Darwell, C T; Fox, K A; Althoff, D M
2014-12-01
There is ample evidence that host shifts in plant-feeding insects have been instrumental in generating the enormous diversity of insects. Changes in host use can cause host-associated differentiation (HAD) among populations that may lead to reproductive isolation and eventual speciation. The importance of geography in facilitating this process remains controversial. We examined the geographic context of HAD in the wide-ranging generalist yucca moth Prodoxus decipiens. Previous work demonstrated HAD among sympatric moth populations feeding on two different Yucca species occurring on the barrier islands of North Carolina, USA. We assessed the genetic structure of P. decipiens across its entire geographic and host range to determine whether HAD is widespread in this generalist herbivore. Population genetic analyses of microsatellite and mtDNA sequence data across the entire range showed genetic structuring with respect to host use and geography. In particular, genetic differentiation was relatively strong between mainland populations and those on the barrier islands of North Carolina. Finer scale analyses, however, among sympatric populations using different host plant species only showed significant clustering based on host use for populations on the barrier islands. Mainland populations did not form population clusters based on host plant use. Reduced genetic diversity in the barrier island populations, especially on the derived host, suggests that founder effects may have been instrumental in facilitating HAD. In general, results suggest that the interplay of local adaptation, geography and demography can determine the tempo of HAD. We argue that future studies should include comprehensive surveys across a wide range of environmental and geographic conditions to elucidate the contribution of various processes to HAD. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage
Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko
2016-01-01
Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729
Cellular and Molecular Interactions of Rhabdoviruses with their Insect and Plant Hosts
USDA-ARS?s Scientific Manuscript database
The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are about 75 plant-infecting rhabdoviruses described, several of which are economically important pathogens that are persistently transmitted to their plant ho...
Poxviruses and the Evolution of Host Range and Virulence
Haller, Sherry L.; Peng, Chen; McFadden, Grant; Rothenburg, Stefan
2013-01-01
Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health. PMID:24161410
Rolfe, Stephen A; Strelkov, Stephen E; Links, Matthew G; Clarke, Wayne E; Robinson, Stephen J; Djavaheri, Mohammad; Malinowski, Robert; Haddadi, Parham; Kagale, Sateesh; Parkin, Isobel A P; Taheri, Ali; Borhan, M Hossein
2016-03-31
The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some essential nutrients and a potential role in the regulation of host plant cytokinin and auxin. Genome annotation supported by RNA sequencing reveals significant reduction in intergenic space which, in addition to low repeat content, has likely contributed to the P. brassicae compact genome.
Jensen, Annette Bruun; Eilenberg, Jørgen; López Lastra, Claudia
2009-11-01
Three DNA regions (ITS 1, LSU rRNA and GPD) of isolates from the insect-pathogenic fungus genus Entomophthora originating from different fly (Diptera) and aphid (Hemiptera) host taxa were sequenced. The results documented a large genetic diversity among the fly-pathogenic Entomophthora and only minor differences among aphid-pathogenic Entomophthora. The evolutionary time of divergence of the fly and the aphid host taxa included cannot account for this difference. The host-driven divergence of Entomophthora, therefore, has been much greater in flies than in aphids. Host-range differences or a recent host shift to aphid are possible explanations.
Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare.
Wu, Zilong; Song, Nan; Menz, Ryan; Pingali, Bharadwaj; Yang, Ying-Wei; Zheng, Yuebing
2015-05-01
Synthetic macrocyclic host compounds can interact with suitable guest molecules via noncovalent interactions to form functional supramolecular systems. With the synergistic integration of the response of molecules and the unique properties at the nanoscale, nanoparticles functionalized with the host-guest supramolecular systems have shown great potentials for a broad range of applications in the fields of nanoscience and nanotechnology. In this review article, we focus on the applications of the nanoparticles functionalized with supramolecular host-guest systems in nanomedicine and healthcare, including therapeutic delivery, imaging, sensing and removal of harmful substances. A large number of examples are included to elucidate the working mechanisms, advantages, limitations and future developments of the nanoparticle-supramolecule systems in these applications.
Díaz, Fabián E; Abarca, Katia; Kalergis, Alexis M
2018-04-01
The obligate intracellular bacterium Orientia tsutsugamushi is the causative agent of scrub typhus in humans, a serious mite-borne disease present in a widespread area of endemicity, which affects an estimated 1 million people every year. This disease may exhibit a broad range of presentations, ranging from asymptomatic to fatal conditions, with the latter being due to disseminated endothelial infection and organ injury. Unique characteristics of the biology and host-pathogen interactions of O. tsutsugamushi , including the high antigenic diversity among strains and the highly variable, short-lived memory responses developed by the host, underlie difficulties faced in the pursuit of an effective vaccine, which is an imperative need. Other factors that have hindered scientific progress relative to the infectious mechanisms of and the immune response triggered by this bacterium in vertebrate hosts include the limited number of mechanistic studies performed on animal models and the lack of genetic tools currently available for this pathogen. However, recent advances in animal model development are promising to improve our understanding of host-pathogen interactions. Here, we comprehensively discuss the recent advances in and future perspectives on host-pathogen interactions and the modulation of immune responses related to this reemerging disease, highlighting the role of animal models. Copyright © 2018 American Society for Microbiology.
Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*
Canova, Marc J.; Molle, Virginie
2014-01-01
In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701
Bacterial serine/threonine protein kinases in host-pathogen interactions.
Canova, Marc J; Molle, Virginie
2014-04-04
In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.
Hamm, J J; Styer, E L; Federici, B A
1998-09-01
Six field-collected ascovirus isolates obtained from five noctuid species in the continental United States were compared with respect to the general relatedness of their DNA, host range, and histopathology. Two isolates were from Spodoptera frugiperda, and the other four were from Autographa precationis, Heliothis virescens, Helicoverpa zea, and Trichoplusia ni. DNA-DNA hybridization studies showed that the six isolates belonged to three distinct viral species, with the isolates from S. frugiperda composing one species, those from A. precationis and H. virescens a second species, and those from H. zea and T. ni a third species. The host range and histopathology of each isolate was studied in eight noctuid species, S. frugiperda, Spodoptera ornithogalli, Spodoptera exigua, Spodoptera eridania, H. virescens, H. zea, A. precationis, and Feltia subterranea. Though some variation existed between the different isolates of each viral species, distinct patterns were apparent for each. The viral species from S. frugiperda had a host range that was limited primarily to Spodoptera species and both isolates of this virus only replicated and caused significant pathology in the fat body, whereas the viral species from A. precationis and H. virescens had a much broader host range that included most of the species tested, but also had a tissue tropism primarily restricted to the fat body. The viral species from T. ni and H. zea readily infected all the hosts tested, where the principal site of replication and significant pathology was the epidermis. In many test hosts, however, this viral species also replicated and caused significant pathology in the tracheal epithelium and to a lesser extent in the fat body. Aside from contributing to knowledge of ascovirus biology, these studies indicate that DNA hybridization profiles combined with studies of host range and tissue tropism can be used as characters for defining ascovirus species. Copyright 1998 Academic Press.
Eilat virus host range restriction is present at multiple levels of the virus life cycle.
Nasar, Farooq; Gorchakov, Rodion V; Tesh, Robert B; Weaver, Scott C
2015-01-15
Most alphaviruses are mosquito-borne and exhibit a broad host range, infecting many different vertebrates, including birds, rodents, equids, humans, and nonhuman primates. This ability of most alphaviruses to infect arthropods and vertebrates is essential for their maintenance in nature. Recently, a new alphavirus, Eilat virus (EILV), was described, and in contrast to all other mosquito-borne viruses, it is unable to replicate in vertebrate cell lines. Investigations into the nature of its host range restriction showed the inability of genomic EILV RNA to replicate in vertebrate cells. Here, we investigated whether the EILV host range restriction is present at the entry level and further explored the viral factors responsible for the lack of genomic RNA replication. Utilizing Sindbis virus (SINV) and EILV chimeras, we show that the EILV vertebrate host range restriction is also manifested at the entry level. Furthermore, the EILV RNA replication restriction is independent of the 3' untranslated genome region (UTR). Complementation experiments with SINV suggested that RNA replication is restricted by the inability of the EILV nonstructural proteins to form functional replicative complexes. These data demonstrate that the EILV host range restriction is multigenic, involving at least one gene from both nonstructural protein (nsP) and structural protein (sP) open reading frames (ORFs). As EILV groups phylogenetically within the mosquito-borne virus clade of pathogenic alphaviruses, our findings have important evolutionary implications for arboviruses. Our work explores the nature of host range restriction of the first "mosquito-only alphavirus," EILV. EILV is related to pathogenic mosquito-borne viruses (Eastern equine encephalitis virus [EEEV], Western equine encephalitis virus [WEEV], Venezuelan equine encephalitis virus [VEEV], and Chikungunya virus [CHIKV]) that cause severe disease in humans. Our data demonstrate that EILV is restricted both at entry and genomic RNA replication levels in vertebrate cells. These findings have important implications for arbovirus evolution and will help elucidate the viral factors responsible for the broad host range of pathogenic mosquito-borne alphaviruses, facilitate vaccine development, and inform potential strategies to reduce/prevent alphavirus transmission. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Development of molecular methods to detect Macrophomina phaseolina from strawberry plants and soil
USDA-ARS?s Scientific Manuscript database
Macrophomina phaseolina is a broad-host range fungus that shows some degree of host preference on strawberry, and causes symptoms including charcoal rot and root rot. Recently, this pathogen has impacted strawberry production as fumigation practices have changed, leaving many growers in California a...
USDA-ARS?s Scientific Manuscript database
Ambrosia beetles in the Euwallacea nr. fornicatus complex (Coleoptera: Curculionidae) vector Fusarium spp. fungi pathogenic to susceptible hosts, including avocado. The Florida avocado production area in Miami-Dade County was surveyed for E. nr. fornicatus upon observations of initial damage in 2016...
USDA-ARS?s Scientific Manuscript database
The genus Trichosirocalus Colonnelli includes some host-specific weevil species or biotypes with a relatively narrow host-range limited to some thistles of the subfamily Carduinae. An Italian population of T. horridus (Panzer) was introduced in 1974 into the USA, and a population from Germany was in...
USDA-ARS?s Scientific Manuscript database
Streptococcus agalactiae, the Lancefield group B Streptococcus (GBS), has a broad host range and can be pathogenic to numerous animals, including fish. GBS is most recognized for causing cattle mastitis and human neonatal meningitis, it also causes fatal meningo-encephalitis in fish. We investigat...
Susceptibility of sprouted oak acorns to Phytophthora ramorum zoospores
USDA-ARS?s Scientific Manuscript database
Phytophthora ramorum is a recently emerged pathogen, having established in Europe and several western U.S. states, including California and Oregon. It has a wide host range and is a threat to forest ecology and the nursery industry. In California, coast live oak (Quercus agrifolia) is a major host...
Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C. Miguel; Vallejo, Gustavo A.
2015-01-01
Abstract Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(−)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579
Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J
2015-12-01
Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru.
Moniuszko, Hanna; Zaleśny, Grzegorz; Mąkol, Joanna
2015-09-01
Examination of host-associated variation in the chigger mite Hirsutiella zachvatkini (Schluger) revealed morphological differences among larvae infesting sympatric hosts: Apodemus agrarius, Apodemus flavicollis and Myodes glareolus. The analysis included 61 variables of larvae obtained from their gnathosoma, idiosoma and legs (measurements and counts). Statistically significant differences were observed for metric characters of the legs as opposed to the scutum. In view of the conspecificity of the mites, supported by comparison of COI gene products obtained from larvae and laboratory-reared deutonymphs, the observed variation is attributed to phenotypic plasticity. The knowledge of larval morphology, including intraspecific variation of metric characters, supported by molecular and host range data, places H. zachvatkini among the most comprehensively defined members of Trombiculidae.
Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review
Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos
2017-01-01
The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165
Molecular epidemiology and evolution of fish Novirhabdoviruses
Kurath, Gael
2014-01-01
The genus Novirhabdoviridae contains several of the important rhabdoviruses that infect fish hosts. There are four established virus species: Infectious hematopoietic necrosis virus (IHNV), Viral hemorrhagic septicemia virus (VHSV), Hirame rhabdovirus(HIRRV), and Snakehead rhabdovirus (SHRV). Viruses of these species vary in host and geographic range, and they have all been studied at the molecular and genomic level. As globally significant pathogens of cultured fish, IHNV and VHSV have been particularly well studied in terms of molecular epidemiology and evolution. Phylogenic analyses of hundreds of field isolates have defined five major genogroups of IHNV and four major genotypes of VHSV worldwide. These phylogenies are informed by the known histories of IHNV and VHSV, each involving a series of viral emergence events that are sometimes associated with host switches, most often into cultured rainbow trout. In general, IHNV has relatively low genetic diversity and a narrow host range, and has been spread from its endemic source in North American to Europe and Asia due to aquaculture activities. In contrast, VHSV has broad host range and high genetic diversity, and the source of emergence events is virus in widespread marine fish reservoirs in the northern Atlantic and Pacific Oceans. Common mechanisms of emergence and host switch events include use of raw feed, proximity to wild fish reservoirs of virus, and geographic translocations of virus or naive fish hosts associated with aquaculture.
Reverter, Miriam; Cutmore, Scott C; Bray, Rodney; Cribb, Thomas H; Sasal, Pierre
2016-10-01
We studied the monogenean communities of 34 species of butterflyfish from the tropical Indo-West Pacific, identifying 13 dactylogyrid species (including two species that are presently undescribed). Monogenean assemblages differed significantly between host species in terms of taxonomic structure, intensity and prevalence. Parasite richness ranged from 0 (Chaetodon lunulatus) to 11 (C. auriga, C. citrinellus and C. lunula). Host specificity varied between the dactylogyrids species, being found on 2-29 of the 34 chaetodontid species examined. Sympatric butterflyfish species were typically parasitized by different combinations of dactylogyrid species, suggesting the existence of complex host-parasite interactions. We identified six clusters of butterflyfish species based on the similarities of their dactylogyrid communities. Dactylogyrid richness and diversity were not related to host size, diet specialization, depth range or phylogeny of butterflyfish species. However, there was a weak positive correlation between monogenean richness and diversity and host geographical range. Most communities of dactylogyrids were dominated by Haliotrema aurigae and H. angelopterum, indicating the importance of the genus Haliotrema in shaping monogenean communities of butterflyfishes. This study casts light on the structure of the monogenean communities of butterflyfishes, suggesting that the diversity and complexity of community structures arises from a combination of host species-specific parameters.
Jorge, Fátima; Perera, Ana; Poulin, Robert; Roca, Vicente; Carretero, Miguel A
2018-01-01
Episodes of expansion and isolation in geographic range over space and time, during which parasites have the opportunity to expand their host range, are linked to the development of host-parasite mosaic assemblages and parasite diversification. In this study, we investigated whether island colonization events lead to host range oscillations in a taxon of host-specific parasitic nematodes of the genus Spauligodon in the Canary Islands. We further investigated whether range oscillations also resulted in shifts in host breadth (i.e., specialization), as expected for parasites on islands. Parasite phylogeny and divergence time estimates were inferred from molecular data with Bayesian methods. Host divergence times were set as calibration priors after a priori evaluation with a global-fit method of which individual host-parasite associations likely represent cospeciation links. Parasite colonization history was reconstructed, followed by an estimation of oscillation events and specificity level. The results indicate the presence of four Spauligodon clades in the Canary Islands, which originated from at least three different colonization events. We found evidence of host range oscillations to truly novel hosts, which in one case led to higher diversification. Contemporary host-parasite associations show strong host specificity, suggesting that changes in host breadth were limited to the shift period. Lineages with more frequent and wider taxonomic host range oscillations prior to the initial colonization event showed wider range oscillations during colonization and diversification within the archipelago. Our results suggest that a lineage's evolutionary past may be the best indicator of a parasite's potential for future range expansions. © 2017 John Wiley & Sons Ltd.
The Trw Type IV Secretion System of Bartonella Mediates Host-Specific Adhesion to Erythrocytes
Vayssier-Taussat, Muriel; Le Rhun, Danielle; Deng, Hong Kuan; Biville, Francis; Cescau, Sandra; Danchin, Antoine; Marignac, Geneviève; Lenaour, Evelyne; Boulouis, Henri Jean; Mavris, Maria; Arnaud, Lionel; Yang, Huanming; Wang, Jing; Quebatte, Maxime; Engel, Philipp; Saenz, Henri; Dehio, Christoph
2010-01-01
Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The α-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals. PMID:20548954
Novel application of species richness estimators to predict the host range of parasites.
Watson, David M; Milner, Kirsty V; Leigh, Andrea
2017-01-01
Host range is a critical life history trait of parasites, influencing prevalence, virulence and ultimately determining their distributional extent. Current approaches to measure host range are sensitive to sampling effort, the number of known hosts increasing with more records. Here, we develop a novel application of results-based stopping rules to determine how many hosts should be sampled to yield stable estimates of the number of primary hosts within regions, then use species richness estimation to predict host ranges of parasites across their distributional ranges. We selected three mistletoe species (hemiparasitic plants in the Loranthaceae) to evaluate our approach: a strict host specialist (Amyema lucasii, dependent on a single host species), an intermediate species (Amyema quandang, dependent on hosts in one genus) and a generalist (Lysiana exocarpi, dependent on many genera across multiple families), comparing results from geographically-stratified surveys against known host lists derived from herbarium specimens. The results-based stopping rule (stop sampling bioregion once observed host richness exceeds 80% of the host richness predicted using the Abundance-based Coverage Estimator) worked well for most bioregions studied, being satisfied after three to six sampling plots (each representing 25 host trees) but was unreliable in those bioregions with high host richness or high proportions of rare hosts. Although generating stable predictions of host range with minimal variation among six estimators trialled, distribution-wide estimates fell well short of the number of hosts known from herbarium records. This mismatch, coupled with the discovery of nine previously unrecorded mistletoe-host combinations, further demonstrates the limited ecological relevance of simple host-parasite lists. By collecting estimates of host range of constrained completeness, our approach maximises sampling efficiency while generating comparable estimates of the number of primary hosts, with broad applicability to many host-parasite systems. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Vision-mediated exploitation of a novel host plant by a tephritid fruit fly.
Piñero, Jaime C; Souder, Steven K; Vargas, Roger I
2017-01-01
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion.
Vision-mediated exploitation of a novel host plant by a tephritid fruit fly
2017-01-01
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion. PMID:28380069
Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands
NASA Astrophysics Data System (ADS)
Sullivan, Matthew R.; Sokkalingam, Punidha; Nguyen, Thong; Donahue, James P.; Gibb, Bruce C.
2017-01-01
In participation of the fifth statistical assessment of modeling of proteins and ligands (SAMPL5), the strength of association of six guests ( 3- 8) to two hosts ( 1 and 2) were measured by 1H NMR and ITC. Each host possessed a unique and well-defined binding pocket, whilst the wide array of amphiphilic guests possessed binding moieties that included: a terminal alkyne, nitro-arene, alkyl halide and cyano-arene groups. Solubilizing head groups for the guests included both positively charged trimethylammonium and negatively charged carboxylate functionality. Measured association constants ( K a ) covered five orders of magnitude, ranging from 56 M-1 for guest 6 binding with host 2 up to 7.43 × 106 M-1 for guest 6 binding to host 1.
USDA-ARS?s Scientific Manuscript database
E2, the major envelope glycoprotein of Classical Swine Fever Virus (CSFV), is involved in several critical virus functions including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on Wimley-White interfacial hydrophobicity dis...
Identification of Novel Cryptosporidium Genotypes from the Czech Republic
Ryan, Una; Xiao, Lihua; Read, Carolyn; Zhou, Ling; Lal, Altaf A.; Pavlasek, Ivan
2003-01-01
Isolates of Cryptosporidium from the Czech Republic were characterized from a variety of different hosts using sequence and phylogenetic analysis of the 18S ribosomal DNA and the heat-shock (HSP-70) gene. Analysis expanded the host range of accepted species and identified several novel genotypes, including horse, Eurasian woodcock, rabbit, and cervid genotypes. PMID:12839819
Blazejewski, Tomasz; Nursimulu, Nirvana; Pszenny, Viviana; Dangoudoubiyam, Sriveny; Namasivayam, Sivaranjani; Chiasson, Melissa A; Chessman, Kyle; Tonkin, Michelle; Swapna, Lakshmipuram S; Hung, Stacy S; Bridgers, Joshua; Ricklefs, Stacy M; Boulanger, Martin J; Dubey, Jitender P; Porcella, Stephen F; Kissinger, Jessica C; Howe, Daniel K; Grigg, Michael E; Parkinson, John
2015-02-10
Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. Sarcocystis neurona is a member of the coccidia, a clade of single-celled apicomplexan parasites responsible for major economic and health care burdens worldwide. A cousin of Plasmodium, Cryptosporidium, Theileria, and Eimeria, Sarcocystis is one of the most successful parasite genera; it is capable of infecting all vertebrates (fish, reptiles, birds, and mammals-including humans). The past decade has witnessed an increasing number of human outbreaks of clinical significance associated with acute sarcocystosis. Among Sarcocystis species, S. neurona has a wide host range and causes fatal encephalitis in horses, marine mammals, and several other mammals. To provide insights into the transition from a purely enteric parasite (e.g., Eimeria) to one that forms tissue cysts (Toxoplasma), we present the first genome sequence of S. neurona. Comparisons with other coccidian genomes highlight the molecular innovations that drive its distinct life cycle strategies. Copyright © 2015 Blazejewski et al.
Manipulation of host membranes by bacterial effectors.
Ham, Hyeilin; Sreelatha, Anju; Orth, Kim
2011-07-18
Bacterial pathogens interact with host membranes to trigger a wide range of cellular processes during the course of infection. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways involved in vesicle trafficking. Such changes facilitate the entry and replication of the pathogen, and prevent its phagocytosis and degradation. In this Review, we describe the manipulation of host membranes by numerous bacterial effectors that target phosphoinositide metabolism, GTPase signalling and autophagy.
Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle.
Ortiz-Urquiza, Almudena; Keyhani, Nemat O
2013-07-16
Infections mediated by broad host range entomopathogenic fungi represent seminal observations that led to one of the first germ theories of disease and are a classic example of a co-evolutionary arms race between a pathogen and target hosts. These fungi are able to parasitize susceptible hosts via direct penetration of the cuticle with the initial and potentially determining interaction occurring between the fungal spore and the insect epicuticle. Entomogenous fungi have evolved mechanisms for adhesion and recognition of host surface cues that help direct an adaptive response that includes the production of: (a) hydrolytic, assimilatory, and/or detoxifying enzymes including lipase/esterases, catalases, cytochrome P450s, proteases, and chitinases; (b) specialized infectious structures, e.g., appressoria or penetrant tubes; and (c) secondary and other metabolites that facilitate infection. Aside from immune responses, insects have evolved a number of mechanisms to keep pathogens at bay that include: (a) the production of (epi) cuticular antimicrobial lipids, proteins, and metabolites; (b) shedding of the cuticle during development; and (c) behavioral-environmental adaptations such as induced fever, burrowing, and grooming, as well as potentially enlisting the help of other microbes, all intended to stop the pathogen before it can breach the cuticle. Virulence and host-defense can be considered to be under constant reciprocal selective pressure, and the action on the surface likely contributes to phenomena such as strain variation, host range, and the increased virulence often noted once a (low) virulent strain is "passaged" through an insect host. Since the cuticle represents the first point of contact and barrier between the fungus and the insect, the "action on the surface" may represent the defining interactions that ultimately can lead either to successful mycosis by the pathogen or successful defense by the host. Knowledge concerning the molecular mechanisms underlying this interaction can shed light on the ecology and evolution of virulence and can be used for rational design strategies at increasing the effectiveness of entomopathogenic fungi for pest control in field applications.
Interferon in lyssavirus infection.
Rieder, Martina; Finke, Stefan; Conzelmann, Karl-Klaus
2012-01-01
Rabies is a zoonosis still claiming more than 50 000 human deaths per year. Typically, human cases are due to infection with rabies virus, the prototype of the Lyssavirus genus, but sporadic cases of rabies-like encephalitis caused by other lyssaviruses have been reported. In contrast to rabies virus, which has an extremely broad host range including many terrestrial warm-blooded animals, rabies-related viruses are associated predominantly with bats and rarely infect terrestrial species. In spite of a very close genetic relationship of rabies and rabies-related viruses, the factors determining the limited host range of rabies-related viruses are not clear. In the past years the importance of viral countermeasures against the host type I interferon system for establishment of an infection became evident. The rabies virus phosphoprotein (P) has emerged as a critical factor required for paralysing the signalling cascades leading to transcriptional activation of interferon genes as well as interferon signalling pathways, thereby limiting expression of antiviral and immune stimulatory genes. Comparative studies would be of interest in order to determine whether differential abilities of the lyssavirus P proteins contribute to the restricted host range of lyssaviruses.
De Maayer, Pieter; Chan, Wai Yin; Rubagotti, Enrico; Venter, Stephanus N; Toth, Ian K; Birch, Paul R J; Coutinho, Teresa A
2014-05-27
Pantoea ananatis is found in a wide range of natural environments, including water, soil, as part of the epi- and endophytic flora of various plant hosts, and in the insect gut. Some strains have proven effective as biological control agents and plant-growth promoters, while other strains have been implicated in diseases of a broad range of plant hosts and humans. By analysing the pan-genome of eight sequenced P. ananatis strains isolated from different sources we identified factors potentially underlying its ability to colonize and interact with hosts in both the plant and animal Kingdoms. The pan-genome of the eight compared P. ananatis strains consisted of a core genome comprised of 3,876 protein coding sequences (CDSs) and a sizeable accessory genome consisting of 1,690 CDSs. We estimate that ~106 unique CDSs would be added to the pan-genome with each additional P. ananatis genome sequenced in the future. The accessory fraction is derived mainly from integrated prophages and codes mostly for proteins of unknown function. Comparison of the translated CDSs on the P. ananatis pan-genome with the proteins encoded on all sequenced bacterial genomes currently available revealed that P. ananatis carries a number of CDSs with orthologs restricted to bacteria associated with distinct hosts, namely plant-, animal- and insect-associated bacteria. These CDSs encode proteins with putative roles in transport and metabolism of carbohydrate and amino acid substrates, adherence to host tissues, protection against plant and animal defense mechanisms and the biosynthesis of potential pathogenicity determinants including insecticidal peptides, phytotoxins and type VI secretion system effectors. P. ananatis has an 'open' pan-genome typical of bacterial species that colonize several different environments. The pan-genome incorporates a large number of genes encoding proteins that may enable P. ananatis to colonize, persist in and potentially cause disease symptoms in a wide range of plant and animal hosts.
Rosalino, L M; Santos, M J; Fernandes, C; Santos-Reis, M
2011-05-01
We address the question of whether host and/or environmental factors might affect endoparasite richness and distribution, using carnivores as a model. We reviewed studies published in international peer-reviewed journals (34 areas in the Iberian Peninsula), describing parasite prevalence and richness in carnivores, and collected information on site location, host bio-ecology, climate and detected taxa (Helminths, Protozoa and Mycobacterium spp.). Three hypotheses were tested (i) host based, (ii) environmentally based, and (iii) hybrid (combination of environmental and host). Multicollinearity reduced candidate variable number for modelling to 5: host weight, phylogenetic independent contrasts (host weight), mean annual temperature, host trophic level and biogeographical region. General Linear Mixed Modelling was used and the best model was a hybrid model that included biogeographical region and host trophic level. Results revealed that endoparasite richness is higher in Mediterranean areas, especially for the top predators. We suggest that the detected parasites may benefit from mild environmental conditions that occur in southern regions. Top predators have larger home ranges and are likely to be subjected to cascading effects throughout the food web, resulting in more infestation opportunities and potentially higher endoparasite richness. This study suggests that richness may be more affected by historical and regional processes (including climate) than by host ecological processes.
Li, Peng; Wang, Dechen; Yan, Jinli; Zhou, Jianuan; Deng, Yinyue; Jiang, Zide; Cao, Bihao; He, Zifu; Zhang, Lianhui
2016-01-01
Ralstonia solanacearum species complex is a devastating group of phytopathogens with an unusually wide host range and broad geographical distribution. R. solanacearum isolates may differ considerably in various properties including host range and pathogenicity, but the underlying genetic bases remain vague. Here, we conducted the genome sequencing of strain EP1 isolated from Guangdong Province of China, which belongs to phylotype I and is highly virulent to a range of solanaceous crops. Its complete genome contains a 3.95-Mb chromosome and a 2.05-Mb mega-plasmid, which is considerably bigger than reported genomes of other R. solanacearum strains. Both the chromosome and the mega-plasmid have essential house-keeping genes and many virulence genes. Comparative analysis of strain EP1 with other 3 phylotype I and 3 phylotype II, III, IV strains unveiled substantial genome rearrangements, insertions and deletions. Genome sequences are relatively conserved among the 4 phylotype I strains, but more divergent among strains of different phylotypes. Moreover, the strains exhibited considerable variations in their key virulence genes, including those encoding secretion systems and type III effectors. Our results provide valuable information for further elucidation of the genetic basis of diversified virulences and host range of R. solanacearum species. PMID:27833603
Evolution of viral virulence: empirical studies
Kurath, Gael; Wargo, Andrew R.
2016-01-01
The concept of virulence as a pathogen trait that can evolve in response to selection has led to a large body of virulence evolution theory developed in the 1980-1990s. Various aspects of this theory predict increased or decreased virulence in response to a complex array of selection pressures including mode of transmission, changes in host, mixed infection, vector-borne transmission, environmental changes, host vaccination, host resistance, and co-evolution of virus and host. A fundamental concept is prediction of trade-offs between the costs and benefits associated with higher virulence, leading to selection of optimal virulence levels. Through a combination of observational and experimental studies, including experimental evolution of viruses during serial passage, many of these predictions have now been explored in systems ranging from bacteriophage to viruses of plants, invertebrates, and vertebrate hosts. This chapter summarizes empirical studies of viral virulence evolution in numerous diverse systems, including the classic models myxomavirus in rabbits, Marek's disease virus in chickens, and HIV in humans. Collectively these studies support some aspects of virulence evolution theory, suggest modifications for other aspects, and show that predictions may apply in some virus:host interactions but not in others. Finally, we consider how virulence evolution theory applies to disease management in the field.
Newly documented host fishes for the eastern elliptio mussel (Elliptio complanata)
Galbraith, Heather S.
2013-01-01
The eastern elliptio (Elliptio complanata) is a common, abundant and ecologically important freshwater mussel that occurs throughout the Atlantic Slope drainage in the United States and Canada. Previous research has shown E. complanata glochidia to be host fish generalists, parasitizing yellow perch (Perca flavescens), banded killifish (Fundulus diaphanus), banded sculpin (Cottus carolinae), and seven centrarchid species. Past laboratory studies have been conducted in the Midwest and glochidia sources typically included lakes the Great Lakes basin or were unreported. The objective of this study was to identify host fishes for E. complanata from streams in the Mid-Atlantic region. We used artificial laboratory infections to test host suitability of 38 fish and two amphibian species with E. complanata glochidia from the Chesapeake Bay drainage. Glochidia successfully metamorphosed into juvenile mussels on five fish species: American eel (Anguilla rostrata), brook trout (Salvelinus fontinalis), lake trout (S. namaycush), mottled sculpin (C. bairdii), and slimy sculpin (C. cognatus). American eel was the most effective host, yielding the highest overall metamorphosis success (percentage of attached glochidia that transformed into juvenile mussels;{greater than or equal to}0.90) and producing 13.2 juveniles per fish overall. No juvenile E. complanata metamorphosed on other fish species tested, including many previously identified host fishes reported in the literature. Reasons for discrepancies in published host fish could include geographic variation in host use across the species' range, differences in host use between lentic and lotic populations, or poorly resolved taxonomy within the genus Elliptio.
Soft rot erwiniae: from genes to genomes.
Toth, Ian K; Bell, Kenneth S; Holeva, Maria C; Birch, Paul R J
2003-01-01
SUMMARY The soft rot erwiniae, Erwinia carotovora ssp. atroseptica (Eca), E. carotovora ssp. carotovora (Ecc) and E. chrysanthemi (Ech) are major bacterial pathogens of potato and other crops world-wide. We currently understand much about how these bacteria attack plants and protect themselves against plant defences. However, the processes underlying the establishment of infection, differences in host range and their ability to survive when not causing disease, largely remain a mystery. This review will focus on our current knowledge of pathogenesis in these organisms and discuss how modern genomic approaches, including complete genome sequencing of Eca and Ech, may open the door to a new understanding of the potential subtlety and complexity of soft rot erwiniae and their interactions with plants. The soft rot erwiniae are members of the Enterobacteriaceae, along with other plant pathogens such as Erwinia amylovora and human pathogens such as Escherichia coli, Salmonella spp. and Yersinia spp. Although the genus name Erwinia is most often used to describe the group, an alternative genus name Pectobacterium was recently proposed for the soft rot species. Ech mainly affects crops and other plants in tropical and subtropical regions and has a wide host range that includes potato and the important model host African violet (Saintpaulia ionantha). Ecc affects crops and other plants in subtropical and temperate regions and has probably the widest host range, which also includes potato. Eca, on the other hand, has a host range limited almost exclusively to potato in temperate regions only. Disease symptoms: Soft rot erwiniae cause general tissue maceration, termed soft rot disease, through the production of plant cell wall degrading enzymes. Environmental factors such as temperature, low oxygen concentration and free water play an essential role in disease development. On potato, and possibly other plants, disease symptoms may differ, e.g. blackleg disease is associated more with Eca and Ech than with Ecc. http://www.scri.sari.ac.uk/TiPP/Erwinia.htm, http://www.ahabs.wisc.edu:16080/ approximately pernalab/erwinia/index.htm, http://www.tigr.org/tdb/mdb/mdbinprogress.html, http://www.sanger.ac.uk/Projects/E_carotovora/.
Kargarfard, Fatemeh; Sami, Ashkan; Mohammadi-Dehcheshmeh, Manijeh; Ebrahimie, Esmaeil
2016-11-16
Recent (2013 and 2009) zoonotic transmission of avian or porcine influenza to humans highlights an increase in host range by evading species barriers. Gene reassortment or antigenic shift between viruses from two or more hosts can generate a new life-threatening virus when the new shuffled virus is no longer recognized by antibodies existing within human populations. There is no large scale study to help understand the underlying mechanisms of host transmission. Furthermore, there is no clear understanding of how different segments of the influenza genome contribute in the final determination of host range. To obtain insight into the rules underpinning host range determination, various supervised machine learning algorithms were employed to mine reassortment changes in different viral segments in a range of hosts. Our multi-host dataset contained whole segments of 674 influenza strains organized into three host categories: avian, human, and swine. Some of the sequences were assigned to multiple hosts. In point of fact, the datasets are a form of multi-labeled dataset and we utilized a multi-label learning method to identify discriminative sequence sites. Then algorithms such as CBA, Ripper, and decision tree were applied to extract informative and descriptive association rules for each viral protein segment. We found informative rules in all segments that are common within the same host class but varied between different hosts. For example, for infection of an avian host, HA14V and NS1230S were the most important discriminative and combinatorial positions. Host range identification is facilitated by high support combined rules in this study. Our major goal was to detect discriminative genomic positions that were able to identify multi host viruses, because such viruses are likely to cause pandemic or disastrous epidemics.
Imo, Miriam; Maixner, Michael; Johannesen, Jes
2013-04-01
The epidemiology of vector transmitted plant diseases is highly influenced by dispersal and the host-plant range of the vector. Widening the vector's host range may increase transmission potential, whereas specialization may induce specific disease cycles. The process leading to a vector's host shift and its epidemiological outcome is therefore embedded in the frameworks of sympatric evolution vs. immigration of preadapted populations. In this study, we analyse whether a host shift of the stolbur phytoplasma vector, Hyalesthes obsoletus from field bindweed to stinging nettle in its northern distribution range evolved sympatrically or by immigration. The exploitation of stinging nettle has led to outbreaks of the grapevine disease bois noir caused by a stinging nettle-specific phytoplasma strain. Microsatellite data from populations from northern and ancestral ranges provide strong evidence for sympatric host-race evolution in the northern range: Host-plant associated populations were significantly differentiated among syntopic sites (0.054 < F(HT) < 0.098) and constant over 5 years. While gene flow was asymmetric from the old into the predicted new host race, which had significantly reduced genetic diversity, the genetic identity between syntopic host-race populations in the northern range was higher than between these populations and syntopic populations in ancestral ranges, where there was no evidence for genetic host races. Although immigration was detected in the northern field bindweed population, it cannot explain host-race diversification but suggests the introduction of a stinging nettle-specific phytoplasma strain by plant-unspecific vectors. The evolution of host races in the northern range has led to specific vector-based bois noir disease cycles. © 2013 Blackwell Publishing Ltd.
Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space.
Coppens, Isabelle; Dunn, Joe Dan; Romano, Julia D; Pypaert, Marc; Zhang, Hui; Boothroyd, John C; Joiner, Keith A
2006-04-21
The intracellular compartment harboring Toxoplasma gondii satisfies the parasite's nutritional needs for rapid growth in mammalian cells. We demonstrate that the parasitophorous vacuole (PV) of T. gondii accumulates material coming from the host mammalian cell via the exploitation of the host endo-lysosomal system. The parasite actively recruits host microtubules, resulting in selective attraction of endo-lysosomes to the PV. Microtubule-based invaginations of the PV membrane serve as conduits for the delivery of host endo-lysosomes within the PV. These tubular conduits are decorated by a parasite coat, including the tubulogenic protein GRA7, which acts like a garrote that sequesters host endocytic organelles in the vacuolar space. These data define an unanticipated process allowing the parasite intimate and concentrated access to a diverse range of low molecular weight components produced by the endo-lysosomal system. More generally, they identify a unique mechanism for unidirectional transport and sequestration of host organelles.
Robert, Jeanne A.; Pitt, Caitlin; Bonnett, Tiffany R.; Yuen, Macaire M. S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.
2013-01-01
The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle. PMID:24223726
Robert, Jeanne A; Pitt, Caitlin; Bonnett, Tiffany R; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W
2013-01-01
The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.
USDA-ARS?s Scientific Manuscript database
E2, along with E^rns and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions including cell attachment, host range susceptibility and virulence in natural hosts. In infected cells, E2 forms homodimers as well as heterodimers with E1, media...
USDA-ARS?s Scientific Manuscript database
The Mediterranean fruit fly is one of the most destructive agricultural pests throughout the world due to its broad host plant range that includes more than 260 different fruits, flowers, vegetables, and nuts. Host preferences vary in different regions of the world, which can be associated with its ...
W. D. Morewood; P. R. Neiner; J. R. McNeil; J. C. Sellmer; K. Hoover
2003-01-01
Anoplophora glabripennis (Motschulsky ) is an invasive wood-boring cerambycid beetle that kills hardwood trees. The host range of this species is unusually broad but is not well defined in the available literature and may include tree species that have not been reported as hosts because they have not previously been exposed to the beetle. We...
Host range, host specificity and hypothesized host shift events among viruses of lower vertebrates
2011-01-01
The successful replication of a viral agent in a host is a complex process that often leads to a species specificity of the virus and can make interspecies transmission difficult. Despite this difficulty, natural host switch seems to have been frequent among viruses of lower vertebrates, especially fish viruses, since there are several viruses known to be able to infect a wide range of species. In the present review we will focus on well documented reports of broad host range, variations in host specificity, and host shift events hypothesized for viruses within the genera Ranavirus, Novirhabdovirus, Betanodavirus, Isavirus, and some herpesvirus. PMID:21592358
The Evolution of Clutch Size in Hosts of Avian Brood Parasites.
Medina, Iliana; Langmore, Naomi E; Lanfear, Robert; Kokko, Hanna
2017-11-01
Coevolution with avian brood parasites shapes a range of traits in their hosts, including morphology, behavior, and breeding systems. Here we explore whether brood parasitism is also associated with the evolution of host clutch size. Several studies have proposed that hosts of highly virulent parasites could decrease the costs of parasitism by evolving a smaller clutch size, because hosts with smaller clutches will lose fewer progeny when their clutch is parasitized. We describe a model of the evolution of clutch size, which challenges this logic and shows instead that an increase in clutch size (or no change) should evolve in hosts. We test this prediction using a broad-scale comparative analysis to ask whether there are differences in clutch size within hosts and between hosts and nonhosts. Consistent with our model, this analysis revealed that host species do not have smaller clutches and that hosts that incur larger costs from raising a parasite lay larger clutches. We suggest that brood parasitism might be an influential factor in clutch-size evolution and could potentially select for the evolution of larger clutches in host species.
Host range, host ecology, and distribution of more than 11800 fish parasite species
Strona, Giovanni; Palomares, Maria Lourdes D.; Bailly, Nicholas; Galli, Paolo; Lafferty, Kevin D.
2013-01-01
Our data set includes 38 008 fish parasite records (for Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda) compiled from the scientific literature, Internet databases, and museum collections paired to the corresponding host ecological, biogeographical, and phylogenetic traits (maximum length, growth rate, life span, age at maturity, trophic level, habitat preference, geographical range size, taxonomy). The data focus on host features, because specific parasite traits are not consistently available across records. For this reason, the data set is intended as a flexible resource able to extend the principles of ecological niche modeling to the host–parasite system, providing researchers with the data to model parasite niches based on their distribution in host species and the associated host features. In this sense, the database offers a framework for testing general ecological, biogeographical, and phylogenetic hypotheses based on the identification of hosts as parasite habitat. Potential applications of the data set are, for example, the investigation of species–area relationships or the taxonomic distribution of host-specificity. The provided host–parasite list is that currently used by Fish Parasite Ecology Software Tool (FishPEST, http://purl.oclc.org/fishpest), which is a website that allows researchers to model several aspects of the relationships between fish parasites and their hosts. The database is intended for researchers who wish to have more freedom to analyze the database than currently possible with FishPEST. However, for readers who have not seen FishPEST, we recommend using this as a starting point for interacting with the database.
Jupe, Julietta; Stam, Remco; Howden, Andrew J M; Morris, Jenny A; Zhang, Runxuan; Hedley, Pete E; Huitema, Edgar
2013-06-25
Plant-microbe interactions feature complex signal interplay between pathogens and their hosts. Phytophthora species comprise a destructive group of fungus-like plant pathogens, collectively affecting a wide range of plants important to agriculture and natural ecosystems. Despite the availability of genome sequences of both hosts and microbes, little is known about the signal interplay between them during infection. In particular, accurate descriptions of coordinate relationships between host and microbe transcriptional programs are lacking. Here, we explore the molecular interaction between the hemi-biotrophic broad host range pathogen Phytophthora capsici and tomato. Infection assays and use of a composite microarray allowed us to unveil distinct changes in both P. capsici and tomato transcriptomes, associated with biotrophy and the subsequent switch to necrotrophy. These included two distinct transcriptional changes associated with early infection and the biotrophy to necrotrophy transition that may contribute to infection and completion of the P. capsici lifecycle Our results suggest dynamic but highly regulated transcriptional programming in both host and pathogen that underpin P. capsici disease and hemi-biotrophy. Dynamic expression changes of both effector-coding genes and host factors involved in immunity, suggests modulation of host immune signaling by both host and pathogen. With new unprecedented detail on transcriptional reprogramming, we can now explore the coordinate relationships that drive host-microbe interactions and the basic processes that underpin pathogen lifestyles. Deliberate alteration of lifestyle-associated transcriptional changes may allow prevention or perhaps disruption of hemi-biotrophic disease cycles and limit damage caused by epidemics.
Luijckx, Pepijn; Duneau, David; Andras, Jason P; Ebert, Dieter
2014-02-01
A parasite's host range can have important consequences for ecological and evolutionary processes but can be difficult to infer. Successful infection depends on the outcome of multiple steps and only some steps of the infection process may be critical in determining a parasites host range. To test this hypothesis, we investigated the host range of the bacterium Pasteuria ramosa, a Daphnia parasite, and determined the parasites success in different stages of the infection process. Multiple genotypes of Daphnia pulex, Daphnia longispina and Daphnia magna were tested with four Pasteuria genotypes using infection trials and an assay that determines the ability of the parasite to attach to the hosts esophagus. We find that attachment is not specific to host species but is specific to host genotype. This may suggest that alleles on the locus controlling attachment are shared among different host species that diverged 100 million year. However, in our trials, Pasteuria was never able to reproduce in nonnative host species, suggesting that Pasteuria infecting different host species are different varieties, each with a narrow host range. Our approach highlights the explanatory power of dissecting the steps of the infection process and resolves potentially conflicting reports on parasite host ranges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Sieber, Michael; Gudelj, Ivana
2014-04-01
In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host-use trade-offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade-offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria-phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade-offs. © 2014 John Wiley & Sons Ltd/CNRS.
Extending the Host Range of Bacteriophage Particles for DNA Transduction.
Yosef, Ido; Goren, Moran G; Globus, Rea; Molshanski-Mor, Shahar; Qimron, Udi
2017-06-01
A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability. Copyright © 2017 Elsevier Inc. All rights reserved.
Stensgaard, Anna-Sofie; Utzinger, Jürg; Vounatsou, Penelope; Hürlimann, Eveline; Schur, Nadine; Saarnak, Christopher F L; Simoonga, Christopher; Mubita, Patricia; Kabatereine, Narcis B; Tchuem Tchuenté, Louis-Albert; Rahbek, Carsten; Kristensen, Thomas K
2013-11-01
The geographical ranges of most species, including many infectious disease agents and their vectors and intermediate hosts, are assumed to be constrained by climatic tolerances, mainly temperature. It has been suggested that global warming will cause an expansion of the areas potentially suitable for infectious disease transmission. However, the transmission of infectious diseases is governed by a myriad of ecological, economic, evolutionary and social factors. Hence, a deeper understanding of the total disease system (pathogens, vectors and hosts) and its drivers is important for predicting responses to climate change. Here, we combine a growing degree day model for Schistosoma mansoni with species distribution models for the intermediate host snail (Biomphalaria spp.) to investigate large-scale environmental determinants of the distribution of the African S. mansoni-Biomphalaria system and potential impacts of climatic changes. Snail species distribution models included several combinations of climatic and habitat-related predictors; the latter divided into "natural" and "human-impacted" habitat variables to measure anthropogenic influence. The predictive performance of the combined snail-parasite model was evaluated against a comprehensive compilation of historical S. mansoni parasitological survey records, and then examined for two climate change scenarios of increasing severity for 2080. Future projections indicate that while the potential S. mansoni transmission area expands, the snail ranges are more likely to contract and/or move into cooler areas in the south and east. Importantly, we also note that even though climate per se matters, the impact of humans on habitat play a crucial role in determining the distribution of the intermediate host snails in Africa. Thus, a future contraction in the geographical range size of the intermediate host snails caused by climatic changes does not necessarily translate into a decrease or zero-sum change in human schistosomiasis prevalence. Copyright © 2011 Elsevier B.V. All rights reserved.
Blood-feeding ecology of mosquitoes in zoos.
Tuten, H C; Bridges, W C; Paul, K S; Adler, P H
2012-12-01
To determine if the unique host assemblages in zoos influence blood-feeding by mosquitoes (Diptera: Culicidae), a sampling programme was conducted in Greenville and Riverbanks Zoos, South Carolina, U.S.A., from April 2009 to October 2010. A total of 4355 female mosquitoes of 14 species were collected, of which 106 individuals of nine species were blood-fed. The most common taxa were Aedes albopictus (Skuse), Aedes triseriatus (Say), Anopheles punctipennis (Say), Culex erraticus (Dyar & Knab), Culex pipiens complex (L.) and Culex restuans (Theobald). Molecular analyses (cytochrome b) of bloodmeals revealed that mosquitoes fed on captive animals, humans and wildlife, and took mixed bloodmeals. Host species included one amphibian, 16 birds, 10 mammals (including humans) and two reptiles. Minimum dispersal distances after feeding on captive hosts ranged from 15.5 m to 327.0 m. Mosquito-host associations generally conformed to previous accounts, indicating that mosquito behaviour inside zoos reflects that outside zoos. However, novel variation in host use, including new, exotic host records, warrants further investigation. Zoos, thus, can be used as experiment environments in which to study mosquito behaviour, and the findings extrapolated to non-zoo areas, while providing medical and veterinary benefits to zoo animals, employees and patrons. © 2012 The Authors. Medical and Veterinary Entomology © 2012 The Royal Entomological Society.
Eusebio-Cope, Ana; Sun, Liying; Tanaka, Toru; Chiba, Sotaro; Kasahara, Shin; Suzuki, Nobuhiro
2015-03-01
The chestnut blight fungus, Cryphonectria parasitica, is an important plant pathogenic ascomycete. The fungus hosts a wide range of viruses and now has been established as a model filamentous fungus for studying virus/host and virus/virus interactions. This is based on the development of methods for artificial virus introduction and elimination, host genome manipulability, available host genome sequence with annotations, host mutant strains, and molecular tools. Molecular tools include sub-cellular distribution markers, gene expression reporters, and vectors with regulatable promoters that have been long available for unicellular organisms, cultured cells, individuals of animals and plants, and certain filamentous fungi. A comparison with other filamentous fungi such as Neurospora crassa has been made to establish clear advantages and disadvantages of C. parasitica as a virus host. In addition, a few recent studies on RNA silencing vs. viruses in this fungus are introduced. Copyright © 2014 Elsevier Inc. All rights reserved.
Meloidogyne partityla on Pecan Isozyme Phenotypes and Other Host.
Starr, J L; Tomaszewski, E K; Mundo-Ocampo, M; Baldwin, J G
1996-12-01
Meloidogyne sp. from five pecan (Carya illinoensis) orchards in Texas were distinctive in host range and iszoyme profiles from common species of Meloidogyne but were morphologically congruent with Meloidogyne partityla Kleynhans, a species previously known only in South Africa. In addition to pecan, species of walnut (Juglans hindsii and J. regia) and hickory (C. ovata) also were hosts. No reproduction was observed on 15 other plant species from nine families, including several common hosts of other Meloidogyne spp. Three esterase phenotypes and two malate dehydrogenase phenotypes of M. partityla were identified by polyacrylamide gel electrophoresis. Each of these isozyme phenotypes was distinct from those of the more common species M. arenaria, M. hapla, M. incognita, and M. javanica.
Childhood bereavement services: a survey of UK provision.
Rolls, L; Payne, S
2003-07-01
The purpose of the study was to identify the location, range and type of childhood bereavement service provision in the UK. A questionnaire was mailed to 127 services who were either solely dedicated to childhood bereavement or who offered a service within the range of work of a host organization and for which there was a supporting organizational structure. Responses were received from 108 services (a response rate of 85%). The findings identified that 85% of childhood bereavement services are located in the voluntary sector; 14% are dedicated childhood bereavement services, while 86% are offered as part of a host organization. Forty-four per cent of host organizations are hospices. The majority of services (73%) relied on both paid and unpaid staff, with 11% relying entirely on paid staff and 14% of services relying entirely on unpaid staff. The interventions offered ranged from individual family work (86%), individual child work (62%), groupwork with families (53%) and groupwork with children (45%). In addition, services offered prebereavement support (64%), a 'drop-in' service (17%), information and advice (95%), training (32%) and the provision of resources (88%). As well as offering a service to children and their families, 74% of childhood bereavement services provided a service to 'secondary users', such as schools (66%), the emergency services (28%) and other professionals (63%). In terms of funding, 12% of services relied solely on external sources of funding, including donations, legacies, revenue from the host organization or grants, while 12% of services relied solely on internal sources of funding, including fundraising and training. The majority of services (73%), however, gained income from a range of sources. The study identifies the diversity of provision that has implications for the evaluation of childhood bereavement services.
Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle
Ortiz-Urquiza, Almudena; Keyhani, Nemat O.
