Tajiri, Naoki; Kaneko, Yuji; Shinozuka, Kazutaka; Ishikawa, Hiroto; Yankee, Ernest; McGrogan, Michael; Case, Casey; Borlongan, Cesar V
2013-01-01
Here, we report that a unique mechanism of action exerted by stem cells in the repair of the traumatically injured brain involves their ability to harness a biobridge between neurogenic niche and injured brain site. This biobridge, visualized immunohistochemically and laser captured, corresponded to an area between the neurogenic subventricular zone and the injured cortex. That the biobridge expressed high levels of extracellular matrix metalloproteinases characterized initially by a stream of transplanted stem cells, but subsequently contained only few to non-detectable grafts and overgrown by newly formed host cells, implicates a novel property of stem cells. The transplanted stem cells manifest themselves as pathways for trafficking the migration of host neurogenic cells, but once this biobridge is formed between the neurogenic site and the injured brain site, the grafted cells disappear and relinquish their task to the host neurogenic cells. Our findings reveal that long-distance migration of host cells from the neurogenic niche to the injured brain site can be achieved through transplanted stem cells serving as biobridges for initiation of endogenous repair mechanisms. This is the first report of a stem cell-paved "biobridge". Indeed, to date the two major schools of discipline in stem cell repair mechanism primarily support the concept of "cell replacement" and bystander effects of "trophic factor secretion". The present novel observations of a stem cell seducing a host cell to engage in brain repair advances basic science concepts on stem cell biology and extracellular matrix, as well as provokes translational research on propagating this stem cell-paved biobridge beyond cell replacement and trophic factor secretion for the treatment of traumatic brain injury and other neurological disorders.
Boldrin, Luisa; Neal, Alice; Zammit, Peter S; Muntoni, Francesco; Morgan, Jennifer E
2012-01-01
Stem cell transplantation is already in clinical practice for certain genetic diseases and is a promising therapy for dystrophic muscle. We used the mdx mouse model of Duchenne muscular dystrophy to investigate the effect of the host satellite cell niche on the contribution of donor muscle stem cells (satellite cells) to muscle regeneration. We found that incapacitation of the host satellite cells and preservation of the muscle niche promote donor satellite cell contribution to muscle regeneration and functional reconstitution of the satellite cell compartment. But, if the host niche is not promptly refilled, or is filled by competent host satellite cells, it becomes nonfunctional and donor engraftment is negligible. Application of this regimen to aged host muscles also promotes efficient regeneration from aged donor satellite cells. In contrast, if the niche is destroyed, yet host satellite cells remain proliferation-competent, donor-derived engraftment is trivial. Thus preservation of the satellite cell niche, concomitant with functional impairment of the majority of satellite cells within dystrophic human muscles, may improve the efficiency of stem cell therapy. Stem Cells2012;30:1971–1984 PMID:22730231
GVHD; Bone marrow transplant - graft-versus-host disease; Stem cell transplant - graft-versus-host disease; Allogeneic transplant - ... GVHD may occur after a bone marrow, or stem cell, transplant in which someone receives bone marrow ...
How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases
Pluchino, Stefano; Cossetti, Chiara
2014-01-01
Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288
Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures.
Forsberg, David; Thonabulsombat, Charoensri; Jäderstad, Johan; Jäderstad, Linda Maria; Olivius, Petri; Herlenius, Eric
2017-08-14
Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neural network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Milgrom, Sarah A; Nieto, Yago; Pinnix, Chelsea C; Smith, Grace L; Wogan, Christine F; Rondon, Gabriela; Medeiros, L Jeffrey; Kebriaei, Partow; Dabaja, Bouthaina S
2016-07-28
Patients who undergo allogeneic stem cell transplantation and subsequent radiation therapy uncommonly develop graft-versus-host disease within the irradiated area. We quantified the incidence of this complication, which is a novel contribution to the field. From 2010 to 2014, 1849 patients underwent allogeneic stem cell transplantation, and 41 (2 %) received radiation therapy afterward. Of these, two patients (5 %) developed graft-versus-host disease within the irradiated tissues during or immediately after radiation therapy. The first patient is a 37-year-old white man who had Hodgkin lymphoma; he underwent allogeneic stem cell transplantation from a matched unrelated donor and received radiation therapy for an abdominal and pelvic nodal recurrence. After 28.8 Gy, he developed grade 4 gastrointestinal graft-versus-host disease, refractory to tacrolimus and steroids, but responsive to pentostatin and photopheresis. The other patient is a 24-year-old white man who had acute leukemia; he underwent allogeneic stem cell transplantation from a matched related donor and received craniospinal irradiation for a central nervous system relapse. After 24 cobalt Gy equivalent, he developed severe cutaneous graft-versus-host disease, sharply delineated within the radiation therapy field, which was responsive to tacrolimus and methylprednisolone. We conclude that graft-versus-host disease within irradiated tissues is an uncommon but potentially serious complication that may follow radiation therapy in patients who have undergone allogeneic stem cell transplantation. Clinicians must be aware of this complication and prepared with strategies to mitigate risk. Patients who have undergone allogeneic stem cell transplantation represent a unique population that may offer novel insight into the pathways involved in radiation-related inflammation.
Imus, Nastassja; Roe, Mandi; Charter, Suellen; Durrant, Barbara; Jensen, Thomas
2014-06-01
The management of captive avian breeding programs increasingly utilizes various artificial reproductive technologies, including in ovo sexing of embryos to adjust population sex ratios. Currently, however, no attention has been given to the loss of genetic diversity following sex-selective incubation, even with respect to individuals from critically endangered species. This project evaluated the possibility of using xenotransfer of embryonic gonadal germline stem cells (GGCs) for future reintroduction of their germplasm into the gene pool. We examined and compared the host gonad colonization of freshly isolated and 3 day (3d) cultured donor GGCs from chicken and 13 species of exotic embryos. Following 3d-culture of GGCs, there was a significant increase in the percentage of stem cell marker (SSEA-1, -3, -4) positive cells. However, the percentage of positive host gonads with chicken donor-derived cells decreased from 68% (fresh) to 22% (3d), while the percentage of exotic species donor-cells positive host gonads decreased from 61% (fresh) to 49% (3d-cultured). Donor GGCs from both chicken and exotic species were localized within the caudal endoderm, including the region encompassing the gonadal ridge by 16 hours post-injection. Furthermore, donor-derived cells isolated from stage 36 host embryos were antigenic for anti SSEA-1, VASA/DDX4 and EMA-1 antibodies, presumably indicating maintenance of stem cell identity. This study demonstrates that GGCs from multiple species can migrate to the gonadal region and maintain presumed stemness following xenotransfer into a chicken host embryo, suggesting that germline stem cell migration is highly conserved in birds.
Hozumi, Akitaka; Bera, Subhankar; Fujiwara, Daiki; Obayashi, Takeshi; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Aoki, Koh
2017-11-01
Stem parasitic plants (Cuscuta spp.) develop a specialized organ called a haustorium to penetrate their hosts' stem tissues. To reach the vascular tissues of the host plant, the haustorium needs to overcome the physical barrier of the cell wall, and the parasite-host interaction via the cell wall is a critical process. However, the cell wall components responsible for the establishment of parasitic connections have not yet been identified. In this study, we investigated the spatial distribution patterns of cell wall components at a parasitic interface using parasite-host complexes of Cuscuta campestris-Arabidopsis thaliana and Cuscuta japonica-Glycine max. We focused on arabinogalactan proteins (AGPs), because AGPs accumulate in the cell walls of searching hyphae of both C. campestris and C. japonica. We found more AGPs in elongated haustoria than in pre haustoria, indicating that AGP accumulation is developmentally regulated. Using in situ hybridization, we identified five genes in C. campestris that encode hyphal-expressed AGPs that belong to the fasciclin-like AGP (FLA) family, which were named CcFLA genes. Three of the five CcFLA genes were expressed in the holdfast, which develops on the Cuscuta stem epidermis at the attachment site for the host's stem epidermis. Our results suggest that AGPs are involved in hyphal elongation and adhesion to host cells, and in the adhesion between the epidermal tissues of Cuscuta and its host. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Baron, Frédéric; Mohty, Mohamad; Blaise, Didier; Socié, Gérard; Labopin, Myriam; Esteve, Jordi; Ciceri, Fabio; Giebel, Sebastian; Gorin, Norbert Claude; Savani, Bipin N; Schmid, Christoph; Nagler, Arnon
2017-01-01
Allogeneic hematopoietic stem cell transplantation is increasingly used as treatment for patients with life-threatening blood diseases. Its curative potential is largely based on immune-mediated graft-versus-leukemia effects caused by donor T cells contained in the graft. Unfortunately, donor T cells are also the cause of graft-versus-host disease. The vast majority of human leukocyte antigen-matched allogeneic hematopoietic stem cell transplants are nowadays carried out with peripheral blood stem cells as the stem cell source. In comparison with bone marrows, peripheral blood stem cells contain more hematopoietic stem/progenitor cells but also one log more T cells. Consequently, the use of peripheral blood stem cells instead of bone marrow has been associated with faster hematologic recovery and a lower risk of relapse in patients with advanced disease, but also with a higher incidence of chronic graft-versus-host disease. These observations have been the basis for several studies aimed at assessing the impact of immunoregulation with anti-thymocyte globulin on transplantation outcomes in patients given human leukocyte antigen-matched peripheral blood stem cells from related or unrelated donors. After a brief introduction on anti-thymocyte globulin, this article reviews recent studies assessing the impact of anti-thymocyte globulin on transplantation outcomes in patients given peripheral blood stem cells from human leukocyte antigen-matched related or unrelated donors as well as in recipients of grafts from human leukocyte antigen haploidentical donors. PMID:27927772
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutter, W.; Reddehase, M.J.; Busch, F.W.
1988-05-01
We have shown in a murine model system for cytomegalovirus (CMV) disease in the immunocompromised host that CMV infection interferes with the earliest detectable step in hemopoiesis, the generation of the stem cell CFU-S-I, and thereby prevents the autoreconstitution of bone marrow after sublethal irradiation. The antihemopoietic effect could not be ascribed to a direct infection of stem cells. The failure in hemopoiesis was prevented by adoptive transfer of antiviral CD8+ T lymphocytes and could be overcome by syngeneic bone marrow transplantation. CD8+ T lymphocytes and bone marrow cells both mediated survival, although only CD8+ T lymphocytes were able tomore » limit virus multiplication in host tissues. We concluded that not the cytopathic effect of virus replication in host tissues, but the failure in hemopoiesis, is the primary cause of death in murine CMV disease.« less
Cruz, C. Russell; Bollard, Catherine M.
2015-01-01
Hematopoietic stem cell transplantation has revolutionized the treatment of hematologic malignancies, but infection, graft-versus-host disease and relapse are still important problems. Calcineurin inhibitors, T-cell depletion strategies, and immunomodulators have helped to prevent graft-versus-host disease, but have a negative impact on the graft-versus-leukemia effect. T cells and natural killer cells are both thought to be important in the graft-versus-leukemia effect, and both cell types are amenable to ex vivo manipulation and clinical manufacture, making them versatile immunotherapeutics. We provide an overview of these immunotherapeutic strategies following hematopoietic stem cell transplantation, with discussions centered on natural killer and T-cell biology. We discuss the contributions of each cell type to graft-versus-leukemia effects, as well as the current research directions in the field as related to adoptive cell therapy after hematopoietic stem cell transplantation. PMID:26034113
Cell Therapy in Parkinson's Disease: Host Brain Repair Machinery Gets a Boost From Stem Cell Grafts.
Napoli, Eleonora; Borlongan, Cesar V
2017-06-01
This commentary highlights the major findings and future research directions arising from the recent publication by Zuo and colleagues in Stem Cells 2017 (in press). Here, we discuss the novel observations that transplanted human neural stem cells can induce endogenous brain repair by specifically stimulating a host of regenerative processes in the neurogenic niche (i.e., subventricular zone [SVZ]) in an animal model of Parkinson's disease. That the identified therapeutic proteomes, neurotrophic factors, and anti-inflammatory cytokines in the SVZ may facilitate brain regeneration and behavioral recovery open a new venue of research for our understanding of the pathology and treatment of Parkinson's disease. Stem Cells 2017;35:1443-1445. © 2017 AlphaMed Press.
Slavin, Shimon; Aker, Mehmet; Shapira, Michael Y; Resnick, Igor; Bitan, Menachem; Or, Reuven
2003-01-01
Allogeneic bone marrow or blood stem cell transplantation (BMT) represents an important therapeutic tool for the treatment of an otherwise incurable broad spectrum of malignant and non-malignant diseases. Until recently, BMT was used primarily to replace a malignant, genetically abnormal or deficient immunohematopoietic compartment and therefore, highly toxic myeloablative regimens were considered mandatory for more effective eradication of all undesirable host-derived hematopoietic cells, including stem cells and their progeny. Our preclinical and ongoing clinical studies indicated that much more effective eradication of host immunohematopoietic system cells can be mediated by donor lymphocytes in the process of adoptive allogeneic cell therapy following BMT. Thus, eradication of all malignant cells, especially in patients with CML and, to a lesser extent, in patients with other hematologic malignancies can be accomplished despite complete resistance of puch tumor cells to maximally tolerated doses of chemoradiotherapy. Our cumulative experience suggested that graft-versus-malignancy effects might be used as a tool for eradication of otherwise resistant tumor cells of host origin. We speculated that the therapeutic benefit of BMT may be improved by using safer conditioning for engraftment of donor stem cells induce host-versus-graft unresponsiveness to enable engraftment of donor lymphocytes for subsequent induction of graft-versus-malignancy effects, or even graft-versus-autoimmunity and graft-versus-genetically abnormal cells. In other words, focusing on more selective and smarter rather than stronger modalities. Effective BMT procedures may be accomplished without lethal conditioning of the host, using a new, well-tolerated and user-friendly non-myeloablative regimen, thus eliminating or minimizing immediate and late procedure-related toxicity and mortality. It appears that initial induction of graft tolerance, mediated by engraftment of donor stem cells, leads to durable engraftment of immunocompetent donor lymphocytes, which may be necessary for induction of effective biologic warfare against host-type immunohematopoietic cells. Consequently, stem-cell therapy following induction of transplantation tolerance by selective elimination of alloreactive donor lymphocytes may represent the treatment of choice for a wide range of otherwise incurable diseases, including cancer (hematologic malignancies and certain metastatic solid tumors), genetic disorders (hemoglobinopathies and enzyme deficiency disorders), diseases caused by self-reactive lymphocytes (autoimmune diseases such as multiple sclerosis, rheumatoid arthritis) to mention just a few. Using reduced intensity conditioning, non-myeloablative stem cell transplantation (NST) can be accomplished with no major procedure-related toxicity or mortality. Thus, NST offers the feasibility of safe stem cell transplantation and cell-mediated procedures for a large and constantly growing spectrum of clinical indications for all patients in need without lower or upper age limit. Future strategies currently under investigation include developing new approaches for control of alloreactivity of host-versus-graft and graft-versus host reactivity reactions and developing better approaches for maximizing the capacity of donor lymphocytes to eliminate cancer cells more selectively, while avoiding or minimizing GVHD for safer and more effective treatment of patients in need of BMT.
Samant, Suvidha; Huo, Tian; Dawson, Jeffrey O; Hahn, Dittmar
2016-02-01
Quantitative polymerase chain reaction (qPCR) was used to assess the abundance and relative distribution of host infection groups of the root-nodule forming, nitrogen-fixing actinomycete Frankia in four soils with similar physicochemical characteristics, two of which were vegetated with a host plant, Alnus glutinosa, and two with a non-host plant, Betula nigra. Analyses of DAPI-stained cells at three locations, i.e., at a distance of less than 1 m (near stem), 2.5 m (middle crown), and 3-5 m (crown edge) from the stems of both tree species revealed no statistically significant differences in abundance. Frankiae generally accounted for 0.01 to 0.04 % of these cells, with values between 4 and 36 × 10(5) cells (g soil)(-1). In three out of four soils, abundance of frankiae was significantly higher at locations "near stem" and/or "middle crown" compared to "crown edge," while numbers at these locations were not different in the fourth soil. Frankiae of the Alnus host infection group were dominant in all samples accounting for about 75 % and more of the cells, with no obvious differences with distance to stem. In three of the soils, all of these cells were represented by strain Ag45/Mut15. In the fourth soil that was vegetated with older A. glutinosa trees, about half of these cells belonged to a different subgroup represented by strain ArI3. In all soils, the remaining cells belonged to the Elaeagnus host infection group represented by strain EAN1pec. Casuarina-infective frankiae were not found. Abundance and relative distribution of Frankia host infection groups were similar in soils under the host plant A. glutinosa and the non-host plant B. nigra. Results did thus not reveal any specific effects of plant species on soil Frankia populations.
2009-05-01
contaminating rat UGSE cells ; and regions of host mouse glands were either from circulating pluripotent stem cells or local epithelial cells which were...CONTRACT NUMBER Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors 5b. GRANT NUMBER 81WXH...NOTES 14. ABSTRACT The objective of this proposal was to isolate, grow, and characterize normal prostate stem cells and establish new prostate
Effects of nanotopography on stem cell phenotypes.
Ravichandran, Rajeswari; Liao, Susan; Ng, Clarisse Ch; Chan, Casey K; Raghunath, Michael; Ramakrishna, Seeram
2009-12-31
Stem cells are unspecialized cells that can self renew indefinitely and differentiate into several somatic cells given the correct environmental cues. In the stem cell niche, stem cell-extracellular matrix (ECM) interactions are crucial for different cellular functions, such as adhesion, proliferation, and differentiation. Recently, in addition to chemical surface modifications, the importance of nanometric scale surface topography and roughness of biomaterials has increasingly becoming recognized as a crucial factor for cell survival and host tissue acceptance in synthetic ECMs. This review describes the influence of nanotopography on stem cell phenotypes.
Zheng, Weiyan; Wang, Yingjia; Chang, Tammy; Huang, He; Yee, Jiing-Kuan
2013-04-25
Retrovirus is frequently used in the genetic modification of mammalian cells and the establishment of induced pluripotent stem cells (iPSCs) via cell reprogramming. Vector-induced genotoxicity could induce profound effect on the physiology and function of these stem cells and their differentiated progeny. We analyzed retrovirus-induced genotoxicity in somatic cell Jurkat and two iPSC lines. In Jurkat cells, retrovirus frequently activated host gene expression and gene activation was not dependent on the distance between the integration site and the transcription start site of the host gene. In contrast, retrovirus frequently down-regulated host gene expression in iPSCs, possibly due to the action of chromatin silencing that spreads from the provirus to the nearby host gene promoter. Our data raises the issue that some of the phenotypic variability observed among iPSC clones derived from the same parental cell line may be caused by retrovirus-induced gene expression changes rather than by the reprogramming process itself. It also underscores the importance of characterizing retrovirus integration and carrying out risk assessment of iPSCs before they can be applied in basic research and clinics. Copyright © 2013 Elsevier B.V. All rights reserved.
Niclis, Jonathan C; Gantner, Carlos W; Hunt, Cameron P J; Kauhausen, Jessica A; Durnall, Jennifer C; Haynes, John M; Pouton, Colin W; Parish, Clare L; Thompson, Lachlan H
2017-09-12
Development of safe and effective stem cell-based therapies for brain repair requires an in-depth understanding of the in vivo properties of neural grafts generated from human stem cells. Replacing dopamine neurons in Parkinson's disease remains one of the most anticipated applications. Here, we have used a human PITX3-EGFP embryonic stem cell line to characterize the connectivity of stem cell-derived midbrain dopamine neurons in the dopamine-depleted host brain with an unprecedented level of specificity. The results show that the major A9 and A10 subclasses of implanted dopamine neurons innervate multiple, developmentally appropriate host targets but also that the majority of graft-derived connectivity is non-dopaminergic. These findings highlight the promise of stem cell-based procedures for anatomically correct reconstruction of specific neuronal pathways but also emphasize the scope for further refinement in order to limit the inclusion of uncharacterized and potentially unwanted cell types. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Zhao, Jiagang; Sun, Woong; Cho, Hyo Min; Ouyang, Hong; Li, Wenlin; Lin, Ying; Do, Jiun; Zhang, Liangfang; Ding, Sheng; Liu, Yizhi; Lu, Paul; Zhang, Kang
2013-01-04
Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.
Chemokine Receptor Signatures in Allogeneic Stem Cell Transplantation
2014-08-01
versus-host disease (GHVD). We use T-cell receptor deep sequencing to characterize the repertoire of effector T-cells in allogeneic hematopoietic stem ... cell transplant (HSCT) recipients and identify the role of chemokine receptors in effector cell infiltration of target organs. In the recent funding
Aspergillosis and stem cell transplantation: An overview of experimental pathogenesis studies.
Al-Bader, Nadia; Sheppard, Donald C
2016-11-16
Invasive aspergillosis is a life-threatening infection caused by the opportunistic filamentous fungus Aspergillus fumigatus. Patients undergoing haematopoietic stem cell transplant (HSCT) for the treatment of hematological malignancy are at particularly high risk of developing this fatal infection. The susceptibility of HSCT patients to infection with A. fumigatus is a consequence of a complex interplay of both fungal and host factors. Here we review our understanding of the host-pathogen interactions underlying the susceptibility of the immunocompromised host to infection with A. fumigatus with a focus on the experimental validation of fungal and host factors relevant to HSCT patients. These include fungal factors such as secondary metabolites, cell wall constituents, and metabolic adaptations that facilitate immune evasion and survival within the host microenvironment, as well as the innate and adaptive immune responses involved in host defense against A. fumigatus.
Recruitment of host's progenitor cells to sites of human amniotic fluid stem cells implantation.
Mirabella, Teodelinda; Poggi, Alessandro; Scaranari, Monica; Mogni, Massimo; Lituania, Mario; Baldo, Chiara; Cancedda, Ranieri; Gentili, Chiara
2011-06-01
The amniotic fluid is a new source of multipotent stem cells with a therapeutic potential for human diseases. Cultured at low cell density, human amniotic fluid stem cells (hAFSCs) were still able to generate colony-forming unit-fibroblast (CFU-F) after 60 doublings, thus confirming their staminal nature. Moreover, after extensive in vitro cell expansion hAFSCs maintained a stable karyotype. The expression of genes, such as SSEA-4, SOX2 and OCT3/4 was confirmed at early and later culture stage. Also, hAFSCs showed bright expression of mesenchymal lineage markers and immunoregulatory properties. hAFSCs, seeded onto hydroxyapatite scaffolds and subcutaneously implanted in nude mice, played a pivotal role in mounting a response resulting in the recruitment of host's progenitor cells forming tissues of mesodermal origin such as fat, muscle, fibrous tissue and immature bone. Implanted hAFSCs migrated from the scaffold to the skin overlying implant site but not to other organs. Given their in vivo: (i) recruitment of host progenitor cells, (ii) homing towards injured sites and (iii) multipotentiality in tissue repair, hAFSCs are a very appealing reserve of stem cells potentially useful for clinical application in regenerative medicine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Todeschi, Maria R; El Backly, Rania M; Varghese, Oommen P; Hilborn, Jöns; Cancedda, Ranieri; Mastrogiacomo, Maddalena
2017-07-01
This study aimed to identify host cell recruitment patterns in a mouse model in response to rhBMP-2 releasing hyaluronic acid hydrogels and influence of added nano-hydroxyapatite particles on rhBMP-2 release and pattern of bone formation. Implanted gels were retrieved after implantation and cells were enzymatically dissociated for flow cytometric analysis. Percentages of macrophages, progenitor endothelial cells and putative mesenchymal stem cells were measured. Implants were evaluated for BMP-2 release by ELISA and by histology to monitor tissue formation. Hyaluronic acid+BMP-2 gels influenced the inflammatory response in the bone healing microenvironment. Host-derived putative mesenchymal stem cells were major contributors. Addition of hydroxyapatite nanoparticles modified the release pattern of rhBMP-2, resulting in enhanced bone formation.
Impact of retrotransposons in pluripotent stem cells.
Tanaka, Yoshiaki; Chung, Leeyup; Park, In-Hyun
2012-12-01
Retrotransposons, which constitute approximately 40% of the human genome, have the capacity to 'jump' across the genome. Their mobility contributes to oncogenesis, evolution, and genomic plasticity of the host genome. Induced pluripotent stem cells as well as embryonic stem cells are more susceptible than differentiated cells to genomic aberrations including insertion, deletion and duplication. Recent studies have revealed specific behaviors of retrotransposons in pluripotent cells. Here, we review recent progress in understanding retrotransposons and provide a perspective on the relationship between retrotransposons and genomic variation in pluripotent stem cells.
Thompson, Heather L; van Rooijen, Nico; McLelland, Bryce T; Manilay, Jennifer O
2016-01-01
Understanding how embryonic stem cells and their derivatives interact with the adult host immune system is critical to developing their therapeutic potential. Murine embryonic stem cell-derived hematopoietic progenitors (ESHPs) were generated via coculture with the bone marrow stromal cell line, OP9, and then transplanted into NOD.SCID.Common Gamma Chain (NSG) knockout mice, which lack B, T, and natural killer cells. Compared to control mice transplanted with adult lineage-negative bone marrow (Lin - BM) progenitors, ESHP-transplanted mice attained a low but significant level of donor hematopoietic chimerism. Based on our previous studies, we hypothesized that macrophages might contribute to the low engraftment of ESHPs in vivo . Enlarged spleens were observed in ESHP-transplanted mice and found to contain higher numbers of host F4/80 + macrophages compared to BM-transplanted controls. In vivo depletion of host macrophages using clodronate-loaded liposomes improved the ESHP-derived hematopoietic chimerism in the spleen but not in the BM. F4/80 + macrophages demonstrated a striking propensity to phagocytose ESHP targets in vitro . Taken together, these results suggest that macrophages are a barrier to both syngeneic and allogeneic ESHP engraftment in vivo .
Lon Protease of Azorhizobium caulinodans ORS571 Is Required for Suppression of reb Gene Expression
Nakajima, Azusa; Tsukada, Shuhei; Siarot, Lowela; Ogawa, Tetsuhiro; Oyaizu, Hiroshi
2012-01-01
Bacterial Lon proteases play important roles in a variety of biological processes in addition to housekeeping functions. In this study, we focused on the Lon protease of Azorhizobium caulinodans, which can fix nitrogen both during free-living growth and in stem nodules of the legume Sesbania rostrata. The nitrogen fixation activity of an A. caulinodans lon mutant in the free-living state was not significantly different from that of the wild-type strain. However, the stem nodules formed by the lon mutant showed little or no nitrogen fixation activity. By microscopic analyses, two kinds of host cells were observed in the stem nodules formed by the lon mutant. One type has shrunken host cells containing a high density of bacteria, and the other type has oval or elongated host cells containing a low density or no bacteria. This phenotype is similar to a praR mutant highly expressing the reb genes. Quantitative reverse transcription-PCR analyses revealed that reb genes were also highly expressed in the lon mutant. Furthermore, a lon reb double mutant formed stem nodules showing higher nitrogen fixation activity than the lon mutant, and shrunken host cells were not observed in these stem nodules. These results suggest that Lon protease is required to suppress the expression of the reb genes and that high expression of reb genes in part causes aberrance in the A. caulinodans-S. rostrata symbiosis. In addition to the suppression of reb genes, it was found that Lon protease was involved in the regulation of exopolysaccharide production and autoagglutination of bacterial cells. PMID:22752172
Modeling conduction in host-graft interactions between stem cell grafts and cardiomyocytes.
Chen, Michael Q; Yu, Jin; Whittington, R Hollis; Wu, Joseph C; Kovacs, Gregory T A; Giovangrandi, Laurent
2009-01-01
Cell therapy has recently made great strides towards aiding heart failure. However, while transplanted cells may electromechanically integrate into host tissue, there may not be a uniform propagation of a depolarization wave between the heterogeneous tissue boundaries. A model using microelectrode array technology that maps the electrical interactions between host and graft tissues in co-culture is presented and sheds light on the effects of having a mismatch of conduction properties at the boundary. Skeletal myoblasts co-cultured with cardiomyocytes demonstrated that conduction velocity significantly decreases at the boundary despite electromechanical coupling. In an attempt to improve the uniformity of conduction with host cells, differentiating human embryonic stem cells (hESC) were used in co-culture. Over the course of four to seven days, synchronous electrical activity was observed at the hESC boundary, implying differentiation and integration. Activity did not extend far past the boundary, and conduction velocity was significantly greater than that of the host tissue, implying the need for other external measures to properly match the conduction properties between host and graft tissue.
iPSC-derived cancer stem cells provide a model of tumor vasculature.
Prieto-Vila, Marta; Yan, Ting; Calle, Anna Sanchez; Nair, Neha; Hurley, Laura; Kasai, Tomonari; Kakuta, Hiroki; Masuda, Junko; Murakami, Hiroshi; Mizutani, Akifumi; Seno, Masaharu
2016-01-01
To grow beyond a size of approximately 1-2 mm 3 , tumor cells activate many processes to develop blood vasculature. Growing evidences indicate that the formation of the tumor vascular network is very complex, and is not restricted to angiogenesis. Cancer cell-derived tumor vasculatures have been recently described. Among them, endothelial differentiation of tumor cells have been directly related to cancer stem cells, which are cells within a tumor that possess the capacity to self-renew, and to exhibit multipotential heterogeneous lineages of cancer cells. Vasculogenic mimicry has been described to be formed by cancer cells expressing stemness markers. Thus, cancer stem cells have been proposed to contribute to vasculogenic mimicry, though its relation is yet to be clarified. Here, we analyzed the tumor vasculature by using a model of mouse cancer stem cells, miPS-LLCcm cells, which we have previously established from mouse induced pluripotent stem cells and we introduced the DsRed gene in miPS-LLCcm to trace them in vivo . Various features of vasculature were evaluated in ovo , in vitro , and in vivo . The tumors formed in allograft nude mice exhibited angiogenesis in chick chorioallantoic membrane assay. In those tumors, along with penetrated host endothelial vessels, we detected endothelial differentiation from cancer stem cells and formation of vasculogenic mimicry. The angiogenic factors such as VEGF-A and FGF2 were expressed predominantly in the cancer stem cells subpopulation of miPS-LLCcm cells. Our results suggested that cancer stem cells play key roles in not only the recruitment of host endothelial vessels into tumor, but also in maturation of endothelial linage of cancer stem cell's progenies. Furthermore, the undifferentiated subpopulation of the miPS-LLCcm participates directly in the vasculogenic mimicry formation. Collectively, we show that miPS-LLCcm cells have advantages to further study tumor vasculature and to develop novel targeting strategies in the future.
iPSC-derived cancer stem cells provide a model of tumor vasculature
Prieto-Vila, Marta; Yan, Ting; Calle, Anna Sanchez; Nair, Neha; Hurley, Laura; Kasai, Tomonari; Kakuta, Hiroki; Masuda, Junko; Murakami, Hiroshi; Mizutani, Akifumi; Seno, Masaharu
2016-01-01
To grow beyond a size of approximately 1-2 mm3, tumor cells activate many processes to develop blood vasculature. Growing evidences indicate that the formation of the tumor vascular network is very complex, and is not restricted to angiogenesis. Cancer cell-derived tumor vasculatures have been recently described. Among them, endothelial differentiation of tumor cells have been directly related to cancer stem cells, which are cells within a tumor that possess the capacity to self-renew, and to exhibit multipotential heterogeneous lineages of cancer cells. Vasculogenic mimicry has been described to be formed by cancer cells expressing stemness markers. Thus, cancer stem cells have been proposed to contribute to vasculogenic mimicry, though its relation is yet to be clarified. Here, we analyzed the tumor vasculature by using a model of mouse cancer stem cells, miPS-LLCcm cells, which we have previously established from mouse induced pluripotent stem cells and we introduced the DsRed gene in miPS-LLCcm to trace them in vivo. Various features of vasculature were evaluated in ovo, in vitro, and in vivo. The tumors formed in allograft nude mice exhibited angiogenesis in chick chorioallantoic membrane assay. In those tumors, along with penetrated host endothelial vessels, we detected endothelial differentiation from cancer stem cells and formation of vasculogenic mimicry. The angiogenic factors such as VEGF-A and FGF2 were expressed predominantly in the cancer stem cells subpopulation of miPS-LLCcm cells. Our results suggested that cancer stem cells play key roles in not only the recruitment of host endothelial vessels into tumor, but also in maturation of endothelial linage of cancer stem cell’s progenies. Furthermore, the undifferentiated subpopulation of the miPS-LLCcm participates directly in the vasculogenic mimicry formation. Collectively, we show that miPS-LLCcm cells have advantages to further study tumor vasculature and to develop novel targeting strategies in the future. PMID:27725898
Haematopoietic stem and progenitor cells from human pluripotent stem cells
Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum; Soria-Valles, Clara; da Rocha, Edroaldo Lummertz; Lu, Yi-Fen; Goettel, Jeremy A.; Serrao, Erik; Rowe, R. Grant; Malleshaiah, Mohan; Wong, Irene; Sousa, Patricia; Zhu, Ted N.; Ditadi, Andrea; Keller, Gordon; Engelman, Alan N.; Snapper, Scott B.; Doulatov, Sergei; Daley, George Q.
2018-01-01
A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. PMID:28514439
Cossetti, Chiara; Iraci, Nunzio; Mercer, Tim R.; Leonardi, Tommaso; Alpi, Emanuele; Drago, Denise; Alfaro-Cervello, Clara; Saini, Harpreet K.; Davis, Matthew P.; Schaeffer, Julia; Vega, Beatriz; Stefanini, Matilde; Zhao, CongJian; Muller, Werner; Garcia-Verdugo, Jose Manuel; Mathivanan, Suresh; Bachi, Angela; Enright, Anton J.; Mattick, John S.; Pluchino, Stefano
2015-01-01
SUMMARY The idea that stem cell therapies work only via cell replacement is challenged by the observation of consistent intercellular molecule exchange between the graft and the host. Here we defined a mechanism of cellular signaling by which neural stem/precursor cells (NPCs) communicate with the microenvironment via extracellular vesicles (EVs), and we elucidated its molecular signature and function. We observed cytokine-regulated pathways that sort proteins and mRNAs into EVs. We described induction of interferon gamma (IFN-γ) pathway in NPCs exposed to proinflammatory cytokines that is mirrored in EVs. We showed that IFN-γ bound to EVs through Ifngr1 activates Stat1 in target cells. Finally, we demonstrated that endogenous Stat1 and Ifngr1 in target cells are indispensable to sustain the activation of Stat1 signaling by EV-associated IFN-γ/Ifngr1 complexes. Our study identifies a mechanism of cellular signaling regulated by EV-associated IFN-γ/Ifngr1 complexes, which grafted stem cells may use to communicate with the host immune system. PMID:25242146
Jones, Olcay Y; Gok, Faysal; Rushing, Elisabeth J; Horkayne-Szakaly, Iren; Ahmed, Atif A
2011-01-01
Somatic tissue engraftment was studied in BXSB mice treated with mesenchymal stem cell transplantation. Hosts were conditioned with nonlethal radiation prior to introducing donor cells from major histocompatibility complex-matched green fluorescent protein transgenic mice. Transplant protocols differed for route of injection, ie, intravenous (i.v.) versus intraperitoneal (i.p.), and source of mesenchymal stem cells, ie, unfractionated bone marrow cells, ex vivo expanded mesenchymal stem cells, or bone chips. Tissue chimerism was determined after short (10-12 weeks) or long (62 weeks) posttransplant follow-up by immunohistochemistry for green fluorescent protein. Engraftment of endothelial cells was seen in several organs including liver sinusoidal cells in i.v. treated mice with ex vivo expanded mesenchymal stem cells or with unfractionated bone marrow cells. Periportal engraftment of liver hepatocytes, but not engraftment of endothelial cells, was found in mice injected i.p. with bone chips. Engraftment of adipocytes was a common denominator in both i.v. and i.p. routes and occurred during early phases post-transplant. Disease control was more robust in mice that received both i.v. bone marrow and i.p. bone chips compared to mice that received i.v. bone marrow alone. Thus, the data support potential use of mesenchymal stem cell transplant for treatment of severe lupus. Future studies are needed to optimize transplant conditions and tailor protocols that may in part be guided by fat and endothelial biomarkers. Furthermore, the role of liver chimerism in disease control and the nature of cellular communication among donor hematopoietic and mesenchymal stem cells in a chimeric host merit further investigation.
Andani, Rafiq; Robertson, Ivan; Macdonald, Kelli P A; Durrant, Simon; Hill, Geoffrey R; Khosrotehrani, Kiarash
2014-01-01
Chronic graft-versus-host disease (cGVHD) is a common complication following allogeneic stem-cell transplantation (SCT). Past studies have implicated the persistence of host antigen-presenting cells (APCs) in GVHD. Our objective was to determine the frequency of host Langerhans cells (LCs) in normal skin post-SCT and ask if their persistence could predict cGVHD. Biopsies of normal skin from 124 sex-mismatched T-cell-replete allogenic SCT recipients were taken 100 days post-transplant. Patients with acute GVHD and those with <9 months of follow-up were excluded and prospective follow-up information was collected from remaining 22 patients. CD1a staining and X and Y chromosome in-situ hybridization were performed to label LCs and to identify their host or donor origin. At 3 months, 59 ± 5% of LCs were host derived. The density of LCs and the proportion of host-derived LCs were similar between patients that did or did not develop cGVHD. Most LCs in the skin remained of host origin 3 months after SCT regardless of cGVHD status. This finding is in line with the redundant role of LCs in acute GVHD initiation uncovered in recent experimental models. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2010-05-12
Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Graft Versus Host Disease; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Diseases; Neuroblastoma; Ovarian Cancer; Testicular Germ Cell Tumor
Continuous development precludes radioprotection in a colonial ascidian.
Laird, Diana J; Weissman, Irving L
2004-03-01
Colonial organisms provide a unique experimental system for stem cell biology. The colonial Urochordate Botryllus schlosseri reproduces sexually as well as by continuous asexual budding. Adjacent colonies with a shared histocompatibility allele undergo vascular fusion and establish a common blood circulation, performing natural transplantation. Fused colonies become chimeras, often with complete somatic replacement of the host cell genotype by the fused parabiont. We attempted to establish a radioprotection assay for the somatic stem cells that induce long-term chimerism in Botryllus. We demonstrate over a range of radiation doses that neither autologous nor allogeneic cell transplantation enhances survival of host colonies. This suggests that high mitotic index associated with continuous asexual development leads to radiosensitivity of organs and structures essential to survival during engraftment. We observe that radiation induces uncontrolled epithelial cell proliferation in abnormally terminated buds, suggesting that stem cells are not required for the initial stages of bud development.
Huang, Wei; Chao, Nelson J
2017-12-01
Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (AHSCT) and the major cause of nonrelapse morbidity and mortality of AHSCT. In AHSCT, donor T cells facilitate hematopoietic stem cell (HSC) engraftment, contribute to anti-infection immunity, and mediate graft-versus-leukemia (GVL) responses. However, activated alloreactive T cells also attack recipient cells in vital organs, leading to GVHD. Different T-cell subsets, including naïve T (T N ) cells, memory T (T M ) cells, and regulatory T (T reg ) cells mediate different forms of GVHD and GVL; T N cells mediate severe GVHD, whereas T M cells do not cause GVHD, but preserve T-cell function including GVL. In addition, metabolic reprogramming controls T-cell differentiation and activation in these disease states. This minireview focuses on the role and the related mechanisms of T M cells in AHSCT, and the potential manipulation of T cells in AHSCT. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.
Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.
Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming
2008-01-17
In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug delivery and stem cell engineering studies, because they highlight the acute need to differentiate supportive versus inhibitory regions in the host skin.
Potent and reversible lentiviral vector restriction in murine induced pluripotent stem cells.
Geis, Franziska K; Galla, Melanie; Hoffmann, Dirk; Kuehle, Johannes; Zychlinski, Daniela; Maetzig, Tobias; Schott, Juliane W; Schwarzer, Adrian; Goffinet, Christine; Goff, Stephen P; Schambach, Axel
2017-05-31
Retroviral vectors are derived from wild-type retroviruses, can be used to study retrovirus-host interactions and are effective tools in gene and cell therapy. However, numerous cell types are resistant or less permissive to retrovirus infection due to the presence of active defense mechanisms, or the absence of important cellular host co-factors. In contrast to multipotent stem cells, pluripotent stem cells (PSC) have potential to differentiate into all three germ layers. Much remains to be elucidated in the field of anti-viral immunity in stem cells, especially in PSC. In this study, we report that transduction with HIV-1-based, lentiviral vectors (LV) is impaired in murine PSC. Analyses of early retroviral events in induced pluripotent stem cells (iPSC) revealed that the restriction is independent of envelope choice and does not affect reverse transcription, but perturbs nuclear entry and proviral integration. Proteasomal inhibition by MG132 could not circumvent the restriction. However, prevention of cyclophilin A (CypA) binding to the HIV-1 capsid via use of either a CypA inhibitor (cyclosporine A) or CypA-independent capsid mutants improved transduction. In addition, application of higher vector doses also increased transduction. Our data revealed a CypA mediated restriction in iPSC, which was acquired during reprogramming, associated with pluripotency and relieved upon subsequent differentiation. We showed that murine PSC and iPSC are less susceptible to LV. The block observed in iPSC was CypA-dependent and resulted in reduced nuclear entry of viral DNA and proviral integration. Our study helps to improve transduction of murine pluripotent cells with HIV-1-based vectors and contributes to our understanding of retrovirus-host interactions in PSC.
2014-09-03
Chronic Myeloproliferative Disorders; Graft Versus Host Disease; Infection; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Precancerous Condition; Secondary Myelofibrosis; Small Intestine Cancer
Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen
2015-12-22
Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.
2016-12-16
B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Graft Versus Host Disease; L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia
Balan, A; Lucchini, G; Schmidt, S; Schneider, A; Tramsen, L; Kuçi, S; Meisel, R; Bader, P; Lehrnbecher, T
2014-10-01
Mesenchymal stromal cells (MSCs) are multipotent cells, which exhibit broad immunosuppressive activities. Moreover, they may be administered irrespectively of human leukocyte antigen (HLA) compatibility, without inducing life-threatening immunological reactions, as they express no HLA class II and limited HLA class I antigens under resting conditions. These characteristics have made MSC an appealing candidate for cell therapy after hematopoietic stem cell transplantation (HSCT), for example, for treatment of graft-versus-host disease (GvHD) or for graft rejection prevention/treatment in allogeneic HSCT recipients. Unfortunately, information regarding the effect of MSC infusion on the host response to infectious agents is scarce, and study results on infectious complications in patients receiving MSC are conflicting. The present review focuses on the available data from in vitro studies and animal models regarding the interaction of MSC with bacterial, viral and fungal pathogens. In a clinical part, we present the current information on infectious complications in allogeneic HSCT recipients who had received MSCs as prophylaxis or treatment of GvHD disease.
Yoon, Young-sup; Wecker, Andrea; Heyd, Lindsay; Park, Jong-Seon; Tkebuchava, Tengiz; Kusano, Kengo; Hanley, Allison; Scadova, Heather; Qin, Gangjian; Cha, Dong-Hyun; Johnson, Kirby L.; Aikawa, Ryuichi; Asahara, Takayuki; Losordo, Douglas W.
2005-01-01
We have identified a subpopulation of stem cells within adult human BM, isolated at the single-cell level, that self-renew without loss of multipotency for more than 140 population doublings and exhibit the capacity for differentiation into cells of all 3 germ layers. Based on surface marker expression, these clonally expanded human BM-derived multipotent stem cells (hBMSCs) do not appear to belong to any previously described BM-derived stem cell population. Intramyocardial transplantation of hBMSCs after myocardial infarction resulted in robust engraftment of transplanted cells, which exhibited colocalization with markers of cardiomyocyte (CMC), EC, and smooth muscle cell (SMC) identity, consistent with differentiation of hBMSCs into multiple lineages in vivo. Furthermore, upregulation of paracrine factors including angiogenic cytokines and antiapoptotic factors, and proliferation of host ECs and CMCs, were observed in the hBMSC-transplanted hearts. Coculture of hBMSCs with CMCs, ECs, or SMCs revealed that phenotypic changes of hBMSCs result from both differentiation and fusion. Collectively, the favorable effect of hBMSC transplantation after myocardial infarction appears to be due to augmentation of proliferation and preservation of host myocardial tissues as well as differentiation of hBMSCs for tissue regeneration and repair. To our knowledge, this is the first demonstration that a specific population of multipotent human BM-derived stem cells can induce both therapeutic neovascularization and endogenous and exogenous cardiomyogenesis. PMID:15690083
Alhuraiji, Ahmad; Alzahrani, Hazza; Al Mohareb, Fahad; Chaudhri, Naeem; Alsharif, Fahad; Mohamed, Said; Rasheed, Walid; Aldawsari, Ghuzayel; Ahmed, Syed Osman; Aljurf, Mahmoud
2016-12-01
Fanconi anemia is a congenital bone marrow failure syndrome that is associated with congenital anomalies and increased risk of cancer. Hematopoietic stem cell transplant is a potentially curative modality for bone marrow failure in Fanconi anemia patients. Here, we report our center's experience regarding adolescent and young adult patients with Fanconi anemia and hematopoietic stem cell transplant. We conducted a retrospective patient record analyses of patients who presented at our center from 1988 to 2014. We included patients greater than 14 years old with confirmed Fanconi anemia based on positive chromosome breakage study and who underwent hematopoietic stem cell transplant at our institution. Our study group comprised 12 patients with Fanconi anemia who underwent hematopoietic stem cell transplant at our institution. The median age was 20 years (range, 14-31 y) with a female predominance of 83%. Low-dose cyclophosphamide (20-80 mg/kg)-based conditioning regimens were used with different combinations that included fludarabine, antithymocyte globulin, or total body irradiation. All patients had HLA-matched sibling grafts. In all patients, stem cell source was the bone marrow. All patients showed engraftment. Four patients (33%) developed acute graft-versus-host disease. Three patients (25%) died early before day 100 after hematopoietic stem cell transplant due to infectious complications, with 1 patient having steroid refractory acute graft-versus-host disease. Overall survival was 75% at a median follow-up of 43 months. All patients who survived are well and remained transfusion independent without evidence of secondary malignancy. Our findings support the feasibility of reduced intensity conditioning allogeneic hematopoietic stem cell transplant in older and more heavily pretreated patients with Fanconi anemia, especially for those who are engrafted.
Leen, Ann M; Heslop, Helen E; Brenner, Malcolm K
2013-01-01
Summary Serious viral infections are a common cause of morbidity and mortality after allogeneic stem cell transplantation. They occur in the majority of allograft recipients and are fatal in 17–20%. These severe infections may be prolonged or recurrent and add substantially to the cost, both human and financial, of the procedure. Many features of allogeneic stem cell transplantation contribute to this high rate of viral disease. The cytotoxic and immunosuppressive drugs administered pre-transplant to eliminate the host hematopoietic/immune system and any associated malignancy, the delay in recapitulating immune ontogeny post-transplant, the immunosuppressive drugs given to prevent graft versus host disease (GvHD), and the effects of GvHD itself, all serve to make stem cell transplant recipients vulnerable to disease from endogenous (latent) and exogenous (community) viruses, and to be incapable of controlling them as quickly and effectively as most normal individuals. PMID:24517423
Shimba, Kenta; Sakai, Koji; Takayama, Yuzo; Kotani, Kiyoshi; Jimbo, Yasuhiko
2015-10-01
Stem cell transplantation is a promising therapy to treat neurodegenerative disorders, and a number of in vitro models have been developed for studying interactions between grafted neurons and the host neuronal network to promote drug discovery. However, methods capable of evaluating the process by which stem cells integrate into the host neuronal network are lacking. In this study, we applied an axonal conduction-based analysis to a co-culture study of primary and differentiated neurons. Mouse cortical neurons and neuronal cells differentiated from P19 embryonal carcinoma cells, a model for early neural differentiation of pluripotent stem cells, were co-cultured in a microfabricated device. The somata of these cells were separated by the co-culture device, but their axons were able to elongate through microtunnels and then form synaptic contacts. Propagating action potentials were recorded from these axons by microelectrodes embedded at the bottom of the microtunnels and sorted into clusters representing individual axons. While the number of axons of cortical neurons increased until 14 days in vitro and then decreased, those of P19 neurons increased throughout the culture period. Network burst analysis showed that P19 neurons participated in approximately 80% of the bursting activity after 14 days in vitro. Interestingly, the axonal conduction delay of P19 neurons was significantly greater than that of cortical neurons, suggesting that there are some physiological differences in their axons. These results suggest that our method is feasible to evaluate the process by which stem cell-derived neurons integrate into a host neuronal network.
Interleukin-22 in Graft-Versus-Host Disease after Allogeneic Stem Cell Transplantation
Lamarthée, Baptiste; Malard, Florent; Saas, Philippe; Mohty, Mohamad; Gaugler, Béatrice
2016-01-01
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential curative treatment for hematologic malignancies and non-malignant diseases. Because of the lower toxicity of reduced intensity conditioning, the number of transplants is in constant increase. However, allo-HSCT is still limited by complications, such as graft-versus-host disease (GVHD), which is associated with important morbidity and mortality. Acute GVHD is an exacerbated inflammatory response that leads to the destruction of healthy host tissues by donor immune cells. Recently, the contribution of innate immunity in GVHD triggering has been investigated by several groups and resulted in the identification of new cellular and molecular effectors involved in GVHD pathogenesis. Interleukin-22 (IL-22) is produced by both immune and adaptive cells and has both protective and inflammatory properties. Its role in GVHD processes has been investigated, and the data suggest that its effect depends on the timing, the target tissue, and the origin of the producing cells (donor/host). In this review, we discuss the role of IL-22 in allo-HSCT and GVHD. PMID:27148267
Interleukin-22 in Graft-Versus-Host Disease after Allogeneic Stem Cell Transplantation.
Lamarthée, Baptiste; Malard, Florent; Saas, Philippe; Mohty, Mohamad; Gaugler, Béatrice
2016-01-01
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential curative treatment for hematologic malignancies and non-malignant diseases. Because of the lower toxicity of reduced intensity conditioning, the number of transplants is in constant increase. However, allo-HSCT is still limited by complications, such as graft-versus-host disease (GVHD), which is associated with important morbidity and mortality. Acute GVHD is an exacerbated inflammatory response that leads to the destruction of healthy host tissues by donor immune cells. Recently, the contribution of innate immunity in GVHD triggering has been investigated by several groups and resulted in the identification of new cellular and molecular effectors involved in GVHD pathogenesis. Interleukin-22 (IL-22) is produced by both immune and adaptive cells and has both protective and inflammatory properties. Its role in GVHD processes has been investigated, and the data suggest that its effect depends on the timing, the target tissue, and the origin of the producing cells (donor/host). In this review, we discuss the role of IL-22 in allo-HSCT and GVHD.
Di Foggia, Valentina; Makwana, Priyanka; Ali, Robin R; Sowden, Jane C
2016-06-01
Stem cell therapies are being explored as potential treatments for retinal disease. How to replace neurons in a degenerated retina presents a continued challenge for the regenerative medicine field that, if achieved, could restore sight. The major issues are: (i) the source and availability of donor cells for transplantation; (ii) the differentiation of stem cells into the required retinal cells; and (iii) the delivery, integration, functionality, and survival of new cells in the host neural network. This review considers the use of induced pluripotent stem cells (iPSC), currently under intense investigation, as a platform for cell transplantation therapy. Moreover, patient-specific iPSC are being developed for autologous cell transplantation and as a tool for modeling specific retinal diseases, testing gene therapies, and drug screening.
Efficient Transplantation via Antibody-based Clearance of Hematopoietic Stem Cell Niches
Czechowicz, Agnieszka; Kraft, Daniel; Weissman, Irving L.; Bhattacharya, Deepta
2008-01-01
Summary We demonstrate that administration of a depleting antibody specific for c-kit leads to the highly efficient removal of host hematopoietic stem cells (HSCs) and high levels of donor HSC chimerism following transplantation. Upon intravenous transplantation, hematopoietic stem cells (HSCs) can home to specialized niches, yet most HSCs fail to engraft unless recipients are subjected to toxic preconditioning. Here, we provide evidence that, aside from immune barriers, donor HSC engraftment is restricted by occupancy of appropriate niches by host HSCs. Administration of ACK2, an antibody that blocks c-kit function, led to the transient removal of >98% of endogenous HSCs in immunodeficient mice. Subsequent transplantation of these animals with donor HSCs led to chimerism levels of up to 90%. Extrapolation of these methods to humans may enable mild but effective conditioning regimens for transplantation. PMID:18033883
Ibrutinib Effective against Graft-Versus-Host Disease
A Cancer Currents blog post on results from a small clinical trial showing that ibrutinib can effectively treat graft-versus-host-disease, a common and serious complication of allogeneic stem cell transplants.
Li, Jianxue; Imitola, Jaime; Snyder, Evan Y; Sidman, Richard L
2006-07-26
Neural stem cells (NSCs) offer special therapeutic prospects because they can be isolated from the CNS, expanded ex vivo, and re-implanted into diseased CNS where they not only migrate and differentiate according to cues from host tissue but also appear to be capable of affecting host cells. In nervous (nr) mutant mice Purkinje neuron (PN) mitochondria become abnormal by the second postnatal week, and a majority of PNs die in the fourth to fifth weeks. We previously identified in nr cerebellum a 10-fold increase in tissue plasminogen activator (tPA) as a key component of the mechanism causing nr PN death. Here we report that undifferentiated wild-type murine NSCs, when transplanted into the newborn nr cerebellar cortex, do not replace host PNs but contact imperiled PNs and support their mitochondrial function, dendritic growth, and synaptogenesis, subsequently leading to the rescue of host PNs and restoration of motor coordination. This protection of nr PNs also is verified by an in vitro organotypic slice model in which nr cerebellar slices are cocultured with NSCs. Most importantly, the integrated NSCs in young nr cerebellum rectify excessive tPA mRNA and protein to close to normal levels and protect the mitochondrial voltage-dependent anion channel and neurotrophins, downstream targets of the tPA/plasmin proteolytic system. This report demonstrates for the first time that NSCs can rescue imperiled host neurons by rectifying their gene expression, elevating somatic stem cell therapeutic potential beyond solely cell replacement strategy.
Campos, Denise Johnsson; Biagini, Gleyne Lopes Kujew; Funke, Vaneuza Araujo Moreira; Bonfim, Carmem Maria Sales; Boguszewski, César Luiz; Borba, Victória Zeghbi Cochenski
2014-03-01
Sub-optimal levels of vitamin D have been found to be highly prevalent in all age groups, with epidemiologic studies demonstrating a link between vitamin D deficiency and disease susceptibility, such as infection and cancer, and mortality rates. In adult transplant patients, it has been suggested that the immunomodulatory properties of vitamin D may have an important role in the prevention and treatment of graft-versus-host disease. The objective of this study was to assess serum 25-hydroxyvitamin D levels of children and adolescents submitted to allogeneic hematopoietic stem cell transplantation. Serum 25-hydroxyvitamin D levels of 66 patients, aged 4-20 years, were assessed at three stages: before hospitalization for hematopoietic stem cell transplantation and at 30 and 180 days after hematopoietic stem cell transplantation. The control group consisted of 25 healthy children. At the pre-hematopoietic stem cell transplantation stage, patients had lower levels of 25-hydroxyvitamin D compared to controls (25.7 ± 12.3 ng/mL vs. 31.9 ± 9.9 ng/mL; p-value = 0.01), and a higher prevalence of 25-hydroxyvitamin D deficiency (32% vs. 8%; p-value = 0.01). Prevalence increased significantly after hematopoietic stem cell transplantation (p-value = 0.01) with half of the patients having vitamin D deficiency at 180 days after transplantation. At this stage, mean serum 25-hydroxyvitamin D levels were 20.9 ± 10.9 ng/mL, a significant decline in relation to baseline (p-value = 0.01). No correlation was found between 25-hydroxyvitamin D levels and vitamin D intake, graft-versus-host disease, corticoid use or survival rates. Low levels of 25-hydroxyvitamin D were detected even before hematopoietic stem cell transplantation and were significantly lower at 180 days after hematopoietic stem cell transplantation, thus recommending vitamin D supplementation for children and adolescents submitted to hematopoietic stem cell transplantation.
Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation
Nikolaev, Alexander
2016-01-01
To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications. PMID:27529074
Loukogeorgakis, Stavros P; De Coppi, Paolo
2017-07-01
The amniotic fluid has been identified as an untapped source of cells with broad potential, which possess immunomodulatory properties and do not have the ethical and legal limitations of embryonic stem cells. CD117(c-Kit)+ cells selected from amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumors, making them ideal candidates for regenerative medicine applications. Moreover, their ability to engraft in injured organs and modulate immune and repair responses of host tissues, suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases. Although significant questions remain regarding the origin, heterogeneous phenotype, and expansion potential of amniotic fluid stem cells, evidence to date supports their potential role as a valuable stem cell source for the field of regenerative medicine. Stem Cells 2017;35:1663-1673. © 2016 AlphaMed Press.
Henning, Robert J
2011-01-01
Myocardial infarction is the leading cause of death among people in industrialized nations. Although the heart has some ability to regenerate after infarction, myocardial restoration is inadequate. Consequently, investigators are currently exploring the use of human embryonic stem cells (hESCs), skeletal myoblasts and adult bone marrow stem cells to limit infarct size. hESCs are pluripotent cells that can regenerate myocardium in infarcted hearts, attenuate heart remodeling and contribute to left ventricle (LV) systolic force development. Since hESCs can form heart teratomas, investigators are differentiating hESCs toward cardiac progenitor cells prior to transplantation into hearts. Large quantities of hESCs cardiac progenitor cells, however, must be generated, immune rejection must be prevented and grafts must survive over the long term to significantly improve myocardial performance. Transplanted autologous skeletal myoblasts can survive in infarcted myocardium in small numbers, proliferate, differentiate into skeletal myofibers and increase the LV ejection fraction. These cells, however, do not form electromechanical connections with host cardiomyocytes. Consequently, electrical re-entry can occur and cause cardiac arrhythmias. Autologous bone marrow mononuclear cells contain hematopoietic and mesenchymal stem cells. In several meta-analyses, patients with coronary disease who received autologous bone marrow cells by intracoronary injection show significant 3.7% (range: 1.9-5.4%) increases in LV ejection fraction, decreases in LV end-systolic volume of -4.8 ml (range: -1.4 to -8.2 ml) and reductions in infarct size of 5.5% (-1.9 to -9.1%), without experiencing arrhythmias. Bone marrow cells appear to release biologically active factors that limit myocardial damage. Unfortunately, bone marrow cells from patients with chronic diseases propagate poorly and can die prematurely. Substantial challenges must be addressed and resolved to advance the use of stem cells in cardiac repair including identifying the optimal stem cell(s) that permit transplantation without requirements for host immune suppression; timing of stem cell transplantation that maximizes chemoattraction of stem cells to infarcts; and determining the optimal technique for injecting stem cells for cardiac repair. Techniques must be developed to enhance survival and propagation of stem cells in the myocardium. These studies will require close cooperation and interaction of scientists and clinicians. Cell-based cardiac repair in the 21st century will offer new hope for millions of patients worldwide with myocardial infarctions who, otherwise, would suffer from the relentless progression of heart disease to heart failure and death.
Stem cell homing-based tissue engineering using bioactive materials
NASA Astrophysics Data System (ADS)
Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei
2017-06-01
Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.
2017-05-29
SR aGvHD; Acute-graft-versus-host Disease; Steroid Refractory Acute Graft Versus Host Disease; Graft-versus-host-disease; Graft Vs Host Disease; Alpha 1-Antitrypsin Deficiency; Alpha-1 Proteinase Inhibitor; Alpha-1 Protease Inhibitor Deficiency; Acute Graft-Versus-Host Reaction Following Bone Marrow Transplant
Stem Cell Transplantation in Treating Patients With Hematologic Cancer
2012-05-31
Chronic Myeloproliferative Disorders; Graft Versus Host Disease; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Precancerous/Nonmalignant Condition; Small Intestine Cancer
[Embryonic stem cells and therapeutic cloning].
Sunde, A; Eftedal, I
2001-08-30
Increased interest in the therapeutic use of human stem cells has emerged following significant progress in ongoing research. The cloning of a sheep, the isolation of human embryonic stem cells, and the discovery that adult stem cells may be reprogrammed taken together give substance to hopes that novel principles of treatment may be developed for a variety of serious conditions. Embryonic stem cells are derived from pre-embryos at the blastocyst stage and may give rise to all bodily tissues and cells. Animal models have demonstrated that embryonic stem cells when transplanted into adult hosts may differentiate and develop into cells and tissues applicable for treatment of a variety of conditions, including Parkinson's disease, multiple sclerosis, spinal injuries, cardiac stroke and cancer. Transplanted embryonic stem cells are exposed to immune reactions similar to those acting on organ transplants, hence immunosuppression of the recipient is generally required. It is, however, possible to obtain embryonic stem cells that are genetically identical to the patient's own cells by means of therapeutic cloning techniques. The nucleus from a somatic cell is transferred into an egg after removal of the egg's own genetic material. Under specific condition the egg will use genetic information from the somatic cell in organising the formation of a blastocyst which in turn generates embryonic stem cells. These cells have a genetic composition identical to that of the patient and are suitable for stem cell therapy.
[Basics and clinical application of human mesenchymal stromal/stem cells].
Miura, Yasuo
2015-10-01
Human mesenchymal stromal/stem cells (MSCs) show a variety of biological characteristics. The clinical trials database provided by the National Institutes of Health, USA, contains about 400 clinical trials of MSCs for a wide range of therapeutic applications internationally (http://www.clinicaltrials.gov, key words "mesenchymal stem cells", as of April, 2015). Encouraging results from these clinical trials include evidence of efficacy against graft versus host disease (GVHD) in hematopoietic stem cell transplantation. Treatment for and/or prevention of engraftment failure and insufficient hematopoietic recovery have also been explored. Herein, we will address the basic principles of MSCs and the current status of clinical studies using MSCs. Future prospects for MSC-based therapy will also be discussed.
Predatory stem cells in the non-zebrafish chordate, Botryllus schlosseri.
Laird, Diana J; De Tomaso, Anthony W
2005-01-01
Botryllus schlosseri is a primitive marine chordate which provides a new model organism to study stem cell biology for several reasons. First, B. schlosseri is a colonial organism that undergoes continuous and regular asexual development. Botryllus adults regenerate themselves, including all somatic tissues and the germline, every week. Second, under natural conditions the cells responsible can mobilize and transplant between two individuals. Once transplanted, these cells can proliferate, differentiate, and often completely replace the cells of the host in both the germline and/or somatic tissues. These processes are called germ cell parasitism (gcp), or somatic cell parasitism (scp), respectively, and we have shown that there are winners and losers in this process, implying that the competitive ability of stem cells is a genetically-determined trait. Fundamental characteristics of stem cell biology, such as self-renewal capacity, homing, or differentiation kinetics must underlie the ability of a stem cell of one genotype to out-compete a stem cell of another genotype, and we are using this system prospectively to isolate the cells responsible and to analyze the molecular mechanisms underlying gcp and scp phenotypes.
2016-09-21
Graft vs Host Disease; Myelodysplastic Syndromes; Leukemia; Leukemia, Myeloid; Leukemia, Myelomonocytic, Chronic; Leukemia, Lymphocytic; Lymphoma; Lymphoma, Mantle-cell; Lymphoma, Non-Hodgkin; Hodgkin Disease
2017-06-26
Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Neuroblastoma; Ovarian Cancer; Testicular Germ Cell Tumor
Cnidarian-microbe interactions and the origin of innate immunity in metazoans.
Bosch, Thomas C G
2013-01-01
Most epithelia in animals are colonized by microbial communities. These resident microbes influence fitness and thus ecologically important traits of their hosts, ultimately forming a metaorganism consisting of a multicellular host and a community of associated microorganisms. Recent discoveries in the cnidarian Hydra show that components of the innate immune system as well as transcriptional regulators of stem cells are involved in maintaining homeostasis between animals and their resident microbiota. Here I argue that components of the innate immune system with its host-specific antimicrobial peptides and a rich repertoire of pattern recognition receptors evolved in early-branching metazoans because of the need to control the resident beneficial microbes, not because of invasive pathogens. I also propose a mutual intertwinement between the stem cell regulatory machinery of the host and the resident microbiota composition, such that disturbances in one trigger a restructuring and resetting of the other.
Tornero, Daniel; Tsupykov, Oleg; Granmo, Marcus; Rodriguez, Cristina; Grønning-Hansen, Marita; Thelin, Jonas; Smozhanik, Ekaterina; Laterza, Cecilia; Wattananit, Somsak; Ge, Ruimin; Tatarishvili, Jemal; Grealish, Shane; Brüstle, Oliver; Skibo, Galina; Parmar, Malin; Schouenborg, Jens; Lindvall, Olle; Kokaia, Zaal
2017-03-01
Transplanted neurons derived from stem cells have been proposed to improve function in animal models of human disease by various mechanisms such as neuronal replacement. However, whether the grafted neurons receive functional synaptic inputs from the recipient's brain and integrate into host neural circuitry is unknown. Here we studied the synaptic inputs from the host brain to grafted cortical neurons derived from human induced pluripotent stem cells after transplantation into stroke-injured rat cerebral cortex. Using the rabies virus-based trans-synaptic tracing method and immunoelectron microscopy, we demonstrate that the grafted neurons receive direct synaptic inputs from neurons in different host brain areas located in a pattern similar to that of neurons projecting to the corresponding endogenous cortical neurons in the intact brain. Electrophysiological in vivo recordings from the cortical implants show that physiological sensory stimuli, i.e. cutaneous stimulation of nose and paw, can activate or inhibit spontaneous activity in grafted neurons, indicating that at least some of the afferent inputs are functional. In agreement, we find using patch-clamp recordings that a portion of grafted neurons respond to photostimulation of virally transfected, channelrhodopsin-2-expressing thalamo-cortical axons in acute brain slices. The present study demonstrates, for the first time, that the host brain regulates the activity of grafted neurons, providing strong evidence that transplanted human induced pluripotent stem cell-derived cortical neurons can become incorporated into injured cortical circuitry. Our findings support the idea that these neurons could contribute to functional recovery in stroke and other conditions causing neuronal loss in cerebral cortex. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan
2016-04-01
Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chang, Ying-Jun; Huang, Xiao-Jun
2011-01-01
In recent years, several researchers have unraveled the previously unrecognized effects of granulocyte colony-stimulating factor (G-CSF) on hematopoiesis and the immune cell functions of bone marrow in healthy donors. In human leukocyte antigen-matched or haploidentical transplant settings, available data have established the safety of using G-CSF-stimulated bone marrow grafts, as well as the ability of this source to produce rapid and sustained engraftment. Interestingly, G-CSF-primed bone marrow transplants could capture the advantages of blood stem cell transplants, without the increased risk of chronic graft-versus-host disease that is associated with blood stem cell transplants. This review summarizes the growing body of evidence that supports the use of G-CSF-stimulated bone marrow grafts as an alternative stem cell source in allogeneic hematopoietic stem cell transplantation. © 2010 John Wiley & Sons A/S.
2018-01-24
Acute Leukemia; Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Diffuse Large B-Cell Lymphoma; Follicular Lymphoma; Graft Versus Host Disease; Hodgkin Lymphoma; Mantle Cell Lymphoma; Marginal Zone Lymphoma; Myelodysplastic Syndrome; Myeloproliferative Neoplasm; Recurrent Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Recurrent Plasma Cell Myeloma; Refractory Plasma Cell Myeloma; Secondary Myelodysplastic Syndrome
Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement.
Napoli, Eleonora; Lippert, Trenton; Borlongan, Cesar V
2018-02-27
Stem cells exhibit simple and naive cellular features, yet their exact purpose for regenerative medicine continues to elude even the most elegantly designed research paradigms from developmental biology to clinical therapeutics. Based on their capacity to divide indefinitely and their dynamic differentiation into any type of tissue, the advent of transplantable stem cells has offered a potential treatment for aging-related and injury-mediated diseases. Recent laboratory evidence has demonstrated that transplanted human neural stem cells facilitate endogenous reparative mechanisms by initiating multiple regenerative processes in the brain neurogenic areas. Within these highly proliferative niches reside a myriad of potent regenerative molecules, including anti-inflammatory cytokines, proteomes, and neurotrophic factors, altogether representing a biochemical cocktail vital for restoring brain function in the aging and diseased brain. Here, we advance the concept of therapeutically repurposing stem cells not towards cell replacement per se, but rather exploiting the cells' intrinsic properties to serve as the host brain regenerative catalysts.
Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni
Wang, Bo; Collins, James J; Newmark, Phillip A
2013-01-01
Schistosomes infect hundreds of millions of people in the developing world. Transmission of these parasites relies on a stem cell-driven, clonal expansion of larvae inside a molluscan intermediate host. How this novel asexual reproductive strategy relates to current models of stem cell maintenance and germline specification is unclear. Here, we demonstrate that this proliferative larval cell population (germinal cells) shares some molecular signatures with stem cells from diverse organisms, in particular neoblasts of planarians (free-living relatives of schistosomes). We identify two distinct germinal cell lineages that differ in their proliferation kinetics and expression of a nanos ortholog. We show that a vasa/PL10 homolog is required for proliferation and maintenance of both populations, whereas argonaute2 and a fibroblast growth factor receptor-encoding gene are required only for nanos-negative cells. Our results suggest that an ancient stem cell-based developmental program may have enabled the evolution of the complex life cycle of parasitic flatworms. DOI: http://dx.doi.org/10.7554/eLife.00768.001 PMID:23908765
Epigenomics in hematopoietic transplantation: novel treatment strategies.
Engel, Nicole; Rank, Andreas
2011-10-01
Allogeneic hematopoietic stem cell transplantation is a high risk but curative treatment option for leukemia, myelodysplasia and other hematological malignancies. After high dose radio- or chemo-therapy, recipient's hematopoiesis is replaced by a new immunosystem and residual malignant cells are eliminated by the graft-versus-leukemia reaction. The benefit of this immunological effect is limited by the most frequent complication of hematopoietic stem cell transplantation: graft-versus-host disease. In addition to their well-known anti-tumor activity, epigenetic drugs mediate immunotolerance without reducing alloreactivity or even enhance graft-versus-leukemia effect without inducing graft-versus-host disease by regulating cytokine release, increasing the circulating number of regulatory T cells and interacting with natural killer cells. We focus on the use of epigenetic drugs in the allogeneic transplantation setting in relation to their anti-tumor and immunomodulatory potential.
New perspectives in human stem cell therapeutic research.
Trounson, Alan
2009-06-11
Human stem cells are in evaluation in clinical stem cell trials, primarily as autologous bone marrow studies, autologous and allogenic mesenchymal stem cell trials, and some allogenic neural stem cell transplantation projects. Safety and efficacy are being addressed for a number of disease state applications. There is considerable data supporting safety of bone marrow and mesenchymal stem cell transplants but the efficacy data are variable and of mixed benefit. Mechanisms of action of many of these cells are unknown and this raises the concern of unpredictable results in the future. Nevertheless there is considerable optimism that immune suppression and anti-inflammatory properties of mesenchymal stem cells will be of benefit for many conditions such as graft versus host disease, solid organ transplants and pulmonary fibrosis. Where bone marrow and mesenchymal stem cells are being studied for heart disease, stroke and other neurodegenerative disorders, again progress is mixed and mostly without significant benefit. However, correction of multiple sclerosis, at least in the short term is encouraging. Clinical trials on the use of embryonic stem cell derivatives for spinal injury and macular degeneration are beginning and a raft of other clinical trials can be expected soon, for example, the use of neural stem cells for killing inoperable glioma and embryonic stem cells for regenerating beta islet cells for diabetes. The change in attitude to embryonic stem cell research with the incoming Obama administration heralds a new co-operative environment for study and evaluation of stem cell therapies. The Californian stem cell initiative (California Institute for Regenerative Medicine) has engendered global collaboration for this new medicine that will now also be supported by the US Federal Government. The active participation of governments, academia, biotechnology, pharmaceutical companies, and private investment is a powerful consortium for advances in health.
Linard, Christine; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Benderitter, Marc
2016-09-01
The success of mesenchymal stem cell transplantation for proctitis depends not only on cell donors but also on host microenvironmental factors, which play a major role in conditioning mesenchymal stem cell immunosuppressive action and repair. This study sought to determine if flagellin, a TLR5 ligand, can enhance the mesenchymal stem cell treatment efficacy in radiation-induced proctitis. With the use of a colorectal model of 27 Gy irradiation in rats, we investigated and compared the effects on immune capacity and remodeling at 28 d after irradiation of the following: 1) systemic mesenchymal stem cell (5 × 10(6)) administration at d 7 after irradiation, 2) administration of flagellin at d 3 and systemic mesenchymal stem cell administration at d 7, and 3) in vitro preconditioning of mesenchymal stem cells with flagellin, 24 h before their administration on d 7. The mucosal CD8(+) T cell population was normalized after treatment with flagellin-preconditioned mesenchymal stem cells or flagellin plus mesenchymal stem cells, whereas mesenchymal stem cells alone did not alter the radiation-induced elevation of CD8(+) T cell frequency. Mesenchymal stem cell treatment returned the irradiation-elevated frequency of CD25(+) cells in the mucosa-to-control levels, whereas both flagellin-preconditioned mesenchymal stem cell and flagellin-plus-mesenchymal stem cell treatment each significantly increased not only CD25(+) cell frequency but also forkhead box p3 and IL-2Rα expression. Specifically, IL-10 was overexpressed after flagellin-preconditioned mesenchymal stem cell treatment. Analysis of collagen expression showed that the collagen type 1/collagen type 3 ratio, an indicator of wound-healing maturation, was low in the irradiated and mesenchymal stem cell-treated groups and returned to the normal level only after the flagellin-preconditioned mesenchymal stem cell treatment. This was associated with a reduction in myofibroblast accumulation. In a proctitis model, flagellin-preconditioned mesenchymal stem cells improved colonic immune capacity and enhanced tissue remodeling. © Society for Leukocyte Biology.
Kuijk, Ewart W.; Rasmussen, Shauna; Blokzijl, Francis; Huch, Meritxell; Gehart, Helmuth; Toonen, Pim; Begthel, Harry; Clevers, Hans; Geurts, Aron M.; Cuppen, Edwin
2016-01-01
The rat is an important model for liver regeneration. However, there is no in vitro culture system that can capture the massive proliferation that can be observed after partial hepatectomy in rats. We here describe the generation of rat liver stem cell lines. Rat liver stem cells, which grow as cystic organoids, were characterized by high expression of the stem cell marker Lgr5, by the expression of liver progenitor and duct markers, and by low expression of hepatocyte markers, oval cell markers, and stellate cell markers. Prolonged cultures of rat liver organoids depended on high levels of WNT-signalling and the inhibition of BMP-signaling. Upon transplantation of clonal lines to a Fah−/− Il2rg−/− rat model of liver failure, the rat liver stem cells engrafted into the host liver where they differentiated into areas with FAH and Albumin positive hepatocytes. Rat liver stem cell lines hold potential as consistent reliable cell sources for pharmacological, toxicological or metabolic studies. In addition, rat liver stem cell lines may contribute to the development of regenerative medicine in liver disease. To our knowledge, the here described liver stem cell lines represent the first organoid culture system in the rat. PMID:26915950
Vulvovaginal Graft-Versus-Host Disease.