2013-01-01
Infections mediated by broad host range entomopathogenic fungi represent seminal observations that led to one of the first germ theories of disease and are a classic example of a co-evolutionary arms race between a pathogen and target hosts. These fungi are able to parasitize susceptible hosts via direct penetration of the cuticle with the initial and potentially determining interaction occurring between the fungal spore and the insect epicuticle. Entomogenous fungi have evolved mechanisms for adhesion and recognition of host surface cues that help direct an adaptive response that includes the production of: (a) hydrolytic, assimilatory, and/or detoxifying enzymes including lipase/esterases, catalases, cytochrome P450s, proteases, and chitinases; (b) specialized infectious structures, e.g., appressoria or penetrant tubes; and (c) secondary and other metabolites that facilitate infection. Aside from immune responses, insects have evolved a number of mechanisms to keep pathogens at bay that include: (a) the production of (epi) cuticular antimicrobial lipids, proteins, and metabolites; (b) shedding of the cuticle during development; and (c) behavioral-environmental adaptations such as induced fever, burrowing, and grooming, as well as potentially enlisting the help of other microbes, all intended to stop the pathogen before it can breach the cuticle. Virulence and host-defense can be considered to be under constant reciprocal selective pressure, and the action on the surface likely contributes to phenomena such as strain variation, host range, and the increased virulence often noted once a (low) virulent strain is “passaged” through an insect host. Since the cuticle represents the first point of contact and barrier between the fungus and the insect, the “action on the surface” may represent the defining interactions that ultimately can lead either to successful mycosis by the pathogen or successful defense by the host. Knowledge concerning the molecular mechanisms underlying this interaction can shed light on the ecology and evolution of virulence and can be used for rational design strategies at increasing the effectiveness of entomopathogenic fungi for pest control in field applications. PMID:26462424
A checklist of macroparasites of Liza haematocheila (Temminck & Schlegel) (Teleostei: Mugilidae)
Kostadinova, Aneta
2008-01-01
Background The mugilid fish Liza haematocheila (syn. Mugil soiuy), native to the Western North Pacific, provides opportunities to examine the changes of its parasite fauna after its translocation to the Sea of Azov and subsequent establishment in the Black Sea. However, the information on macroparasites of this host in both ranges of its current distribution comes from isolated studies published in difficult-to-access literature sources. Materials and methods Data from 53 publications, predominantly in Chinese, Russian and Ukrainian, were compiled from an extensive search of the literature and the Host-Parasite Database maintained up to 2005 at the Natural History Museum, London. Results The complete checklist of the metazoan parasites of L. haematocheila throughout its distributional range comprises summarised information for 69 nominal species of helminth and ectoparasitic crustacean parasites, from 45 genera and 27 families (370 host-parasite records in total) and includes the name of the parasite species, the area/locality of the host capture, and the author and date of the published record. The taxonomy is updated and the validity of the records and synonymies are critically evaluated. A comparison of the parasite faunas based on the records in the native and introduced/invasive range of L. haematocheila suggests that a large number of parasite species was 'lost' in the new distributional range whereas an even greater number was 'gained'. Conclusion Although the present checklist provides information that will facilitate future studies, the interesting question of macroparasite faunal diversity in L. haematocheila in its natural and introduced/invasive ranges cannot be dealt with the current data because of unreliability associated with the large number of non-documented and questionable records. This stresses the importance of data quality analysis in using host-parasite database and checklist data. PMID:19117506
A checklist of macroparasites of Liza haematocheila (Temminck & Schlegel) (Teleostei: Mugilidae).
Kostadinova, Aneta
2008-12-31
The mugilid fish Liza haematocheila (syn. Mugil soiuy), native to the Western North Pacific, provides opportunities to examine the changes of its parasite fauna after its translocation to the Sea of Azov and subsequent establishment in the Black Sea. However, the information on macroparasites of this host in both ranges of its current distribution comes from isolated studies published in difficult-to-access literature sources. Data from 53 publications, predominantly in Chinese, Russian and Ukrainian, were compiled from an extensive search of the literature and the Host-Parasite Database maintained up to 2005 at the Natural History Museum, London. The complete checklist of the metazoan parasites of L. haematocheila throughout its distributional range comprises summarised information for 69 nominal species of helminth and ectoparasitic crustacean parasites, from 45 genera and 27 families (370 host-parasite records in total) and includes the name of the parasite species, the area/locality of the host capture, and the author and date of the published record. The taxonomy is updated and the validity of the records and synonymies are critically evaluated. A comparison of the parasite faunas based on the records in the native and introduced/invasive range of L. haematocheila suggests that a large number of parasite species was 'lost' in the new distributional range whereas an even greater number was 'gained'. Although the present checklist provides information that will facilitate future studies, the interesting question of macroparasite faunal diversity in L. haematocheila in its natural and introduced/invasive ranges cannot be dealt with the current data because of unreliability associated with the large number of non-documented and questionable records. This stresses the importance of data quality analysis in using host-parasite database and checklist data.
Justin N. Rosemier; Andrew J. Storer
2011-01-01
Exotic tree diseases have direct impacts on their host and may have indirect effects on native fauna that rely on host tree species. For example, American beech (Fagus grandifolia [Ehrh.]) is a dominant overstory component throughout its range and, like all tree species, is vulnerable to a broad array of insects and pathogens. These pests include...
Desquesnes, Marc; Holzmuller, Philippe; Lai, De-Hua; Dargantes, Alan; Lun, Zhao-Rong; Jittaplapong, Sathaporn
2013-01-01
Trypanosoma evansi, the agent of "surra," is a salivarian trypanosome, originating from Africa. It is thought to derive from Trypanosoma brucei by deletion of the maxicircle kinetoplastic DNA (genetic material required for cyclical development in tsetse flies). It is mostly mechanically transmitted by tabanids and stomoxes, initially to camels, in sub-Saharan area. The disease spread from North Africa towards the Middle East, Turkey, India, up to 53° North in Russia, across all South-East Asia, down to Indonesia and the Philippines, and it was also introduced by the conquistadores into Latin America. It can affect a very large range of domestic and wild hosts including camelids, equines, cattle, buffaloes, sheep, goats, pigs, dogs and other carnivores, deer, gazelles, and elephants. It found a new large range of wild and domestic hosts in Latin America, including reservoirs (capybaras) and biological vectors (vampire bats). Surra is a major disease in camels, equines, and dogs, in which it can often be fatal in the absence of treatment, and exhibits nonspecific clinical signs (anaemia, loss of weight, abortion, and death), which are variable from one host and one place to another; however, its immunosuppressive effects interfering with intercurrent diseases or vaccination campaigns might be its most significant and questionable aspect.
Desquesnes, Marc; Holzmuller, Philippe; Lai, De-Hua; Dargantes, Alan; Lun, Zhao-Rong; Jittaplapong, Sathaporn
2013-01-01
Trypanosoma evansi, the agent of “surra,” is a salivarian trypanosome, originating from Africa. It is thought to derive from Trypanosoma brucei by deletion of the maxicircle kinetoplastic DNA (genetic material required for cyclical development in tsetse flies). It is mostly mechanically transmitted by tabanids and stomoxes, initially to camels, in sub-Saharan area. The disease spread from North Africa towards the Middle East, Turkey, India, up to 53° North in Russia, across all South-East Asia, down to Indonesia and the Philippines, and it was also introduced by the conquistadores into Latin America. It can affect a very large range of domestic and wild hosts including camelids, equines, cattle, buffaloes, sheep, goats, pigs, dogs and other carnivores, deer, gazelles, and elephants. It found a new large range of wild and domestic hosts in Latin America, including reservoirs (capybaras) and biological vectors (vampire bats). Surra is a major disease in camels, equines, and dogs, in which it can often be fatal in the absence of treatment, and exhibits nonspecific clinical signs (anaemia, loss of weight, abortion, and death), which are variable from one host and one place to another; however, its immunosuppressive effects interfering with intercurrent diseases or vaccination campaigns might be its most significant and questionable aspect. PMID:24024184
Julie Beckstead; Susan E. Meyer; Toby S. Ishizuka; Kelsey M. McEvoy; Craig E. Coleman
2016-01-01
Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora...
Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O
2012-01-01
Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231
Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O
2012-12-01
Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.
Chayote mosaic virus, a New Tymovirus Infecting Cucurbitaceae.
Bernal, J J; Jiménez, I; Moreno, M; Hord, M; Rivera, C; Koenig, R; Rodríguez-Cerezo, E
2000-10-01
ABSTRACT Chayote mosaic virus (ChMV) is a putative tymovirus isolated from chayote crops in Costa Rica. ChMV was characterized at the host range, serological, and molecular levels. ChMV was transmitted mechanically and induced disease symptoms mainly in Cucurbitaceae hosts. Asymptomatic infections were detected in other host families. Serologically, ChMV is related to the Andean potato latent virus (APLV) and the Eggplant mosaic virus (EMV), both members of the genus Tymovirus infecting solanaceous hosts in the Caribbean Basin and South America. The sequence of the genomic RNA of ChMV was determined and its genetic organization was typical of tymoviruses. Comparisons with other tymoviral sequences showed that ChMV was a new member of the genus Tymovirus. The phylogenetic analyses of the coat protein gene were consistent with serological comparisons and positioned ChMV within a cluster of tymoviruses infecting mainly cucurbit or solanaceous hosts, including APLV and EMV. Phylogenetic analyses of the replicase protein gene confirmed the close relationship of ChMV and EMV. Our results suggest that ChMV is related to two tymoviruses (APLV and EMV) of proximal geographical provenance but with different natural host ranges. ChMV is the first cucurbit-infecting tymovirus to be fully characterized at the genomic level.
Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria
Taton, Arnaud; Unglaub, Federico; Wright, Nicole E.; Zeng, Wei Yue; Paz-Yepes, Javier; Brahamsha, Bianca; Palenik, Brian; Peterson, Todd C.; Haerizadeh, Farzad; Golden, Susan S.; Golden, James W.
2014-01-01
Inspired by the developments of synthetic biology and the need for improved genetic tools to exploit cyanobacteria for the production of renewable bioproducts, we developed a versatile platform for the construction of broad-host-range vector systems. This platform includes the following features: (i) an efficient assembly strategy in which modules released from 3 to 4 donor plasmids or produced by polymerase chain reaction are assembled by isothermal assembly guided by short GC-rich overlap sequences. (ii) A growing library of molecular devices categorized in three major groups: (a) replication and chromosomal integration; (b) antibiotic resistance; (c) functional modules. These modules can be assembled in different combinations to construct a variety of autonomously replicating plasmids and suicide plasmids for gene knockout and knockin. (iii) A web service, the CYANO-VECTOR assembly portal, which was built to organize the various modules, facilitate the in silico construction of plasmids, and encourage the use of this system. This work also resulted in the construction of an improved broad-host-range replicon derived from RSF1010, which replicates in several phylogenetically distinct strains including a new experimental model strain Synechocystis sp. WHSyn, and the characterization of nine antibiotic cassettes, four reporter genes, four promoters, and a ribozyme-based insulator in several diverse cyanobacterial strains. PMID:25074377
Viruses of ornamentals emerging in Florida and the Caribbean region
USDA-ARS?s Scientific Manuscript database
Tomato chlorotic spot virus (TCSV) has been reported in common weeds including American black nightshade and jimsonweed in Florida and/or Puerto Rico. Experimental host range studies demonstrated that TCSV and/or GRSV can also infect ornamentals including petunia, brugmansia and garden impatiens. ...
Lisboa, Cristiane Varella; Xavier, Samanta Cristina das Chagas; Herrera, Heitor Miraglia; Jansen, Ana Maria
2009-10-28
Two main genotypes in Trypanosoma cruzi subpopulations can be distinguished by PCR amplification of sequences from the mini-exon gene non-transcribed spacer, respectively, T. cruzi I (TCI) and T. cruzi II (TCII). This technique is also capable of distinguishing a third assemblage of subpopulations that do not fit in these genotypes and that remain known as zymodeme Z3 (Z3). The distribution pattern as well as the mammalian host range of this latter T. cruzi sublineage still remains unclear. Thus, the intention of our study was to increase the information regarding these aspects. The mini-exon analysis of T. cruzi isolates obtained from sylvatic animals in the Amazon Forest, Atlantic Rainforest, Caatinga and Pantanal showed that prevalence of the Z3 subpopulation in nature was low (15 out of 225 isolates, corresponding to 7%). A higher prevalence of Z3 was observed in the Caatinga (15%) and the Pantanal (12%). Infection by Z3 was observed in mammalian hosts included in Carnivora, Chiroptera, Didelphimorphia, Rodentia and Xernathra. The T. cruzi Z3 subpopulation was observed also in mixed infections (33%) with TCI (n=2) and TCII (n=3). These results demonstrate that T. cruzi Z3 displays a wider distribution and host range than formerly understood as it has been demonstrated to be able infect species included in five orders of mammalian host species dispersed through all forest strata of the four Brazilian biomes evaluated.
A potentially fatal mix of herpes in zoos.
Greenwood, Alex D; Tsangaras, Kyriakos; Ho, Simon Y W; Szentiks, Claudia A; Nikolin, Veljko M; Ma, Guanggang; Damiani, Armando; East, Marion L; Lawrenz, Arne; Hofer, Heribert; Osterrieder, Nikolaus
2012-09-25
Pathogens often have a limited host range, but some can opportunistically jump to new species. Anthropogenic activities that mix reservoir species with novel, hence susceptible, species can provide opportunities for pathogens to spread beyond their normal host range. Furthermore, rapid evolution can produce new pathogens by mechanisms such as genetic recombination. Zoos unintentionally provide pathogens with a high diversity of species from different continents and habitats assembled within a confined space. Institutions alert to the problem of pathogen spread to unexpected hosts can monitor the emergence of pathogens and take preventative measures. However, asymptomatic infections can result in the causative pathogens remaining undetected in their reservoir host. Furthermore, pathogen spread to unexpected hosts may remain undiagnosed if the outcome of infection is limited, as in the case of compromised fertility, or if more severe outcomes are restricted to less charismatic species that prompt only limited investigation. We illustrate this problem here with a recombinant zebra herpesvirus infecting charismatic species including zoo polar bears over at least four years. The virus may cause fatal encephalitis and infects at least five mammalian orders, apparently without requiring direct contact with infected animals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review.
Dixon, Peter; Paley, Richard; Alegria-Moran, Raul; Oidtmann, Birgit
2016-06-10
Infectious hematopoietic necrosis virus (IHNV, Rhabdoviridae), is the causative agent of infectious hematopoietic necrosis (IHN), a disease notifiable to the World Organisation for Animal Health, and various countries and trading areas (including the European Union). IHNV is an economically important pathogen causing clinical disease and mortalities in a wide variety of salmonid species, including the main salmonid species produced in aquaculture, Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). We reviewed the scientific literature on IHNV on a range of topics, including geographic distribution; host range; conditions required for infection and clinical disease; minimum infectious dose; subclinical infection; shedding of virus by infected fish; transmission via eggs; diagnostic tests; pathogen load and survival of IHNV in host tissues. This information is required for a range of purposes including import risk assessments; parameterisation of disease models; for surveillance planning; and evaluation of the chances of eradication of the pathogen to name just a few. The review focuses on issues that are of relevance for the European context, but many of the data summarised have relevance to IHN globally. Examples for application of the information is presented and data gaps highlighted.
Tomé, Beatriz; Pereira, Ana; Jorge, Fátima; Carretero, Miguel A; Harris, D James; Perera, Ana
2018-03-19
Host-parasite relationships are expected to be strongly shaped by host specificity, a crucial factor in parasite adaptability and diversification. Because whole host communities have to be considered to assess host specificity, oceanic islands are ideal study systems given their simplified biotic assemblages. Previous studies on insular parasites suggest host range broadening during colonization. Here, we investigate the association between one parasite group (haemogregarines) and multiple sympatric hosts (of three lizard genera: Gallotia, Chalcides and Tarentola) in the Canary Islands. Given haemogregarine characteristics and insular conditions, we hypothesized low host specificity and/or occurrence of host-switching events. A total of 825 samples were collected from the three host taxa inhabiting the seven main islands of the Canarian Archipelago, including locations where the different lizards occurred in sympatry. Blood slides were screened to assess prevalence and parasitaemia, while parasite genetic diversity and phylogenetic relationships were inferred from 18S rRNA gene sequences. Infection levels and diversity of haplotypes varied geographically and across host groups. Infections were found in all species of Gallotia across the seven islands, in Tarentola from Tenerife, La Gomera and La Palma, and in Chalcides from Tenerife, La Gomera and El Hierro. Gallotia lizards presented the highest parasite prevalence, parasitaemia and diversity (seven haplotypes), while the other two host groups (Chalcides and Tarentola) harbored one haplotype each, with low prevalence and parasitaemia levels, and very restricted geographical ranges. Host-sharing of the same haemogregarine haplotype was only detected twice, but these rare instances likely represent occasional cross-infections. Our results suggest that: (i) Canarian haemogregarine haplotypes are highly host-specific, which might have restricted parasite host expansion; (ii) haemogregarines most probably reached the Canary Islands in three colonization events with each host genus; and (iii) the high number of parasite haplotypes infecting Gallotia hosts and their restricted geographical distribution suggest co-diversification. These findings contrast with our expectations derived from results on other insular parasites, highlighting how host specificity depends on parasite characteristics and evolutionary history.
Hodžić, Adnan; Alić, Amer; Šupić, Jovana; Škapur, Vedad; Duscher, Georg Gerhard
2018-05-30
Echinococcus granulosus sensu lato, a dog tapeworm is a species complex causing cystic echinococcosis or hydatid disease in a great variety of mammalian intermediate hosts, including humans. This complex comprises five species including Echinococcus ortleppi (G5 genotype or cattle strain). In the present paper, we report the first case of infection with the larval stage of latter cestode in a captive crested porcupine (Hystrix cristata), molecularly confirmed by PCR and sequencing of the cox1 and nad1 genes. The food contaminated with the parasite's eggs is the most likely source of the infection. Our data broaden the knowledge on the host range and geographical distribution of this rarely reported species of Echinococcus in Europe. Copyright © 2018 Elsevier B.V. All rights reserved.
Tuberculosis in wild and captive deer
USDA-ARS?s Scientific Manuscript database
Deer are found on every continent, save for Antarctica and Australia. Of the over 50 species of deer worldwide, tuberculosis due to Mycobacterium bovis has been documented in at least 14. The broad host range of M. bovis includes most mammals, including humans and livestock. Eradication programs hav...
Tuberculosis in domestic livestock: pathogenesis, transmission, and vaccination
USDA-ARS?s Scientific Manuscript database
The Mycobacterium tuberculosis complex includes agents such as M. tuberculosis and M. bovis, the cause of tuberculosis in most animals and a zoonotic pathogen. Mycobacterium bovis has one of the broadest host ranges of any pathogen, infecting most mammals, including humans. Models are used to study ...
Kingsley, Robert A; Kay, Sally; Connor, Thomas; Barquist, Lars; Sait, Leanne; Holt, Kathryn E; Sivaraman, Karthi; Wileman, Thomas; Goulding, David; Clare, Simon; Hale, Christine; Seshasayee, Aswin; Harris, Simon; Thomson, Nicholas R; Gardner, Paul; Rabsch, Wolfgang; Wigley, Paul; Humphrey, Tom; Parkhill, Julian; Dougan, Gordon
2013-08-27
Salmonella enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to Columba livia (rock or feral pigeon) but is also closely related to S. Typhimurium isolates that circulate in livestock and cause a zoonosis characterized by gastroenteritis in humans. DT2 isolates formed a distinct phylogenetic cluster within S. Typhimurium based on whole-genome-sequence polymorphisms. Comparative genome analysis of DT2 94-213 and S. Typhimurium SL1344, DT104, and D23580 identified few differences in gene content with the exception of variations within prophages. However, DT2 94-213 harbored 22 pseudogenes that were intact in other closely related S. Typhimurium strains. We report a novel in silico approach to identify single amino acid substitutions in proteins that have a high probability of a functional impact. One polymorphism identified using this method, a single-residue deletion in the Tar protein, abrogated chemotaxis to aspartate in vitro. DT2 94-213 also exhibited an altered transcriptional profile in response to culture at 42°C compared to that of SL1344. Such differentially regulated genes included a number involved in flagellum biosynthesis and motility. IMPORTANCE Whereas Salmonella enterica serovar Typhimurium can infect a wide range of animal species, some variants within this serovar exhibit a more limited host range and altered disease potential. Phylogenetic analysis based on whole-genome sequences can identify lineages associated with specific virulence traits, including host adaptation. This study represents one of the first to link pathogen-specific genetic signatures, including coding capacity, genome degradation, and transcriptional responses to host adaptation within a Salmonella serovar. We performed comparative genome analysis of reference and pigeon-adapted definitive type 2 (DT2) S. Typhimurium isolates alongside phenotypic and transcriptome analyses, to identify genetic signatures linked to host adaptation within the DT2 lineage.
40 CFR 172.48 - Data requirements for a notification.
Code of Federal Regulations, 2013 CFR
2013-07-01
...., presence of phages that infect the microorganism). (3) Competitors. (c) Information on the host range of... the test sites (including proximity to residences and human activities, surface water, etc.). (5) The...
40 CFR 172.48 - Data requirements for a notification.
Code of Federal Regulations, 2012 CFR
2012-07-01
...., presence of phages that infect the microorganism). (3) Competitors. (c) Information on the host range of... the test sites (including proximity to residences and human activities, surface water, etc.). (5) The...
40 CFR 172.48 - Data requirements for a notification.
Code of Federal Regulations, 2011 CFR
2011-07-01
...., presence of phages that infect the microorganism). (3) Competitors. (c) Information on the host range of... the test sites (including proximity to residences and human activities, surface water, etc.). (5) The...
40 CFR 172.48 - Data requirements for a notification.
Code of Federal Regulations, 2014 CFR
2014-07-01
...., presence of phages that infect the microorganism). (3) Competitors. (c) Information on the host range of... the test sites (including proximity to residences and human activities, surface water, etc.). (5) The...
Monitoring system including an electronic sensor platform and an interrogation transceiver
Kinzel, Robert L.; Sheets, Larry R.
2003-09-23
A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.
Advances in canine distemper virus pathogenesis research: a wildlife perspective.
Loots, Angelika K; Mitchell, Emily; Dalton, Desiré L; Kotzé, Antoinette; Venter, Estelle H
2017-03-01
Canine distemper virus (CDV) has emerged as a significant disease of wildlife, which is highly contagious and readily transmitted between susceptible hosts. Initially described as an infectious disease of domestic dogs, it is now recognized as a global multi-host pathogen, infecting and causing mass mortalities in a wide range of carnivore species. The last decade has seen the effect of numerous CDV outbreaks in various wildlife populations. Prevention of CDV requires a clear understanding of the potential hosts in danger of infection as well as the dynamic pathways CDV uses to gain entry to its host cells and its ability to initiate viral shedding and disease transmission. We review recent research conducted on CDV infections in wildlife, including the latest findings on the causes of host specificity and cellular receptors involved in distemper pathogenesis.
Altizer, Sonia; Becker, Daniel J; Epstein, Jonathan H; Forbes, Kristian M; Gillespie, Thomas R; Hall, Richard J; Hawley, Dana M; Hernandez, Sonia M; Martin, Lynn B; Plowright, Raina K; Satterfield, Dara A; Streicker, Daniel G
2018-05-05
Human-provided resource subsidies for wildlife are diverse, common and have profound consequences for wildlife-pathogen interactions, as demonstrated by papers in this themed issue spanning empirical, theoretical and management perspectives from a range of study systems. Contributions cut across scales of organization, from the within-host dynamics of immune function, to population-level impacts on parasite transmission, to landscape- and regional-scale patterns of infection. In this concluding paper, we identify common threads and key findings from author contributions, including the consequences of resource subsidies for (i) host immunity; (ii) animal aggregation and contact rates; (iii) host movement and landscape-level infection patterns; and (iv) interspecific contacts and cross-species transmission. Exciting avenues for future work include studies that integrate mechanistic modelling and empirical approaches to better explore cross-scale processes, and experimental manipulations of food resources to quantify host and pathogen responses. Work is also needed to examine evolutionary responses to provisioning, and ask how diet-altered changes to the host microbiome influence infection processes. Given the massive public health and conservation implications of anthropogenic resource shifts, we end by underscoring the need for practical recommendations to manage supplemental feeding practices, limit human-wildlife conflicts over shared food resources and reduce cross-species transmission risks, including to humans.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).
Meloidogyne partityla on Pecan Isozyme Phenotypes and Other Host
Starr, J. L.; Tomaszewski, E. K.; Mundo-Ocampo, M.; Baldwin, J. G.
1996-01-01
Meloidogyne sp. from five pecan (Carya illinoensis) orchards in Texas were distinctive in host range and iszoyme profiles from common species of Meloidogyne but were morphologically congruent with Meloidogyne partityla Kleynhans, a species previously known only in South Africa. In addition to pecan, species of walnut (Juglans hindsii and J. regia) and hickory (C. ovata) also were hosts. No reproduction was observed on 15 other plant species from nine families, including several common hosts of other Meloidogyne spp. Three esterase phenotypes and two malate dehydrogenase phenotypes of M. partityla were identified by polyacrylamide gel electrophoresis. Each of these isozyme phenotypes was distinct from those of the more common species M. arenaria, M. hapla, M. incognita, and M. javanica. PMID:19277175
Host range of Verticillium isaacii and Verticillium klebahnii from artichoke, spinach, and lettuce
USDA-ARS?s Scientific Manuscript database
Verticillium is a genus that includes major vascular wilt pathogens. The recent multilocus phylogenetic analyses of the genus identified 5 new species including V. isaacii and V. klebahnii, both of which occur in agricultural soils in coastal California, and have been isolated from asymptomatic and ...
Péron, Guillaume; Altwegg, Res; Jamie, Gabriel A; Spottiswoode, Claire N
2016-09-01
As populations shift their ranges in response to global change, local species assemblages can change, setting the stage for new ecological interactions, community equilibria and evolutionary responses. Here, we focus on the range dynamics of four avian brood parasite species and their hosts in southern Africa, in a context of bush encroachment (increase in woody vegetation density in places previously occupied by savanna-grassland mosaics) favouring some species at the expense of others. We first tested whether hosts and parasites constrained each other's ability to expand or maintain their ranges. Secondly, we investigated whether range shifts represented an opportunity for new host-parasite and parasite-parasite interactions. We used multispecies dynamic occupancy models with interactions, fitted to citizen science data, to estimate the contribution of interspecific interactions to range shifts and to quantify the change in species co-occurrence probability over a 25-year period. Parasites were able to track their hosts' range shifts. We detected no deleterious effect of the parasites' presence on either the local population viability of host species or the hosts' ability to colonize newly suitable areas. In the recently diversified indigobird radiation (Vidua spp.), following bush encroachment, the new assemblages presented more potential opportunities for speciation via host switch, but also more potential for hybridization between extant lineages, also via host switch. Multispecies dynamic occupancy models with interactions brought new insights into the feedbacks between range shifts, biotic interactions and local demography: brood parasitism had little detected impact on extinction or colonization processes, but inversely the latter processes affected biotic interactions via the modification of co-occurrence patterns. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Rodriguez, R.; Redman, R.
2008-01-01
All plants in natural ecosystems are thought to be symbiotic with mycorrhizal and/or endophytic fungi. Collectively, these fungi express different symbiotic lifestyles ranging from parasitism to mutualism. Analysis of Colletotrichum species indicates that individual isolates can express either parasitic or mutualistic lifestyles depending on the host genotype colonized. The endophyte colonization pattern and lifestyle expression indicate that plants can be discerned as either disease, non-disease, or non-hosts. Fitness benefits conferred by fungi expressing mutualistic lifestyles include biotic and abiotic stress tolerance, growth enhancement, and increased reproductive success. Analysis of plant-endophyte associations in high stress habitats revealed that at least some fungal endophytes confer habitat-specific stress tolerance to host plants. Without the habitat-adapted fungal endophytes, the plants are unable to survive in their native habitats. Moreover, the endophytes have a broad host range encompassing both monocots and eudicots, and confer habitat-specific stress tolerance to both plant groups. ?? The Author [2008]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.
Crapemyrtle Bark Scale: A New Threat for Crapemyrtles, a Popular Landscape Plant in the U.S.
Wang, Zinan; Chen, Yan; Gu, Mengmeng; Vafaie, Erfan; Merchant, Michael; Diaz, Rodrigo
2016-01-01
Crapemyrtle bark scale, Acanthococcus (=Eriococcus) lagerstroemiae (Kuwana) (Hemiptera: Eriococcidae), is a newly introduced insect pest on crapemyrtles, Lagerstroemia spp. (Myrtales: Lythraceae), one of the most popular flowering shrubs in the U.S. Since first detected in Texas in 2004, this pest has spread to twelve states causing losses to stakeholders. To develop a management plan, we reviewed current knowledge about the pest’s biology and ecology, and suggested research approaches including studying its thermal tolerance, host range, plant resistance and biological control. Parasitoids and predators have been reared from A. lagerstroemiae in the U.S. and China. However, new surveys of natural enemies should be conducted in China, and studies on the host range and impacts of natural enemies on A. lagerstroemiae may help determine the potential for classical biological control. The life history, preying efficiency and rearing methods are important for coccinellid predators found in the U.S. including Chilocorus cacti L. and Hyperaspis spp. To enhance natural enemy performance, it is important to evaluate a sustainable insecticide program that considers efficacy, timing, rate and impact on pollinator health. Finally, an integrated management program of A. lagerstroemiae is discussed including planting resistant cultivars, using host specific natural enemies, and prudent use of insecticides. PMID:27999262
Environmental Factors and Zoonotic Pathogen Ecology in Urban Exploiter Species.
Rothenburger, Jamie L; Himsworth, Chelsea H; Nemeth, Nicole M; Pearl, David L; Jardine, Claire M
2017-09-01
Knowledge of pathogen ecology, including the impacts of environmental factors on pathogen and host dynamics, is essential for determining the risk that zoonotic pathogens pose to people. This review synthesizes the scientific literature on environmental factors that influence the ecology and epidemiology of zoonotic microparasites (bacteria, viruses and protozoa) in globally invasive urban exploiter wildlife species (i.e., rock doves [Columba livia domestica], European starlings [Sturnus vulgaris], house sparrows [Passer domesticus], Norway rats [Rattus norvegicus], black rats [R. rattus] and house mice [Mus musculus]). Pathogen ecology, including prevalence and pathogen characteristics, is influenced by geographical location, habitat, season and weather. The prevalence of zoonotic pathogens in mice and rats varies markedly over short geographical distances, but tends to be highest in ports, disadvantaged (e.g., low income) and residential areas. Future research should use epidemiological approaches, including random sampling and robust statistical analyses, to evaluate a range of biotic and abiotic environmental factors at spatial scales suitable for host home range sizes. Moving beyond descriptive studies to uncover the causal factors contributing to uneven pathogen distribution among wildlife hosts in urban environments may lead to targeted surveillance and intervention strategies. Application of this knowledge to urban maintenance and planning may reduce the potential impacts of urban wildlife-associated zoonotic diseases on people.
Sota, Masahiro; Yano, Hirokazu; Hughes, Julie; Daughdrill, Gary W.; Abdo, Zaid; Forney, Larry J.; Top, Eva M.
2011-01-01
The ability of bacterial plasmids to adapt to novel hosts and thereby shift their host range is key to their long-term persistence in bacterial communities. Promiscuous plasmids of the IncP-1 group can colonize a wide range of hosts, but it is not known if and how they can contract, shift or further expand their host range. To understand the evolutionary mechanisms of host range shifts of IncP-1 plasmids, an IncP-1β mini-replicon was experimentally evolved in four hosts wherein it was initially unstable. After 1000 generations in serial batch cultures under antibiotic selection for plasmid maintenance (kanamycin resistance), the stability of the mini-plasmid had dramatically improved in all coevolved hosts. However, only plasmids evolved in Shewanella oneidensis showed improved stability in the ancestor, indicating that adaptive mutations had occurred in the plasmid itself. Complete genome sequence analysis of nine independently evolved plasmids showed seven unique plasmid genotypes that had various kinds of single mutations at one locus, namely the N-terminal region of the replication initiation protein TrfA. Such parallel evolution indicates that this region was under strong selection. In five of the seven evolved plasmids these trfA mutations resulted in a significantly higher plasmid copy number. Evolved plasmids were found to be stable in four other naïve hosts, but could no longer replicate in Pseudomonas aeruginosa. This study demonstrates that plasmids can specialize to a novel host through trade-offs between improved stability in the new host and the ability to replicate in a previously permissive host. PMID:20520653
Vickerman, Danel B.; Bromley, Robin E.; Russell, Stephanie A.; Hartman, John R.; Morano, Lisa D.; Stouthamer, Richard
2013-01-01
The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 “non-IHR” isolates, 2 minimally recombinant “intermediate” ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): “almond,” “peach,” and “oak” types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity. PMID:23354698
Nunney, Leonard; Vickerman, Danel B; Bromley, Robin E; Russell, Stephanie A; Hartman, John R; Morano, Lisa D; Stouthamer, Richard
2013-04-01
The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 "non-IHR" isolates, 2 minimally recombinant "intermediate" ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): "almond," "peach," and "oak" types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity.
From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.
Nagler, Christina; Haug, Joachim T
2015-01-01
Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Plant essential oils have a number of roles in insect pest management. For male Ceratitis capitata, this includes use of angelica seed oil as long range attractants and ginger root oil as aromatherapy, which is exposure to sterile males to increase mating success. Neither of these plants are hosts f...
Allison, Andrew B; Kohler, Dennis J; Ortega, Alicia; Hoover, Elizabeth A; Grove, Daniel M; Holmes, Edward C; Parrish, Colin R
2014-11-01
Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that>95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range.
Allison, Andrew B.; Kohler, Dennis J.; Ortega, Alicia; Hoover, Elizabeth A.; Grove, Daniel M.; Holmes, Edward C.; Parrish, Colin R.
2014-01-01
Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that >95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range. PMID:25375184
2013-01-01
Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions. PMID:23302495
Shi, Mang; Lin, Xian-Dan; Vasilakis, Nikos; Tian, Jun-Hua; Li, Ci-Xiu; Chen, Liang-Jun; Eastwood, Gillian; Diao, Xiu-Nian; Chen, Ming-Hui; Chen, Xiao; Qin, Xin-Cheng; Widen, Steven G; Wood, Thomas G; Tesh, Robert B; Xu, Jianguo; Holmes, Edward C; Zhang, Yong-Zhen
2016-01-15
Viruses of the family Flaviviridae are important pathogens of humans and other animals and are currently classified into four genera. To better understand their diversity, evolutionary history, and genomic flexibility, we used transcriptome sequencing (RNA-seq) to search for the viruses related to the Flaviviridae in a range of potential invertebrate and vertebrate hosts. Accordingly, we recovered the full genomes of five segmented jingmenviruses and 12 distant relatives of the known Flaviviridae ("flavi-like" viruses) from a range of arthropod species. Although these viruses are highly divergent, they share a similar genomic plan and common ancestry with the Flaviviridae in the NS3 and NS5 regions. Remarkably, although these viruses fill in major gaps in the phylogenetic diversity of the Flaviviridae, genomic comparisons reveal important changes in genome structure, genome size, and replication/gene regulation strategy during evolutionary history. In addition, the wide diversity of flavi-like viruses found in invertebrates, as well as their deep phylogenetic positions, suggests that they may represent the ancestral forms from which the vertebrate-infecting viruses evolved. For the vertebrate viruses, we expanded the previously mammal-only pegivirus-hepacivirus group to include a virus from the graceful catshark (Proscyllium habereri), which in turn implies that these viruses possess a larger host range than is currently known. In sum, our data show that the Flaviviridae infect a far wider range of hosts and exhibit greater diversity in genome structure than previously anticipated. The family Flaviviridae of RNA viruses contains several notorious human pathogens, including dengue virus, West Nile virus, and hepatitis C virus. To date, however, our understanding of the biodiversity and evolution of the Flaviviridae has largely been directed toward vertebrate hosts and their blood-feeding arthropod vectors. Therefore, we investigated an expanded group of potential arthropod and vertebrate host species that have generally been ignored by surveillance programs. Remarkably, these species contained diverse flaviviruses and related viruses that are characterized by major changes in genome size and genome structure, such that these traits are more flexible than previously thought. More generally, these data suggest that arthropods may be the ultimate reservoir of the Flaviviridae and related viruses, harboring considerable genetic and phenotypic diversity. In sum, this study revises the traditional view on the evolutionary history, host range, and genomic structures of a major group of RNA viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Altizer, Sonia. M.; Becker, Daniel J.; Epstein, Jonathan H.; Forbes, Kristian M.; Gillespie, Thomas R.; Hall, Richard J.; Hawley, Dana; Hernandez, Sonia M.; Martin, Lynn B.; Plowright, Raina K.; Satterfield, Dara A.; Streicker, Daniel G.
2018-01-01
Human-provided resource subsidies for wildlife are diverse, common, and have profound consequences for wildlife–pathogen interactions, as demonstrated by papers in this themed issue spanning empirical, theoretical, and management perspectives from a range of study systems. Contributions cut across scales of organization, from the within-host dynamics of immune function, to population-level impacts on parasite transmission, to landscape- and regional-scale patterns of infection. In this concluding paper, we identify common threads and key findings from author contributions, including the consequences of resource subsidies for (i) host immunity; (ii) animal aggregation and contact rates; (iii) host movement and landscape-level infection patterns; and (iv) inter-specific contacts and cross-species transmission. Exciting avenues for future work include studies that integrate mechanistic modeling and empirical approaches to better explore cross-scale processes, and experimental manipulations of food resources to quantify host and pathogen responses. Work is also needed to examine evolutionary responses to provisioning, and ask how diet-altered changes to the host microbiome influence infection processes. Given the massive public health and conservation implications of anthropogenic resource shifts, we end by underscoring the need for practical recommendations to manage supplemental feeding practices, limit human–wildlife conflicts over shared food resources, and reduce cross-species transmission risks, including to humans. PMID:29531154
The Pathogen-Host Interactions database (PHI-base): additions and future developments
Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.
2015-01-01
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340
Yang, Qinghua; Li, Xiaoyang; Tu, Haitao; Pan, Shen Q.
2017-01-01
Agrobacterium tumefaciens causes crown gall tumors on various plants by delivering transferred DNA (T-DNA) and virulence proteins into host plant cells. Under laboratory conditions, the bacterium is widely used as a vector to genetically modify a wide range of organisms, including plants, yeasts, fungi, and algae. Various studies suggest that T-DNA is protected inside host cells by VirE2, one of the virulence proteins. However, it is not clear how Agrobacterium-delivered factors are trafficked through the cytoplasm. In this study, we monitored the movement of Agrobacterium-delivered VirE2 inside plant cells by using a split-GFP approach in real time. Agrobacterium-delivered VirE2 trafficked via the endoplasmic reticulum (ER) and F-actin network inside plant cells. During this process, VirE2 was aggregated as filamentous structures and was present on the cytosolic side of the ER. VirE2 movement was powered by myosin XI-K. Thus, exogenously produced and delivered VirE2 protein can use the endogenous host ER/actin network for movement inside host cells. The A. tumefaciens pathogen hijacks the conserved host infrastructure for virulence trafficking. Well-conserved infrastructure may be useful for Agrobacterium to target a wide range of recipient cells and achieve a high efficiency of transformation. PMID:28242680
2012-01-01
Background Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 are α-Proteobacteria that establish nitrogen-fixing symbioses with a range of legume hosts. These strains are broadly used in commercial inoculants for application to common bean (Phaseolus vulgaris) in South America and Africa. Both strains display intrinsic resistance to several abiotic stressful conditions such as low soil pH and high temperatures, which are common in tropical environments, and to several antimicrobials, including pesticides. The genetic determinants of these interesting characteristics remain largely unknown. Results Genome sequencing revealed that CIAT 899 and PRF 81 share a highly-conserved symbiotic plasmid (pSym) that is present also in Rhizobium leucaenae CFN 299, a rhizobium displaying a similar host range. This pSym seems to have arisen by a co-integration event between two replicons. Remarkably, three distinct nodA genes were found in the pSym, a characteristic that may contribute to the broad host range of these rhizobia. Genes for biosynthesis and modulation of plant-hormone levels were also identified in the pSym. Analysis of genes involved in stress response showed that CIAT 899 and PRF 81 are well equipped to cope with low pH, high temperatures and also with oxidative and osmotic stresses. Interestingly, the genomes of CIAT 899 and PRF 81 had large numbers of genes encoding drug-efflux systems, which may explain their high resistance to antimicrobials. Genome analysis also revealed a wide array of traits that may allow these strains to be successful rhizosphere colonizers, including surface polysaccharides, uptake transporters and catabolic enzymes for nutrients, diverse iron-acquisition systems, cell wall-degrading enzymes, type I and IV pili, and novel T1SS and T5SS secreted adhesins. Conclusions Availability of the complete genome sequences of CIAT 899 and PRF 81 may be exploited in further efforts to understand the interaction of tropical rhizobia with common bean and other legume hosts. PMID:23270491
USDA-ARS?s Scientific Manuscript database
In its native range the invasive weed, Rhodomyrtus tomentosa is host to a suite of herbivores. One, Strepsicrates sp. (Lepidoptera: Tortricidae) was collected in China in 2014, introduced under quarantine in Florida, USA and tested against related species to determine its host range and suitability ...
Host density drives the postglacial migration of the tree parasite, Epifagus virginiana.
Tsai, Yi-Hsin Erica; Manos, Paul S
2010-09-28
To survive changes in climate, successful species shift their geographic ranges to remain in suitable habitats. For parasites and other highly specialized species, distributional changes not only are dictated by climate but can also be engineered by their hosts. The extent of host control on parasite range expansion is revealed through comparisons of host and parasite migration and demographic histories. However, understanding the codistributional history of entire forest communities is complicated by challenges in synthesizing datasets from multiple interacting species of differing datatypes. Here we integrate genetic and fossil pollen datasets from a host-parasite pair; specifically, the population structure of the parasitic plant (Epifagus virginiana) was compared with both its host (Fagus grandifolia) genetic patterns and abundance data from the paleopollen record of the last 21,000 y. Through tests of phylogeographic structure and spatial linear regression models we find, surprisingly, host range changes had little effect on the parasite's range expansion and instead host density is the main driver of parasite spread. Unlike other symbionts that have been used as proxies to track their host's movements, this parasite's migration routes are incongruent with the host and instead reflect the greater importance of host density in this community's assembly. Furthermore, these results confirm predictions of disease ecological models regarding the role of host density in the spread of pathogens. Due to host density constraints, highly specialized species may have low migration capacities and long lag times before colonization of new areas.
Direct-acting antivirals and host-targeting strategies to combat enterovirus infections.
Bauer, Lisa; Lyoo, Heyrhyoung; van der Schaar, Hilde M; Strating, Jeroen Rpm; van Kuppeveld, Frank Jm
2017-06-01
Enteroviruses (e.g., poliovirus, enterovirus-A71, coxsackievirus, enterovirus-D68, rhinovirus) include many human pathogens causative of various mild and more severe diseases, especially in young children. Unfortunately, antiviral drugs to treat enterovirus infections have not been approved yet. Over the past decades, several direct-acting inhibitors have been developed, including capsid binders, which block virus entry, and inhibitors of viral enzymes required for genome replication. Capsid binders and protease inhibitors have been clinically evaluated, but failed due to limited efficacy or toxicity issues. As an alternative approach, host-targeting inhibitors with potential broad-spectrum activity have been identified. Furthermore, drug repurposing screens have recently uncovered promising new inhibitors with disparate viral and host targets. Together, these findings raise hope for the development of (broad-range) anti-enteroviral drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Codon optimization underpins generalist parasitism in fungi
Badet, Thomas; Peyraud, Remi; Mbengue, Malick; Navaud, Olivier; Derbyshire, Mark; Oliver, Richard P; Barbacci, Adelin; Raffaele, Sylvain
2017-01-01
The range of hosts that parasites can infect is a key determinant of the emergence and spread of disease. Yet, the impact of host range variation on the evolution of parasite genomes remains unknown. Here, we show that codon optimization underlies genome adaptation in broad host range parasites. We found that the longer proteins encoded by broad host range fungi likely increase natural selection on codon optimization in these species. Accordingly, codon optimization correlates with host range across the fungal kingdom. At the species level, biased patterns of synonymous substitutions underpin increased codon optimization in a generalist but not a specialist fungal pathogen. Virulence genes were consistently enriched in highly codon-optimized genes of generalist but not specialist species. We conclude that codon optimization is related to the capacity of parasites to colonize multiple hosts. Our results link genome evolution and translational regulation to the long-term persistence of generalist parasitism. DOI: http://dx.doi.org/10.7554/eLife.22472.001 PMID:28157073
Saxena, Kapil; Blutt, Sarah E.; Ettayebi, Khalil; Zeng, Xi-Lei; Broughman, James R.; Crawford, Sue E.; Karandikar, Umesh C.; Sastri, Narayan P.; Conner, Margaret E.; Opekun, Antone R.; Graham, David Y.; Qureshi, Waqar; Sherman, Vadim; Foulke-Abel, Jennifer; In, Julie; Kovbasnjuk, Olga; Zachos, Nicholas C.; Donowitz, Mark
2015-01-01
ABSTRACT Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures. PMID:26446608
Pedrini, Nicolás; Zhang, Shizhu; Juárez, M Patricia; Keyhani, Nemat O
2010-08-01
The insect epicuticle or waxy layer comprises a heterogeneous mixture of lipids that include abundant levels of long-chain alkanes, alkenes, wax esters and fatty acids. This structure represents the first barrier against microbial attack and for broad-host-range insect pathogens, such as Beauveria bassiana, it is the initial interface mediating the host-pathogen interaction, since these organisms do not require any specialized mode of entry and infect target hosts via the cuticle. B. bassiana is able to grow on straight chain alkanes up to n-C(33) as a sole source of carbon and energy. The cDNA and genomic sequences, including putative regulatory elements, for eight cytochrome P450 enzymes, postulated to be involved in alkane and insect epicuticle degradation, were isolated and characterized. Expression studies using a range of alkanes as well as an insect-derived epicuticular extract from the blood-sucking bug Triatomas infestans revealed a differential expression pattern for the P450 genes examined, and suggest that B. bassiana contains a series of hydrocarbon-assimilating enzymes with overlapping specificity in order to target the surface lipids of insect hosts. Phylogenetic analysis of the translated ORFs of the sequences revealed that the enzyme which displayed the highest levels of induction on both alkanes and the insect epicuticular extract represents the founding member of a new cytochrome P450 family, with three of the other sequences assigned as the first members of new P450 subfamilies. The remaining four proteins clustered with known P450 families whose members include alkane monooxygenases.
Targeting Host Factors to Treat West Nile and Dengue Viral Infections
Krishnan, Manoj N.; Garcia-Blanco, Mariano A.
2014-01-01
West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans. PMID:24517970
Targeting host factors to treat West Nile and dengue viral infections.
Krishnan, Manoj N; Garcia-Blanco, Mariano A
2014-02-10
West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans.
Gehman, Alyssa-Lois M; Grabowski, Jonathan H; Hughes, A Randall; Kimbro, David L; Piehler, Michael F; Byers, James E
2017-01-01
Not all hosts, communities or environments are equally hospitable for parasites. Direct and indirect interactions between parasites and their predators, competitors and the environment can influence variability in host exposure, susceptibility and subsequent infection, and these influences may vary across spatial scales. To determine the relative influences of abiotic, biotic and host characteristics on probability of infection across both local and estuary scales, we surveyed the oyster reef-dwelling mud crab Eurypanopeus depressus and its parasite Loxothylacus panopaei, an invasive castrating rhizocephalan, in a hierarchical design across >900 km of the southeastern USA. We quantified the density of hosts, predators of the parasite and host, the host's oyster reef habitat, and environmental variables that might affect the parasite either directly or indirectly on oyster reefs within 10 estuaries throughout this biogeographic range. Our analyses revealed that both between and within estuary-scale variation and host characteristics influenced L. panopaei prevalence. Several additional biotic and abiotic factors were positive predictors of infection, including predator abundance and the depth of water inundation over reefs at high tide. We demonstrate that in addition to host characteristics, biotic and abiotic community-level variables both serve as large-scale indicators of parasite dynamics.
Price, Christopher T. D.; Richards, Ashley M.; Von Dwingelo, Juanita E.; Samara, Hala A.; Kwaik, Yousef Abu
2013-01-01
Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, invades and proliferates within a diverse range of free-living amoeba in the environment but upon transmission to humans the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. L. pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. PMID:24112119
Comparative tests of ectoparasite species richness in seabirds
Hughes, Joseph; Page, Roderic DM
2007-01-01
Background The diversity of parasites attacking a host varies substantially among different host species. Understanding the factors that explain these patterns of parasite diversity is critical to identifying the ecological principles underlying biodiversity. Seabirds (Charadriiformes, Pelecaniformes and Procellariiformes) and their ectoparasitic lice (Insecta: Phthiraptera) are ideal model groups in which to study correlates of parasite species richness. We evaluated the relative importance of morphological (body size, body weight, wingspan, bill length), life-history (longevity, clutch size), ecological (population size, geographical range) and behavioural (diving versus non-diving) variables as predictors of louse diversity on 413 seabird hosts species. Diversity was measured at the level of louse suborder, genus, and species, and uneven sampling of hosts was controlled for using literature citations as a proxy for sampling effort. Results The only variable consistently correlated with louse diversity was host population size and to a lesser extent geographic range. Other variables such as clutch size, longevity, morphological and behavioural variables including body mass showed inconsistent patterns dependent on the method of analysis. Conclusion The comparative analysis presented herein is (to our knowledge) the first to test correlates of parasite species richness in seabirds. We believe that the comparative data and phylogeny provide a valuable framework for testing future evolutionary hypotheses relating to the diversity and distribution of parasites on seabirds. PMID:18005412
Gilbert, Rosalind A.; Kelly, William J.; Altermann, Eric; Leahy, Sinead C.; Minchin, Catherine; Ouwerkerk, Diane; Klieve, Athol V.
2017-01-01
The rumen is known to harbor dense populations of bacteriophages (phages) predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome. PMID:29259581
The potential for host switching via ecological fitting in the emerald ash borer-host plant system.
Cipollini, Don; Peterson, Donnie L
2018-02-27
The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.
Al-Saadi, Abdulwahid; Reddy, Joseph D; Duan, Yong P; Brunings, Asha M; Yuan, Qiaoping; Gabriel, Dean W
2007-08-01
Citrus canker disease is caused by five groups of Xanthomonas citri strains that are distinguished primarily by host range: three from Asia (A, A*, and A(w)) and two that form a phylogenetically distinct clade and originated in South America (B and C). Every X. citri strain carries multiple DNA fragments that hybridize with pthA, which is essential for the pathogenicity of wide-host-range X. citri group A strain 3213. DNA fragments that hybridized with pthA were cloned from a representative strain from all five groups. Each strain carried one and only one pthA homolog that functionally complemented a knockout mutation of pthA in 3213. Every complementing homolog was of identical size to pthA and carried 17.5 nearly identical, direct tandem repeats, including three new genes from narrow-host-range groups C (pthC), A(w) (pthAW), and A* (pthA*). Every noncomplementing paralog was of a different size; one of these was sequenced from group A* (pthA*-2) and was found to have an intact promoter and full-length reading frame but with 15.5 repeats. None of the complementing homologs nor any of the noncomplementing paralogs conferred avirulence to 3213 on grapefruit or suppressed avirulence of a group A* strain on grapefruit. A knockout mutation of pthC in a group C strain resulted in loss of pathogenicity on lime, but the strain was unaffected in ability to elicit an HR on grapefruit. This pthC- mutant was fully complemented by pthA, pthB, or pthC. Analysis of the predicted amino-acid sequences of all functional pthA homologs and nonfunctional paralogs indicated that the specific sequence of the 17th repeat may be essential for pathogenicity of X. citri on citrus.
Patterns of genome evolution that have accompanied host adaptation in Salmonella
Langridge, Gemma C.; Fookes, Maria; Connor, Thomas R.; Feltwell, Theresa; Feasey, Nicholas; Parsons, Bryony N.; Seth-Smith, Helena M. B.; Barquist, Lars; Stedman, Anna; Humphrey, Tom; Wigley, Paul; Peters, Sarah E.; Maskell, Duncan J.; Corander, Jukka; Chabalgoity, Jose A.; Barrow, Paul; Parkhill, Julian; Dougan, Gordon; Thomson, Nicholas R.
2015-01-01
Many bacterial pathogens are specialized, infecting one or few hosts, and this is often associated with more acute disease presentation. Specific genomes show markers of this specialization, which often reflect a balance between gene acquisition and functional gene loss. Within Salmonella enterica subspecies enterica, a single lineage exists that includes human and animal pathogens adapted to cause infection in different hosts, including S. enterica serovar Enteritidis (multiple hosts), S. Gallinarum (birds), and S. Dublin (cattle). This provides an excellent evolutionary context in which differences between these pathogen genomes can be related to host range. Genome sequences were obtained from ∼60 isolates selected to represent the known diversity of this lineage. Examination and comparison of the clades within the phylogeny of this lineage revealed signs of host restriction as well as evolutionary events that mark a path to host generalism. We have identified the nature and order of events for both evolutionary trajectories. The impact of functional gene loss was predicted based upon position within metabolic pathways and confirmed with phenotyping assays. The structure of S. Enteritidis is more complex than previously known, as a second clade of S. Enteritidis was revealed that is distinct from those commonly seen to cause disease in humans or animals, and that is more closely related to S. Gallinarum. Isolates from this second clade were tested in a chick model of infection and exhibited a reduced colonization phenotype, which we postulate represents an intermediate stage in pathogen–host adaptation. PMID:25535353
Esposito, Lauren A; Gupta, Swati; Streiter, Fraida; Prasad, Ashley; Dennehy, John J
2016-10-01
In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis , a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis , but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species.
Esposito, Lauren A.; Gupta, Swati; Streiter, Fraida; Prasad, Ashley
2016-01-01
In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis, a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis, but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species. PMID:28348827
NASA Astrophysics Data System (ADS)
Veglia, A. J.; Milford, C. R.; Marston, M.
2016-02-01
Viruses infecting marine Synechococcus are abundant in coastal marine environments and influence the community composition and abundance of their cyanobacterial hosts. In this study, we focused on the cyanopodoviruses which have smaller genomes and narrower host ranges relative to cyanomyoviruses. While previous studies have compared the genomes of diverse podoviruses, here we analyzed the genomic variation, host ranges, and infection kinetics of podoviruses within the same OTU. The genomes of fifty-five podoviral isolates from the coastal waters of New England were fully sequenced. Based on DNA polymerase gene sequences, these isolates fall into five discrete OTUs (termed RIP - Rhode Island Podovirus). Although all the isolates belonging to the same RIP have very similar DNA polymerase gene sequences (>98% sequence identity), differences in genome content, particularly in regions associated with tail fiber genes, were observed among isolates in the same RIP. Host range tests reveal variation both across and within RIPs. Notably within RIP1, isolates that had similar tail fiber regions also had similar host ranges. Isolates belonging to RIP4 do not contain the host-derived psbA photosynthesis gene, while isolates in the other four RIPs do possess a psbA gene. Nevertheless, infection kinetic experiments suggest that the latent period and burst size for RIP4 isolates are similar to RIP1 isolates. We are continuing to investigate the correlations among genome content, host range, and infection kinetics of isolates belonging to the same OTU. Our results to date suggest that there is substantial genomic variation within an OTU and that this variation likely influences cyanopodoviral - host interactions.
Influence of predation on community resilience to disease.
Al-Shorbaji, Farah; Roche, Benjamin; Britton, Robert; Andreou, Demetra; Gozlan, Rodolphe
2017-09-01
Outbreaks of generalist pathogens are influenced by host community structure, including population density and species diversity. Within host communities predation can influence pathogen transmission rates, prevalence and impacts. However, the influence of predation on community resilience to outbreaks of generalist pathogens is not fully understood. The role of predation on host community resilience to disease was assessed using an epidemiological multi-host susceptible-exposed-infectious-recovered model. Sphaerothecum destruens, an emerging fungal-like generalist pathogen, was used as a model pathogen. Six cyprinid and salmonid fishes, including an asymptomatic carrier, were selected as model hosts that are known to be impacted by S. destruens, and they were used within a model host community. Pathogen release into the host community was via introduction of the asymptomatic carrier. Mortality from infection, pathogen incubation rate, and host recovery rate were set to a range of evidence-based values in each species and were varied in secondary consumers to predict top-down effects of infection on the resilience of a host community. Predation pressure within the fish community was varied to test its effects on infection prevalence and host survival in the community. Model predictions suggested that predation of the asymptomatic hosts by fishes in the host community was insufficient to eliminate S. destruens. Sphaerothecum destruens persisted in the community due to its rapid transmission from the asymptomatic host to susceptible host fishes. Following transmission, pathogen prevalence in the community was driven by transmission within and between susceptible host fishes, indicating low host community resilience. However, introducing low densities of a highly specific piscivorous fish into the community to pre-date asymptomatic hosts could limit pathogen prevalence in the host community, thus increasing resilience. The model predictions indicate that whilst resilience to this generalist pathogen in the host community was low, this could be increased using management interventions. The results suggest that this model has high utility for predicting community resilience to disease and thus can be applied to other generalist parasites to determine risks of disease emergence. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Francesconi, Fabio
2012-01-01
Summary: Myiasis is defined as the infestation of live vertebrates (humans and/or animals) with dipterous larvae. In mammals (including humans), dipterous larvae can feed on the host's living or dead tissue, liquid body substance, or ingested food and cause a broad range of infestations depending on the body location and the relationship of the larvae with the host. In this review, we deeply discuss myiasis as a worldwide infestation with different agents and with its broad scenario of clinical manifestations as well as diagnosis techniques and treatment. PMID:22232372
Marianne Elliott; Gary A. Chastaner; Annie DeBauw; Gil Dermott; Richard A. Sniezko
2012-01-01
Phytophthora cinnamomi (Oomycetes) causes root disease and basal canker on a number of hardwood and conifer hosts, including Pacific madrone (Arbutus menziesii Pursh) (figs. 1, 2), a broadleaf evergreen species whose range extends from coastal British Columbia to southern California (Reeves 2007). Increasing mortality...
Andrea C. Anulewicz; Deborah G. McCullough; David A. Cappaert; Therese M. Poland; Derborah L. Miller
2007-01-01
Previous literature on the emerald ash borer (EAB) suggests that, in its native range in Asia, EAB will attack species other than ash (Fraxinus), including Ulmus sp. and Juglans sp. In North America, as ash trees die in the core zone of infestation, concern has been raised about the potential for species other...
Fürstenau, Benjamin; Hilker, Monika
2017-09-01
Parasitic wasps which attack insects infesting processed stored food need to locate their hosts hidden inside these products. Their host search is well-known to be guided by host kairomones, perceived via olfaction or contact. Among contact kairomones, host cuticular hydrocarbons (CHCs) may provide reliable information for a parasitoid. However, the chemistry of CHC profiles of hosts living in processed stored food products is largely unknown. Here we showed that the ectoparasitoid Holepyris sylvanidis uses CHCs of its host Tribolium confusum, a worldwide stored product pest, as kairomones for host location and recognition at short range. Chemical analysis of T. confusum larval extracts by gas chromatography coupled with mass spectrometry revealed a rich blend of long-chain (C25-C30) hydrocarbons, including n-alkanes, mono-, and dimethylalkanes. We further studied whether host larvae leave sufficient CHCs on a substrate where they walk along, thus allowing parasitoids to perceive a CHC trail and follow it to their host larvae. We detected 18 CHCs on a substrate that had been exposed to host larvae. These compounds were also found in crude extracts of host larvae and made up about a fifth of the CHC amount extracted. Behavioral assays showed that trails of host CHCs were followed by the parasitoids and reduced their searching time until successful host recognition. Host CHC trails deposited on different substrates were persistent for about a day. Hence, the parasitoid H. sylvanidis exploits CHCs of T. confusum larvae for host finding by following host CHC trails and for host recognition by direct contact with host larvae.
INTEGRATING PARASITES AND PATHOGENS INTO THE STUDY OF GEOGRAPHIC RANGE LIMITS.
Bozick, Brooke A; Real, Leslie A
2015-12-01
The geographic distributions of all species are limited, and the determining factors that set these limits are of fundamental importance to the fields of ecology and evolutionary biology. Plant and animal ranges have been of primary concern, while those of parasites, which represent much of the Earth's biodiversity, have been neglected. Here, we review the determinants of the geographic ranges of parasites and pathogens, and explore how parasites provide novel systems with which to investigate the ecological and evolutionary processes governing host/parasite spatial distributions. Although there is significant overlap in the causative factors that determine range borders of parasites and free-living species, parasite distributions are additionally constrained by the geographic range and ecology of the host species' population, as well as by evolutionary factors that promote host-parasite coevolution. Recently, parasites have been used to infer population demographic and ecological information about their host organisms and we conclude that this strategy can be further exploited to understand geographic range limitations of both host and parasite populations.
Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes.
Spatafora, J W; Sung, G-H; Sung, J-M; Hywel-Jones, N L; White, J F
2007-04-01
Grass-associated fungi (grass symbionts) in the family Clavicipitaceae (Ascomycota, Hypocreales) are species whose host range is restricted to the plant family Poaceae and rarely Cyperaceae. The best-characterized species include Claviceps purpurea (ergot of rye) and Neotyphodium coenophialum (endophyte of tall fescue). They have been the focus of considerable research due to their importance in agricultural and grassland ecosystems and the diversity of their bioactive secondary metabolites. Here we show through multigene phylogenetic analyses and ancestral character state reconstruction that the grass symbionts in Clavicipitaceae are a derived group that originated from an animal pathogen through a dynamic process of interkingdom host jumping. The closest relatives of the grass symbionts include the genera Hypocrella, a pathogen of scale insects and white flies, and Metarhizium, a generalist arthropod pathogen. These data do not support the monophyly of Clavicipitaceae, but place it as part of a larger clade that includes Hypocreaceae, a family that contains mainly parasites of other fungi. A minimum of 5-8 independent and unidirectional interkingdom host jumps has occurred among clavicipitaceous fungi, including 3-5 to fungi, 1-2 to animals, and 1 to plants. These findings provide a new evolutionary context for studying the biology of the grass symbionts, their role in plant ecology, and the evolution of host affiliation in fungal symbioses.
Bell, T L; Adams, M A
2011-01-01
This review discusses how understanding of functional relationships between parasitic plants and their woody hosts have benefited from a range of approaches to their study. Gross comparisons of nutrient content between infected and uninfected hosts, or parts of hosts, have been widely used to infer basic differences or similarities between hosts and parasites. Coupling of nutrient information with additional evidence of key processes such as transpiration, respiration and photosynthesis has helped elucidate host-parasite relationships and, in some cases, the anatomical nature of their connection and even the physiology of plants in general. For example, detailed analysis of xylem sap from hosts and parasites has increased our understanding of the spatial and temporal movement of solutes within plants. Tracer experiments using natural abundance or enriched application of stable isotopes ((15)N, (13)C, (18)O) have helped us to understand the extent and form of heterotrophy, including the effect of the parasite on growth and functioning of the host (and its converse) as well as environmental effects on the parasite. Nutritional studies of woody hosts and parasites have provided clues to the distribution of parasitic plants and their roles in ecosystems. This review also provides assessment of several corollaries to the host-parasite association.
USDA-ARS?s Scientific Manuscript database
We have fulfilled Koch’s postulates and conducted host range tests with Septoria lepidii Desm. on five geographical accessions of hoary cress. Host range results showed the fungus specific to Lepidium spp. and damaging to hoary cress. This fungus is potentially an important biological control agent ...
Derek W. Rosenberger; Robert C. Venette; Brian H. Aukema; Jörg Müller
2018-01-01
Some subcortical insects have devastating effects on native tree communities in new ranges, despite benign interactions with their historical hosts. Examples of how insects, aggressive in their native habitat might respond in novel host environs are less common. One aggressive tree-killing insect undergoing a dramatic range shift is the mountain pine beetle (...
Tucker, Matthew S.; Karunaratne, Laksiri B.; Lewis, Fred A.; Freitas, Tori C.; Liang, Yung-san
2014-01-01
Schistosomiasis is the second most important parasitic disease in the world in terms of public health impact. Globally, it is estimated that the disease affects over 200 million people and is responsible for 200,000 deaths each year. The three major schistosomes infecting humans are Schistosoma mansoni, S. japonicum, and S. haematobium. Much immunological research has focused on schistosomiasis because of the pathological effects of the disease, which include liver fibrosis and bladder dysfunction. This Unit covers a wide range of aspects of maintaining the life cycles of these parasites, including preparation of schistosome egg antigen, maintenance of intermediate snail hosts, infection of the definitive and intermediate hosts, and others. The Unit primariiy focues on S. mansoni, but also includes coverage of S. japonicum and S. haematobium life cycles. PMID:18432750
The Fleas (Siphonaptera) in Iran: Diversity, Host Range, and Medical Importance.
Maleki-Ravasan, Naseh; Solhjouy-Fard, Samaneh; Beaucournu, Jean-Claude; Laudisoit, Anne; Mostafavi, Ehsan
2017-01-01
Flea-borne diseases have a wide distribution in the world. Studies on the identity, abundance, distribution and seasonality of the potential vectors of pathogenic agents (e.g. Yersinia pestis, Francisella tularensis, and Rickettsia felis) are necessary tools for controlling and preventing such diseases outbreaks. The improvements of diagnostic tools are partly responsible for an easier detection of otherwise unnoticed agents in the ectoparasitic fauna and as such a good taxonomical knowledge of the potential vectors is crucial. The aims of this study were to make an exhaustive inventory of the literature on the fleas (Siphonaptera) and range of associated hosts in Iran, present their known distribution, and discuss their medical importance. The data were obtained by an extensive literature review related to medically significant fleas in Iran published before 31st August 2016. The flea-host specificity was then determined using a family and subfamily-oriented criteria to further realize and quantify the shared and exclusive vertebrate hosts of fleas among Iran fleas. The locations sampled and reported in the literature were primarily from human habitation, livestock farms, poultry, and rodents' burrows of the 31 provinces of the country. The flea fauna were dominated by seven families, namely the Ceratophyllidae, Leptopsyllidae, Pulicidae, Ctenophthalmidae, Coptopsyllidae, Ischnopsyllidae and Vermipsyllidae. The hosts associated with Iran fleas ranged from the small and large mammals to the birds. Pulicidae were associated with 73% (56/77) of identified host species. Flea-host association analysis indicates that rodents are the common hosts of 5 flea families but some sampling bias results in the reduced number of bird host sampled. Analyses of flea-host relationships at the subfamily level showed that most vertebrates hosted fleas belgonging to 3 subfamilies namely Xenopsyllinae (n = 43), Ctenophthalminae (n = 20) and Amphipsyllinae (n = 17). Meriones persicus was infested by 11 flea subfamilies in the arid, rocky, mountainous regions and Xenopsyllinae were hosted by at least 43 mammal species. These findings place the Persian jird (M. persicus) and the Xenopsyllinae as the major vertebrate and vector hosts of flea-borne diseases in Iran including Yersinia pestis, the etiological agent of plague. We found records of at least seven vector-borne pathogenic agents that can potentially be transmitted by the 117 flea species (or subspecies) of Iran. Herein, we performed a thorough inventary of the flea species and their associated hosts, their medical importance and geographic distribution throughout Iran. This exercise allowed assessing the diversity of flea species with the potential flea-borne agents transmission risk in the country by arranging published data on flea-host associations. This information is a first step for issuing public health policies and rodent-flea control campaigns in Iran as well as those interested in the ecology/epidemiology of flea-borne disease.
Donald, Kirsten M; Spencer, Hamish G
2016-08-01
Digenean parasites infecting four Cominella whelk species (C. glandiformis, C. adspersa, C. maculosa and C. virgata), which inhabit New Zealand's intertidal zone, were analysed using molecular techniques. Mitochondrial 16S and cytochrome oxidase 1 (COI) and nuclear rDNA ITS1 sequences were used to infer phylogenetic relationships amongst digenea. Host species were parasitized by a diverse range of digenea (Platyhelminthes, Trematoda), representing seven families: Echinostomatidae, Opecoelidae, Microphallidae, Strigeidae and three, as yet, undetermined families A, B and C. Each parasite family infected between one and three host whelk species, and infection levels were typically low (average infection rates ranged from 1·4 to 3·6%). Host specificity ranged from highly species-specific amongst the echinostomes, which were only ever observed infecting C. glandiformis, to the more generalist opecoelids and strigeids, which were capable of infecting three out of four of the Cominella species analysed. Digeneans displayed a highly variable geographic range; for example, echinostomes had a large geographic range stretching the length of New Zealand, from Northland to Otago, whereas Family B parasites were restricted to fairly small areas of the North Island. Our results add to a growing body of research identifying wide ranges in both host specificity and geographic range amongst intertidal, multi-host parasite systems.
Supramolecular complexation for environmental control.
Albelda, M Teresa; Frías, Juan C; García-España, Enrique; Schneider, Hans-Jörg
2012-05-21
Supramolecular complexes offer a new and efficient way for the monitoring and removal of many substances emanating from technical processes, fertilization, plant and animal protection, or e.g. chemotherapy. Such pollutants range from toxic or radioactive metal ions and anions to chemical side products, herbicides, pesticides to drugs including steroids, and include degradation products from natural sources. The applications involve usually fast and reversible complex formation, due to prevailing non-covalent interactions. This is of importance for sensing as well as for separation techniques, where the often expensive host compounds can then be reused almost indefinitely. Immobilization of host compounds, e.g. on exchange resins or on membranes, and their implementation in smart new materials hold particular promise. The review illustrates how the design of suitable host compounds in combination with modern sensing and separation methods can contribute to solve some of the biggest problems facing chemistry, which arise from the everyday increasing pollution of the environment.
A slowly evolving host moves first in symbiotic interactions
NASA Astrophysics Data System (ADS)
Damore, James; Gore, Jeff
2011-03-01
Symbiotic relationships, both parasitic and mutualistic, are ubiquitous in nature. Understanding how these symbioses evolve, from bacteria and their phages to humans and our gut microflora, is crucial in understanding how life operates. Often, symbioses consist of a slowly evolving host species with each host only interacting with its own sub-population of symbionts. The Red Queen hypothesis describes coevolutionary relationships as constant arms races with each species rushing to evolve an advantage over the other, suggesting that faster evolution is favored. Here, we use a simple game theoretic model of host- symbiont coevolution that includes population structure to show that if the symbionts evolve much faster than the host, the equilibrium distribution is the same as it would be if it were a sequential game where the host moves first against its symbionts. For the slowly evolving host, this will prove to be advantageous in mutualisms and a handicap in antagonisms. The model allows for symbiont adaptation to its host, a result that is robust to changes in the parameters and generalizes to continuous and multiplayer games. Our findings provide insight into a wide range of symbiotic phenomena and help to unify the field of coevolutionary theory.
Host selection and lethality of attacks by sea lampreys (Petromyzon marinus) in laboratory studies
Swink, William D.
2003-01-01
Parasitic-phase sea lampreys (Petromyzon marinus) are difficult to study in the wild. A series of laboratory studies (1984-1995) of single attacks on lake trout (Salvelinus namaycush), rainbow trout (Oncorhynchus mykiss), and burbot (Lota lota) examined host size selection; determined the effects of host size, host species, host strain, and temperature on host mortality; and estimated the weight of hosts killed per lamprey. Rainbow trout were more able and burbot less able to survive attacks than lake trout. Small sea lampreys actively selected the larger of two small hosts; larger sea lampreys attacked larger hosts in proportion to the hosts' body sizes, but actively avoided shorter hosts (a?? 600 mm) when larger were available. Host mortality was significantly less for larger (43-44%) than for smaller hosts (64%). However, the yearly loss of hosts per sea lamprey was less for small hosts (range, 6.8-14.2 kg per sea lamprey) than larger hosts (range, 11.4-19.3 kg per sea lamprey). Attacks at the lower of two temperature ranges (6.1-11.8A?C and 11.1-15.0A?C) did not significantly reduce the percentage of hosts killed (54% vs. 69%, p > 0.21), but longer attachment times at lower temperatures reduced the number of hosts attacked (33 vs. 45), and produced the lowest loss of hosts (6.6 kg per sea lamprey). Low temperature appeared to offset other factors that increase host mortality. Reanalysis of 789 attacks pooled from these studies, using forward stepwise logistic regression, also identified mean daily temperature as the dominant factor affecting host mortality. Observations in Lakes Superior, Huron, and Ontario support most laboratory results.
The Pathogen-Host Interactions database (PHI-base): additions and future developments.
Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G; Pedro, Helder; Hammond-Kosack, Kim E
2015-01-01
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Hartigan, Ashlie; Wilkinson, Mark; Gower, David J; Streicher, Jeffrey W; Holzer, Astrid S; Okamura, Beth
2016-05-01
Myxozoans are parasitic cnidarians that infect a wide variety of hosts. Vertebrates typically serve as intermediate hosts whereas definitive hosts are invertebrates, including annelids and bryozoans. Myxozoans are known to exploit species in two of the three extant amphibian orders (Anura: frogs and toads; Caudata: newts and salamanders). Here we use museum collections to determine, to our knowledge for the first time, whether myxozoans also exploit the third amphibian order (Gymnophiona: caecilians). Caecilians are a poorly known group of limbless amphibians, the ecologies of which range from aquatic to fully terrestrial. We examined 12 caecilian species in seven families (148 individuals total) characterised by a diversity of ecologies and life histories. Using morphological and molecular surveys, we discovered the presence of the myxozoan Cystodiscus axonis in two South American species (one of seven examined families) of aquatic caecilians - Typhlonectes natans and Typhlonectes compressicauda. All infected caecilians had been maintained in captivity in the United Kingdom prior to their preservation. Cystodiscus axonis is known from several Australian frog species and its presence in caecilians indicates a capacity for infecting highly divergent amphibian hosts. This first known report of myxozoan infections in caecilians provides evidence of a broad geographic and host range. However, the source of these infections remains unknown and could be related to exposure in South America, the U.K. or to conditions in captivity. Copyright © 2016 Australian Society for Parasitology Inc. All rights reserved.
Bacteriophage Ecology in a Commercial Cucumber Fermentation
Pérez-Díaz, I. M.; Hayes, J. S.; Breidt, F.
2012-01-01
To reduce high-salt waste from cucumber fermentations, low-salt fermentations are under development. These fermentations may require the use of starter cultures to ensure normal fermentations. Because potential phage infection can cause starter culture failure, it is important to understand phage ecology in the fermentations. This study investigated the phage ecology in a commercial cucumber fermentation. Brine samples taken from a fermentation tank over a 90-day period were plated onto deMan-Rogosa-Sharpe agar plates. A total of 576 lactic acid bacterial isolates were randomly selected to serve as potential hosts for phage isolation. Filtered brine served as a phage source. Fifty-seven independent phage isolates were obtained, indicating that 10% of the bacterial isolates were sensitive to phage attack. Phage hosts include Lactobacillus brevis (67% of all hosts), Lactobacillus plantarum (21%), Weissella paramesenteroides, Weissella cibaria, and Pediococcus ethanolidurans. Nearly 50% of phages were isolated on day 14, and the majority of them attacked L. brevis. Some phages had a broad host range and were capable of infecting multiple hosts in two genera. Other phages were species specific or strain specific. About 30% of phage isolates produced turbid pinpoint plaques or only caused reduced cell growth on the bacterial lawns. Six phages with distinct host ranges were characterized. The data from this study showed that abundant and diverse phages were present in the commercial cucumber fermentation, which could cause significant mortality to the lactic acid bacteria population. Therefore, a phage control strategy may be needed in low-salt cucumber fermentations. PMID:23023756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu
We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range ofmore » $$1.8^{+2.3}_{-1.0} \\,R_\\mathrm{vir,host}$$ for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances ($$3.7^{+3.3}_{-2.2} \\,R_\\mathrm{vir,host}$$ at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ~1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (~1.9 R vir, host) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina
Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less
Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina; ...
2016-06-28
Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less
Life history determines genetic structure and evolutionary potential of host-parasite interactions.
Barrett, Luke G; Thrall, Peter H; Burdon, Jeremy J; Linde, Celeste C
2008-12-01
Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.
Peptidase inhibitors in tick physiology.
Parizi, L F; Ali, A; Tirloni, L; Oldiges, D P; Sabadin, G A; Coutinho, M L; Seixas, A; Logullo, C; Termignoni, C; DA Silva Vaz, I
2018-06-01
Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction. © 2017 The Royal Entomological Society.
A new species of Giardia Künstler, 1882 (Sarcomastigophora: Hexamitidae) in hamsters.
Lyu, Zhangxia; Shao, Jingru; Xue, Min; Ye, Qingqing; Chen, Bing; Qin, Yan; Wen, Jianfan
2018-03-20
Giardia spp. are flagellated protozoan parasites that infect humans and many other vertebrates worldwide. Currently seven species of Giardia are considered valid. Here, we report a new species, Giardia cricetidarum n. sp. in hamsters. Trophozoites of G. cricetidarum n. sp. are pear-shaped with four pairs of flagella and measure on average 14 μm (range 12-18 μm) in length and 10 μm (range 8-12 μm) in width. The trophozoites of the new species are generally larger and stouter than those of most of the other Giardia spp. and exhibit the lowest length/width ratio (c.1.40) of all recognized Giardia species. Cysts of G. cricetidarum n. sp. are ovoid and measure on average 11 μm (range 9-12 μm) in length and 10 μm (range 8-10 μm) in width and are indistinguishable from the cysts of other Giardia species. Molecular phylogenetic analyses based on beta-giardin, small subunit rRNA, and elongation factor-1 alpha loci all demonstrated that G. cricetidarum n. sp. is genetically distinct from all currently accepted Giardia spp. Investigation of the host range indicated that the new species was only found in hamsters (including Phodopus sungorus, P. campbelli and Mesocricetus auratus), while all the other described mammal-parasitizing species (G. muris, G. microti and G. intestinalis) each infect multiple hosts. Cross-transmission studies further demonstrated the apparent host specificity of G. cricetidarum n. sp. as it only infected hamsters. Trophozoites were found in high numbers in hamster intestines (5 × 10 5 - 5 × 10 6 ) and was rarely detected co-infecting with other Giardia spp. in the common hamster, suggesting it has some advantages in parasitizing hamsters. This study has identified a new species of Giardia, which appears to be specific to hamsters, and together with the three other mammal-parasitizing Giardia species with different host ranges, may be able to be used as a model system for the study of evolutionary divergence of host parasitism strategies in Giardia.
Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore
Fountain-Jones, Nicholas M.; Craft, Meggan E.; Funk, W. Chris; Kozakiewicz, Chris; Trumbo, Daryl; Boydston, Erin E.; Lyren, Lisa M.; Crooks, Kevin R.; Lee, Justin S.; VandeWoude, Sue; Carver, Scott
2017-01-01
Urban expansion has widespread impacts on wildlife species globally, including the transmission and emergence of infectious diseases. However, there is almost no information about how urban landscapes shape transmission dynamics in wildlife. Using an innovative phylodynamic approach combining host and pathogen molecular data with landscape characteristics and host traits, we untangle the complex factors that drive transmission networks of Feline Immunodeficiency Virus (FIV) in bobcats (Lynx rufus). We found that the urban landscape played a significant role in shaping FIV transmission. Even though bobcats were often trapped within the urban matrix, FIV transmission events were more likely to occur in areas with more natural habitat elements. Urban fragmentation also resulted in lower rates of pathogen evolution, possibly owing to a narrower range of host genotypes in the fragmented area. Combined, our findings show that urban landscapes can have impacts on a pathogen and its evolution in a carnivore living in one of the most fragmented and urban systems in North America. The analytical approach used here can be broadly applied to other host-pathogen systems, including humans.
Price, Christopher T D; Richards, Ashley M; Von Dwingelo, Juanita E; Samara, Hala A; Abu Kwaik, Yousef
2014-02-01
Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Xylella fastidiosa: an examination of a re-emerging plant pathogen.
Rapicavoli, Jeannette; Ingel, Brian; Blanco-Ulate, Barbara; Cantu, Dario; Roper, Caroline
2018-04-01
Xylella fastidiosa is a Gram-negative bacterial plant pathogen with an extremely wide host range. This species has recently been resolved into subspecies that correlate with host specificity. This review focuses on the status of X. fastidiosa pathogenic associations in plant hosts in which the bacterium is either endemic or has been recently introduced. Plant diseases associated with X. fastidiosa have been documented for over a century, and much about what is known in the context of host-pathogen interactions is based on these hosts, such as grape and citrus, in which this pathogen has been well described. Recent attention has focused on newly emerging X. fastidiosa diseases, such as in olives. Bacteria; Gammaproteobacteria; family Xanthomonadaceae; genus Xylella; species fastidiosa. Gram-negative rod (0.25-0.35 × 0.9-3.5 μm), non-flagellate, motile via Type IV pili-mediated twitching, fastidious. Xylella fastidiosa has a broad host range that includes ornamental, ecological and agricultural plants belonging to over 300 different species in 63 different families. To date, X. fastidiosa has been found to be pathogenic in over 100 plant species. In addition, it can establish non-symptomatic associations with many plants as a commensal endophyte. Here, we list the four distinct subspecies of X. fastidiosa and some of the agriculturally relevant diseases caused by them: X. fastidiosa ssp. fastidiosa causes Pierce's disease (PD) of grapevine (Vitis vinifera); X. fastidiosa ssp. multiplex causes almond leaf scorch (ALS) and diseases on other nut and shade tree crops; X. fastidiosa ssp. pauca causes citrus variegated chlorosis (CVC) (Citrus spp.), coffee leaf scorch and olive quick decline syndrome (OQDS) (Olea europaea); X. fastidiosa ssp. sandyi causes oleander leaf scorch (OLS) (Nerium oleander). Significant host specificity seemingly exists for some of the subspecies, although this could be a result of technical biases based on the limited number of plants tested, whereas some subspecies are not as stringent in their host range and can infect several plant hosts. Most X. fastidiosa-related diseases appear as marginal leaf necrosis and scorching of the leaves. In the case of PD, X. fastidiosa can also cause desiccation of berries (termed 'raisining'), irregular periderm development and abnormal abscission of petioles. In olive trees affected with OQDS, leaves exhibit marginal necrosis and defoliation, and overall tree decline occurs. Plants with ALS and OLS also exhibit the characteristic leaf scorch symptoms. Not all X. fastidiosa-related diseases exhibit the typical leaf scorch symptoms. These include CVC and Phony Peach disease, amongst others. In the case of CVC, symptoms include foliar wilt and interveinal chlorosis on the upper surfaces of the leaves (similar to zinc deficiency), which correspond to necrotic, gum-like regions on the undersides of the leaves. Additional symptoms of CVC include defoliation, dieback and hardening of fruits. Plants infected with Phony Peach disease exhibit a denser, more compact canopy (as a result of shortened internodes, darker green leaves and delayed leaf senescence), premature bloom and reduced fruit size. Some occlusions occur in the xylem vessels, but there are no foliar wilting, chlorosis or necrosis symptoms . USEFUL WEBSITES: http://www.piercesdisease.org/; https://pubmlst.org/xfastidiosa/; http://www.xylella.lncc.br/; https://nature.berkeley.edu/xylella/; https://ec.europa.eu/food/plant/plant_health_biosecurity/legislation/emergency_measures/xylella-fastidiosa_en. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance.
Yildirim, Suleyman; Yeoman, Carl J; Janga, Sarath Chandra; Thomas, Susan M; Ho, Mengfei; Leigh, Steven R; White, Bryan A; Wilson, Brenda A; Stumpf, Rebecca M
2014-12-01
Bacterial communities colonizing the reproductive tracts of primates (including humans) impact the health, survival and fitness of the host, and thereby the evolution of the host species. Despite their importance, we currently have a poor understanding of primate microbiomes. The composition and structure of microbial communities vary considerably depending on the host and environmental factors. We conducted comparative analyses of the primate vaginal microbiome using pyrosequencing of the 16S rRNA genes of a phylogenetically broad range of primates to test for factors affecting the diversity of primate vaginal ecosystems. The nine primate species included: humans (Homo sapiens), yellow baboons (Papio cynocephalus), olive baboons (Papio anubis), lemurs (Propithecus diadema), howler monkeys (Alouatta pigra), red colobus (Piliocolobus rufomitratus), vervets (Chlorocebus aethiops), mangabeys (Cercocebus atys) and chimpanzees (Pan troglodytes). Our results indicated that all primates exhibited host-specific vaginal microbiota and that humans were distinct from other primates in both microbiome composition and diversity. In contrast to the gut microbiome, the vaginal microbiome showed limited congruence with host phylogeny, and neither captivity nor diet elicited substantial effects on the vaginal microbiomes of primates. Permutational multivariate analysis of variance and Wilcoxon tests revealed correlations among vaginal microbiota and host species-specific socioecological factors, particularly related to sexuality, including: female promiscuity, baculum length, gestation time, mating group size and neonatal birth weight. The proportion of unclassified taxa observed in nonhuman primate samples increased with phylogenetic distance from humans, indicative of the existence of previously unrecognized microbial taxa. These findings contribute to our understanding of host-microbe variation and coevolution, microbial biogeography, and disease risk, and have important implications for the use of animal models in studies of human sexual and reproductive diseases.
Genetic Structure of Natural Populations of Escherichia coli in Wild Hosts on Different Continents
Souza, Valeria; Rocha, Martha; Valera, Aldo; Eguiarte, Luis E.
1999-01-01
Current knowledge of genotypic and phenotypic diversity in the species Escherichia coli is based almost entirely on strains recovered from humans or zoo animals. In this study, we analyzed a collection of 202 strains obtained from 81 mammalian species representing 39 families and 14 orders in Australia and the Americas, as well as several reference strains; we also included a strain from a reptile and 10 from different families of birds collected in Mexico. The strains were characterized genotypically by multilocus enzyme electrophoresis (MLEE) and phenotypically by patterns of sugar utilization, antibiotic resistance, and plasmid profile. MLEE analysis yielded an estimated genetic diversity (H) of 0.682 for 11 loci. The observed genetic diversity in this sample is the greatest yet reported for E. coli. However, this genetic diversity is not randomly distributed; geographic effects and host taxonomic group accounted for most of the genetic differentiation. The genetic relationship among the strains showed that they are more associated by origin and host order than is expected by chance. In a dendrogram, the ancestral cluster includes primarily strains from Australia and ECOR strains from groups B and C. The most differentiated E. coli in our analysis are strains from Mexican carnivores and strains from humans, including those in the ECOR group A. The kinds and numbers of sugars utilized by the strains varied by host taxonomic group and country of origin. Strains isolated from bats were found to exploit the greatest range of sugars, while those from primates utilized the fewest. Toxins are more frequent in strains from rodents from both continents than in any other taxonomic group. Strains from Mexican wild mammals were, on average, as resistant to antibiotics as strains from humans in cities. On average, the Australian strains presented a lower antibiotic resistance than the Mexican strains. However, strains recovered from hosts in cities carried significantly more plasmids than did strains isolated from wild mammals. Previous studies have shown that natural populations of E. coli harbor an extensive genetic diversity that is organized in a limited number of clones. However, knowledge of this worldwide bacterium has been limited. Here, we suggest that the strains from a wide range of wild hosts from different regions of the world are organized in an ecotypic structure where adaptation to the host plays an important role in the population structure. PMID:10427022
Neurologic Disease in Captive Lions (Panthera leo) with Low-Titer Lion Lentivirus Infection▿
Brennan, Greg; Podell, Michael D.; Wack, Raymund; Kraft, Susan; Troyer, Jennifer L.; Bielefeldt-Ohmann, Helle; VandeWoude, Sue
2006-01-01
Lion lentivirus (LLV; also known as feline immunodeficiency virus of lion, Panthera leo [FIVPle]) is present in free-ranging and captive lion populations at a seroprevalence of up to 100%; however, clinical signs are rarely reported. LLV displays up to 25% interclade sequence diversity, suggesting that it has been in the lion population for some time and may be significantly host adapted. Three captive lions diagnosed with LLV infection displayed lymphocyte subset alterations and progressive behavioral, locomotor, and neuroanatomic abnormalities. No evidence of infection with other potential neuropathogens was found. Antemortem electrodiagnostics and radiologic imaging indicated a diagnosis consistent with lentiviral neuropathy. PCR was used to determine a partial lentiviral genomic sequence and to quantify the proviral burden in eight postmortem tissue specimens. Phylogenetic analysis demonstrated that the virus was consistent with the LLV detected in other captive and free-ranging lions. Despite progressive neurologic signs, the proviral load in tissues, including several regions of the brain, was low; furthermore, gross and histopathologic changes in the brain were minimal. These findings suggest that the symptoms in these animals resulted from nonspecific encephalopathy, similar to human immunodeficiency virus, FIV, and simian immunodeficiency virus (SIV) neuropathies, rather than a direct effect of active viral replication. The association of neuropathy and lymphocyte subset alterations with chronic LLV infection suggests that long-term LLV infection can have detrimental effects for the host, including death. This is similar to reports of aged sootey mangabeys dying from diseases typically associated with end-stage SIV infection and indicates areas for further research of lentiviral infections of seemingly adapted natural hosts, including mechanisms of host control and viral adaptation. PMID:17005739
Neurologic disease in captive lions (Panthera leo) with low-titer lion lentivirus infection.
Brennan, Greg; Podell, Michael D; Wack, Raymund; Kraft, Susan; Troyer, Jennifer L; Bielefeldt-Ohmann, Helle; VandeWoude, Sue
2006-12-01
Lion lentivirus (LLV; also known as feline immunodeficiency virus of lion, Panthera leo [FIVPle]) is present in free-ranging and captive lion populations at a seroprevalence of up to 100%; however, clinical signs are rarely reported. LLV displays up to 25% interclade sequence diversity, suggesting that it has been in the lion population for some time and may be significantly host adapted. Three captive lions diagnosed with LLV infection displayed lymphocyte subset alterations and progressive behavioral, locomotor, and neuroanatomic abnormalities. No evidence of infection with other potential neuropathogens was found. Antemortem electrodiagnostics and radiologic imaging indicated a diagnosis consistent with lentiviral neuropathy. PCR was used to determine a partial lentiviral genomic sequence and to quantify the proviral burden in eight postmortem tissue specimens. Phylogenetic analysis demonstrated that the virus was consistent with the LLV detected in other captive and free-ranging lions. Despite progressive neurologic signs, the proviral load in tissues, including several regions of the brain, was low; furthermore, gross and histopathologic changes in the brain were minimal. These findings suggest that the symptoms in these animals resulted from nonspecific encephalopathy, similar to human immunodeficiency virus, FIV, and simian immunodeficiency virus (SIV) neuropathies, rather than a direct effect of active viral replication. The association of neuropathy and lymphocyte subset alterations with chronic LLV infection suggests that long-term LLV infection can have detrimental effects for the host, including death. This is similar to reports of aged sootey mangabeys dying from diseases typically associated with end-stage SIV infection and indicates areas for further research of lentiviral infections of seemingly adapted natural hosts, including mechanisms of host control and viral adaptation.
The Effects of Captivity on the Mammalian Gut Microbiome
McKenzie, Valerie J.; Song, Se Jin; Delsuc, Frédéric; Prest, Tiffany L.; Oliverio, Angela M.; Korpita, Timothy M.; Alexiev, Alexandra; Amato, Katherine R.; Metcalf, Jessica L.; Kowalewski, Martin; Avenant, Nico L.; Link, Andres; Di Fiore, Anthony; Seguin-Orlando, Andaine; Feh, Claudia; Orlando, Ludovic; Mendelson, Joseph R.; Sanders, Jon; Knight, Rob
2017-01-01
Synopsis Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host. PMID:28985326
The MVMp P4 promoter is a host cell-type range determinant in vivo.
Meir, Chen; Mincberg, Michal; Rostovsky, Irina; Tal, Saar; Vollmers, Ellen M; Levi, Adi; Tattersall, Peter; Davis, Claytus
2017-06-01
The protoparvovirus early promoters, e.g. P4 of Minute Virus of Mice (MVM), play a critical role during infection. Initial P4 activity depends on the host transcription machinery only. Since this is cell-type dependent, it is hypothesized that P4 is a host cell-type range determinant. Yet host range determinants have mapped mostly to capsid, never P4. Here we test the hypothesis using the mouse embryo as a model system. Disruption of the CRE element of P4 drastically decreased infection levels without altering range. However, when we swapped promoter elements of MVM P4 with those from equivalent regions of the closely related H1 virus, we observed elimination of infection in fibroblasts and chondrocytes and the acquisition of infection in skeletal muscle. We conclude that P4 is a host range determinant and a target for modifying the productive infection potential of the virus - an important consideration in adapting these viruses for oncotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Liang; Cooper, Tamara; Eldi, Preethi; Garcia-Valtanen, Pablo; Diener, Kerrilyn R; Howley, Paul M; Hayball, John D
2017-04-01
Recombinant vaccinia viruses (rVACVs) are promising antigen-delivery systems for vaccine development that are also useful as research tools. Two common methods for selection during construction of rVACV clones are (i) co-insertion of drug resistance or reporter protein genes, which requires the use of additional selection drugs or detection methods, and (ii) dominant host-range selection. The latter uses VACV variants rendered replication-incompetent in host cell lines by the deletion of host-range genes. Replicative ability is restored by co-insertion of the host-range genes, providing for dominant selection of the recombinant viruses. Here, we describe a new method for the construction of rVACVs using the cowpox CP77 protein and unmodified VACV as the starting material. Our selection system will expand the range of tools available for positive selection of rVACV during vector construction, and it is substantially more high-fidelity than approaches based on selection for drug resistance.
Source chemical characterization of swine odor
USDA-ARS?s Scientific Manuscript database
Odors from swine production have been linked to a host of issues affecting quality of life, property values and potentially human health. Typical compounds and classes of compounds include: sulfides, thiols, acids, phenols, indoles, ammonia and amines. The wide range of compounds assoicated with swi...
Nylin, Sören; Slove, Jessica; Janz, Niklas
2014-01-01
It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies. PMID:24372598
Economic game theory for mutualism and cooperation.
Archetti, Marco; Scheuring, István; Hoffman, Moshe; Frederickson, Megan E; Pierce, Naomi E; Yu, Douglas W
2011-12-01
We review recent work at the interface of economic game theory and evolutionary biology that provides new insights into the evolution of partner choice, host sanctions, partner fidelity feedback and public goods. (1) The theory of games with asymmetrical information shows that the right incentives allow hosts to screen-out parasites and screen-in mutualists, explaining successful partner choice in the absence of signalling. Applications range from ant-plants to microbiomes. (2) Contract theory distinguishes two longstanding but weakly differentiated explanations of host response to defectors: host sanctions and partner fidelity feedback. Host traits that selectively punish misbehaving symbionts are parsimoniously interpreted as pre-adaptations. Yucca-moth and legume-rhizobia mutualisms are argued to be examples of partner fidelity feedback. (3) The theory of public goods shows that cooperation in multi-player interactions can evolve in the absence of assortment, in one-shot social dilemmas among non-kin. Applications include alarm calls in vertebrates and exoenzymes in microbes. 2011 Blackwell Publishing Ltd/CNRS.
Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts.
Ammar, El-Desouky; Tsai, Chi-Wei; Whitfield, Anna E; Redinbaugh, Margaret G; Hogenhout, Saskia A
2009-01-01
The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are at least 90 plant-infecting rhabdoviruses, several of which are economically important pathogens of various crops. All definitive plant-infecting and many vertebrate-infecting rhabdoviruses are persistently transmitted by insect vectors, and a few putative plant rhabdoviruses are transmitted by mites. Plant rhabdoviruses replicate in their plant and arthropod hosts, and transmission by vectors is highly specific, with each virus species transmitted by one or a few related insect species, mainly aphids, leafhoppers, or planthoppers. Here, we provide an overview of plant rhabdovirus interactions with their insect hosts and of how these interactions compare with those of vertebrate-infecting viruses and with the Sigma rhabdovirus that infects Drosophila flies. We focus on cellular and molecular aspects of vector/host specificity, transmission barriers, and virus receptors in the vectors. In addition, we briefly discuss recent advances in understanding rhabdovirus-plant interactions.
Introduced species and their missing parasites
Torchin, Mark E.; Lafferty, Kevin D.; Dobson, Andrew P.; McKenzie, Valerie J.; Kuris, Armand M.
2003-01-01
Damage caused by introduced species results from the high population densities and large body sizes that they attain in their new location. Escape from the effects of natural enemies is a frequent explanation given for the success of introduced species. Because some parasites can reduce host density and decrease body size, an invader that leaves parasites behind and encounters few new parasites can experience a demographic release and become a pest. To test whether introduced species are less parasitized, we have compared the parasites of exotic species in their native and introduced ranges, using 26 host species of molluscs, crustaceans, fishes, birds, mammals, amphibians and reptiles. Here we report that the number of parasite species found in native populations is twice that found in exotic populations. In addition, introduced populations are less heavily parasitized (in terms of percentage infected) than are native populations. Reduced parasitization of introduced species has several causes, including reduced probability of the introduction of parasites with exotic species (or early extinction after host establishment), absence of other required hosts in the new location, and the host-specific limitations of native parasites adapting to new hosts.
Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini.
Janz, N; Nyblom, K; Nylin, S
2001-04-01
Two general patterns that have emerged from the intense studies on insect-host plant associations are a predominance of specialists over generalists and a taxonomic conservatism in host-plant use. In most insect-host plant systems, explanations for these patterns must be based on biases in the processes of host colonizations, host shifts, and specialization, rather than cospeciation. In the present paper, we investigate changes in host range in the nymphalid butterfly tribe Nymphalini, using parsimony optimizations of host-plant data on the butterfly phylogeny. In addition, we performed larval establishment tests to search for larval capacity to feed and survive on plants that have been lost from the female egg-laying repertoire. Optimizations suggested an ancestral association with Urticaceae, and most of the tested species showed a capacity to feed on Urtica dioica regardless of actual host-plant use. In addition, there was a bias among the successful establishments on nonhosts toward plants that are used as hosts by other species in the Nymphalini. An increased likelihood of colonizing ancestral or related plants could also provide an alternative explanation for the observed pattern that some plant families appear to have been colonized independently several times in the tribe. We also show that there is no directionality in host range evolution toward increased specialization, that is, specialization is not a dead end. Instead, changes in host range show a very dynamic pattern.
Sapp, Sarah G H; Gupta, Pooja; Martin, Melissa K; Murray, Maureen H; Niedringhaus, Kevin D; Pfaff, Madeleine A; Yabsley, Michael J
2017-08-01
A total of 10 species of Baylisascaris , a genus of ascaridoid nematodes, occur worldwide and 6 of them occur in the New World. Most of the Baylisascaris species have a similar life cycle with carnivorous mammals or marsupials serving as definitive hosts and a smaller prey host serving as paratenic (or intermediate) hosts. However, one species in rodents is unique in that it only has one host. Considerable research has been conducted on B. procyonis, the raccoon roundworm, as it is a well-known cause of severe to fatal neurologic disease in humans and many wildlife species. However, other Baylisascaris species could cause larva migrans but research on them is limited in comparison. In addition to concerns related to the potential impacts of larva migrans on potential paratenic hosts, there are many questions about the geographic ranges, definitive and paratenic host diversity, and general ecology of these non-raccoon Baylisascaris species. Here, we provide a comprehensive review of the current knowledge of New World Baylisascaris species, including B. columnaris of skunks, B. transfuga and B. venezuelensis of bears, B. laevis of sciurids, B. devosi of gulonids, B. melis of badgers, and B. potosis of kinkajou. Discussed are what is known regarding the morphology, host range, geographic distribution, ecoepidemiology, infection dynamics in definitive and paratenic hosts, treatment, and control of these under-studied species. Also, we discuss the currently used molecular tools used to investigate this group of parasites. Because of morphologic similarities among larval stages of sympatric Baylisascaris species, these molecular tools should provide critical insight into these poorly-understood areas, especially paratenic and definitive host diversity and the possible risk these parasites pose to the health to the former group. This, paired with traditional experimental infections, morphological analysis, and field surveys will lead to a greater understanding of this interesting and important nematode genus.
Allison, Andrew B; Organtini, Lindsey J; Zhang, Sheng; Hafenstein, Susan L; Holmes, Edward C; Parrish, Colin R
2016-01-15
Sylvatic carnivores, such as raccoons, have recently been recognized as important hosts in the evolution of canine parvovirus (CPV), a pandemic pathogen of domestic dogs. Although viruses from raccoons do not efficiently bind the dog transferrin receptor (TfR) or infect dog cells, a single mutation changing an aspartic acid to a glycine at capsid (VP2) position 300 in the prototype raccoon CPV allows dog cell infection. Because VP2 position 300 exhibits extensive amino acid variation among the carnivore parvoviruses, we further investigated its role in determining host range by analyzing its diversity and evolution in nature and by creating a comprehensive set of VP2 position 300 mutants in infectious clones. Notably, some position 300 residues rendered CPV noninfectious for dog, but not cat or fox, cells. Changes of adjacent residues (residues 299 and 301) were also observed often after cell culture passage in different hosts, and some of the mutations mimicked changes seen in viruses recovered from natural infections of alternative hosts, suggesting that compensatory mutations were selected to accommodate the new residue at position 300. Analysis of the TfRs of carnivore hosts used in the experimental evolution studies demonstrated that their glycosylation patterns varied, including a glycan present only on the domestic dog TfR that dictates susceptibility to parvoviruses. Overall, there were significant differences in the abilities of viruses with alternative position 300 residues to bind TfRs and infect different carnivore hosts, demonstrating that the process of infection is highly host dependent and that VP2 position 300 is a key determinant of host range. Although the emergence and pandemic spread of canine parvovirus (CPV) are well documented, the carnivore hosts and evolutionary pathways involved in its emergence remain enigmatic. We recently demonstrated that a region in the capsid structure of CPV, centered around VP2 position 300, varies after transfer to alternative carnivore hosts and may allow infection of previously nonsusceptible hosts in vitro. Here we show that VP2 position 300 is the most variable residue in the parvovirus capsid in nature, suggesting that it is a critical determinant in the cross-species transfer of viruses between different carnivores due to its interactions with the transferrin receptor to mediate infection. To this end, we demonstrated that there are substantial differences in receptor binding and infectivity of various VP2 position 300 mutants for different carnivore species and that single mutations in this region can influence whether a host is susceptible or refractory to virus infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Organtini, Lindsey J.; Zhang, Sheng; Hafenstein, Susan L.; Holmes, Edward C.
2015-01-01
ABSTRACT Sylvatic carnivores, such as raccoons, have recently been recognized as important hosts in the evolution of canine parvovirus (CPV), a pandemic pathogen of domestic dogs. Although viruses from raccoons do not efficiently bind the dog transferrin receptor (TfR) or infect dog cells, a single mutation changing an aspartic acid to a glycine at capsid (VP2) position 300 in the prototype raccoon CPV allows dog cell infection. Because VP2 position 300 exhibits extensive amino acid variation among the carnivore parvoviruses, we further investigated its role in determining host range by analyzing its diversity and evolution in nature and by creating a comprehensive set of VP2 position 300 mutants in infectious clones. Notably, some position 300 residues rendered CPV noninfectious for dog, but not cat or fox, cells. Changes of adjacent residues (residues 299 and 301) were also observed often after cell culture passage in different hosts, and some of the mutations mimicked changes seen in viruses recovered from natural infections of alternative hosts, suggesting that compensatory mutations were selected to accommodate the new residue at position 300. Analysis of the TfRs of carnivore hosts used in the experimental evolution studies demonstrated that their glycosylation patterns varied, including a glycan present only on the domestic dog TfR that dictates susceptibility to parvoviruses. Overall, there were significant differences in the abilities of viruses with alternative position 300 residues to bind TfRs and infect different carnivore hosts, demonstrating that the process of infection is highly host dependent and that VP2 position 300 is a key determinant of host range. IMPORTANCE Although the emergence and pandemic spread of canine parvovirus (CPV) are well documented, the carnivore hosts and evolutionary pathways involved in its emergence remain enigmatic. We recently demonstrated that a region in the capsid structure of CPV, centered around VP2 position 300, varies after transfer to alternative carnivore hosts and may allow infection of previously nonsusceptible hosts in vitro. Here we show that VP2 position 300 is the most variable residue in the parvovirus capsid in nature, suggesting that it is a critical determinant in the cross-species transfer of viruses between different carnivores due to its interactions with the transferrin receptor to mediate infection. To this end, we demonstrated that there are substantial differences in receptor binding and infectivity of various VP2 position 300 mutants for different carnivore species and that single mutations in this region can influence whether a host is susceptible or refractory to virus infection. PMID:26512077
Periodontitis, Microbiomes and their Role in Alzheimer’s Disease
Pritchard, Anna B.; Crean, StJohn; Olsen, Ingar; Singhrao, Sim K.