Kornik, Rachel I; Rustagi, Alison S
2017-09-01
Vulvovaginal chronic graft-versus-host disease (cGVHD) is an underrecognized complication of stem cell transplantation. Early recognition may prevent severe sequelae. Genital involvement is associated with oral, ocular, and skin manifestations. Treatment includes topical immunosuppression, dilator use, and adjuvant topical estrogen. Clinical and histologic features may mimic other inflammatory vulvar conditions. In the right clinical context, these findings are diagnostic of chronic GVHD. Female recipients of allo-hematopoietic stem cell transplantation (HCT) are at higher risk of condylomas, cervical dysplasia, and neoplasia. The National Institutes of Health publishes guidelines for the diagnosis, grading, management, and supportive care for HCT patients by organ system. Copyright © 2017 Elsevier Inc. All rights reserved.
Theiler, Martin; Oza, Vikash S; Mathes, Erin F; Dvorak, Christopher C; McCalmont, Timothy H; Yeh, Iwei; Sidbury, Robert; Cordoro, Kelly M
2017-05-01
Eosinophilic pustular folliculitis (EPF) is a rare cutaneous disorder that typically occurs in three clinical contexts: men, individuals who are immunosuppressed or have human immunodeficiency virus, and infants. A fourth subtype occurring 2 to 3 months after hematopoietic stem cell transplantation (HSCT) has recently been described in several adults. We report two cases of EPF arising in children after HSCT. It is important to recognize this form of EPF after HSCT and differentiate it from graft-versus-host disease since it responds readily to topical steroids and appears to have an excellent prognosis. © 2017 Wiley Periodicals, Inc.
Pancreatic cancer stem cell markers and exosomes - the incentive push
Heiler, Sarah; Wang, Zhe; Zöller, Margot
2016-01-01
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX. PMID:27468191
Medaka embryonic stem cells are capable of generating entire organs and embryo-like miniatures.
Hong, Ni; He, Bei Ping; Schartl, Manfred; Hong, Yunhan
2013-03-01
Embryonic stem (ES) cells have the potency to produce many cell types of the embryo and adult body. Upon transplantation into early host embryos, ES cells are able to differentiate into various specialized cells and contribute to host tissues and organs of all germ layers. Here we present data in the fish medaka (Oryzias latipes) that ES cells have a novel ability to form extra organs and even embryo-like miniatures. Upon transplantation as individual cells according to the standard procedure, ES cells distributed widely to various organ systems of 3 germ layers. Upon transplantation as aggregates, ES cells were able to form extra organs, including the hematopoietic organ and contracting heart. We show that localized ES cell transplantation often led to the formation of extra axes that comprised essentially of either host cells or donor ES cells. These extra axes were associated with the head region of the embryo proper or formed at ectopic sites on the yolk sac. Surprisingly, certain ectopic axes were even capable of forming embryo-like miniatures. We conclude that ES cells have the ability to form entire organs and even embryo-like miniatures under proper environmental conditions. This finding points to a new possibility to generate ES cell-derived axes and organs.
Gorshein, Elan; Wei, Catherine; Ambrosy, Susan; Budney, Shanna; Vivas, Juliana; Shenkerman, Angelika; Manago, Jacqueline; McGrath, Mary Kate; Tyno, Anne; Lin, Yong; Patel, Vimal; Gharibo, Mecide; Schaar, Dale; Jenq, Robert R; Khiabanian, Hossein; Strair, Roger
2017-05-01
Graft-versus-host disease (GVHD) is a major adverse effect associated with allogeneic stem cell transplant. Previous studies in mice indicated that administration of the probiotic Lactobacillus rhamnosus GG can reduce the incidence of GVHD after hematopoietic stem cell transplant. Here we report results from the first randomized probiotic enteric regimen trial in which allogenic hematopoietic stem cell patients were supplemented with Lactobacillus rhamnosus GG. Gut microbiome analysis confirmed a previously reported gut microbiome association with GVHD. However, the clinical trial was terminated when interim analysis did not detect an appreciable probiotic-related change in the gut microbiome or incidence of GVHD. Additional studies are necessary to determine whether probiotics can alter the incidence of GVHD after allogeneic stem cell transplant. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhang, Quan; Yuan, Yi; Li, Su-Bo; Dou, Na; Ma, Fu-Ling; Ji, Shou-Ping
2004-05-01
To find out why mPEG modification of donor's lymphocytes can attenuate the occurrence of graft versus host disease(GVHD), but not affect the hemopoietic reconstitution of stem/progenitor cells after transplanting the mPEG-modified mononuclear cells from human cord blood into the SCID mice. The followings were observed: (1) Changes of CD4(+) and CD8(+) T cells and the ratio of CD4(+)/CD8(+) T cells were examined by flow cytometry before and after mononuclear cells from human cord blood were modified with mPEG. (2) The difference in forming the CFU-GM in-vitro between the mPEG modified-stem/progenitor cell group and non-modified cell group was observed. (3) The time of appearance of GVHD and the survival of the SCID mice were observed after the pre- and post-modification mononuclear cells were transplanted. (4) The number of humanized CD45(+) cells in the mouse's bone marrow was detected about 7 weeks after transplantation. (1) mPEG nearly completely covered up the CD4 and CD8 antigens on T cells, while the number of CFU-GM did not show any obvious change between the modified and non-modified cell groups. (2) GVHD appeared later in the modified mononuclear cell group than in the non-modified group, and the survival rate was elevated in the modified group than in the non-modified group. (3) Humanized CD45 cells were found in mouse's bone marrow at the 47th day after transplantation of both mPEG-modified and non-modified mononuclear cells. After CD4 and CD8 antigens were covered up with mPEG, the graft's immune response against host was weakened, but the proliferation and differentiation of transplanted hemopoietic stem/progenitor cells were not affected.
2013-05-30
Breast Cancer; Graft Versus Host Disease; Kidney Cancer; Leukemia; Lymphoma; Mucositis; Multiple Myeloma; Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor
Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering.
Hanson, Summer; D'Souza, Rena N; Hematti, Peiman
2014-08-01
Cell-based treatments are being developed as a novel approach for the treatment of many diseases in an effort to repair injured tissues and regenerate lost tissues. Interest in the potential use of multipotent progenitor or stem cells has grown significantly in recent years, specifically the use of mesenchymal stem cells (MSCs), for tissue engineering in combination with extracellular matrix-based scaffolds. An area that warrants further attention is the local or systemic host responses toward the implanted cell-biomaterial constructs. Such immunological responses could play a major role in determining the clinical efficacy of the therapeutic device or biomaterials used. MSCs, due to their unique immunomodulatory properties, hold great promise in tissue engineering as they not only directly participate in tissue repair and regeneration but also modulate the host foreign body response toward the engineered constructs. The purpose of this review was to summarize the current state of knowledge and applications of MSC-biomaterial constructs as a potential immunoregulatory tool in tissue engineering. Better understanding of the interactions between biomaterials and cells could translate to the development of clinically relevant and novel cell-based therapeutics for tissue reconstruction and regenerative medicine.
Griessl, Michael; Buchberger, Anna-Maria; Regn, Sybille; Kreutzer, Kilian; Storck, Katharina
2018-06-01
To find an alternative approach to contemporary techniques in tissue augmentation and reconstruction, tissue engineering strategies aim to involve adipose-derived stem and stromal cells (ASCs) harboring a strong differentiation potential into various tissue types such as bone, cartilage, and fat. Animal research. The stromal vascular fraction (SVF) was used directly as a cell source to provide a potential alternative to contemporary ASC-based adipose tissue engineering. Seeded in TissuCol fibrin, we applied ASCs or SVF cells to porous, degradable polyurethane (PU) scaffolds. We successfully demonstrated the in vivo generation of volume-stable, well-vascularized PU-based constructs containing host-derived mature fat pads. Seeded human stem cells served as modulators of host-cell migration rather than differentiating themselves. We further demonstrated that preliminary culture of SVF cells was not necessary. Our results bring adipose tissue engineering, together with automated processing devices, closer to clinical applicability. The time-consuming and cost-intensive culture and induction of the ASCs is not necessary. NA. Laryngoscope, 128:E206-E213, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.
Stem cell potency and the ability to contribute to chimeric organisms.
Polejaeva, Irina; Mitalipov, Shoukhrat
2013-03-01
Mouse embryonic chimeras are a well-established tool for studying cell lineage commitment and pluripotency. Experimental chimeras were successfully produced by combining two or more preimplantation embryos or by introducing into host embryo cultured pluripotent embryonic stem cells (ESCs). Chimera production using genetically modified ESCs became the method of choice for the generation of knockout or knockin mice. Although the derivation of ESCs or ESC-like cells has been reported for other species, only mouse and rat pluripotent stem cells have been shown to contribute to germline-competent chimeras, which is the defining feature of ESCs. Herein, we describe different approaches employed for the generation of embryonic chimeras, define chimera-competent cell types, and describe cases of spontaneous chimerism in humans. We also review the current state of derivation of pluripotent stem cells in several species and discuss outcomes of various chimera studies when such cells are used.
Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches
Toyoshima, Koh-ei; Asakawa, Kyosuke; Ishibashi, Naoko; Toki, Hiroshi; Ogawa, Miho; Hasegawa, Tomoko; Irié, Tarou; Tachikawa, Tetsuhiko; Sato, Akio; Takeda, Akira; Tsuji, Takashi
2012-01-01
Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or aging in the foreseeable future. Here we demonstrate fully functional hair organ regeneration via the intracutaneous transplantation of a bioengineered pelage and vibrissa follicle germ. The pelage and vibrissae are reconstituted with embryonic skin-derived cells and adult vibrissa stem cell region-derived cells, respectively. The bioengineered hair follicle develops the correct structures and forms proper connections with surrounding host tissues such as the epidermis, arrector pili muscle and nerve fibres. The bioengineered follicles also show restored hair cycles and piloerection through the rearrangement of follicular stem cells and their niches. This study thus reveals the potential applications of adult tissue-derived follicular stem cells as a bioengineered organ replacement therapy. PMID:22510689
2017-09-26
Chronic Myeloproliferative Disorders; Graft Versus Host Disease; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Diseases; Precancerous/Nonmalignant Condition
Yiangou, Loukia; Montandon, Ruddy; Modrzynska, Katarzyna; Rosen, Barry; Bushell, Wendy; Hale, Christine; Billker, Oliver; Rayner, Julian C; Pance, Alena
2016-01-01
The clinical complications of malaria are caused by the parasite expansion in the blood. Invasion of erythrocytes is a complex process that depends on multiple receptor-ligand interactions. Identification of host receptors is paramount for fighting the disease as it could reveal new intervention targets, but the enucleated nature of erythrocytes makes genetic approaches impossible and many receptors remain unknown. Host-parasite interactions evolve rapidly and are therefore likely to be species-specific. As a results, understanding of invasion receptors outside the major human pathogen Plasmodium falciparum is very limited. Here we use mouse embryonic stem cells (mESCs) that can be genetically engineered and differentiated into erythrocytes to identify receptors for the rodent malaria parasite Plasmodium berghei. Two proteins previously implicated in human malaria infection: glycophorin C (GYPC) and Band-3 (Slc4a1) were deleted in mESCs to generate stable cell lines, which were differentiated towards erythropoiesis. In vitro infection assays revealed that while deletion of Band-3 has no effect, absence of GYPC results in a dramatic decrease in invasion, demonstrating the crucial role of this protein for P. berghei infection. This stem cell approach offers the possibility of targeting genes that may be essential and therefore difficult to disrupt in whole organisms and has the potential to be applied to a variety of parasites in diverse host cell types.
Therapeutic cloning in individual parkinsonian mice
Tabar, Viviane; Tomishima, Mark; Panagiotakos, Georgia; Wakayama, Sayaka; Menon, Jayanthi; Chan, Bill; Mizutani, Eiji; Al-Shamy, George; Ohta, Hiroshi; Wakayama, Teruhiko; Studer, Lorenz
2009-01-01
Cell transplantation with embryonic stem (ES) cell progeny requires immunological compatibility with host tissue. ‘Therapeutic cloning’ is a strategy to overcome this limitation by generating nuclear transfer (nt)ES cells that are genetically matched to an individual. Here we establish the feasibility of treating individual mice via therapeutic cloning. Derivation of 187 ntES cell lines from 24 parkinsonian mice, dopaminergic differentiation, and transplantation into individually matched host mice showed therapeutic efficacy and lack of immunological response. PMID:18376409
Biology of teeth and implants: Host factors - pathology, regeneration, and the role of stem cells.
Eggert, F-Michael; Levin, Liran
2018-01-01
In chronic periodontitis and peri-implantitis, cells of the innate and adaptive immune systems are involved directly in the lesions within the tissues of the patient. Absence of a periodontal ligament around implants does not prevent a biologic process similar to that of periodontitis from affecting osseointegration. Our first focus is on factors in the biology of individuals that are responsible for the susceptibility of such individuals to chronic periodontitis and to peri-implantitis. Genetic factors are of significant importance in susceptibility to these diseases. Genetic factors of the host affect the composition of the oral microbiome in the same manner that they influence other microbiomes, such as those of the intestines and of the lungs. Our second focus is on the central role of stem cells in tissue regeneration, in the functioning of innate and adaptive immune systems, and in metabolism of bone. Epithelial cell rests of Malassez (ERM) are stem cells of epithelial origin that maintain the periodontal ligament as well as the cementum and alveolar bone associated with the ligament. The tissue niche within which ERM are found extends into the supracrestal areas of collagen fiber-containing tissues of the gingivae above the bony alveolar crest. Maintenance and regeneration of all periodontal tissues involves the activity of a variety of stem cells. The success of dental implants indicates that important groups of stem cells in the periodontium are active to enable that biologic success. Successful replantation of avulsed teeth and auto-transplantation of teeth is comparable to placing dental implants, and so must also involve periodontal stem cells. Biology of teeth and biology of implants represents the biology of the various stem cells that inhabit specialized niches within the periodontal tissues. Diverse biologic processes must function together successfully to maintain periodontal health. Osseointegration of dental implants does not involve formation of cementum or collagen fibers inserted into cementum - indicating that some stem cells are not active around dental implants or their niches are not available. Investigation of these similarities and differences between teeth and implants will help to develop a better understanding of the biology and physiologic functioning of the periodontium.
Personalizing Stem Cell Research and Therapy: The Arduous Road Ahead or Missed Opportunity?
Patel, S.A.; King, C.C.; Lim, P.K.; Habiba, U.; Dave, M.; Porecha, R.; Rameshwar, P.
2010-01-01
The euphoria of stem cell therapy has diminished, allowing scientists, clinicians and the general public to seriously re-examine how and what types of stem cells would effectively repair damaged tissue, prevent further tissue damage and/or replace lost cells. Importantly, there is a growing recognition that there are substantial person-to-person differences in the outcome of stem cell therapy. Even though the small molecule pharmaceuticals have long remained a primary focus of the personalized medicine research, individualized or targeted use of stem cells to suit a particular individual could help forecast potential failures of the therapy or identify, early on, the individuals who might benefit from stem cell interventions. This would however demand collaboration among several specialties such as pharmacology, immunology, genomics and transplantation medicine. Such transdisciplinary work could also inform how best to achieve efficient and predictable stem cell migration to sites of tissue damage, thereby facilitating tissue repair. This paper discusses the possibility of polarizing immune responses to rationalize and individualize therapy with stem cell interventions, since generalized “one-size-fits-all” therapy is difficult to achieve in the face of the diverse complexities posed by stem cell biology. We also present the challenges to stem cell delivery in the context of the host related factors. Although we focus on the mesenchymal stem cells in this paper, the overarching rationale can be extrapolated to other types of stem cells as well. Hence, the broader purpose of this paper is to initiate a dialogue within the personalized medicine community by expanding the scope of inquiry in the field from pharmaceuticals to stem cells and related cell-based health interventions. PMID:20563265
Church, Molly E; Estrada, Marko; Leutenegger, Christian M; Dela Cruz, Florante N; Pesavento, Patricia A; Woolard, Kevin D
2016-11-01
Polyomavirus infection often results in persistence of the viral genome with little or no virion production. However, infection of certain cell types can result in high viral gene transcription and either cytolysis or neoplastic transformation. While infection by polyomavirus is common in humans and many animals, major questions regarding viral persistence of most polyomaviruses remain unanswered. Specifically, identification of target cells for viral infection and the mechanisms polyomaviruses employ to maintain viral genomes within cells are important not only in ascribing causality to polyomaviruses in disease, but in understanding specific mechanisms by which they cause disease. Here, we characterize the cell of origin in raccoon polyomavirus (RacPyV)-associated neuroglial brain tumours as a neural stem cell. Moreover, we identify an association between the viral genome and the host cell bromodomain protein, BRD4, which is involved in numerous cellular functions, including cell cycle progression, differentiation of stem cells, tethering of persistent DNA viruses, and regulation of viral and host-cell gene transcription. We demonstrate that inhibition of BRD4 by the small molecule inhibitors (+)-JQ1 and IBET-151 (GSK1210151A) results in reduced RacPyV genome within cells in vitro, as well as significant reduction of viral gene transcripts LT and VP1, highlighting its importance in both maintenance of the viral genome and in driving oncogenic transformation by RacPyV. This work implicates BRD4 as a central protein involved in RacPyV neuroglial tumour cell proliferation and in the maintenance of a stem cell state.
Leiss, Lina; Mutlu, Ercan; Øyan, Anne; Yan, Tao; Tsinkalovsky, Oleg; Sleire, Linda; Petersen, Kjell; Rahman, Mohummad Aminur; Johannessen, Mireille; Mitra, Sidhartha S; Jacobsen, Hege K; Talasila, Krishna M; Miletic, Hrvoje; Jonassen, Inge; Li, Xingang; Brons, Nicolaas H; Kalland, Karl-Henning; Wang, Jian; Enger, Per Øyvind
2017-02-07
Little is known about the role of glial host cells in brain tumours. However, supporting stromal cells have been shown to foster tumour growth in other cancers. We isolated stromal cells from patient-derived glioblastoma (GBM) xenografts established in GFP-NOD/scid mice. With simultaneous removal of CD11b + immune and CD31 + endothelial cells by fluorescence activated cell sorting (FACS), we obtained a population of tumour-associated glial cells, TAGs, expressing markers of terminally differentiaed glial cell types or glial progenitors. This cell population was subsequently characterised using gene expression analyses and immunocytochemistry. Furthermore, sphere formation was assessed in vitro and their glioma growth-promoting ability was examined in vivo. Finally, the expression of TAG related markers was validated in human GBMs. TAGs were highly enriched for the expression of glial cell proteins including GFAP and myelin basic protein (MBP), and immature markers such as Nestin and O4. A fraction of TAGs displayed sphere formation in stem cell medium. Moreover, TAGs promoted brain tumour growth in vivo when co-implanted with glioma cells, compared to implanting only glioma cells, or glioma cells and unconditioned glial cells from mice without tumours. Genome-wide microarray analysis of TAGs showed an expression profile distinct from glial cells from healthy mice brains. Notably, TAGs upregulated genes associated with immature cell types and self-renewal, including Pou3f2 and Sox2. In addition, TAGs from highly angiogenic tumours showed upregulation of angiogenic factors, including Vegf and Angiopoietin 2. Immunohistochemistry of three GBMs, two patient biopsies and one GBM xenograft, confirmed that the expression of these genes was mainly confined to TAGs in the tumour bed. Furthermore, their expression profiles displayed a significant overlap with gene clusters defining prognostic subclasses of human GBMs. Our data demonstrate that glial host cells in brain tumours are functionally distinct from glial cells of healthy mice brains. Furthermore, TAGs display a gene expression profile with enrichment for genes related to stem cells, immature cell types and developmental processes. Future studies are needed to delineate the biological mechanisms regulating the brain tumour-host interplay.
Arrhythmia in Stem Cell Transplantation
Almeida, Shone O.; Skelton, Rhys J.; Adigopula, Sasikanth; Ardehali, Reza
2015-01-01
Synopsis Stem cell regenerative therapies hold promise for treating diseases across the spectrum of medicine. Recent clinical trials have confirmed the safety of stem cell delivery to the heart with promising but variable results. While significant progress has been made in the preclinical stages, the clinical application of cardiac cell therapy is limited by technical challenges, including inability to isolate a pure population of cardiac-specific progenitors capable of robust engraftment and regeneration, lack of appropriate pre-clinical animal models, uncertainty about the best mode of delivery, paucity of adequate imaging modalities, and lack of knowledge about the fate of transplanted cells. The inability of transplanted cells to structurally and functionally integrate into the host myocardium may pose arrhythmogenic risk to patients. This is in part dependent on the type of cell transplanted, where the expression of gap junctions such as connexin-43 is essential not only for electromechanical integration, but has also been found to be protective against electrical instability post-transplant. Additionally, certain methods of cell delivery, such as intramyocardial injection, carry a higher rate of arrhythmias. Other potential contributors to the arrhythmogenicity of cell transplantation include re-entrant pathways due to heterogeneity in conduction velocities between graft and host as well as graft automaticity. In this paper, we discuss the arrhythmogenic potential of cell delivery to the heart. PMID:26002399
Microbiological Examination of Erwinia amylovora Exopolysaccharide Ooze.
Slack, Suzanne M; Zeng, Quan; Outwater, Cory A; Sundin, George W
2017-04-01
Fire blight, caused by the pathogen Erwinia amylovora, is the most devastating bacterial disease of pome fruit in North America and worldwide. The primary method of dispersal for E. amylovora is through ooze, a mass of exopolysaccharides and bacterial cells that is exuded as droplets from infected host tissue. During the 2013 and 2014 field seasons, 317 ooze droplets were collected from field-inoculated apple trees. Populations of E. amylovora in ooze droplets were 10 8 CFU/μl on average. Ooze droplets harboring larger (>10 8 CFU/μl) cell populations were typically smaller in total volume and had darker coloring, such as orange, red, or dark red hues. Examination of apple host tissue at the site of emergence of ooze droplets using scanning electron microscopy revealed that ooze was not exuding through natural openings; instead, it was found on erumpent mounds and small (10-μm) tears in tissue. These observations suggested that E. amylovora-induced wounds in tissue provided the exit holes for ooze extrusion from the host. Analyses of E. amylovora populations in ooze droplets and within the stems from which ooze droplets emerged indicated that approximately 9% of the total bacterial population from infected stems is diverted to ooze. Gene expression analyses indicated that E. amylovora cells in stem sections located above ooze droplets and in ooze droplets were actively expressing critical pathogenicity genes such as hrpL, dspE, and amsK. Thus, our study identified ooze as a source of large, concentrated populations of E. amylovora that emerged from the host by rupturing host tissue. Because the cells in ooze droplets are expressing genes required for pathogenesis, they are already primed for infection should they be dispersed from ooze to new infection courts.
Collecting and Storing Tissue and DNA Samples From Patients Undergoing a Donor Stem Cell Transplant
2012-11-04
Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Graft Versus Host Disease; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Neuroblastoma; Ovarian Cancer; Testicular Germ Cell Tumor
Elucidating the identity and behavior of spermatogenic stem cells in the mouse testis.
Yoshida, Shosei
2012-09-01
Spermatogenesis in mice and other mammalians is supported by a robust stem cell system. Stem cells maintain themselves and continue to produce progeny that will differentiate into sperm over a long period. The pioneering studies conducted from the 1950s to the 1970s, which were based largely on extensive morphological analyses, have established the fundamentals of mammalian spermatogenesis and its stem cells. The prevailing so-called A(single) (A(s)) model, which was originally established in 1971, proposes that singly isolated A(s) spermatogonia are in fact the stem cells. In 1994, the first functional stem cell assay was established based on the formation of repopulating colonies after transplantation in germ cell-depleted host testes, which substantially accelerated the understanding of spermatogenic stem cells. However, because testicular tissues are dissociated into single-cell suspension before transplantation, it was impossible to evaluate the A(s) and other classical models solely by this technique. From 2007 onwards, functional assessment of stem cells without destroying the tissue architecture has become feasible by means of pulse-labeling and live-imaging strategies. Results obtained from these experiments have been challenging the classical thought of stem cells, in which stem cells are a limited number of specialized cells undergoing asymmetric division to produce one self-renewing and one differentiating daughter cells. In contrast, the emerging data suggest that an extended and heterogeneous population of cells exhibiting different degrees of self-renewing and differentiating probabilities forms a reversible, flexible, and stochastic stem cell system as a population. These features may lead to establishment of a more universal principle on stem cells that is shared by other systems.
Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons
Garcia, Isabella; Kim, Cynthia; Arenkiel, Benjamin R.
2012-01-01
The mammalian brain is anatomically and functionally complex, and prone to diverse forms of injury and neuropathology. Scientists have long strived to develop cell replacement therapies to repair damaged and diseased nervous tissue. However, this goal has remained unrealized for various reasons, including nascent knowledge of neuronal development, the inability to track and manipulate transplanted cells within complex neuronal networks, and host graft rejection. Recent advances in embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technology, alongside novel genetic strategies to mark and manipulate stem cell-derived neurons, now provide unprecedented opportunities to investigate complex neuronal circuits in both healthy and diseased brains. Here, we review current technologies aimed at generating and manipulating neurons derived from ESCs and iPSCs toward investigation and manipulation of complex neuronal circuits, ultimately leading to the design and development of novel cell-based therapeutic approaches. PMID:23264761
Applications of human umbilical cord blood cells in central nervous system regeneration.
Herranz, Antonio S; Gonzalo-Gobernado, Rafael; Reimers, Diana; Asensio, Maria J; Rodríguez-Serrano, Macarena; Bazán, Eulalia
2010-03-01
In recent decades, there has been considerable amount of information about embryonic stem cells (ES). The dilemma facing scientists interested in the development and use of human stem cells in replacement therapies is the source of these cells, i.e. the human embryo. There are many ethical and moral problems related to the use of these cells. Hematopoietic stem cells from umbilical cord blood have been proposed as an alternative source of embryonic stem cells. After exposure to different agents, these cells are able to express antigens of diverse cellular lineages, including the neural type. The In vitro manipulation of human umbilical cord blood (hUCB) cells has shown their stem capacity and plasticity. These cells are easily accessible, In vitro amplifiable, well tolerated by the host, and with more primitive molecular characteristics that give them great flexibility. Overall, these properties open a promising future for the use of hUCB in regenerative therapies for the Central Nervous System (CNS). This review will focus on the available literature concerning umbilical cord blood cells as a therapeutic tool for the treatment of neurodegenerative diseases.
Slavin, S; Nagler, A; Shapira, M; Panigrahi, S; Samuel, S; Or, A
2001-01-01
Allogeneic bone marrow transplantation (BMT) represents an important therapeutic tool for treatment of otherwise incurable malignant and non-malignant diseases. Until recently, myeloablative regimens were considered mandatory for eradication of all undesirable host-derived hematopoietic elements. Our preclinical and ongoing clinical studies indicated that much more effective eradication of host immunohematopoietic system cells could be achieved by adoptive allogeneic cell therapy with donor lymphocyte infusion (DLI) following BMT. Thus, eradication of blood cancer cells, especially in patients with CML can be frequently accomplished despite complete resistance of such tumor cells to maximally tolerated doses of chemoradiotherapy. Our cumulative experience suggested that graft versus leukemia (GVL) effects might be a useful tool for eradication of otherwise resistant tumor cells of host origin. The latter working hypothesis suggested that effective BMT procedures may be accomplished without lethal conditioning of the host, using new well tolerated non-myeloablative regimen, thus possibly minimizing immediate and late side effects related to myeloablative procedures considered until recently mandatory for conditioning of BMT recipients. Recent clinical data that will be presented suggests that safe non-myeloablative stem cell transplantation (NST), with no major toxicity can replace the conventional BMT. Thus, NST may provide an option for cure for a large spectrum of clinical indications in children and elderly individuals without lower or upper age limit, while minimizing procedure-related toxicity and mortality.
Extrinsic and intrinsic mechanisms by which mesenchymal stem cells suppress the immune system
Coulson-Thomas, Vivien J.; Coulson-Thomas, Yvette M.; Gesteira, Tarsis F.; Kao, Winston W.-Y.
2016-01-01
Mesenchymal stem cells (MSCs) are a group of fibroblast-like multipotent mesenchymal stromal cells that have the ability to differentiate into osteoblasts, adipocytes, and chondrocytes. Recent studies have demonstrated that MSCs possess a unique ability to exert suppressive and regulatory effects on both adaptive and innate immunity in an autologous and allogeneic manner. A vital step in stem cell transplantation is overcoming the potential graft-versus-host disease, which is a limiting factor to transplantation success. Given that MSCs attain powerful differentiation capabilities and also present immunosuppressive properties, which enable them to survive host immune rejection, MSCs are of great interest. Due to their ability to differentiate into different cell types and to suppress and modulate the immune system, MSCs are being developed for treating a plethora of diseases, including immune disorders. Moreover, in recent years, MSCs have been genetically engineered to treat and sometimes even cure some diseases, and the use of MSCs for cell therapy presents new perspectives for overcoming tissue rejection. In this review, we discuss the potential extrinsic and intrinsic mechanisms that underlie MSCs’ unique ability to modulate inflammation, and both innate and adaptive immunity. PMID:26804815
Recent advances in Echinococcus genomics and stem cell research.
Koziol, U; Brehm, K
2015-10-30
Alveolar and cystic echinococcosis, caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively, are life-threatening diseases and very difficult to treat. The introduction of benzimidazole-based chemotherapy, which targets parasite β-tubulin, has significantly improved the life-span and prognosis of echinococcosis patients. However, benzimidazoles show only parasitostatic activity, are associated with serious adverse side effects and have to be administered for very long time periods, underlining the need for new drugs. Very recently, the nuclear genomes of E. multilocularis and E. granulosus have been characterised, revealing a plethora of data for gaining a deeper understanding of host-parasite interaction, parasite development and parasite evolution. Combined with extensive transcriptome analyses of Echinococcus life cycle stages these investigations also yielded novel clues for targeted drug design. Recent years also witnessed significant advancements in the molecular and cellular characterisation of the Echinococcus 'germinative cell' population, which forms a unique stem cell system that differs from stem cells of other organisms in the expression of several genes associated with the maintenance of pluripotency. As the only parasite cell type capable of undergoing mitosis, the germinative cells are central to all developmental transitions of Echinococcus within the host and to parasite expansion via asexual proliferation. In the present article, we will briefly introduce and discuss recent advances in Echinococcus genomics and stem cell research in the context of drug design and development. Interestingly, it turns out that benzimidazoles seem to have very limited effects on Echinococcus germinative cells, which could explain the high recurrence rates observed after chemotherapeutic treatment of echinococcosis patients. This clearly indicates that future efforts into the development of parasitocidal drugs should also target the parasite's stem cell system. Copyright © 2015 Elsevier B.V. All rights reserved.
Pfistershammer, Katharina; Lawitschka, Anita; Klauser, Christoph; Leitner, Judith; Weigl, Roman; Heemskerk, Mirjam H M; Pickl, Winfried F; Majdic, Otto; Böhmig, Georg A; Fischer, Gottfried F; Greinix, Hildegard T; Steinberger, Peter
2009-09-10
In hematopoietic stem cell transplant (HSCT) recipients, the recognition of polymorphic antigens by the donor-derived immune system is an important mechanism underlying both graft-versus-host disease and graft-versus-leukemia (GVL) effect. Here we show that a subset of HSCT recipients (13.9%, n = 108) have antibodies directed to surface molecules of dendritic cells. We have used one such serum in conjunction with retroviral expression cloning to identify the highly polymorphic surface molecule immunoglobulin-like transcript 5 (ILT5) as one of the targets of dendritic cell-reactive antibodies. ILT5 reactive antibodies were found in 5.4% of HSCT patients but not in solid organ transplantation recipients, patients with collagen diseases, multiparous women, or polytransfused or healthy persons. We show that ILT5-specific antibodies can mediate killing of ILT5-bearing cells and furthermore demonstrate ILT5 expression in some leukemic cells, indicating that it might be a target for GVL effects. Thus, our results represent the first description of potent allogeneic antibody responses to a non-major histocompatibility complex cell surface molecule in hematopoietic stem cell transplanted patients and warrant further studies to elucidate the role of antibodies to polymorphic cell surface molecules in GVL and graft-versus-host responses.
Abudayyeh, Ala; Hamdi, Amir; Lin, Heather; Abdelrahim, Maen; Rondon, Gabriela; Andersson, Borje S; Afrough, Aimaz; Martinez, Charles S; Tarrand, Jeffrey J; Kontoyiannis, Dimitrios P.; Marin, David; Gaber, A. Osama; Salahudeen, Abdulla; Oran, Betul; Chemaly, Roy F.; Olson, Amanda; Jones, Roy; Popat, Uday; Champlin, Richard E; Shpall, Elizabeth J.; Winkelmayer, Wolfgang C.; Rezvani, Katayoun
2017-01-01
Nephropathy due to BK virus infection is an evolving challenge in patients undergoing hematopoietic stem cell transplantation. We hypothesized that BKV infection was a marker of Kidney Function Decline and a poor prognostic factor in HSCT recipients who experience this complication. In this retrospective study, we analyzed all patients who underwent their first allogeneic hematopoietic stem cell transplantation at our institution between 2004 and 2012. We evaluated the incidence of persistent kidney function decline, which was defined as a confirmed reduction in estimated glomerular filtration rate of at least 25% from baseline using the CKD-EPI equation. Cox proportional hazard regression was used to model the cause-specific hazard of kidney function decline and Fine and Gray’s method was used to account for the competing risks of death. Among 2477 recipients of a first allogeneic hematopoietic stem cell transplantation, BK viruria was detected in 25% (n=629) and kidney function decline in 944 (38.1%). On multivariate analysis, after adjusting for age, sex, acute graft-versus-host disease, chronic graft versus host disease, preparative conditioning regimen, and graft source, BK viruria remained a significant risk factor for kidney function decline (P <0.001). In addition, patients with BKV infection and kidney function decline experienced worse overall survival. Post-allogeneic hematopoietic stem cell transplantation, BKV infection was strongly and independently associated with subsequent kidney function decline and worse patient survival after HSCT. PMID:26608093
Chimeric animal models in human stem cell biology.
Glover, Joel C; Boulland, Jean-Luc; Halasi, Gabor; Kasumacic, Nedim
2009-01-01
The clinical use of stem cells for regenerative medicine is critically dependent on preclinical studies in animal models. In this review we examine some of the key issues and challenges in the use of animal models to study human stem cell biology-experimental standardization, body size, immunological barriers, cell survival factors, fusion of host and donor cells, and in vivo imaging and tracking. We focus particular attention on the various imaging modalities that can be used to track cells in living animals, comparing their strengths and weaknesses and describing technical developments that are likely to lead to new opportunities for the dynamic assessment of stem cell behavior in vivo. We then provide an overview of some of the most commonly used animal models, their advantages and disadvantages, and examples of their use for xenotypic transplantation of human stem cells, with separate reviews of models involving rodents, ungulates, nonhuman primates, and the chicken embryo. As the use of human somatic, embryonic, and induced pluripotent stem cells increases, so too will the range of applications for these animal models. It is likely that increasingly sophisticated uses of human/animal chimeric models will be developed through advances in genetic manipulation, cell delivery, and in vivo imaging.
Epigenetic modulation of dental pulp stem cells: implications for regenerative endodontics.
Duncan, H F; Smith, A J; Fleming, G J P; Cooper, P R
2016-05-01
Dental pulp stem cells (DPSCs) offer significant potential for use in regenerative endodontics, and therefore, identifying cellular regulators that control stem cell fate is critical to devising novel treatment strategies. Stem cell lineage commitment and differentiation are regulated by an intricate range of host and environmental factors of which epigenetic influence is considered vital. Epigenetic modification of DNA and DNA-associated histone proteins has been demonstrated to control cell phenotype and regulate the renewal and pluripotency of stem cell populations. The activities of the nuclear enzymes, histone deacetylases, are increasingly being recognized as potential targets for pharmacologically inducing stem cell differentiation and dedifferentiation. Depending on cell maturity and niche in vitro, low concentration histone deacetylase inhibitor (HDACi) application can promote dedifferentiation of several post-natal and mouse embryonic stem cell populations and conversely increase differentiation and accelerate mineralization in DPSC populations, whilst animal studies have shown an HDACi-induced increase in stem cell marker expression during organ regeneration. Notably, both HDAC and DNA methyltransferase inhibitors have also been demonstrated to dramatically increase the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) for use in regenerative therapeutic procedures. As the regulation of cell fate will likely remain the subject of intense future research activity, this review aims to describe the current knowledge relating to stem cell epigenetic modification, focusing on the role of HDACi on alteration of DPSC phenotype, whilst presenting the potential for therapeutic application as part of regenerative endodontic regimens. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Electroactive 3D materials for cardiac tissue engineering
NASA Astrophysics Data System (ADS)
Gelmi, Amy; Zhang, Jiabin; Cieslar-Pobuda, Artur; Ljunngren, Monika K.; Los, Marek Jan; Rafat, Mehrdad; Jager, Edwin W. H.