2017-01-01
As far back as the eighteenth and early nineteenth centuries, microbial infections were responsible for vast numbers of deaths. The trend reversed with the introduction of antibiotics coinciding with longer life. Increased life expectancy however, accompanied the emergence of age related chronic inflammatory states including the sporadic form of Alzheimer’s disease (AD). Taken together, the true challenge of retaining health into later years of life now appears to lie in delaying and/or preventing the progression of chronic inflammatory diseases, through identifying and influencing modifiable risk factors. Diverse pathogens, including periodontal bacteria have been associated with AD brains. Amyloid-beta (Aβ) hallmark protein of AD may be a consequence of infection, called upon due to its antimicrobial properties. Up to this moment in time, a lack of understanding and knowledge of a microbiome associated with AD brain has ensured that the role pathogens may play in this neurodegenerative disease remains unresolved. The oral microbiome embraces a range of diverse bacterial phylotypes, which especially in vulnerable individuals, will excite and perpetuate a range of inflammatory conditions, to a wide range of extra-oral body tissues and organs specific to their developing pathophysiology, including the brain. This offers the tantalizing opportunity that by controlling the oral-specific microbiome; clinicians may treat or prevent a range of chronic inflammatory diseases orally. Evolution has equipped the human host to combat infection/disease by providing an immune system, but Porphyromonas gingivalis and selective spirochetes, have developed immune avoidance strategies threatening the host-microbe homeostasis. It is clear from longitudinal monitoring of patients that chronic periodontitis contributes to declining cognition. The aim here is to discuss the contribution from opportunistic pathogens of the periodontal microbiome, and highlight the challenges, the host faces, when dealing with unresolvable oral infections that may lead to clinical manifestations that are characteristic for AD. PMID:29114218
Ortega-Olivares, Mirza P; García-Prieto, Luis; García-Varela, Martín
2014-05-12
As a result of this study, 8 new host (Botaurus lentiginosus for Glossocercus caribaensis and Valipora mutabilis; Egretta caerulea for Valipora minuta; Egretta thula for Glossocercus cyprinodontis; Egretta tricolor and Nycticorax nycticorax for Glossocercus caribaensis; Pelecanus occidentalis and Platalea ajaja for Paradilepis caballeroi) and 31 new locality records for gryporhynchid cestode species in Mexico are presented. With these data, the total number of species of this group of helminths in Mexico becomes 25 (19 named species and 6 unidentified taxa), which have been registered as parasites of fishes (47 host species) and (or) birds (20 host species). This information comes from 102 localities, pertaining to 20 of 32 Mexican states. Five of the 25 taxa have been exclusivelly collected in fishes, 7 in fish-eating birds, and 13 in both groups of hosts. The most frequent metacestodes found in Mexican fishes are the merocercoids of Cyclustera ralli, Valipora mutabilis, Parvitaenia cochlearii and Valipora campylancristrota; in adult stage, Glossocercus caribaensis was the species with the largest host spectrum, while Paradilepis caballeroi has the widest distribution range. The work includes parasite/host lists, as well as habitat, distribution, references and information on specimens' deposition.
Interaction of entomopathogenic fungi with the host immune system.
Qu, Shuang; Wang, Sibao
2018-06-01
Entomopathogenic fungi can invade wide range of insect hosts in the natural world and have been used as environmentally friendly alternatives to chemical insecticides for pest control. Studies of host-pathogen interactions provide valuable insights into the coevolutionay arms race between fungal pathogens and their hosts. Entomopathogenic fungi have evolved a series of sophisticated strategies to counter insect immune defenses. In response to fungal infection, insect hosts rely on behavior avoidance, physical barrier and innate immune defenses in the fight against invading pathogens. The insect cuticle acts as the first physical barrier against pathogens. It is an inhospitable physiological environment that contains chemicals (e.g., antimicrobial peptides and reactive oxygen species), which inhibit fungal growth. In addition, innate immune responses, including cellular immunity and humoral immunity, play critical roles in preventing fungal infection. In this review, we outline the current state of our knowledge of insect defenses to fungal infection and discuss the strategies by which entomopathogenic fungi counter the host immune system. Increased knowledge regarding the molecular interactions between entomopathogenic fungi and the insect host could provide new strategies for pest management. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zumla, Alimuddin; Rao, Martin; Wallis, Robert S; Kaufmann, Stefan H E; Rustomjee, Roxana; Mwaba, Peter; Vilaplana, Cris; Yeboah-Manu, Dorothy; Chakaya, Jeremiah; Ippolito, Giuseppe; Azhar, Esam; Hoelscher, Michael; Maeurer, Markus
2016-04-01
Despite extensive global efforts in the fight against killer infectious diseases, they still cause one in four deaths worldwide and are important causes of long-term functional disability arising from tissue damage. The continuing epidemics of tuberculosis, HIV, malaria, and influenza, and the emergence of novel zoonotic pathogens represent major clinical management challenges worldwide. Newer approaches to improving treatment outcomes are needed to reduce the high morbidity and mortality caused by infectious diseases. Recent insights into pathogen-host interactions, pathogenesis, inflammatory pathways, and the host's innate and acquired immune responses are leading to identification and development of a wide range of host-directed therapies with different mechanisms of action. Host-directed therapeutic strategies are now becoming viable adjuncts to standard antimicrobial treatment. Host-directed therapies include commonly used drugs for non-communicable diseases with good safety profiles, immunomodulatory agents, biologics (eg monoclonal antibodies), nutritional products, and cellular therapy using the patient's own immune or bone marrow mesenchymal stromal cells. We discuss clinically relevant examples of progress in identifying host-directed therapies as adjunct treatment options for bacterial, viral, and parasitic infectious diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis.
Stilling, R M; Dinan, T G; Cryan, J F
2014-01-01
To date, there is rapidly increasing evidence for host-microbe interaction at virtually all levels of complexity, ranging from direct cell-to-cell communication to extensive systemic signalling, and involving various organs and organ systems, including the central nervous system. As such, the discovery that differential microbial composition is associated with alterations in behaviour and cognition has significantly contributed to establishing the microbiota-gut-brain axis as an extension of the well-accepted gut-brain axis concept. Many efforts have been focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome to neurodevelopmental disorders such as autism. There is also a growing appreciation of the role of epigenetic mechanisms in shaping brain and behaviour. However, the role of epigenetics in informing host-microbe interactions has received little attention to date. This is despite the fact that there are many plausible routes of interaction between epigenetic mechanisms and the host-microbiota dialogue. From this new perspective we put forward novel, yet testable, hypotheses. Firstly, we suggest that gut-microbial products can affect chromatin plasticity within their host's brain that in turn leads to changes in neuronal transcription and eventually alters host behaviour. Secondly, we argue that the microbiota is an important mediator of gene-environment interactions. Finally, we reason that the microbiota itself may be viewed as an epigenetic entity. In conclusion, the fields of (neuro)epigenetics and microbiology are converging at many levels and more interdisciplinary studies are necessary to unravel the full range of this interaction. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Li, Zhiguo; Su, Songkun; Hamilton, Michele; Yan, Limin; Chen, Yanping
2014-07-01
We demonstrated that honey bee viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV) and Israeli acute paralysis virus (IAPV) could infect and replicate in the fungal pathogen Ascosphaera apis that causes honey bee chalkbrood disease, revealing a novel biological feature of honey bee viruses. The phylogenetic analysis show that viruses of fungal and honey bee origins form two clusters in the phylogenetic trees distinctly and that host range of honey bee viruses is dynamic. Further studies are warranted to investigate the impact of the viruses on the fitness of their fungal host and phenotypic effects the virus-fungus combination has on honey bee hosts. Published by Elsevier Inc.
Patterns of co-speciation and host switching in primate malaria parasites.
Garamszegi, László Zsolt
2009-05-22
The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites. Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between Plasmodium parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites. Related lineages of primate-infective Plasmodium tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate hosts, the congruent evolution is less emphasized for other parasite lineages (e.g. for human malaria parasites). Estimation of ancestral states of host use along the phylogenetic tree of parasites revealed that lateral transfers across distantly related hosts were likely to occur in several cases. Parasites cannot infect all available hosts, and they should preferentially infect hosts that provide a similar environment for reproduction. Marginally significant evidence suggested that there might be a consistent variation within host ranges in terms of physiology. The evolution of primate malarias is constrained by the phylogenetic associations of their hosts. Some parasites can preserve a great flexibility to infect hosts across a large phylogenetic distance, thus host switching can be an important factor in mediating host ranges observed in nature. Due to this inherent flexibility and the potential exposure to various vectors, the emergence of new malaria disease in primates including humans cannot be predicted from the phylogeny of parasites.
Molecular epidemiology of Cryptosporidium and Giardia in cattle
USDA-ARS?s Scientific Manuscript database
Cryptosporidium spp. and Giardia duodenalis are enteric protozoan parasites that infect a wide range of vertebrate hosts including humans. Infections with both parasites are known as one of the most common causes of diarrhea in humans and livestock. The epidemiology of cryptosporidiosis and giardias...
Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry
Bose, Sayantan; Jardetzky, Theodore S.; Lamb, Robert A.
2015-01-01
The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. PMID:25771804
Host range diversification within the IncP-1 plasmid group
Yano, Hirokazu; Rogers, Linda M.; Knox, Molly G.; Heuer, Holger; Smalla, Kornelia; Brown, Celeste J.
2013-01-01
Broad-host-range plasmids play a critical role in the spread of antibiotic resistance and other traits. In spite of increasing information about the genomic diversity of closely related plasmids, the relationship between sequence divergence and host range remains unclear. IncP-1 plasmids are currently classified into six subgroups based on the genetic distance of backbone genes. We investigated whether plasmids from two subgroups exhibit a different host range, using two IncP-1γ plasmids, an IncP-1β plasmid and their minireplicons. Efficiencies of plasmid establishment and maintenance were compared using five species that belong to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. The IncP-1β plasmid replicated and persisted in all five hosts in the absence of selection. Of the two IncP-1γ plasmids, both were unable to replicate in alphaproteobacterial host Sphingobium japonicum, and one established itself in Agrobacterium tumefaciens but was very unstable. In contrast, both IncP-1γ minireplicons, which produced higher levels of replication initiation protein than the wild-type plasmids, replicated in all strains, suggesting that poor establishment of the native plasmids is in part due to suboptimal replication initiation gene regulation. The findings suggest that host ranges of distinct IncP-1 plasmids only partially overlap, which may limit plasmid recombination and thus result in further genome divergence. PMID:24002747
Truyen, U; Parrish, C R
1992-01-01
Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts. Images PMID:1323703
Junglen, Sandra; Korries, Marvin; Grasse, Wolfgang; Wieseler, Janett; Kopp, Anne; Hermanns, Kyra; León-Juárez, Moises; Drosten, Christian; Kümmerer, Beate Mareike
2017-01-01
The genus Flavivirus contains emerging arthropod-borne viruses (arboviruses) infecting vertebrates, as well as insect-specific viruses (ISVs) (i.e., viruses whose host range is restricted to insects). ISVs are evolutionary precursors to arboviruses. Knowledge of the nature of the ISV infection block in vertebrates could identify functions necessary for the expansion of the host range toward vertebrates. Mapping of host restrictions by complementation of ISV and arbovirus genome functions could generate knowledge critical to predicting arbovirus emergence. Here we isolated a novel flavivirus, termed Niénokoué virus (NIEV), from mosquitoes sampled in Côte d'Ivoire. NIEV groups with insect-specific flaviviruses (ISFs) in phylogeny and grows in insect cells but not in vertebrate cells. We generated an infectious NIEV cDNA clone and a NIEV reporter replicon to study growth restrictions of NIEV in comparison to yellow fever virus (YFV), for which the same tools are available. Efficient RNA replication of the NIEV reporter replicon was observed in insect cells but not in vertebrate cells. Initial translation of the input replicon RNA in vertebrate cells was functional, but RNA replication did not occur. Chimeric YFV carrying the envelope proteins of NIEV was recovered via electroporation in C6/36 insect cells but did not infect vertebrate cells, indicating a block at the level of entry. Since the YF/NIEV chimera readily produced infectious particles in insect cells but not in vertebrate cells despite efficient RNA replication, restriction is also determined at the level of assembly/release. Taking the results together, the ability of ISF to infect vertebrates is blocked at several levels, including attachment/entry and RNA replication as well as assembly/release. IMPORTANCE Most viruses of the genus Flavivirus , e.g., YFV and dengue virus, are mosquito borne and transmitted to vertebrates during blood feeding of mosquitoes. Within the last decade, an increasing number of viruses with a host range exclusively restricted to insects in close relationship to the vertebrate-pathogenic flaviviruses were discovered in mosquitoes. To identify barriers that could block the arboviral vertebrate tropism, we set out to identify the steps at which the ISF replication cycle fails in vertebrates. Our studies revealed blocks at several levels, suggesting that flavivirus host range expansion from insects to vertebrates was a complex process that involved overcoming multiple barriers.
Junglen, Sandra; Korries, Marvin; Grasse, Wolfgang; Wieseler, Janett; Kopp, Anne; Hermanns, Kyra; León-Juárez, Moises; Drosten, Christian
2017-01-01
ABSTRACT The genus Flavivirus contains emerging arthropod-borne viruses (arboviruses) infecting vertebrates, as well as insect-specific viruses (ISVs) (i.e., viruses whose host range is restricted to insects). ISVs are evolutionary precursors to arboviruses. Knowledge of the nature of the ISV infection block in vertebrates could identify functions necessary for the expansion of the host range toward vertebrates. Mapping of host restrictions by complementation of ISV and arbovirus genome functions could generate knowledge critical to predicting arbovirus emergence. Here we isolated a novel flavivirus, termed Niénokoué virus (NIEV), from mosquitoes sampled in Côte d’Ivoire. NIEV groups with insect-specific flaviviruses (ISFs) in phylogeny and grows in insect cells but not in vertebrate cells. We generated an infectious NIEV cDNA clone and a NIEV reporter replicon to study growth restrictions of NIEV in comparison to yellow fever virus (YFV), for which the same tools are available. Efficient RNA replication of the NIEV reporter replicon was observed in insect cells but not in vertebrate cells. Initial translation of the input replicon RNA in vertebrate cells was functional, but RNA replication did not occur. Chimeric YFV carrying the envelope proteins of NIEV was recovered via electroporation in C6/36 insect cells but did not infect vertebrate cells, indicating a block at the level of entry. Since the YF/NIEV chimera readily produced infectious particles in insect cells but not in vertebrate cells despite efficient RNA replication, restriction is also determined at the level of assembly/release. Taking the results together, the ability of ISF to infect vertebrates is blocked at several levels, including attachment/entry and RNA replication as well as assembly/release. IMPORTANCE Most viruses of the genus Flavivirus, e.g., YFV and dengue virus, are mosquito borne and transmitted to vertebrates during blood feeding of mosquitoes. Within the last decade, an increasing number of viruses with a host range exclusively restricted to insects in close relationship to the vertebrate-pathogenic flaviviruses were discovered in mosquitoes. To identify barriers that could block the arboviral vertebrate tropism, we set out to identify the steps at which the ISF replication cycle fails in vertebrates. Our studies revealed blocks at several levels, suggesting that flavivirus host range expansion from insects to vertebrates was a complex process that involved overcoming multiple barriers. PMID:28101536
Elsheikha, Hany M
2009-08-26
The question of how Sarcocystis neurona is able to overcome species barrier and adapt to new hosts is central to the understanding of both the evolutionary origin of S. neurona and the prediction of its field host range. Therefore, it is worth reviewing current knowledge on S. neurona host specificity. The available host range data for S. neurona are discussed in relation to a subject of evolutionary importance-specialist or generalist and its implications to understand the strategies of host adaptation. Current evidences demonstrate that a wide range of hosts exists for S. neurona. This parasite tends to be highly specific for its definitive host but much less so for its intermediate host (I.H.). The unique specificity of S. neurona for its definitive host may be mediated by a probable long coevolutionary relationship of the parasite and carnivores in a restricted ecological niche 'New World'. This might be taken as evidence that carnivores are the 'original' host group for S. neurona. Rather, the capacity of S. neurona to exploit an unusually large number of I.H. species probably indicates that S. neurona maintains non-specificity to its I.H. as an adaptive response to insure the survival of the parasite in areas in which the 'preferred' host is not available. This review concludes with the view that adaptation of S. neurona to a new host is a complex interplay that involves a large number of determinants.
The Fleas (Siphonaptera) in Iran: Diversity, Host Range, and Medical Importance
Maleki-Ravasan, Naseh; Solhjouy-Fard, Samaneh; Beaucournu, Jean-Claude; Laudisoit, Anne
2017-01-01
Background Flea-borne diseases have a wide distribution in the world. Studies on the identity, abundance, distribution and seasonality of the potential vectors of pathogenic agents (e.g. Yersinia pestis, Francisella tularensis, and Rickettsia felis) are necessary tools for controlling and preventing such diseases outbreaks. The improvements of diagnostic tools are partly responsible for an easier detection of otherwise unnoticed agents in the ectoparasitic fauna and as such a good taxonomical knowledge of the potential vectors is crucial. The aims of this study were to make an exhaustive inventory of the literature on the fleas (Siphonaptera) and range of associated hosts in Iran, present their known distribution, and discuss their medical importance. Methodology/Principal Findings The data were obtained by an extensive literature review related to medically significant fleas in Iran published before 31st August 2016. The flea-host specificity was then determined using a family and subfamily-oriented criteria to further realize and quantify the shared and exclusive vertebrate hosts of fleas among Iran fleas. The locations sampled and reported in the literature were primarily from human habitation, livestock farms, poultry, and rodents’ burrows of the 31 provinces of the country. The flea fauna were dominated by seven families, namely the Ceratophyllidae, Leptopsyllidae, Pulicidae, Ctenophthalmidae, Coptopsyllidae, Ischnopsyllidae and Vermipsyllidae. The hosts associated with Iran fleas ranged from the small and large mammals to the birds. Pulicidae were associated with 73% (56/77) of identified host species. Flea-host association analysis indicates that rodents are the common hosts of 5 flea families but some sampling bias results in the reduced number of bird host sampled. Analyses of flea-host relationships at the subfamily level showed that most vertebrates hosted fleas belgonging to 3 subfamilies namely Xenopsyllinae (n = 43), Ctenophthalminae (n = 20) and Amphipsyllinae (n = 17). Meriones persicus was infested by 11 flea subfamilies in the arid, rocky, mountainous regions and Xenopsyllinae were hosted by at least 43 mammal species. These findings place the Persian jird (M. persicus) and the Xenopsyllinae as the major vertebrate and vector hosts of flea-borne diseases in Iran including Yersinia pestis, the etiological agent of plague. We found records of at least seven vector-borne pathogenic agents that can potentially be transmitted by the 117 flea species (or subspecies) of Iran. Conclusions/Significance Herein, we performed a thorough inventary of the flea species and their associated hosts, their medical importance and geographic distribution throughout Iran. This exercise allowed assessing the diversity of flea species with the potential flea-borne agents transmission risk in the country by arranging published data on flea-host associations. This information is a first step for issuing public health policies and rodent-flea control campaigns in Iran as well as those interested in the ecology/epidemiology of flea-borne disease. PMID:28068343
The emerging influenza virus threat: status and new prospects for its therapy and control.
Kumar, Binod; Asha, Kumari; Khanna, Madhu; Ronsard, Larance; Meseko, Clement Adebajo; Sanicas, Melvin
2018-04-01
Influenza A viruses (IAVs) are zoonotic pathogens that cause yearly outbreaks with high rates of morbidity and fatality. The virus continuously acquires point mutations while circulating in several hosts, ranging from aquatic birds to mammals, including humans. The wide range of hosts provides influenza A viruses greater chances of genetic re-assortment, leading to the emergence of zoonotic strains and occasional pandemics that have a severe impact on human life. Four major influenza pandemics have been reported to date, and health authorities worldwide have shown tremendous progress in efforts to control epidemics and pandemics. Here, we primarily discuss the pathogenesis of influenza virus type A, its epidemiology, pandemic potential, current status of antiviral drugs and vaccines, and ways to effectively manage the disease during a crisis.
Host tree resistance against the polyphagous
W. D. Morewood; K. Hoover; P. R. Neiner; J.R. McNeil; J. C. Sellmer
2004-01-01
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiini) is an invasive wood-boring beetle with an unusually broad host range and a proven ability to increase its host range as it colonizes new areas and encounters new tree species. The beetle is native to eastern Asia and has become an invasive pest in North America and Europe,...
Hosts of stolbur phytoplasmas in maize redness affected fields
USDA-ARS?s Scientific Manuscript database
The plant host range of a phytoplasma is strongly dependent on the host range of its insect vector. Maize redness in Serbia is caused by stolbur phytoplasma (subgroup 16SrXII-A) and is transmitted by the cixiid planthoper, Reptalus panzeri (Löw). R. panzeri was the only potential vector found to be ...
A model for the energy band gap of GaSbxAs1-x and InSbxAs1-x in the whole composition range
NASA Astrophysics Data System (ADS)
Zhao, Chuan-Zhen; Ren, He-Yu; Wei, Tong; Wang, Sha-Sha; Wang, Jun
2018-04-01
The band gap evolutions of GaSbxAs1-x and InSbxAs1-x in the whole composition range are investigated. It is found that the band gap evolutions of GaSbxAs1-x and InSbxAs1-x are determined by two factors. One is the impurity-host interaction in the As-rich and Sb-rich composition ranges. The other is the intraband coupling within the conduction band and separately within the valence band in the moderate composition range. Based on the band gap evolutions of GaSbxAs1-x and InSbxAs1-x, a model is established. In addition, it is found that the impurity-host interaction is determined by not only the mismatches in size and electronegativity between the introduced atoms in the host material and the anions of the host material, but also the difference in electronegativity between the introduced atoms in the host material and the cations of the host material.
Split Personality of a Potyvirus: To Specialize or Not to Specialize?
Kehoe, Monica A.; Coutts, Brenda A.; Buirchell, Bevan J.; Jones, Roger A. C.
2014-01-01
Bean yellow mosaic virus (BYMV), genus Potyvirus, has an extensive natural host range encompassing both dicots and monocots. Its phylogenetic groups were considered to consist of an ancestral generalist group and six specialist groups derived from this generalist group during plant domestication. Recombination was suggested to be playing a role in BYMV's evolution towards host specialization. However, in subsequent phylogenetic analysis of whole genomes, group names based on the original hosts of isolates within each of them were no longer supported. Also, nine groups were found and designated I-IX. Recombination analysis was conducted on the complete coding regions of 33 BYMV genomes and two genomes of the related Clover yellow vein virus (CYVV). This analysis found evidence for 12 firm recombination events within BYMV phylogenetic groups I–VI, but none within groups VII–IX or CYVV. The greatest numbers of recombination events within a sequence (two or three each) occurred in four groups, three which formerly constituted the single ancestral generalist group (I, II and IV), and group VI. The individual sequences in groups III and V had one event each. These findings with whole genomes are consistent with recombination being associated with expanding host ranges, and call into question the proposed role of recombination in the evolution of BYMV, where it was previously suggested to play a role in host specialization. Instead, they (i) indicate that recombination explains the very broad natural host ranges of the three BYMV groups which infect both monocots and dicots (I, II, IV), and (ii) suggest that the three groups with narrow natural host ranges (III, V, VI) which also showed recombination now have the potential to reduce host specificity and broaden their natural host ranges. PMID:25148372
New Hepatitis B Virus of Cranes That Has an Unexpected Broad Host Range
Prassolov, Alexej; Hohenberg, Heinz; Kalinina, Tatyana; Schneider, Carola; Cova, Lucyna; Krone, Oliver; Frölich, Kai; Will, Hans; Sirma, Hüseyin
2003-01-01
All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation. PMID:12525630
New hepatitis B virus of cranes that has an unexpected broad host range.
Prassolov, Alexej; Hohenberg, Heinz; Kalinina, Tatyana; Schneider, Carola; Cova, Lucyna; Krone, Oliver; Frölich, Kai; Will, Hans; Sirma, Hüseyin
2003-02-01
All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation.
González, M T; Oliva, M E
2009-04-01
Nested structure is a pattern originally described in island biogeography to characterize how a set of species is distributed among a set of islands. In parasite communities, nestedness has been intensively studied among individual fish from a locality. However, nested patterns among parasite assemblages from different host populations (localities) have scarcely been investigated. We recorded the occurrence of parasites in 9 fish species widely distributed along the southeastern Pacific coast to determine whether the ecto- and endoparasite assemblages of marine fishes show a nested structure associated with host distributional range. Nestedness was tested using Brualdi-Sanderson index of discrepancy (BR); and 5 null models incorporated in a 'Nestedness' programme (Ulrich, 2006). The ecto- and endoparasite richness do not show similar patterns of latitudinal gradients among fish hosts, with 33-66% of analysed ectoparasite assemblages, and 25-75% of endoparasite assemblages showing nested structures through the host distributional range. For ectoparasites, species richness gradients and nested structure (when present) might be associated with decreased host densities or could reflect negative environmental conditions in the distributional border of the host species, whereas for endoparasites might be caused by geographical breaks of prey or changes in prey availability (intermediate hosts). The sampled extension of the distributional range of the host species, as well as the lack of specificity of some parasites, could influence the detection of nestedness.
Association and Host Selectivity in Multi-Host Pathogens
Malpica, José M.; Sacristán, Soledad; Fraile, Aurora; García-Arenal, Fernando
2006-01-01
The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens. PMID:17183670
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu
We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of 1.8{sub −1.0}{sup +2.3} R{sub vir,host} for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances (3.7{sub −2.2}{sup +3.3} R{sub vir,host} at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ∼1:5 and larger mergers which cause transient circular velocity spikes) and peakmore » mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (∼1.9 R {sub vir,} {sub host}) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.« less
Mergers and Mass Accretion for Infalling Halos Both End Well Outside Cluster Virial Radii
NASA Astrophysics Data System (ADS)
Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu; Hahn, Oliver; Busha, Michael T.; Klypin, Anatoly; Primack, Joel R.
2014-06-01
We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of 1.8^{+2.3}_{-1.0} \\,R_{vir,host} for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances (3.7^{+3.3}_{-2.2} \\,R_{vir,host} at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ~1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (~1.9 R vir, host) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.
Morelli, Federico; Benedetti, Yanina; Møller, Anders Pape; Liang, Wei; Carrascal, Luis M
2018-05-01
The evolutionary distinctiveness (ED) score is a measure of phylogenetic isolation that quantifies the evolutionary uniqueness of a species. Here, we compared the ED score of parasitic and non-parasitic cuckoo species world-wide, to understand whether parental care or parasitism represents the largest amount of phylogenetic uniqueness. Next, we focused only on 46 cuckoo species characterized by brood parasitism with a known number of host species, and we explored the associations among ED score, number of host species and breeding range size for these species. We assessed these associations using phylogenetic generalized least squares (PGLS) models, taking into account the phylogenetic signal. Parasitic cuckoo species were not more unique in terms of ED than non-parasitic species. However, we found a significant negative association between the evolutionary uniqueness and host range and a positive correlation between the number of host species and range size of parasitic cuckoos, probably suggesting a passive sampling of hosts by parasitic species as the breeding range broadens. The findings of this study showed that more generalist brood parasites occupied very different positions in a phylogenetic tree, suggesting that they have evolved independently within the Cuculiformes order. Finally, we demonstrated that specialist cuckoo species also represent the most evolutionarily unique species in the order of Cuculiformes. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Wolfe, Benjamin E; Pringle, Anne
2012-04-01
The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.
Wolfe, Benjamin E; Pringle, Anne
2012-01-01
The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world. PMID:22134645
Tephritid fruit fly transgenesis and applications
USDA-ARS?s Scientific Manuscript database
Tephritid fruit flies are among the most serious agricultural pests in the world, owing in large part to those species having broad host ranges including hundreds of fruits and vegetables. They are the largest group of insects subject to population control by a biologically-based systems, most notab...
Molecular epidemiology of cryptosporidiosis in cattle and other food animals
USDA-ARS?s Scientific Manuscript database
Cryptosporidium spp. is an enteric protozoan parasite that infects a wide range of vertebrate hosts including humans. Cryptosporidial infection is known now as one of the most common causes of diarrhea in humans and livestock. Worldwide prevalence studies indicate that livestock has a high prevalenc...
Colonization of spinach (Spinacia oleracea L.) by GFP-tagged verticillium dahliae.
USDA-ARS?s Scientific Manuscript database
The soilborne fungus, Verticillium dahliae, causes wilt in a wide range of hosts, including spinach (Spinacia oleracea L.). The interaction between a green fluorescent protein (GFP)-tagged V. dahliae strain and spinach was studied by confocal laser scanning microscopy. The roots of spinach seedlings...
Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas.
Ahern, Stephen J; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry; Gonzalez, Carlos F
2014-01-01
The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ~4 × 10(-12) ml cell(-1) min(-1) for X. fastidiosa strain Temecula 1 and ~5 × 10(-10) to 7 × 10(-10) ml cell(-1) min(-1) for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.
Characterization of Novel Virulent Broad-Host-Range Phages of Xylella fastidiosa and Xanthomonas
Ahern, Stephen J.; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry
2014-01-01
The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ∼4 × 10−12 ml cell−1 min−1 for X. fastidiosa strain Temecula 1 and ∼5 × 10−10 to 7 × 10−10 ml cell−1 min−1 for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa. PMID:24214944
Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?
Arnold, A Elizabeth; Lutzoni, F
2007-03-01
Fungal endophytes are found in asymptomatic photosynthetic tissues of all major lineages of land plants. The ubiquity of these cryptic symbionts is clear, but the scale of their diversity, host range, and geographic distributions are unknown. To explore the putative hyperdiversity of tropical leaf endophytes, we compared endophyte communities along a broad latitudinal gradient from the Canadian arctic to the lowland tropical forest of central Panama. Here, we use molecular sequence data from 1403 endophyte strains to show that endophytes increase in incidence, diversity, and host breadth from arctic to tropical sites. Endophyte communities from higher latitudes are characterized by relatively few species from many different classes of Ascomycota, whereas tropical endophyte assemblages are dominated by a small number of classes with a very large number of endophytic species. The most easily cultivated endophytes from tropical plants have wide host ranges, but communities are dominated by a large number of rare species whose host range is unclear. Even when only the most easily cultured species are considered, leaves of tropical trees represent hotspots of fungal species diversity, containing numerous species not yet recovered from other biomes. The challenge remains to recover and identify those elusive and rarely cultured taxa with narrower host ranges, and to elucidate the ecological roles of these little-known symbionts in tropical forests.
Janz, Niklas; Schäpers, Alexander; Gamberale-Stille, Gabriella
2017-01-01
An ovipositing insect experiences many sensory challenges during her search for a suitable host plant. These sensory challenges become exceedingly pronounced when host range increases, as larger varieties of sensory inputs have to be perceived and processed in the brain. Neural capacities can be exceeded upon information overload, inflicting costs on oviposition accuracy. One presumed generalist strategy to diminish information overload is the acquisition of a focused search during its lifetime based on experiences within the current environment, a strategy opposed to a more genetically determined focus expected to be seen in relative specialists. We hypothesized that a broader host range is positively correlated with mushroom body (MB) plasticity, a brain structure related to learning and memory. To test this hypothesis, butterflies with diverging host ranges (Polygonia c-album, Aglais io and Aglais urticae) were subjected to differential environmental complexities for oviposition, after which ontogenetic MB calyx volume differences were compared among species. We found that the relative generalist species exhibited remarkable plasticity in ontogenetic MB volumes; MB growth was differentially stimulated based on the complexity of the experienced environment. For relative specialists, MB volume was more canalized. All in all, this study strongly suggests an impact of host range on brain plasticity in Nymphalid butterflies. PMID:29093221
Effects of host species and population density on Anoplophora glabripennis flight propensity
Joseph A. Francese; David R. Lance; Baode Wang; Zhichun Xu; Alan J. Sawyer; Victor C. Mastro
2007-01-01
Anoplophora glabripennis Motschulsky (Coleoptera: Cerambycidae), the Asian longhorned beetle (ALB) is a pest of hardwoods in its native range of China. While the host range of this pest has been studied extensively, its mechanisms for host selection are still unknown. Our goal was to study the factors influencing movement and orientation of adult ALB...
Upadhyay, Mohita; Samal, Jasmine; Kandpal, Manish; Vasaikar, Suhas; Biswas, Banhi; Gomes, James
2013-01-01
Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to “fractional” methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses. PMID:24109231
Upadhyay, Mohita; Samal, Jasmine; Kandpal, Manish; Vasaikar, Suhas; Biswas, Banhi; Gomes, James; Vivekanandan, Perumal
2013-12-01
Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to "fractional" methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.
Host specialization in ticks and transmission of tick-borne diseases: a review
McCoy, Karen D.; Léger, Elsa; Dietrich, Muriel
2013-01-01
Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock. PMID:24109592
Host specialization in ticks and transmission of tick-borne diseases: a review.
McCoy, Karen D; Léger, Elsa; Dietrich, Muriel
2013-01-01
Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock.
Malone, Kerri M.; Rue-Albrecht, Kévin; Magee, David A.; Conlon, Kevin; Schubert, Olga T.; Nalpas, Nicolas C.; Browne, John A.; Smyth, Alicia; Gormley, Eamonn; Aebersold, Ruedi; MacHugh, David E.; Gordon, Stephen V.
2018-01-01
Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection. PMID:29557774
Valiente-Banuet, Leopoldo; Sánchez-Cordero, Víctor; Stephens, Christopher R.
2017-01-01
Contemporary patterns of land use and global climate change are modifying regional pools of parasite host species. The impact of host community changes on human disease risk, however, is difficult to assess due to a lack of information about zoonotic parasite host assemblages. We have used a recently developed method to infer parasite-host interactions for Chagas Disease (CD) from vector-host co-occurrence networks. Vector-host networks were constructed to analyze topological characteristics of the network and ecological traits of species’ nodes, which could provide information regarding parasite regional dispersal in Mexico. Twenty-eight triatomine species (vectors) and 396 mammal species (potential hosts) were included using a data-mining approach to develop models to infer most-likely interactions. The final network contained 1,576 links which were analyzed to calculate centrality, connectivity, and modularity. The model predicted links of independently registered Trypanosoma cruzi hosts, which correlated with the degree of parasite-vector co-occurrence. Wiring patterns differed according to node location, while edge density was greater in Neotropical as compared to Nearctic regions. Vectors with greatest public health importance (i.e., Triatoma dimidiata, T. barberi, T. pallidipennis, T. longipennis, etc), did not have stronger links with particular host species, although they had a greater frequency of significant links. In contrast, hosts classified as important based on network properties were synanthropic mammals. The latter were the most common parasite hosts and are likely bridge species between these communities, thereby integrating meta-community scenarios beneficial for long-range parasite dispersal. This was particularly true for rodents, >50% of species are synanthropic and more than 20% have been identified as T. cruzi hosts. In addition to predicting potential host species using the co-occurrence networks, they reveal regions with greater expected parasite mobility. The Neotropical region, which includes the Mexican south and southeast, and the Transvolcanic belt, had greatest potential active T. cruzi dispersal, as well as greatest edge density. This information could be directly applied for stratification of transmission risk and to design and analyze human-infected vector contact intervention efficacy. PMID:28413725
Jensen, Kyle C; Hair, Bryan B; Wienclaw, Trevor M; Murdock, Mark H; Hatch, Jacob B; Trent, Aaron T; White, Tyler D; Haskell, Kyler J; Berges, Bradford K
2015-01-01
Staphylococcus aureus (SA) is a commensal bacterium and opportunistic pathogen commonly associated with humans and is capable of causing serious disease and death including sepsis, pneumonia, and meningitis. Methicillin-resistant SA (MRSA) isolates are typically resistant to many available antibiotics with the common exception of vancomycin. The presence of vancomycin resistance in some SA isolates combined with the current heavy use of vancomycin to treat MRSA infections indicates that MRSA may achieve broad resistance to vancomycin in the near future. New MRSA treatments are clearly needed. Bacteriophages (phages) are viruses that infect bacteria, commonly resulting in death of the host bacterial cell. Phage therapy entails the use of phage to treat or prevent bacterial infections. In this study, 12 phages were isolated that can replicate in human SA and/or MRSA isolates as a potential way to control these infections. 5 phage were discovered through mitomycin C induction of prophage and 7 others as extracellular viruses. Primary SA strains were also isolated from environmental sources to be used as tools for phage discovery and isolation as well as to examine the target cell host range of the phage isolates by spot testing. Primary isolates were tested for susceptibility to oxacillin in order to determine which were MRSA. Experiments were performed to assess the host range and killing potential of newly discovered phage, and significant reductions in bacterial load were detected. We explored the utility of some phage to decontaminate fomites (glass and cloth) and found a significant reduction in colony forming units of MRSA following phage treatment, including tests of a phage cocktail against a cocktail of MRSA isolates. Our findings suggest that phage treatment can be used as an effective tool to decontaminate human MRSA from both hard surfaces and fabrics.
Ward, Georgia M; Bennett, Martyn; Bateman, Kelly; Stentiford, Grant D; Kerr, Rose; Feist, Stephen W; Williams, Suzanne T; Berney, Cedric; Bass, David
2016-09-01
Paramyxida is an order of rhizarian protists that parasitise marine molluscs, annelids and crustaceans. They include notifiable pathogens (Marteilia spp.) of bivalves and other taxa of economic significance for shellfish production. The diversity of paramyxids is poorly known, particularly outside of commercially important hosts, and their phylogenetic position is unclear due to their extremely divergent 18S rDNA sequences. However, novel paramyxean lineages are increasingly being detected in a wide range of invertebrate hosts, and interest in the group is growing, marked by the first 'Paramyxean Working Group' Meeting held in Spain in February 2015. We review the diversity, host affiliations, and geographical ranges of all known paramyxids, present a comprehensive phylogeny of the order and clarify its taxonomy. Our phylogenetic analyses confirm the separate status of four genera: Paramarteilia, Marteilioides, Paramyxa and Marteilia. Further, as including M. granula in Marteilia would make the genus paraphyletic we suggest transferring this species to a new genus, Eomarteilia. We present sequence data for Paramyxa nephtys comb. n., a parasite of polychaete worms, providing morphological data for a clade of otherwise environmental sequences, sister to Marteilioides. Light and electron microscopy analyses show strong similarities with both Paramyxa and Paramyxoides, and we further discuss the validity of those two genera. We provide histological and electron microscopic data for Paramarteilia orchestiae, the type species of that genus originally described from the amphipod Orchestia; in situ hybridisation shows that Paramarteilia also infects crab species. We present, to our knowledge, the first known results of a paramyxid-specific environmental DNA survey of environmental (filtered water, sediment, etc.) and organismally-derived samples, revealing new lineages and showing that paramyxids are associated with a wider range of hosts and habitat types than previously known. On the basis of our new phylogeny we propose phylogenetic hypotheses for evolution of lifecycle and infectivity traits observed in different paramyxid genera. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
2016-07-01
ER D C/ EL C R- 16 -5 Aquatic Plant Control Research Program Complete Host Range Testing on Common Reed with Potential Biological...client/default. Aquatic Plant Control Research Program ERDC/EL CR-16-5 July 2016 Complete Host Range Testing on Common Reed with Potential...and started with sequential no-choice oviposition tests. So far, no eggs were found on any of the 22 test plants offered. The authors also found the
Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L
2015-10-01
The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A few good reasons why species-area relationships do not work for parasites.
Strona, Giovanni; Fattorini, Simone
2014-01-01
Several studies failed to find strong relationships between the biological and ecological features of a host and the number of parasite species it harbours. In particular, host body size and geographical range are generally only weak predictors of parasite species richness, especially when host phylogeny and sampling effort are taken into account. These results, however, have been recently challenged by a meta-analytic study that suggested a prominent role of host body size and range extent in determining parasite species richness (species-area relationships). Here we argue that, in general, results from meta-analyses should not discourage researchers from investigating the reasons for the lack of clear patterns, thus proposing a few tentative explanations to the fact that species-area relationships are infrequent or at least difficult to be detected in most host-parasite systems. The peculiar structure of host-parasite networks, the enemy release hypothesis, the possible discrepancy between host and parasite ranges, and the evolutionary tendency of parasites towards specialization may explain why the observed patterns often do not fit those predicted by species-area relationships.
The Non-Photosynthetic Algae Helicosporidium spp.: Emergence of a Novel Group of Insect Pathogens.
Tartar, Aurélien
2013-07-17
Since the original description of Helicosporidium parasiticum in 1921, members of the genus Helicosporidium have been reported to infect a wide variety of invertebrates, but their characterization has remained dependent on occasional reports of infection. Recently, several new Helicosporidium isolates have been successfully maintained in axenic cultures. The ability to produce large quantity of biological material has led to very significant advances in the understanding of Helicosporidium biology and its interactions with insect hosts. In particular, the unique infectious process has been well documented; the highly characteristic cyst and its included filamentous cell have been shown to play a central role during host infection and have been the focus of detailed morphological and developmental studies. In addition, phylogenetic analyses inferred from a multitude of molecular sequences have demonstrated that Helicosporidium are highly specialized non-photosynthetic algae (Chlorophyta: Trebouxiophyceae), and represent the first described entomopathogenic algae. This review provides an overview of (i) the morphology of Helicosporidium cell types, (ii) the Helicosporidium life cycle, including the entire infectious sequence and its impact on insect hosts, (iii) the phylogenetic analyses that have prompted the taxonomic classification of Helicosporidium as green algae, and (iv) the documented host range for this novel group of entomopathogens.
Ecology of zoonotic infectious diseases in bats: current knowledge and future directions
Hayman, D.T.; Bowen, R.A.; Cryan, P.M.; McCracken, G.F.; O'Shea, T.J.; Peel, A.J.; Gilbert, A.; Webb, C.T.; Wood, J.L.
2013-01-01
Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.
Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions
Hayman, D T S; Bowen, R A; Cryan, P M; McCracken, G F; O’Shea, T J; Peel, A J; Gilbert, A; Webb, C T; Wood, J L N
2013-01-01
Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics. PMID:22958281
The Single-Nucleotide Resolution Transcriptome of Pseudomonas aeruginosa Grown in Body Temperature
Dandekar, Ajai A.; Edelheit, Sarit; Greenberg, E. Peter; Sorek, Rotem; Lory, Stephen
2012-01-01
One of the hallmarks of opportunistic pathogens is their ability to adjust and respond to a wide range of environmental and host-associated conditions. The human pathogen Pseudomonas aeruginosa has an ability to thrive in a variety of hosts and cause a range of acute and chronic infections in individuals with impaired host defenses or cystic fibrosis. Here we report an in-depth transcriptional profiling of this organism when grown at host-related temperatures. Using RNA-seq of samples from P. aeruginosa grown at 28°C and 37°C we detected genes preferentially expressed at the body temperature of mammalian hosts, suggesting that they play a role during infection. These temperature-induced genes included the type III secretion system (T3SS) genes and effectors, as well as the genes responsible for phenazines biosynthesis. Using genome-wide transcription start site (TSS) mapping by RNA-seq we were able to accurately define the promoters and cis-acting RNA elements of many genes, and uncovered new genes and previously unrecognized non-coding RNAs directly controlled by the LasR quorum sensing regulator. Overall we identified 165 small RNAs and over 380 cis-antisense RNAs, some of which predicted to perform regulatory functions, and found that non-coding RNAs are preferentially localized in pathogenicity islands and horizontally transferred regions. Our work identifies regulatory features of P. aeruginosa genes whose products play a role in environmental adaption during infection and provides a reference transcriptional landscape for this pathogen. PMID:23028334
Urban activities influence on Phytophthora species diversity in British Columbia, Canada
Angela Dale; Nicolas Feau; Julien Ponchart; Guillaume Bilodeau; Jean Berube; R.C. Hamelin
2017-01-01
Phytophthora de Bary, a genus of Oomycetes, is known as a plant pathogenic genus. The best-known species infect a wide range of hosts, including economically valuable angiosperm and gymnosperm tree species and important agricultural crops. Many Phytophthora are invasive and have been disseminated through nursery and...
Seed and Cone Insects of Southern Pines
Southeastern Forest Experiment Station
1980-01-01
Distribution maps are included for all insect species, providing at a glance each insect's expected southern distribution. Knowledge of some distributions is incomplete. Accordingly, the range maps should be used as general rather than absolute guides.Insect species and their pine hosts are tabulated for each of the three damage...
Coast live oak resistance to Phytophthora ramorum
B.A. McPherson; David L. Wood; Sylvia R. Mori; Pierluigi Bonello
2012-01-01
The oomycete Phytophthora ramorum is a plant pathogen with an unusually broad host range. Recognized in 2000 as a previously unknown and likely introduced species, this pathogen has become established in central and northern coastal California, southwestern Oregon, and Western Europe. Tree species that may be killed by stem cankers include true...
Michael E. Montgomery; Thomas J. McAvoy; Scott M. Salom
2011-01-01
This chapter reports on predators which have only preliminary information or were found to have a host range that was too broad to be considered as safe biological control agents. The predators reviewed here include predaceous anthocorid bugs from China and western North America, a Laricobius beetle from China, and a lady beetle native to western...
Ha, Connie W Y; Lam, Yan Y; Holmes, Andrew J
2014-11-28
Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging.
Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health
Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J
2014-01-01
Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018
M. E. Ostry; K. Woeste
2004-01-01
Butternut canker is killing trees throughout the range of butternut in North America and is threatening the viability of many populations in several areas. Although butternut is the primary host, other Juglans species and some hardwood species also are potential hosts. Evidence is building that genetic resistance within butternut populations may be...
Pierson, Elizabeth A.
2010-01-01
Phenazines constitute a large group of nitrogen-containing heterocyclic compounds produced by a diverse range of bacteria. Both natural and synthetic phenazine derivatives are studied due their impacts on bacterial interactions and biotechnological processes. Phenazines serve as electron shuttles to alternate terminal acceptors, modify cellular redox states, act as cell signals that regulate patterns of gene expression, contribute to biofilm formation and architecture, and enhance bacterial survival. Phenazines have diverse effects on eukaryotic hosts and host tissues, including the modification of multiple host cellular responses. In plants, phenazines also may influence growth and elicit induced systemic resistance. Here, we discuss emerging evidence that phenazines play multiple roles for the producing organism and contribute to their behavior and ecological fitness. PMID:20352425
Gao, Liu; Zhang, Mian; Zhao, Wanyu; Hao, Lu; Chen, Hongcai; Zhang, Rong; Batzer, Jean C.; Gleason, Mark L.; Sun, Guangyu
2014-01-01
Species in the genus Zygophiala are associated with sooty blotch and flyspeck disease on a wide range of hosts. In this study, 63 Zygophiala isolates collected from flyspeck colonies on a range of plants from several regions of China were used for phylogeny, host range and geographic distribution analysis. Phylogenetic trees were constructed on four genes - internal transcribed spacer (ITS), partial translation elongation factor 1-alpha (TEF), β-tubulin (TUB2), and actin (ACT) – both individually and in combination. Isolates were grouped into 11 clades among which five new species, Z. emperorae, Z. trispora, Z. musae, Z. inaequalis and Z. longispora, were described. Species of Zygophiala differed in observed host range and geographic distribution. Z. wisconsinensis and Z. emperorae were the most prevalent throughout the sampled regions of China, whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were collected only in southern China. The hosts of Z. wisconsinensis and Z. emperorae were mainly in the family Rosaceae whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were found mainly on banana (Musa spp.). Cross inoculation tests provided evidence of host specificity among SBFS species. PMID:25329930
Defining the Geographical Range of the Plasmodium knowlesi Reservoir
Moyes, Catherine L.; Henry, Andrew J.; Golding, Nick; Huang, Zhi; Singh, Balbir; Baird, J. Kevin; Newton, Paul N.; Huffman, Michael; Duda, Kirsten A.; Drakeley, Chris J.; Elyazar, Iqbal R. F.; Anstey, Nicholas M.; Chen, Qijun; Zommers, Zinta; Bhatt, Samir; Gething, Peter W.; Hay, Simon I.
2014-01-01
Background The simian malaria parasite, Plasmodium knowlesi, can cause severe and fatal disease in humans yet it is rarely included in routine public health reporting systems for malaria and its geographical range is largely unknown. Because malaria caused by P. knowlesi is a truly neglected tropical disease, there are substantial obstacles to defining the geographical extent and risk of this disease. Information is required on the occurrence of human cases in different locations, on which non-human primates host this parasite and on which vectors are able to transmit it to humans. We undertook a systematic review and ranked the existing evidence, at a subnational spatial scale, to investigate the potential geographical range of the parasite reservoir capable of infecting humans. Methodology/Principal Findings After reviewing the published literature we identified potential host and vector species and ranked these based on how informative they are for the presence of an infectious parasite reservoir, based on current evidence. We collated spatial data on parasite occurrence and the ranges of the identified host and vector species. The ranked spatial data allowed us to assign an evidence score to 475 subnational areas in 19 countries and we present the results on a map of the Southeast and South Asia region. Conclusions/Significance We have ranked subnational areas within the potential disease range according to evidence for presence of a disease risk to humans, providing geographical evidence to support decisions on prevention, management and prophylaxis. This work also highlights the unknown risk status of large parts of the region. Within this unknown category, our map identifies which areas have most evidence for the potential to support an infectious reservoir and are therefore a priority for further investigation. Furthermore we identify geographical areas where further investigation of putative host and vector species would be highly informative for the region-wide assessment. PMID:24676231
Revisiting Trypanosoma rangeli Transmission Involving Susceptible and Non-Susceptible Hosts
Ferreira, Luciana de Lima; Pereira, Marcos Horácio; Guarneri, Alessandra Aparecida
2015-01-01
Trypanosoma rangeli infects several triatomine and mammal species in South America. Its transmission is known to occur when a healthy insect feeds on an infected mammal or when an infected insect bites a healthy mammal. In the present study we evaluated the classic way of T. rangeli transmission started by the bite of a single infected triatomine, as well as alternative ways of circulation of this parasite among invertebrate hosts. The number of metacyclic trypomastigotes eliminated from salivary glands during a blood meal was quantified for unfed and recently fed nymphs. The quantification showed that ~50,000 parasites can be liberated during a single blood meal. The transmission of T. rangeli from mice to R. prolixus was evaluated using infections started through the bite of a single infected nymph. The mice that served as the blood source for single infected nymphs showed a high percentage of infection and efficiently transmitted the infection to new insects. Parasites were recovered by xenodiagnosis in insects fed on mice with infections that lasted approximately four months. Hemolymphagy and co-feeding were tested to evaluate insect-insect T. rangeli transmission. T. rangeli was not transmitted during hemolymphagy. However, insects that had co-fed on mice with infected conspecifics exhibited infection rates of approximately 80%. Surprisingly, 16% of the recipient nymphs became infected when pigeons were used as hosts. Our results show that T. rangeli is efficiently transmitted between the evaluated hosts. Not only are the insect-mouse-insect transmission rates high, but parasites can also be transmitted between insects while co-feeding on a living host. We show for the first time that birds can be part of the T. rangeli transmission cycle as we proved that insect-insect transmission is feasible during a co-feeding on these hosts. PMID:26469403
Ant-Based Cyber Defense (also known as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn Fink, PNNL
2015-09-29
ABCD is a four-level hierarchy with human supervisors at the top, a top-level agent called a Sergeant controlling each enclave, Sentinel agents located at each monitored host, and mobile Sensor agents that swarm through the enclaves to detect cyber malice and misconfigurations. The code comprises four parts: (1) the core agent framework, (2) the user interface and visualization, (3) test-range software to create a network of virtual machines including a simulated Internet and user and host activity emulation scripts, and (4) a test harness to allow the safe running of adversarial code within the framework of monitored virtual machines.
The role of black holes in galaxy formation and evolution.
Cattaneo, A; Faber, S M; Binney, J; Dekel, A; Kormendy, J; Mushotzky, R; Babul, A; Best, P N; Brüggen, M; Fabian, A C; Frenk, C S; Khalatyan, A; Netzer, H; Mahdavi, A; Silk, J; Steinmetz, M; Wisotzki, L
2009-07-09
Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.
Thines, Marco; Göker, Markus; Oberwinkler, Franz; Spring, Otmar
2007-12-01
Plasmopara penniseti is the sole member of the genus Plasmopara parasitic to Poaceae, after the genus Viennotia had been described to accommodate Plasmopara oplismeni. Morphological, ultrastructural, and molecular phylogenetic data indicate that Plasmopara penniseti is not closely related to the generic type, and it is, therefore, transferred to the newly described genus Poakatesthia. The view that the genera of downy mildews with pyriform to vesicular haustoria (Basidiophora, Benua, Bremia, Paraperonospora, Plasmopara, Plasmoverna, and Protobremia) include species parasitic to Poaceae has to be discarded. All of these genera are apparently restricted to dicotyledonous hosts.
Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael
2012-01-01
Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector. PMID:23284774
Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael
2012-01-01
Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.
Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.
2013-01-01
Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266
Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host.
Shan, Hongying; Pasin, Fabio; Tzanetakis, Ioannis E; Simón-Mateo, Carmen; García, Juan Antonio; Rodamilans, Bernardo
2018-06-01
The Potyviridae family is a major group of plant viruses that includes c. 200 species, most of which have narrow host ranges. The potyvirid P1 leader proteinase self-cleaves from the remainder of the viral polyprotein and shows large sequence variability linked to host adaptation. P1 proteins can be classified as Type A or Type B on the basis, amongst other things, of their dependence or not on a host factor to develop their protease activity. In this work, we studied Type A proteases from the Potyviridae family, characterizing their host factor requirements. Our in vitro cleavage analyses of potyvirid P1 proteases showed that the N-terminal domain is relevant for host factor interaction and suggested that the C-terminal domain is also involved. In the absence of plant factors, the N-terminal end of Plum pox virus P1 antagonizes protease self-processing. We performed extended deletion mutagenesis analysis to define the N-terminal antagonistic domain of P1. In viral infections, removal of the P1 protease antagonistic domain led to a gain-of-function phenotype, strongly increasing local infection in a non-permissive host. Altogether, our results shed new insights into the adaptation and evolution of potyvirids. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Distribution and host associations of ixodid ticks collected from wildlife in Florida, USA.
Hertz, Jeffrey C; Ferree Clemons, Bambi C; Lord, Cynthia C; Allan, Sandra A; Kaufman, Phillip E
2017-10-01
A tick survey was conducted to document tick-host associations with Florida (USA) wildlife, and to determine the relative abundance and distribution of ixodid ticks throughout the state. The survey was conducted using collection kits distributed to licensed Florida hunters as well as the examination of archived specimens from ongoing state wildlife research programs. Collected tick samples were obtained from 66% of Florida counties and were collected from nine wildlife hosts, including black bear, bobcat, coyote, deer, gray fox, Florida panther, raccoon, swine, and wild turkey. In total, 4176 ticks were identified, of which 75% were Amblyomma americanum, 14% Ixodes scapularis, 8% A. maculatum, 3% Dermacentor variabilis, and < 1% were I. affinis and I. texanus. americanum, D. variabilis, and I. scapularis had the broadest host range, while A. maculatum, D. variabilis, and I. scapularis had the widest geographic distribution. While the survey data contribute to an understanding of tick-host associations in Florida, they also provide insight into the seasonal and geographic distribution of several important vector species in the southeastern USA.
Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans
Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.
2013-01-01
Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454
Gallet, Romain; Fontaine, Colin; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Fournier, Elisabeth; Tharreau, Didier
2016-04-01
Efficient strategies for limiting the impact of pathogens on crops require a good understanding of the factors underlying the evolution of compatibility range for the pathogens and host plants, i.e., the set of host genotypes that a particular pathogen genotype can infect and the set of pathogen genotypes that can infect a particular host genotype. Until now, little is known about the evolutionary and ecological factors driving compatibility ranges in systems implicating crop plants. We studied the evolution of host and pathogen compatibility ranges for rice blast disease, which is caused by the ascomycete Magnaporthe oryzae. We challenged 61 rice varieties from three rice subspecies with 31 strains of M. oryzae collected worldwide from all major known genetic groups. We determined the compatibility range of each plant variety and pathogen genotype and the severity of each plant-pathogen interaction. Compatibility ranges differed between rice subspecies, with the most resistant subspecies selecting for pathogens with broader compatibility ranges and the least resistant subspecies selecting for pathogens with narrower compatibility ranges. These results are consistent with a nested distribution of R genes between rice subspecies.
Lestinova, Tereza; Rohousova, Iva; Sima, Michal; de Oliveira, Camila I; Volf, Petr
2017-07-01
Leishmaniases are parasitic diseases present worldwide that are transmitted to the vertebrate host by the bite of an infected sand fly during a blood feeding. Phlebotomine sand flies inoculate into the mammalian host Leishmania parasites embedded in promastigote secretory gel (PSG) with saliva, which is composed of a diverse group of molecules with pharmacological and immunomodulatory properties. In this review, we focus on 3 main aspects of sand fly salivary molecules: (1) structure and composition of salivary glands, including the properties of salivary molecules related to hemostasis and blood feeding, (2) immunomodulatory properties of salivary molecules and the diverse impacts of these molecules on leishmaniasis, ranging from disease exacerbation to vaccine development, and (3) use of salivary molecules for field applications, including monitoring host exposure to sand flies and the risk of Leishmania transmission. Studies showed interesting differences between salivary proteins of Phlebotomus and Lutzomyia species, however, no data were ever published on salivary proteins of Sergentomyia species. In the last 15 years, numerous studies have characterized sand fly salivary proteins and, in parallel, have addressed the impact of such molecules on the biology of the host-sand fly-parasite interaction. The results obtained shall pave the way for the development of field-application tools that could contribute to the management of leishmaniasis in endemic areas.
Host range, immunity and antigenic properties of lambdoid coliphage HK97.
Dhillon, E K; Dhillon, T S; Lai, A N; Linn, S
1980-09-01
Temperate coliphage HK97 was isolated from pig dung. Although HK97 is antigenically unrelated to coliphage lambda, it has similar morphology, host range and immunity properties, and can recombine with it.
Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya
2014-02-01
Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Experimental evidence that parasites drive eco-evolutionary feedbacks.
Brunner, Franziska S; Anaya-Rojas, Jaime M; Matthews, Blake; Eizaguirre, Christophe
2017-04-04
Host resistance to parasites is a rapidly evolving trait that can influence how hosts modify ecosystems. Eco-evolutionary feedbacks may develop if the ecosystem effects of host resistance influence selection on subsequent host generations. In a mesocosm experiment, using a recently diverged (<100 generations) pair of lake and stream three-spined sticklebacks, we tested how experimental exposure to a common fish parasite ( Gyrodactylus spp.) affects interactions between hosts and their ecosystems in two environmental conditions (low and high nutrients). In both environments, we found that stream sticklebacks were more resistant to Gyrodactylus and had different gene expression profiles than lake sticklebacks. This differential infection led to contrasting effects of sticklebacks on a broad range of ecosystem properties, including zooplankton community structure and nutrient cycling. These ecosystem modifications affected the survival, body condition, and gene expression profiles of a subsequent fish generation. In particular, lake juvenile fish suffered increased mortality in ecosystems previously modified by lake adults, whereas stream fish showed decreased body condition in stream fish-modified ecosystems. Parasites reinforced selection against lake juveniles in lake fish-modified ecosystems, but only under oligotrophic conditions. Overall, our results highlight the overlapping timescales and the interplay of host-parasite and host-ecosystem interactions. We provide experimental evidence that parasites influence host-mediated effects on ecosystems and, thereby, change the likelihood and strength of eco-evolutionary feedbacks.
Adlassnig, Wolfram; Peroutka, Marianne; Lendl, Thomas
2011-01-01
Background Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. Pitcher Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O2 and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. Inquiline Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. Mutualistic Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N2. Conclusions There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization. PMID:21159782
Adlassnig, Wolfram; Peroutka, Marianne; Lendl, Thomas
2011-02-01
Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O(2) and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. MUTUALISTIC: Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N(2). There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization.
Early Mesozoic Coexistence of Amniotes and Hepadnaviridae
Suh, Alexander; Weber, Claudia C.; Kehlmaier, Christian; Braun, Edward L.; Green, Richard E.; Fritz, Uwe; Ray, David A.; Ellegren, Hans
2014-01-01
Hepadnaviridae are double-stranded DNA viruses that infect some species of birds and mammals. This includes humans, where hepatitis B viruses (HBVs) are prevalent pathogens in considerable parts of the global population. Recently, endogenized sequences of HBVs (eHBVs) have been discovered in bird genomes where they constitute direct evidence for the coexistence of these viruses and their hosts from the late Mesozoic until present. Nevertheless, virtually nothing is known about the ancient host range of this virus family in other animals. Here we report the first eHBVs from crocodilian, snake, and turtle genomes, including a turtle eHBV that endogenized >207 million years ago. This genomic “fossil” is >125 million years older than the oldest avian eHBV and provides the first direct evidence that Hepadnaviridae already existed during the Early Mesozoic. This implies that the Mesozoic fossil record of HBV infection spans three of the five major groups of land vertebrates, namely birds, crocodilians, and turtles. We show that the deep phylogenetic relationships of HBVs are largely congruent with the deep phylogeny of their amniote hosts, which suggests an ancient amniote–HBV coexistence and codivergence, at least since the Early Mesozoic. Notably, the organization of overlapping genes as well as the structure of elements involved in viral replication has remained highly conserved among HBVs along that time span, except for the presence of the X gene. We provide multiple lines of evidence that the tumor-promoting X protein of mammalian HBVs lacks a homolog in all other hepadnaviruses and propose a novel scenario for the emergence of X via segmental duplication and overprinting of pre-existing reading frames in the ancestor of mammalian HBVs. Our study reveals an unforeseen host range of prehistoric HBVs and provides novel insights into the genome evolution of hepadnaviruses throughout their long-lasting association with amniote hosts. PMID:25501991
A. L. Ross-Davis; J. E. Stewart; J. W. Hanna; M.-S. Kim; B. J. Knaus; R. Cronn; H. Rai; B. A. Richardson; G. I. McDonald; N. B. Klopfenstein
2013-01-01
Armillaria species display diverse ecological roles ranging from beneficial saprobe to virulent pathogen. Armillaria solidipes (formerly A. ostoyae), a causal agent of Armillaria root disease, is a virulent primary pathogen with a broad host range of woody plants across the Northern Hemisphere. This white-rot pathogen grows between trees as rhizomorphs and attacks...
Rosas-Valdez, Rogelio; de León, Gerardo Pérez-Ponce
2011-04-01
Host specificity plays an essential role in shaping the evolutionary history of host-parasite associations. In this study, an index of host specificity recently proposed was used to test, quantitatively, the hypothesis that some groups of parasites are characteristics of some host fish families along their distribution range. A database with all published records on the helminth parasites of freshwater siluriforms of Mexico was used. The host specificity index was used considering its advantage to measure the taxonomic heterogeneity of the host assemblages and its appropriateness for unequal sampling data. The helminth parasite fauna of freshwater siluriforms in Mexico seems to be specific for different host taxonomic categories. However, a relatively high number of species (47% of the total helminth fauna) is specific to their respective host family. This result provides further corroboration for the biogeographic hypothesis of the core helminth fauna proposed previously. The statistical values for host specificity obtained herein seem to be independent of host range. However, the accurate taxonomic identification of the parasites is fundamental for the evaluation of host specificity and the accurate evolutionary interpretation of this phenomenon.
Jürgenstein, Siiri; Kurina, Olavi; Põldmaa, Kadri
2015-01-01
Abstract European species of the Mycetophila ruficollis group are compared on the basis of morphology and sequences of mitochondrial cytochrome oxidase subunit one (COI) and the ITS2 region of nuclear ribosomal DNA. The study represents the first evaluation of morphology-based species delimitation of closely related fungus gnat species by applying molecular information. Detailed descriptions and illustrations of the male terminalia are presented along with a key for the identification of all nine European species of the group. Phylogenetic analyses of molecular data generally supported the morphological species discrimination. The barcoding region of COI superseded ITS2 rDNA in resolving species. In the COI barcoding region interspecific differences ranged from 2.9 to 10.6% and the intraspecific distance from 0.08 to 0.8%. Only COI data distinguished between the similar and closely related Mycetophila ichneumonea and Mycetophila uninotata of which the latter was observed to include cryptic species. The host range of some species is suggested to be narrower than previously considered and to depend on the forest type. Presented evidence indicates the importance of analysing sequence data of morphologically very similar mycetophages reared from identified host fungi for elucidating species delimitation as well as their geographic and host ranges. New country records, viz. Estonia for Mycetophila evanida, Georgia for Mycetophila ichneumonea, Mycetophila idonea and Mycetophila ruficollis, and Norway for Mycetophila strobli, widen the known distribution ranges of these species. PMID:26167119
2014-01-01
Background Establishment of haematological and biochemical reference intervals is important to assess health of animals on individual and population level. Reference intervals for 13 haematological and 34 biochemical variables were established based on 88 apparently healthy free-ranging brown bears (39 males and 49 females) in Sweden. The animals were chemically immobilised by darting from a helicopter with a combination of medetomidine, tiletamine and zolazepam in April and May 2006–2012 in the county of Dalarna, Sweden. Venous blood samples were collected during anaesthesia for radio collaring and marking for ecological studies. For each of the variables, the reference interval was described based on the 95% confidence interval, and differences due to host characteristics sex and age were included if detected. To our knowledge, this is the first report of reference intervals for free-ranging brown bears in Sweden. Results The following variables were not affected by host characteristics: red blood cell, white blood cell, monocyte and platelet count, alanine transaminase, amylase, bilirubin, free fatty acids, glucose, calcium, chloride, potassium, and cortisol. Age differences were seen for the majority of the haematological variables, whereas sex influenced only mean corpuscular haemoglobin concentration, aspartate aminotransferase, lipase, lactate dehydrogenase, β-globulin, bile acids, triglycerides and sodium. Conclusions The biochemical and haematological reference intervals provided and the differences due to host factors age and gender can be useful for evaluation of health status in free-ranging European brown bears. PMID:25139149
The Effects of Captivity on the Mammalian Gut Microbiome.
McKenzie, Valerie J; Song, Se Jin; Delsuc, Frédéric; Prest, Tiffany L; Oliverio, Angela M; Korpita, Timothy M; Alexiev, Alexandra; Amato, Katherine R; Metcalf, Jessica L; Kowalewski, Martin; Avenant, Nico L; Link, Andres; Di Fiore, Anthony; Seguin-Orlando, Andaine; Feh, Claudia; Orlando, Ludovic; Mendelson, Joseph R; Sanders, Jon; Knight, Rob
2017-10-01
Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
McLaughlin, M.R.; Rose, J.B.
2006-01-01
Traditional fecal coliform bacterial indicators have been found to be severely limited in determining the significance and sources of fecal contamination in ambient waters of tropical and subtropical regions. The bacteriophages that infect Bacteroides fragilis have been suggested as better fecal indicators and at least one type may be human specific. In this study, the phages that infect B. fragilis host RYC2056 (RYC), including phage B56-3, and host ATCC 51477-HSP40 (HSP), including the human specific phage B40-8, were evaluated in the drainage basins of Tampa Bay, 7 samples (n = 62), or 11%, tested positive for the presence of phages infecting the host HSP, whereas 28 samples, or 45%, tested positive using the host RYC. A survival study was also done to compare the persistence of phages B56-3 and B40-8 to MS2 coliphage in seawater at various temperatures. The decay rates for MS2 were 0.239 log 10 d-1 at 10??C, but increased to 0.896 at 20??C and 2.62 log10 d-1 at 30??C. The two B. fragilis phages persisted much longer in the seawater compared to the coliphage and showed little variation between the temperatures. All sewage influents sampled from area wastewater treatment plants contained phages that infected the two B. fragilis hosts at levels from 1.2 ?? 104 to 1.11 ?? 10 5 pfu 100 ml-1 for host RYC and 67 to 350 pfu 100 ml -1 for host HSP. Of the 7 chlorinated effluent samples tested, 3 were positive for the presence of the phage using the host RYC and the phage enrichment method, with levels estimated to be <10 pfu 100 ml-1. No phages were detected using the host HSP in the treated sewage effluent. Coliphages were found in 3 of the 7 effluent samples at a range of 30 to 1.2 ?? 103 pfu 100 ml-1. ?? 2006 Estuarine Research Federation.
Boeger, Walter A; Kritsky, Delane C; Pie, Marcio R; Engers, Kerlen B
2005-10-01
Compared to other monogenoidean groups, viviparous gyrodactylids exhibit extraordinary species diversity and broad host range. It has been suggested that this evolutionary success is associated with a suite of morphological and life-history traits that include, in part, continuous transmission (i.e., ability to infect new hosts throughout the gyrodactylid life cycle). Experiments were conducted to explore the putative adaptive advantage of continuous transmission within viviparous gyrodactylids during colonization of new host resources. Differences in infrapopulation growth, such as abundance, prevalence, and duration of the infection, of Gyrodactylus anisopharynx on 3 species of fish--Corydoras paleatus and Corydoras ehrhardti (both natural hosts) as well as Corydoras schwartzi (a host not known to harbor G. anisopharynx)--held under isolated and grouped conditions were determined. Results showed that infrapopulations of G. anisopharynx on C. paleatus and C. schwartzi had higher growth when the parasite had the opportunity for host transfer (grouped hosts). Infrapopulations of G. anisopharynx on isolated and grouped C. ehrhardti showed an opposite trend, although differences in mean duration and maximum abundance were not statistically different. Results obtained from experiments with C. paleatus and C. schwartzi support the hypothesis that continuous transmission in viviparous gyrodactylids enhances colonization success, probably by allowing initial avoidance of Red Queen dynamics. The absence of statistical differences between infrapopulations on isolated and grouped C. ehrhardti suggests that parasite dynamics may be influenced by factors other than continuous transmission in this host.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, X.; Liang, Y. C.; Chen, X. Y.
We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) ormore » absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D{sub n}(4000), Hδ{sub A}, stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D{sub n}(4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D{sub n}(4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (∼0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.« less
Morrot, Alexandre; Villar, Silvina R; González, Florencia B; Pérez, Ana R
2016-01-01
Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease.
Vongkamjan, Kitiya; Switt, Andrea Moreno; den Bakker, Henk C.; Fortes, Esther D.
2012-01-01
Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools. PMID:23042180
Coates, Andrew; Barnett, Louise K; Hoskin, Conrad; Phillips, Ben L
2017-02-01
Species interactions can determine range limits, and parasitism is the most intimate of such interactions. Intriguingly, the very conditions on range edges likely change host-parasite dynamics in nontrivial ways. Range edges are often associated with clines in host density and with environmental transitions, both of which may affect parasite transmission. On advancing range edges, founder events and fitness/dispersal costs of parasitism may also cause parasites to be lost on range edges. Here we examine the prevalence of three species of parasite across the range edge of an invasive gecko, Hemidactylus frenatus, in northeastern Australia. The gecko's range edge spans the urban-woodland interface at the edge of urban areas. Across this edge, gecko abundance shows a steep decline, being lower in the woodland. Two parasite species (a mite and a pentastome) are coevolved with H. frenatus, and these species become less prevalent as the geckos become less abundant. A third species of parasite (another pentastome) is native to Australia and has no coevolutionary history with H. frenatus. This species became more prevalent as the geckos become less abundant. These dramatic shifts in parasitism (occurring over 3.5 km) confirm that host-parasite dynamics can vary substantially across the range edge of this gecko host.
Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry.
Bose, Sayantan; Jardetzky, Theodore S; Lamb, Robert A
2015-05-01
The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. Copyright © 2015 Elsevier Inc. All rights reserved.
Molecular and genomic characterization of pathogenic traits of group A Streptococcus pyogenes
HAMADA, Shigeyuki; KAWABATA, Shigetada; NAKAGAWA, Ichiro
2015-01-01
Group A streptococcus (GAS) or Streptococcus pyogenes causes various diseases ranging from self-limiting sore throat to deadly invasive diseases. The genome size of GAS is 1.85–1.9 Mb, and genomic rearrangement has been demonstrated. GAS possesses various surface-associated substances such as hyaluronic capsule, M proteins, and fibronectin/laminin/immunoglobulin-binding proteins. These are related to the virulence and play multifaceted and mutually reflected roles in the pathogenesis of GAS infections. Invasion of GAS into epithelial cells and deeper tissues provokes immune and non-immune defense or inflammatory responses including the recruitment of neutrophils, macrophages, and dendritic cells in hosts. GAS frequently evades host defense mechanisms by using its virulence factors. Extracellular products of GAS may perturb cellular and subcellular functions and degrade tissues enzymatically, which leads to the aggravation of local and/or systemic disorders in the host. In this review, we summarize some important cellular and extracellular substances that may affect pathogenic processes during GAS infections, and the host responses to these. PMID:26666305
Hu, Xiaozhen; Zhao, Jinlei; DeGrado, William F.; Binns, Andrew N.
2013-01-01
Agrobacterium tumefaciens is a broad host range plant pathogen that combinatorially recognizes diverse host molecules including phenolics, low pH, and aldose monosaccharides to activate its pathogenic pathways. Chromosomal virulence gene E (chvE) encodes a periplasmic-binding protein that binds several neutral sugars and sugar acids, and subsequently interacts with the VirA/VirG regulatory system to stimulate virulence (vir) gene expression. Here, a combination of genetics, X-ray crystallography, and isothermal calorimetry reveals how ChvE binds the different monosaccharides and also shows that binding of sugar acids is pH dependent. Moreover, the potency of a sugar for vir gene expression is modulated by a transport system that also relies on ChvE. These two circuits tune the overall system to respond to sugar concentrations encountered in vivo. Finally, using chvE mutants with restricted sugar specificities, we show that there is host variation in regard to the types of sugars that are limiting for vir induction. PMID:23267119
Yan, Shu-Wei; Zhang, Jin; Liu, Yang; Li, Guo-Qing; Wang, Gui-Rong
2015-08-01
Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most serious agricultural pests, feeding on a wide range of cultivated plants, including cotton, cereals and vegetables in the north of China. This insect can frequently switch between habitats and host plants over seasons and prefer plants in bloom. A. lucorum relies heavily on olfaction to locate its host plants finely discriminating different plant volatiles in the environment. Despite its economical importance, research on the olfactory system of this species has been so far very limited. In this study, we have identified and characterized an olfactory receptor which is sensitively tuned to (Z)-3-Hexenyl acetate and several flowering compounds. Besides being present in the bouquet of some flowers, these compounds are produced by plants that have suffered attacks and are supposed to act as chemical messengers between plants. This OR may play an important role in the selection of host plants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)
NASA Astrophysics Data System (ADS)
Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter
2008-06-01
The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.
Geographic variation in host fish use and larval metamorphosis for the endangered dwarf wedgemussel
White, Barbara (St. John); Ferreri, C. Paola; Lellis, William A.; Wicklow, Barry J.; Cole, Jeffrey C.
2017-01-01
Host fishes play a crucial role in survival and dispersal of freshwater mussels (Unionoida), particularly rare unionids at conservation risk. Intraspecific variation in host use is not well understood for many mussels, including the endangered dwarf wedgemussel (Alasmidonta heterodon) in the USA.Host suitability of 33 fish species for dwarf wedgemussel glochidia (larvae) from the Delaware and Connecticut river basins was tested in laboratory experiments over 9 years. Relative suitability of three different populations of a single host fish, the tessellated darter (Etheostoma olmstedi), from locations in the Connecticut, Delaware, and Susquehanna river basins, was also tested.Connecticut River basin A. heterodon metamorphosed into juvenile mussels on tessellated darter, slimy sculpin (Cottus cognatus), and Atlantic salmon (Salmo salar) parr. Delaware River basin mussels metamorphosed using these three species, as well as brown trout (Salmo trutta), banded killifish (Fundulus diaphanus), mottled sculpin (Cottus bairdii), striped bass (Morone saxatilis), and shield darter (Percina peltata). Atlantic salmon, striped bass, and sculpins were highly effective hosts, frequently generating 5+ juveniles per fish (JPF) and metamorphosis success (MS; proportion of attaching larvae that successfully metamorphose) ≥ 0.4, and producing juveniles in repeated trials.In experiments on tessellated darters, mean JPF and MS values decreased as isolation between the mussel source (Connecticut River) and each fish source increased; mean JPF = 10.45, 6.85, 4.14, and mean MS = 0.50, 0.41, and 0.34 in Connecticut, Delaware, and Susquehanna river darters, respectively. Host suitability of individual darters was highly variable (JPF = 2–11; MS = 0.20–1.0).The results show that mussel–host fish compatibility in A. heterodon differs among Atlantic coastal rivers, and suggest that hosts including anadromous Atlantic salmon and striped bass may help sustain A. heterodon in parts of its range. Continued examination of host use variation, migratory host roles, and mussel–fish interactions in the wild is critical in conservation of A. heterodon and other vulnerable mussel species.
USDA-ARS?s Scientific Manuscript database
Soybean mosaic virus (SMV) is a species within the genus Potyvirus, family Potyviridae. The family includes eight genera and almost a quarter of all known plant RNA viruses affecting agriculturally important plants. The Potyvirus genus is the largest with 160 species. The SMV genome consists of a si...
USDA-ARS?s Scientific Manuscript database
The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic ne...
Biological characterization and complete genomic sequence of Apium virus Y infecting celery
USDA-ARS?s Scientific Manuscript database
Apium virus Y (ApVY) isolated from celery plants (Ce) with ring spot and line pattern symptoms from a commercial field in California was characterized in this study. The experimental host range of the virus included 13 plant species in the families Apiaceae, Chenopodiaceae and Solanaceae, and almost...
Development of an assay for rapid detection and quantification of Verticillium dahliae in soil
USDA-ARS?s Scientific Manuscript database
Verticillium dahliae is responsible for Verticillium wilt on a wide range of hosts including strawberry, on which low inoculum densities can cause significant crop loss. Determination of inoculum density is currently done by soil plating, but this can take 6-8 weeks to complete and delay the grower...
Comparative RNA-seq for the investigation of tolerance to Verticillium wilt in black raspberry
USDA-ARS?s Scientific Manuscript database
Verticillium dahliae Kleb., a cause of verticillium wilt, is a wide-spread, soil-borne fungal pathogen with a wide host range that includes many fruit and vegetable crops. Verticillium dahliae has been isolated from Rubus species showing symptoms of the disease. Very little is known about the intera...
Alternanthera mosaic virus – an alternative ‘model’ potexvirus of broad relevance
USDA-ARS?s Scientific Manuscript database
Alternanthera mosaic virus (AltMV) is a member of the genus Potexvirus which has been known for less than twenty years, but has already become widespread in many ornamental crops, and has been detected in Australasia, Europe, North and South America, and Asia. The natural host range to date includes...
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) is a positive single stranded RNA virus belonging to the Pestivirus genus of the Flaviviridae family. BVDV has a wide host range that includes most ruminants. Noncytopathic (ncp) BVDV may establish lifelong persistent infections in calves following infection of t...
USDA-ARS?s Scientific Manuscript database
The genus Plagiostoma inhabits leaves and branches of a range of woody and herbaceous plant families in the temperate northern hemisphere. Based on analyses of morphological, cultural, and molecular data, Plagiostoma is reviewed and monographed. The morphological data include shape and size of perit...
Molecular aspects of cyst nematodes.
Lilley, Catherine J; Atkinson, Howard J; Urwin, Peter E
2005-11-01
SUMMARY Taxonomy: Superkingdom Eukaryota; kingdom Metazoa; phylum Nematoda; class Chromadorea; order Tylenchida; suborder Tylenchina; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; main genera Heterodera and Globodera. Cyst nematodes comprise approximately 100 known species in six genera. They are pathogens of temperate, subtropical and tropical plant species and the host range of many species is narrow. The most economically important species are within the Globodera and Heterodera genera. Globodera pallida and G. rostochiensis are important pathogens of potato crops. There are many economic species in the Heterodera genus, including Heterodera glycines (soybean cyst nematode), H. avenae (cereal cyst nematode) and H. schachtii (sugar beet cyst nematode), the last of which attacks a range of Chenopodiaceae and Cruciferae, including Arabidopsis thaliana. Disease symptoms: Field symptoms of severe cyst nematode infection are often stunting, wilting and chlorosis, but considerable yield loss can occur without obvious symptoms. The only unique indicator of cyst nematode infection is the presence of adult female nematodes attached to host roots after several weeks of parasitism. Disease control: This is usually achieved by using integrated pest management involving cultural practices such as crop rotation, resistant cultivars if available and chemical control when economically justified.
von Beeren, Christoph; Brückner, Adrian; Maruyama, Munetoshi; Burke, Griffin; Wieschollek, Jana; Kronauer, Daniel J C
2018-01-01
Host-symbiont interactions are embedded in ecological communities and range from unspecific to highly specific relationships. Army ants and their arthropod guests represent a fascinating example of species-rich host-symbiont associations where host specificity ranges across the entire generalist - specialist continuum. In the present study, we compared the behavioral and chemical integration mechanisms of two extremes of the generalist - specialist continuum: generalist ant-predators in the genus Tetradonia (Staphylinidae: Aleocharinae: Athetini), and specialist ant-mimics in the genera Ecitomorpha and Ecitophya (Staphylinidae: Aleocharinae: Ecitocharini). Similar to a previous study of Tetradonia beetles, we combined DNA barcoding with morphological studies to define species boundaries in ant-mimicking beetles. This approach found four ant-mimicking species at our study site at La Selva Biological Station in Costa Rica. Community sampling of Eciton army ant parasites revealed that ant-mimicking beetles were perfect host specialists, each beetle species being associated with a single Eciton species. These specialists were seamlessly integrated into the host colony, while generalists avoided physical contact to host ants in behavioral assays. Analysis of the ants' nestmate recognition cues, i.e. cuticular hydrocarbons (CHCs), showed close similarity in CHC composition and CHC concentration between specialists and Eciton burchellii foreli host ants. On the contrary, the chemical profiles of generalists matched host profiles less well, indicating that high accuracy in chemical host resemblance is only accomplished by socially integrated species. Considering the interplay between behavior, morphology, and cuticular chemistry, specialists but not generalists have cracked the ants' social code with respect to various sensory modalities. Our results support the long-standing idea that the evolution of host-specialization in parasites is a trade-off between the range of potential host species and the level of specialization on any particular host.
Giraldo-Calderón, Gloria I.; Emrich, Scott J.; MacCallum, Robert M.; Maslen, Gareth; Dialynas, Emmanuel; Topalis, Pantelis; Ho, Nicholas; Gesing, Sandra; Madey, Gregory; Collins, Frank H.; Lawson, Daniel
2015-01-01
VectorBase is a National Institute of Allergy and Infectious Diseases supported Bioinformatics Resource Center (BRC) for invertebrate vectors of human pathogens. Now in its 11th year, VectorBase currently hosts the genomes of 35 organisms including a number of non-vectors for comparative analysis. Hosted data range from genome assemblies with annotated gene features, transcript and protein expression data to population genetics including variation and insecticide-resistance phenotypes. Here we describe improvements to our resource and the set of tools available for interrogating and accessing BRC data including the integration of Web Apollo to facilitate community annotation and providing Galaxy to support user-based workflows. VectorBase also actively supports our community through hands-on workshops and online tutorials. All information and data are freely available from our website at https://www.vectorbase.org/. PMID:25510499
Life history determines genetic structure and evolutionary potential of host–parasite interactions
Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.
2009-01-01
Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899
Bartonella and Brucella—Weapons and Strategies for Stealth Attack
Ben-Tekaya, Houchaima; Gorvel, Jean-Pierre; Dehio, Christoph
2013-01-01
Bartonella spp. and Brucella spp. are closely related α-proteobacterial pathogens that by distinct stealth-attack strategies cause chronic infections in mammals including humans. Human infections manifest by a broad spectrum of clinical symptoms, ranging from mild to fatal disease. Both pathogens establish intracellular replication niches and subvert diverse pathways of the host’s immune system. Several virulence factors allow them to adhere to, invade, proliferate, and persist within various host-cell types. In particular, type IV secretion systems (T4SS) represent essential virulence factors that transfer effector proteins tailored to recruit host components and modulate cellular processes to the benefit of the bacterial intruders. This article puts the remarkable features of these two pathogens into perspective, highlighting the mechanisms they use to hijack signaling and trafficking pathways of the host as the basis for their stealthy infection strategies. PMID:23906880
Macroevolutionary Immunology: A Role for Immunity in the Diversification of Animal life
Loker, Eric S.
2012-01-01
An emerging picture of the nature of immune systems across animal phyla reveals both conservatism of some features and the appearance among and within phyla of novel, lineage-specific defense solutions. The latter collectively represent a major and underappreciated form of animal diversity. Factors influencing this macroevolutionary (above the species level) pattern of novelty are considered and include adoption of different life styles, life histories, and body plans; a general advantage of being distinctive with respect to immune defenses; and the responses required to cope with parasites, many of which afflict hosts in a lineage-specific manner. This large-scale pattern of novelty implies that immunological phenomena can affect microevolutionary processes (at the population level within species) that can eventually lead to macroevolutionary events such as speciation, radiations, or extinctions. Immunologically based phenomena play a role in favoring intraspecific diversification, specialization and host specificity of parasites, and mechanisms are discussed whereby this could lead to parasite speciation. Host switching – the acquisition of new host species by parasites – is a major mechanism that drives parasite diversity and is frequently involved in disease emergence. It is also one that can be favored by reductions in immune competence of new hosts. Mechanisms involving immune phenomena favoring intraspecific diversification and speciation of host species are also discussed. A macroevolutionary perspective on immunology is invaluable in today’s world, including the need to study a broader range of species with distinctive immune systems. Many of these species are faced with extinction, another macroevolutionary process influenced by immune phenomena. PMID:22566909
Choera, Tsokyi; Zelante, Teresa; Romani, Luigina; Keller, Nancy P
2017-01-01
Aspergillus fumigatus is the most prevalent filamentous fungal pathogen of humans, causing either severe allergic bronchopulmonary aspergillosis or often fatal invasive pulmonary aspergillosis (IPA) in individuals with hyper- or hypo-immune deficiencies, respectively. Disease is primarily initiated upon the inhalation of the ubiquitous airborne conidia-the initial inoculum produced by A. fumigatus -which are complete developmental units with an ability to exploit diverse environments, ranging from agricultural composts to animal lungs. Upon infection, conidia initially rely on their own metabolic processes for survival in the host's lungs, a nutritionally limiting environment. One such nutritional limitation is the availability of aromatic amino acids (AAAs) as animals lack the enzymes to synthesize tryptophan (Trp) and phenylalanine and only produce tyrosine from dietary phenylalanine. However, A. fumigatus produces all three AAAs through the shikimate-chorismate pathway, where they play a critical role in fungal growth and development and in yielding many downstream metabolites. The downstream metabolites of Trp in A. fumigatus include the immunomodulatory kynurenine derived from indoleamine 2,3-dioxygenase (IDO) and toxins such as fumiquinazolines, gliotoxin, and fumitremorgins. Host IDO activity and/or host/microbe-derived kynurenines are increasingly correlated with many Aspergillus diseases including IPA and infections of chronic granulomatous disease patients. In this review, we will describe the potential metabolic cross talk between the host and the pathogen, specifically focusing on Trp metabolism, the implications for therapeutics, and the recent studies on the coevolution of host and microbe IDO activation in regulating inflammation, while controlling infection.
Quattrini, Andrea M; Demopoulos, Amanda W J
2016-12-01
A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013-2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494-4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities, our results demonstrate that it occurs widely across a variety of habitats, depths, and locations and is a significant component of deep-sea biodiversity.
Idris, A M; Mills-Lujan, K; Martin, K; Brown, J K
2008-02-01
The genome components of the Melon chlorotic leaf curl virus (MCLCuV) were cloned from symptomatic cantaloupe leaves collected in Guatemala during 2002. The MCLCuV DNA-A and DNA-B components shared their closest nucleotide identities among begomoviruses, at approximately 90 and 81%, respectively, with a papaya isolate of MCLCuV from Costa Rica. The closest relatives at the species level were other members of the Squash leaf curl virus (SLCV) clade, which is endemic in the southwestern United States and Mexico. Biolistic inoculation of cantaloupe seedlings with the MCLCuV DNA-A and -B components resulted in the development of characteristic disease symptoms, providing definitive evidence of causality. MCLCuV experimentally infected species within the Cucurbitaceae, Fabaceae, and Solanaceae. The potential for interspecific reassortment was examined for MCLCuV and its closest relatives, including the bean-restricted Bean calico mosaic virus (BCaMV), and three other cucurbit-infecting species, Cucurbit leaf crumple virus (CuLCrV), SLCV, and SMLCV. The cucurbit viruses have distinct but overlapping host ranges. All possible reassortants were established using heterologous combinations of the DNA-A or DNA-B components. Surprisingly, only certain reassortants arising from MCLCuV and BCaMV, or MCLCuV and CuLCrV, were viable in bean, even though it is a host of all of the "wild-type" (parent) viruses. The bean-restricted BCaMV was differentially assisted in systemically infecting the cucurbit test species by the components of the four cucurbit-adapted begomoviruses. In certain heterologous combinations, the BCaMV DNA-A or -B component was able to infect one or more cucurbit species. Generally, the reassortants were less virulent in the test hosts than the respective wild-type (parent) viruses, strongly implicating adaptive modulation of virulence. This is the first illustration of reassortment resulting in the host range expansion of a host-restricted begomovirus.
Quattrini, Andrea; Demopoulos, Amanda W.J.
2016-01-01
A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013–2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494–4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities, our results demonstrate that it occurs widely across a variety of habitats, depths, and locations and is a significant component of deep-sea biodiversity.
Chastagner, Amélie; Dugat, Thibaud; Vourc'h, Gwenaël; Verheyden, Hélène; Legrand, Loïc; Bachy, Véronique; Chabanne, Luc; Joncour, Guy; Maillard, Renaud; Boulouis, Henri-Jean; Haddad, Nadia; Bailly, Xavier; Leblond, Agnès
2014-12-09
Molecular epidemiology represents a powerful approach to elucidate the complex epidemiological cycles of multi-host pathogens, such as Anaplasma phagocytophilum. A. phagocytophilum is a tick-borne bacterium that affects a wide range of wild and domesticated animals. Here, we characterized its genetic diversity in populations of French cattle; we then compared the observed genotypes with those found in horses, dogs, and roe deer to determine whether genotypes of A. phagocytophilum are shared among different hosts. We sampled 120 domesticated animals (104 cattle, 13 horses, and 3 dogs) and 40 wild animals (roe deer) and used multilocus sequence analysis on nine loci (ankA, msp4, groESL, typA, pled, gyrA, recG, polA, and an intergenic region) to characterize the genotypes of A. phagocytophilum present. Phylogenic analysis revealed three genetic clusters of bacterial variants in domesticated animals. The two principal clusters included 98% of the bacterial genotypes found in cattle, which were only distantly related to those in roe deer. One cluster comprised only cattle genotypes, while the second contained genotypes from cattle, horses, and dogs. The third contained all roe deer genotypes and three cattle genotypes. Geographical factors could not explain this clustering pattern. These results suggest that roe deer do not contribute to the spread of A. phagocytophilum in cattle in France. Further studies should explore if these different clusters are associated with differing disease severity in domesticated hosts. Additionally, it remains to be seen if the three clusters of A. phagocytophilum genotypes in cattle correspond to distinct epidemiological cycles, potentially involving different reservoir hosts.
Atractiella rhizophila , sp. nov., an endorrhizal fungus isolated from the Populus root microbiome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonito, Gregory; Hameed, Khalid; Toome-Heller, Merje
We discovered a new endorrhizal fungal species belonging to the rust lineage Pucciniomycotina among fungi isolated from healthy root mycobiomes of Populus and described here as Atractiella rhizophila. Here, we characterized this species by transmission electron microscopy (TEM), phylogenetic analysis, and plant bioassay experiments. Phylogenetic sequence analysis of isolates and available environmental and reference sequences indicates that this new species, A. rhizophila, has a broad geographic and host range. Atractiella rhizophila appears to be present in North America, Australia, Asia, and Africa and is associated with trees, orchids, and other agriculturally important species, including soybean, corn, and rice. Despite themore » large geographic and host range of this species sampling, A. rhizophila appears to have exceptionally low sequence variation within nuclear rDNA markers examined. With inoculation studies, we show that A. rhizophila is nonpathogenic, asymptomatically colonizes plant roots, and appears to foster plant growth and elevated photosynthesis rates.« less
Atractiella rhizophila , sp. nov., an endorrhizal fungus isolated from the Populus root microbiome
Bonito, Gregory; Hameed, Khalid; Toome-Heller, Merje; ...
2017-01-09
We discovered a new endorrhizal fungal species belonging to the rust lineage Pucciniomycotina among fungi isolated from healthy root mycobiomes of Populus and described here as Atractiella rhizophila. Here, we characterized this species by transmission electron microscopy (TEM), phylogenetic analysis, and plant bioassay experiments. Phylogenetic sequence analysis of isolates and available environmental and reference sequences indicates that this new species, A. rhizophila, has a broad geographic and host range. Atractiella rhizophila appears to be present in North America, Australia, Asia, and Africa and is associated with trees, orchids, and other agriculturally important species, including soybean, corn, and rice. Despite themore » large geographic and host range of this species sampling, A. rhizophila appears to have exceptionally low sequence variation within nuclear rDNA markers examined. With inoculation studies, we show that A. rhizophila is nonpathogenic, asymptomatically colonizes plant roots, and appears to foster plant growth and elevated photosynthesis rates.« less
Morphological variation and host range of two Ganoderma species from Papua New Guinea.
Pilotti, Carmel A; Sanderson, Frank R; Aitken, Elizabeth A B; Armstrong, Wendy
2004-08-01
Two species of Ganoderma belonging to different subgenera which cause disease on oil palms in PNG are identified by basidiome morphology and the morphology of their basidiospores. The names G. boninense and G. tornatum have been applied. Significant pleiomorphy was observed in basidiome characters amongst the specimens examined. This variation in most instances did not correlate well with host or host status. Spore morphology appeared uniform within a species and spore indices varied only slightly. G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms in Papua New Guinea.
Bannister, L H
1979-04-11
Intracellular genera are found in all the major groups of Protista, but are particularly common among the dinoflagellates, trypanosomatid zooflagellates and suctorian ciliates; the Sporozoa are nearly all intracellular at some stage of their life, and the Microspora entirely so. Intracellular forms can dwell in the nucleus, within phagosomal or other vacuoles or may lie free in the hyaloplasm of their host cells. Organisms tend to select their hosts from a restricted taxonomic range although there are some notable exceptions. There is also great variation in the types of host cell inhabited. There are various reasons for both host and cell selectivity including recognition phenomena at the cell surfaces. Invasion of host cells is usually preceded by surface interactions with the invader. Some organisms depend upon phagocytosis for entry, but others induce host cells to engulf them by non-phagocytic means or invade by microinjection through the host plasma membrane. Protista avoid lysosomal destruction by their resistance to enzyme attack, by surrounding themselves with lysosome-inhibiting vacuoles, by escaping from the phagosomal system into the hyaloplasm and by choosing host cells which lack lysosomes. Nutrition of intracellular heterotrophic organisms involves some degree of competition with the host cell's metabolism as well as erosion of host cell cytoplasm. In Plasmodium infections, red cells are made more permeable to required nutrients by the action of the parasite on the host cell membrane. The parasite is often dependent upon the host cell for complex nutrients which it cannot synthesize for itself. Intracellular forms often profoundly modify the structure and metabolism of the host cell or interfere with its growth and multiplication. This may result in the final lysis of the host cell at the end of the intracellular phase or before the infection of other cells. Certain types of intracellular organisms may have arisen initially as forms attached to the cell surface of digestive or other organs, but the intracellular habit appears to have arisen independently in several groups of Protista.
Benefits of fidelity: does host specialization impact nematode parasite life history and fecundity?
Koprivnikar, J; Randhawa, H S
2013-04-01
The range of hosts used by a parasite is influenced by macro-evolutionary processes (host switching, host-parasite co-evolution), as well as 'encounter filters' and 'compatibility filters' at the micro-evolutionary level driven by host/parasite ecology and physiology. Host specialization is hypothesized to result in trade-offs with aspects of parasite life history (e.g. reproductive output), but these have not been well studied. We used previously published data to create models examining general relationships among host specificity and important aspects of life history and reproduction for nematodes parasitizing animals. Our results indicate no general trade-off between host specificity and the average pre-patent period (time to first reproduction), female size, egg size, or fecundity of these nematodes. However, female size was positively related to egg size, fecundity, and pre-patent period. Host compatibility may thus not be the primary determinant of specificity in these parasitic nematodes if there are few apparent trade-offs with reproduction, but rather, the encounter opportunities for new host species at the micro-evolutionary level, and other processes at the macro-evolutionary level (i.e. phylogeny). Because host specificity is recognized as a key factor determining the spread of parasitic diseases understanding factors limiting host use are essential to predict future changes in parasite range and occurrence.
Precision Astrometry of the Exoplanet Host Candidate GD 66
2012-01-01
companions, including very low mass stars, neutron stars and black holes , for orbital pe- riods p > 4 yr. Remarkably, a period-dependent range of...trend in the pulsation arrival times cannot be due to stellar -mass secondaries, which include low-mass stars, white dwarfs, neutron stars and black ... holes with periods longer than 4 yr. The USNO relative astrometric monitoring of just over a decade rules out stellar -mass, dark companions with periods
NASA Astrophysics Data System (ADS)
Cornacchia, F.; Sani, E.; Toncelli, A.; Tonelli, M.; Marano, M.; Taccheo, S.; Galzerano, G.; Laporta, P.
Single crystals of monoclinic BaY2F8 and tetragonal LiYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. Here we present a comparative analysis of the two hosts including spectroscopic characterization and cw diode-pumped laser experiments in the 2-μm wavelength region at room temperature. The main differences between the two hosts are a lower slope efficiency associated with a much wider tuning range (2005-2094 nm) of BaY2F8 with respect to LiYF4.
Sprygin, A V; Fiodorova, O A; Babin, Yu Yu; Elatkin, N P; Mathieu, B; England, M E; Kononov, A V
2014-12-01
Culicoides biting midges play an important role in the epidemiology of many vector-borne infections, including bluetongue virus, an internationally important virus of ruminants. The territory of the Russian Federation includes regions with diverse climatic conditions and a wide range of habitats suitable for Culicoides. This review summarizes available data on Culicoides studied in the Russian Federation covering geographically different regions, as well as findings from adjacent countries. Previous literature on species composition, ranges of dominant species, breeding sites, and host preferences is reviewed and suggestions made for future studies to elucidate vector-virus relationships. © 2014 The Society for Vector Ecology.
Sanzani, S M; Montemurro, C; Di Rienzo, V; Solfrizzo, M; Ippolito, A
2013-07-15
Blue mould, caused by Penicillium expansum, is one of the most economically damaging postharvest diseases of pome fruits, although it may affect a wider host range, including sweet cherries and table grapes. Several reports on the role of mycotoxins in plant pathogenesis have been published, but few focussed on the influence of mycotoxins on the variation in host preference amongst producing fungi. In the present study the influence of the host on P. expansum pathogenicity/virulence was investigated, focussing mainly on the relationship with patulin production. Three P. expansum strain groups, originating from apples, sweet cherries, and table grapes (7 strains per host) were grown on their hosts of isolation and on artificial media derived from them. Strains within each P. expansum group proved to be more aggressive and produced more patulin than the other two groups under evaluation when grown on the host from which they originated. Table grape strains were the most aggressive (81% disease incidence) and strongest patulin producers (up to 554μg/g). The difference in aggressiveness amongst strains was appreciable only in the presence of a living host, suggesting that the complex pathogen-host interaction significantly influenced the ability of P. expansum to cause the disease. Incidence/severity of the disease and patulin production proved to be positively correlated, supporting the role of patulin as virulence/pathogenicity factor. The existence of genetic variation amongst isolates was confirmed by the High Resolution Melting method that was set up herein, which permitted discrimination of P. expansum from other species (P. chrysogenum and P. crustosum) and, within the same species, amongst the host of origin. Host effect on toxin production appeared to be exerted at a transcriptional level. Copyright © 2013 Elsevier B.V. All rights reserved.
Heidel-Fischer, Hanna M; Freitak, Dalial; Janz, Niklas; Söderlind, Lina; Vogel, Heiko; Nylin, Sören
2009-01-01
Background The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. Results In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. Conclusion Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies. PMID:19878603
Heidel-Fischer, Hanna M; Freitak, Dalial; Janz, Niklas; Söderlind, Lina; Vogel, Heiko; Nylin, Sören
2009-10-31
The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies.
Spitzer Observations of GRB Hosts: A Legacy Approach
NASA Astrophysics Data System (ADS)
Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew
2012-09-01
The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).
Rancan, Marzio; Tessarolo, Jacopo; Casarin, Maurizio; Zanonato, Pier Luigi; Quici, Silvio; Armelao, Lidia
2014-07-21
A constitutional dynamic library (CDL) of Cu(II) metallo-supramolecular polygons has been studied as a bench test to examine an interesting selection case based on molecular recognition. Sorting of the CDL polygons is achieved through a proper guest that is hosted into the triangular metallo-macrocycle constituent. Two selection mechanisms are observed, a guest induced path and a guest templated self-assembly (virtual library approach). Remarkably, the triangular host can accommodate several guests with a degree of selectivity ranging from ∼1 to ∼10(4) for all possible guest pairs. A double level selection operates: guests drive the CDL toward the triangular polygon, and, at the same time, this is able to pick a specific guest from a set of competitive molecules, according to a selectivity-affinity correlation. Association constants of the host-guest systems have been determined. Guest competition and exchange studies have been analyzed through variable temperature UV-Vis absorption spectroscopy and single crystal X-ray diffraction studies. Molecular structures and electronic properties of the triangular polygon and of the host-guest systems also have been studied by means of all electrons density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations including dispersive contributions. DFT outcomes ultimately indicate the dispersive nature of the host-guest interactions, while TDDFT results allow a thorough assignment of the host and host-guests spectral features.
Evolution in action: climate change, biodiversity dynamics and emerging infectious disease
Hoberg, Eric P.; Brooks, Daniel R.
2015-01-01
Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host–parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)—phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference—provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. PMID:25688014
Heuer, Holger; Fox, Randal E; Top, Eva M
2007-03-01
IncP-1 plasmids are known to be promiscuous, but it is not understood if they are equally well adapted to various species within their host range. Moreover, little is known about their fate in bacterial communities. We determined if the IncP-1beta plasmid pB10 was unstable in some Proteobacteria, and whether plasmid stability was enhanced after long-term carriage in a single host and when regularly switched between isogenic hosts. Plasmid pB10 was found to be very unstable in Pseudomonas putida H2, and conferred a high cost (c. 20% decrease in fitness relative to the plasmid-free host). H2(pB10) was then evolved under conditions that selected for plasmid maintenance, with or without regular plasmid transfer (host-switching). When tested in the ancestral host, the evolved plasmids were more stable and their cost was significantly reduced (9% and 16% for plasmids from host-switched and nonswitched lineages, respectively). Our findings suggest that IncP-1 plasmids can rapidly adapt to an unfavorable host by improving their overall stability, and that regular conjugative transfer accelerates this process.
Raymond J. Gagné; John C. Moser
1997-01-01
Many Holarctic genera of trees and shrubs are host over much of their ranges to particular genera of Cecidomyiidae. As examples, willows host gall midges of Rabdophaga and Iteomyia, oaks host Macrodiplosis and Polystepha, and birches host Semudobia in both the Nearctic and...
Candida albicans Biofilms and Human Disease
Nobile, Clarissa J.; Johnson, Alexander D.
2016-01-01
In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species. PMID:26488273
Bodey, G P; Vartivarian, S
1989-05-01
Aspergillus spores are ubiquitous in the environment and may become concentrated in hospital ventilation systems. Colonization in normal hosts can lead to allergic diseases ranging from asthma to allergic bronchopulmonary aspergillosis. Normal hosts rarely develop invasive disease, which is primarily an infection of severely immunocompromised patients. The major predisposing factors for infection include prolonged neutropenia, chronic administration of adrenal corticosteroids, the insertion of prosthetic devices, and tissue damage due to prior infection or trauma. Since Aspergillus spp. are respiratory pathogens, the most common form of infection is pneumonia followed by sinusitis. Patients with preexistant cavitary disease may develop noninvasive aspergillomas. Most infections are caused by Aspergillus fumigatus. The organism is capable of invading across all natural barriers, including cartilage and bone. It has a propensity for invading blood vessels causing thrombosis and infarction. The diagnosis of pulmonary infection is usually difficult to establish because the organism is seldom cultured from sputum and can represent contamination in some cases. Therapy is immunocompromised hosts is less than satisfactory and amphotericin B is the only agent with significant activity. There is anecdotal evidence to suggest that the addition of 5-fluorocytosine to amphotericin B may be beneficial.