2015-04-01
By-pass surgery and heart transplantation are traditionally used to restore the heart's functionality after a myocardial Infarction (MI or heart attack) that results in scar tissue formation and impaired cardiac function. However, both procedures are associated with serious post-surgical complications. Therefore, new strategies to help re-establish heart functionality are necessary. Tissue engineering and stem cell therapy are the promising approaches that are being explored for the treatment of MI. The stem cell niche is extremely important for the proliferation and differentiation of stem cells and tissue regeneration. For the introduction of stem cells into the host tissue an artificial carrier such as a scaffold is preferred as direct injection of stem cells has resulted in fast stem cell death. Such scaffold will provide the proper microenvironment that can be altered electronically to provide temporal stimulation to the cells. We have developed an electroactive polymer (EAP) scaffold for cardiac tissue engineering. The EAP scaffold mimics the extracellular matrix and provides a 3D microenvironment that can be easily tuned during fabrication, such as controllable fibre dimensions, alignment, and coating. In addition, the scaffold can provide electrical and electromechanical stimulation to the stem cells which are important external stimuli to stem cell differentiation. We tested the initial biocompatibility of these scaffolds using cardiac progenitor cells (CPCs), and continued onto more sensitive induced pluripotent stem cells (iPS). We present the fabrication and characterisation of these electroactive fibres as well as the response of increasingly sensitive cell types to the scaffolds.
Hoffman, Michael D.
2015-01-01
Emulating autograft healing within the context of decellularized bone allografts has immediate clinical applications in the treatment of critical-sized bone defects. The periosteum, a thin, osteogenic tissue that surrounds bone, houses a heterogeneous population of stem cells and osteoprogenitors. There is evidence that periosteum-cell derived paracrine factors, specifically vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2), orchestrate autograft healing through host cell recruitment and subsequent tissue elaboration. In previous work, we demonstrated that the use of poly(ethylene glycol) (PEG) hydrogels as a tissue engineered (T.E.) periosteum to localize mesenchymal stem cells (MSCs) to the surface of decellularized bone enhances allograft healing and integration. Herein, we utilize a mixed population of 50:50 MSCs and osteoprogenitor cells to better mimic native periosteum cell population and paracrine factor production to further promote allograft healing. This mixed cell population was localized to the surface of decellularized allografts within degradable hydrogels and shown to expedite allograft healing. Specifically, bone callus formation and biomechanical graft-host integration are increased as compared to unmodified allografts. These results demonstrate the dual importance of periosteum-mediated paracrine factors orchestrating host cell recruitment as well as new bone formation while developing clinically translatable strategies for allograft healing and integration. PMID:25818449
Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate Non-Human Primate Hearts
Chong, James J.H.; Yang, Xiulan; Don, Creighton W.; Minami, Elina; Liu, Yen-Wen; Weyers, Jill J; Mahoney, William M.; Van Biber, Benjamin; Cook, Savannah M.; Palpant, Nathan J; Gantz, Jay; Fugate, James A.; Muskheli, Veronica; Gough, G. Michael; Vogel, Keith W.; Astley, Cliff A.; Hotchkiss, Charlotte E.; Baldessari, Audrey; Pabon, Lil; Reinecke, Hans; Gill, Edward A.; Nelson, Veronica; Kiem, Hans-Peter; Laflamme, Michael A.; Murry, Charles E.
2014-01-01
Pluripotent stem cells provide a potential solution to current epidemic rates of heart failure 1 by providing human cardiomyocytes to support heart regeneration 2. Studies of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in small animal models have shown favorable effects of this treatment 3–7. It remains unknown, however, whether clinical scale hESC-CMs transplantation is feasible, safe or can provide large-scale myocardial regeneration. Here we show that hESC-CMs can be produced at a clinical scale (>1 billion cells/batch) and cryopreserved with good viability. Using a non-human primate (NHP) model of myocardial ischemia-reperfusion, we show that that cryopreservation and intra-myocardial delivery of 1 billion hESC-CMs generates significant remuscularization of the infarcted heart. The hESC-CMs showed progressive but incomplete maturation over a three-month period. Grafts were perfused by host vasculature, and electromechanical junctions between graft and host myocytes were present within 2 weeks of engraftment. Importantly, grafts showed regular calcium transients that were synchronized to the host electrocardiogram, indicating electromechanical coupling. In contrast to small animal models 7, non-fatal ventricular arrhythmias were observed in hESC-CM engrafted primates. Thus, hESC-CMs can remuscularize substantial amounts of the infarcted monkey heart. Comparable remuscularization of a human heart should be possible, but potential arrhythmic complications need to be overcome. PMID:24776797
Lung epithelial stem cells and their niches: Fgf10 takes center stage.
Volckaert, Thomas; De Langhe, Stijn
2014-01-01
Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).
de Windt, Tommy S; Vonk, Lucienne A; Slaper-Cortenbach, Ineke C M; Nizak, Razmara; van Rijen, Mattie H P; Saris, Daniel B F
2017-08-01
MSCs are known as multipotent mesenchymal stem cells that have been found capable of differentiating into various lineages including cartilage. However, recent studies suggest MSCs are pericytes that stimulate tissue repair through trophic signaling. Aimed at articular cartilage repair in a one-stage cell transplantation, this study provides first clinical evidence that MSCs stimulate autologous cartilage repair in the knee without engrafting in the host tissue. A phase I (first-in-man) clinical trial studied the one-stage application of allogeneic MSCs mixed with 10% or 20% recycled defect derived autologous chondrons for the treatment of cartilage defects in 35 patients. No treatment-related serious adverse events were found and statistically significant improvement in clinical outcome shown. Magnetic resonance imaging and second-look arthroscopies showed consistent newly formed cartilage tissue. A biopsy taken from the center of the repair tissue was found to have hyaline-like features with a high concentration of proteoglycans and type II collagen. DNA short tandem repeat analysis delivered unique proof that the regenerated tissue contained patient-DNA only. These findings support the hypothesis that allogeneic MSCs stimulate a regenerative host response. This first-in-man trial supports a paradigm shift in which MSCs are applied as augmentations or "signaling cells" rather than differentiating stem cells and opens doors for other applications. Stem Cells 2017;35:1984-1993. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Adeno-Associated Virus Vectors and Stem Cells: Friends or Foes?
Brown, Nolan; Song, Liujiang; Kollu, Nageswara R; Hirsch, Matthew L
2017-06-01
The infusion of healthy stem cells into a patient-termed "stem-cell therapy"-has shown great promise for the treatment of genetic and non-genetic diseases, including mucopolysaccharidosis type 1, Parkinson's disease, multiple sclerosis, numerous immunodeficiency disorders, and aplastic anemia. Stem cells for cell therapy can be collected from the patient (autologous) or collected from another "healthy" individual (allogeneic). The use of allogenic stem cells is accompanied with the potentially fatal risk that the transplanted donor T cells will reject the patient's cells-a process termed "graft-versus-host disease." Therefore, the use of autologous stem cells is preferred, at least from the immunological perspective. However, an obvious drawback is that inherently as "self," they contain the disease mutation. As such, autologous cells for use in cell therapies often require genetic "correction" (i.e., gene addition or editing) prior to cell infusion and therefore the requirement for some form of nucleic acid delivery, which sets the stage for the AAV controversy discussed herein. Despite being the most clinically applied gene delivery context to date, unlike other more concerning integrating and non-integrating vectors such as retroviruses and adenovirus, those based on adeno-associated virus (AAV) have not been employed in the clinic. Furthermore, published data regarding AAV vector transduction of stem cells are inconsistent in regards to vector transduction efficiency, while the pendulum swings far in the other direction with demonstrations of AAV vector-induced toxicity in undifferentiated cells. The variation present in the literature examining the transduction efficiency of AAV vectors in stem cells may be due to numerous factors, including inconsistencies in stem-cell collection, cell culture, vector preparation, and/or transduction conditions. This review summarizes the controversy surrounding AAV vector transduction of stem cells, hopefully setting the stage for future elucidation and eventual therapeutic applications.
Thevenot, Paul T; Nair, Ashwin M; Shen, Jinhui; Lotfi, Parisa; Ko, Cheng-Yu; Tang, Liping
2010-05-01
Despite significant advances in the understanding of tissue responses to biomaterials, most implants are still plagued by inflammatory responses which can lead to fibrotic encapsulation. This is of dire consequence in tissue engineering, where seeded cells and bioactive components are separated from the native tissue, limiting the regenerative potential of the design. Additionally, these interactions prevent desired tissue integration and angiogenesis, preventing functionality of the design. Recent evidence supports that mesenchymal stem cells (MSC) and hematopoietic stem cells (HSC) can have beneficial effects which alter the inflammatory responses and improve healing. The purpose of this study was to examine whether stem cells could be targeted to the site of biomaterial implantation and whether increasing local stem cell responses could improve the tissue response to PLGA scaffold implants. Through incorporation of SDF-1alpha through factor adsorption and mini-osmotic pump delivery, the host-derived stem cell response can be improved resulting in 3X increase in stem cell populations at the interface for up to 2 weeks. These interactions were found to significantly alter the acute mast cell responses, reducing the number of mast cells and degranulated mast cells near the scaffold implants. This led to subsequent downstream reduction in the inflammatory cell responses, and through altered mast cell activation and stem cell participation, increased angiogenesis and decreased fibrotic responses to the scaffold implants. These results support that enhanced recruitment of autologous stem cells can improve the tissue responses to biomaterial implants through modifying/bypassing inflammatory cell responses and jumpstarting stem cell participation in healing at the implant interface. Copyright 2010 Elsevier Ltd. All rights reserved.
Thevenot, Paul; Nair, Ashwin; Shen, Jinhui; Lotfi, Parisa; Ko, Cheng Yu; Tang, Liping
2010-01-01
Despite significant advances in the understanding of tissue responses to biomaterials, most implants are still plagued by inflammatory responses which can lead to fibrotic encapsulation. This is of dire consequence in tissue engineering, where seeded cells and bioactive components are separated from the native tissue, limiting the regenerative potential of the design. Additionally, these interactions prevent desired tissue integration and angiogenesis, preventing functionality of the design. Recent evidence supports that mesenchymal stem cells (MSC) and hematopoietic stem cells (HSC) can have beneficial effects which alter the inflammatory responses and improve healing. The purpose of this study was to examine whether stem cells could be targeted to the site of biomaterial implantation and whether increasing local stem cell responses could improve the tissue response to PLGA scaffold implants. Through incorporation of SDF-1α through factor adsorption and mini-osmotic pump delivery, the host-derived stem cell response can be improved resulting in 3X increase in stem cell populations at the interface for up to 2 weeks. These interactions were found to significantly alter the acute mast cell responses, reducing the number of mast cells and degranulated mast cells near the scaffold implants. This led to subsequent downstream reduction in the inflammatory cell responses, and through altered mast cell activation and stem cell participation, increased angiogenesis and decreased fibrotic responses to the scaffold implants. These results support that enhanced recruitment of autologous stem cells can improve the tissue responses to biomaterial implants through modifying/bypassing inflammatory cell responses and jumpstarting stem cell participation in healing at the implant interface. PMID:20185171
Dong, Li-Hua; Jiang, Yi-Yao; Liu, Yong-Jun; Cui, Shuang; Xia, Cheng-Cheng; Qu, Chao; Jiang, Xin; Qu, Ya-Qin; Chang, Peng-Yu; Liu, Feng
2015-01-01
Radiation-induced pulmonary fibrosis is a common disease and has a poor prognosis owing to the progressive breakdown of gas exchange regions in the lung. Recently, a novel strategy of administering mesenchymal stem cells for pulmonary fibrosis has achieved high therapeutic efficacy. In the present study, we attempted to use human adipose tissue-derived mesenchymal stem cells to prevent disease in Sprague-Dawley rats that received semi-thoracic irradiation (15 Gy). To investigate the specific roles of mesenchymal stem cells in ameliorating radiation-induced pulmonary fibrosis, we treated control groups of irradiated rats with human skin fibroblasts or phosphate-buffered saline. After mesenchymal stem cells were infused, host secretions of hepatocyte growth factor (HGF) and prostaglandin E2 (PGE2) were elevated compared with those of the controls. In contrast, tumour necrosis factor-alpha (TNF-α) and transforming growth factor-beta1 (TGF-β1) levels were decreased after infusion of mesenchymal stem cells. Consequently, the architecture of the irradiated lungs was preserved without marked activation of fibroblasts or collagen deposition within the injured sites. Moreover, mesenchymal stem cells were able to prevent the irradiated type II alveolar epithelial cells from undergoing epithelial-mesenchymal transition. Collectively, these data confirmed that mesenchymal stem cells have the potential to limit pulmonary fibrosis after exposure to ionising irradiation. PMID:25736907
Stem Cells as Drug Delivery Methods: Application of Stem Cell Secretome for Regeneration
Tran, Christine; Damaser, Margot S.
2014-01-01
Mesenchymal stem cells (MSC) are a unique cell population defined by their ability to indefinitely self-renew, differentiate into multiple cell lineages, and form clonal cell populations. It was originally thought that this ability for broad plasticity defined the therapeutic potential of MSCs. However, an expanding body of recent literature has brought growing awareness to the remarkable array of bioactive molecules produced by stem cells. This protein milieu or “secretome” comprises a diverse host of cytokines, chemokines, angiogenic factors, and growth factors. The autocrine/paracrine role of these molecules is being increasingly recognized as key to the regulation of many physiological processes including directing endogenous and progenitor cells to sites of injury as well as mediating apoptosis, scarring, and tissue revascularization. In fact, the immunomodulatory and paracrine role of these molecules may predominantly account for the therapeutic effects of MSCs given that many in vitro and in vivo studies have demonstrated limited stem cell engraftment at the site of injury. While the study of such a vast protein array remains challenging, technological advances in the field of proteomics have greatly facilitated our ability to analyze and characterize the stem cell secretome. Thus, stem cells can be considered as tunable pharmacological storehouses useful for combinatorial drug manufacture and delivery. As a cell-free option for regenerative medicine therapies, stem cell secretome has shown great potential in a variety of clinical applications including the restoration of function in cardiovascular, neurodegenerative, oncologic, and genitourinary pathologies. PMID:25451858
2018-03-05
Acute Myeloid Leukemia in Remission; Adult Acute Lymphoblastic Leukemia in Complete Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive in Remission; Chronic Myelomonocytic Leukemia in Remission; Graft Versus Host Disease; Hodgkin Lymphoma; Minimal Residual Disease; Myelodysplastic Syndrome; Myeloproliferative Neoplasm; Non-Hodgkin Lymphoma; Plasma Cell Myeloma; Severe Aplastic Anemia; Waldenstrom Macroglobulinemia
Mesenchymal stem cells express serine protease inhibitor to evade the host immune response
El Haddad, Najib; Heathcote, Dean; Moore, Robert; Yang, Sunmi; Azzi, Jamil; Mfarrej, Bechara; Atkinson, Mark; Sayegh, Mohamed H.; Lee, Jeng-Shin; Ashton-Rickardt, Philip G.
2011-01-01
Clinical trials using mesenchymal stem cells (MSCs) have been initiated worldwide. An improved understanding of the mechanisms by which allogeneic MSCs evade host immune responses is paramount to regulating their survival after administration. This study has focused on the novel role of serine protease inhibitor (SPI) in the escape of MSCs from host immunosurveillance through the inhibition of granzyme B (GrB). Our data indicate bone marrow–derived murine MSCs express SPI6 constitutively. MSCs from mice deficient for SPI6 (SPI6−/−) exhibited a 4-fold higher death rate by primed allogeneic cytotoxic T cells than did wild-type MSCs. A GrB inhibitor rescued SPI6−/− MSCs from cytotoxic T-cell killing. Transduction of wild-type MSCs with MigR1-SPI6 also protected MSCs from cytotoxic T cell–mediated death in vitro. In addition, SPI6−/− MSCs displayed a shorter lifespan than wild-type MSCs when injected into an allogeneic host. We conclude that SPI6 protects MSCs from GrB-mediated killing and plays a pivotal role in their survival in vivo. Our data could serve as a basis for future SPI-based strategies to regulate the survival and function of MSCs after administration and to enhance the efficacy of MSC-based therapy for diseases. PMID:21076046
2005-06-23
Purpura, Schoenlein-Henoch; Graft Versus Host Disease; Anemia, Hemolytic, Autoimmune; Rheumatoid Arthritis; Churg-Strauss Syndrome; Hypersensitivity Vasculitis; Wegener's Granulomatosis; Systemic Lupus Erythematosus; Giant Cell Arteritis; Pure Red Cell Aplasia; Juvenile Rheumatoid Arthritis; Polyarteritis Nodosa; Autoimmune Thrombocytopenic Purpura; Takayasu Arteritis
2018-03-30
Acute Leukemia; Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Diffuse Large B-Cell Lymphoma; Follicular Lymphoma; Graft Versus Host Disease; Mantle Cell Lymphoma; Marginal Zone Lymphoma; Myelodysplastic Syndrome; Myelofibrosis; Myeloproliferative Neoplasm; Small Lymphocytic Lymphoma
Treatment of Tularemia in Patient with Chronic Graft-versus-Host Disease
Seibold, Erik; Knabbe, Cornelius; Kaufmann, Martin; Splettstoesser, Wolf
2013-01-01
We describe a case of human tularemia caused by Francisella tularensis subsp. holarctica in a stem cell transplant recipient with chronic graft-versus-host disease who was receiving levofloxacin prophylaxis. The infection was characterized by pneumonia with septic complications. The patient was successfully treated with doxycycline. PMID:23647853
Kordelas, Lambros; Steckel, Nina-Kristin; Horn, Peter A; Beelen, Dietrich W; Rebmann, Vera
2016-10-27
Natural killer (NK) cells play a central role in the innate immune system. In allogeneic stem cell transplantation (alloSCT), alloreactive NK cells derived by the graft are discussed to mediate the elimination of leukemic cells and dendritic cells in the patient and thereby to reduce the risk for leukemic relapses and graft-versus-host reactions. The alloreactivity of NK cells is determined by various receptors including the activating CD94/NKG2C and the inhibitory CD94/NKG2A receptors, which both recognize the non-classical human leukocyte antigen E (HLA-E). Here we analyze the contribution of these receptors to NK cell alloreactivity in 26 patients over the course of the first year after alloSCT due to acute myeloid leukemia, myelodysplastic syndrome and T cell Non-Hodgkin-Lymphoma. Our results show that NK cells expressing the activating CD94/NKG2C receptor are significantly reduced in patients after alloSCT with severe acute and chronic graft-versus-host disease (GvHD). Moreover, the ratio of CD94/NKG2C to CD94/NKG2A was reduced in patients with severe acute and chronic GvHD after receiving an HLA-mismatched graft. Collectively, these results provide evidence for the first time that CD94/NKG2C is involved in GvHD prevention.
Kordelas, Lambros; Steckel, Nina-Kristin; Horn, Peter A.; Beelen, Dietrich W.; Rebmann, Vera
2016-01-01
Natural killer (NK) cells play a central role in the innate immune system. In allogeneic stem cell transplantation (alloSCT), alloreactive NK cells derived by the graft are discussed to mediate the elimination of leukemic cells and dendritic cells in the patient and thereby to reduce the risk for leukemic relapses and graft-versus-host reactions. The alloreactivity of NK cells is determined by various receptors including the activating CD94/NKG2C and the inhibitory CD94/NKG2A receptors, which both recognize the non-classical human leukocyte antigen E (HLA-E). Here we analyze the contribution of these receptors to NK cell alloreactivity in 26 patients over the course of the first year after alloSCT due to acute myeloid leukemia, myelodysplastic syndrome and T cell Non-Hodgkin-Lymphoma. Our results show that NK cells expressing the activating CD94/NKG2C receptor are significantly reduced in patients after alloSCT with severe acute and chronic graft-versus-host disease (GvHD). Moreover, the ratio of CD94/NKG2C to CD94/NKG2A was reduced in patients with severe acute and chronic GvHD after receiving an HLA-mismatched graft. Collectively, these results provide evidence for the first time that CD94/NKG2C is involved in GvHD prevention. PMID:27801784
Pourrajab, Fatemeh; Babaei Zarch, Mojtaba; Baghi Yazdi, Mohammad; Rahimi Zarchi, Abolfazl; Vakili Zarch, Abbas
2014-04-15
Stem cells hold a great promise for regenerative medicine, especially for replacing cells in infarcted organ that hardly have any intrinsic renewal capacity, including heart and brain. Signaling pathways that regulate pluripotency or lineage-specific gene and protein expression have been the major focus of stem cell research. Between them, there are some well known signaling pathways such as GF/GFR systems, SDF-1α/CXC4 ligand receptor interaction and PI3K/Akt signaling, and cytokines may regulate cell fate decisions, and can be utilized to positively influence cell therapy outcomes or accentuate synergistic compliance. For example, contributing factors in the progression of heart failure are both the loss of cardiomyocytes after myocardial infarction, and the absence of an adequate endogenous repair signaling. Combining cell engraftment with therapeutic signaling factor delivery is more exciting in terms of host progenitor/donor stem cell survival and proliferation. Thus stem cell-based therapy, besides triggering signaling pathways through GF/GFR systems can become a realistic option in regenerative processes for replacing lost cells and reconstituting the damaged organ, as before. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Formiga, A T; Silveira, F A O; Fernandes, G W; Isaias, R M S
2015-03-01
Understanding factors that modulate plant development is still a challenging task in plant biology. Although research has highlighted the role of abiotic and biotic factors in determining final plant structure, we know little of how these factors combine to produce specific developmental patterns. Here, we studied patterns of cell and tissue organisation in galled and non-galled organs of Baccharis reticularia, a Neotropical shrub that hosts over ten species of galling insects. We employed qualitative and quantitative approaches to understand patterns of growth and differentiation in its four most abundant gall morphotypes. We compared two leaf galls induced by sap-sucking Hemiptera and stem galls induced by a Lepidopteran and a Dipteran, Cecidomyiidae. The hypotheses tested were: (i) the more complex the galls, the more distinct they are from their non-galled host; (ii) galls induced on less plastic host organs, e.g. stems, develop under more morphogenetic constraints and, therefore, should be more similar among themselves than galls induced on more plastic organs. We also evaluated the plant sex preference of gall-inducing insects for oviposition. Simple galls were qualitative and quantitatively more similar to non-galled organs than complex galls, thereby supporting the first hypothesis. Unexpectedly, stem galls had more similarities between them than to their host organ, hence only partially supporting the second hypothesis. Similarity among stem galls may be caused by the restrictive pattern of host stems. The opposite trend was observed for host leaves, which generate either similar or distinct gall morphotypes due to their higher phenotypic plasticity. The Relative Distance of Plasticity Index for non-galled stems and stem galls ranged from 0.02 to 0.42. Our results strongly suggest that both tissue plasticity and gall inducer identity interact to determine plant developmental patterns, and therefore, final gall structure. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Uloth, Margaret B.; Clode, Peta L.; You, Ming Pei; Barbetti, Martin J.
2016-01-01
Background and Aims Sclerotinia stem rot (SSR, Sclerotinia sclerotiorum) is a damaging disease of oilseed brassicas world-wide. Host resistance is urgently needed to achieve control, yet the factors that contribute to stem resistance are not well understood. This study investigated the mechanisms of resistance to SSR. Methods Stems of 5-week-old Brassica carinata, B. juncea and B. napus of known resistance were infected via filter paper discs impregnated with S. sclerotiorum mycelium under controlled conditions. Transverse sections of the stem and portions of the stem surface were examined using optical and scanning electron microscopy. The association of anatomical features with the severity of disease (measured by mean lesion length) was determined. Key Results Several distinct resistance mechanisms were recorded for the first time in these Brassica–pathogen interactions, including hypersensitive reactions and lignification within the stem cortex, endodermis and in tissues surrounding the lesions. Genotypes showing a strong lignification response 72 h post-infection (hpi) tended to have smaller lesions. Extensive vascular invasion by S. sclerotiorum was observed only in susceptible genotypes, especially in the vascular fibres and xylem. Mean lesion length was negatively correlated with the number of cell layers in the cortex, suggesting progress of S. sclerotiorum is impeded by more cell layers. Hyphae in the centre of lesions became highly vacuolate 72 hpi, reflecting an ageing process in S. sclerotiorum hyphal networks that was independent of host resistance. The infection process of S. sclerotiorum was analogous in B. carinata and B. napus. Infection cushions of the highly virulent isolate of S. sclerotiorum MBRS-1 were grouped together in dense parallel bundles, while hyphae in the infection cushions of a less aggressive isolate WW-3 were more diffuse, and this was unaffected by host genotype. Conclusions A variety of mechanisms contribute to host resistance against S. sclerotiorum across the three Brassica species. These complex interactions between pathogen and host help to explain variable expressions of resistance often observed in the field. PMID:26420204
Uloth, Margaret B; Clode, Peta L; You, Ming Pei; Barbetti, Martin J
2016-01-01
Sclerotinia stem rot (SSR, Sclerotinia sclerotiorum) is a damaging disease of oilseed brassicas world-wide. Host resistance is urgently needed to achieve control, yet the factors that contribute to stem resistance are not well understood. This study investigated the mechanisms of resistance to SSR. Stems of 5-week-old Brassica carinata, B. juncea and B. napus of known resistance were infected via filter paper discs impregnated with S. sclerotiorum mycelium under controlled conditions. Transverse sections of the stem and portions of the stem surface were examined using optical and scanning electron microscopy. The association of anatomical features with the severity of disease (measured by mean lesion length) was determined. Several distinct resistance mechanisms were recorded for the first time in these Brassica-pathogen interactions, including hypersensitive reactions and lignification within the stem cortex, endodermis and in tissues surrounding the lesions. Genotypes showing a strong lignification response 72 h post-infection (hpi) tended to have smaller lesions. Extensive vascular invasion by S. sclerotiorum was observed only in susceptible genotypes, especially in the vascular fibres and xylem. Mean lesion length was negatively correlated with the number of cell layers in the cortex, suggesting progress of S. sclerotiorum is impeded by more cell layers. Hyphae in the centre of lesions became highly vacuolate 72 hpi, reflecting an ageing process in S. sclerotiorum hyphal networks that was independent of host resistance. The infection process of S. sclerotiorum was analogous in B. carinata and B. napus. Infection cushions of the highly virulent isolate of S. sclerotiorum MBRS-1 were grouped together in dense parallel bundles, while hyphae in the infection cushions of a less aggressive isolate WW-3 were more diffuse, and this was unaffected by host genotype. A variety of mechanisms contribute to host resistance against S. sclerotiorum across the three Brassica species. These complex interactions between pathogen and host help to explain variable expressions of resistance often observed in the field. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mesenchymal stem cells and immunomodulation: current status and future prospects
Gao, F; Chiu, S M; Motan, D A L; Zhang, Z; Chen, L; Ji, H-L; Tse, H-F; Fu, Q-L; Lian, Q
2016-01-01
The unique immunomodulatory properties of mesenchymal stem cells (MSCs) make them an invaluable cell type for the repair of tissue/ organ damage caused by chronic inflammation or autoimmune disorders. Although they hold great promise in the treatment of immune disorders such as graft versus host disease (GvHD) and allergic disorders, there remain many challenges to overcome before their widespread clinical application. An understanding of the biological properties of MSCs will clarify the mechanisms of MSC-based transplantation for immunomodulation. In this review, we summarize the preclinical and clinical studies of MSCs from different adult tissues, discuss the current hurdles to their use and propose the future development of pluripotent stem cell-derived MSCs as an approach to immunomodulation therapy. PMID:26794657
Antitumor immunity and cancer stem cells.
Schatton, Tobias; Frank, Markus H
2009-09-01
Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5(+) MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy.
Antitumor Immunity and Cancer Stem Cells
Schatton, Tobias; Frank, Markus H.
2010-01-01
Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5+ MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy. PMID:19796244
Chichagova, Valeria; Sanchez-Vera, Irene; Armstrong, Lyle; Steel, David; Lako, Majlinda
2016-01-01
Human induced pluripotent stem cells (hiPSCs) provide a platform for studying human disease in vitro, increase our understanding of human embryonic development, and provide clinically relevant cell types for transplantation, drug testing, and toxicology studies. Since their discovery, numerous advances have been made in order to eliminate issues such as vector integration into the host genome, low reprogramming efficiency, incomplete reprogramming and acquisition of genomic instabilities. One of the ways to achieve integration-free reprogramming is by using RNA-based Sendai virus. Here we describe a method to generate hiPSCs with Sendai virus in both feeder-free and feeder-dependent culture systems. Additionally, we illustrate methods by which to validate pluripotency of the resulting stem cell population.
Genetic modification of stem cells for transplantation.
Phillips, M Ian; Tang, Yao Liang
2008-01-14
Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.
Tatullo, Marco; Codispoti, Bruna; Pacifici, Andrea; Palmieri, Francesca; Marrelli, Massimo; Pacifici, Luciano; Paduano, Francesco
2017-01-01
Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications. PMID:29259970
Tatullo, Marco; Codispoti, Bruna; Pacifici, Andrea; Palmieri, Francesca; Marrelli, Massimo; Pacifici, Luciano; Paduano, Francesco
2017-01-01
Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications.
Human Papillomavirus Infections and Cancer Stem Cells of Tumors from the Uterine Cervix
López, Jacqueline; Ruíz, Graciela; Organista-Nava, Jorge; Gariglio, Patricio; García-Carrancá, Alejandro
2012-01-01
Different rate of development of productive infections (as low grade cervical intraepithelial neoplasias), or high grade lesions and cervical malignant tumors associated with infections of the Transformation zone (TZ) by High-Risk Human Papillomavirus (HR-HPV), could suggest that different epithelial host target cells could exist. If there is more than one target cell, their differential infection by HR-HPV may play a central role in the development of cervical cancer. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support in several solid tumors, including cervical cancer (CC). According to the cancer stem cell (CSC) hypothesis, CC can now be considered a disease in which stem cells of the TZ are converted to cervical cancer stem cells by the interplay between HR-HPV viral oncogenes and cellular alterations that are thought to be finally responsible for tumor initiation and maintenance. Current studies of CSC could provide novel insights regarding tumor initiation and progression, their relation with viral proteins and interplay with the tumor micro-environment. This review will focus on the biology of cervical cancer stem cells, which might contribute to our understanding of the mechanisms responsible for cervical tumor development. PMID:23341858
New Advances and Challenges of Targeting Cancer Stem Cells.
Dashzeveg, Nurmaa K; Taftaf, Rokana; Ramos, Erika K; Torre-Healy, Luke; Chumakova, Anastasia; Silver, Daniel J; Alban, Tyler J; Sinyuk, Maksim; Thiagarajan, Praveena S; Jarrar, Awad M; Turaga, Soumya M; Saygin, Caner; Mulkearns-Hubert, Erin; Hitomi, Masahiro; Rich, Jeremy N; Gerson, Stanton L; Lathia, Justin D; Liu, Huiping
2017-10-01
The second International Cancer Stem Cell Conference in Cleveland, Ohio, on September 20-23, 2016, convened 330 attendees from academic, industrial, and clinical organizations. It featured a debate on the concepts and challenges of the cancer stem cells (CSC) as well as CSC-centered scientific sessions on clinical trials, genetics and epigenetics, tumor microenvironment, immune suppression, metastasis, therapeutic resistance, and emerging novel concepts. The conference hosted 35 renowned speakers, 100 posters, 20 short talks, and a preconference workshop. The reported advances of CSC research and therapies fostered new collaborations across national and international borders, and inspired the next generation's young scientists. Cancer Res; 77(19); 5222-7. ©2017 AACR . ©2017 American Association for Cancer Research.
Kaneko, Shun; Kakinuma, Sei; Asahina, Yasuhiro; Kamiya, Akihide; Miyoshi, Masato; Tsunoda, Tomoyuki; Nitta, Sayuri; Asano, Yu; Nagata, Hiroko; Otani, Satoshi; Kawai-Kitahata, Fukiko; Murakawa, Miyako; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin; Nakauchi, Hiromitsu; Nishitsuji, Hironori; Ujino, Saneyuki; Shimotohno, Kunitada; Iwamoto, Masashi; Watashi, Koichi; Wakita, Takaji; Watanabe, Mamoru
2016-01-01
Hepatitis B virus (HBV) is not eradicated by current antiviral therapies due to persistence of HBV covalently closed circular DNA (cccDNA) in host cells, and thus development of novel culture models for productive HBV infection is urgently needed, which will allow the study of HBV cccDNA eradication. To meet this need, we developed culture models of HBV infection using human induced pluripotent stem cell-derived hepatocyte lineages, including immature proliferating hepatic progenitor-like cell lines (iPS-HPCs) and differentiated hepatocyte-like cells (iPS-Heps). These cells were susceptible to HBV infection, produced HBV particles, and maintained innate immune responses. The infection efficiency of HBV in iPS-HPCs predominantly depended on the expression levels of sodium taurocholate cotransporting polypeptide (NTCP), and was low relative to iPS-Heps: however, long-term culture of iPS-Heps was difficult. To provide a model for HBV persistence, iPS-HPCs overexpressing NTCP were established. The long-term persistence of HBV cccDNA was detected in iPS-HPCs overexpressing NTCP, and depended on the inhibition of the Janus-kinase signaling pathway. In conclusion, this study provides evidence that iPS-derived hepatic cell lines can be utilized for novel HBV culture models with genetic variation to investigate the interactions between HBV and host cells and the development of anti-HBV strategies. PMID:27386799
Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy
Glenn, Justin D; Whartenby, Katharine A
2014-01-01
Mesenchymal stem cells (MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses. PMID:25426250
Figueroa, Javier; Phillips, Lynette M; Shahar, Tal; Hossain, Anwar; Gumin, Joy; Kim, Hoon; Bean, Andrew J; Calin, George A; Fueyo, Juan; Walters, Edgar T; Kalluri, Raghu; Verhaak, Roel G; Lang, Frederick F
2017-11-01
Tumor-stromal communications impact tumorigenesis in ways that are incompletely understood. Here, we show that glioma-associated human mesenchymal stem cells (GA-hMSC), a newly identified stromal component of glioblastoma, release exosomes that increase the proliferation and clonogenicity of tumor-initiating glioma stem-like cells (GSC). This event leads to a significantly greater tumor burden and decreased host survival compared with untreated GSCs in orthotopic xenografts. Analysis of the exosomal content identified miR-1587 as a mediator of the exosomal effects on GSCs, in part via downregulation of the tumor-suppressive nuclear receptor corepressor NCOR1. Our results illuminate the tumor-supporting role for GA-hMSCs by identifying GA-hMSC-derived exosomes in the intercellular transfer of specific miRNA that enhance the aggressiveness of glioblastoma. Cancer Res; 77(21); 5808-19. ©2017 AACR . ©2017 American Association for Cancer Research.
Stem cell and genetic therapies for the fetus.
Roybal, Jessica L; Santore, Matthew T; Flake, Alan W
2010-02-01
Advances in prenatal diagnosis have led to the prenatal management of a variety of congenital diseases. Although prenatal stem cell and gene therapy await clinical application, they offer tremendous potential for the treatment of many genetic disorders. Normal developmental events in the fetus offer unique biologic advantages for the engraftment of hematopoietic stem cells and efficient gene transfer that are not present after birth. Although barriers to hematopoietic stem cell engraftment exist, progress has been made and preclinical studies are now underway for strategies based on prenatal tolerance induction to facilitate postnatal cellular transplantation. Similarly, in-utero gene therapy shows experimental promise for a host of diseases and proof-in-principle has been demonstrated in murine models, but ethical and safety issues still need to be addressed. Here we review the current status and future potential of prenatal cellular and genetic therapy. Copyright 2009 Elsevier Ltd. All rights reserved.
Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.
Kim, Hwan D; Amirthalingam, Sivashanmugam; Kim, Seunghyun L; Lee, Seunghun S; Rangasamy, Jayakumar; Hwang, Nathaniel S
2017-12-01
Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Koyama, Satoshi; Fujita, Hiroyuki; Shimosato, Takeshi; Kamijo, Aki; Ishiyama, Yasufumi; Yamamoto, Eri; Ishii, Yoshimi; Hattori, Yukako; Hagihara, Maki; Yamazaki, Etsuko; Tomita, Naoto; Nakajima, Hideaki
2018-02-17
Probiotic-rich foods are consumed without much restriction. We report here, a case of septic shock caused by yogurt derived Lactobacillus species in a 54-year-old male patient with acute promyelocytic leukemia, in second complete remission, and who was an autologous stem cell transplantation recipient. He received high dose chemotherapy and autologous peripheral blood stem cell transplantation. He ingested commercially available probiotic-enriched yogurt because of severe diarrhea. One week later, he developed septic shock, and the pathogen was determined by strain-specific PCR analysis as Lactobacillus rhamnosus GG (ATCC 53103), which was found to be identical with the strain in the yogurt he consumed. Thus, because even low virulent Lactobacilli in the probiotic products can be pathogenic in the compromised hosts, ingestion of such products should be considered with caution in neutropenic patients with severe diarrhea, such as stem cell transplantation recipients.
Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage
Roll, Lars; Faissner, Andreas
2014-01-01
The limited regeneration capacity of the adult central nervous system (CNS) requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation. In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP) and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo. As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM), a complex network that contains numerous signaling molecules. It appears that signals in the damaged CNS lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C (TN-C). Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section. PMID:25191223
Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective.
Huang, George T-J; Al-Habib, Mey; Gauthier, Philippe
2013-03-01
There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic.
Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective
HUANG, GEORGE T.-J.; AL-HABIB, MEY; GAUTHIER, PHILIPPE
2013-01-01
There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic. PMID:23914150
2018-05-24
Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Graft Versus Host Disease; Hodgkin Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm; Non-Hodgkin Lymphoma; Plasma Cell Myeloma; Waldenstrom Macroglobulinemia
Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro
Massee, Michelle; Chinn, Kathryn; Lei, Jennifer; Lim, Jeremy J.; Young, Conan S.