Marcilla, Antonio; Trelis, María; Cortés, Alba; Sotillo, Javier; Cantalapiedra, Fernando; Minguez, María Teresa; Valero, María Luz; Sánchez del Pino, Manuel Mateo; Muñoz-Antoli, Carla; Toledo, Rafael; Bernal, Dolores
2012-01-01
The study of host-parasite interactions has increased considerably in the last decades, with many studies focusing on the identification of parasite molecules (i.e. surface or excretory/secretory proteins (ESP)) as potential targets for new specific treatments and/or diagnostic tools. In parallel, in the last few years there have been significant advances in the field of extracellular vesicles research. Among these vesicles, exosomes of endocytic origin, with a characteristic size ranging from 30–100 nm, carry several atypical secreted proteins in different organisms, including parasitic protozoa. Here, we present experimental evidence for the existence of exosome-like vesicles in parasitic helminths, specifically the trematodes Echinostoma caproni and Fasciola hepatica. These microvesicles are actively released by the parasites and are taken up by host cells. Trematode extracellular vesicles contain most of the proteins previously identified as components of ESP, as confirmed by proteomic, immunogold labeling and electron microscopy studies. In addition to parasitic proteins, we also identify host proteins in these structures. The existence of extracellular vesicles explains the secretion of atypical proteins in trematodes, and the demonstration of their uptake by host cells suggests an important role for these structures in host-parasite communication, as described for other infectious agents. PMID:23029346
Host–Multi-Pathogen Warfare: Pathogen Interactions in Co-infected Plants
Abdullah, Araz S.; Moffat, Caroline S.; Lopez-Ruiz, Francisco J.; Gibberd, Mark R.; Hamblin, John; Zerihun, Ayalsew
2017-01-01
Studies of plant–pathogen interactions have historically focused on simple models of infection involving single host-single disease systems. However, plant infections often involve multiple species and/or genotypes and exhibit complexities not captured in single host-single disease systems. Here, we review recent insights into co-infection systems focusing on the dynamics of host-multi-pathogen interactions and the implications for host susceptibility/resistance. In co-infection systems, pathogen interactions include: (i) Competition, in which competing pathogens develop physical barriers or utilize toxins to exclude competitors from resource-dense niches; (ii) Cooperation, whereby pathogens beneficially interact, by providing mutual biochemical signals essential for pathogenesis, or through functional complementation via the exchange of resources necessary for survival; (iii) Coexistence, whereby pathogens can stably coexist through niche specialization. Furthermore, hosts are also able to, actively or passively, modulate niche competition through defense responses that target at least one pathogen. Typically, however, virulent pathogens subvert host defenses to facilitate infection, and responses elicited by one pathogen may be modified in the presence of another pathogen. Evidence also exists, albeit rare, of pathogens incorporating foreign genes that broaden niche adaptation and improve virulence. Throughout this review, we draw upon examples of co-infection systems from a range of pathogen types and identify outstanding questions for future innovation in disease control strategies. PMID:29118773
Identification of Mycobacterium avium subsp. hominissuis Isolated From Drinking Water
Mycobacterium avium (MA) is divided into four subspecies based primarily on host-range and consists of MA subsp. avium (birds), MA subsp. silvaticum (wood pigeons), MA subsp. paratuberculosis (broad, poorly-defined host range), and the recently described MA subsp. hominissuis (hu...
Romanchuk, Artur; Chang, Jeff H.; Mukhtar, M. Shahid; Cherkis, Karen; Roach, Jeff; Grant, Sarah R.; Jones, Corbin D.; Dangl, Jeffery L.
2011-01-01
Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species. PMID:21799664
Kapasi, Anokhi J.; Dittrich, Sabine; González, Iveth J.; Rodwell, Timothy C.
2016-01-01
Background In resource limited settings acute febrile illnesses are often treated empirically due to a lack of reliable, rapid point-of-care diagnostics. This contributes to the indiscriminate use of antimicrobial drugs and poor treatment outcomes. The aim of this comprehensive review was to summarize the diagnostic performance of host biomarkers capable of differentiating bacterial from non-bacterial infections to guide the use of antibiotics. Methods Online databases of published literature were searched from January 2010 through April 2015. English language studies that evaluated the performance of one or more host biomarker in differentiating bacterial from non-bacterial infection in patients were included. Key information extracted included author information, study methods, population, pathogens, clinical information, and biomarker performance data. Study quality was assessed using a combination of validated criteria from the QUADAS and Lijmer checklists. Biomarkers were categorized as hematologic factors, inflammatory molecules, cytokines, cell surface or metabolic markers, other host biomarkers, host transcripts, clinical biometrics, and combinations of markers. Findings Of the 193 citations identified, 59 studies that evaluated over 112 host biomarkers were selected. Most studies involved patient populations from high-income countries, while 19% involved populations from low- and middle-income countries. The most frequently evaluated host biomarkers were C-reactive protein (61%), white blood cell count (44%) and procalcitonin (34%). Study quality scores ranged from 23.1% to 92.3%. There were 9 high performance host biomarkers or combinations, with sensitivity and specificity of ≥85% or either sensitivity or specificity was reported to be 100%. Five host biomarkers were considered weak markers as they lacked statistically significant performance in discriminating between bacterial and non-bacterial infections. Discussion This manuscript provides a summary of host biomarkers to differentiate bacterial from non-bacterial infections in patients with acute febrile illness. Findings provide a basis for prioritizing efforts for further research, assay development and eventual commercialization of rapid point-of-care tests to guide use of antimicrobials. This review also highlights gaps in current knowledge that should be addressed to further improve management of febrile patients. PMID:27486746
Xanthomonas TAL effectors hijack host basal transcription factor IIA α and γ subunits for invasion.
Ma, Ling; Wang, Qiang; Yuan, Meng; Zou, Tingting; Yin, Ping; Wang, Shiping
2018-02-05
The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria, which infect a broad range of crops and wild plant species, cause symptoms with leaf blights, streaks, spots, stripes, necrosis, wilt, cankers and gummosis on leaves, stems and fruits in a wide variety of plants via injecting their effector proteins into the host cell during infection. Among these virulent effectors, transcription activator-like effectors (TALEs) interact with the γ subunit of host transcription factor IIA (TFIIAγ) to activate the transcription of host disease susceptibility genes. Functional TFIIA is a ternary complex comprising α, β and γ subunits. However, whether TALEs recruit TFIIAα, TFIIAβ, or both remains unknown. The underlying molecular mechanisms by which TALEs mediate host susceptibility gene activation require full elucidation. Here, we show that TALEs interact with the α+γ binary subcomplex but not the α+β+γ ternary complex of rice TFIIA (holo-OsTFIIA). The transcription factor binding (TFB) regions of TALEs, which are highly conserved in Xanthomonas species, have a dominant role in these interactions. Furthermore, the interaction between TALEs and the α+γ complex exhibits robust DNA binding activity in vitro. These results collectively demonstrate that TALE-carrying pathogens hijack the host basal transcription factors TFIIAα and TFIIAγ, but not TFIIAβ, to enhance host susceptibility during pathogen infection. The uncovered mechanism widens new insights on host-microbe interaction and provide an applicable strategy to breed high-resistance crop varieties. Copyright © 2018 Elsevier Inc. All rights reserved.
Valente, Romina; Robles, Maria del Rosario; Navone, Graciela T; Diaz, Julia I
2018-01-01
BACKGROUND Angiostrongyliasis is an infection caused by nematode worms of the genus Angiostrongylus. The adult worms inhabit the pulmonary arteries, heart, bronchioles of the lung, or mesenteric arteries of the caecum of definitive host. Of a total of 23 species of Angiostrongylus cited worldwide, only nine were registered in the American Continent. Two species, A. cantonensis and A. costaricensis, are considered zoonoses when the larvae accidentally parasitise man. OBJECTIVES In the present study, geographical and chronological distribution of definitive hosts of Angiostrongylus in the Americas is analysed in order to observe their relationship with disease reports. Moreover, the role of different definitive hosts as sentinels and dispersers of infective stages is discussed. METHODS The study area includes the Americas. First records of Angiostrongylus spp. in definitive or accidental hosts were compiled from the literature. Data were included in tables and figures and were matched to geographic information systems (GIS). FINDINGS Most geographical records of Angiostrongylus spp. both for definitive and accidental hosts belong to tropical areas, mainly equatorial zone. In relation to those species of human health importance, as A. cantonensis and A. costaricensis, most disease cases indicate a coincidence between the finding of definitive host and disease record. However, in some geographic site there are gaps between report of definitive host and disease record. In many areas, human populations have invaded natural environments and their socioeconomic conditions do not allow adequate medical care. MAIN CONCLUSIONS Consequently, many cases for angiostrongyliasis could have gone unreported or unrecognised throughout history and in the nowadays. Moreover, the population expansion and the climatic changes invite to make broader and more complete range of observation on the species that involve possible epidemiological risks. This paper integrates and shows the current distribution of Angiostrongylus species in America, being this information very relevant for establishing prevention, monitoring and contingency strategies in the region. PMID:29412352
Valente, Romina; Robles, Maria Del Rosario; Navone, Graciela T; Diaz, Julia I
2018-03-01
Angiostrongyliasis is an infection caused by nematode worms of the genus Angiostrongylus. The adult worms inhabit the pulmonary arteries, heart, bronchioles of the lung, or mesenteric arteries of the caecum of definitive host. Of a total of 23 species of Angiostrongylus cited worldwide, only nine were registered in the American Continent. Two species, A. cantonensis and A. costaricensis, are considered zoonoses when the larvae accidentally parasitise man. In the present study, geographical and chronological distribution of definitive hosts of Angiostrongylus in the Americas is analysed in order to observe their relationship with disease reports. Moreover, the role of different definitive hosts as sentinels and dispersers of infective stages is discussed. The study area includes the Americas. First records of Angiostrongylus spp. in definitive or accidental hosts were compiled from the literature. Data were included in tables and figures and were matched to geographic information systems (GIS). Most geographical records of Angiostrongylus spp. both for definitive and accidental hosts belong to tropical areas, mainly equatorial zone. In relation to those species of human health importance, as A. cantonensis and A. costaricensis, most disease cases indicate a coincidence between the finding of definitive host and disease record. However, in some geographic site there are gaps between report of definitive host and disease record. In many areas, human populations have invaded natural environments and their socioeconomic conditions do not allow adequate medical care. Consequently, many cases for angiostrongyliasis could have gone unreported or unrecognised throughout history and in the nowadays. Moreover, the population expansion and the climatic changes invite to make broader and more complete range of observation on the species that involve possible epidemiological risks. This paper integrates and shows the current distribution of Angiostrongylus species in America, being this information very relevant for establishing prevention, monitoring and contingency strategies in the region.
Morrot, Alexandre; Villar, Silvina R.; González, Florencia B.; Pérez, Ana R.
2016-01-01
Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease. PMID:27242726
Ecology of coliphages in southern California coastal waters.
Reyes, V C; Jiang, S C
2010-08-01
This study aims to investigate the ecology of coliphages, an important microbial pollution indicator. Specifically, our experiments address (i) the ability of environmental Escherichia coli (E. coli) to serve as hosts for coliphage replication, and (ii) the temporal and spatial distribution of coliphages in coastal waters. Water samples from three locations in California's Newport Bay watershed were tested for the presence of coliphages every 2 weeks for an entire year. A total of nine E. coli strains isolated from various sources served as hosts for coliphage detection. Coliphage occurrence was significantly different between freshwater, estuarine and coastal locations and correlated with water temperature, salinity and rainfall in the watershed. The coliphages isolated on the environmental hosts had a broad host-range relative to the coliphages isolated on an E. coli strain from sewage and a US EPA recommended strain for coliphage detection. Coliphage occurrence was related to the temperature, rainfall and salinity within the bay. The adaptation to a broad host-range may enable the proliferation of coliphages in the aquatic environment. Understanding the seasonal variation of phages is useful for establishing a background level of coliphage presence in coastal waters. The broad host-range of coliphages isolated on the environmental E. coli host calls for investigation of coliphage replication in the aquatic environment.
Boykin, Laura M; Shatters, Robert G; Hall, David G; Dean, David; Beerli, Peter
2010-12-01
Anastrepha suspensa (Loew) (Diptera: Tephritidae), the Caribbean fruit fly, is indigenous to Florida and the Greater Antilles where it causes economic losses in fruit crops, including citrus. Because of the geographic separation of many of its native locations and anecdotal descriptions of regional differences in host preferences, there have been questions about the population structure of A. suspensa. Seven DNA microsatellite markers were used to characterize the population genetic structure of A. suspensa, in Florida and the Caribbean from a variety of hosts, including citrus. We genotyped 729 A. suspensa individuals from Florida, Puerto Rico, Cayman Island, Dominican Republic, and Jamaica. The investigated seven loci displayed from 5 to 19 alleles, with expected heterozygosities ranging from 0.05 to 0.83. There were five unique alleles in Florida and three unique alleles in the Caribbean samples; however, no microsatellite alleles were specific to a single host plant. Genetic diversity was analyzed using F(ST) and analysis of molecular variance and revealed low genetic diversity between Florida and Caribbean samples and also between citrus and noncitrus samples. Analyses using migrate revealed there is continuous gene flow between sampling sites in Florida and the Caribbean and among different hosts. These results support previous comparisons based on the mitochondrial cytochrome oxidase I locus indicating there is no genetic differentiation among locations in Florida and the Caribbean and that there is no separation into host races.
First report of hop stunt viroid from sweet cherry with dapple apple fruit symptoms in China
USDA-ARS?s Scientific Manuscript database
Hop stunt viroid (HSVd), the type member of the genus Hostuviroid, family Pospiviroidae, was first described from hops with stunt disease in Japan. HSVd has a wide host range that includes hop, cucumber, citrus, grapevine, plum, pear, peach, apricot and almond and is the causal agent of serious dis...
Detlev R. Vogler; Brian W. Geils
2008-01-01
The Sierra de San Pedro Martir is a mountain range in north-central Baja that comprises the southern-most extension of the Californian coniferous flora, including Pinus jeffreyi, P. contorta, P. lambertiana, Abies concolor, and Calocedrus decurrens. These forests are similar...
USDA-ARS?s Scientific Manuscript database
Arundo donax, giant reed, is an invasive weed in the riparian habitats of the Rio Grande Basin. A biological control program using specialist insects from the native range in Mediterranean Europe, including the arundo scale, Rhizaspidiotus donacis, has been implemented. The arundo scale is a sessile...
USDA-ARS?s Scientific Manuscript database
The granulate ambrosia beetle, Xylosandrus crassiusculus, is one of the most important exotic pests in orchards and nurseries in the U.S. The beetle has a wide host range, including some of the most popular and valuable trees in nurseries, and is difficult to control using chemical insecticides beca...
USDA-ARS?s Scientific Manuscript database
The fall armyworm, Spodoptera frugiperda (J. E. Smith)(Lepidoptera: Noctuidae), is an important agricultural pest of the Western Hemisphere noted for its broad host range, long distance flight capabilities, and a propensity to develop resistance to pesticides that includes a subset of those used in ...
USDA-ARS?s Scientific Manuscript database
Pantoea ananatis (Serano) representatives are known to have a broad host range including both humans and plants. The cotton fleahopper (Pseudatomoscelis seriatus, Reuter) is a significant pest that causes cotton bud damage that may result in significant yield losses. In this study, cotton fleahopp...
E-Learning for SMEs: Competition and Dimensions of Perceived Value
ERIC Educational Resources Information Center
Roffe, Ian
2004-01-01
E-learning is such an attractive opportunity for training providers to reconfigure delivery and support that it presents compelling reasons to engage with the practice. A broad range of provision is therefore available for every type of market segment, including small firms. Sustaining a competitive advantage from a host of offers is a practical…
Draft Genome Assembly of a Wolbachia Endosymbiont of Plutella australiana
Ward, Christopher M.
2017-01-01
ABSTRACT Wolbachia spp. are endosymbiotic bacteria that infect around 50% of arthropods and cause a broad range of effects, including manipulating host reproduction. Here, we present the annotated draft genome assembly of Wolbachia strain wAus, which infects Plutella australiana, a cryptic ally of the major Brassica pest Plutella xylostella (diamondback moth). PMID:29074653
Draft Genome Assembly of a Wolbachia Endosymbiont of Plutella australiana.
Ward, Christopher M; Baxter, Simon W
2017-10-26
Wolbachia spp. are endosymbiotic bacteria that infect around 50% of arthropods and cause a broad range of effects, including manipulating host reproduction. Here, we present the annotated draft genome assembly of Wolbachia strain wAus, which infects Plutella australiana , a cryptic ally of the major Brassica pest Plutella xylostella (diamondback moth). Copyright © 2017 Ward and Baxter.
Avian brood parasitism: information use and variation in egg-rejection behavior.
Svennungsen, Thomas Owens; Holen, Øistein Haugsten
2010-05-01
Hosts of avian brood parasites often vary in their response to parasitized clutches: they may eject one or several eggs, desert the nest, or accept all the eggs. Focusing on hosts exposed to single-egg parasitism by an evicting brood parasite, we construct an optimality model that includes all these behavioral options and use it to explore variation in rejection behavior. We particularly consider the influence of egg mimicry and external cues (observations of adult parasites near the nest) on optimal choice of rejection behavior. We find that several rejection responses will be present in a host population under a wide range of conditions. Ejection of multiple eggs tends to be adaptive when egg mimicry is fairly accurate, external cues provide reliable information of the risk of parasitism, and the expected success of renesting is low. If the perceived risk of parasitism is high, ejection of one or a few eggs may be the optimal rejection response even in cases in which hosts cannot discriminate between eggs. This may have consequences for the long-term outcome of the coevolutionary chase between hosts and parasites. We propose an alternative evolutionary pathway by which egg ejection may first arise as a defense against brood parasitism.
Evolution in action: climate change, biodiversity dynamics and emerging infectious disease.
Hoberg, Eric P; Brooks, Daniel R
2015-04-05
Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host-parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)--phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference--provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Determinants of host species range in plant viruses.
Moury, Benoît; Fabre, Frédéric; Hébrard, Eugénie; Froissart, Rémy
2017-04-01
Prediction of pathogen emergence is an important field of research, both in human health and in agronomy. Most studies of pathogen emergence have focused on the ecological or anthropic factors involved rather than on the role of intrinsic pathogen properties. The capacity of pathogens to infect a large set of host species, i.e. to possess a large host range breadth (HRB), is tightly linked to their emergence propensity. Using an extensive plant virus database, we found that four traits related to virus genome or transmission properties were strongly and robustly linked to virus HRB. Broader host ranges were observed for viruses with single-stranded genomes, those with three genome segments and nematode-transmitted viruses. Also, two contrasted groups of seed-transmitted viruses were evidenced. Those with a single-stranded genome had larger HRB than non-seed-transmitted viruses, whereas those with a double-stranded genome (almost exclusively RNA) had an extremely small HRB. From the plant side, the family taxonomic rank appeared as a critical threshold for virus host range, with a highly significant increase in barriers to infection between plant families. Accordingly, the plant-virus infectivity matrix shows a dual structure pattern: a modular pattern mainly due to viruses specialized to infect plants of a given family and a nested pattern due to generalist viruses. These results contribute to a better prediction of virus host jumps and emergence risks.
Lopes, Ana M; Breiman, Adrien; Lora, Mónica; Le Moullac-Vaidye, Béatrice; Galanina, Oxana; Nyström, Kristina; Marchandeau, Stephane; Le Gall-Reculé, Ghislaine; Strive, Tanja; Neimanis, Aleksija; Bovin, Nicolai V; Ruvoën-Clouet, Nathalie; Esteves, Pedro J; Abrantes, Joana; Le Pendu, Jacques
2017-11-29
The rabbit hemorrhagic disease virus (RHDV) and the European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus , respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged and many non-pathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, non-pathogenic lagoviruses and EBHSV potentially play a role in determining host range and virulence of lagoviruses. We observed binding to A, B or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits ( Oryctolagus cuniculus ), that have recently been classified as GI strains. Yet, we could not explain the emergence of virulence since similar glycan specificities were found between several pathogenic and non-pathogenic strains. By contrast, EBHSV, recently classified as GII.1, bound to terminal β-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species ( Oryctolagus cuniculus, Lepus europaeus and Sylvilagus floridanus ) showed species-specific patterns regarding the susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagoviruses host specificity and range. IMPORTANCE Lagoviruses constitute a genus of the Caliciviridae family, comprising highly pathogenic viruses, RHDV and EBHSV, which infect rabbits and hares, respectively. Recently, non-pathogenic strains were discovered and new pathogenic strains have emerged. In addition, host jumps between lagomorphs are observed. The mechanisms responsible for the emergence of pathogenicity and host-species range are unknown. Previous studies showed that RHDV strains attach to glycans expressed in the upper respiratory and digestive tracts of rabbits, the likely doors of virus entry. Here we studied the glycan-binding properties of novel pathogenic and non-pathogenic strains looking for a link between glycan-binding and virulence or between glycan specificity and host range. We found that glycan binding did not correlate with virulence. However, expression of glycan motifs in the upper respiratory and digestive tracts of lagomorphs revealed species-specific patterns associated with the host range of the virus strains, suggesting that glycan diversity contributes to lagoviruses' host range. Copyright © 2017 American Society for Microbiology.
Franklin, Erik C; Stat, Michael; Pochon, Xavier; Putnam, Hollie M; Gates, Ruth D
2012-03-01
The genus Symbiodinium encompasses a group of unicellular, photosynthetic dinoflagellates that are found free living or in hospite with a wide range of marine invertebrate hosts including scleractinian corals. We present GeoSymbio, a hybrid web application that provides an online, easy to use and freely accessible interface for users to discover, explore and utilize global geospatial bioinformatic and ecoinformatic data on Symbiodinium-host symbioses. The novelty of this application lies in the combination of a variety of query and visualization tools, including dynamic searchable maps, data tables with filter and grouping functions, and interactive charts that summarize the data. Importantly, this application is hosted remotely or 'in the cloud' using Google Apps, and therefore does not require any specialty GIS, web programming or data programming expertise from the user. The current version of the application utilizes Symbiodinium data based on the ITS2 genetic marker from PCR-based techniques, including denaturing gradient gel electrophoresis, sequencing and cloning of specimens collected during 1982-2010. All data elements of the application are also downloadable as spatial files, tables and nucleic acid sequence files in common formats for desktop analysis. The application provides a unique tool set to facilitate research on the basic biology of Symbiodinium and expedite new insights into their ecology, biogeography and evolution in the face of a changing global climate. GeoSymbio can be accessed at https://sites.google.com/site/geosymbio/. © 2011 Blackwell Publishing Ltd.
Novel narrow-host-range vectors for direct cloning of foreign DNA in Pseudomonas.
Boivin, R; Bellemare, G; Dion, P
1994-01-01
Narrow-host-range vectors, based on an indigenous replicon and containing a multiple cloning site, have been constructed in a Pseudomonas host capable of growth on unusual substrates. The new cloning vectors yield sufficient amounts of DNA for preparative purposes and belong to an incompatibility group different from that of the incP and incQ broad-host-range vectors. One of these vectors, named pDB47F, was used to clone, directly in Pseudomonas, DNA fragments from Agrobacterium, Pseudomonas, and Rhizobium. A clone containing Agrobacterium and KmR gene sequences was transformed with a higher efficiency than an RSF1010-derived vector (by as much as 1250-fold) in four out of five Pseudomonas strains tested. The considerable efficiency obtained with this system makes possible the direct cloning and phenotypic selection of foreign DNA in Pseudomonas.
Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis
López-Baena, Francisco J.; Ruiz-Sainz, José E.; Rodríguez-Carvajal, Miguel A.; Vinardell, José M.
2016-01-01
Sinorhizobium (Ensifer) fredii (S. fredii) is a rhizobial species exhibiting a remarkably broad nodulation host-range. Thus, S. fredii is able to effectively nodulate dozens of different legumes, including plants forming determinate nodules, such as the important crops soybean and cowpea, and plants forming indeterminate nodules, such as Glycyrrhiza uralensis and pigeon-pea. This capacity of adaptation to different symbioses makes the study of the molecular signals produced by S. fredii strains of increasing interest since it allows the analysis of their symbiotic role in different types of nodule. In this review, we analyze in depth different S. fredii molecules that act as signals in symbiosis, including nodulation factors, different surface polysaccharides (exopolysaccharides, lipopolysaccharides, cyclic glucans, and K-antigen capsular polysaccharides), and effectors delivered to the interior of the host cells through a symbiotic type 3 secretion system. PMID:27213334
USDA-ARS?s Scientific Manuscript database
The wide host range of Cucumber mosaic virus (CMV) has been expanded by the identification of Odontonema cuspidatum (firespike) and Psychotria punctata (dotted wild coffee) as CMV hosts in Florida....
Host specificity and the probability of discovering species of helminth parasites.
Poulin, R; Mouillot, D
2005-06-01
Different animal species have different probabilities of being discovered and described by scientists, and these probabilities are determined to a large extent by the biological characteristics of these species. For instance, species with broader geographical ranges are more likely to be encountered by collectors than species with restricted distributions; indeed, the size of the geographical range is often the best predictor of a species' date of description. For parasitic organisms, host specificity may be similarly linked to the probability of a species being found. Here, using data on 170 helminth species parasitic in freshwater fishes, we show that host specificity is associated with the year in which the helminths were described. Helminths that exploit more host species, and to a lesser degree those that exploit a broader taxonomic range of host species, tend to be discovered earlier than the more host-specific helminths. This pattern was observed across all helminth species, as well as within the different helminth taxa (trematodes, cestodes, nematodes and acanthocephalans). Our results demonstrate that the parasite species known at any given point in time are not a random subset of existing species, but rather a biased subset with respect to the parasites' biological properties.
Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.
2015-01-01
Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686
The Development of Antimicrobial α-AApeptides that Suppress Pro-inflammatory Immune Responses
Padhee, Shruti; Smith, Christina; Wu, Haifan; Li, Yaqiong; Manoj, Namitha; Qiao, Qiao; Khan, Zoya; Cao, Chuanhai
2014-01-01
Herein we describe the development of a new class of antimicrobial and anti-infective peptidomimetics – cyclic lipo-α-AApeptides. They have potent and broad-spectrum antibacterial activity against a range of clinically relevant pathogens, including both multidrug-resistant Gram-positive and Gram-negative bacteria. Fluorescence microscopy suggests that cyclic lipo-α-AApeptides kill bacteria by disrupting bacterial membranes, possibly through a mechanism similar to that of cationic host defense peptides (HDPs). Furthermore, the cyclic lipo-α-AApeptide can mimic cationic host-defense peptides by antagonizing Toll-Like Receptor 4 (TLR4) signaling responses and suppressing pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α). Our results suggest that by mimicking host-defense peptides (HDPs), cyclic lipo-α-AApeptides may emerge to be a new class of antibiotic agents through direct bacteria killing, as well as novel anti-infective agents through immunomodulation. PMID:24677440
Deb, J K; Nath, N
1999-06-01
Corynebacteria are pleomorphic, asporogenous, Gram-positive bacteria. Included in this group are nonpathogenic soil corynebacteria, which are widely used for the industrial production of amino acids and detergents, and in biotransformation of steroids. Other members of this group are plant and animal pathogens. This review summarizes the current information available about the plasmids of corynebacteria. The emphasis is mainly on the small plasmids, which have been used for construction of vectors for expression of genes in these bacteria. Moreover, considerable information is now available on their nucleotide sequence, gene organization and modes of replication, which would make it possible to further manipulate these plasmids. Other plasmid properties, such as incompatibility and host range, are also discussed. Finally, use of these plasmids as cloning vectors for the expression of heterologous proteins using corynebacteria as hosts is also summarized to highlight the potential of these bacteria as hosts for recombinant DNA.
Sánchez, Marta; Prim, Núria; Rández-Gil, Francisca; Pastor, F I Javier; Diaz, Pilar
2002-05-05
Lipases are versatile biocatalists showing multiple applications in a wide range of biotechnological processes. The gene lipA coding for Lipase A from Bacillus subtilis was isolated by PCR amplification, cloned and expressed in Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis strains, using pBR322, YEplac112 and pUB110-derived vectors, respectively. Lipase activity analysis of the recombinant strains showed that the gene can be properly expressed in all hosts assayed, this being the first time a lipase from bacterial origin can be expressed in baker's S. cerevisiae strains. An important increase of lipase production was obtained in heterologous hosts with respect to that of parental strains, indicating that the described systems can represent a useful tool to enhance productivity of the enzyme for biotechnological applications, including the use of the lipase in bread making, or as a technological additive. Copyright 2002 Wiley Periodicals, Inc.
Receptor recognition and cross-species infections of SARS coronavirus
Li, Fang
2013-01-01
Receptor recognition is a major determinant of the host range, cross-species infections, and pathogenesis of the severe acute respiratory syndrome coronavirus (SARS-CoV). A defined receptor-binding domain (RBD) in the SARS-CoV spike protein specifically recognizes its host receptor, angiotensin-converting enzyme 2 (ACE2). This article reviews the latest knowledge about how RBDs from different SARS-CoV strains interact with ACE2 from several animal species. Detailed research on these RBD/ACE2 interactions has established important principles on host receptor adaptations, cross-species infections, and future evolution of SARS-CoV. These principles may apply to other emerging animal viruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV). This paper forms part of a series of invited articles in Antiviral Research on “From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.” PMID:23994189
Receptor recognition and cross-species infections of SARS coronavirus.
Li, Fang
2013-10-01
Receptor recognition is a major determinant of the host range, cross-species infections, and pathogenesis of the severe acute respiratory syndrome coronavirus (SARS-CoV). A defined receptor-binding domain (RBD) in the SARS-CoV spike protein specifically recognizes its host receptor, angiotensin-converting enzyme 2 (ACE2). This article reviews the latest knowledge about how RBDs from different SARS-CoV strains interact with ACE2 from several animal species. Detailed research on these RBD/ACE2 interactions has established important principles on host receptor adaptations, cross-species infections, and future evolution of SARS-CoV. These principles may apply to other emerging animal viruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV). This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses". Copyright © 2013 Elsevier B.V. All rights reserved.
Nitric Oxide in the Offensive Strategy of Fungal and Oomycete Plant Pathogens
Arasimowicz-Jelonek, Magdalena; Floryszak-Wieczorek, Jolanta
2016-01-01
In the course of evolutionary changes pathogens have developed many invasion strategies, to which the host organisms responded with a broad range of defense reactions involving endogenous signaling molecules, such as nitric oxide (NO). There is evidence that pathogenic microorganisms, including two most important groups of eukaryotic plant pathogens, also acquired the ability to synthesize NO via non-unequivocally defined oxidative and/or reductive routes. Although the both kingdoms Chromista and Fungi are remarkably diverse, the experimental data clearly indicate that pathogen-derived NO is an important regulatory molecule controlling not only developmental processes, but also pathogen virulence and its survival in the host. An active control of mitigation or aggravation of nitrosative stress within host cells seems to be a key determinant for the successful invasion of plant pathogens representing different lifestyles and an effective mode of dispersion in various environmental niches. PMID:26973690
Carr, Michael; Gonzalez, Gabriel; Sasaki, Michihito; Dool, Serena E; Ito, Kimihito; Ishii, Akihiro; Hang'ombe, Bernard M; Mweene, Aaron S; Teeling, Emma C; Hall, William W; Orba, Yasuko; Sawa, Hirofumi
2017-10-06
Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.
Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson
2018-01-01
This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.
Venette, Robert C.; Maddox, Mitchell P.; Aukema, Brian H.
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death. PMID:28472047
Rosenberger, Derek W; Venette, Robert C; Maddox, Mitchell P; Aukema, Brian H
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death.
Hybridization between two cestode species and its consequences for intermediate host range
2013-01-01
Background Many parasites show an extraordinary degree of host specificity, even though a narrow range of host species reduces the likelihood of successful transmission. In this study, we evaluate the genetic basis of host specificity and transmission success of experimental F1 hybrids from two closely related tapeworm species (Schistocephalus solidus and S. pungitii), both highly specific to their respective vertebrate second intermediate hosts (three- and nine-spined sticklebacks, respectively). Methods We used an in vitro breeding system to hybridize Schistocephalus solidus and S. pungitii; hybridization rate was quantified using microsatellite markers. We measured several fitness relevant traits in pure lines of the parental parasite species as well as in their hybrids: hatching rates, infection rates in the copepod first host, and infection rates and growth in the two species of stickleback second hosts. Results We show that the parasites can hybridize in the in vitro system, although the proportion of self-fertilized offspring was higher in the heterospecific breeding pairs than in the control pure parental species. Hybrids have a lower hatching rate, but do not show any disadvantages in infection of copepods. In fish, hybrids were able to infect both stickleback species with equal frequency, whereas the pure lines were only able to infect their normal host species. Conclusions Although not yet documented in nature, our study shows that hybridization in Schistocephalus spp. is in principle possible and that, in respect to their expanded host range, the hybrids are fitter. Further studies are needed to find the reason for the maintenance of the species boundaries in wild populations. PMID:23390985
Species of Angiostrongylus (Nematoda: Metastrongyloidea) in wildlife: A review
Spratt, David M.
2015-01-01
Twenty-one species of Angiostrongylus plus Angiostrongylus sp. (Nematoda: Metastrongyloidea) are known currently in wildlife. These occur naturally in rodents, tupaiids, mephitids, mustelids, procyonids, felids, and canids, and aberrantly in a range of avian, marsupial and eutherian hosts including humans. Adults inhabit the pulmonary arteries and right atrium, ventricle and vena cava, bronchioles of the lung or arteries of the caecum and mesentery. All species pass first-stage larvae in the faeces of the host and all utilise slugs and/or aquatic or terrestrial snails as intermediate hosts. Gastropods are infected by ingestion or penetration of first-stage larvae; definitive hosts by ingestion of gastropods or gastropod slime. Transmission of at least one species may involve ingestion of paratenic hosts. Five developmental pathways are identified in these life cycles. Thirteen species, including Angiostrongylus sp., are known primarily from the original descriptions suggesting limited geographic distributions. The remaining species are widespread either globally or regionally, and are continuing to spread. Small experimental doses of infective larvae (ca. 20) given to normal or aberrant hosts are tolerated, although generally eliciting a granulomatous histopathological response; large doses (100–500 larvae) often result in clinical signs and/or death. Two species, A. cantonensis and A. costaricensis, are established zoonoses causing neurological and abdominal angiostrongliasis respectively. The zoonotic potential of A. mackerrasae, A. malaysiensis and A. siamensis particularly warrant investigation. Angiostrongylus cantonensis occurs in domestic animals, mammalian and avian wildlife and humans in the metropolitan areas of Brisbane and Sydney, Australia, where it has been suggested that tawny frogmouths and brushtail possums may serve as biosentinels. A major conservation issue is the devastating role A. cantonensis may play around zoos and fauna parks where captive rearing of endangered species programmes may exist and where Rattus spp. are invariably a problem. PMID:25853051
Evolution and diversity of Rickettsia bacteria
Weinert, Lucy A; Werren, John H; Aebi, Alexandre; Stone, Graham N; Jiggins, Francis M
2009-01-01
Background Rickettsia are intracellular symbionts of eukaryotes that are best known for infecting and causing serious diseases in humans and other mammals. All known vertebrate-associated Rickettsia are vectored by arthropods as part of their life-cycle, and many other Rickettsia are found exclusively in arthropods with no known secondary host. However, little is known about the biology of these latter strains. Here, we have identified 20 new strains of Rickettsia from arthropods, and constructed a multi-gene phylogeny of the entire genus which includes these new strains. Results We show that Rickettsia are primarily arthropod-associated bacteria, and identify several novel groups within the genus. Rickettsia do not co-speciate with their hosts but host shifts most often occur between related arthropods. Rickettsia have evolved adaptations including transmission through vertebrates and killing males in some arthropod hosts. We uncovered one case of horizontal gene transfer among Rickettsia, where a strain is a chimera from two distantly related groups, but multi-gene analysis indicates that different parts of the genome tend to share the same phylogeny. Conclusion Approximately 150 million years ago, Rickettsia split into two main clades, one of which primarily infects arthropods, and the other infects a diverse range of protists, other eukaryotes and arthropods. There was then a rapid radiation about 50 million years ago, which coincided with the evolution of life history adaptations in a few branches of the phylogeny. Even though Rickettsia are thought to be primarily transmitted vertically, host associations are short lived with frequent switching to new host lineages. Recombination throughout the genus is generally uncommon, although there is evidence of horizontal gene transfer. A better understanding of the evolution of Rickettsia will help in the future to elucidate the mechanisms of pathogenicity, transmission and virulence. PMID:19187530
Hepatitis B virus molecular biology and pathogenesis.
Lamontagne, R Jason; Bagga, Sumedha; Bouchard, Michael J
2016-01-01
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae . In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.
Body Condition Peaks at Intermediate Parasite Loads in the Common Bully Gobiomorphus cotidianus
Maceda-Veiga, Alberto; Green, Andy J.; Poulin, Robert; Lagrue, Clément
2016-01-01
Most ecologists and conservationists perceive parasitic infections as deleterious for the hosts. Their effects, however, depend on many factors including host body condition, parasite load and the life cycle of the parasite. More research into how multiple parasite taxa affect host body condition is required and will help us to better understand host-parasite coevolution. We used body condition indices, based on mass-length relationships, to test the effects that abundances and biomasses of six parasite taxa (five trematodes, Apatemon sp., Tylodelphys sp., Stegodexamene anguillae, Telogaster opisthorchis, Coitocaecum parvum, and the nematode Eustrongylides sp.) with different modes of transmission have on the body condition of their intermediate or final fish host, the common bully Gobiomorphus cotidianus in New Zealand. We used two alternative body condition methods, the Scaled Mass Index (SMI) and Fulton’s condition factor. General linear and hierarchical partitioning models consistently showed that fish body condition varied strongly across three lakes and seasons, and that most parasites did not have an effect on the two body condition indices. However, fish body condition showed a highly significant humpbacked relationship with the total abundance of all six parasite taxa, mostly driven by Apatemon sp. and S. anguillae, indicating that the effects of these parasites can range from positive to negative as abundance increases. Such a response was also evident in models including total parasite biomass. Our methodological comparison supports the SMI as the most robust mass-length method to examine the effects of parasitic infections on fish body condition, and suggests that linear, negative relationships between host condition and parasite load should not be assumed. PMID:28030606
USDA-ARS?s Scientific Manuscript database
Colletotrichum gloeosporioides f. sp. salsolae (Penz.) Penz. & Sacc. in Penz. (CGS) is a facultative parasitic fungus being evaluated as a classical biological control agent of Russian thistle or tumbleweed (Salsola tragus L.). In initial host range determination tests, Henderson’s mixed model equat...
Yanzhuo Zhang; James L. Hanula; Scott Horn; Cera Jones; S. Kristine Braman; Jianghua Sun
2016-01-01
Chinese privet, Ligustrum sinense Lour., is an invasive shrub within riparian areas of the southeastern United States. Biological control is considered the most suitable management option for Chinese privet. The potential host range of the lace bug, Leptoypha hospita Drake et...
Beckstead, Julie; Meyer, Susan E.; Ishizuka, Toby S.; McEvoy, Kelsey M.; Coleman, Craig E.
2016-01-01
Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora semeniperda by reciprocally inoculating pathogen strains from Bromus tectorum and from four other winter annual grass weeds (Bromus diandrus, Bromus rubens, Bromus arvensis and Taeniatherum caput-medusae) onto dormant seeds of B. tectorum and each alternate host. We found that host species varied in resistance and pathogen strains varied in aggressiveness, but there was no evidence for host specialization. Most variation in aggressiveness was among strains within populations and was expressed similarly on both hosts, resulting in a positive correlation between strain-level disease incidence on B. tectorum and on the alternate host. In spite of this lack of host specialization, we detected weak but significant population genetic structure as a function of host species using two neutral marker systems that yielded similar results. This genetic structure is most likely due to founder effects, as the pathogen is known to be dispersed with host seeds. All host species were highly susceptible to their own pathogen races. Tolerance to infection (i.e., the ability to germinate even when infected and thereby avoid seed mortality) increased as a function of seed germination rate, which in turn increased as dormancy was lost. Pyrenophora semeniperda apparently does not require host specialization to fully exploit these winter annual grass species, which share many life history features that make them ideal hosts for this pathogen. PMID:26950931
Molecular basis of recognition between phytophthora pathogens and their hosts.
Tyler, Brett M
2002-01-01
Recognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.
NASA Astrophysics Data System (ADS)
Hoadley, Kenneth D.; Pettay, Daniel. T.; Dodge, Danielle; Warner, Mark E.
2016-06-01
Given concerns surrounding coral bleaching and ocean acidification, there is renewed interest in characterizing the physiological differences across the multiple host-algal symbiont combinations commonly found on coral reefs. Elevated temperature and CO2 were used to compare physiological responses within the scleractinian corals Montipora hirsuta ( Symbiodinium C15) and Pocillopora damicornis ( Symbiodinium D1), as well as the corallimorph (a non-calcifying anthozoan closely related to scleractinians) Discosoma nummiforme ( Symbiodinium C3). Several physiological proxies were affected more by temperature than CO2, including photochemistry, algal number and cellular chlorophyll a. Marked differences in symbiont number, chlorophyll and volume contributed to distinctive patterns of chlorophyll absorption among these animals. In contrast, carbon fixation either did not change or increased under elevated temperature. Also, the rate of photosynthetically fixed carbon translocated to each host did not change, and the percent of carbon translocated to the host increased in the corallimorph. Comparing all data revealed a significant negative correlation between photosynthetic rate and symbiont density that corroborates previous hypotheses about carbon limitation in these symbioses. The ratio of symbiont-normalized photosynthetic rate relative to the rate of symbiont-normalized carbon translocation (P:T) was compared in these organisms as well as the anemone, Exaiptasia pallida hosting Symbiodinium minutum, and revealed a P:T close to unity ( D. nummiforme) to a range of 2.0-4.5, with the lowest carbon translocation in the sea anemone. Major differences in the thermal responses across these organisms provide further evidence of a range of acclimation potential and physiological plasticity that highlights the need for continued study of these symbioses across a larger group of host taxa.
Kuhn, Thomas; García-Màrquez, Jaime; Klimpel, Sven
2011-01-01
Parasites of the nematode genus Anisakis are associated with aquatic organisms. They can be found in a variety of marine hosts including whales, crustaceans, fish and cephalopods and are known to be the cause of the zoonotic disease anisakiasis, a painful inflammation of the gastro-intestinal tract caused by the accidental consumptions of infectious larvae raw or semi-raw fishery products. Since the demand on fish as dietary protein source and the export rates of seafood products in general is rapidly increasing worldwide, the knowledge about the distribution of potential foodborne human pathogens in seafood is of major significance for human health. Studies have provided evidence that a few Anisakis species can cause clinical symptoms in humans. The aim of our study was to interpolate the species range for every described Anisakis species on the basis of the existing occurrence data. We used sequence data of 373 Anisakis larvae from 30 different hosts worldwide and previously published molecular data (n = 584) from 53 field-specific publications to model the species range of Anisakis spp., using a interpolation method that combines aspects of the alpha hull interpolation algorithm as well as the conditional interpolation approach. The results of our approach strongly indicate the existence of species-specific distribution patterns of Anisakis spp. within different climate zones and oceans that are in principle congruent with those of their respective final hosts. Our results support preceding studies that propose anisakid nematodes as useful biological indicators for their final host distribution and abundance as they closely follow the trophic relationships among their successive hosts. The modeling might although be helpful for predicting the likelihood of infection in order to reduce the risk of anisakiasis cases in a given area. PMID:22180787
Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina.
Islam, Md Shahidul; Haque, Md Samiul; Islam, Mohammad Moinul; Emdad, Emdadul Mannan; Halim, Abdul; Hossen, Quazi Md Mosaddeque; Hossain, Md Zakir; Ahmed, Borhan; Rahim, Sifatur; Rahman, Md Sharifur; Alam, Md Monjurul; Hou, Shaobin; Wan, Xuehua; Saito, Jennifer A; Alam, Maqsudul
2012-09-19
Macrophomina phaseolina is one of the most destructive necrotrophic fungal pathogens that infect more than 500 plant species throughout the world. It can grow rapidly in infected plants and subsequently produces a large amount of sclerotia that plugs the vessels, resulting in wilting of the plant. We sequenced and assembled ~49 Mb into 15 super-scaffolds covering 92.83% of the M. phaseolina genome. We predict 14,249 open reading frames (ORFs) of which 9,934 are validated by the transcriptome. This phytopathogen has an abundance of secreted oxidases, peroxidases, and hydrolytic enzymes for degrading cell wall polysaccharides and lignocelluloses to penetrate into the host tissue. To overcome the host plant defense response, M. phaseolina encodes a significant number of P450s, MFS type membrane transporters, glycosidases, transposases, and secondary metabolites in comparison to all sequenced ascomycete species. A strikingly distinct set of carbohydrate esterases (CE) are present in M. phaseolina, with the CE9 and CE10 families remarkably higher than any other fungi. The phenotypic microarray data indicates that M. phaseolina can adapt to a wide range of osmotic and pH environments. As a broad host range pathogen, M. phaseolina possesses a large number of pathogen-host interaction genes including those for adhesion, signal transduction, cell wall breakdown, purine biosynthesis, and potent mycotoxin patulin. The M. phaseolina genome provides a framework of the infection process at the cytological and molecular level which uses a diverse arsenal of enzymatic and toxin tools to destroy the host plants. Further understanding of the M. phaseolina genome-based plant-pathogen interactions will be instrumental in designing rational strategies for disease control, essential to ensuring global agricultural crop production and security.
Auty, Harriet; Cleaveland, Sarah; Malele, Imna; Masoy, Joseph; Lembo, Tiziana; Bessell, Paul; Torr, Stephen; Picozzi, Kim; Welburn, Susan C.
2016-01-01
Background Identifying hosts of blood-feeding insect vectors is crucial in understanding their role in disease transmission. Rhodesian human African trypanosomiasis (rHAT), also known as acute sleeping sickness is caused by Trypanosoma brucei rhodesiense and transmitted by tsetse flies. The disease is commonly associated with wilderness areas of east and southern Africa. Such areas hold a diverse range of species which form communities of hosts for disease maintenance. The relative importance of different wildlife hosts remains unclear. This study quantified tsetse feeding preferences in a wilderness area of great host species richness, Serengeti National Park, Tanzania, assessing tsetse feeding and host density contemporaneously. Methods Glossina swynnertoni and G. pallidipes were collected from six study sites. Bloodmeal sources were identified through matching Cytochrome B sequences amplified from bloodmeals from recently fed flies to published sequences. Densities of large mammal species in each site were quantified, and feeding indices calculated to assess the relative selection or avoidance of each host species by tsetse. Results The host species most commonly identified in G. swynnertoni bloodmeals, warthog (94/220), buffalo (48/220) and giraffe (46/220), were found at relatively low densities (3-11/km2) and fed on up to 15 times more frequently than expected by their relative density. Wildebeest, zebra, impala and Thomson’s gazelle, found at the highest densities, were never identified in bloodmeals. Commonly identified hosts for G. pallidipes were buffalo (26/46), giraffe (9/46) and elephant (5/46). Conclusions This study is the first to quantify tsetse host range by molecular analysis of tsetse diet with simultaneous assessment of host density in a wilderness area. Although G. swynnertoni and G. pallidipes can feed on a range of species, they are highly selective. Many host species are rarely fed on, despite being present in areas where tsetse are abundant. These feeding patterns, along with the ability of key host species to maintain and transmit T. b. rhodesiense, drive the epidemiology of rHAT in wilderness areas. PMID:27706167
McClure, Melanie; Elias, Marianne
2016-06-16
Understanding the processes underlying diversification is a central question in evolutionary biology. For butterflies, access to new host plants provides opportunities for adaptive speciation. On the one hand, locally abundant host species can generate ecologically significant selection pressure. But a diversity of host plant species within the geographic range of each population and/or species might also eliminate any advantage conferred by specialization. This paper focuses on four Melinaea species, which are oligophagous on the family Solanaceae: M. menophilus, M. satevis, M. marsaeus, and finally, M. mothone. We examined both female preference and larval performance on two host plant species that commonly occur in this butterfly's native range, Juanulloa parasitica and Trianaea speciosa, to determine whether the different Melinaea species show evidence of local adaptation. In choice experiments, M. mothone females used both host plants for oviposition, whereas all other species used J. parasitica almost exclusively. In no choice experiment, M. mothone was the only species that readily accepted T. speciosa as a larval host plant. Larval survival was highest on J. parasitica (82.0 % vs. 60.9 %) and development took longer on T. speciosa (14.12 days vs. 13.35 days), except for M. mothone, which did equally well on both host plants. For all species, average pupal weight was highest on J. parasitica (450.66 mg vs. 420.01 mg), although this difference was least apparent in M. mothone. We did not find that coexisting species of Melinaea partition host plant resources as expected if speciation is primarily driven by host plant divergence. Although M. mothone shows evidence of local adaptation to a novel host plant, T. speciosa, which co-occurs, it does not preferentially lay more eggs on or perform better on this host plant than on host plants used by other Melinaea species and not present in its distributional range. It is likely that diversification in this genus is driven by co-occurring Müllerian mimics and the resulting predation pressure, although this is also likely made possible by greater niche diversity as a consequence of plasticity for potential hosts.
Bacterial Lipopolysaccharide Destabilizes Influenza Viruses.
Bandoro, Christopher; Runstadler, Jonathan A
2017-01-01
Depending on the specific viral pathogen, commensal bacteria can promote or reduce the severity of viral infection and disease progression in their hosts. Influenza A virus (IAV) has a broad host range, comprises many subtypes, and utilizes different routes of transmission, including the fecal-oral route in wild birds. It has been previously demonstrated that commensal bacteria can interact with the host's immune system to protect against IAV pathogenesis. However, it is unclear whether bacteria and their products may be interacting directly with IAV to impact virion stability. Herein we show that gastrointestinal (GI) tract bacterial isolates in an in vitro system significantly reduce the stability of IAV. Moreover, bacterial lipopolysaccharide (LPS), found on the exterior surfaces of bacteria, was sufficient to significantly decrease the stability of both human and avian viral strains in a temperature-dependent manner, including at the relevant temperatures of their respective hosts and the external aquatic habitat. The subtype and host origin of the viruses were shown to affect the extent to which IAV was susceptible to LPS. Furthermore, using a receptor binding assay and transmission electron microscopy, we observed that LPS binds to and alters the morphology of influenza virions, suggesting that direct interaction with the viral surface contributes to the observed antiviral effect of LPS on influenza. IMPORTANCE Influenza A virus (IAV), transmitted primarily via the fecal-oral route in wild birds, encounters high concentrations of bacteria and their products. Understanding the extent to which bacteria affect the infectivity of IAV will lead to a broader understanding of viral ecology in reservoir hosts and may lead to insights for the development of therapeutics in respiratory infection. Herein we show that bacteria and lipopolysaccharide (LPS) interact with and destabilize influenza virions. Moreover, we show that LPS reduces the long-term persistence and freeze-thaw stability of IAV, which is important information for modeling the movement and emergence of novel strains from animal hosts. Our results, demonstrating that the subtype and host origin of a virus also influence its susceptibility to LPS, raise key questions about the fitness of viruses in reservoir hosts, their potential to transmit to humans, and the importance of bacterial-viral interactions in viral ecology.
USDA-ARS?s Scientific Manuscript database
Visual cues may be the first line of host plant recognition and an important determining factor when selecting host plants for feeding and oviposition, especially for highly polyphagous insects, such as leafhoppers, which have a broad range of potential host plants. Temperate Empoasca fabae and trop...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Sayantan, E-mail: sayantan_bose@hms.harvard.edu; Jardetzky, Theodore S.; Lamb, Robert A., E-mail: ralamb@northwestern.edu
The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insightsmore » into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. - Highlights: • New structural and functional insights into paramyxovirus entry mechanisms. • Current data on paramyxovirus glycoproteins suggest a core conserved entry mechanism. • Diverse mechanisms preventing premature fusion activation exist in these viruses. • Precise spacio-temporal interplay between paramyxovirus glycoproteins initiate entry.« less
Application of NMR-based metabolomics to the study of gut microbiota in obesity.
Calvani, Riccardo; Brasili, Elisa; Praticò, Giulia; Sciubba, Fabio; Roselli, Marianna; Finamore, Alberto; Marini, Federico; Marzetti, Emanuele; Miccheli, Alfredo
2014-01-01
Lifestyle habits, host gene repertoire, and alterations in the intestinal microbiota concur to the development of obesity. A great deal of research has recently been focused on investigating the role gut microbiota plays in the pathogenesis of metabolic dysfunctions and increased adiposity. Altered microbiota can affect host physiology through several pathways, including enhanced energy harvest, and perturbations in immunity, metabolic signaling, and inflammatory pathways. A broad range of "omics" technologies is now available to help decipher the interactions between the host and the gut microbiota at detailed genetic and functional levels. In particular, metabolomics--the comprehensive analysis of metabolite composition of biological fluids and tissues--could provide breakthrough insights into the links among the gut microbiota, host genetic repertoire, and diet during the development and progression of obesity. Here, we briefly review the most insightful findings on the involvement of gut microbiota in the pathogenesis of obesity. We also discuss how metabolomic approaches based on nuclear magnetic resonance spectroscopy could help understand the activity of gut microbiota in relation to obesity, and assess the effects of gut microbiota modulation in the treatment of this condition.
Pooma, W; Petty, I T
1996-08-01
Tomato golden mosaic virus (TGMV) is a bipartite geminivirus with six well-characterized genes. An additional open reading frame (ORF), AL4, lies within the essential AL1 gene. Recent studies of monopartite, dicot-infecting geminiviruses have revealed that mutations in their analogous C4 ORFs have host-specific effects on infectivity, symptomatology, virus movement and/or viral DNA accumulation. We have investigated whether TGMV has a similar host-specific requirement for AL4. The phenotypes of three TGMV al4 mutants were determined in a range of hosts, which included species that revealed c4 mutant phenotypes for monopartite geminiviruses. Each TGMV al4 mutant was indistinguishable from wild-type TGMV in all hosts tested. Additional analyses of double mutants revealed no evidence for functional redundancy between AL4 and the AL3, or AR1 genes. In contrast to the putative C4 proteins of monpartite geminiviruses, TGMV AL4, if it is expressed, is either non-functional, or functionally redundant with an essential TGMV gene product.
DeBlasio, Stacy L; Johnson, Richard; Mahoney, Jaclyn; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle
2015-04-01
Identification of host proteins interacting with the aphidborne Potato leafroll virus (PLRV) from the genus Polerovirus, family Luteoviridae, is a critical step toward understanding how PLRV and related viruses infect plants. However, the tight spatial distribution of PLRV to phloem tissues poses challenges. A polyclonal antibody raised against purified PLRV virions was used to coimmunoprecipitate virus-host protein complexes from Nicotiana benthamiana tissue inoculated with an infectious PLRV cDNA clone using Agrobacterium tumefaciens. A. tumefaciens-mediated delivery of PLRV enabled infection and production of assembled, insect-transmissible virus in most leaf cells, overcoming the dynamic range constraint posed by a systemically infected host. Isolated protein complexes were characterized using high-resolution mass spectrometry and consisted of host proteins interacting directly or indirectly with virions, as well as the nonincorporated readthrough protein (RTP) and three phosphorylated positional isomers of the RTP. A bioinformatics analysis using ClueGO and STRING showed that plant proteins in the PLRV protein interaction network regulate key biochemical processes, including carbon fixation, amino acid biosynthesis, ion transport, protein folding, and trafficking.
Zaneveld, Jesse R R; Thurber, Rebecca L V
2014-01-01
Complex symbioses between animal or plant hosts and their associated microbiotas can involve thousands of species and millions of genes. Because of the number of interacting partners, it is often impractical to study all organisms or genes in these host-microbe symbioses individually. Yet new phylogenetic predictive methods can use the wealth of accumulated data on diverse model organisms to make inferences into the properties of less well-studied species and gene families. Predictive functional profiling methods use evolutionary models based on the properties of studied relatives to put bounds on the likely characteristics of an organism or gene that has not yet been studied in detail. These techniques have been applied to predict diverse features of host-associated microbial communities ranging from the enzymatic function of uncharacterized genes to the gene content of uncultured microorganisms. We consider these phylogenetically informed predictive techniques from disparate fields as examples of a general class of algorithms for Hidden State Prediction (HSP), and argue that HSP methods have broad value in predicting organismal traits in a variety of contexts, including the study of complex host-microbe symbioses.
Parente-Rocha, Juliana Alves; Tomazett, Mariana Vieira; Pigosso, Laurine Lacerda; Bailão, Alexandre Melo; Ferreira de Souza, Aparecido; Paccez, Juliano Domiraci; Baeza, Lilian Cristiane; Pereira, Maristela; Silva Bailão, Mirelle Garcia; Borges, Clayton Luiz; Maria de Almeida Soares, Célia
2018-06-01
Members of the Paracoccidioides complex are human pathogens that infect different anatomic sites in the host. The ability of Paracoccidioides spp. to infect host niches is putatively supported by a wide range of virulence factors, as well as fitness attributes that may comprise the transition from mycelia/conidia to yeast cells, response to deprivation of micronutrients in the host, expression of adhesins on the cell surface, response to oxidative and nitrosative stresses, as well as the secretion of hydrolytic enzymes in the host tissue. Our understanding of how those molecules can contribute to the infection establishment has been increasing significantly, through the utilization of several models, including in vitro, ex vivo and in vivo infection in animal models. In this review we present an update of our understanding on the strategies used by the pathogen to establish infection. Our results were obtained through a comparative proteomic analysis of Paracoccidioides spp. in models of infection. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Alacid, Elisabet; Park, Myung G.; Turon, Marta; Petrou, Katherina; Garcés, Esther
2016-01-01
Marine microbial interactions involving eukaryotes and their parasites play an important role in shaping the structure of phytoplankton communities. These interactions may alter population densities of the main host, which in turn may have consequences for the other concurrent species. The effect generalist parasitoids exert on a community is strongly dependent on the degree of host specificity. Parvilucifera sinerae is a generalist parasitoid able to infect a wide range of dinoflagellates, including toxic-bloom-forming species. A density-dependent chemical cue has been identified as the trigger for the activation of the infective stage. Together these traits make Parvilucifera-dinoflagellate hosts a good model to investigate the degree of specificity of a generalist parasitoid, and the potential effects that it could have at the community level. Here, we present for the first time, the strategy by which a generalist dinoflagellate parasitoid seeks out its host and determine whether it exhibits host preferences, highlighting key factors in determining infection. Our results demonstrate that in its infective stage, P. sinerae is able to sense potential hosts, but does not actively select among them. Instead, the parasitoids contact the host at random, governed by the encounter probability rate and once encountered, the chance to penetrate inside the host cell and develop the infection strongly depends on the degree of host susceptibility. As such, their strategy for persistence is more of a game of Russian roulette, where the chance of survival is dependent on the susceptibility of the host. Our study identifies P. sinerae as a potential key player in community ecology, where in mixed dinoflagellate communities consisting of hosts that are highly susceptible to infection, parasitoid preferences may mediate coexistence between host species, reducing the dominance of the superior competitor. Alternatively, it may increase competition, leading to species exclusion. If, however, highly susceptible hosts are absent from the community, the parasitoid population could suffer a dilution effect maintaining a lower parasitoid density. Therefore, both host community structure and host susceptibility will determine infectivity in the field. PMID:27252688
Reassessing Escherichia coli as a cell factory for biofuel production.
Wang, Chonglong; Pfleger, Brian F; Kim, Seon-Won
2017-06-01
Via metabolic engineering, industrial microorganisms have the potential to convert renewable substrates into a wide range of biofuels that can address energy security and environmental challenges associated with current fossil fuels. The user-friendly bacterium, Escherichia coli, remains one of the most frequently used hosts for demonstrating production of biofuel candidates including alcohol-, fatty acid- and terpenoid-based biofuels. In this review, we summarize the metabolic pathways for synthesis of these biofuels and assess enabling technologies that assist in regulating biofuel synthesis pathways and rapidly assembling novel E. coli strains. These advances maintain E. coli's position as a prominent host for developing cell factories for biofuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Warble? What’s a Warble? A recap of the human bot fly, Dermatobia hominis (L. Jr. 1781)
USDA-ARS?s Scientific Manuscript database
The human bot fly, Dermatobia hominis (Linnaeus Jr., 1781) is a major pest of livestock in Mexico, Central and South America. Myiasis caused by the larvae result in economic losses due to hide damage and reductions in weight gain and milk production. They have a broad host range which includes wildl...
USDA-ARS?s Scientific Manuscript database
Incompatibility group P-1 (incP-1) includes broad host range plasmids of Gram negative bacteria and are classified into five subgroups (alpha, beta, gamma, delta, and epsilon). The incP-1 replication module consists of the trfA gene, encoding the replication initiator protein TrfA, and the origin o...
USDA-ARS?s Scientific Manuscript database
Toxoplasma gondii infects virtually all warm-blooded animals worldwide. Serological tests, including the modified agglutination test (MAT), are often used to determine exposure to the parasite. The MAT can be used for all hosts because it does not need species-specific reagents and has been shown to...
Brian Strom; Sheri Smith; D.A. Wakarchuk
2008-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins 1902, is found in pine forests throughout the western U.S., north to northern British Columbia and Alberta, Canada and south to Mexico. It causes high levels of pine mortality throughout its range. Hosts include many species of Pinus (Pinaceae); in northern California,
Industrial Hardening Demonstration.
1980-09-01
products are obtained without simultaneous formation of coke and large quantities of gas. Purification Processes Sulfuric acid treatment removes sulfur by...attack ranged from 6 to 18 psi at six plants; two plants were rendered essentially invulnerable because of complete removal to a host area; and one...hazards. Such methods include: removal of conbustibles and potential missiles; strengthening or shielding of equipment against missiles and * "Crisis
ERIC Educational Resources Information Center
EdSource, 2007
2007-01-01
EdSource hosted an unprecedented forum on October 19, 2007 in Sacramento, California for the presentation and sharing of research-based education policy options offered by a range of K-12 organization and opinion leaders in California with diverse perspectives. Invitees included highly respected state policymakers, education leaders, researchers,…
Gary Bernon; Karen M. Bernhard; Anne L. Nielsen; James F. Stimmel; E. Richard Hoebeke; Maureen E. Carter
2007-01-01
Halyomorpha halys, (Hemiptera: Pentatomidae), is a pest in eastern Asia on soybeans and woody plants, including broadleaved trees and fruit trees. A population was discovered in Allentown, PA in 2001. H. halys is also a nuisance pest as it overwinters in homes and other buildings. Based on earlier reports to the Lehigh County...
Gut microbiome and the risk factors in central nervous system autoimmunity.
Ochoa-Repáraz, Javier; Kasper, Lloyd H
2014-11-17
Humans are colonized after birth by microbial organisms that form a heterogeneous community, collectively termed microbiota. The genomic pool of this macro-community is named microbiome. The gut microbiota is essential for the complete development of the immune system, representing a binary network in which the microbiota interact with the host providing important immune and physiologic function and conversely the bacteria protect themselves from host immune defense. Alterations in the balance of the gut microbiome due to a combination of environmental and genetic factors can now be associated with detrimental or protective effects in experimental autoimmune diseases. These gut microbiome alterations can unbalance the gastrointestinal immune responses and influence distal effector sites leading to CNS disease including both demyelination and affective disorders. The current range of risk factors for MS includes genetic makeup and environmental elements. Of interest to this review is the consistency between this range of MS risk factors and the gut microbiome. We postulate that the gut microbiome serves as the niche where different MS risk factors merge, thereby influencing the disease process. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Lee, Jin-Won; Noh, Hee-Jin; Lee, Yunkyoung; Kwon, Young-Soo; Kim, Chang-Hoe; Yoo, Jeong-Chil
2014-09-01
Since obligate avian brood parasites depend completely on the effort of other host species for rearing their progeny, the availability of hosts will be a critical resource for their life history. Circumstantial evidence suggests that intense competition for host species may exist not only within but also between species. So far, however, few studies have demonstrated whether the interspecific competition really occurs in the system of avian brood parasitism and how the nature of brood parasitism is related to their niche evolution. Using the occurrence data of five avian brood parasites from two sources of nationwide bird surveys in South Korea and publically available environmental/climatic data, we identified their distribution patterns and ecological niches, and applied species distribution modeling to infer the effect of interspecific competition on their spatial distribution. We found that the distribution patterns of five avian brood parasites could be characterized by altitude and climatic conditions, but overall their spatial ranges and ecological niches extensively overlapped with each other. We also found that the predicted distribution areas of each species were generally comparable to the realized distribution areas, and the numbers of individuals in areas where multiple species were predicted to coexist showed positive relationships among species. In conclusion, despite following different coevolutionary trajectories to adapt to their respect host species, five species of avian brood parasites breeding in South Korea occupied broadly similar ecological niches, implying that they tend to conserve ancestral preferences for ecological conditions. Furthermore, our results indicated that contrary to expectation interspecific competition for host availability between avian brood parasites seemed to be trivial, and thus, play little role in shaping their spatial distributions and ecological niches. Future studies, including the complete ranges of avian brood parasites and ecological niches of host species, will be worthwhile to further elucidate these issues.
Are adaptation costs necessary to build up a local adaptation pattern?
Magalhães, Sara; Blanchet, Elodie; Egas, Martijn; Olivieri, Isabelle
2009-08-03
Ecological specialization is pervasive in phytophagous arthropods. In such specialization mode, limits to host range are imposed by trade-offs preventing adaptation to several hosts. The occurrence of such trade-offs is inferred by a pattern of local adaptation, i.e., a negative correlation between relative performance on different hosts. To establish a causal link between local adaptation and trade-offs, we performed experimental evolution of spider mites on cucumber, tomato and pepper, starting from a population adapted to cucumber. Spider mites adapted to each novel host within 15 generations and no further evolution was observed at generation 25. A pattern of local adaptation was found, as lines evolving on a novel host performed better on that host than lines evolving on other hosts. However, costs of adaptation were absent. Indeed, lines adapted to tomato had similar or higher performance on pepper than lines evolving on the ancestral host (which represent the initial performance of all lines) and the converse was also true, e.g. negatively correlated responses were not observed on the alternative novel host. Moreover, adapting to novel hosts did not result in decreased performance on the ancestral host. Adaptation did not modify host ranking, as all lines performed best on the ancestral host. Furthermore, mites from all lines preferred the ancestral to novel hosts. Mate choice experiments indicated that crosses between individuals from the same or from a different selection regime were equally likely, hence development of reproductive isolation among lines adapted to different hosts is unlikely. Therefore, performance and preference are not expected to impose limits to host range in our study species. Our results show that the evolution of a local adaptation pattern is not necessarily associated with the evolution of an adaptation cost.
Process to form mesostructured films
Brinker, C. Jeffrey; Anderson, Mark T.; Ganguli, Rahul; Lu, Yunfeng
1999-01-01
This invention comprises a method to form a family of supported films film with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts.
Process to form mesostructured films
Brinker, C.J.; Anderson, M.T.; Ganguli, R.; Lu, Y.F.
1999-01-12
This invention comprises a method to form a family of supported films with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts. 12 figs.
Walter, Abigail J; Kells, Stephen A; Venette, Robert C; Seybold, Steven J
2010-04-01
When invasive herbivorous insects encounter novel plant species, they must determine whether the novel plants are hosts. The Mediterranean pine engraver, Orthotomicus erosus (Wollaston), an exotic bark beetle poised to expand its range in North America, accepts hosts after contacting the bark. To test the hypothesis that O. erosus accepts hosts on the basis of gustatory cues, we prepared bark and phloem extracts from logs of four North American tree species that we had used in previous host acceptance experiments. Water, methanol, and hexane extracts of red pine, tamarack, balsam fir, and paper birch were presented alone and in combination on a neutral filter paper substrate in a section of a plastic drinking straw. Boring behavior in response to the three-extract combinations differed from the pattern of acceptance previously observed among species when the beetles were in contact with the bark surface. Only the aqueous extracts of tamarack, Larix laricina, increased the initiation and the extent of boring by O. erosus on the filter paper substrate. We conclude that the effects of extracted chemicals do not match the behavior of the beetles observed when penetrating excised bark and phloem discs, indicating that host selection by O. erosus may not be predictable from bark and phloem chemistry alone. Instead, host acceptance may be determined by nongustatory stimuli or by a combination of stimuli including gustatory and nongustatory cues.
Liu, Jia; Wennier, Sonia; Moussatche, Nissin; Reinhard, Mary; Condit, Richard
2012-01-01
The myxoma virus (MYXV) carries three tandem C7L-like host range genes (M062R, M063R, and M064R). However, despite the fact that the sequences of these three genes are similar, they possess very distinctive functions in vivo. The role of M064 in MYXV pathogenesis was investigated and compared to the roles of M062 and M063. We report that M064 is a virulence factor that contributes to MYXV pathogenesis but lacks the host range properties associated with M062 and M063. PMID:22379095
Liu, Jia; Wennier, Sonia; Moussatche, Nissin; Reinhard, Mary; Condit, Richard; McFadden, Grant
2012-05-01
The myxoma virus (MYXV) carries three tandem C7L-like host range genes (M062R, M063R, and M064R). However, despite the fact that the sequences of these three genes are similar, they possess very distinctive functions in vivo. The role of M064 in MYXV pathogenesis was investigated and compared to the roles of M062 and M063. We report that M064 is a virulence factor that contributes to MYXV pathogenesis but lacks the host range properties associated with M062 and M063.
Trypanosoma rangeli is phylogenetically closer to Old World trypanosomes than to Trypanosoma cruzi.
Espinosa-Álvarez, Oneida; Ortiz, Paola A; Lima, Luciana; Costa-Martins, André G; Serrano, Myrna G; Herder, Stephane; Buck, Gregory A; Camargo, Erney P; Hamilton, Patrick B; Stevens, Jamie R; Teixeira, Marta M G
2018-06-01
Trypanosoma rangeli and Trypanosoma cruzi are generalist trypanosomes sharing a wide range of mammalian hosts; they are transmitted by triatomine bugs, and are the only trypanosomes infecting humans in the Neotropics. Their origins, phylogenetic relationships, and emergence as human parasites have long been subjects of interest. In the present study, taxon-rich analyses (20 trypanosome species from bats and terrestrial mammals) using ssrRNA, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH), heat shock protein-70 (HSP70) and Spliced Leader RNA sequences, and multilocus phylogenetic analyses using 11 single copy genes from 15 selected trypanosomes, provide increased resolution of relationships between species and clades, strongly supporting two main sister lineages: lineage Schizotrypanum, comprising T. cruzi and bat-restricted trypanosomes, and Tra[Tve-Tco] formed by T. rangeli, Trypanosoma vespertilionis and Trypanosoma conorhini clades. Tve comprises European T. vespertilionis and African T. vespertilionis-like of bats and bat cimicids characterised in the present study and Trypanosoma sp. Hoch reported in monkeys and herein detected in bats. Tco included the triatomine-transmitted tropicopolitan T. conorhini from rats and the African NanDoum1 trypanosome of civet (carnivore). Consistent with their very close relationships, Tra[Tve-Tco] species shared highly similar Spliced Leader RNA structures that were highly divergent from those of Schizotrypanum. In a plausible evolutionary scenario, a bat trypanosome transmitted by cimicids gave origin to the deeply rooted Tra[Tve-Tco] and Schizotrypanum lineages, and bat trypanosomes of diverse genetic backgrounds jumped to new hosts. A long and independent evolutionary history of T. rangeli more related to Old World trypanosomes from bats, rats, monkeys and civets than to Schizotrypanum spp., and the adaptation of these distantly related trypanosomes to different niches of shared mammals and vectors, is consistent with the marked differences in transmission routes, life-cycles and host-parasite interactions, resulting in T. cruzi (but not T. rangeli) being pathogenic to humans. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Grenier, Daniel; Chen, Huangqin; Ben Lagha, Amel; Fournier-Larente, Jade; Morin, Marie-Pierre
2015-01-01
Periodontitis that affects the underlying structures of the periodontium, including the alveolar bone, is a multifactorial disease, whose etiology involves interactions between specific bacterial species of the subgingival biofilm and the host immune components. In the present study, we investigated the effects of myricetin, a flavonol largely distributed in fruits and vegetables, on growth and virulence properties of Porphyromonas gingivalis as well as on the P. gingivalis-induced inflammatory response in host cells. Minimal inhibitory concentration values of myricetin against P. gingivalis were in the range of 62.5 to 125 μg/ml. The iron-chelating activity of myricetin may contribute to the antibacterial activity of this flavonol. Myricetin was found to attenuate the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including proteinases (rgpA, rgpB, and kgp) and adhesins (fimA, hagA, and hagB). Myricetin dose-dependently prevented NF-κB activation in a monocyte model. Moreover, it inhibited the secretion of IL-6, IL-8 and MMP-3 by P. gingivalis-stimulated gingival fibroblasts. In conclusion, our study brought clear evidence that the flavonol myricetin exhibits a dual action on the periodontopathogenic bacterium P. gingivalis and the inflammatory response of host cells. Therefore, myricetin holds promise as a therapeutic agent for the treatment/prevention of periodontitis. PMID:26121135
Heavner, Mary E.; Gueguen, Gwenaelle; Rajwani, Roma; Pagan, Pedro E.; Small, Chiyedza; Govind, Shubha
2013-01-01
Analysis of natural host-parasite relationships reveals the evolutionary forces that shape the delicate and unique specificity characteristic of such interactions. The accessory long gland-reservoir complex of the wasp Leptopilina heterotoma (Figitidae) produces venom with virus-like particles. Upon delivery, venom components delay host larval development and completely block host immune responses. The host range of this Drosophila endoparasitoid notably includes the highly-studied model organism, Drosophila melanogaster. Categorization of 827 unigenes, using similarity as an indicator of putative homology, reveals that approximately 25% are novel or classified as hypothetical proteins. Most of the remaining unigenes are related to processes involved in signaling, cell cycle, and cell physiology including detoxification, protein biogenesis, and hormone production. Analysis of L. heterotoma’s predicted venom gland proteins demonstrates conservation among endo- and ectoparasitoids within the Apocrita (e.g., this wasp and the jewel wasp Nasonia vitripennis) and stinging aculeates (e.g., the honey bee and ants). Enzyme and KEGG pathway profiling predicts that kinases, esterases, and hydrolases may contribute to venom activity in this unique wasp. To our knowledge, this investigation marks the first functional genomic study for a natural parasitic wasp of Drosophila. Our findings will help explain how L. heterotoma shuts down its hosts’ immunity and shed light on the molecular basis of a natural arms race between these insects. PMID:23688557
Arctic Visiting Speakers Series (AVS)
NASA Astrophysics Data System (ADS)
Fox, S. E.; Griswold, J.
2011-12-01
The Arctic Visiting Speakers (AVS) Series funds researchers and other arctic experts to travel and share their knowledge in communities where they might not otherwise connect. Speakers cover a wide range of arctic research topics and can address a variety of audiences including K-12 students, graduate and undergraduate students, and the general public. Host applications are accepted on an on-going basis, depending on funding availability. Applications need to be submitted at least 1 month prior to the expected tour dates. Interested hosts can choose speakers from an online Speakers Bureau or invite a speaker of their choice. Preference is given to individuals and organizations to host speakers that reach a broad audience and the general public. AVS tours are encouraged to span several days, allowing ample time for interactions with faculty, students, local media, and community members. Applications for both domestic and international visits will be considered. Applications for international visits should involve participation of more than one host organization and must include either a US-based speaker or a US-based organization. This is a small but important program that educates the public about Arctic issues. There have been 27 tours since 2007 that have impacted communities across the globe including: Gatineau, Quebec Canada; St. Petersburg, Russia; Piscataway, New Jersey; Cordova, Alaska; Nuuk, Greenland; Elizabethtown, Pennsylvania; Oslo, Norway; Inari, Finland; Borgarnes, Iceland; San Francisco, California and Wolcott, Vermont to name a few. Tours have included lectures to K-12 schools, college and university students, tribal organizations, Boy Scout troops, science center and museum patrons, and the general public. There are approximately 300 attendees enjoying each AVS tour, roughly 4100 people have been reached since 2007. The expectations for each tour are extremely manageable. Hosts must submit a schedule of events and a tour summary to be posted online. Hosts must acknowledge the National Science Foundation Office of Polar Programs and ARCUS in all promotional materials. Host agrees to send ARCUS photographs, fliers, and if possible a video of the main lecture. Host and speaker agree to collect data on the number of attendees in each audience to submit as part of a post-tour evaluation. The grants can generally cover all the expenses of a tour, depending on the location. A maximum of 2,000 will be provided for the travel related expenses of a speaker on a domestic visit. A maxiμm of 2,500 will be provided for the travel related expenses of a speaker on an international visit. Each speaker will receive an honorarium of $300.
Hahn, D.C.; O'Connor, R.J.; Scott, J. Michael; Heglund, Patricia J.; Morrison, Michael L.; Haufler, Jonathan B.; Wall, William A.
2002-01-01
Avian species distributions are typically regarded as constrained by spatially extensive variables such as climate, habitat, spatial patchiness, and microhabitat attributes. We hypothesized that the distribution of a brood parasite depends as strongly on host distribution patterns as on biophysical factors and examined this hypothesis with respect to the national distribution of the Brown-headed Cowbird (Molothrus ater). We applied a classification and regression (CART) analysis to data from the Breeding Bird Survey (BBS) and the Christmas Bird Count (CBC) and derived hierarchically organized statistical models of the influence of climate and weather, cropping and land use, and host abundance and distribution on the distribution of the Brown-headed Cowbird within the conterminous United States. The model accounted for 47.2% of the variation in cowbird incidence, and host abundance was the top predictor with an R2 of 18.9%. The other predictors identified by the model (crops 15.7%, weather and climate 14.3%, and region 9.6%) fit the ecological profile of this cowbird. We showed that host abundance was independent of these environmental predictors of cowbird distribution. At the regional scale host abundance played a very strong role in determining cowbird abundance in the cowbird?s colonized range east and west of their ancestral range in the Great Plains (26.6%). Crops were not a major predictor for cowbirds in their ancestral range, although they are the most important predictive factor (33%) for the grassland passerines that are the cowbird?s ancestral hosts. Consequently our findings suggest that the distribution of hosts does indeed take precedence over habitat attributes in shaping the cowbird?s distribution at a national scale, within an envelope of constraint set by biophysical factors.
Beadell, J.S.; Gering, E.; Austin, J.; Dumbacher, J.P.; Peirce, M.A.; Pratt, T.K.; Atkinson, C.T.; Fleischer, R.C.
2004-01-01
The degree to which widespread avian blood parasites in the genera Plasmodium and Haemoproteus pose a threat to novel hosts depends in part on the degree to which they are constrained to a particular host or host family. We examined the host distribution and host-specificity of these parasites in birds from two relatively understudied and isolated locations: Australia and Papua New Guinea. Using polymerase chain reaction (PCR), we detected infection in 69 of 105 species, representing 44% of individuals surveyed (n = 428). Across host families, prevalence of Haemoproteus ranged from 13% (Acanthizidae) to 56% (Petroicidae) while prevalence of Plasmodium ranged from 3% (Petroicidae) to 47% (Ptilonorhynchidae). We recovered 78 unique mitochondrial lineages from 155 sequences. Related lineages of Haemoproteus were more likely to derive from the same host family than predicted by chance at shallow (average LogDet genetic distance = 0, n = 12, P = 0.001) and greater depths (average distance = 0.014, n = 11, P < 0.001) within the parasite phylogeny. Within two major Haemoproteus subclades identified in a maximum likelihood phylogeny, host-specificity was evident up to parasite genetic distances of 0.029 and 0.007 based on logistic regression. We found no significant host relationship among lineages of Plasmodium by any method of analysis. These results support previous evidence of strong host-family specificity in Haemoproteus and suggest that lineages of Plasmodium are more likely to form evolutionarily-stable associations with novel hosts.
Blanco-Ulate, Barbara; Morales-Cruz, Abraham; Amrine, Katherine C. H.; Labavitch, John M.; Powell, Ann L. T.; Cantu, Dario
2014-01-01
Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue. PMID:25232357
Experimental evidence that parasites drive eco-evolutionary feedbacks
Brunner, Franziska S.; Anaya-Rojas, Jaime M.; Matthews, Blake; Eizaguirre, Christophe
2017-01-01
Host resistance to parasites is a rapidly evolving trait that can influence how hosts modify ecosystems. Eco-evolutionary feedbacks may develop if the ecosystem effects of host resistance influence selection on subsequent host generations. In a mesocosm experiment, using a recently diverged (<100 generations) pair of lake and stream three-spined sticklebacks, we tested how experimental exposure to a common fish parasite (Gyrodactylus spp.) affects interactions between hosts and their ecosystems in two environmental conditions (low and high nutrients). In both environments, we found that stream sticklebacks were more resistant to Gyrodactylus and had different gene expression profiles than lake sticklebacks. This differential infection led to contrasting effects of sticklebacks on a broad range of ecosystem properties, including zooplankton community structure and nutrient cycling. These ecosystem modifications affected the survival, body condition, and gene expression profiles of a subsequent fish generation. In particular, lake juvenile fish suffered increased mortality in ecosystems previously modified by lake adults, whereas stream fish showed decreased body condition in stream fish-modified ecosystems. Parasites reinforced selection against lake juveniles in lake fish-modified ecosystems, but only under oligotrophic conditions. Overall, our results highlight the overlapping timescales and the interplay of host–parasite and host–ecosystem interactions. We provide experimental evidence that parasites influence host-mediated effects on ecosystems and, thereby, change the likelihood and strength of eco-evolutionary feedbacks. PMID:28320947
Ingala, Melissa R.; Simmons, Nancy B.; Wultsch, Claudia; Krampis, Konstantinos; Speer, Kelly A.; Perkins, Susan L.
2018-01-01
The gut microbiome is a community of host-associated symbiotic microbes that fulfills multiple key roles in host metabolism, immune function, and tissue development. Given the ability of the microbiome to impact host fitness, there is increasing interest in studying the microbiome of wild animals to better understand these communities in the context of host ecology and evolution. Human microbiome research protocols are well established, but wildlife microbiome research is still a developing field. Currently, there is no standardized set of best practices guiding the collection of microbiome samples from wildlife. Gut microflora are typically sampled either by fecal collection, rectal swabbing, or by destructively sampling the intestinal contents of the host animal. Studies rarely include more than one sampling technique and no comparison of these methods currently exists for a wild mammal. Although some studies have hypothesized that the fecal microbiome is a nested subset of the intestinal microbiome, this hypothesis has not been formally tested. To address these issues, we examined guano (feces) and distal intestinal mucosa from 19 species of free-ranging bats from Lamanai, Belize, using 16S rRNA amplicon sequencing to compare microbial communities across sample types. We found that the diversity and composition of intestine and guano samples differed substantially. In addition, we conclude that signatures of host evolution are retained by studying gut microbiomes based on mucosal tissue samples, but not fecal samples. Conversely, fecal samples retained more signal of host diet than intestinal samples. These results suggest that fecal and intestinal sampling methods are not interchangeable, and that these two microbiotas record different information about the host from which they are isolated. PMID:29765359
Ingala, Melissa R; Simmons, Nancy B; Wultsch, Claudia; Krampis, Konstantinos; Speer, Kelly A; Perkins, Susan L
2018-01-01
The gut microbiome is a community of host-associated symbiotic microbes that fulfills multiple key roles in host metabolism, immune function, and tissue development. Given the ability of the microbiome to impact host fitness, there is increasing interest in studying the microbiome of wild animals to better understand these communities in the context of host ecology and evolution. Human microbiome research protocols are well established, but wildlife microbiome research is still a developing field. Currently, there is no standardized set of best practices guiding the collection of microbiome samples from wildlife. Gut microflora are typically sampled either by fecal collection, rectal swabbing, or by destructively sampling the intestinal contents of the host animal. Studies rarely include more than one sampling technique and no comparison of these methods currently exists for a wild mammal. Although some studies have hypothesized that the fecal microbiome is a nested subset of the intestinal microbiome, this hypothesis has not been formally tested. To address these issues, we examined guano (feces) and distal intestinal mucosa from 19 species of free-ranging bats from Lamanai, Belize, using 16S rRNA amplicon sequencing to compare microbial communities across sample types. We found that the diversity and composition of intestine and guano samples differed substantially. In addition, we conclude that signatures of host evolution are retained by studying gut microbiomes based on mucosal tissue samples, but not fecal samples. Conversely, fecal samples retained more signal of host diet than intestinal samples. These results suggest that fecal and intestinal sampling methods are not interchangeable, and that these two microbiotas record different information about the host from which they are isolated.
A sensory code for host seeking in parasitic nematodes
Hallem, Elissa A.; Dillman, Adler R.; Hong, Annie V.; Zhang, Yuanjun; Yano, Jessica M.; DeMarco, Stephanie F.
2011-01-01
Summary Nematodes comprise a large phylum of both free-living and parasitic species that show remarkably diverse lifestyles, ecological niches, and behavioral repertoires. Parasitic species in particular often display highly specialized host-seeking behaviors that reflect their specific host preferences. Many host-seeking behaviors can be triggered by the presence of host odors, yet little is known about either the specific olfactory cues that trigger these behaviors or the neural circuits that underlie them. Heterorhabditis bacteriophora and Steinernema carpocapsae are phylogenetically distant insect-parasitic nematodes whose host-seeking and host-invasion behavior resembles that of some of the most devastating human- and plant-parasitic nematodes. Here we compare the olfactory responses of H. bacteriophora and S. carpocapsae infective juveniles (IJs) to those of Caenorhabditis elegans dauers, which are analogous life stages [1]. We show that the broad host range of these parasites results from their ability to respond to the universally-produced signal carbon dioxide (CO2) as well as a wide array of odors, including host-specific odors that we identified using TD-GC-MS. We show that CO2 is attractive for the parasitic IJs and C. elegans dauers despite being repulsive for C. elegans adults [2–4], and we identify an ancient and conserved sensory neuron that mediates CO2 response in both parasitic and free-living species regardless of whether CO2 is an attractive or a repulsive cue. Finally, we show that the parasites’ odor response profiles are more similar to each other than to that of C. elegans despite their greater phylogenetic distance, likely reflecting evolutionary convergence to insect parasitism. Our results suggest that the olfactory responses of parasitic versus free-living nematodes are highly diverse and that this diversity is critical to the evolution of nematode behavior. PMID:21353558
Mendelsohn, Joshua B; Schilperoord, Marian; Spiegel, Paul; Balasundaram, Susheela; Radhakrishnan, Anuradha; Lee, Christopher K C; Larke, Natasha; Grant, Alison D; Sondorp, Egbert; Ross, David A
2014-02-01
In response to an absence of studies among refugees and host communities accessing highly active antiretroviral therapy (HAART) in urban settings, our objective was to compare adherence and virological outcomes among clients attending a public clinic in Kuala Lumpur, Malaysia. A cross-sectional survey was conducted among adult clients (≥18 years). Data sources included a structured questionnaire that measured self-reported adherence, a pharmacy-based measure of HAART prescription refills over the previous 24 months, and HIV viral loads. The primary outcome was unsuppressed viral load (≥40 copies/mL). Among a sample of 153 refugees and 148 host community clients, refugees were younger (median age 35 [interquartile range, IQR 31, 39] vs 40 years [IQR 35, 48], p < 0.001), more likely to be female (36 vs 21 %, p = 0.004), and to have been on HAART for less time (61 [IQR 35, 108] vs 153 weeks [IQR 63, 298]; p < 0.001). Among all clients, similar proportions of refugee and host clients were <95 % adherent to pharmacy refills (26 vs 34 %, p = 0.15). When restricting to clients on treatment for ≥25 weeks, similar proportions from each group were not virologically suppressed (19 % of refugees vs 16 % of host clients, p = 0.54). Refugee status was not independently associated with the outcome (adjusted odds ratio, aOR = 1.28, 95 % CI 0.52, 3.14). Overall, the proportions of refugee and host community clients with unsuppressed viral loads and sub-optimal adherence were similar, supporting the idea that refugees in protracted asylum situations are able to sustain good treatment outcomes and should explicitly be included in the HIV strategic plans of host countries with a view to expanding access in accordance with national guidelines for HAART.
Reyda, Florian B.; Marques, Fernando P. L.
2011-01-01
Background Neotropical freshwater stingrays (Batoidea: Potamotrygonidae) host a diverse parasite fauna, including cestodes. Both cestodes and their stingray hosts are marine-derived, but the taxonomy of this host/parasite system is poorly understood. Methodology Morphological and molecular (Cytochrome oxidase I) data were used to investigate diversity in freshwater lineages of the cestode genus Rhinebothrium Linton, 1890. Results were based on a phylogenetic hypothesis for 74 COI sequences and morphological analysis of over 400 specimens. Cestodes studied were obtained from 888 individual potamotrygonids, representing 14 recognized and 18 potentially undescribed species from most river systems of South America. Results Morphological species boundaries were based mainly on microthrix characters observed with scanning electron microscopy, and were supported by COI data. Four species were recognized, including two redescribed (Rhinebothrium copianullum and R. paratrygoni), and two newly described (R. brooksi n. sp. and R. fulbrighti n. sp.). Rhinebothrium paranaensis Menoret & Ivanov, 2009 is considered a junior synonym of R. paratrygoni because the morphological features of the two species overlap substantially. The diagnosis of Rhinebothrium Linton, 1890 is emended to accommodate the presence of marginal longitudinal septa observed in R. copianullum and R. brooksi n. sp. Patterns of host specificity and distribution ranged from use of few host species in few river basins, to use of as many as eight host species in multiple river basins. Significance The level of intra-specific morphological variation observed in features such as total length and number of proglottids is unparalleled among other elasmobranch cestodes. This is attributed to the large representation of host and biogeographical samples. It is unclear whether the intra-specific morphological variation observed is unique to this freshwater system. Nonetheless, caution is urged when using morphological discontinuities to delimit elasmobranch cestode species because the amount of variation encountered is highly dependent on sample size and/or biogeographical representation. PMID:21857936
Characterization of two biologically distinct variants of Tomato spotted wilt virus
USDA-ARS?s Scientific Manuscript database
Significant economic losses result on a wide range of crops due to infection with Tomato spotted wilt virus (TSWV). In this study, two TSWV isolates, one from basil and a second from tomato, were established in a common plant host. Viral proteins were monitored over time, plant host ranges were comp...
USDA-ARS?s Scientific Manuscript database
Chinese tallow, Triadica sebifera, is an invasive weed that infests natural and agricultural areas of the southeastern USA. A candidate for biological control of Chinese tallow has been studied under quarantine conditions. The biology and host range of a primitive leaf feeding beetle, Heterapoderops...
USDA-ARS?s Scientific Manuscript database
Sclerotinia sclerotiorum and S. trifoliorum cause Sclerotinia stem and crown rot of chickpea and white mold on many economically important crops. The host range of S. trifoliorum is mainly on cool season forage and grain legumes of about 40 plant species, whereas the host range of S. sclerotiorum ...
USDA-ARS?s Scientific Manuscript database
The fundamental host range of the arundo leafminer, Lasioptera donacis a candidate agent for the invasive weed, Arundo donax was evaluated. Lasioptera donacis collects and inserts spores of a saprophytic fungus, Arthrinium arundinis, during oviposition. Larvae feed and develop in the decomposing le...
Anthropogenic drivers of gypsy moth spread
Kevin M. Bigsby; Patrick C. Tobin; Erin O. Sills
2011-01-01
The gypsy moth, Lymantria dispar (L.), is a polyphagous defoliator introduced to Medford, Massachusetts in 1869. It has spread to over 860,000 km2 in North America, but this still only represents 1/4 of its susceptible host range in the United States. To delay defoliation in the remaining susceptible host range, the government...
NREL to Host Range of Activities for Energy Awareness Month
Host Range of Activities for Energy Awareness Month Events devoted to energy savings Golden, Colo., Sept. 20, 2000 - Visitors will get an inside look at advanced energy technologies and learn tips for cutting utility bills when the U.S. Department of Energy's National Renewable Energy
Bridle, Jon R; Buckley, James; Bodsworth, Edward J; Thomas, Chris D
2014-02-07
Generalist species and phenotypes are expected to perform best under rapid environmental change. In contrast to this view that generalists will inherit the Earth, we find that increased use of a single host plant is associated with the recent climate-driven range expansion of the UK brown argus butterfly. Field assays of female host plant preference across the UK reveal a diversity of adaptations to host plants in long-established parts of the range, whereas butterflies in recently colonized areas are more specialized, consistently preferring to lay eggs on one host plant species that is geographically widespread throughout the region of expansion, despite being locally rare. By common-garden rearing of females' offspring, we also show an increase in dispersal propensity associated with the colonization of new sites. Range expansion is therefore associated with an increase in the spatial scale of adaptation as dispersive specialists selectively spread into new regions. Major restructuring of patterns of local adaptation is likely to occur across many taxa with climate change, as lineages suited to regional colonization rather than local success emerge and expand.
Peters, S.G.; Armstrong, A.K.; Harris, A.G.; Oscarson, R.L.; Noble, P.J.
2003-01-01
The Jerritt Canyon mining district in the northern Independence Range, northern Nevada, contains multiple, nearly horizontal, thrust masses of platform carbonate rocks that are exposed in a series of north- to northeast-elongated, tectonic windows through rocks of the Roberts Mountains allochthon. The Roberts Mountains allochthon was emplaced during the Late Devonian to Early Mississippian Antler orogeny. These thrust masses contain structurally and stratigraphically controlled Carlin-type gold deposits. The gold deposits are hosted in tectonically truncated units of the Silurian to Devonian Hanson Creek and Roberts Mountains Formations that lie within structural slices of an Eastern assemblage of Cambrian to Devonian carbonate rocks. In addition, these multiply thrust-faulted and folded host rocks are structurally interleaved with Mississippian siliciclastic rocks and are overlain structurally by Cambrian to Devonian siliciclastic units of the Roberts Mountains allochthon. All sedimentary rocks were involved in thrusting, high-angle faulting, and folding, and some of these events indicate substantial late Paleozoic and/or Mesozoic regional shortening. Early Pennsylvanian and late Eocene dikes also intrude the sedimentary rocks. These rocks all were uplifted into a northeast-trending range by subsequent late Cenozoic Basin and Range faulting. Eocene sedimentary and volcanic rocks flank part of the range. Pathways of hydrothermal fluid flow and locations of Carlin-type gold orebodies in the Jerritt Canyon mining district were controlled by structural and host-rock geometries within specific lithologies of the stacked thrust masses of Eastern assemblage rocks. The gold deposits are most common proximal to intersections of northeast-striking faults, northwest-striking dikes, and thrust planes that lie adjacent to permeable stratigraphic horizons. The host stratigraphic units include carbonate sequences that contained primary intercrystalline permeability, which provided initial pathways for fluid flow and later served as precipitation sites for ore minerals. Alteration, during, and perhaps prior to mineralization, enhanced primary permeability by dissolution, by removal of calcite, and by formation of dolomite. Ore-stage sulfide minerals and alteration minerals commonly precipitated in pore spaces among dolomite grains. Microveinlets and microbrecciation in zones of intense alteration also provided networks of secondary permeability that further enhanced fluid flux and produced additional sites for ore deposition.
Uhrig, Emily J; Spagnoli, Sean T; Tkach, Vasyl V; Kent, Michael L; Mason, Robert T
2015-12-01
Trematodes of the genus Alaria develop into an arrested stage, known as mesocercariae, within their amphibian second intermediate host. The mesocercariae are frequently transmitted to a non-obligate paratenic host before reaching a definitive host where further development and reproduction can occur. Snakes are common paratenic hosts for Alaria spp. with the mesocercariae often aggregating in the host's tail. In the current study, we used morphological examination and molecular analyses based on partial sequences of nuclear large ribosomal subunit gene and mitochondrial cytochrome C oxidase subunit 1 gene to identify larvae in the tails of red-sided garter snakes (Thamnophis sirtalis parietalis) as mesocercariae of Alaria marcianae, Alaria mustelae, and Alaria sp. as well as metacercariae of Diplostomidae sp. of unknown generic affiliation. We assessed infection prevalence, absolute and relative intensity, and associated pathological changes in these snakes. Infection prevalence was 100 % for both male and female snakes. Infection intensity ranged from 11 to more than 2000 mesocercariae per snake tail but did not differ between the sexes. Gross pathological changes included tail swelling while histopathological changes included mild inflammation and the presence of mucus-filled pseudocysts surrounding mesocercariae, as well as the compression and degeneration of muscle fibers. Our results indicate that mesocercariae can lead to extensive muscle damage and loss in both sexes which likely increases the fragility of the tail making it more prone to breakage. As tail loss in garter snakes can affect both survival and reproduction, infection by Alaria mesocercariae clearly has serious fitness implications for these snakes.
Infectious disease agents mediate interaction in food webs and ecosystems
Selakovic, Sanja; de Ruiter, Peter C.; Heesterbeek, Hans
2014-01-01
Infectious agents are part of food webs and ecosystems via the relationship with their host species that, in turn, interact with both hosts and non-hosts. Through these interactions, infectious agents influence food webs in terms of structure, functioning and stability. The present literature shows a broad range of impacts of infectious agents on food webs, and by cataloguing that range, we worked towards defining the various mechanisms and their specific effects. To explore the impact, a direct approach is to study changes in food-web properties with infectious agents as separate species in the web, acting as additional nodes, with links to their host species. An indirect approach concentrates not on adding new nodes and links, but on the ways that infectious agents affect the existing links across host and non-host nodes, by influencing the ‘quality’ of consumer–resource interaction as it depends on the epidemiological state host involved. Both approaches are natural from an ecological point of view, but the indirect approach may connect more straightforwardly to commonly used tools in infectious disease dynamics. PMID:24403336
Daniel R. West; Jennifer S. Briggs; William R. Jacobi; Jose F. Negron
2016-01-01
Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for...
Fire blight: applied genomic insights of the pathogen and host
USDA-ARS?s Scientific Manuscript database
The enterobacterial phytopathogen, Erwinia amylovora, causes fire blight, an invasive disease that threatens a wide range of commercial and ornamental Rosaceae host plants. The response elicited by E. amylovora in its host during disease development is similar to the hypersensitive reaction that ty...
Roles of Long and Short Replication Initiation Proteins in the Fate of IncP-1 Plasmids
Yano, Hirokazu; Deckert, Gail E.; Rogers, Linda M.
2012-01-01
Broad-host-range IncP-1 plasmids generally encode two replication initiation proteins, TrfA1 and TrfA2. TrfA2 is produced from an internal translational start site within trfA1. While TrfA1 was previously shown to be essential for replication in Pseudomonas aeruginosa, its role in other bacteria within its broad host range has not been established. To address the role of TrfA1 and TrfA2 in other hosts, efficiency of transformation, plasmid copy number (PCN), and plasmid stability were first compared between a mini-IncP-1β plasmid and its trfA1 frameshift variant in four phylogenetically distant hosts: Escherichia coli, Pseudomonas putida, Sphingobium japonicum, and Cupriavidus necator. TrfA2 was sufficient for replication in these hosts, but the presence of TrfA1 enhanced transformation efficiency and PCN. However, TrfA1 did not contribute to, and even negatively affected, long-term plasmid persistence. When trfA genes were cloned under a constitutive promoter in the chromosomes of the four hosts, strains expressing either both TrfA1 and TrfA2 or TrfA1 alone, again, generally elicited a higher PCN of an IncP1-β replicon than strains expressing TrfA2 alone. When a single species of TrfA was produced at different concentrations in E. coli cells, TrfA1 maintained a 3- to 4-fold higher PCN than TrfA2 at the same TrfA concentrations, indicating that replication mediated by TrfA1 is more efficient than that by TrfA2. These results suggest that the broad-host-range properties of IncP-1 plasmids are essentially conferred by TrfA2 and the intact replication origin alone but that TrfA1 is nonetheless important to efficiently establish plasmid replication upon transfer into a broad range of hosts. PMID:22228734
Mukasa, S.B.; Wilshire, H.G.
1997-01-01
Ultramafic and mafic xenoliths from the Cima volcanic field, southern California, provide evidence of episodic modification of the upper mantle and underplating of the crust beneath a portion of the southern Basin and Range province. The upper mantle xenoliths include spinel peridotite and anhydrous and hydrous pyroxenite, some cut by igneous-textured pyroxenite-gabbro veins and dikes and some by veins of amphibole ?? plagioclase. Igneous-textured pyroxenites and gabbros like the dike rocks also occur abundantly as isolated xenoliths inferred to represent underplated crust. Mineral and whole rock trace element compositions among and within the different groups of xenoliths are highly variable, reflecting multiple processes that include magma-mantle wall rock reactions, episodic intrusion and it filtration of basaltic melts of varied sources into the mantle wall rock, and fractionation. Nd, Sr, and Pb isotopic compositions mostly of clinopyroxene and plagioclase mineral separates show distinct differences between mantle xenoliths (??Nd = -5.7 to +3.4; 87Sr/86Sr = 0.7051 - 0.7073; 206Pb/204Pb = 19.045 - 19.195) and the igneous-textured xenoliths (??Nd = +7.7 to +11.7; 87Sr/86Sr = 0.7027 - 0.7036 with one carbonate-affected outlier at 0.7054; and 206Pb/204Pb = 18.751 - 19.068), so that they cannot be related. The igneous-textured pyroxenites and gabbros are similar in their isotopic compositions to the host basaltic rocks, which have ??Nd of+5.1 to +9.3; 87Sr/86Sr of 0.7028 - 0.7050, and 206Pb/204Pb of 18.685 - 21.050. The igneous-textured pyroxenites and gabbros are therefore inferred to be related to the host rocks as earlier cogenetic intrusions in the mantle and in the lower crust. Two samples of peridotite, one modally metasomatized by amphibole and the other by plagioclase, have isotopic compositions intermediate between the igneous-textured xenoliths and the mantle rock, suggesting mixing, but also derivation of the metasomatizing magmas from two separate and distinct sources. Sm-Nd two-mineral "isochrons" yield apparent ages for petrographically identical rocks believed to be coeval ranging from -0 to 113 ?? 26 Ma, indicating the unreliability of dating these rocks with this method. Amphibole and plagioclase megacrysts are isotopically like the host basalts and probably originate by mechanical breakup of veins comagmatic with the host basaltic rocks. Unlike other Basin and Range localities, Cima Cr-diopside group isotopic compositions do not overlap with those of the host basalts. Copyright 1997 by the American Geophysical Union.
Characterizing Pale Blue Dots Around FGKM Stars
NASA Astrophysics Data System (ADS)
Rugheimer, S.; Kaltenegger, L.; Sasselov, D. D.; Segura, A.
2015-12-01
Exoplanet characterization of small rocky worlds will be a main focus in the coming decades. For future telescopes like JWST and UVOIR/HDST, an exoplanet's host star will influence our ability to detect and interpret spectral features, including biosignatures. We present a complete suit of stellar models and a grid of model atmospheres for Earth-like planets at equivalent stages of geological evolution in their HZ for stellar effective temperature from Teff = 2300K to 7000K, sampling the entire FGKM stellar type range. Since M dwarfs are simultaneously the most numerous in the universe, the most active, and the most likely stars to host terrestrial exoplanets, we focus in particular on the range of UV emission possible in each sub M spectral class. The UV emission from a planet's host star dominates the photochemistry and thus the resultant observable spectral features of the planet. Using the latest UV spectra obtained by HST and IUE we model the effect of stellar activity on Earth-like planets. We also model the amount of UV flux reaching the surface for Earth-like planets at various geological epochs ranging from a pre-biotic world through the rise of oxygen and for Earth-like planets orbiting FGKM stars at equivalent stages of evolution. When modeling the remotely detectable spectra of these planets we focus on the primary detectable atmospheric features that indicate habitability on Earth, namely: H2O, CO2, O3, CH4, N2O and CH3Cl. We model the emergent as well as transit spectra of Earth-like planets orbiting our grid of FGKM stars in the VIS/NIR (0.4 - 4 μm) and the IR (5 - 20 μm) range as input for future missions like JWST and concepts like UVOIR/HDST.
High Diversity of Hepatozoon spp. in Geckos of the Genus Tarentola.
Tomé, Beatriz; Rato, Catarina; Harris, D James; Perera, Ana
2016-08-01
: Hemogregarines are the most-commonly reported hemoparasites in reptiles. In this work we analyzed samples from 572 individuals of 6 species of the wall gecko genus Tarentola from European and African countries adjacent to the Mediterranean Sea as well as from the Macaronesian islands. Screening was done using hemogregarine-specific primers for the 18S rRNA gene. Positive amplifications were sequenced so that the diversity of the hemogregarines from these hosts could be assessed within a phylogenetic framework. The results from the phylogenetic analysis showed that within Tarentola, the detected parasites are comprised of at least 4 distinct main lineages of Hepatozoon spp. In clades A and B, the new sequences clustered closely together with the ones previously known from individuals of the genus Tarentola and other species of geckos but also with those from other vertebrate host groups including skinks, snakes, iguanids, and rodents. Clade C included a sample from Tarentola angustimentalis of the Canary Islands. This sequence is the first molecular characterization of these hemogregarines in this archipelago. Until now, this lineage had only been found in lacertids, skinks, and snakes, so this infection extends the host range for this clade. Lastly, in the newly detected clade D, the retrieved parasite sequences form a group currently identified as exclusive of geckos. Our results show that geckos of Tarentola spp. harbor a great diversity of hemogregarines but also that further sampling and other tools, including a multi-locus approach using faster-evolving genetic markers, and identification of definitive hosts are needed to better understand the biology, diversity, and distribution of these parasites.