2015-01-01
Abstract Human‐derived placental tissues have been shown in randomized clinical trials to be effective for healing chronic wounds, and have also demonstrated the ability to recruit stem cells to the wound site in vitro and in vivo. In this study, PURION® Processed dehydrated human amnion/chorion membrane allografts (dHACM, EpiFix®, MiMedx Group, Marietta, GA) were evaluated for their ability to alter stem cell activity in vitro. Human bone marrow mesenchymal stem cells (BM‐MSCs), adipose derived stem cells (ADSCs), and hematopoietic stem cells (HSCs) were treated with soluble extracts of dHACM tissue, and were evaluated for cellular proliferation, migration, and cytokine secretion. Stem cells were analyzed for cell number by DNA assay after 24 h, closure of an acellular zone using microscopy over 3 days, and soluble cytokine production in the medium of treated stem cells was analyzed after 3 days using a multiplex ELISA array. Treatment with soluble extracts of dHACM tissue stimulated BM‐MSCs, ADSCs, and HSCs to proliferate with a significant increase in cell number after 24 h. dHACM treatment accelerated closure of an acellular zone by ADSCs and BM‐MSCs after 3 days, compared to basal medium. BM‐MSCs, ADSCs, and HSCs also modulated endogenous production of a number of various soluble signals, including regulators of inflammation, mitogenesis, and wound healing. dHACM treatment promoted increased proliferation and migration of ADSCs, BM‐MSCs, and HSCs, along with modulation of secreted proteins from those cells. Therefore, dHACM may impact wound healing by amplifying host stem cell populations and modulating their responses in treated wound tissues. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1495–1503, 2016. PMID:26175122
Jiang, Wenkai; Zhou, Lin
2016-01-01
Stem cell survival after transplantation determines the efficiency of stem cell treatment, which develops as a novel potential therapy for several central nervous system (CNS) diseases in recent decades. The engrafted stem cells face the damage of oxidative stress, inflammation, and immune response at the lesion point in host. Among the damaging pathologies, oxidative stress directs stem cells to apoptosis and even death through several signalling pathways and DNA damage. However, the in-detail mechanism of stem cell survival from oxidative stress has not been revealed clearly. Here, in this study, we used hydrogen peroxide (H2O2) to induce the oxidative damage on neural stem cells (NSCs). The damage was in consequence demonstrated involving the activation of heat shock protein 90 (HSP90) and NF-κB/p65 signalling pathways. Further application of the pharmacological inhibitors, respectively, targeting at each signalling indicated an upper-stream role of HSP90 upon NF-κB/p65 on NSCs survival. Preinhibition of HSP90 with the specific inhibitor displayed a significant protection on NSCs against oxidative stress. In conclusion, inhibition of HSP90 would attenuate NF-κB/p65 activation by oxidative induction and promote NSCs survival from oxidative damage. The HSP90/NF-κB mechanism provides a new evidence on rescuing NSCs from oxidative stress and also promotes the stem cell application on CNS pathologies. PMID:27818721
Medinger, Michael; Heim, Dominik; Gerull, Sabine; Halter, Jörg; Krenger, Werner; Buser, Andreas; Lengerke, Claudia; Bucher, Christoph; Passweg, Jakob
2016-08-01
Circulating endothelial progenitor cells (EPCs; CD31+ CD34(bright)CD133+ CD45(dim) cells) are novel markers of endothelial dysfunction and related to inflammatory processes such as acute graft-versus-host disease (aGvHD). 47 patients with acute myeloid leukaemia (AML) who were in complete remission as they underwent allogeneic hematopoietic stem cell transplantation with myeloablative conditioning with PBSC as stem cell source were enrolled in the study. Blood samples for the quantitative analysis of circulating EPC levels were drawn at different time points in patients with and without aGvHD. CD34+ VEGFR2/KDR+ CD133+ triple-positive cells identified among CD34+ cells by FACS. EPC were quantified and data are presented as cells/ml whole blood. Circulating EPC levels were not significantly different in patients with and without aGvHD prior to conditioning (baseline) and at the time of engraftment. However, at diagnosis of aGvHD≥grade 2, EPC levels increased whereas in patients without aGvHD the EPC levels remained significantly lower (3021±278 versus 2322±195 cells/ml; p<0.001). Patients with steroid-refractory aGvHD had high levels of EPC throughout. EPC levels fell in responding patients. Our results demonstrate that the number of circulating EPCs is increased in patients with aGvHD compared to patients without aGvHD. Copyright © 2016 Elsevier Ltd. All rights reserved.
The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation
Kim, Eun-Jung; Kim, Nayoun; Cho, Seok-Goo
2013-01-01
In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine, cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT. PMID:23306700
Producing primate embryonic stem cells by somatic cell nuclear transfer.
Byrne, J A; Pedersen, D A; Clepper, L L; Nelson, M; Sanger, W G; Gokhale, S; Wolf, D P; Mitalipov, S M
2007-11-22
Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.
Soleimannejad, Mostafa; Ebrahimi-Barough, Somayeh; Nadri, Samad; Riazi-Esfahani, Mohammad; Soleimani, Masoud; Tavangar, Seyed Mohammad; Ai, Jafar
2017-04-01
Retinitis pigmentosa (RP) and age related macular degeneration (AMD) are two retinal diseases that progress by photoreceptor cells death. In retinal transplantation studies, stem and progenitor cells inject into the sub retinal space or vitreous and then these cells can be migrate to the site of retinal degeneration and locate in the host retina and restitute vision. Our hypothesis suggests that using human conjunctiva stem cells (as the source for increasing the number of human stem cells progenitor cells in retina dysfunction diseases) with fibrin gel and also assessing its relating in vitro (cellular and molecular processes) and in vivo (vision tests and pathology) could be a promising strategy for treatment of AMD and RP disorders. In this idea, we describe a novel approach for retina tissue engineering with differentiation of conjunctiva mesenchymal stem cells (CJMSCs) into photoreceptor-like cells in fibrin gel with induction medium contain taurine. For assessment of differentiation, immunocytochemistry and real time PCR are used for the expression of Rhodopsin, RPE65, Nestin as differentiated photoreceptor cell markers in 2D and 3D culture. The results show that fibrin gel will offer a proper 3D scaffold for CJMSCs derived photoreceptor cell-like cells. Application of immune-privileged, readily available sources of adult stem cells like human conjunctiva stem cells with fibrin gel would be a promising strategy to increase the number of photoreceptor progenitor cells and promote involuntary angiogenesis needed in retina layer repair and regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Um, JungIn; Lee, Ji-Hyung; Jung, Da-Woon; Williams, Darren R
2018-04-01
Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.
2005-06-23
Chediak-Higashi Syndrome; Graft Versus Host Disease; X-Linked Lymphoproliferative Syndrome; Familial Erythrophagocytic Lymphohistiocytosis; Hemophagocytic Lymphohistiocytosis; Virus-Associated Hemophagocytic Syndrome
Human mesenchymal stem cells - current trends and future prospective
Ullah, Imran; Subbarao, Raghavendra Baregundi; Rho, Gyu Jin
2015-01-01
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton's jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials. PMID:25797907
Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.
Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya
2016-07-01
Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.
Kurhekar, Manish; Deshpande, Umesh
2016-01-01
Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website.
Separation of human bone marrow by counterflow centrifugation monitored by DNA-flowcytometry.
de Witte, T; Plas, A; Koekman, E; Blankenborg, G; Salden, M; Wessels, J; Haanen, C
1984-10-01
Human bone marrow was fractionated by counterflow centrifugation into 16 fractions with increasing cell size. Three distinct subpopulations could be recognized: small lymphocytic cells, medium-sized nucleated erythroid cells and large myeloid elements. DNA-flowcytometry and 3H-thymidine uptake showed that within the erythroid and myeloid cell populations counterflow centrifugation separates each population according to the cell cycle phase. Hypotonic treatment of bone marrow for removal of the erythroid nucleated cells resulted in a complete abrogation of the proliferating erythroid cell population. Counterflow centrifugation also separates the small non-proliferating myeloid and erythroid committed stem cells from the larger proliferating stem cells. It appeared feasible to separate the small lymphocytic cells from the majority of BFU-E and CFU-GM, due to the larger size of the proliferating normoblasts and the committed progenitor cells. Elimination of the mature lymphocytes from the haematopoietic stem cells by counterflow centrifugation may offer an alternative approach to the prevention of graft versus host disease (GvHD).
Bhattacharya, Deepta; Rossi, Derrick J.; Bryder, David; Weissman, Irving L.
2006-01-01
In the absence of irradiation or other cytoreductive conditioning, endogenous hematopoietic stem cells (HSCs) are thought to fill the unique niches within the bone marrow that allow maintenance of full hematopoietic potential and thus prevent productive engraftment of transplanted donor HSCs. By transplantation of purified exogenous HSCs into unconditioned congenic histocompatible strains of mice, we show that ∼0.1–1.0% of these HSC niches are available for engraftment at any given point and find no evidence that endogenous HSCs can be displaced from the niches they occupy. We demonstrate that productive engraftment of HSCs within these empty niches is inhibited by host CD4+ T cells that recognize very subtle minor histocompatibility differences. Strikingly, transplantation of purified HSCs into a panel of severe combined immunodeficient (SCID) mice leads to a rapid and complete rescue of lymphoid deficiencies through engraftment of these very rare niches and expansion of donor lymphoid progenitors. We further demonstrate that transient antibody-mediated depletion of CD4+ T cells allows short-term HSC engraftment and regeneration of B cells in a mouse model of B(-) non-SCID. These experiments provide a general mechanism by which transplanted HSCs can correct hematopoietic deficiencies without any host conditioning or with only highly specific and transient lymphoablation. PMID:16380511
Liu, Fang; Hoffman, Robert M
2018-01-01
The stem cell marker, nestin, is expressed in the hair follicle, both in cells in the bulge area (BA) and the dermal papilla (DP). Nestin-expressing hair follicle-associated-pluripotent (HAP) stem cells of both the BA and DP have been previously shown to be able to form neurons, heart muscle cells, and other non-follicle cell types. The ability of the nestin-expressing HAP stem cells from the BA and DP to repair spinal cord injury was compared. Nestin-expressing HAP stem cells from both the BA and DP grew very well on Gelfoam ® . The HAP stem cells attached to the Gelfoam ® within 1 h. They grew along the grids of the Gelfoam ® during the first 2 or 3 days. Later they spread into the Gelfoam ® . After transplantation of Gelfoam ® cultures of nestin-expressing BA or DP HAP stem cells into the injured spinal cord (including the Gelfoam ® ) nestin-expressing BA and DP cells were observed to be viable over 100 days post-surgery. Hematoxylin and eosin (H&E) staining showed connections between the transplanted cells and the host spine tissue. Immunohistochemistry showed many Tuj1-, Isl 1/2, and EN1-positive cells and nerve fibers in the transplanted area of the spinal cord after BA Gelfoam ® or DP Gelfoam ® cultures were transplanted to the spine. The spinal cord of mice was injured to effect hind-limb paralysis. Twenty-eight days after transplantation with BA or DP HAP stem cells on Gelfoam ® to the injured area of the spine, the mice recovered normal locomotion.
Rare complications after second hematopoietic stem cell transplantation for thalassemia major.
Yanir, Asaf; Yatsiv, Ido; Braun, Jacques; Zilkha, Amir; Brooks, Rebecca; Bouhanna, Dalia; Weintraub, Michael; Stepensky, Polina
2012-07-01
We describe an 11-year-old girl with thalassemia major who underwent a second hematopoietic stem cell transplantation from a matched related donor and who subsequently developed posttransplant lymphoproliferative disorder complicated by severe ascending paralysis resembling Guillian-Barré syndrome. Six months later she developed a massive pericardial effusion. She received a multimodal treatment for these complications and currently, 18 months after transplantation, she is in a good clinical condition, is transfusion independent, with no evidence of graft-versus-host disease and off all treatment. This case highlights the dilemma surrounding second hematopoietic stem cell transplantations in hemoglobinopathies and the need for a careful, well informed, and collaborative decision-making process by patients, families, and medical professionals.
Ote, Manabu; Ueyama, Morio; Yamamoto, Daisuke
2016-09-12
Wolbachia, endosymbiotic bacteria prevalent in invertebrates, manipulate their hosts in a variety of ways: they induce cytoplasmic incompatibility, male lethality, male-to-female transformation, and parthenogenesis. However, little is known about the molecular basis for host manipulation by these bacteria. In Drosophila melanogaster, Wolbachia infection makes otherwise sterile Sex-lethal (Sxl) mutant females capable of producing mature eggs. Through a functional genomic screen for Wolbachia genes with growth-inhibitory effects when expressed in cultured Drosophila cells, we identified the gene WD1278 encoding a novel protein we call toxic manipulator of oogenesis (TomO), which phenocopies some of the Wolbachia effects in Sxl mutant D. melanogaster females. We demonstrate that TomO enhances the maintenance of germ stem cells (GSCs) by elevating Nanos (Nos) expression via its interaction with nos mRNA, ultimately leading to the restoration of germ cell production in Sxl mutant females that are otherwise without GSCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
The use of human tumour cell lines in the discovery of new cancer chemotherapeutic drugs.
Baguley, Bruce C; Marshall, Elaine S
2008-02-01
Human tumour cell lines have played a major role in anticancer drug discovery, but cell lines may model only some aspects of tumour behaviour in cancer patients. Growing evidence supports a theory that stem cells with self-renewing properties sustain tumours. This review considers the extent to which a deeper understanding of the origin and properties of tumour cell lines might lead to new strategies for anticancer drug discovery. Recent literature on normal and tumour stem cells is reviewed and placed in the context of a discussion on the derivation and properties of tumour cell lines. Early-passage cell lines may model the more rapidly proliferating cells in human tumours and, thus, retain some of the properties of tumour stem cells. The effects of anticancer drugs on cell lines should be considered not only with regards to the induction of apoptosis, but also to the induction of senescence or other pathways that lead to host immune and inflammatory responses.
Successful liver allografts in mice by combination with allogeneic bone marrow transplantation.
Nakamura, T; Good, R A; Yasumizu, R; Inoue, S; Oo, M M; Hamashima, Y; Ikehara, S
1986-01-01
Successful liver allografts were established by combination with allogeneic bone marrow transplantation. When liver tissue of BALB/c (H-2d) or C57BL/6J (H-2b) mice was minced and grafted under the kidney capsules of C3H/HeN (H-2k) mice, it was rejected. However, when C3H/HeN mice were irradiated and reconstituted with T-cell-depleted BALB/c or BALB/c nu/nu bone marrow cells, or with fetal liver cells of BALB/c mice, they accepted both donor (stem-cell)-type (BALB/c) and host (thymus)-type (C3H/HeN) liver tissue. Assays for both mixed-lymphocyte reaction and induction of cytotoxic T lymphocytes revealed that the newly developed T cells were tolerant of both donor (stem-cell)-type and host (thymus)-type major histocompatibility complex determinants. We propose that liver allografts combined with bone marrow transplantation should be considered as a viable therapy for patients with liver disease such as liver cirrhosis and hepatoma. Images PMID:3520575
Induction of pluripotency by defined factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okita, Keisuke, E-mail: okita@cira.kyoto-u.ac.jp; Yamanaka, Shinya; Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507
2010-10-01
Somatic cells can be reprogrammed into pluripotent stem cells by introducing a combination of several transcription factors. The induced pluripotent stem (iPS) cells from a patient's somatic cells could be useful source of cells for drug discovery and cell transplantation therapies. However, most human iPS cells are made by viral vectors, such as retrovirus and lentivirus, which integrate the reprogramming factors into host genomes and may increase the risk of tumor formation. Studies of the mechanisms underlying the reprogramming and establishment of non-integration methods contribute evidence to resolve the safety concerns associated with iPS cells. On the other hand, patient-specificmore » iPS cells have already been established and used for recapitulating disease pathology.« less
Modulation of Ocular Inflammation by Mesenchymal Stem Cells
2017-03-01
mature myeloid cells in 64 host defense and resolution of inflammation, excessive innate immune response can have 65 deleterious effects on tissue...that MSCs can regulate 69 functions of mature innate immune cells , including polarization of inflammatory macrophages 70 into an anti-inflammatory... cells 191 As immune cells are primarily developed in lymphoid organs, single cell suspensions from bone 192 marrow, spleen, and submandibular lymph
Lin, Tai-Chi; Zhu, Danhong; Hinton, David R.; Clegg, Dennis O.; Humayun, Mark S.
2017-01-01
Dysfunction and death of retinal pigment epithelium (RPE) and or photoreceptors can lead to irreversible vision loss. The eye represents an ideal microenvironment for stem cell-based therapy. It is considered an “immune privileged” site, and the number of cells needed for therapy is relatively low for the area of focused vision (macula). Further, surgical placement of stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors) into the vitreous cavity or subretinal space has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted in animal models by various noninvasive approaches and imaging modalities. In vivo experiments conducted in animal models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells, rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety, and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in animal models will be discussed. PMID:28928775
Image Guidance in Stem Cell Therapeutics: Unfolding the Blindfold.
Bukhari, Amirali B; Dutta, Shruti; De, Abhijit
2015-01-01
Stem cell therapeutics is the future of regenerative medicine in the modern world. Many studies have been instigated with the hope of translating the outcome for the treatment of several disease conditions ranging from heart and neuronal disease to malignancies as grave as cancers. Stem cell therapeutics undoubtedly holds great promise on the front of regenerative medicine, however, the correct distribution and homing of these stem cells to the host site remained blinded until the recent advances in the discipline of molecular imaging. Herein, we discuss the various imaging guidance applied for determination of the proper delivery of various types of stem cell used as therapeutics for various maladies. Additionally, we scrutinize the use of several indirect labeling mechanisms for efficient tagging of the reporter entity for image guidance. Further, the promise of improving patient healthcare has led to the initiation of several clinical trials worldwide. However, in number of the cases, the benefits arrive with a price heavy enough to pose a serious health risk, one such being formation of teratomas. Thus numerous challenges and methodological obstacles must be overcome before their eloquent clinical impact can be realized. Therefore, we also discuss several clinical trials that have taken into consideration the various imaging guided protocols to monitor correct delivery and understand the distribution of therapeutic stem cells in real time.
Lim, Ji-Young; Ryu, Da-Bin; Lee, Sung-Eun; Park, Gyeongsin; Choi, Eun Young; Min, Chang-Ki
2015-11-01
Despite the presence of toll like receptor (TLR) expression in conventional TCRαβ T cells, the direct role of TLR signaling via myeloid differentiation factor 88 (MyD88) within T lymphocytes on graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT) remains unknown. In the allo-SCT model of C57BL/6 (H-2(b)) → B6D2F1 (H-2(b/d)), recipients received transplants of wild type (WT) T-cell-depleted (TCD) bone marrow (BM) and splenic T cells from either WT or MyD88 deficient (MyD88KO) donors. Host-type (H-2(d)) P815 mastocytoma or L1210 leukemia cells were injected either subcutaneously or intravenously to generate a GVHD/GVL model. Allogeneic recipients of MyD88KO T cells demonstrated a greater tumor growth without attenuation of GVHD severity. Moreover, GVHD-induced GVL effect, caused by increasing the conditioning intensity was also not observed in the recipients of MyD88KO T cells. In vitro, the absence of MyD88 in T cells resulted in defective cytolytic activity to tumor targets with reduced ability to produce IFN-γ or granzyme B, which are known to critical for the GVL effect. However, donor T cell expansion with effector and memory T-cell differentiation were more enhanced in GVHD hosts of MyD88KO T cells. Recipients of MyD88KO T cells experienced greater expansion of Foxp3- and IL4-expressing T cells with reduced INF-γ producing T cells in the spleen and tumor-draining lymph nodes early after transplantation. Taken together, these results highlight a differential role for MyD88 deficiency on donor T-cells, with decreased GVL effect without attenuation of the GVHD severity after experimental allo-SCT.
Current-Controlled Electrical Point-Source Stimulation of Embryonic Stem Cells
Chen, Michael Q.; Xie, Xiaoyan; Wilson, Kitchener D.; Sun, Ning; Wu, Joseph C.; Giovangrandi, Laurent; Kovacs, Gregory T. A.
2010-01-01
Stem cell therapy is emerging as a promising clinical approach for myocardial repair. However, the interactions between the graft and host, resulting in inconsistent levels of integration, remain largely unknown. In particular, the influence of electrical activity of the surrounding host tissue on graft differentiation and integration is poorly understood. In order to study this influence under controlled conditions, an in vitro system was developed. Electrical pacing of differentiating murine embryonic stem (ES) cells was performed at physiologically relevant levels through direct contact with microelectrodes, simulating the local activation resulting from contact with surrounding electroactive tissue. Cells stimulated with a charged balanced voltage-controlled current source for up to 4 days were analyzed for cardiac and ES cell gene expression using real-time PCR, immunofluorescent imaging, and genome microarray analysis. Results varied between ES cells from three progressive differentiation stages and stimulation amplitudes (nine conditions), indicating a high sensitivity to electrical pacing. Conditions that maximally encouraged cardiomyocyte differentiation were found with Day 7 EBs stimulated at 30 µA. The resulting gene expression included a sixfold increase in troponin-T and a twofold increase in β-MHCwithout increasing ES cell proliferation marker Nanog. Subsequent genome microarray analysis revealed broad transcriptome changes after pacing. Concurrent to upregulation of mature gene programs including cardiovascular, neurological, and musculoskeletal systems is the apparent downregulation of important self-renewal and pluripotency genes. Overall, a robust system capable of long-term stimulation of ES cells is demonstrated, and specific conditions are outlined that most encourage cardiomyocyte differentiation. PMID:20652088
In utero hematopoietic stem cell transfer: current status and future strategies.
Surbek, D V; Gratwohl, A; Holzgreve, W
1999-07-01
Successful prenatal treatment of severe immunodeficiencies by allogeneic hematopoietic stem cell transplantation in utero has been reported. Though other diseases like hemoglobinopathies or storage diseases are potentially amenable to this novel therapeutic approach, no success has yet been achieved in recipients without severe immunodeficiency. Graft rejection by the developing fetus and/or lack of selective, competitive advantage of donor versus host stem cells preventing stable engraftment seem to be the major obstacles. Several strategies to overcome these hurdles are being explored in preclinical settings, including timing and repeated dosing of stem cell administration to the fetus, ex vivo modification of the transplant, using different fetal compartments as targets for early stem cell transfer, or inducing microchimerism for postnatal transplantation from the same donor. In addition, the exact definition of the basic concept of early fetal immunologic naivete and the understanding of the molecular basics of migration and homing in fetal hematopoiesis system seem mandatory for a successful approach. Gene therapy using ex vivo transduced autologous cord blood cells or direct gene targeting in utero are other potential means to correct hematopoietic and immunologic single gene disorders in utero, though this approach is still away from the stage of clinical trials.
Alpern, Jonathan D; Arbefeville, Sophie S; Vercellotti, Gregory; Ferrieri, Patricia; Green, Jaime S
2017-02-01
Strongyloides stercoralis has the potential to cause accelerated autoinfection in immunocompromised hosts. Screening tests for strongyloidiasis may be falsely negative in the setting of immunosuppression. We report a case of Strongyloides hyperinfection syndrome in a patient with human T-lymphotropic virus type 1-associated T-cell leukemia early after hematopoietic stem cell transplant. The diagnosis was made by stool ova and parasite examination, despite a negative screening enzyme-linked immunosorbent assay. Because of anticipated prolonged neutropenia, an extended course of treatment was utilized. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
SPECT Imaging for in vivo tracking of NIS containing stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Zhenghong
2013-04-02
The proposed study contains two groups of imaging experiments: 1) human mesenchymal stem cells supporting in vivo survival of unrelated donor hematopoietic stem cells; 2) gene transduction and selection of mutant MGMT genes on human hematopoietic stem cells conferring resistance to BC+BCNU. There is increasing evidence that adult human tissues harbor stem and progenitor cells that can be used for therapeutic purposes. We had focused on the Mesenchymal Stem Cells (MSCs) found in human bone marrow and investigated these cells in the context of autologous and allogeneic hematopoietic stem cell transplantation to a) facilitate rapid hematopoietic engraftment in cancer patientsmore » receiving high dose chemotherapy and b) to modulate the graft-versus-host disease (GVHD). We have demonstrated that culture-expanded autologous and allogeneic MSCs can be safely infused into humans and the preliminary results showed that MSCs facilitate hematopoietic engraftment and reduce GVHD. On the other hand, studies of gene transfer with drug resistant selection suggest major perturbations to the process of hematopoietic reconstitution and the confounding issue of organ toxicity and recovery that takes place in the host. We have found that limiting numbers of hematopoietic stem cells transduced with MGMT repopulate the bone marrow of primary and secondary recipient mice. We are also particularly interested in the dynamics of engraftment and selection in regions of bones, liver, spleen and lung, where we have previously seen marked evidence of engraftment. All the measurements have required animal sacrifice and single point determinations of engraftment in individual and cohorts of mice. Heretofore it has not been possible to study the dynamics of engraftment and enrichment. In the upcoming application, we propose to develop an imaging method to track intravenously infused stem cells in vivo at preset time points to understand their homing and proliferation. Specifically, we propose to use Na+/I- symporter (NIS) gene as a reporter gene (imagene) for non-invasive imaging of infused stem cells distribution and persistence in vivo on small animal models. NIS is an intrinsic membrane glycoprotein that mediates active iodide (I-) uptake into normal thyroid follicular cells and other cells. The advantages of using NIS for non-invasive and repeated scintigraphic imaging in this application are: a) NIS is not a foreign gene and thus eliminate the immunoresponse problem; b) radiotracer or substrate for NIS is simply radioiodide (I-125, I- 123, I-124, and I-124) or [Tc-99m]-pertechnetate, no radiosynthesis is needed. It has been shown that NIS gene transfer can induce radioactive iodide uptake in a variety of cells and that xenografts expressing exogenous NIS could be imaged by non-invasive scintigraphic imaging. The specific aims are: 1.Determine the feasibility, stability and physiological effects of human NIS gene expression on human HSCs and MSCs in vitro. 2.Determine the engraftment of human HSC and MSC co-infused in NOD-SCID mice. 3.Transduce both a drug resistance gene and an imagene into bone marrow stem cells, and follow the dynamics of engraftment after selection in real time.« less
Tan, Xiaobing; Dai, Qingli; Guo, Tao; Xu, Jingshu; Dai, Qingyuan
2018-01-22
Advance in stem cell research resulted in several processes to generate induced pluripotent stem cells (iPSCs) from adult somatic cells. In our previous study, the reprogramming of iPSCs from human dental mesenchymal stem cells (MSCs) including SCAP and DPSCs, has been reported. Herein, safe iPSCs were reprogrammed from SCAP and DPSCs using non-integrating RNA virus vector, which is an RNA virus carrying no risk of altering host genome. DPSCs- and SCAP-derived iPSCs exhibited the characteristics of the classical morphology with human embryonic stem cells (hESCs) without integration of foreign genes, indicating the potential of their clinical application. Moreover, induced PSCs showed the capacity of self-renewal and differentiation into cardiac myocytes. We have achieved the differentiation of hiPSCs to cardiomyocytes lineage under serum and feeder-free conditions, using a chemically defined medium CDM3. In CDM3, hiPSCs differentiation is highly generating cardiomyocytes. The results showed this protocol produced contractile sheets of up to 97.2% TNNT2 cardiomyocytes after purification. Furthermore, derived hiPSCs differentiated to mature cells of the three embryonic germ layers in vivo and in vitro of beating cardiomyocytes. The above whole protocol enables the generation of large scale of highly pure cardiomyocytes as needed for cellular therapy. Copyright © 2017. Published by Elsevier Inc.
Kim, Byung-Chul; Jun, Sung-Min; Kim, So Yeon; Kwon, Yong-Dae; Choe, Sung Chul; Kim, Eun-Chul; Lee, Jae-Hyung; Kim, Jinseok; Suh, Jun-Kyo Francis; Hwang, Yu-Shik
2017-04-01
The in vitro generation of cell-based three dimensional (3D) nerve tissue is an attractive subject to improve graft survival and integration into host tissue for neural tissue regeneration or to model biological events in stem cell differentiation. Although 3D organotypic culture strategies are well established for 3D nerve tissue formation of pluripotent stem cells to study underlying biology in nerve development, cell-based nerve tissues have not been developed using human postnatal stem cells with therapeutic potential. Here, we established a culture strategy for the generation of in vitro cell-based 3D nerve tissue from postnatal stem cells from apical papilla (SCAPs) of teeth, which originate from neural crest-derived ectomesenchyme cells. A stem cell population capable of differentiating into neural cell lineages was generated during the ex vivo expansion of SCAPs in the presence of EGF and bFGF, and SCAPs differentiated into neural cells, showing neural cell lineage-related molecular and gene expression profiles, morphological changes and electrophysical property under neural-inductive culture conditions. Moreover, we showed the first evidence that 3D cell-based nerve-like tissue with axons and myelin structures could be generated from SCAPs via 3D organotypic culture using an integrated bioprocess composed of polyethylene glycol (PEG) microwell-mediated cell spheroid formation and subsequent dynamic culture in a high aspect ratio vessel (HARV) bioreactor. In conclusion, the culture strategy in our study provides a novel approach to develop in vitro engineered nerve tissue using SCAPs and a foundation to study biological events in the neural differentiation of postnatal stem cells. Biotechnol. Bioeng. 2017;114: 903-914. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Endochondral ossification is required for haematopoietic stem-cell niche formation.
Chan, Charles K F; Chen, Ching-Cheng; Luppen, Cynthia A; Kim, Jae-Beom; DeBoer, Anthony T; Wei, Kevin; Helms, Jill A; Kuo, Calvin J; Kraft, Daniel L; Weissman, Irving L
2009-01-22
Little is known about the formation of niches, local micro-environments required for stem-cell maintenance. Here we develop an in vivo assay for adult haematopoietic stem-cell (HSC) niche formation. With this assay, we identified a population of progenitor cells with surface markers CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1.1(-) (CD105(+)Thy1(-)) that, when sorted from 15.5 days post-coitum fetal bones and transplanted under the adult mouse kidney capsule, could recruit host-derived blood vessels, produce donor-derived ectopic bones through a cartilage intermediate and generate a marrow cavity populated by host-derived long-term reconstituting HSC (LT-HSC). In contrast, CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1(+) (CD105(+)Thy1(+)) fetal bone progenitors form bone that does not contain a marrow cavity. Suppressing expression of factors involved in endochondral ossification, such as osterix and vascular endothelial growth factor (VEGF), inhibited niche generation. CD105(+)Thy1(-) progenitor populations derived from regions of the fetal mandible or calvaria that do not undergo endochondral ossification formed only bone without marrow in our assay. Collectively, our data implicate endochondral ossification, bone formation that proceeds through a cartilage intermediate, as a requirement for adult HSC niche formation.
Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacIsaac, Zoe Marie, E-mail: zmm4a@virgina.edu; Shang, Hulan, E-mail: shanghulan@gmail.com; Agrawal, Hitesh, E-mail: hiteshdos@hotmail.com
2012-02-15
After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time,more » ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: Black-Right-Pointing-Pointer Adipose stem cells promise novel clinical therapies. Black-Right-Pointing-Pointer Before clinical translation, safety profiles must be further elucidated. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells do not form tumors. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells undergo complete removal by one year.« less
Infectious Complications after Umbilical Cord-Blood Transplantation from Unrelated Donors
Montoro, Juan; Piñana, José Luis; Moscardó, Federico; Sanz, Jaime
2016-01-01
Umbilical cord-blood (UCB) is a well-recognized alternative source of stem cells for unrelated donor hematopoietic stem cell transplantation (HSCT). As compared with other stem cell sources from adult donors, it has the advantages of immediate availability of cells, absence of risk to the donor and reduced risk of graft-versus-host disease despite donor-recipient HLA disparity. However, the use of UCB is limited by the delayed post-transplant hematologic recovery due, at least in part, to the reduced number of hematopoietic cells in the graft and the delayed or incomplete immune reconstitution. As a result, severe infectious complications continue to be a leading cause of morbidity and mortality following UCB transplantation (UCBT). We will address the complex differences in the immune properties of UCB and review the incidence, characteristics, risk factors, and severity of bacterial, fungal and viral infectious complications in patients undergoing UCBT. PMID:27872731
Simonetta, Federico; Masouridi-Levrat, Stavroula; Beauverd, Yan; Tsopra, Olga; Tirefort, Yordanka; Koutsi, Aikaterini; Stephan, Caroline; Polchlopek-Blasiak, Karolina; Pradier, Amandine; Dantin, Carole; Ansari, Marc; Roosnek, Eddy; Chalandon, Yves
2018-03-01
Graft-versus-host disease (GvHD)-free, relapse-free survival (GRFS) is a recently reported composite endpoint that allows to simultaneously estimate risk of death, relapse and GvHD after allogeneic hematopoietic stem cell transplantation (HSCT). In this retrospective study comprising 333 patients transplanted for hematologic malignancies, we compared GRFS in patients receiving partial T-cell-depleted (pTCD) grafts with patients receiving T-cell-replete grafts (No-TCD). pTCD was associated with a significantly improved GRFS. The beneficial effect of pTCD on GRFS remained highly significant in multivariable analysis taking into account clinical factors differing between patient groups. We observed no effect of pTCD on overall survival, progression-free survival, and relapse cumulative incidence, while non-relapse mortality cumulative incidence was significantly lower in patients receiving pTCD. The results of our retrospective analysis suggest that pTCD could improve GRFS in allogeneic HSCT recipients without significantly affecting OS and PFS, thus improving patients' quality of life without impairing the curative potential of allogeneic HSCT.
Piao, Yulan; Hung, Sandy Shen-Chi; Lim, Shiang Y; Wong, Raymond Ching-Bong; Ko, Minoru S H
2014-07-01
Keratinocytes represent an easily accessible cell source for derivation of human induced pluripotent stem (hiPS) cells, reportedly achieving higher reprogramming efficiency than fibroblasts. However, most studies utilized a retroviral or lentiviral method for reprogramming of keratinocytes, which introduces undesirable transgene integrations into the host genome. Moreover, current protocols of generating integration-free hiPS cells from keratinocytes are mostly inefficient. In this paper, we describe a more efficient, simple-to-use, and cost-effective method for generating integration-free hiPS cells from keratinocytes. Our improved method using lipid-mediated transfection achieved a reprogramming efficiency of ∼0.14% on average. Keratinocyte-derived hiPS cells showed no integration of episomal vectors, expressed stem cell-specific markers and possessed potentials to differentiate into all three germ layers by in vitro embryoid body formation as well as in vivo teratoma formation. To our knowledge, this represents the most efficient method to generate integration-free hiPS cells from keratinocytes. ©AlphaMed Press.
Interordinal chimera formation between medaka and zebrafish for analyzing stem cell differentiation.
Hong, Ni; Chen, Songlin; Ge, Ruowen; Song, Jianxing; Yi, Meisheng; Hong, Yunhan
2012-08-10
Chimera formation is a standard test for pluripotency of stem cells in vivo. Interspecific chimera formation between distantly related organisms offers also an attractive approach for propagating endangered species. Parameters influencing interspecies chimera formation have remained poorly elucidated. Here, we report interordinal chimera formation between medaka and zebrafish, which separated ∼320 million years ago and exhibit a more than 2-fold difference in developmental speed. We show that, on transplantation into zebrafish blastulae, both noncultivated blastomeres and long-term cultivated embryonic stem (ES) cells of medaka adopted the zebrafish developmental program and differentiated into physiologically functional cell types including pigment cells, blood cells, and cardiomyocytes. We also show that medaka ES cells express differentiation gene markers during chimeric embryogenesis. Therefore, the evolutionary distance and different embryogenesis speeds do not produce donor-host incompatibility to compromise chimera formation between medaka and zebrafish, and molecular markers are valuable for analyzing lineage commitment and cell differentiation in interspecific chimeric embryos.
Interordinal Chimera Formation Between Medaka and Zebrafish for Analyzing Stem Cell Differentiation
Hong, Ni; Chen, Songlin; Ge, Ruowen; Song, Jianxing
2012-01-01
Chimera formation is a standard test for pluripotency of stem cells in vivo. Interspecific chimera formation between distantly related organisms offers also an attractive approach for propagating endangered species. Parameters influencing interspecies chimera formation have remained poorly elucidated. Here, we report interordinal chimera formation between medaka and zebrafish, which separated ∼320 million years ago and exhibit a more than 2-fold difference in developmental speed. We show that, on transplantation into zebrafish blastulae, both noncultivated blastomeres and long-term cultivated embryonic stem (ES) cells of medaka adopted the zebrafish developmental program and differentiated into physiologically functional cell types including pigment cells, blood cells, and cardiomyocytes. We also show that medaka ES cells express differentiation gene markers during chimeric embryogenesis. Therefore, the evolutionary distance and different embryogenesis speeds do not produce donor-host incompatibility to compromise chimera formation between medaka and zebrafish, and molecular markers are valuable for analyzing lineage commitment and cell differentiation in interspecific chimeric embryos. PMID:22204449
Lindemann, Monika; Ottinger, Hellmut D; Elmaagacli, Ahmet H; Trenschel, Rudolf; Rebmann, Vera; Beelen, Dietrich W; Grosse-Wilde, Hans
2006-12-01
In the hematopoietic stem cell transplantation setting, granulocyte colony-stimulating factor (G-CSF) administration can reduce donor cell reactivity in vitro, but the clinical significance of this phenomenon was only sparsely defined. We performed lymphocyte transformation tests in 28 related stem cell donors pre and 5 days post G-CSF treatment, respectively, and correlated proliferative responses of donor peripheral blood mononuclear cells with clinical parameters in the corresponding recipients. In vitro reactions towards 4 mitogens and 12 recall antigens at day 5 post G-CSF administration were predictive for the occurrence of chronic graft-vs-host disease (cGVHD). Here, proliferative responses towards the mitogen anti-CD3 monoclonal antibody (OKT3) above median were most informative; this threshold could be determined by discrimination and receiver operating curve (ROC) analyses. In the whole cohort (18 human leukocyte antigen [HLA]-identical and 10 partially mismatched donor-recipient pairs), OKT3 responses predicted cGVHD with an odds ratio of 33.0, a sensitivity of 79%, and a specificity of 90%. A subgroup analysis of HLA-identical pairs even yielded an odds ratio of 85.0. Furthermore, bivariate analysis defined HLA compatibility and responses towards OKT3 as independent risk factors for cGVHD (p = 0.02 and p = 0.0007, respectively). The proliferative capacity of G-CSF-mobilized donor cells appears as a graft factor that determines the future incidence of cGVHD in the corresponding recipient.
Buteler, Micaela; Peterson, Robert K D; Hofland, Megan L; Weaver, David K
2015-12-01
This study investigated the dynamics of parasitism, host plant resistance, pathogens, and predation on the demography of wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), developing in susceptible (hollow stem) and resistant (solid stem) wheat hosts. This study is also the first to investigate the prevalence and impact of cannibalism on wheat stem sawfly mortality. Wheat stem sawflies were sampled in two commercial wheat fields over 4 yr from the egg stage through adult emergence, and multiple decrement life tables were constructed and analyzed. Cannibalism, host plant resistance, or unknown factors were the most prevalent factors causing egg mortality. Summer mortality of prediapause larvae ranged from 28 to 84%, mainly due to parasitism by Bracon cephi (Gahan) and Bracon lissogaster Muesebeck, cannibalism, and host plant resistance. Winter mortality ranged from 6 to 54% of the overwintering larvae, mainly due to unknown factors or pathogens. Cannibalism is a major cause of irreplaceable mortality because it is absolute, with only a single survivor in every multiple infested stem. Subsequent to obligate cannibalism, mortality of feeding larvae due to host plant resistance was lower in hollow stem wheat than in solid stem wheat. Mortality from host plant resistance was largely irreplaceable. Irreplaceable mortality due to parasitoids was greater in hollow stem wheat than in solid stem wheat. Host plant resistance due to stem solidness and parasitism in hollow stems cause substantial mortality in populations of actively feeding larvae responsible for all crop losses. Therefore, enhancing these mortality factors is vital to effective integrated pest management of wheat stem sawfly. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
GVHD (Graft-Versus-Host Disease): A Guide for Patients and Families After Stem Cell Transplant
... the first 100 days after your transplant or infusion of T-cells (in a donor lymphocyte infusion, or DLI). Acute GVHD commonly affects your skin, ... mouth or put on your skin or an infusion through a vascular access device. Also, treatment may ...
Human organoid cultures: transformative new tools for human virus studies.
Ramani, Sasirekha; Crawford, Sue E; Blutt, Sarah E; Estes, Mary K
2018-04-01
Studies of human infectious diseases have been limited by the paucity of functional models that mimic normal human physiology and pathophysiology. Recent advances in the development of multicellular, physiologically active organotypic cultures produced from embryonic and pluripotent stem cells, as well as from stem cells isolated from biopsies and surgical specimens are allowing unprecedented new studies and discoveries about host-microbe interactions. Here, we summarize recent developments in the use of organoids for studying human viral pathogens, including intestinal infections with human rotavirus, norovirus, enteroviruses and adenoviruses (intestinal organoids and enteroids), neuronal infections with Zika virus (cerebral organoids) and respiratory infections with respiratory syncytial virus in (lung bud organoids). Biologic discovery of host-specific genetic and epigenetic factors affecting infection, and responses to infection that lead to disease are possible with the use of organoid cultures. Continued development to increase the complexity of these cultures by including components of the normal host tissue microenvironment such as immune cells, blood vessels and microbiome, will facilitate studies on human viral pathogenesis, and advance the development of platforms for pre-clinical evaluation of vaccines, antivirals and therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.
Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy.
Wei, Zheng Z; Zhu, Yan-Bing; Zhang, James Y; McCrary, Myles R; Wang, Song; Zhang, Yong-Bo; Yu, Shan-Ping; Wei, Ling
2017-10-05
Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: "stem cells," "hypoxic preconditioning," "ischemic preconditioning," and "cell transplantation." Original articles and critical reviews on the topics were selected. Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.
Concise review: Insights from normal bone remodeling and stem cell-based therapies for bone repair.
Khosla, Sundeep; Westendorf, Jennifer J; Mödder, Ulrike I
2010-12-01
There is growing interest in the use of mesenchymal stem cells for bone repair. As a major reason for normal bone remodeling is the removal of fatigue microcracks, advances in our understanding of this process may inform approaches to enhance fracture healing. Increasing evidence now indicates that physiological bone remodeling occurs in close proximity to blood vessels and that these vessels carry perivascular stem cells that differentiate into osteoblasts. Similarly, fracture healing is critically dependent on the ingrowth of blood vessels not only for a nutrient supply but also for the influx of osteoblasts. A number of animal and human studies have now shown the potential benefit of bone marrow-derived mesenchymal stem cells in enhancing bone repair. However, as in other tissues, the question of whether these cells improve fracture healing directly by differentiating into osteoblasts or indirectly by secreting paracrine factors that recruit blood vessels and the accompanying perivascular stem cells remains a major unresolved issue. Moreover, CD34+ cells, which are enriched for endothelial/hematopoietic cells, have also shown efficacy in various bone repair models, at least in part due to the induction of angiogenesis and recruitment of host progenitor cells. Thus, mesenchymal and nonmesenchymal stem/progenitor cells are attractive options for bone repair. It is possible that they contribute directly to bone repair, but it is also likely that they express paracrine factors in the appropriate amounts and combinations that promote and sustain the healing process.
Cytomegalovirus shapes long-term immune reconstitution after allogeneic stem cell transplantation
Itzykson, Raphael; Robin, Marie; Moins-Teisserenc, Helene; Delord, Marc; Busson, Marc; Xhaard, Aliénor; de Fontebrune, Flore Sicre; de Latour, Régis Peffault; Toubert, Antoine; Socié, Gérard
2015-01-01
Immune reconstitution after allogeneic stem cell transplantation is a dynamic and complex process depending on the recipient and donor characteristics, on the modalities of transplantation, and on the occurrence of graft-versus-host disease. Multivariate methods widely used for gene expression profiling can simultaneously analyze the patterns of a great number of biological variables on a heterogeneous set of patients. Here we use these methods on flow cytometry assessment of up to 25 lymphocyte populations to analyze the global pattern of long-term immune reconstitution after transplantation. Immune patterns were most distinct from healthy controls at six months, and had not yet fully recovered as long as two years after transplant. The two principal determinants of variability were linked to the balance of B and CD8+ T cells and of natural killer and B cells, respectively. Recipient’s cytomegalovirus serostatus, cytomegalovirus replication, and chronic graft-versus-host disease were the main factors shaping the immune pattern one year after transplant. We identified a complex signature of under- and over-representation of immune populations dictated by recipient’s cytomegalovirus seropositivity. Finally, we identified dimensions of variance in immune patterns as significant predictors of long-term non-relapse mortality, independently of chronic graft-versus-host disease. PMID:25261095
Bacterial-modulated host immunity and stem cell activation for gut homeostasis.
Lee, Won-Jae
2009-10-01
Although it is widely accepted that dynamic cross-talk between gut epithelia and microorganisms must occur to achieve gut homeostasis, the critical mechanisms by which gut-microbe interactions are regulated remain uncertain. In this issue of Genes & Development, Buchon and colleagues (pp. 2333-2344) revealed that the reaction of the gut to microorganisms is not restricted to activating immune systems, but extends to integrated responses essential for gut tissue homeostasis, including self-renewal and the differentiation of stem cells. Further investigation of the connection between immune response and stem cell regulation at the molecular level in the microbe-laden mucosal epithelia will accelerate our understanding of the regulatory mechanisms of gut homeostasis and of the pathogenesis of diseases such as chronic inflammatory diseases and colorectal cancers.
Zhang, Jifeng; Barefoot, Brice E.; Mo, Wenjian; Deoliveira, Divino; Son, Jessica; Cui, Xiuyu; Ramsburg, Elizabeth
2012-01-01
A major challenge in allogeneic hematopoietic cell transplantation is how to transfer T-cell immunity without causing graft-versus-host disease (GVHD). Effector memory T cells (CD62L−) are a cell subset that can potentially address this challenge because they do not induce GVHD. Here, we investigated how CD62L− T cells contributed to phenotypic and functional T-cell reconstitution after transplantation. On transfer into allogeneic recipients, CD62L− T cells were activated and expressed multiple cytokines and cytotoxic molecules. CD62L− T cells were able to deplete host radioresistant T cells and facilitate hematopoietic engraftment, resulting in enhanced de novo T-cell regeneration. Enhanced functional immune reconstitution was demonstrated in CD62L− T-cell recipients using a tumor and an influenza virus challenge model. Even though CD62L− T cells are able to respond to alloantigens and deplete host radioresistant immune cells in GVHD recipients, alloreactive CD62L− T cells lost the reactivity over time and were eventually tolerant to alloantigens as a result of prolonged antigen exposure, suggesting a mechanism by which CD62L− T cells were able to eliminate host resistance without causing GVHD. These data further highlight the unique characteristics of CD62L− T cells and their potential applications in clinical hematopoietic cell transplantation. PMID:22596261
Zheng, Huilin; Zou, Weibin; Shen, Jiaying; Xu, Liang; Wang, Shu; Fu, Yang-Xin; Fan, Weimin
2016-09-01
: Mesenchymal stem cells (MSCs) usually promote tumor growth and metastasis. By using a breast tumor 4T1 cell-based animal model, this study determined that coinjection and distant injection of allogeneic bone marrow-derived MSCs with tumor cells could exert different effects on tumor growth. Whereas the coinjection of MSCs with 4T1 cells promoted tumor growth, surprisingly, the injection of MSCs at a site distant from the 4T1 cell inoculation site suppressed tumor growth. We further observed that, in the distant injection model, MSCs decreased the accumulation of myeloid-derived suppressor cells and regulatory T cells in tumor tissues by enhancing proinflammatory factors such as interferon-γ, tumor necrosis factor-α, Toll-like receptor (TLR)-3, and TLR-4, promoting host antitumor immunity and inhibiting tumor growth. Unlike previous reports, this is the first study reporting that MSCs may exert opposite roles on tumor growth in the same animal model by modulating the host immune system, which may shed light on the potential application of MSCs as vehicles for tumor therapy and other clinical applications. Mesenchymal stem cells (MSCs) have been widely investigated for their potential roles in tissue engineering, autoimmune diseases, and tumor therapeutics. This study explored the impact of coinjection and distant injection of allogeneic bone marrow-derived MSCs on mouse 4T1 breast cancer cells. The results showed that the coinjection of MSCs and 4T1 cells promoted tumor growth. MSCs might act as the tumor stromal precursors and cause immunosuppression to protect tumor cells from immunosurveillance, which subsequently facilitated tumor metastasis. Interestingly, the distant injection of MSCs and 4T1 cells suppressed tumor growth. Together, the results of this study revealed the dual functions of MSCs in immunoregulation. ©AlphaMed Press.
Lopes da Silva, R; Ferreira, I; Teixeira, G; Cordeiro, D; Mafra, M; Costa, I; Bravo Marques, J M; Abecasis, M
2011-04-01
BK virus (BKV) infection occurs most often in immunocompromised hosts, in the setting of renal or bone marrow transplantation. Hemorrhagic cystitis is the commonest manifestation but in recent years infections in other organ systems have been reported. We report an unusual case of biopsy-proven BKV encephalitis in a hematopoietic stem cell transplant patient who subsequently developed thrombotic microangiopathy. As far as we know, this is the first report of such an association in a transplant patient. © 2010 John Wiley & Sons A/S.
Bruin, Jennifer E; Rezania, Alireza; Xu, Jean; Narayan, Kavitha; Fox, Jessica K; O'Neil, John J; Kieffer, Timothy J
2013-09-01
Islet transplantation is a promising cell therapy for patients with diabetes, but it is currently limited by the reliance upon cadaveric donor tissue. We previously demonstrated that human embryonic stem cell (hESC)-derived pancreatic progenitor cells matured under the kidney capsule in a mouse model of diabetes into glucose-responsive insulin-secreting cells capable of reversing diabetes. However, the formation of cells resembling bone and cartilage was a major limitation of that study. Therefore, we developed an improved differentiation protocol that aimed to prevent the formation of off-target mesoderm tissue following transplantation. We also examined how variation within the complex host environment influenced the development of pancreatic progenitors in vivo. The hESCs were differentiated for 14 days into pancreatic progenitor cells and transplanted either under the kidney capsule or within Theracyte (TheraCyte, Laguna Hills, CA, USA) devices into diabetic mice. Our revised differentiation protocol successfully eliminated the formation of non-endodermal cell populations in 99% of transplanted mice and generated grafts containing >80% endocrine cells. Progenitor cells developed efficiently into pancreatic endocrine tissue within macroencapsulation devices, despite lacking direct contact with the host environment, and reversed diabetes within 3 months. The preparation of cell aggregates pre-transplant was critical for the formation of insulin-producing cells in vivo and endocrine cell development was accelerated within a diabetic host environment compared with healthy mice. Neither insulin nor exendin-4 therapy post-transplant affected the maturation of macroencapsulated cells. Efficient differentiation of hESC-derived pancreatic endocrine cells can occur in a macroencapsulation device, yielding glucose-responsive insulin-producing cells capable of reversing diabetes.
Pearl-Yafe, Michal; Yolcu, Esma S; Stein, Jerry; Kaplan, Ofer; Shirwan, Haval; Yaniv, Isaac; Askenasy, Nadir
2007-10-01
The interaction between the Fas receptor and its cognate ligand (FasL) has been implicated in the mutual suppression of donor and host hematopoietic cells after transplantation. Following the observation of deficient early engraftment of Fas and FasL-defective donor cells and recipients, we determined the role of the Fas-FasL interaction. Donor cells were recovered after syngeneic (CD45.1-->CD45.2) transplants from various organs and assessed for expression of Fas/FasL in reference to lineage markers, carboxyfluorescein succinimidyl ester dilution, Sca-1 and c-kit expression. Naïve and bone marrow-homed cells were challenged for apoptosis ex vivo. The Fas receptor and ligand were markedly upregulated to 40% to 60% (p < 0.001 vs 5-10% in naïve cells) within 2 days after syngeneic transplantation, while residual host cells displayed modest and delayed upregulation of these molecules ( approximately 10%). All lin(-)Sca(+)c-kit(+) cells were Fas(+)FasL(+), including 95% of Sca-1(+) and 30% of c-kit(+) cells. Fas and FasL expression varied in donor cells that homed to bone marrow, spleen, liver and lung, and was induced by interaction with the stroma, irradiation, cell cycling, and differentiation. Bone marrow-homed donor cells challenged with supralethal doses of FasL were insensitive to apoptosis (3.2% +/- 1% vs 38% +/- 5% in naïve bone marrow cells), and engraftment was not affected by pretransplantation exposure of donor cells to an apoptotic challenge with FasL. There was no evidence of Fas-mediated suppression of donor and host cell activity after transplantation. Resistance to Fas-mediated apoptosis evolves as a functional characteristic of hematopoietic reconstituting stem and progenitor cells, providing them competitive engraftment advantage over committed progenitors.
Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira
2016-01-01
Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.
Kolb, Hans-Jochem; Guenther, Wolfgang; Gyurkocza, Boglarka; Hoetzl, Florian; Simoes, Belinda; Falk, Christine; Schleuning, Michael; Ledderose, Georg
2003-05-15
Stem-cell transplantation from human leukocyte antigen (HLA)-haploidentical family members carries a high risk of rejection and graft-versus-host disease (GVHD) if donor and recipient differ by more than one HLA antigen. The authors have developed treatment protocols from studies in dog leukocyte antigen-haploidentical dogs that prevent rejection and modify GVHD to the extent that patients with aggressive hematologic neoplasia can be treated with success. Principal improvements have been achieved in the use of cyclophosphamide and total-body irradiation for conditioning and T-cell depletion for prevention of GVHD. More recently, the combination of marrow and CD6-depleted mobilized donor blood cells (MDBC) has been introduced for HLA-haploidentical transplantation on the basis that CD6-depleted MDBC contain immunoregulatory cells besides stem cells and natural killer cells. Clinical results are reported on 36 patients with high-risk hematologic neoplasia. The results encourage the use of HLA-haploidentical stem-cell transplantation at an earlier stage of the disease. This method could also be of use for tolerance induction in organ transplantation.
Immunomodulatory properties of human periodontal ligament stem cells.
Wada, Naohisa; Menicanin, Danijela; Shi, Songtao; Bartold, P Mark; Gronthos, Stan
2009-06-01
Tissue engineering utilizing periodontal ligament stem cells (PDLSCs) has recently been proposed for the development of new periodontal regenerative therapies. Although the use of autologous PDLSC transplantation eliminates the potential of a significant host immune response against the donor cells, it is often difficult to generate enough PDLSCs from one donor source due to the variation of stem cell potential between donors and disease state of each patient. In this study, we examined the immunomodulatory properties of PDLSCs as candidates for new allogeneic stem cell-based therapies. Human PDLSCs displayed cell surface marker characteristics and differentiation potential similar to bone marrow stromal stem cells (BMSSCs) and dental pulp stem cells (DPSCs). PDLSCs, BMSSCs, and DPSCs inhibited peripheral blood mononuclear cell (PBMNC) proliferation stimulated with mitogen or in an allogeneic mixed lymphocyte reaction (MLR). Interestingly, gingival fibroblasts (GFs) also suppressed allogeneic PBMNC proliferation under both assay conditions. PDLSCs, BMSSCs, DPSCs, and GFs exhibited non-cell contact dependent suppression of PBMNC proliferation in co-cultures using transwells. Furthermore, conditioned media (CM) derived from each cell type pretreated with IFN-gamma partially suppressed PBMNC proliferation when compared to CMs without IFN-gamma stimulation. In all of these mesenchymal cell types cultured with activated PBMNCs, the expression of TGF-beta1, hepatocyte growth factor (HGF) and indoleamine 2, 3-dioxygenase (IDO) was upregulated while IDO expression was upregulated following stimulation with IFN-gamma. These results suggest that PDLSCs, BMSSCs, DPSCs, and GFs possess immunosuppressive properties mediated, in part, by soluble factors, produced by activated PBMNCs. J. Cell. Physiol. 219: 667-676, 2009. (c) 2009 Wiley-Liss, Inc.
Radojcic, Vedran; Pletneva, Maria A; Yen, Hung-Rong; Ivcevic, Sanja; Panoskaltsis-Mortari, Angela; Gilliam, Anita C; Drake, Charles G; Blazar, Bruce R; Luznik, Leo
2010-01-15
Donor CD4+ T cells are thought to be essential for inducing delayed host tissue injury in chronic graft-versus-host disease (GVHD). However, the relative contributions of distinct effector CD4+ T cell subpopulations and the molecular pathways influencing their generation are not known. We investigated the role of the STAT3 pathway in a murine model of chronic sclerodermatous GVHD. This pathway integrates multiple signaling events during the differentiation of naive CD4+ T cells and impacts their homeostasis. We report that chimeras receiving an allograft containing STAT3-ablated donor CD4+ T cells do not develop classic clinical and pathological manifestations of alloimmune tissue injury. Analysis of chimeras showed that abrogation of STAT3 signaling reduced the in vivo expansion of donor-derived CD4+ T cells and their accumulation in GVHD target tissues without abolishing antihost alloreactivity. STAT3 ablation did not significantly affect Th1 differentiation while enhancing CD4+CD25+Foxp3+ T cell reconstitution through thymus-dependent and -independent pathways. Transient depletion of CD25+ T cells in chimeras receiving STAT3-deficient T cells resulted in delayed development of alloimmune gut and liver injury. This delayed de novo GVHD was associated with the emergence of donor hematopoietic stem cell-derived Th1 and Th17 cells. These results suggest that STAT3 signaling in graft CD4+ T cells links the alloimmune tissue injury of donor graft T cells and the emergence of donor hematopoietic stem cell-derived pathogenic effector cells and that both populations contribute, albeit in different ways, to the genesis of chronic GVHD after allogenic bone marrow transplantation in a murine model.
Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro.
Massee, Michelle; Chinn, Kathryn; Lei, Jennifer; Lim, Jeremy J; Young, Conan S; Koob, Thomas J
2016-10-01
Human-derived placental tissues have been shown in randomized clinical trials to be effective for healing chronic wounds, and have also demonstrated the ability to recruit stem cells to the wound site in vitro and in vivo. In this study, PURION(®) Processed dehydrated human amnion/chorion membrane allografts (dHACM, EpiFix(®) , MiMedx Group, Marietta, GA) were evaluated for their ability to alter stem cell activity in vitro. Human bone marrow mesenchymal stem cells (BM-MSCs), adipose derived stem cells (ADSCs), and hematopoietic stem cells (HSCs) were treated with soluble extracts of dHACM tissue, and were evaluated for cellular proliferation, migration, and cytokine secretion. Stem cells were analyzed for cell number by DNA assay after 24 h, closure of an acellular zone using microscopy over 3 days, and soluble cytokine production in the medium of treated stem cells was analyzed after 3 days using a multiplex ELISA array. Treatment with soluble extracts of dHACM tissue stimulated BM-MSCs, ADSCs, and HSCs to proliferate with a significant increase in cell number after 24 h. dHACM treatment accelerated closure of an acellular zone by ADSCs and BM-MSCs after 3 days, compared to basal medium. BM-MSCs, ADSCs, and HSCs also modulated endogenous production of a number of various soluble signals, including regulators of inflammation, mitogenesis, and wound healing. dHACM treatment promoted increased proliferation and migration of ADSCs, BM-MSCs, and HSCs, along with modulation of secreted proteins from those cells. Therefore, dHACM may impact wound healing by amplifying host stem cell populations and modulating their responses in treated wound tissues. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1495-1503, 2016. © 2015 The Authors. Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.
Rådestad, E.; Wikell, H.; Engström, M.; Watz, E.; Sundberg, B.; Thunberg, S.; Uzunel, M.; Mattsson, J.; Uhlin, M.
2014-01-01
Allogeneic hematopoietic stem cell transplantation is associated with several complications and risk factors, for example, graft versus host disease (GVHD), viral infections, relapse, and graft rejection. While high levels of CD3+ cells in grafts can contribute to GVHD, they also promote the graft versus leukemia (GVL) effect. Infusions of extra lymphocytes from the original stem cell donor can be used as a treatment after transplantation for relapse or poor immune reconstitution but also they increase the risk for GVHD. In peripheral blood, 95% of T-cells express the αβ T-cell receptor and the remaining T-cells express the γδ T-cell receptor. As αβ T-cells are the primary mediators of GVHD, depleting them from the graft should reduce this risk. In this pilot study, five patients transplanted with HLA-matched related and unrelated donors were treated with αβ T-cell depleted stem cell boosts. The majority of γδ T-cells in the grafts expressed Vδ2 and/or Vγ9. Most patients receiving αβ-depleted stem cell boosts increased their levels of white blood cells, platelets, and/or granulocytes 30 days after infusion. No signs of GVHD or other side effects were detected. A larger pool of patients with longer follow-up time is needed to confirm the data in this study. PMID:25371909
Jacobs, Sandra A; Pinxteren, Jef; Roobrouck, Valerie D; Luyckx, Ariane; van't Hof, Wouter; Deans, Robert; Verfaillie, Catherine M; Waer, Mark; Billiau, An D; Van Gool, Stefaan W
2013-01-01
Multipotent adult progenitor cells (MAPCs) are bone marrow-derived nonhematopoietic stem cells with a broad differentiation potential and extensive expansion capacity. A comparative study between human mesenchymal stem cells (hMSCs) and human MAPCs (hMAPCs) has shown that hMAPCs have clearly distinct phenotypical and functional characteristics from hMSCs. In particular, hMAPCs express lower levels of MHC class I than hMSCs and cannot only differentiate into typical mesenchymal cell types but can also differentiate in vitro and in vivo into functional endothelial cells. The use of hMSCs as cellular immunomodulatory stem cell products gained much interest since their immunomodulatory capacities in vitro became evident over the last decade. Currently, the clinical grade stem cell product of hMAPCs is already used in clinical trials to prevent graft-versus-host disease (GVHD), as well as for the treatment of acute myocardial infarct, ischemic stroke, and Crohn's disease. Therefore, we studied the immune phenotype, immunogenicity, and immunosuppressive effect of hMAPCs in vitro. We demonstrated that hMAPCs are nonimmunogenic for T-cell proliferation and cytokine production. In addition, hMAPCs exert strong immunosuppressive effects on T-cell alloreactivity and on T-cell proliferation induced by mitogens and recall antigens. This immunomodulatory effect was not MHC restricted, which makes off-the-shelf use promising. The immunosuppressive effect of hMAPCs is partially mediated via soluble factors and dependent on indoleamine 2,3-dioxygenase (IDO) activity. At last, we isolated hMAPCs, the clinical grade stem cell product of hMAPCs, named MultiStem, and hMSCs from one single donor and observed that both the immunogenicity and the immunosuppressive capacities of all three stem cell products are comparable in vitro. In conclusion, hMAPCs have potent immunomodulatory properties in vitro and can serve as a valuable cell source for the clinical use of immunomodulatory cellular stem cell product.
In vivo outcomes of tissue-engineered osteochondral grafts.
Bal, B Sonny; Rahaman, Mohamed N; Jayabalan, Prakash; Kuroki, Keiichi; Cockrell, Mary K; Yao, Jian Q; Cook, James L
2010-04-01
Tissue-engineered osteochondral grafts have been synthesized from a variety of materials, with some success at repairing chondral defects in animal models. We hypothesized that in tissue-engineered osteochondral grafts synthesized by bonding mesenchymal stem cell-loaded hydrogels to a porous material, the choice of the porous scaffold would affect graft healing to host bone, and the quality of cell restoration at the hyaline cartilage surface. Bone marrow-derived allogeneic mesenchymal stem cells were suspended in hydrogels that were attached to cylinders of porous tantalum metal, allograft bone, or a bioactive glass. The tissue-engineered osteochondral grafts, thus created were implanted into experimental defects in rabbit knees. Subchondral bone restoration, defect fill, bone ingrowth-implant integration, and articular tissue quality were compared between the three subchondral materials at 6 and 12 weeks. Bioactive glass and porous tantalum were superior to bone allograft in integrating to adjacent host bone, regenerating hyaline-like tissue at the graft surface, and expressing type II collagen in the articular cartilage.
Shimoji, Sonoko; Hashimoto, Daigo; Teshima, Takanori
2017-01-01
Ovarian failure-associated infertility is a serious late complication for female patients who have undergone allogeneic hematopoietic stem cell transplantation (SCT). Although the role of a pretransplant conditioning regimen has been well appreciated, the increasing application of reduced-intensity conditioning has led us to reconsider other factors possibly affecting ovarian function after allogeneic SCT. We recently reported that graft-versus-host disease (GVHD) targets granulosa cells of the ovarian follicles, thereby significantly reducing ovarian reserves and fertility after SCT. We also found that ovarian GVHD impairs fertility independently of the toxicities of the conditioning regimens, and pharmacological GVHD prophylaxis preserves fertility after SCT. For the first time, these results demonstrated that GVHD targets the ovary and impairs ovarian functions and fertility, thereby having important clinical implications in young female transplant recipients with nonmalignant diseases, for whom minimally toxic regimens are used. Here we review recently published articles regarding clinical and basic researches on female infertility after SCT.
Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke.
Peña, Ike dela; Borlongan, Cesar V
2015-12-01
Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis,and produce behavioral and functional improvement through their "bystander effects." Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., co-transplantation of stem cells or adjunct treatment with pharmacological agents and substrates,which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of cotreatment with granulocyte-colony stimulating factor (GCSF)and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here,we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of GCSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells(EPCs), as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing the effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment. Further studies are also required to determine the safety and efficacy of this intervention in both preclinical and clinical stroke studies.
Arango, Marcos; Combariza, Juan F
2017-06-01
Noninfection-related fever can occur after peripheral blood stem cell infusion in haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide. The objective of this study was to analyze the incidence of fever and characterize some clinical features of affected patients. A retrospective case-series study with 40 patients who received haploidentical hematopoietic stem cell transplantation was carried out. Thirty-three patients (82.5%) developed fever; no baseline characteristic was associated with its development. Median time to fever onset was 25.5h (range, 9.5-100h) and median peak temperature was 39.0°C (range, 38.1-40.5°C). Not a single patient developed hemodynamic or respiratory compromise that required admission to the intensive care unit. Fever was not explained by infection in any case. Ninety-one percent of the febrile episodes resolved within 96h of cyclophosphamide administration. No significant difference in overall survival, event-free survival, or graft versus host disease-free/relapse-free survival was found in the group of febrile individuals after peripheral blood stem cell infusion. Fever after peripheral blood stem cell infusion in this clinical setting was common; it usually subsides with cyclophosphamide administration. The development of fever was not associated with an adverse prognosis. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.
Arany, Praveen R.; Cho, Andrew; Hunt, Tristan D.; Sidhu, Gursimran; Shin, Kyungsup; Hahm, Eason; Huang, George X.; Weaver, James; Chen, Aaron Chih-Hao; Padwa, Bonnie L.; Hamblin, Michael R.; Barcellos-Hoff, Mary Helen; Kulkarni, Ashok B.; Mooney, David J.
2014-01-01
Rapid advancements in the field of stem cell biology have led to many current efforts to exploit stem cells as therapeutic agents in regenerative medicine. However, current ex vivo cell manipulations common to most regenerative approaches create a variety of technical and regulatory hurdles to their clinical translation, and even simpler approaches that use exogenous factors to differentiate tissue-resident stem cells carry significant off-target side effects. We show that non-ionizing, low-power laser (LPL) treatment can instead be used as a minimally invasive tool to activate an endogenous latent growth factor complex, transforming growth factor–β1 (TGF-β1), that subsequently differentiates host stem cells to promote tissue regeneration. LPL treatment induced reactive oxygen species (ROS) in a dose-dependent manner, which, in turn, activated latent TGF-β1 (LTGF-β1) via a specific methionine residue (at position 253 on LAP). Laser-activated TGF-β1 was capable of differentiating human dental stem cells in vitro. Further, an in vivo pulp capping model in rat teeth demonstrated significant increase in dentin regeneration after LPL treatment. These in vivo effects were abrogated in TGF-β receptor II (TGF-βRII) conditional knockout (DSPPCreTGF-βRIIfl/fl) mice or when wild-type mice were given a TGF-βRI inhibitor. These findings indicate a pivotal role for TGF-β in mediating LPL-induced dental tissue regeneration. More broadly, this work outlines a mechanistic basis for harnessing resident stem cells with a light-activated endogenous cue for clinical regenerative applications. PMID:24871130
Adult somatic stem cells in the human parasite Schistosoma mansoni.
Collins, James J; Wang, Bo; Lambrus, Bramwell G; Tharp, Marla E; Iyer, Harini; Newmark, Phillip A
2013-02-28
Schistosomiasis is among the most prevalent human parasitic diseases, affecting more than 200 million people worldwide. The aetiological agents of this disease are trematode flatworms (Schistosoma) that live and lay eggs within the vasculature of the host. These eggs lodge in host tissues, causing inflammatory responses that are the primary cause of morbidity. Because these parasites can live and reproduce within human hosts for decades, elucidating the mechanisms that promote their longevity is of fundamental importance. Although adult pluripotent stem cells, called neoblasts, drive long-term homeostatic tissue maintenance in long-lived free-living flatworms (for example, planarians), and neoblast-like cells have been described in some parasitic tapeworms, little is known about whether similar cell types exist in any trematode species. Here we describe a population of neoblast-like cells in the trematode Schistosoma mansoni. These cells resemble planarian neoblasts morphologically and share their ability to proliferate and differentiate into derivatives of multiple germ layers. Capitalizing on available genomic resources and RNA-seq-based gene expression profiling, we find that these schistosome neoblast-like cells express a fibroblast growth factor receptor orthologue. Using RNA interference we demonstrate that this gene is required for the maintenance of these neoblast-like cells. Our observations indicate that adaptation of developmental strategies shared by free-living ancestors to modern-day schistosomes probably contributed to the success of these animals as long-lived obligate parasites. We expect that future studies deciphering the function of these neoblast-like cells will have important implications for understanding the biology of these devastating parasites.
Long-Distance Axonal Growth from Human Induced Pluripotent Stem Cells After Spinal Cord Injury
Lu, Paul; Woodruff, Grace; Wang, Yaozhi; Graham, Lori; Hunt, Matt; Wu, Di; Boehle, Eileen; Ahmad, Ruhel; Poplawski, Gunnar; Brock, John; Goldstein, Lawrence S. B.; Tuszynski, Mark H.
2014-01-01
Human induced pluripotent stem cells (iPSCs) from a healthy 86 year-old male were differentiated into neural stem cells and grafted into adult immunodeficient rats after spinal cord injury. Three months after C5 lateral hemisections, iPSCs survived and differentiated into neurons and glia, and extended tens of thousands of axons from the lesion site over virtually the entire length of the rat central nervous system. These iPSC-derived axons extended through adult white matter of the injured spinal cord, frequently penetrating gray matter and forming synapses with rat neurons. In turn, host supraspinal motor axons penetrated human iPSC grafts and formed synapses. These findings indicate that intrinsic neuronal mechanisms readily overcome the inhibitory milieu of the adult injured spinal cord to extend many axons over very long distances; these capabilities persist even in neurons reprogrammed from very aged human cells. PMID:25123310
Viral Pneumonia in Patients with Hematologic Malignancy or Hematopoietic Stem Cell Transplantation.
Vakil, Erik; Evans, Scott E
2017-03-01
Viral pneumonias in patients with hematologic malignancies and recipients of hematopoietic stem cell transplantation cause significant morbidity and mortality. Advances in diagnostic techniques have enabled rapid identification of respiratory viral pathogens from upper and lower respiratory tract samples. Lymphopenia, myeloablative and T-cell depleting chemotherapy, graft-versus-host disease, and other factors increase the risk of developing life-threatening viral pneumonia. Chest imaging is often nonspecific but may aid in diagnoses. Bronchoscopy with bronchoalveolar lavage is recommended in those at high risk for viral pneumonia who have new infiltrates on chest imaging. Copyright © 2016 Elsevier Inc. All rights reserved.
Sex Differences in Maturation of Human Embryonic Stem Cell-Derived β Cells in Mice.
Saber, Nelly; Bruin, Jennifer E; O'Dwyer, Shannon; Schuster, Hellen; Rezania, Alireza; Kieffer, Timothy J
2018-04-01
Pancreatic progenitors derived from human embryonic stem cells (hESCs) are now in clinical trials for insulin replacement in patients with type 1 diabetes. Animal studies indicate that pancreatic progenitor cells can mature into a mixed population of endocrine cells, including glucose-responsive β cells several months after implantion. However, it remains unclear how conditions in the recipient may influence the maturation and ultimately the function of these hESC-derived cells. Here, we investigated the effects of (1) pregnancy on the maturation of human stage 4 (S4) pancreatic progenitor cells and (2) the impact of host sex on both S4 cells and more mature stage 7 (S7) pancreatic endocrine cells implanted under the kidney capsule of immunodeficient SCID-beige mice. Pregnancy led to increased proliferation of endogenous pancreatic β cells, but did not appear to affect proliferation or maturation of S4 cells at midgestation. Interestingly, S4 and S7 cells both acquired glucose-stimulated C-peptide secretion in females before males. Moreover, S4 cells lowered fasting blood glucose levels in females sooner than in males, whereas the responses with S7 cells were similar. These data indicate that the host sex may impact the maturation of hESC-derived cells in vivo and that this effect can be minimized by more advanced differentiation of the cells before implantation.
Graft versus host disease: what should the oculoplastic surgeon know?
Tung, Cynthia I
2017-09-01
To provide a concise review of the oculoplastic manifestations of ocular graft versus host disease (GVHD), and to discuss their management. Ocular GVHD occurs as a common immune-mediated complication of hematopoietic stem cell transplantation that presents as a Stevens-Johnson-like syndrome in the acute phase or a Sjögren-like syndrome in the chronic phase. Cicatricial conjunctivitis may be underreported in ocular GVHD. The spectrum of oculoplastic manifestations includes GVHD of the skin, cicatricial entropion, nasolacrimal duct obstruction, and lacrimal gland dysfunction. Surgical treatment is indicated for patients with significant corneal complications from entropion. Surgical approach to repair of nasolacrimal duct obstruction is presented in this review, including modified approaches for treating patients at risk for keratitis sicca. Management of the ocular graft versus host patient may require a multidisciplinary approach involving collaboration from the oculoplastic surgeon, the corneal specialist, and the stem cell transplant physician. Oculoplastic manifestations of ocular GVHD typically present as cicatricial changes in the eyelid and lacrimal system. Careful oculoplastic and corneal evaluation are necessary when considering surgical management for the ocular GVHD patient.
Shono, Yusuke
2017-01-01
Intestinal bacteria can modulate the risk of infection and graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Allo-HSCT recipients often develop neutropenic fever, which is treated with antibiotics that may target anaerobic bacteria in the gut. We retrospectively examined 857 allo-HSCT recipients and found that treatment using broad-spectrum antibiotics was associated with increased GVHD-related mortality at 5 years. Analysis of stool specimens from allo-HSCT recipients showed that broad-spectrum antibiotic administration was associated with perturbation of gut microbial composition. Studies in mice also demonstrated aggravated GVHD mortality with broad-spectrum antibiotics use. Broad-spectrum antibiotics treatment of mice with GVHD led to a loss of the protective mucus lining of the colon, compromised intestinal barrier function, as well as increased a commensal bacterium with mucus-degrading capabilities, raising the possibility that mucus degradation may contribute to murine GVHD. We demonstrate an underappreciated risk of antibiotics in allo-HSCT recipients that may exacerbate GVHD in the colon.