Kopp, M; Rouster, J; Fritig, B; Darvill, A; Albersheim, P
1989-05-01
A glucan preparation obtained from the mycelial walls of the fungus Phytophthora megasperma f.sp. glycinea and known as an elicitor of phytoalexins in soybean was shown to be a very efficient inducer of resistance against viruses in tobacco. The glucan preparation protected against mechanically transmitted viral infections on the upper and lower leaf surfaces. Whether the glucan preparation was applied by injection, inoculation, or spraying, it protected the plants if applied before, at the same time as, or not later than 8 hours after virus inoculation. At concentrations ranging from 0.1 to 10 micrograms per milliliter, the glucan preparation induced protection ranging from 50 to 100% against both symptom production (necrotic local lesions, necrotic rings, or systemic mosaic) and virus accumulation in all Nicotiana-virus combinations examined. However, no significant protection against some of the same viruses was observed in bean or turnip. The host plants successfully protected included N. tabacum (9 different cultivars), N. sylvestris, N. glutinosa, and N. clevelandii. The viruses belonged to several taxonomic groups including tobacco mosaic virus, alfalfa mosaic virus, and tomato black ring virus. The glucan preparation did not act directly on the virus and did not interfere with virus disassembly; rather, it appeared to induce changes in the host plant that prevented infections from being initiated or recently established infections from enlarging. The induced resistance does not depend on induction of pathogenesis-related proteins, the phenylpropanoid pathway, lignin-like substances, or callose-like materials. We believe the induced resistance results from a mechanism that has yet to be described.
Kopp, Marguerite; Rouster, Jacques; Fritig, Bernard; Darvill, Alan; Albersheim, Peter
1989-01-01
A glucan preparation obtained from the mycelial walls of the fungus Phytophthora megasperma f.sp. glycinea and known as an elicitor of phytoalexins in soybean was shown to be a very efficient inducer of resistance against viruses in tobacco. The glucan preparation protected against mechanically transmitted viral infections on the upper and lower leaf surfaces. Whether the glucan preparation was applied by injection, inoculation, or spraying, it protected the plants if applied before, at the same time as, or not later than 8 hours after virus inoculation. At concentrations ranging from 0.1 to 10 micrograms per milliliter, the glucan preparation induced protection ranging from 50 to 100% against both symptom production (necrotic local lesions, necrotic rings, or systemic mosaic) and virus accumulation in all Nicotiana-virus combinations examined. However, no significant protection against some of the same viruses was observed in bean or turnip. The host plants successfully protected included N. tabacum (9 different cultivars), N. sylvestris, N. glutinosa, and N. clevelandii. The viruses belonged to several taxonomic groups including tobacco mosaic virus, alfalfa mosaic virus, and tomato black ring virus. The glucan preparation did not act directly on the virus and did not interfere with virus disassembly; rather, it appeared to induce changes in the host plant that prevented infections from being initiated or recently established infections from enlarging. The induced resistance does not depend on induction of pathogenesis-related proteins, the phenylpropanoid pathway, lignin-like substances, or callose-like materials. We believe the induced resistance results from a mechanism that has yet to be described. Images Figure 1 Figure 4 PMID:16666737
Pinochet, J; Verdejo, S; Soler, A; Canals, J
1992-12-01
In a host-range study carried out under greenhouse conditions, a total of 37 commercial fruit tree, grape, and citrus rootstocks were tested for their reaction to a population of the lesion nematode, Pratylenchus vulnus, in Spain. Twenty-five rootstocks had a Pf/Pi > 1.5. These included almond (Desmayo Rojo, 1143), apple (EM-9, EM-106), avocado (Hass), cherry (Santa Lucia 64, Camil, M x M 14, Masto de Montafiana), grape (41-B, Fercal, Ritcher 110), hazelnut (Pauetet), loquat (Nadal), peach (Montclar, GF-305), pear (OHF-333), pistachio (P. atlantica, P. vera, P. terebinthus), plum (San Julian 655-2, Montizo, Pixy, Myrobalan 605), and walnut (Serf). The peach rootstock Nemaguard and the grape 161-49 had Pf/Pi between 1.0 and 1.5 (slightly higher than inoculation level). All the tested citrus (Alemow, rough lemon, Carrizo citrange, sour orange, Troyer citrange, Citrumelo), plus three grape (SO4, Vitis rupestris, 1103-P), and the olive rootstock Arbequina had a Pf/Pi < 1.0.
The first report on mushroom green mould disease in Croatia.
Hatvani, Lóránt; Sabolić, Petra; Kocsubé, Sándor; Kredics, László; Czifra, Dorina; Vágvölgyi, Csaba; Kaliterna, Joško; Ivić, Dario; Đermić, Edyta; Kosalec, Ivan
2012-12-01
Green mould disease, caused by Trichoderma species, is a severe problem for mushroom growers worldwide, including Croatia. Trichoderma strains were isolated from green mould-affected Agaricus bisporus (button or common mushroom) compost and Pleurotus ostreatus (oyster mushroom) substrate samples collected from Croatian mushroom farms. The causal agents of green mould disease in the oyster mushroom were T. pleurotum and T. pleuroticola, similar to other countries. At the same time, the pathogen of A. bisporus was exclusively the species T. harzianum, which is different from earlier findings and indicates that the range of mushroom pathogens is widening. The temperature profiles of the isolates and their hosts overlapped, thus no range was found that would allow optimal growth of the mushrooms without mould contamination. Ferulic acid and certain phenolic compounds, such as thymol showed remarkable fungistatic effect on the Trichoderma isolates, but inhibited the host mushrooms as well. However, commercial fungicides prochloraz and carbendazim were effective agents for pest management. This is the first report on green mould disease of cultivated mushrooms in Croatia.
Lukacik, Petra; Lobley, Carina M C; Bumann, Mario; Arena de Souza, Victoria; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A
2015-10-01
Probiotic bacterial strains have been shown to enhance the health of the host through a range of mechanisms including colonization, resistance against pathogens, secretion of antimicrobial compounds and modulation of the activity of the innate immune system. Lactobacillus salivarius UCC118 is a well characterized probiotic strain which survives intestinal transit and has many desirable host-interaction properties. Probiotic bacteria display a wide range of catabolic activities, which determine their competitiveness in vivo. Some lactobacilli are heterofermentative and can metabolize pentoses, using a pathway in which transketolase and transaldolase are key enzymes. L. salivarius UCC118 is capable of pentose utilization because it encodes the key enzymes on a megaplasmid. The crystal structures of the megaplasmid-encoded transketolase with and without the enzyme cofactor thiamine pyrophosphate have been determined. Comparisons with other known transketolase structures reveal a high degree of structural conservation in both the catalytic site and the overall conformation. This work extends structural knowledge of the transketolases to the industrially and commercially important Lactobacillus genus.
Two-Way Communication Using RFID Equipment and Techniques
NASA Technical Reports Server (NTRS)
Jedry, Thomas; Archer, Eric
2007-01-01
Equipment and techniques used in radio-frequency identification (RFID) would be extended, according to a proposal, to enable short-range, two-way communication between electronic products and host computers. In one example of a typical contemplated application, the purpose of the short-range radio communication would be to transfer image data from a user s digital still or video camera to the user s computer for recording and/or processing. The concept is also applicable to consumer electronic products other than digital cameras (for example, cellular telephones, portable computers, or motion sensors in alarm systems), and to a variety of industrial and scientific sensors and other devices that generate data. Until now, RFID has been used to exchange small amounts of mostly static information for identifying and tracking assets. Information pertaining to an asset (typically, an object in inventory to be tracked) is contained in miniature electronic circuitry in an RFID tag attached to the object. Conventional RFID equipment and techniques enable a host computer to read data from and, in some cases, to write data to, RFID tags, but they do not enable such additional functions as sending commands to, or retrieving possibly large quantities of dynamic data from, RFID-tagged devices. The proposal would enable such additional functions. The figure schematically depicts an implementation of the proposal for a sensory device (e.g., a digital camera) that includes circuitry that converts sensory information to digital data. In addition to the basic sensory device, there would be a controller and a memory that would store the sensor data and/or data from the controller. The device would also be equipped with a conventional RFID chipset and antenna, which would communicate with a host computer via an RFID reader. The controller would function partly as a communication interface, implementing two-way communication protocols at all levels (including RFID if needed) between the sensory device and the memory and between the host computer and the memory. The controller would perform power V
Microdiversity of Echinococcus granulosus sensu stricto in Australia.
Alvarez Rojas, C A; Ebi, D; Gauci, C G; Scheerlinck, J P; Wassermann, M; Jenkins, D J; Lightowlers, M W; Romig, T
2016-07-01
Echinococcus granulosus (sensu lato) is now recognized as an assemblage of cryptic species, which differ considerably in morphology, development, host specificity (including infectivity/pathogenicity for humans) and other aspects. One of these species, E. granulosus sensu stricto (s.s.), is now clearly identified as the principal agent causing cystic echinococcosis in humans. Previous studies of a small section of the cox1 and nadh1 genes identified two variants of E. granulosus s.s. to be present in Australia; however, no further work has been carried out to characterize the microdiversity of the parasite in its territory. We have analysed the sequence of the full length of the cox1 gene (1609 bp) from 37 isolates of E. granulosus from different hosts and geographic regions of Australia. The analysis shows that seven haplotypes of E. granulosus s.s. not previously described were found, together with five haplotypes known to be present in other parts of the world, including the haplotype EG01 which is widespread and present in all endemic regions. These data extend knowledge related to the geographical spread and host range of E. granulosus s.s. in a country such as Australia in which the parasite established around 200 years ago.
Baker, T. S.; Olson, N. H.; Fuller, S. D.
1999-01-01
Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-Å) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical. PMID:10585969
Dose-Dependent Behavioral Response of the Mosquito Aedes albopictus to Floral Odorous Compounds
Hao, Huiling; Sun, Jingcheng; Dai, Jianqing
2013-01-01
The value of using plant volatiles as attractants for trapping and spatial repellents to protect hosts against mosquitoes has been widely recognized. The current study characterized behavioral responses of Aedes albopictus (Skuse) (Diptera: Culicidae) to different concentrations, ranging from 6 to 96%, of several common floral odorous compounds, including linalool, geraniol, citronellal, eugenol, anisaldehyde, and citral, using a wind tunnel olfactometer system. The results indicated that female mosquitoes reacted differently to different concentrations of the tested compounds, and the reactions also were different when those chemicals were tested alone or in the presence of human host odor. When tested alone, anisaldehyde was attractive at all tested concentrations, eugenol was attractive only at concentrations of 48–96%, while citronellal, linalool, citral, and geraniol were attractive at lower concentrations and repellent at higher concentrations. When tested in the presence of a human host, all compounds except for anisaldehyde at all tested concentrations showed host-seeking inhibition to certain degrees. Based on the results, it was concluded that anisaldehyde was effective in attracting Ae. albopictus when used alone but could also remarkably inhibit the host-seeking ability at a concentration of 96%, while citral, geraniol, linalool, citronellal, and eugenol are suitable as spatial repellents. PMID:24779928
Jenkins, David A; Kendra, Paul E; Van Bloem, Skip; Whitmire, Stefanie; Mizell, Russ; Goenaga, Ricardo
2013-04-01
McPhail-type traps baited with ammonium acetate and putrescine were used to monitor populations of Anastrepha obliqua (Macquart) and Anastrepha suspensa (Loew) in two orchards with hosts of these flies (mango, Mangifera indica L., and carambola, Averrhoa carambola L.), as well as in forest fragments bordering these orchards. Contour maps were constructed to measure population distributions in and around orchards. Our results indicate that Anastrepha populations are focused around host fruit in both space and time, that traps do not draw fruit flies away from hosts, even when placed within 15 m of the host, and that lures continue to function for 6 mo in the field. The contour mapping analyses reveal that populations of fruit flies are focused around ovipositional hosts. Although the trapping system does not have a very long effective sampling range, it is ideal, when used in combination with contour analyses, for assessing fine-scale (on the order of meters) population distributions, including identifying resources around which fly populations are focused or, conversely, assessing the effectiveness of management tools. The results are discussed as they pertain to monitoring and detecting Anastrepha spp. with the McPhail-type trap and ammonium acetate and putrescine baiting system and the dispersal of these flies within Puerto Rico.
Saad, Khalid A; Mohamad Roff, M N; Hallett, Rebecca H; Idris, A B
2015-09-03
The sweetpotato whitefly (WF), Bemisia tabaci, is a major pest that damages a wide range of vegetable crops in Malaysia. WF infestation is influenced by a variety of factors, including previous infestation of the host plant by other insect pests. This study investigated the effects of previous infestation of host chilli plants by the green peach aphid (Myzus persicae) on the olfactory behavioural response of B. tabaci, using free-choice bioassay with a Y-tube olfactometer. We analysed volatile organic compounds (VOCs) emitted by non-infested and M. persicae-infested chilli plants using solid-phase microextraction and gas chromatography-mass spectrometry. Our results showed that female WFs preferred non-infested to pre-infested plants. Collection and analysis of volatile compounds emitted by infested plants confirmed that there were significant increases in the production of monoterpenes (cymene; 1,8-cineole), sesquiterpenes (β-cadinene, α-copaene), and methyl salicylate (MeSA) compared to non-infested plants. Our results suggest that host plant infestation by aphids may induce production of secondary metabolites that deter B. tabaci from settling on its host plants. These results provide important information for understanding WF host selection and dispersal among crops, and also for manipulating WF behaviour to improve IPM in chilli.
Tchouassi, David P.; Sang, Rosemary; Sole, Catherine L.; Bastos, Armanda D. S.; Teal, Peter E. A.; Borgemeister, Christian; Torto, Baldwyn
2013-01-01
Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health and veterinary problem in sub-Saharan Africa. Surveillance to monitor mosquito populations during the inter-epidemic period (IEP) and viral activity in these vectors is critical to informing public health decisions for early warning and control of the disease. Using a combination of field bioassays, electrophysiological and chemical analyses we demonstrated that skin-derived aldehydes (heptanal, octanal, nonanal, decanal) common to RVF virus (RVFV) hosts including sheep, cow, donkey, goat and human serve as potent attractants for RVFV mosquito vectors. Furthermore, a blend formulated from the four aldehydes and combined with CO2-baited CDC trap without a light bulb doubled to tripled trap captures compared to control traps baited with CO2 alone. Our results reveal that (a) because of the commonality of the host chemical signature required for attraction, the host-vector interaction appears to favor the mosquito vector allowing it to find and opportunistically feed on a wide range of mammalian hosts of the disease, and (b) the sensitivity, specificity and superiority of this trapping system offers the potential for its wider use in surveillance programs for RVFV mosquito vectors especially during the IEP. PMID:23326620
Seasonal parasitism and host specificity of Trissolcus japonicus in northern China
USDA-ARS?s Scientific Manuscript database
The Asian egg parasitoid Trissolcus japonicus is considered the most promising species for classical biological control of Halyomorpha halys. We investigated the fundamental and ecological host range of T. japonicus in northern China to define its host specificity, and we determined that T. japonicu...
NASA Astrophysics Data System (ADS)
Ehya, Farhad; Mazraei, Shaghayegh Moalaye
2017-10-01
Barite mineralization occurs at Chenarvardeh deposit as layers and lenses in Upper Eocene volcanic and pyroclastic rocks. The host rocks are intensely saussuritized in most places. Barite is accompanied by calcite, Mn-oxides, galena and malachite as subordinate minerals. The amount of Sr in barites is low and varies between 0.11 and 0.30 wt%. The concentration of Rb, Zr, Y, Ta and Hf is also low (<5 ppm) in barite samples. The amount of total REEs (∑REE) is low in barites, ranging from 7.51 to 30.50 ppm. Chondrite-normalized REE patterns reveal LREE enrichment with respect to HREE, and positive Ce anomalies. Fluid inclusions are common in barite samples, being dominantly from liquid-rich two phase (L + V) type. Salinity values in fluid inclusions range from 9.41 to 18.69 wt% NaCl equivalent with most frequent salinities falling in the range of 10-15 wt% NaCl equivalent. Homogenization temperatures (Th) range between 160 and 220 °C, being the 180-200 °C range as the most common Th interval. A combination of factors, including geologic setting, host rock, mineral assemblages, REE geochemistry and fluid inclusion data are consistent with a submarine volcanic hydrothermal model for barite formation at the Chenarvardeh deposit. Mineral-forming fluids originated from solutions related to submarine hydrothermal activities deposited barite on seafloor as they encountered sulfate-bearing seawater.
Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains
Boncompain, Carina A.; Amadio, Ariel A.; Carrasco, Soledad; Suárez, Cristian A.
2017-01-01
Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus–currently under way- is thus, a sensible strategy against this pathogen. PMID:28742812
Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains.
Abatángelo, Virginia; Peressutti Bacci, Natalia; Boncompain, Carina A; Amadio, Ariel F; Carrasco, Soledad; Suárez, Cristian A; Morbidoni, Héctor R
2017-01-01
Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus-currently under way- is thus, a sensible strategy against this pathogen.
Andreou, Demetra; Gozlan, Rodolphe Elie
2016-08-01
The rosette agent Sphaerothecum destruens is a novel pathogen, which is currently believed to have been introduced into Europe along with the introduction of the invasive fish topmouth gudgeon Pseudorasbora parva (Temminck & Schlegel, 1846). Its close association with P. parva and its wide host species range and associated host mortalities, highlight this parasite as a potential source of disease emergence in European fish species. Here, using a meta-analysis of the reported S. destruens prevalence across all reported susceptible hosts species; we calculated host-specificity providing support that S. destruens is a true generalist. We have applied all the available information on S. destruens and host-range to an established framework for risk-assessing non-native parasites to evaluate the risks posed by S. destruens and discuss the next steps to manage and prevent disease emergence of this generalist parasite.
USDA-ARS?s Scientific Manuscript database
Host range tests were conducted with Colletotrichum gloeosporioides f. sp. salsolae (CGS) in quarantine to determine whether the fungus is safe to release in N. America for biological control of tumbleweed (Salsola tragus L., Chenopodiaceae). Ninety-two accessions were analyzed from 19 families and...
USDA-ARS?s Scientific Manuscript database
The host range of Eucosmophora schinusivora Davis & Wheeler (Lepidoptera: Gracillariidae) was studied to assess its suitability as a biological control agent of Schinus terebinthifolius Raddi (Anacardiaceae), a serious environmental and agricultural weed in the USA and elsewhere in the world. The l...
USDA-ARS?s Scientific Manuscript database
In this study we investigated the host range, transmission and symptom development of TVCV in several species of plants, as a step toward developing management strategy against seed transmissible viruses. While several species of plants failed to show symptoms of TVCV infection, we report that bush ...
Feng, Yansong; Li, Ping; Zhuang, Xuming; Ye, Kaiqi; Peng, Tai; Liu, Yu; Wang, Yue
2015-08-14
A novel phosphorescent host FPYPCA possessing the bipolar charge transporting ability realizes the most efficient deep-red PhOLED, which maintains very high-level EQEs of >23% at rather a high and wide luminance range of 1000-10 000 cd m(-2).
USDA-ARS?s Scientific Manuscript database
Apanteles opuntiarum, a parasitoid of cactus-feeding lepidopteran larvae, was incorrectly identified as A. alexanderi during the last 50 years. The discovery of A. opuntiarum as a new and separate species was followed by studies of its native host range. These studies revealed that the host range o...
JanaLynn Franke; Brad Geary; Susan E. Meyer
2014-01-01
The genus Fusarium has a wide host range and causes many different forms of plant disease. These include seed rot and seedling blight diseases of cultivated plants. The diseases caused by Fusarium on wild plants are less well-known. In this study, we examined disease development caused by Fusarium sp. n on nondormant seeds of the important rangeland weed Bromus...
Hoddle, Mark S; Pandey, Raju
2014-02-01
ABSTRACT Tests evaluating the host range of Tamarixia radiata (Waterson) (Hymenoptera: Eulophidae), a parasitoid of the pestiferous Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), sourced from the Punjab of Pakistan, were conducted in quarantine at the University of California, Riverside, CA. Seven nontarget psyllid species (five native and two self-introduced species) representing five families were exposed to T radiata under the following three different exposure scenarios: 1) sequential no-choice tests, 2) static no-choice tests, and 3) choice tests. Nontarget species were selected for testing based on the following criteria: 1) taxonomic relatedness to the target, D. citri; 2) native psyllids inhabiting native host plants related to citrus that could release volatiles attractive to T. radiata; 3) native psyllids with a high probability of occurrence in native vegetation surrounding commercial citrus groves that could be encountered by T. radiata emigrating from D. citri-infested citrus orchards; 4) a common native pest psyllid species; and 5) a beneficial psyllid attacking a noxious weed. The results of host range testing were unambiguous; T radiata exhibited a narrow host range and high host specificity, with just one species of nontarget psyllid, the abundant native pest Bactericera cockerelli Sulc, being parasitized at low levels (< 5%). These results suggest that the likelihood of significant nontarget impacts is low, and the establishment of T. radiata in southern California for the classical biological control of D. citri poses negligible environmental risk.
Bacterial Lipopolysaccharide Destabilizes Influenza Viruses
2017-01-01
ABSTRACT Depending on the specific viral pathogen, commensal bacteria can promote or reduce the severity of viral infection and disease progression in their hosts. Influenza A virus (IAV) has a broad host range, comprises many subtypes, and utilizes different routes of transmission, including the fecal-oral route in wild birds. It has been previously demonstrated that commensal bacteria can interact with the host’s immune system to protect against IAV pathogenesis. However, it is unclear whether bacteria and their products may be interacting directly with IAV to impact virion stability. Herein we show that gastrointestinal (GI) tract bacterial isolates in an in vitro system significantly reduce the stability of IAV. Moreover, bacterial lipopolysaccharide (LPS), found on the exterior surfaces of bacteria, was sufficient to significantly decrease the stability of both human and avian viral strains in a temperature-dependent manner, including at the relevant temperatures of their respective hosts and the external aquatic habitat. The subtype and host origin of the viruses were shown to affect the extent to which IAV was susceptible to LPS. Furthermore, using a receptor binding assay and transmission electron microscopy, we observed that LPS binds to and alters the morphology of influenza virions, suggesting that direct interaction with the viral surface contributes to the observed antiviral effect of LPS on influenza. IMPORTANCE Influenza A virus (IAV), transmitted primarily via the fecal-oral route in wild birds, encounters high concentrations of bacteria and their products. Understanding the extent to which bacteria affect the infectivity of IAV will lead to a broader understanding of viral ecology in reservoir hosts and may lead to insights for the development of therapeutics in respiratory infection. Herein we show that bacteria and lipopolysaccharide (LPS) interact with and destabilize influenza virions. Moreover, we show that LPS reduces the long-term persistence and freeze-thaw stability of IAV, which is important information for modeling the movement and emergence of novel strains from animal hosts. Our results, demonstrating that the subtype and host origin of a virus also influence its susceptibility to LPS, raise key questions about the fitness of viruses in reservoir hosts, their potential to transmit to humans, and the importance of bacterial-viral interactions in viral ecology. PMID:29034326
Evolution and Biogeography of Haemonchus contortus: Linking Faunal Dynamics in Space and Time.
Hoberg, E P; Zarlenga, D S
2016-01-01
History is the foundation that informs about the nuances of faunal assembly that are essential in understanding the dynamic nature of the host-parasite interface. All of our knowledge begins and ends with evolution, ecology and biogeography, as these interacting facets determine the history of biodiverse systems. These components, relating to Haemonchus, can inform about the complex history of geographical distribution, host association and the intricacies of host-parasite associations that are played out in physiological and behavioural processes that influence the potential for disease and our capacity for effective control in a rapidly changing world. Origins and evolutionary diversification among species of the genus Haemonchus and Haemonchus contortus occurred in a complex crucible defined by shifts in environmental structure emerging from cycles of climate change and ecological perturbation during the late Tertiary and through the Quaternary. A history of sequential host colonization associated with waves of dispersal bringing assemblages of ungulates from Eurasia into Africa and processes emerging from ecosystems in collision and faunal turnover defined the arena for radiation among 12 recognized species of Haemonchus. Among congeners, the host range for H. contortus is exceptionally broad, including species among artiodactyls of 40 genera representing 5 families (and within 12 tribes of Bovidae). Broad host range is dramatically reflected in the degree to which translocation, introduction and invasion with host switching, has characterized an expanding distribution over time in North America, South America, southern Eurasia, Australia and New Zealand, coincidental with agriculture, husbandry and global colonization by human populations driven particularly by European exploration after the 1500s. African origins in xeric to mesic habitats of the African savannah suggest that historical constraints linked to ecological adaptations (tolerances and developmental thresholds defined by temperature and humidity for larval stages) will be substantial determinants in the potential outcomes for widespread geographical and host colonization which are predicted to unfold over the coming century. Insights about deeper evolutionary events, ecology and biogeography are critical as understanding history informs us about the possible range of responses in complex systems under new regimes of environmental forcing, especially, in this case, ecological perturbation linked to climate change. A deeper history of perturbation is relevant in understanding contemporary systems that are now strongly structured by events of invasion and colonization. The relaxation of abiotic and biotic controls on the occurrence of H. contortus, coincidental with inception and dissemination of anthelmintic resistance may be synergistic, serving to exacerbate challenges to control parasites or to limit the socioeconomic impacts of infection that can influence food security and availability. Studies of haemonchine nematodes contribute directly to an expanding model about the nature of diversity and the evolutionary trajectories for faunal assembly among complex host-parasite systems across considerable spatial and temporal scales. Copyright © 2016 Elsevier Ltd. All rights reserved.
Host plants of the wheat stem sawfly (Hymenoptera: Cephidae)
USDA-ARS?s Scientific Manuscript database
Wheat stem sawfly (Cephus cinctus Norton) is a pest of economic importance across much of the wheat cultivating areas of the western Great Plains as well as an ecologically important insect due to its wide range of grass hosts. Little research has been published involving the native host preference ...
Identifying Francisella tularensis genes required for growth in host cells
USDA-ARS?s Scientific Manuscript database
Technical Abstract: Francisella tularensis is a highly virulent Gram negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cel...
Uromyces ciceris-arietini, the cause of chickpea rust: new hosts in the Trifolieae, Fabaceae
USDA-ARS?s Scientific Manuscript database
Plants of Medicago polymorpha in Riverside and San Diego, California were collected with severe rust caused by Uromyces ciceris-arietini. Reported hosts of U. ciceris-arietini are Cicer arietinum (chickpea) and Medicago polyceratia. To confirm the potential new host range, a monouredinial isolate RM...
Kaushik, Maya; Lamberton, Poppy H L; Webster, Joanne P
2012-08-01
Behavioural and neurophysiological traits and responses associated with anxiety and predation-related fear have been well documented in rodent models. Certain parasites and pathogens which rely on predation for transmission appear able to manipulate these, often innate, traits to increase the likelihood of their life-cycle being completed. This can occur through a range of mechanisms, such as alteration of hormonal and neurotransmitter communication and/or direct interference with the neurons and brain regions that mediate behavioural expression. Whilst some post-infection behavioural changes may reflect 'general sickness' or a pathological by-product of infection, others may have a specific adaptive advantage to the parasite and be indicative of active manipulation of host behaviour. Here we review the key mechanisms by which anxiety and predation-related fears are controlled in mammals, before exploring evidence for how some infectious agents may manipulate these mechanisms. The protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, is focused on as a prime example. Selective pressures appear to have allowed this parasite to evolve strategies to alter the behaviour in its natural intermediate rodent host. Latent infection has also been associated with a range of altered behavioural profiles, from subtle to severe, in other secondary host species including humans. In addition to enhancing our knowledge of the evolution of parasite manipulation in general, to further our understanding of how and when these potential changes to human host behaviour occur, and how we may prevent or manage them, it is imperative to elucidate the associated mechanisms involved. Copyright © 2012 Elsevier Inc. All rights reserved.
Pest and Disease Management: Why We Shouldn't Go against the Grain
Skelsey, Peter; With, Kimberly A.; Garrett, Karen A.
2013-01-01
Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal (‘humpbacked’) relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness. PMID:24098739
Deer, predators, and the emergence of Lyme disease
Levi, Taal; Kilpatrick, A. Marm; Mangel, Marc; Wilmers, Christopher C.
2012-01-01
Lyme disease is the most prevalent vector-borne disease in North America, and both the annual incidence and geographic range are increasing. The emergence of Lyme disease has been attributed to a century-long recovery of deer, an important reproductive host for adult ticks. However, a growing body of evidence suggests that Lyme disease risk may now be more dynamically linked to fluctuations in the abundance of small-mammal hosts that are thought to infect the majority of ticks. The continuing and rapid increase in Lyme disease over the past two decades, long after the recolonization of deer, suggests that other factors, including changes in the ecology of small-mammal hosts may be responsible for the continuing emergence of Lyme disease. We present a theoretical model that illustrates how reductions in small-mammal predators can sharply increase Lyme disease risk. We then show that increases in Lyme disease in the northeastern and midwestern United States over the past three decades are frequently uncorrelated with deer abundance and instead coincide with a range-wide decline of a key small-mammal predator, the red fox, likely due to expansion of coyote populations. Further, across four states we find poor spatial correlation between deer abundance and Lyme disease incidence, but coyote abundance and fox rarity effectively predict the spatial distribution of Lyme disease in New York. These results suggest that changes in predator communities may have cascading impacts that facilitate the emergence of zoonotic diseases, the vast majority of which rely on hosts that occupy low trophic levels. PMID:22711825
Pest and disease management: why we shouldn't go against the grain.
Skelsey, Peter; With, Kimberly A; Garrett, Karen A
2013-01-01
Given the wide range of scales and mechanisms by which pest or disease agents disperse, it is unclear whether there might exist a general relationship between scale of host heterogeneity and spatial spread that could be exploited by available management options. In this model-based study, we investigate the interaction between host distributions and the spread of pests and diseases using an array of models that encompass the dispersal and spread of a diverse range of economically important species: a major insect pest of coniferous forests in western North America, the mountain pine beetle (Dendroctonus ponderosae); the bacterium Pseudomonas syringae, one of the most-widespread and best-studied bacterial plant pathogens; the mosquito Culex erraticus, an important vector for many human and animal pathogens, including West Nile Virus; and the oomycete Phytophthora infestans, the causal agent of potato late blight. Our model results reveal an interesting general phenomenon: a unimodal ('humpbacked') relationship in the magnitude of infestation (an index of dispersal or population spread) with increasing grain size (i.e., the finest scale of patchiness) in the host distribution. Pest and disease management strategies targeting different aspects of host pattern (e.g., abundance, aggregation, isolation, quality) modified the shape of this relationship, but not the general unimodal form. This is a previously unreported effect that provides insight into the spatial scale at which management interventions are most likely to be successful, which, notably, do not always match the scale corresponding to maximum infestation. Our findings could provide a new basis for explaining historical outbreak events, and have implications for biosecurity and public health preparedness.
Caro, Audrey; Gros, Olivier; Got, Patrice; De Wit, Rutger; Troussellier, Marc
2007-01-01
We investigated the characteristics of the sulfur-oxidizing symbiont hosted in the gills of Codakia orbicularis, a bivalve living in shallow marine tropical environments. Special attention was paid to describing the heterogeneity of the population by using single-cell approaches including flow cytometry (FCM) and different microscopic techniques and by analyzing a cell size fractionation experiment. Up to seven different subpopulations were distinguished by FCM based on nucleic acid content and light side scattering of the cells. The cell size analysis of symbionts showed that the symbiotic population was very heterogeneous in size, i.e., ranging from 0.5 to 5 μm in length, with variable amounts of intracellular sulfur. The side-scatter signal analyzed by FCM, which is often taken as a proxy of cell size, was greatly influenced by the sulfur content of the symbionts. FCM revealed an important heterogeneity in the relative nucleic acid content among the subclasses. The larger cells contained exceptionally high levels of nucleic acids, suggesting that these cells contained multiple copies of their genome, i.e., ranging from one copy for the smaller cells to more than four copies for the larger cells. The proportion of respiring symbionts (5-cyano-2,3-ditolyl-terazolium chloride positive) in the bacteriocytes of Codakia revealed that around 80% of the symbionts hosted by Codakia maintain respiratory activity throughout the year. These data allowed us to gain insight into the functioning of the symbionts within the host and to propose some hypotheses on how the growth of the symbionts is controlled by the host. PMID:17259363
Probiotics: properties, examples, and specific applications.
Behnsen, Judith; Deriu, Elisa; Sassone-Corsi, Martina; Raffatellu, Manuela
2013-03-01
Probiotics are beneficial components of the microbiota that have been used for centuries because of the health benefits they confer to the host. Only recently, however, has the contribution of probiotics to modulation of immunological, respiratory, and gastrointestinal functions started to be fully appreciated and scientifically evaluated. Probiotics such as Escherichia coli Nissle 1917 and lactic acid bacteria are currently used to, or have been evaluated for use to, prevent or treat a range of intestinal maladies including inflammatory bowel disease, constipation, and colon cancer. Engineering these natural probiotics to produce immunomodulatory molecules may help to further increase the benefit to the host. In this article, we will discuss some of the mechanisms of action of probiotics as well as advances in the rational design of probiotics.
MacKenzie, Keith D.; Palmer, Melissa B.; Köster, Wolfgang L.; White, Aaron P.
2017-01-01
Salmonella are important pathogens worldwide and a predominant number of human infections are zoonotic in nature. The ability of strains to form biofilms, which is a multicellular behavior characterized by the aggregation of cells, is predicted to be a conserved strategy for increased persistence and survival. It may also contribute to the increasing number of infections caused by ingestion of contaminated fruits and vegetables. There is a correlation between biofilm formation and the ability of strains to colonize and replicate within the intestines of multiple host species. These strains predominantly cause localized gastroenteritis infections in humans. In contrast, there are salmonellae that cause systemic, disseminated infections in a select few host species; these “invasive” strains have a narrowed host range, and most are unable to form biofilms. This includes host-restricted Salmonella serovar Typhi, which are only able to infect humans, and atypical gastroenteritis strains associated with the opportunistic infection of immunocompromised patients. From the perspective of transmission, biofilm formation is advantageous for ensuring pathogen survival in the environment. However, from an infection point of view, biofilm formation may be an anti-virulence trait. We do not know if the capacity to form biofilms prevents a strain from accessing the systemic compartments within the host or if loss of the biofilm phenotype reflects a change in a strain’s interaction with the host. In this review, we examine the connections between biofilm formation, Salmonella disease states, degrees of host adaptation, and how this might relate to different transmission patterns. A better understanding of the dynamic lifecycle of Salmonella will allow us to reduce the burden of livestock and human infections caused by these important pathogens. PMID:29159172
2008-01-01
Background Using phylogenetic approaches, the expectation that parallel cladogenesis should occur between parasites and hosts has been validated in some studies, but most others provided evidence for frequent host shifts. Here we examine the evolutionary history of the association between Microbotryum fungi that cause anther smut disease and their Caryophyllaceous hosts. We investigated the congruence between host and parasite phylogenies, inferred cospeciation events and host shifts, and assessed whether geography or plant ecology could have facilitated the putative host shifts identified. For cophylogeny analyses on microorganisms, parasite strains isolated from different host species are generally considered to represent independent evolutionary lineages, often without checking whether some strains actually belong to the same generalist species. Such an approach may mistake intraspecific nodes for speciation events and thus bias the results of cophylogeny analyses if generalist species are found on closely related hosts. A second aim of this study was therefore to evaluate the impact of species delimitation on the inferences of cospeciation. Results We inferred a multiple gene phylogeny of anther smut strains from 21 host plants from several geographic origins, complementing a previous study on the delimitation of fungal species and their host specificities. We also inferred a multi-gene phylogeny of their host plants, and the two phylogenies were compared. A significant level of cospeciation was found when each host species was considered to harbour a specific parasite strain, i.e. when generalist parasite species were not recognized as such. This approach overestimated the frequency of cocladogenesis because individual parasite species capable of infecting multiple host species (i.e. generalists) were found on closely related hosts. When generalist parasite species were appropriately delimited and only a single representative of each species was retained, cospeciation events were not more frequent than expected under a random distribution, and many host shifts were inferred. Current geographic distributions of host species seemed to be of little relevance for understanding the putative historical host shifts, because most fungal species had overlapping geographic ranges. We did detect some ecological similarities, including shared pollinators and habitat types, between host species that were diseased by closely related anther smut species. Overall, genetic similarity underlying the host-parasite interactions appeared to have the most important influence on specialization and host-shifts: generalist multi-host parasite species were found on closely related plant species, and related species in the Microbotryum phylogeny were associated with members of the same host clade. Conclusion We showed here that Microbotryum species have evolved through frequent host shifts to moderately distant hosts, and we show further that accurate delimitation of parasite species is essential for interpreting cophylogeny studies. PMID:18371215
Interplay between Candida albicans and the Mammalian Innate Host Defense
Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan
2012-01-01
Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867
Dimond, James L; Pineda, Rea R; Ramos-Ascherl, Zullaylee; Bingham, Brian L
2013-10-01
The processes by which cnidarians and their algal endosymbionts achieve balanced growth and biomass could include coordination of host and symbiont cell cycles. We evaluated this theory with natural populations of sea anemones hosting symbiotic dinoflagellates, focusing on the temperate sea anemone Anthopleura elegantissima symbiotic with Symbiodinium muscatinei in Washington State, USA, and the tropical anemone Stichodactyla helianthus associating with unknown Symbiodinium spp. in Belize. By extruding symbiont-containing gastrodermal cells from the relatively large tentacles of these species and using nuclear staining and flow cytometry, we selectively analyzed cell cycle distributions of the symbionts and the host gastrodermal cells that house them. We found no indications of diel synchrony in host and symbiont G2/M phases, and we observed evidence of diel periodicity only in Symbiodinium spp. associated with S. helianthus but not in the anemone itself. Seasonally, S. muscatinei showed considerable G2/M phase variability among samples collected quarterly over an annual period, while the G2/M phase of its host varied much less. Within samples taken at different times of the year, correlations between host and symbiont G2/M phases ranged from very weakly to very strongly positive, with significant correlations in only half of the samples (two of four A. elegantissima samples and one of two S. helianthus samples). Overall, the G2/M phase relationships across species and sampling periods were positive. Thus, while we found no evidence of close cell cycle coupling, our results suggest a loose, positive relationship between cell cycle processes of the symbiotic partners.
Sedivy, Claudio; Praz, Christophe J; Müller, Andreas; Widmer, Alex; Dorn, Silvia
2008-10-01
To trace the evolution of host-plant choice in bees of the genus Chelostoma (Megachilidae), we assessed the host plants of 35 Palearctic, North American and Indomalayan species by microscopically analyzing the pollen loads of 634 females and reconstructed their phylogenetic history based on four genes and a morphological dataset, applying both parsimony and Bayesian methods. All species except two were found to be strict pollen specialists at the level of plant family or genus. These oligolectic species together exploit the flowers of eight different plant orders that are distributed among all major angiosperm lineages. Based on ancestral state reconstruction, we found that oligolecty is the ancestral state in Chelostoma and that the two pollen generalists evolved from oligolectic ancestors. The distinct pattern of host broadening in these two polylectic species, the highly conserved floral specializations within the different clades, the exploitation of unrelated hosts with a striking floral similarity as well as a recent report on larval performance on nonhost pollen in two Chelostoma species clearly suggest that floral host choice is physiologically or neurologically constrained in bees of the genus Chelostoma. Based on this finding, we propose a new hypothesis on the evolution of host range in bees.
Gehman, Alyssa-Lois M; Hall, Richard J; Byers, James E
2018-01-23
Host-parasite systems have intricately coupled life cycles, but each interactor can respond differently to changes in environmental variables like temperature. Although vital to predicting how parasitism will respond to climate change, thermal responses of both host and parasite in key traits affecting infection dynamics have rarely been quantified. Through temperature-controlled experiments on an ectothermic host-parasite system, we demonstrate an offset in the thermal optima for survival of infected and uninfected hosts and parasite production. We combine experimentally derived thermal performance curves with field data on seasonal host abundance and parasite prevalence to parameterize an epidemiological model and forecast the dynamical responses to plausible future climate-warming scenarios. In warming scenarios within the coastal southeastern United States, the model predicts sharp declines in parasite prevalence, with local parasite extinction occurring with as little as 2 °C warming. The northern portion of the parasite's current range could experience local increases in transmission, but assuming no thermal adaptation of the parasite, we find no evidence that the parasite will expand its range northward under warming. This work exemplifies that some host populations may experience reduced parasitism in a warming world and highlights the need to measure host and parasite thermal performance to predict infection responses to climate change.
Five challenges in evolution and infectious diseases.
Metcalf, C J E; Birger, R B; Funk, S; Kouyos, R D; Lloyd-Smith, J O; Jansen, V A A
2015-03-01
Evolution is a key aspect of the biology of many pathogens, driving processes ranging from immune escape to changes in virulence. Because evolution is inherently subject to feedbacks, and because pathogen evolution plays out at scales ranging from within-host to between-host and beyond, evolutionary questions provide special challenges to the modelling community. In this article, we provide an overview of five challenges in modelling the evolution of pathogens and their hosts, and point to areas for development, focussing in particular on the issue of linking theory and data. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Shubhagata, E-mail: sdas@csu.edu.au
Competing roles of coevolution, selective pressure and recombination are an emerging interest in virus evolution. We report a novel aviadenovirus from captive red-bellied parrots (Poicephalus rufiventris) that uncovers evidence of deep recombination among aviadenoviruses. The sequence identity of the virus was most closely related to Turkey adenovirus D (42% similarity) and other adenoviruses in chickens, turkeys and pigeons. Sequencing and comparative analysis showed that the genome comprised 40,930 nucleotides containing 42 predicted open reading frames (ORFs) 19 of which had strong similarity with genes from other adenovirus species. The new genome unveiled a lineage that likely participated in deep recombinationmore » events across the genus Aviadenovirus accounting for an ancient evolutionary relationship. We hypothesize frequent host switch events and recombination among adenovirus progenitors in Galloanserae hosts caused the radiation of extant aviadenoviruses and the newly assembled Poicephalus adenovirus genome points to a potentially broader host range of these viruses among birds. - Highlights: •Shows how a single new genome can change overall phylogeny. •Reveals host switch events among adenovirus progenitors in Galloanserae hosts. •Points to a potentially broader host range of adenoviruses among birds and wildlife .« less
Host specificity in biological control: insights from opportunistic pathogens
Brodeur, Jacques
2012-01-01
Host/prey specificity is a significant concern in biological control. It influences the effectiveness of a natural enemy and the risks it might have on non-target organisms. Furthermore, narrow host specificity can be a limiting factor for the commercialization of natural enemies. Given the great diversity in taxonomy and mode of action of natural enemies, host specificity is a highly variable biological trait. This variability can be illustrated by opportunist fungi from the genus Lecanicillium, which have the capacity to exploit a wide range of hosts – from arthropod pests to fungi causing plant diseases – through different modes of action. Processes determining evolutionary trajectories in host specificity are closely linked to the modes of action of the natural enemy. This hypothesis is supported by advances in fungal genomics concerning the identity of genes and biological traits that are required for the evolution of life history strategies and host range. Despite the significance of specificity, we still need to develop a conceptual framework for better understanding of the relationship between specialization and successful biological control. The emergence of opportunistic pathogens and the development of ‘omic’ technologies offer new opportunities to investigate evolutionary principles and applications of the specificity of biocontrol agents. PMID:22949922
Kinane, Denis F; Stathopoulou, Panagiota G; Papapanou, Panos N
2017-06-22
Periodontal diseases comprise a wide range of inflammatory conditions that affect the supporting structures of the teeth (the gingiva, bone and periodontal ligament), which could lead to tooth loss and contribute to systemic inflammation. Chronic periodontitis predominantly affects adults, but aggressive periodontitis may occasionally occur in children. Periodontal disease initiation and propagation is through a dysbiosis of the commensal oral microbiota (dental plaque), which then interacts with the immune defences of the host, leading to inflammation and disease. This pathophysiological situation persists through bouts of activity and quiescence, until the affected tooth is extracted or the microbial biofilm is therapeutically removed and the inflammation subsides. The severity of the periodontal disease depends on environmental and host risk factors, both modifiable (for example, smoking) and non-modifiable (for example, genetic susceptibility). Prevention is achieved with daily self-performed oral hygiene and professional removal of the microbial biofilm on a quarterly or bi-annual basis. New treatment modalities that are actively explored include antimicrobial therapy, host modulation therapy, laser therapy and tissue engineering for tissue repair and regeneration.
Dhar, Poshmaal; Ng, Garrett Z; Sutton, Philip
2016-09-01
The bacterial pathogen Helicobacter pylori is the etiological agent of a range of gastrointestinal pathologies including peptic ulcer disease and the major killer, gastric adenocarcinoma. Infection with this bacterium induces a chronic inflammatory response in the gastric mucosa (gastritis). It is this gastritis that, over decades, eventually drives the development of H. pylori-associated disease in some individuals. The majority of studies investigating H. pylori pathogenesis have focused on factors that promote disease development in infected individuals. However, an estimated 85% of those infected with H. pylori remain completely asymptomatic, despite the presence of pathogenic bacteria that drive a chronic gastritis that lasts many decades. This indicates the presence of highly effective regulatory processes in the host that, in most cases, keeps a check on inflammation and protect against disease. In this minireview we discuss such known host factors and how they prevent the development of H. pylori-associated pathologies. Copyright © 2016 the American Physiological Society.
PCLC flake-based apparatus and method
Cox, Gerald P; Fromen, Cathy A; Marshall, Kenneth L; Jacobs, Stephen D
2012-10-23
A PCLC flake/fluid host suspension that enables dual-frequency, reverse drive reorientation and relaxation of the PCLC flakes is composed of a fluid host that is a mixture of: 94 to 99.5 wt % of a non-aqueous fluid medium having a dielectric constant value .di-elect cons., where 1<.di-elect cons.<7, a conductivity value .sigma., where 10.sup.-9>.sigma.>10.sup.-7 Siemens per meter (S/m), and a resistivity r, where 10.sup.7>r>10.sup.10 ohm-meters (.OMEGA.-m), and which is optically transparent in a selected wavelength range .DELTA..lamda.; 0.0025 to 0.25 wt % of an inorganic chloride salt; 0.0475 to 4.75 wt % water; and 0.25 to 2 wt % of an anionic surfactant; and 1 to 5 wt % of PCLC flakes suspended in the fluid host mixture. Various encapsulation forms and methods are disclosed including a Basic test cell, a Microwell, a Microcube, Direct encapsulation (I), Direct encapsulation (II), and Coacervation encapsulation. Applications to display devices are disclosed.
Anderson, J F
1989-06-01
Borrelia burgdorferi is transmitted from wild animals to humans by the bite of Ixodes dammini. This tick is common in many areas of southern Connecticut where it parasitizes three different host animals during its two-year life cycle. Larval and nymphal ticks have parasitized 31 different species of mammals and 49 species of birds. White-tailed deer (Odocoileus virginianus) appear to be crucial hosts for adult ticks. All three feeding stages of the tick parasitize humans, though most infections are acquired from feeding nymphs in May through early July. Reservoir hosts for the spirochete include rodents, other mammals, and even birds. White-footed mice (Peromyscus leucopus) are particularly important reservoirs, and in parts of southern Connecticut where Lyme disease is prevalent in humans, borreliae are universally present during the summer in these mice. Prevalence of infected ticks has ranged from 10-35%. Isolates of B. burgdorferi from humans, rodents, and I. dammini are usually indistinguishable, but strains of B. burgdorferi with different major proteins have been identified.
Byard, Roger W
2009-07-01
Most cases of hydatid disease in human populations are due to Echinococcus granulosus. The hydatid life cycle involves passage between definitive hosts such as dogs and intermediate hosts such as sheep. Humans become accidental intermediate hosts following ingestion of food or water contaminated with eggs or by contact with infected dogs. Although hydatid disease may remain asymptomatic, occasional cases of sudden and unexpected death present to autopsy. Causes of rapid clinical decline involve a wide range of mechanisms including anaphylaxis (with or without cyst rupture), cardiac outflow obstruction or conduction tract disturbance, pulmonary and cerebral embolism, pericarditis, cardiac tamponade, myocardial ischemia, pulmonary hypertension, peritonitis, hollow organ perforation, intracerebral mass effect, obstructive hydrocephalus, seizures, cerebral ischemia/infarction, and pregnancy complications. The autopsy assessment of cases therefore requires careful examination of all organ systems for characteristic cystic lesions, as multiorgan involvement is common, with integration of findings so that possible mechanisms of death can be determined. Measurement of serum tryptase and specific IgE levels should be undertaken for possible anaphylaxis.
Occurrence of Pasteuria spp. in Florida
Hewlett, T. E.; Cox, R.; Dickson, D. W.; Dunn, R. A.
1994-01-01
Two years of data collected from the Florida Nematode Assay Laboratory of the Florida Cooperative Extension Service and 4 years of data from the Florida Department of Agriculture and Consumer Services, Division of Plant Industry, were compiled to find out the distribution of Pasteuria spp. on nematodes in Florida soils. Information recorded came from 335 samples and included nematode genera with Pasteuria endospores attached, host plants associated with the samples, and the origins of the samples. Pasteuria spp. were detected on 14 different plant-parasitic nematode genera in 41 Florida counties and associated with over 39 different plant species and in seven fallow fields. Pasteuria-infected nematodes were associated with a wide range of plant hosts, although frequency of associations with these hosts reflected the sample bias of the laboratories involved. Meloidogyne and Hoplolaimus spp. were the two nematode genera most frequently associated with Pasteuria. Pasteuria spp. were observed attached to members of these two genera in 176 and 59 soil samples, respectively. PMID:19279936
Molecular pathology of emerging coronavirus infections
Gralinski, Lisa E; Baric, Ralph S
2015-01-01
Respiratory viruses can cause a wide spectrum of pulmonary diseases, ranging from mild, upper respiratory tract infections to severe and life-threatening lower respiratory tract infections, including the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Viral clearance and subsequent recovery from infection require activation of an effective host immune response; however, many immune effector cells may also cause injury to host tissues. Severe acute respiratory syndrome (SARS) coronavirus and Middle East respiratory syndrome (MERS) coronavirus cause severe infection of the lower respiratory tract, with 10% and 35% overall mortality rates, respectively; however, >50% mortality rates are seen in the aged and immunosuppressed populations. While these viruses are susceptible to interferon treatment in vitro, they both encode numerous genes that allow for successful evasion of the host immune system until after high virus titres have been achieved. In this review, we discuss the importance of the innate immune response and the development of lung pathology following human coronavirus infection. PMID:25270030
Oleiro, Marina; Mc Kay, Fernando; Wheeler, Gregory S
2011-06-01
During surveys for natural enemies that could be used as classical biological control agents of Schinus terebinthifolius Raddi (Brazilian pepper), the caterpillar, Tecmessa elegans Schaus (Lepidoptera: Notodontidae), was recorded feeding on the leaves of the shrub in South America. The biology and larval and adult host range of this species were examined to determine the insect's suitability for biological control of this invasive weed in North America and Hawaii. Biological observations indicate that the larvae have five instars. When disturbed, the late instar larvae emit formic acid from a prothoracic gland that may protect larvae from generalist predators. Larval host range tests conducted both in South and North America indicated that this species feeds and completes development primarily on members of the Anacardiaceae within the tribe Rhoeae. Oviposition tests indicated that when given a choice in large cages the adults will select the target weed over Pistacia spp. However, considering the many valued plant species in its host range, especially several North American natives, this species will not be considered further for biological control of S. terebinthifolius in North America.
Campião, Karla Magalhães; Ribas, Augusto Cesar de Aquino; Morais, Drausio Honorio; da Silva, Reinaldo José; Tavares, Luiz Eduardo Roland
2015-01-01
There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR). We also test whether parasite diversity is related to hosts' phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts' phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts' clade diversification suggests it is strongly influenced by ecological and contemporary constrains.