Meyer, Sara Christina; Stern, Martin
2011-11-01
Hematopoietic stem cell transplantation (HSCT) has evolved from a largely experimental therapeutic approach three decades ago to a well-established therapy today for many malignant and non-malignant disorders of the hematopoietic and the immune system. Although it is per se a therapy by transmission of cells, protein therapeutics such as growth factors and antibodies are relevant in all phases of a HSCT and substantially contribute to the success of this often only curative treatment. This review discusses HSCT with a particular focus on the protein therapeutics involved. Granulocyte colony stimulating factor (G-CSF) for mobilization of stem cells to the peripheral blood, the polyclonal anti-T-cell globulin (ATG) and the monoclonal antibodies alemtuzumab and etanercept for prophylaxis and therapy of graft versus host disease (GvHD) are highlighted. Also rituximab, palivizumab and polyclonal intravenous immunoglobulins for treating infections in post-transplant patients are discussed. Since our understanding of cell surface receptors, cytokine and signaling pathways is increasing, there will emerge new targets for directed therapy by proteins in the future. They may have the potential to further improve the success and to widen theapplication of HSCT.
Grafting of a Single Donor Myofibre Promotes Hypertrophy in Dystrophic Mouse Muscle
Boldrin, Luisa; Morgan, Jennifer E.
2013-01-01
Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells, are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the host muscle environment. PMID:23349935
Zhang, Yan-na; Duan, Xiao-gang; Zhang, Wen-hui; Wu, Ai-ling; Yang, Huan-Huan; Wu, Dong-ming; Wei, Yu-Quan; Chen, Xian-cheng
2016-01-01
Cancer stem cells (CSCs) are critical for tumor initiation/maintenance and recurrence or metastasis, so they may serve as a potential therapeutic target. However, CSC-established multitherapy resistance and immune tolerance render tumors resistant to current tumor-targeted strategies. To address this, renewable multiepitope-integrated spheroids based on placenta-derived mesenchymal stem cells (pMSCs) were X-ray-modified, at four different irradiation levels, including 80, 160, 240, and 320 Gy, as pluripotent biologics, to inoculate hosts bearing Lewis lung carcinoma (LL2) and compared with X-ray-modified common LL2 cells as control. We show that the vaccines at the 160/240 Gy irradiation levels could rapidly trigger tumor cells into the apoptosis loop and evidently prolong the tumor-bearing host’s survival cycle, in contrast to vaccines irradiated at other levels (P<0.05), with tumor-sustaining stromal cell-derived factor-1/CXCR4 pathway being selectively blockaded. Meanwhile, almost no or minimal toxicity was detected in the vaccinated hosts. Importantly, 160/240 Gy-irradiated vaccines could provoke significantly higher killing of CSCs and non-CSCs, which may provide an access to developing a novel biotherapy against lung carcinoma. PMID:27042111
Martínez-Cerdeño, Veronica; Barrilleaux, Bonnie L; McDonough, Ashley; Ariza, Jeanelle; Yuen, Benjamin T K; Somanath, Priyanka; Le, Catherine T; Steward, Craig; Horton-Sparks, Kayla; Knoepfler, Paul S
2017-10-01
Human pluripotent stem cells (hPSC) have great clinical potential through the use of their differentiated progeny, a population in which there is some concern over risks of tumorigenicity or other unwanted cellular behavior due to residual hPSC. Preclinical studies using human stem cells are most often performed within a xenotransplant context. In this study, we sought to measure how undifferentiated hPSC behave following xenotransplant. We directly transplanted undifferentiated human induced pluripotent stem cells (hIPSC) and human embryonic stem cells (hESC) into the adult mouse brain ventricle and analyzed their fates. No tumors or precancerous lesions were present at more than one year after transplantation. This result differed with the tumorigenic capacity we observed after allotransplantation of mouse ESC into the mouse brain. A substantial population of cellular derivatives of undifferentiated hESC and hIPSC engrafted, survived, and migrated within the mouse brain parenchyma. Within brain structures, transplanted cell distribution followed a very specific pattern, suggesting the existence of distinct microenvironments that offer different degrees of permissibility for engraftment. Most of the transplanted hESC and hIPSC that developed into brain cells were NeuN+ neuronal cells, and no astrocytes were detected. Substantial cell and nuclear fusion occurred between host and transplanted cells, a phenomenon influenced by microenvironment. Overall, hIPSC appear to be largely functionally equivalent to hESC in vivo. Altogether, these data bring new insights into the behavior of stem cells without prior differentiation following xenotransplantation into the adult brain.
Salem, George A; Selby, George B
2017-01-01
Inflammatory bowel disease (IBD) is a complex, relapsing and remitting, disease characterized by an exaggerated immune response in a susceptible host. The symptoms and complications of the disease can be debilitating. Advances in medical treatment in the last decade changed the course of the disease in many patients. Despite the use of novel agents for controlling disease, a proportion of patients' disease courses continue to be either refractory, or become resistant, to available therapeutic options. Stem-cell therapy, with hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs), is a promising modality of treatment for severe refractory cases, mainly Crohn's disease (CD) patients. HSCs have the ability to migrate to damaged tissue, which provides them with further properties to differentiate to epithelial or immune-modulatory cells to restore normal mucosal tissue and integrity. MSCs therapy is a promising model for patients with perianal CD due to their immunosuppressive properties, ability to migrate to areas of injury, and demonstration of colonic healing, including fistulizing tracts. The results from ongoing clinical trials will provide a valuable understanding of the future of stem-cell therapy as a treatment option in refractory cases of IBD, a disease whose pathogenesis remains unknown, and is notoriously difficult to treat.
Hisada, Masayuki; Ota, Yoshihiro; Zhang, Xiuying; Cameron, Andrew M; Gao, Bin; Montgomery, Robert A; Williams, George Melville; Sun, Zhaoli
2015-01-01
Livers from Lewis rats fed with 7% alcohol for 5 weeks were used for transplantation. Reduced sized (50%) livers or whole livers were transplanted into normal DA recipients, which, in this strain combination, survive indefinitely when the donor has not been fed alcohol. However, none of the rats survived a whole fatty liver transplant while six of seven recipients of reduced sized alcoholic liver grafts survived long term. SDF-1 and HGF were significantly increased in reduced size liver grafts compared to whole liver grafts. Lineage-negative Thy-1+CXCR4+CD133+ stem cells were significantly increased in the peripheral blood and in allografts after reduced size fatty liver transplantation. In contrast, there were meager increases in cells reactive with anti Thy-1, CXCR4 and CD133 in peripheral blood and allografts in whole alcoholic liver recipients. The provision of plerixafor, a stem cell mobilizer, salvaged 5 of 10 whole fatty liver grafts. Conversely, blocking SDF-1 activity with neutralizing antibodies diminished stem cell recruitment and four of five reduced sized fatty liver recipients died. Thus chemokine insuficiency was associated with transplant failure of whole grafts which was overcome by the increased regenerative requirements promoted by the small grafts and mediated by SDF-1 resulting in stem cell influx. PMID:22994609
Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF?
Cashen, A F; Lazarus, H M; Devine, S M
2007-05-01
Currently, granulocyte colony stimulating factor (G-CSF) remains the standard mobilizing agent for peripheral blood stem cell (PBSC) donors, allowing the safe collection of adequate PBSCs from the vast majority of donors. However, G-CSF mobilization can be associated with some significant side effects and requires a multi-day dosing regimen. The other cytokine approved for stem cell mobilization, granulocyte-macrophage colony stimulating factor (GM-CSF), alters graft composition and may reduce the development of graft-versus-host disease, but a significant minority of donors fails to provide sufficient CD34+ cells with GM-CSF and some experience unacceptable toxicity. AMD3100 is a promising new mobilizing agent, which may have several advantages over G-CSF for donor mobilization. As it is a direct antagonist of the interaction between the chemokine stromal-derived factor-1 and its receptor CXCR4, AMD3100 mobilizes PBSCs within hours rather than days. It is also well tolerated, with no significant side effects reported in any of the clinical trials to date. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts have demonstrated prompt and stable engraftment. Here, we review the current state of stem cell mobilization in normal donors and discuss novel strategies for donor stem cell mobilization.
Trevisan, Marta; Sinigaglia, Alessandro; Desole, Giovanna; Berto, Alessandro; Pacenti, Monia; Palù, Giorgio; Barzon, Luisa
2015-07-13
The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs), which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host-pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.
Tobin, L M; Healy, M E; English, K; Mahon, B P
2013-05-01
Acute graft-versus-host disease (aGVHD) is a life-threatening complication following allogeneic haematopoietic stem cell transplantation (HSCT), occurring in up to 30-50% of patients who receive human leucocyte antigen (HLA)-matched sibling transplants. Current therapies for steroid refractory aGVHD are limited, with the prognosis of patients suboptimal. Mesenchymal stem or stromal cells (MSC), a heterogeneous cell population present in many tissues, display potent immunomodulatory abilities. Autologous and allogeneic ex-vivo expanded human MSC have been utilized to treat aGVHD with promising results, but the mechanisms of therapeutic action remain unclear. Here a robust humanized mouse model of aGVHD based on delivery of human peripheral blood mononuclear cells (PBMC) to non-obese diabetic (NOD)-severe combined immunodeficient (SCID) interleukin (IL)-2rγ(null) (NSG) mice was developed that allowed the exploration of the role of MSC in cell therapy. MSC therapy resulted in the reduction of liver and gut pathology and significantly increased survival. Protection was dependent upon the timing of MSC therapy, with conventional MSC proving effective only after delayed administration. In contrast, interferon (IFN)-γ-stimulated MSC were effective when delivered with PBMC. The beneficial effect of MSC therapy in this model was not due to the inhibition of donor PBMC chimerism, as CD45(+) and T cells engrafted successfully in this model. MSC therapy did not induce donor T cell anergy, FoxP3(+) T regulatory cells or cause PBMC apoptosis in this model; however, it was associated with the direct inhibition of donor CD4(+) T cell proliferation and reduction of human tumour necrosis factor-α in serum. © 2012 British Society for Immunology.
Moralli, Daniela; Monaco, Zoia L
2015-02-01
De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.
Andermann, Tessa M.; Rezvani, Andrew; Bhatt, Ami S.
2016-01-01
Hematopoietic stem cell transplantation (HSCT) is a potentially life-saving therapy that often comes at the cost of complications such as graft-versus-host disease and post-transplant infections. With improved technology to under-stand the ecosystem of microorganisms (viruses, bacteria, fungi, and microeukaryotes) that make up the gut microbiota, there is increasing evidence of the microbiota’s contribution to the development of post-transplant complications. Antibiotics have traditionally been the mainstay of microbiota-altering therapies available to physicians. Recently, interest is increasing in the use of prebiotics and probiotics to support the development and sustainability of a healthier microbiota. In this review, we will describe the evidence for the use of prebiotics and probiotics in combating microbiota dysbiosis and explore the ways in which they may be used in future research to potentially improve clinical outcomes and decrease rates of graft-versus-host disease (GVHD) and post-transplant infection. PMID:26780719
Wang, Yongcheng; Yao, Jie; Meng, Haoye; Yu, Zhiguo; Wang, Zhigang; Yuan, Xueling; Chen, Hong; Wang, Aiyuan
2015-04-01
Long non‑coding RNAs (lncRNAs) have recently been identified as novel modulators of malignant tumors. However, the function of lncRNAs in cancer stem cells (CSCs) remains to be elucidated. The present study aimed to investigate the regulating role of a novel lncRNA, hypoxia‑inducible factor‑2α (HIF‑2α) promoter upstream transcript (HIF2PUT), in osteosarcoma stem cells. The expression levels of HIF2PUT were assessed by quantitative polymerase chain reaction in 17 osteosarcoma tissue specimens, and the correlation between the expression of HIF2PUT and its host transcript‑HIF‑2α was determined. In functional experiments, HIF2PUT expression was knocked down by small interfering RNAs, or overexpressed by transfection with pcDNA‑HIF2PUT, in order to evaluate the effects of HIF2PUT on cell proliferation, migration, expression rate of osteosarcoma stem cell marker CD133, and stem sphere‑forming ability in MG63 cells. HIF2PUT expression levels were positively correlated with HIF‑2α in osteosarcoma tissues. Overexpression of HIF2PUT markedly inhibited cell proliferation and migration, decreased the percentage of CD133 expressing cells, and impaired the osteosarcoma stem sphere‑forming ability of the MG63 cells. Whereas, knockdown of HIF2PUT expression had the opposite effect. Furthermore, altering the expression of HIF2PUT resulted in a concomitant change to HIF‑2α mRNA expression. These results indicate that the lncRNA HIF2PUT may be a novel regulatory factor of osteosarcoma stem cells, which may exert its function partly by controlling HIF‑2α expression. Further studies regarding HIF2PUT may provide a novel therapeutic target of osteosarcoma in the future.
Voswinkel, Jan; Francois, Sabine; Gorin, Norbert-Claude; Chapel, Alain
2013-07-01
Mesenchymal stromal cells (MSC) are multipotent adult stem cells with the potential to regenerate tissue damage and inhibit inflammation and fibrosis in parallel. As they are non-immunogenic, MSC can be safely auto- and allotransplanted and consequently represent a therapeutic option for refractory connective tissue diseases and fistulizing colitis like Crohn's disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, 22 are on autoimmune diseases and 27 are actually recruiting bowel disease' patients. More than 1,500 patients with bowel diseases like Crohn's disease were treated in clinical trials by local as well as systemic MSC therapy. Phase I and II trials on fistula documented the feasibility and safety of MSC therapy, and a significant superiority compared to fibrin glue in fistulizing bowel diseases was demonstrated. Autologous as well as allogeneic use of Bone marrow as well as of adipose tissue-derived MSC are feasible. In refractory Graft versus host disease, especially in refractory gut Graft versus host diseases, encouraging results were reported using MSC. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets toward an increase in T regulatory cells and a decrease in activated effector T cells. Mesenchymal stem cells represent a safe therapy for patients with refractory inflammatory bowel diseases.
Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy
Wei, Zheng Z; Zhu, Yan-Bing; Zhang, James Y; McCrary, Myles R; Wang, Song; Zhang, Yong-Bo; Yu, Shan-Ping; Wei, Ling
2017-01-01
Objective: Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. Data Sources: This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: “stem cells,” “hypoxic preconditioning,” “ischemic preconditioning,” and “cell transplantation.” Study Selection: Original articles and critical reviews on the topics were selected. Results: Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. Conclusions: In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications. PMID:28937044
Melve, Guro Kristin; Ersvaer, Elisabeth; Akkök, Çiğdem Akalın; Ahmed, Aymen Bushra; Kristoffersen, Einar K.; Hervig, Tor; Bruserud, Øystein
2016-01-01
Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. The frequency of severe graft versus host disease is similar for patients receiving peripheral blood and bone marrow allografts, even though the blood grafts contain more T cells, indicating mobilization-related immunoregulatory effects. The regulatory phosphoprotein osteopontin was quantified in plasma samples from healthy donors before G-CSF treatment, after four days of treatment immediately before and after leukapheresis, and 18–24 h after apheresis. Myeloma patients received chemotherapy, combined with G-CSF, for stem cell mobilization and plasma samples were prepared immediately before, immediately after, and 18–24 h after leukapheresis. G-CSF treatment of healthy stem cell donors increased plasma osteopontin levels, and a further increase was seen immediately after leukapheresis. The pre-apheresis levels were also increased in myeloma patients compared to healthy individuals. Finally, in vivo G-CSF exposure did not alter T cell expression of osteopontin ligand CD44, and in vitro osteopontin exposure induced only small increases in anti-CD3- and anti-CD28-stimulated T cell proliferation. G-CSF treatment, followed by leukapheresis, can increase systemic osteopontin levels, and this effect may contribute to the immunomodulatory effects of G-CSF treatment. PMID:27447610
Upadhya, Dinesh; Hattiangady, Bharathi; Shetty, Geetha A.; Zanirati, Gabriele; Kodali, Maheedhar; Shetty, Ashok K.
2016-01-01
Grafting of neural stem cells (NSCs) or GABA-ergic progenitor cells (GPCs) into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts >30% of temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). On the other hand, GPCs could be generated from the medial and lateral ganglionic eminences of the embryonic brain and from hESCs and hiPSCs. To provide comprehensive methodologies involved in testing the efficacy of transplantation of NSCs and GPCs in a rat model of chronic TLE, NSCs derived from the rat medial ganglionic eminence (MGE) and MGE-like GPCs derived from hiPSCs are taken as examples in this unit. The topics comprise description of the required materials, reagents and equipment, methods for obtaining rat MGE-NSCs and hiPSC-derived MGE-like GPCs in culture, generation of chronically epileptic rats, intrahippocampal grafting procedure, post-grafting evaluation of the effects of grafts on spontaneous recurrent seizures and cognitive and mood impairments, analyses of the yield and the fate of graft-derived cells, and the effects of grafts on the host hippocampus. PMID:27532817
Delisle, Jean-Sébastien; Gaboury, Louis; Bélanger, Marie-Pier; Tassé, Eliane; Yagita, Hideo; Perreault, Claude
2008-09-01
The immunopathologic condition known as graft-versus-host disease (GVHD) results from a type I T-cell process. However, a prototypical type I cytokine, interferon-gamma (IFN-gamma), can protect against several manifestations of GVHD in recipients of major histocompatibility complex (MHC)-mismatched hematopoietic cells. We transplanted hematopoietic cells from C3H.SW donors in wild-type (wt) and IFN-gamma-receptor-deficient (IFN-gammaRKO) MHC-matched C57BL/6 recipients. In IFN-gammaRKO recipients, host cells were unresponsive to IFN-gamma, whereas wt donor cells were exposed to exceptionally high levels of IFN-gamma. From an IFN-gamma perspective, we could therefore evaluate the impact of a loss-of-function on host cells and gain-of-function on donor cells. We found that lack of IFN-gammaR prevented up-regulation of MHC proteins on host cells but did not mitigate damage to most target organs. Two salient phenotypes in IFN-gammaRKO recipients involved donor cells: lymphoid hypoplasia and hematopoietic failure. Lymphopenia was due to FasL-induced apoptosis and decreased cell proliferation. Bone marrow aplasia resulted from a decreased proliferation of hematopoietic stem/progenitor cells that was associated with down-regulation of 2 genes negatively regulated by IFN-gamma: Ccnd1 and Myc. We conclude that IFN-gamma produced by alloreactive T cells may entail a severe graft-versus-graft reaction and could be responsible for cytopenias that are frequently observed in subjects with GVHD.
Li, Hongmei; Matte-Martone, Catherine; Tan, Hung Sheng; Venkatesan, Srividhya; McNiff, Jennifer; Demetris, Anthony J; Jain, Dhanpat; Lakkis, Fadi; Rothstein, David; Shlomchik, Warren D
2011-01-01
Graft-versus-host disease (GVHD) is initiated by APCs that prime alloreactive donor T cells. In antipathogen responses, Ag-bearing APCs receive signals through pattern-recognition receptors, including TLRs, which induce the expression of costimulatory molecules and production of inflammatory cytokines, which in turn mold the adaptive T cell response. However, in allogeneic hematopoietic stem cell transplantation (alloSCT), there is no specific pathogen, alloantigen is ubiquitous, and signals that induce APC maturation are undefined. To investigate APC activation in GVHD, we used recipient mice with hematopoietic cells genetically deficient in pathways critical for APC maturation in models in which host APCs are absolutely required. Strikingly, CD8-mediated and CD4-mediated GVHD were similar whether host APCs were wild-type or deficient in MyD88, TRIF, or MyD88 and TRIF, which excludes essential roles for TLRs and IL-1β, the key product of inflammasome activation. Th1 differentiation was if anything augmented when APCs were MyD88/TRIF(-/-), and T cell production of IFN-γ did not require host IL-12. GVHD was also intact when APCs lacked the type I IFNR, which amplifies APC activation pathways that induce type I IFNs. Thus in GVHD, alloreactive T cells can be activated when pathways critical for antipathogen T cell responses are impaired.
Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery.
Wollenberg, A L; O'Shea, T M; Kim, J H; Czechanski, A; Reinholdt, L G; Sofroniew, M V; Deming, T J
2018-04-05
Injectable hydrogels with tunable physiochemical and biological properties are potential tools for improving neural stem/progenitor cell (NSPC) transplantation to treat central nervous system (CNS) injury and disease. Here, we developed injectable diblock copolypeptide hydrogels (DCH) for NSPC transplantation that contain hydrophilic segments of modified l-methionine (Met). Multiple Met-based DCH were fabricated by post-polymerization modification of Met to various functional derivatives, and incorporation of different amino acid comonomers into hydrophilic segments. Met-based DCH assembled into self-healing hydrogels with concentration and composition dependent mechanical properties. Mechanical properties of non-ionic Met-sulfoxide formulations (DCH MO ) were stable across diverse aqueous media while cationic formulations showed salt ion dependent stiffness reduction. Murine NSPC survival in DCH MO was equivalent to that of standard culture conditions, and sulfoxide functionality imparted cell non-fouling character. Within serum rich environments in vitro, DCH MO was superior at preserving NSPC stemness and multipotency compared to cell adhesive materials. NSPC in DCH MO injected into uninjured forebrain remained local and, after 4 weeks, exhibited an immature astroglial phenotype that integrated with host neural tissue and acted as cellular substrates that supported growth of host-derived axons. These findings demonstrate that Met-based DCH are suitable vehicles for further study of NSPC transplantation in CNS injury and disease models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kurpińska, Małgorzata; Gorczyńska, Ewa; Owoc-Lempach, Joanna; Bernacka, Aleksandra; Misiuk-Hojło, Marta; Chybicka, Alicja
2011-01-01
Dry eye syndrome (DES), also known as keratoconjunctivitis sicca (KCS) is recognized as the most frequent ocular complication after allogeneic stem cell transplantation (allo-SCT). KCS can appear either due to insufficient tear production or excessive tear evaporation, both resulting in tears hyperosmolarity that leads to ocular damage. The evaporation rate and better film stability is determined primarily by the status of the lipid layer. Observation and classification of tear film lipid layer interference patterns in normal and dry eyes in patients after allogeneic stem cell transplantation with a follow-up time of 6 months-5 years (median 26.54 months). Investigation of the relation between the lipid layer interference patterns in normal and dry eyes and the results of other dry eye examinations and complaints. Relation between DES and conditioning regimes, including total body irradiation and high-dose chemotherapy, immunosuppressive drugs, the time after allogeneic stem cell transplantation and chronic graft-versus-host disease. Precorneal tears lipid layer interference patterns, were examined in 114 eyes in treatment group with the Tearscope-plus. Patient with dry eye were identified on the basis of Schirmer test scores and/or tear breakup time, and positive lissamine and/or fluorescein staining. 42 of 114 eyes (36.8%) developed DES after allo-SCT A significant correlation between thickness of lipid layer and BUT, Schirmer test, lissamine green and fluorescein staining was found in the treatment group. A significant association was found between present chronic GVHD and DES in children. DES was not associated with TBI, corticosteroids, immunosuppressive drugs and the time in the present study. Tears lipid layer interference patterns are highly correlated with the diagnosis of DES. Tears lipid layer interference patterns ( noninvasive method), can be used to diagnose early DES in children after allo-SCT. Chronic GVHD play a major role in development of DES. dry eye syndrome, graft versus host disease, stem cell transplantation.
MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM
Bi, P.; Kuang, S.
2012-01-01
Stem cell niche plays a critical role in regulating the behavior and function of adult stem cells that underlie tissue growth, maintenance, and regeneration. In the skeletal muscle, stem cells, called satellite cells, contribute to postnatal muscle growth and hypertrophy, and thus, meat production in agricultural animals. Satellite cells are located adjacent to mature muscle fibers underneath a sheath of basal lamina. Microenvironmental signals from extracellular matrix mediated by the basal lamina and from the host myofiber both impinge on satellite cells to regulate their activity. Furthermore, several types of muscle interstitial cells, including intramuscular preadipocytes and connective tissue fibroblasts, have recently been shown to interact with satellite cells and actively regulate the growth and regeneration of postnatal skeletal muscles. From this regard, interstitial adipogenic cells are not only important for marbling and meat quality, but also represent an additional cellular component of the satellite cell niche. At the molecular level, these interstitial cells may interact with satellite cells through cell surface ligands, such as delta-like 1 homolog (Dlk1) protein whose overexpression is thought to be responsible for muscle hypertrophy in callipyge sheep. In fact, extracellular Dlk1 protein has been shown to promote the myogenic differentiation of satellite cells. Understanding the cellular and molecular mechanisms within the stem cell niche that regulate satellite cell differentiation and maintain muscle homeostasis may lead to promising approaches to optimizing muscle growth and composition, thus improving meat production and quality. PMID:22100594
Use of regenerative tissue for urinary diversion.
Sopko, Nikolai A; Kates, Max; Bivalacqua, Trinity J
2015-11-01
There is a large interest in developing tissue engineered urinary diversions (TEUDs) in order to reduce the significant morbidity that results from utilization of the alimentary tract in the urinary system. Preclinical trials have been favorable but durable clinical results have not been realized. The present article will review the pertinent concepts for the clinical development of a successful TEUD. Studies continue to identify novel scaffold materials and cell populations that are combined to generate TEUDs. Scaffold composition range from synthetic material to decelluarized bladder tissue. Cell types vary from fully differentiated adult populations such as smooth muscle cells isolated from the bladder to stem cell populations including mesenchymal stem cells and induced pluripotent stem cells. Each scaffold and cell type has its advantages and disadvantages with no clear superior component having been identified. Recent clinical trials have been disappointing, supporting the need for additional investigation. Successful application of TEUDs requires a complex interplay of scaffold, cells, and host environment. Studies continue to investigate candidate scaffold materials, cell populations, and combinations thereof to determine which will best recapitulate the complex structure of the human genitourinary tract.
Sairafi, Darius; Stikvoort, Arwen; Gertow, Jens; Mattsson, Jonas; Uhlin, Michael
2016-01-01
Background . Graft-versus-host disease (GVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (HSCT). We designed a functional assay for assessment of individual risk for acute GVHD. Study Design and Methods . Blood samples were collected from patients and donors before HSCT. Two groups of seven patients each were selected, one in which individuals developed acute GVHD grades II-IV and one in which none showed any clinical signs of GVHD. Peripheral blood mononuclear cells (PBMCs) isolated from donors were incubated in mixed lymphocyte cultures (MLCs) with recipient PBMCs. The cells were characterized by flow cytometry before and after MLC. Results . Samples from donors in the GVHD group contained significantly lower frequencies of naïve γδ T-cells and T-cells expressing NK-cell markers CD56 and CD94. Donor samples in this group also exhibited lower frequencies of naïve CD95 + T-cells compared to controls. After MLC, there were dissimilarities in the CD4/CD8 T-cell ratio and frequency of CD69 + T-cells between the two patient groups, with the non-GVHD group showing higher frequencies of CD8 + and CD69 + T-cells. Conclusion . We conclude that a thorough flow cytometric analysis of donor cells for phenotype and allogeneic reactivity may be of value when assessing pretransplant risk for severe acute GVHD.
Echinococcus-Host Interactions at Cellular and Molecular Levels.
Brehm, K; Koziol, U
2017-01-01
The potentially lethal zoonotic diseases alveolar and cystic echinococcosis are caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively. In both cases, metacestode growth and proliferation occurs within the inner organs of mammalian hosts, which is associated with complex molecular host-parasite interactions that regulate nutrient uptake by the parasite as well as metacestode persistence and development. Using in vitro cultivation systems for parasite larvae, and informed by recently released, comprehensive genome and transcriptome data for both parasites, these molecular host-parasite interactions have been subject to significant research during recent years. In this review, we discuss progress in this field, with emphasis on parasite development and proliferation. We review host-parasite interaction mechanisms that occur early during an infection, when the invading oncosphere stage undergoes a metamorphosis towards the metacestode, and outline the decisive role of parasite stem cells during this process. We also discuss special features of metacestode morphology, and how this parasite stage takes up nutrients from the host, utilizing newly evolved or expanded gene families. We comprehensively review mechanisms of host-parasite cross-communication via evolutionarily conserved signalling systems and how the parasite signalling systems might be exploited for the development of novel chemotherapeutics. Finally, we point to an urgent need for the development of functional genomic techniques in this parasite, which will be imperative for hypothesis-driven analyses into Echinococcus stem cell biology, developmental mechanisms and immunomodulatory activities, which are all highly relevant for the development of anti-infective measures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hematology: ATG and Newton's third law of motion.
Brunstein, Claudio G
2010-01-01
Patients with hematological malignancies have a risk of developing graft-versus-host disease (GVHD) following allogeneic hematopoietic stem-cell transplantation. The addition of ATG to prophylaxis regimens decreases the incidence of GVHD without compromising overall survival in these patients.
Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.
Erler, Piril; Sweeney, Alexandra; Monaghan, James R
2017-01-01
Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa + /BrdU + coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247. © 2016 AlphaMed Press.
Microchimeric cells in systemic lupus erythematosus: targets or innocent bystanders?
Stevens, A M
2006-01-01
During pregnancy maternal and fetal cells commute back and forth leading to fetal microchimerism in the mother and maternal microchimerism in the child that can persist for years after the birth. Chimeric fetal and maternal cells can be hematopoietic or can differentiate into somatic cells in multiple organs, potentially acting as targets for 'autoimmunity' and so have been implicated in the pathogenesis of autoimmune diseases that resemble graft-versus-host disease after stem cell transplantation. Fetal cells have been found in women with systemic lupus erythematosus, both in the blood and a target organ, the kidney, suggesting that they may be involved in pathogenesis. Future studies will address how the host immune system normally tolerates maternal and fetal cells or how the balance may change during autoimmunity.
USDA-ARS?s Scientific Manuscript database
The foot-and-mouth disease virus (FMDV) contains a 5’ untranslated region (5’UTR) with multiple structural domains that regulate viral genome replication, translation, and virus-host interactions. At its 5’terminus, the S fragment of over 360 bp is predicted to form a stable stem-loop that is separ...
Bogdanovic, G.; Priftakis, P.; Giraud, G.; Kuzniar, M.; Ferraldeschi, R.; Kokhaei, P.; Mellstedt, H.; Remberger, M.; Ljungman, P.; Winiarski, J.; Dalianis, T.
2004-01-01
BK virus (BKV) load in urine alone or in combination with acute graft-versus-host disease (GVHD) was correlated to development of hemorrhagic cystitis (HC). BKV load in combination with acute GVHD discriminated the best, while BKV and viral load alone, but not GVHD, still showed predictive ability for HC. PMID:15528753
Bogdanovic, G; Priftakis, P; Giraud, G; Kuzniar, M; Ferraldeschi, R; Kokhaei, P; Mellstedt, H; Remberger, M; Ljungman, P; Winiarski, J; Dalianis, T
2004-11-01
BK virus (BKV) load in urine alone or in combination with acute graft-versus-host disease (GVHD) was correlated to development of hemorrhagic cystitis (HC). BKV load in combination with acute GVHD discriminated the best, while BKV and viral load alone, but not GVHD, still showed predictive ability for HC.
Tomuleasa, Ciprian; Fuji, Shigeo; Cucuianu, Andrei; Kapp, Markus; Pileczki, Valentina; Petrushev, Bobe; Selicean, Sonia; Tanase, Alina; Dima, Delia; Berindan-Neagoe, Ioana; Irimie, Alexandru; Einsele, Hermann
2015-07-01
Allogeneic hematopoietic stem cell transplantation (HCT) is a well-established treatment for many malignant and non-malignant hematological disorders. As frequent complication in up to 50 % of all patients, graft-versus-host disease (GVHD) is still the main cause for morbidity and non-relapse mortality. Diagnosis of GVHD is usually done clinically, even though confirmation by pathology is often used to support the clinical findings. Effective treatment requires intensified immunosuppression as early as possible. Although several promising biomarkers have been proposed for an early diagnosis, no internationally recognized consensus has yet been established. Here, microRNAs (miRs) represent an interesting tool since miRs have been recently reported to be an important regulator of various cells, including immune cells such as T cells. Therefore, we could assume that miRs play a key role in the pathogenesis of acute GVHD, and their detection might be an interesting possibility in the early diagnosis and monitoring of acute GVHD. Recent studies additionally demonstrated the implication of miRs in the pathogenesis of acute GVHD. In this review, we aim to summarize the previous reports of miRs, focusing on the pathogenesis of acute GVHD and possible implications in diagnostic approaches.
Sub-physiological oxygen levels optimal for growth and survival of human atrial cardiac stem cells.
RajendranNair, Deepthi Sreerengam; Karunakaran, Jayakumar; Nair, Renuka R
2017-08-01
Cardiac stem cells reside in niches where the oxygen levels are close to 3%. For cytotherapy, cells are conventionally expanded in ambient oxygen (21% O 2 ) which represents hyperoxia compared to the oxygen tension of niches. Cardiosphere-derived cells (CDCs) are then transplanted to host tissue with lower-O 2 levels. The high-O 2 gradient can reduce the efficacy of cultured cells. Based on the assumption that minimizing injury due to O 2 gradients will enhance the yield of functionally efficient cells, CDCs were cultured in 3% O 2 and compared with cells maintained in ambient O 2 . CDCs were isolated from human right atrial explants and expanded in parallel in 21 and 3% oxygen and compared with regard to survival, proliferation, and retention of stemness. Increased cell viability even in the tenth passage and enhanced cardiosphere formation was observed in cells expanded in 3% O 2 . The cell yield from seven passages was fourfold higher for cells cultured in 3% O 2 . Preservation of stemness in hypoxic environment was evident from the proportion of c-kit-positive cells and reduced myogenic differentiation. Hypoxia promoted angiogenesis and reduced the tendency to differentiate to noncardiac lineages (adipocytes and osteocytes). Mimicking the microenvironment at transplantation, when shifted to 5% O 2 , viability and proliferation rate were significantly higher for CDCs expanded in 3% O 2 . Expansion of CDCs, from atria in sub-physiological oxygen, helps in obtaining a higher yield of healthy cells with better preservation of stem cell characteristics. The cells so cultured are expected to improve engraftment and facilitate myocardial regeneration.
Ban, Hiroshi; Nishishita, Naoki; Fusaki, Noemi; Tabata, Toshiaki; Saeki, Koichi; Shikamura, Masayuki; Takada, Nozomi; Inoue, Makoto; Hasegawa, Mamoru; Kawamata, Shin; Nishikawa, Shin-Ichi
2011-01-01
After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34+ cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future. PMID:21821793
Transplantation of Adipose Derived Stromal Cells into the Developing Mouse Eye
Yu, Song-Hee; Jang, Yu-Jin; Lee, Eun-Shil; Hwang, Dong-Youn; Jeon, Chang-Jin
2010-01-01
Adipose derived stromal cells (ADSCs) were transplanted into a developing mouse eye to investigate the influence of a developing host micro environment on integration and differentiation. Green fluorescent protein-expressing ADSCs were transplanted by intraocular injections. The age of the mouse was in the range of 1 to 10 days postnatal (PN). Survival dates ranged from 7 to 28 post transplantation (DPT), at which time immunohistochemistry was performed. The transplanted ADSCs displayed some morphological differentiations in the host eye. Some cells expressed microtubule associated protein 2 (marker for mature neuron), or glial fibrillary acid protein (marker for glial cell). In addition, some cells integrated into the ganglion cell layer. The integration and differentiation of the transplanted ADSCs in the 5 and 10 PN 7 DPT were better than in the host eye the other age ranges. This study was aimed at demonstrating how the age of host micro environment would influence the differentiation and integration of the transplanted ADSCs. However, it was found that the integration and differentiation into the developing retina were very limited when compared with other stem cells, such as murine brain progenitor cell. PMID:21245978
Sahara, Makoto; Hansson, Emil M; Wernet, Oliver; Lui, Kathy O; Später, Daniela; Chien, Kenneth R
2014-01-01
Human pluripotent stem cell (hPSC)-derived endothelial lineage cells constitutes a promising source for therapeutic revascularization, but progress in this arena has been hampered by a lack of clinically-scalable differentiation protocols and inefficient formation of a functional vessel network integrating with the host circulation upon transplantation. Using a human embryonic stem cell reporter cell line, where green fluorescent protein expression is driven by an endothelial cell-specific VE-cadherin (VEC) promoter, we screened for > 60 bioactive small molecules that would promote endothelial differentiation, and found that administration of BMP4 and a GSK-3β inhibitor in an early phase and treatment with VEGF-A and inhibition of the Notch signaling pathway in a later phase led to efficient differentiation of hPSCs to the endothelial lineage within six days. This sequential approach generated > 50% conversion of hPSCs to endothelial cells (ECs), specifically VEC+CD31+CD34+CD14−KDRhigh endothelial progenitors (EPs) that exhibited higher angiogenic and clonogenic proliferation potential among endothelial lineage cells. Pharmaceutical inhibition or genetical knockdown of Notch signaling, in combination with VEGF-A treatment, resulted in efficient formation of EPs via KDR+ mesodermal precursors and blockade of the conversion of EPs to mature ECs. The generated EPs successfully formed functional capillary vessels in vivo with anastomosis to the host vessels when transplanted into immunocompromised mice. Manipulation of this VEGF-A-Notch signaling circuit in our protocol leads to rapid large-scale production of the hPSC-derived EPs by 12- to 20-fold vs current methods, which may serve as an attractive cell population for regenerative vascularization with superior vessel forming capability compared to mature ECs. PMID:24810299
Kekre, Natasha; Antin, Joseph H
2014-07-17
Most patients who require allogeneic stem cell transplantation do not have a matched sibling donor, and many patients do not have a matched unrelated donor. In an effort to increase the applicability of transplantation, alternative donors such as mismatched adult unrelated donors, haploidentical related donors, and umbilical cord blood stem cell products are frequently used when a well matched donor is unavailable. We do not yet have the benefit of randomized trials comparing alternative donor stem cell sources to inform the choice of donor; however, the existing data allow some inferences to be made on the basis of existing observational and phase 2 studies. All 3 alternative donor sources can provide effective lymphohematopoietic reconstitution, but time to engraftment, graft failure rate, graft-versus-host disease, transplant-related mortality, and relapse risk vary by donor source. These factors all contribute to survival outcomes and an understanding of them should help guide clinicians when choosing among alternative donor sources when a matched related or matched unrelated donor is not available. © 2014 by The American Society of Hematology.
Regulations and guidelines governing stem cell based products: Clinical considerations
George, Bobby
2011-01-01
The use of stem cells as medicines is a promising and upcoming area of research as they may be able to help the body to regenerate damaged or lost tissue in a host of diseases like Parkinson′s, multiple sclerosis, heart disease, liver disease, spinal cord damage, cancer and many more. Translating basic stem cell research into routine therapies is a complex multi-step process which entails the challenge related to managing the expected therapeutic benefits with the potential risks while complying with the existing regulations and guidelines. While in the United States (US) and European Union (EU) regulations are in place, in India, we do not have a well-defined regulatory framework for “stem cell based products (SCBP)”. There are several areas that need to be addressed as it is quite different from that of pharmaceuticals. These range from establishing batch consistency, product stability to product safety and efficacy through pre-clinical, clinical studies and marketing authorization. This review summarizes the existing regulations/guidelines in US, EU, India, and the associated challenges in developing SCBP with emphasis on clinical aspects. PMID:21897884
2013-01-01
Introduction Intraspinal grafting of human neural stem cells represents a promising approach to promote recovery of function after spinal trauma. Such a treatment may serve to: I) provide trophic support to improve survival of host neurons; II) improve the structural integrity of the spinal parenchyma by reducing syringomyelia and scarring in trauma-injured regions; and III) provide neuronal populations to potentially form relays with host axons, segmental interneurons, and/or α-motoneurons. Here we characterized the effect of intraspinal grafting of clinical grade human fetal spinal cord-derived neural stem cells (HSSC) on the recovery of neurological function in a rat model of acute lumbar (L3) compression injury. Methods Three-month-old female Sprague–Dawley rats received L3 spinal compression injury. Three days post-injury, animals were randomized and received intraspinal injections of either HSSC, media-only, or no injections. All animals were immunosuppressed with tacrolimus, mycophenolate mofetil, and methylprednisolone acetate from the day of cell grafting and survived for eight weeks. Motor and sensory dysfunction were periodically assessed using open field locomotion scoring, thermal/tactile pain/escape thresholds and myogenic motor evoked potentials. The presence of spasticity was measured by gastrocnemius muscle resistance and electromyography response during computer-controlled ankle rotation. At the end-point, gait (CatWalk), ladder climbing, and single frame analyses were also assessed. Syrinx size, spinal cord dimensions, and extent of scarring were measured by magnetic resonance imaging. Differentiation and integration of grafted cells in the host tissue were validated with immunofluorescence staining using human-specific antibodies. Results Intraspinal grafting of HSSC led to a progressive and significant improvement in lower extremity paw placement, amelioration of spasticity, and normalization in thermal and tactile pain/escape thresholds at eight weeks post-grafting. No significant differences were detected in other CatWalk parameters, motor evoked potentials, open field locomotor (Basso, Beattie, and Bresnahan locomotion score (BBB)) score or ladder climbing test. Magnetic resonance imaging volume reconstruction and immunofluorescence analysis of grafted cell survival showed near complete injury-cavity-filling by grafted cells and development of putative GABA-ergic synapses between grafted and host neurons. Conclusions Peri-acute intraspinal grafting of HSSC can represent an effective therapy which ameliorates motor and sensory deficits after traumatic spinal cord injury. PMID:23710605
Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration.
Leucht, Philipp; Kim, Jae-Beom; Amasha, Raimy; James, Aaron W; Girod, Sabine; Helms, Jill A
2008-09-01
The fetal skeleton arises from neural crest and from mesoderm. Here, we provide evidence that each lineage contributes a unique stem cell population to the regeneration of injured adult bones. Using Wnt1Cre::Z/EG mice we found that the neural crest-derived mandible heals with neural crest-derived skeletal stem cells, whereas the mesoderm-derived tibia heals with mesoderm-derived stem cells. We tested whether skeletal stem cells from each lineage were functionally interchangeable by grafting mesoderm-derived cells into mandibular defects, and vice versa. All of the grafting scenarios, except one, healed through the direct differentiation of skeletal stem cells into osteoblasts; when mesoderm-derived cells were transplanted into tibial defects they differentiated into osteoblasts but when transplanted into mandibular defects they differentiated into chondrocytes. A mismatch between the Hox gene expression status of the host and donor cells might be responsible for this aberration in bone repair. We found that initially, mandibular skeletal progenitor cells are Hox-negative but that they adopt a Hoxa11-positive profile when transplanted into a tibial defect. Conversely, tibial skeletal progenitor cells are Hox-positive and maintain this Hox status even when transplanted into a Hox-negative mandibular defect. Skeletal progenitor cells from the two lineages also show differences in osteogenic potential and proliferation, which translate into more robust in vivo bone regeneration by neural crest-derived cells. Thus, embryonic origin and Hox gene expression status distinguish neural crest-derived from mesoderm-derived skeletal progenitor cells, and both characteristics influence the process of adult bone regeneration.
Chang, Jeff; Graves, Scott S.; Butts-Miwongtum, Tiffany; Sale, George E.; Storb, Rainer; Mathes, David W.
2017-01-01
Background The development of safe and reliable protocols for the transplantation of the face and hands may be accomplished with animal modeling of transplantation of vascularized composite allografts (VCA). Previously, we demonstrated that tolerance to a VCA could be achieved after canine recipients were simultaneously given marrow from a dog leukocyte antigen (DLA) identical donor. In the present study, we extend those findings across a DLA mismatched barrier. Methods Eight Recipient dogs received total body irradiation (4.5 cGy), hematopoietic cell transplantation (HCT), either marrow (n=4) or granulocyte-colony stimulating factor (G-CSF) mobilized peripheral blood stem cells (n=4), and a VCA transplant from the HCT donor. Post grafting immunosuppression consisted of mycophenolate mofetil (28 days) and cyclosporine (35 days). Results In 4 dogs receiving bone marrow, 1 accepted both its marrow transplant and demonstrated long-term tolerance to the donor VCA (>52 weeks). Three dogs rejected both their marrow transplants and VCA at 5–7 weeks posttransplant. Dogs receiving mobilized stem cells all accepted their stem cell transplant and became tolerant to the VCA. However, 3 dogs developed graft-versus-host disease (GVHD) while 1 dog rejected its stem cell graft by week 15 but exhibited long-term tolerance towards its VCA (>90 weeks). Conclusion The data suggest that simultaneous transplantation of mobilized stem cells and a VCA is feasible and leads to tolerance towards the VCA in a haploidentical setting. However, there is a higher rate of donor stem cell engraftment compared to marrow HCT and an increase in the incidence of GVHD. PMID:27861292
Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton
2013-01-01
The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153
Overcoming immunological barriers in regenerative medicine.
Zakrzewski, Johannes L; van den Brink, Marcel R M; Hubbell, Jeffrey A
2014-08-01
Regenerative therapies that use allogeneic cells are likely to encounter immunological barriers similar to those that occur with transplantation of solid organs and allogeneic hematopoietic stem cells (HSCs). Decades of experience in clinical transplantation hold valuable lessons for regenerative medicine, offering approaches for developing tolerance-induction treatments relevant to cell therapies. Outside the field of solid-organ and allogeneic HSC transplantation, new strategies are emerging for controlling the immune response, such as methods based on biomaterials or mimicry of antigen-specific peripheral tolerance. Novel biomaterials can alter the behavior of cells in tissue-engineered constructs and can blunt host immune responses to cells and biomaterial scaffolds. Approaches to suppress autoreactive immune cells may also be useful in regenerative medicine. The most innovative solutions will be developed through closer collaboration among stem cell biologists, transplantation immunologists and materials scientists.
Yovchev, Mladen I.; Xue, Yuhua; Shafritz, David A.; Locker, Joseph; Oertel, Michael
2013-01-01
Background & Aim Considerable progress has been made in developing anti-fibrotic agents and other strategies to treat liver fibrosis; however, significant long-term restoration of functional liver mass has not yet been achieved. Therefore, we investigated whether transplanted hepatic stem/progenitor cells can effectively repopulate the liver with advanced fibrosis/cirrhosis. Methods Stem/progenitor cells derived from fetal livers or mature hepatocytes from DPPIV+ F344 rats were transplanted into DPPIV− rats with thioacetamide (TAA)-induced fibrosis/cirrhosis; rats were sacrificed 1, 2, or 4 months later. Liver tissues were analyzed by histochemistry, hydroxyproline determination, RT-PCR, and immunohistochemistry. Results After chronic TAA administration, DPPIV− F344 rats exhibited progressive fibrosis, cirrhosis and severe hepatocyte damage. Besides stellate cell activation, increased numbers of stem/progenitor cells (Dlk-1+, AFP+, CD133+, Sox-9+, FoxJ1+) were observed. In conjunction with partial hepatectomy (PH), transplanted stem/progenitor cells engrafted, proliferated competitively compared to host hepatocytes, differentiated into hepatocytic and biliary epithelial cells, and generated new liver mass with extensive long-term liver repopulation (40.8 ± 10.3%). Remarkably, more than 20% liver repopulation was achieved in the absence of PH, associated with reduced fibrogenic activity (e.g., expression of α-SMA, PDGFRβ, desmin, vimentin, TIMP1) and fibrosis (reduced collagen). Furthermore, hepatocytes can also replace liver mass with advanced fibrosis/cirrhosis, but to a lesser extent than FLSPCs. Conclusions This study is a Proof of Principle demonstration that transplanted epithelial stem/progenitor cells can restore injured parenchyma in a liver environment with advanced fibrosis/cirrhosis and exhibit anti-fibrotic effects. PMID:23840008
Microbe-Induced Inflammatory Signals Triggering Acquired Bone Marrow Failure Syndromes.
Espinoza, J Luis; Kotecha, Ritesh; Nakao, Shinji
2017-01-01
Acquired bone marrow failure syndromes encompass a unique set of disorders characterized by a reduction in the effective production of mature cells by the bone marrow (BM). In the majority of cases, these syndromes are the result of the immune-mediated destruction of hematopoietic stem cells or their progenitors at various stages of differentiation. Microbial infection has also been associated with hematopoietic stem cell injury and may lead to associated transient or persistent BM failure, and recent evidence has highlighted the potential impact of commensal microbes and their metabolites on hematopoiesis. We summarize the interactions between microorganisms and the host immune system and emphasize how they may impact the development of acquired BM failure.
Microbe-Induced Inflammatory Signals Triggering Acquired Bone Marrow Failure Syndromes
Espinoza, J. Luis; Kotecha, Ritesh; Nakao, Shinji
2017-01-01
Acquired bone marrow failure syndromes encompass a unique set of disorders characterized by a reduction in the effective production of mature cells by the bone marrow (BM). In the majority of cases, these syndromes are the result of the immune-mediated destruction of hematopoietic stem cells or their progenitors at various stages of differentiation. Microbial infection has also been associated with hematopoietic stem cell injury and may lead to associated transient or persistent BM failure, and recent evidence has highlighted the potential impact of commensal microbes and their metabolites on hematopoiesis. We summarize the interactions between microorganisms and the host immune system and emphasize how they may impact the development of acquired BM failure. PMID:28286502
Zhang, Fang; Duan, Xiaohui; Lu, Liejing; Zhang, Xiang; Chen, Meiwei; Mao, Jiaji; Cao, Minghui; Shen, Jun
2017-10-01
Transplantation of neural stem cells (NSCs) is emerging as a new therapeutic approach for stroke. Real-time imaging of transplanted NSCs is essential for successful cell delivery, safety monitoring, tracking cell fate and function, and understanding the interactions of transplanted cells with the host environment. Magnetic resonance imaging (MRI) of magnetic nanoparticle-labeled cells has been the most widely used means to track stem cells in vivo. Nevertheless, it does not allow for the reliable discrimination between live and dead cells. Reporter gene-based MRI was considered as an alternative strategy to overcome this shortcoming. In this work, a class of lentiviral vector-encoding ferritin heavy chain (FTH) and enhanced green fluorescent protein (EGFP) was constructed to deliver reporter genes into NSCs. After these transgenic NSCs were transplanted into the contralateral hemisphere of rats with acute ischemic stroke, MRI and fluorescence imaging (FLI) were performed in vivo for tracking the fate of transplanted cells over a long period of 6 wk. The results demonstrated that the FTH and EGFP can be effectively and safely delivered to NSCs via the designed lentiviral vector. The distribution and migration of grafted stem cells could be monitored by bimodal MRI and FLI. FTH can be used as a robust MRI reporter for reliable reporting of the short-term viability of cell grafts, whereas its capacity for tracking the long-term viability of stem cells remains dependent on several confounding factors such as cell death and the concomitant reactive inflammation.
Modeling human development in 3D culture.
Ader, Marius; Tanaka, Elly M
2014-12-01
Recently human embryonic stem cell research has taken on a new dimension - the third dimension. Capitalizing on increasing knowledge on directing pluripotent cells along different lineages, combined with ECM supported three-dimensional culture conditions, it has become possible to generate highly organized tissues of the central nervous system, gut, liver and kidney. Each system has been used to study different aspects of organogenesis and function including physical forces underlying optic cup morphogenesis, the function of disease related genes in progenitor cell control, as well as interaction of the generated tissues with host tissue upon transplantation. Pluripotent stem cell derived organoids represent powerful systems for the study of how cells self-organize to generate tissues with a given shape, pattern and form. Copyright © 2014 Elsevier Ltd. All rights reserved.
Choi, Sung Won; Braun, Thomas; Chang, Lawrence; Ferrara, James L M; Pawarode, Attaphol; Magenau, John M; Hou, Guoqing; Beumer, Jan H; Levine, John E; Goldstein, Steve; Couriel, Daniel R; Stockerl-Goldstein, Keith; Krijanovski, Oleg I; Kitko, Carrie; Yanik, Gregory A; Lehmann, Michael H; Tawara, Isao; Sun, Yaping; Paczesny, Sophie; Mapara, Markus Y; Dinarello, Charles A; DiPersio, John F; Reddy, Pavan
2014-01-01
Acute graft-versus-host disease (GVHD) remains a barrier to more widespread application of allogeneic haemopoietic stem-cell transplantation. Vorinostat is an inhibitor of histone deacetylases and was shown to attenuate GVHD in preclinical models. We aimed to study the safety and activity of vorinostat, in combination with standard immunoprophylaxis, for prevention of GVHD in patients undergoing related-donor reduced-intensity conditioning haemopoietic stem-cell transplantation. Between March 31, 2009, and Feb 8, 2013, we did a prospective, single-arm, phase 1/2 study at two centres in the USA. We recruited adults (aged ≥18 years) with high-risk haematological malignant diseases who were candidates for reduced-intensity conditioning haemopoietic stem-cell transplantation and had an available 8/8 or 7/8 HLA-matched related donor. All patients received a conditioning regimen of fludarabine (40 mg/m(2) daily for 4 days) and busulfan (3.2 mg/kg daily for 2 days) and GVHD immunoprophylaxis of mycophenolate mofetil (1 g three times a day, days 0-28) and tacrolimus (0.03 mg/kg a day, titrated to a goal level of 8-12 ng/mL, starting day -3 until day 180). Vorinostat (either 100 mg or 200 mg, twice a day) was initiated 10 days before haemopoietic stem-cell transplantation until day 100. The primary endpoint was the cumulative incidence of grade 2-4 acute GVHD by day 100. This trial is registered with ClinicalTrials.gov, number NCT00810602. 50 patients were assessable for both toxic effects and response; eight additional patients were included in the analysis of toxic effects. All patients engrafted neutrophils and platelets at expected times after haemopoietic stem-cell transplantation. The cumulative incidence of grade 2-4 acute GVHD by day 100 was 22% (95% CI 13-36). The most common non-haematological adverse events included electrolyte disturbances (n=15), hyperglycaemia (11), infections (six), mucositis (four), and increased activity of liver enzymes (three). Non-symptomatic thrombocytopenia after engraftment was the most common haematological grade 3-4 adverse event (nine) but was transient and all cases resolved swiftly. Administration of vorinostat in combination with standard GVHD prophylaxis after related-donor reduced-intensity conditioning haemopoietic stem-cell transplantation is safe and is associated with a lower than expected incidence of severe acute GVHD. Future studies are needed to assess the effect of vorinostat for prevention of GVHD in broader settings of haemopoietic stem-cell transplantation. Merck, Leukemia and Lymphoma Society, National Institutes of Health, St Baldrick's Foundation, Michigan Institute for Clinical and Health Research. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brudno, Jennifer N; Somerville, Robert P T; Shi, Victoria; Rose, Jeremy J; Halverson, David C; Fowler, Daniel H; Gea-Banacloche, Juan C; Pavletic, Steven Z; Hickstein, Dennis D; Lu, Tangying L; Feldman, Steven A; Iwamoto, Alexander T; Kurlander, Roger; Maric, Irina; Goy, Andre; Hansen, Brenna G; Wilder, Jennifer S; Blacklock-Schuver, Bazetta; Hakim, Frances T; Rosenberg, Steven A; Gress, Ronald E; Kochenderfer, James N
2016-04-01
Progressive malignancy is the leading cause of death after allogeneic hematopoietic stem-cell transplantation (alloHSCT). After alloHSCT, B-cell malignancies often are treated with unmanipulated donor lymphocyte infusions (DLIs) from the transplant donor. DLIs frequently are not effective at eradicating malignancy and often cause graft-versus-host disease, a potentially lethal immune response against normal recipient tissues. We conducted a clinical trial of allogeneic T cells genetically engineered to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. Patients with B-cell malignancies that had progressed after alloHSCT received a single infusion of CAR T cells. No chemotherapy or other therapies were administered. The T cells were obtained from each recipient's alloHSCT donor. Eight of 20 treated patients obtained remission, which included six complete remissions (CRs) and two partial remissions. The response rate was highest for acute lymphoblastic leukemia, with four of five patients obtaining minimal residual disease-negative CR. Responses also occurred in chronic lymphocytic leukemia and lymphoma. The longest ongoing CR was more than 30 months in a patient with chronic lymphocytic leukemia. New-onset acute graft-versus-host disease after CAR T-cell infusion developed in none of the patients. Toxicities included fever, tachycardia, and hypotension. Peak blood CAR T-cell levels were higher in patients who obtained remissions than in those who did not. Programmed cell death protein-1 expression was significantly elevated on CAR T cells after infusion. Presence of blood B cells before CAR T-cell infusion was associated with higher postinfusion CAR T-cell levels. Allogeneic anti-CD19 CAR T cells can effectively treat B-cell malignancies that progress after alloHSCT. The findings point toward a future when antigen-specific T-cell therapies will play a central role in alloHSCT. © 2016 by American Society of Clinical Oncology.
Gary, Regina; Aigner, Michael; Moi, Stephanie; Schaffer, Stefanie; Gottmann, Anja; Maas, Stefanie; Zimmermann, Robert; Zingsem, Jürgen; Strobel, Julian; Mackensen, Andreas; Mautner, Josef; Moosmann, Andreas; Gerbitz, Armin
2018-05-09
A major complication after allogeneic hematopoietic stem cell transplantation (aSCT) is the reactivation of herpesviruses such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Both viruses cause significant mortality and compromise quality of life after aSCT. Preventive transfer of virus-specific T cells can suppress reactivation by re-establishing functional antiviral immune responses in immunocompromised hosts. We have developed a good manufacturing practice protocol to generate CMV/EBV-peptide-stimulated T cells from leukapheresis products of G-CSF mobilized and non-mobilized donors. Our procedure selectively expands virus-specific CD8+ und CD4+ T cells over 9 days using a generic pool of 34 CMV and EBV peptides that represent well-defined dominant T-cell epitopes with various HLA restrictions. For HLA class I, this set of peptides covers at least 80% of the European population. CMV/EBV-specific T cells were successfully expanded from leukapheresis material of both G-CSF mobilized and non-mobilized donors. The protocol allows administration shortly after stem cell transplantation (d30+), storage over liquid nitrogen for iterated applications, and protection of the stem cell donor by avoiding a second leukapheresis. Our protocol allows for rapid and cost-efficient production of T cells for early transfusion after aSCT as a preventive approach. It is currently evaluated in a phase I/IIa clinical trial.
Liao, Tian; Kaufmann, Andreas M; Qian, Xu; Sangvatanakul, Voramon; Chen, Chao; Kube, Tina; Zhang, Guoyou; Albers, Andreas E
2013-01-01
To explore cancer stem cell susceptibility to a host's cytotoxic T lymphocyte (CTL)-mediated immune response. We compared the susceptibility of putative CSC generated from cancer cell lines to immunologic recognition and killing by alloantigen-specific CD8(+) CTL. CSC-enriched spheroid culture-derived cells (SDC) exhibited higher expression of ALDH, ICAM1 and of stem/progenitor cell markers on all 3 tumor cell lines investigated and lower MHC class I on the cervical cancer cell line as compared to their monolayer-derived cells (MDC). The expression of ICAM1 and MHCI was upregulated by IFN-γ treatment. CSC populations were less sensitive to MHC class I-restricted alloantigen-specific CD8(+) CTL lysis as compared to matched MDC. IFN-γ pretreatment resulted in over-proportionally enhanced lysis of SDC. Finally, the subset of ALDH(high) expressing SDC presented more sensitivity toward CD8(+) CTL killing than the ALDH(low) SDC. Tumor therapy resistance has been attributed to cancer stem cells (CSC). We show in vitro susceptibility of CSC to CTL-mediated lysis. Immunotherapy targeting of ALDH(+) CSC may therefore be a promising approach. Our results and method may be helpful for the development and optimization of adjuvants, as here exemplified for INF-γ, for CSC-targeted vaccines, independent of the availability of CSC-specific antigens.
Electromechanical integration of cardiomyocytes derived from human embryonic stem cells.
Kehat, Izhak; Khimovich, Leonid; Caspi, Oren; Gepstein, Amira; Shofti, Rona; Arbel, Gil; Huber, Irit; Satin, Jonathan; Itskovitz-Eldor, Joseph; Gepstein, Lior
2004-10-01
Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.
Simple Signaling Molecules for Inductive Bone Regenerative Engineering
Nelson, Stephen J.; Deng, Meng; Sethuraman, Swaminathan; Doty, Stephen B.; Lo, Kevin W. H.; Khan, Yusuf M.; Laurencin, Cato T.
2014-01-01
With greater than 500,000 orthopaedic procedures performed in the United States each year requiring a bone graft, the development of novel graft materials is necessary. We report that some porous polymer/ceramic composite scaffolds possess intrinsic osteoinductivity as shown through their capacity to induce in vivo host osteoid mineralization and in vitro stem cell osteogenesis making them attractive synthetic bone graft substitutes. It was discovered that certain low crystallinity ceramics partially dissociate into simple signaling molecules (i.e., calcium and phosphate ions) that induce stem cells to endogenously produce their own osteoinductive proteins. Review of the literature has uncovered a variety of simple signaling molecules (i.e., gases, ions, and redox reagents) capable of inducing other desirable stem cell differentiation through endogenous growth factor production. Inductive simple signaling molecules, which we have termed inducerons, represent a paradigm shift in the field of regenerative engineering where they can be utilized in place of recombinant protein growth factors. PMID:25019622
Schuster, Friedhelm R; Meisel, Roland; Führer, Monika; Reuther, Susanne; Hauer, Julia; Tischer, Johanna; Feuchtinger, Tobias; Laws, Hans-Jürgen; Kolb, Hans-Jochem; Borkhardt, Arndt
2013-09-01
The treatment outcome of children with refractory acute leukaemia or relapse post-stem cell transplantation is dismal. We report 10 children (non-remission n = 7) who underwent a new haploidentical transplant approach utilizing unmanipulated bone marrow followed by CD6-depleted peripheral blood stem cells. Nine patients had successful engraftment and no evidence of leukaemia. Acute and chronic graft-versus-host-disease was observed in five and three patients, respectively; two patients died of treatment-related toxicity. Seven patients relapsed after 7 (range 3-34) months, however two patients are alive at 6·5 and 7·0 years. This approach provides anti-leukaemic activity even in heavily pre-treated children but long-term disease control requires further intervention. © 2013 John Wiley & Sons Ltd.
Paracrine Maturation and Migration of SH-SY5Y Cells by Dental Pulp Stem Cells.
Gervois, P; Wolfs, E; Dillen, Y; Hilkens, P; Ratajczak, J; Driesen, R B; Vangansewinkel, T; Bronckaers, A; Brône, B; Struys, T; Lambrichts, I
2017-06-01
Neurological disorders are characterized by neurodegeneration and/or loss of neuronal function, which cannot be adequately repaired by the host. Therefore, there is need for novel treatment options such as cell-based therapies that aim to salvage or reconstitute the lost tissue or that stimulate host repair. The present study aimed to evaluate the paracrine effects of human dental pulp stem cells (hDPSCs) on the migration and neural maturation of human SH-SY5Y neuroblastoma cells. The hDPSC secretome had a significant chemoattractive effect on SH-SY5Y cells as shown by a transwell assay. To evaluate neural maturation, SH-SY5Y cells were first induced toward neuronal cells, after which they were exposed to the hDPSC secretome. In addition, SH-SY5Y cells subjected to the hDPSC secretome showed increased neuritogenesis compared with nonexposed cells. Maturated cells were shown to increase immune reactivity for neuronal markers compared with controls. Ultrastructurally, retinoic acid (RA) signaling and subsequent exposure to the hDPSC secretome induced a gradual rise in metabolic activity and neuronal features such as multivesicular bodies and cytoskeletal elements associated with cellular communication. In addition, electrophysiological recordings of differentiating cells demonstrated a transition toward a neuronal electrophysiological profile based on the maximum tetrodotoxin (TTX)-sensitive, Na + current. Moreover, conditioned medium (CM)-hDPSC-maturated SH-SY5Y cells developed distinct features including, Cd 2+ -sensitive currents, which suggests that CM-hDPSC-maturated SH-SY5Y acquired voltage-gated Ca 2+ channels. The results reported in this study demonstrate the potential of hDPSCs to support differentiation and recruitment of cells with neuronal precursor characteristics in a paracrine manner. Moreover, this in vitro experimental design showed that the widely used SH-SY5Y cell line can improve and simplify the preclinical in vitro research on the molecular mechanisms of stem cell-mediated neuronal regeneration.
Bourkoula, Evgenia; Mangoni, Damiano; Ius, Tamara; Pucer, Anja; Isola, Miriam; Musiello, Daniela; Marzinotto, Stefania; Toffoletto, Barbara; Sorrentino, Marisa; Palma, Anita; Caponnetto, Federica; Gregoraci, Giorgia; Vindigni, Marco; Pizzolitto, Stefano; Falconieri, Giovanni; De Maglio, Giovanna; Pecile, Vanna; Ruaro, Maria Elisabetta; Gri, Giorgia; Parisse, Pietro; Casalis, Loredana; Scoles, Giacinto; Skrap, Miran; Beltrami, Carlo Alberto; Beltrami, Antonio Paolo; Cesselli, Daniela
2014-05-01
Translational medicine aims at transferring advances in basic science research into new approaches for diagnosis and treatment of diseases. Low-grade gliomas (LGG) have a heterogeneous clinical behavior that can be only partially predicted employing current state-of-the-art markers, hindering the decision-making process. To deepen our comprehension on tumor heterogeneity, we dissected the mechanism of interaction between tumor cells and relevant components of the neoplastic environment, isolating, from LGG and high-grade gliomas (HGG), proliferating stem cell lines from both the glioma stroma and, where possible, the neoplasm. We isolated glioma-associated stem cells (GASC) from LGG (n=40) and HGG (n=73). GASC showed stem cell features, anchorage-independent growth, and supported the malignant properties of both A172 cells and human glioma-stem cells, mainly through the release of exosomes. Finally, starting from GASC obtained from HGG (n=13) and LGG (n=12) we defined a score, based on the expression of 9 GASC surface markers, whose prognostic value was assayed on 40 subsequent LGG-patients. At the multivariate Cox analysis, the GASC-based score was the only independent predictor of overall survival and malignant progression free-survival. The microenvironment of both LGG and HGG hosts non-tumorigenic multipotent stem cells that can increase in vitro the biological aggressiveness of glioma-initiating cells through the release of exosomes. The clinical importance of this finding is supported by the strong prognostic value associated with the characteristics of GASC. This patient-based approach can provide a groundbreaking method to predict prognosis and to exploit novel strategies that target the tumor stroma. © 2013 AlphaMed Press.
Regenerative Endodontics: Barriers and Strategies for Clinical Translation
Kim, Sahng G.; Zhou, Jian; Ye, Ling; Cho, Shoko; Suzuki, Takahiro; Fu, Susan Y.; Yang, Rujing; Zhou, Xuedong; Mao, Jeremy J.
2014-01-01
SYNOPSIS Despite a great deal of enthusiasm and effort, regenerative endodontics has encountered substantial challenges towards clinical translation. Recent adoption by the American Dental Association (ADA) of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for the majority of endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other organ systems has not led to clinical translation in regeneration endodontics. Dental pulp stem cells may appear to be a priori choice for dental pulp regeneration. However, dental pulp stem cells may not be available in a patient who is in need of pulp regeneration. Even if dental pulp stem cells are available autologously or perhaps allogeneically, one must address a multitude of scientific, regulatory and commercialization barriers, and unless these issues are resolved, transplantation of dental pulp stem cells will remain a scientific exercise, rather than a clinical reality. Recent work using novel biomaterial scaffolds and growth factors that orchestrate the homing of host endogenous cells represents a departure from traditional cell transplantation approaches and may accelerate clinical translation. Given the functions and scale of dental pulp and dentin, regenerative endodontics is poised to become one of the early biological solutions in regenerative dental medicine. PMID:22835543
2018-02-13
Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Aggressive Non-Hodgkin Lymphoma; Chronic Lymphocytic Leukemia; Diffuse Large B-Cell Lymphoma; Hematopoietic and Lymphoid Cell Neoplasm; Indolent Non-Hodgkin Lymphoma; Mantle Cell Lymphoma; Myelodysplastic Syndrome; Myeloproliferative Neoplasm; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Plasma Cell Myeloma; Refractory Chronic Lymphocytic Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Hodgkin Lymphoma; Small Lymphocytic Lymphoma; T-Cell Chronic Lymphocytic Leukemia; Waldenstrom Macroglobulinemia
Concepts, Utility and Limitations of Cord Blood Banking: What Clinicians Need to Know.
Narayanan, Dhanya Lakshmi; Phadke, Shubha R
2018-03-20
Stem cell transplantation and cord blood banking have received much popularity among general public and medical professionals in the recent past. But information about the scientific aspects, its utility and limitations is incomplete amongst laypersons as well as many medical practitioners. Stem cells differ from all other types of cells in the human body because of their ability to multiply in order to self perpetuate and differentiate into specialized cells. Stems cells could be totipotent, multipotent, pluripotent, oligopotent or unipotent depending on the type of cells that can arise or differentiate from them. Umbilical cord blood serves as a potent source of hematopoeitic stem cells and is being used to treat various disorders like blood cancers, hemoglobinopathies and immunodeficiency disorders for which hematological stem cell transplantation is the standard of care. Cord blood can be collected at ease, without any major complications and has a lower incidence of graft vs. host reaction compared to bone marrow cells or peripheral blood cells. Both public and private banks have been established for collection and storage of umbilical cord blood. However, false claims and misleading commercial advertisements about the use of umbilical cord blood stem cells for the treatment of a variety of conditions ranging from neuromuscular disorders to cosmetic benefits are widespread and create unrealistic expectations in laypersons and clinicians. Many clinicians and laypersons are unaware of the limitations of cord blood banking, as in treating a genetic disorder by autologous cord blood transplant. Knowledge and awareness about the scientific indications of cord blood stem cell transplantation and realistic expectations about the utility of cord blood among medical practitioners are essential for providing accurate information to laypersons before they decide to preserve umbilical cord blood in private banks and thus prevent malpractice.
Panch, Sandhya R; Szymanski, James; Savani, Bipin N; Stroncek, David F
2017-08-01
Bone marrow (BM) aspirates, mobilized peripheral blood, and umbilical cord blood (UCB) have developed as graft sources for hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation and other cellular therapeutics. Individualized techniques are necessary to enhance graft HSPC yields and cell quality from each graft source. BM aspirates yield adequate CD34 + cells but can result in relative delays in engraftment. Granulocyte colony-stimulating factor (G-CSF)-primed BM HSPCs may facilitate faster engraftment while minimizing graft-versus-host disease in certain patient subsets. The levels of circulating HSPCs are enhanced using mobilizing agents, such as G-CSF and/or plerixafor, which act via the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 axis. Alternate niche pathway mediators, including very late antigen-4/vascular cell adhesion molecule-1, heparan sulfate proteoglycans, parathyroid hormone, and coagulation cascade intermediates, may offer promising alternatives for graft enhancement. UCB grafts have been expanded ex vivo with cytokines, notch-ligand, or mesenchymal stromal cells, and most studies demonstrated greater quantities of CD34 + cells ex vivo and improved short-term engraftment. No significant changes were observed in long-term repopulating potential or in patient survival. Early phase clinical trials using nicotinamide and StemReginin1 may offer improved short- and long-term repopulating ability. Breakthroughs in genome editing and stem cell reprogramming technologies may hasten the generation of pooled, third-party HSPC grafts. This review elucidates past, present, and potential future approaches to HSPC graft optimization. Published by Elsevier Inc.
A GRFa2/Prop1/stem (GPS) cell niche in the pituitary.
Garcia-Lavandeira, Montse; Quereda, Víctor; Flores, Ignacio; Saez, Carmen; Diaz-Rodriguez, Esther; Japon, Miguel A; Ryan, Aymee K; Blasco, Maria A; Dieguez, Carlos; Malumbres, Marcos; Alvarez, Clara V
2009-01-01
The adult endocrine pituitary is known to host several hormone-producing cells regulating major physiological processes during life. Some candidates to progenitor/stem cells have been proposed. However, not much is known about pituitary cell renewal throughout life and its homeostatic regulation during specific physiological changes, such as puberty or pregnancy, or in pathological conditions such as tumor development. We have identified in rodents and humans a niche of non-endocrine cells characterized by the expression of GFRa2, a Ret co-receptor for Neurturin. These cells also express b-Catenin and E-cadherin in an oriented manner suggesting a planar polarity organization for the niche. In addition, cells in the niche uniquely express the pituitary-specific transcription factor Prop1, as well as known progenitor/stem markers such as Sox2, Sox9 and Oct4. Half of these GPS (GFRa2/Prop1/Stem) cells express S-100 whereas surrounding elongated cells in contact with GPS cells express Vimentin. GFRa2+-cells form non-endocrine spheroids in culture. These spheroids can be differentiated to hormone-producing cells or neurons outlining the neuroectoderm potential of these progenitors. In vivo, GPSs cells display slow proliferation after birth, retain BrdU label and show long telomeres in its nuclei, indicating progenitor/stem cell properties in vivo. Our results suggest the presence in the adult pituitary of a specific niche of cells characterized by the expression of GFRa2, the pituitary-specific protein Prop1 and stem cell markers. These GPS cells are able to produce different hormone-producing and neuron-like cells and they may therefore contribute to postnatal pituitary homeostasis. Indeed, the relative abundance of GPS numbers is altered in Cdk4-deficient mice, a model of hypopituitarism induced by the lack of this cyclin-dependent kinase. Thus, GPS cells may display functional relevance in the physiological expansion of the pituitary gland throughout life as well as protection from pituitary disease.
A GRFa2/Prop1/Stem (GPS) Cell Niche in the Pituitary
Garcia-Lavandeira, Montse; Quereda, Víctor; Flores, Ignacio; Saez, Carmen; Diaz-Rodriguez, Esther; Japon, Miguel A.; Ryan, Aymee K.; Blasco, Maria A.; Dieguez, Carlos; Malumbres, Marcos; Alvarez, Clara V.
2009-01-01
Background The adult endocrine pituitary is known to host several hormone-producing cells regulating major physiological processes during life. Some candidates to progenitor/stem cells have been proposed. However, not much is known about pituitary cell renewal throughout life and its homeostatic regulation during specific physiological changes, such as puberty or pregnancy, or in pathological conditions such as tumor development. Principal Findings We have identified in rodents and humans a niche of non-endocrine cells characterized by the expression of GFRa2, a Ret co-receptor for Neurturin. These cells also express b-Catenin and E-cadherin in an oriented manner suggesting a planar polarity organization for the niche. In addition, cells in the niche uniquely express the pituitary-specific transcription factor Prop1, as well as known progenitor/stem markers such as Sox2, Sox9 and Oct4. Half of these GPS (GFRa2/Prop1/Stem) cells express S-100 whereas surrounding elongated cells in contact with GPS cells express Vimentin. GFRa2+-cells form non-endocrine spheroids in culture. These spheroids can be differentiated to hormone-producing cells or neurons outlining the neuroectoderm potential of these progenitors. In vivo, GPSs cells display slow proliferation after birth, retain BrdU label and show long telomeres in its nuclei, indicating progenitor/stem cell properties in vivo. Significance Our results suggest the presence in the adult pituitary of a specific niche of cells characterized by the expression of GFRa2, the pituitary-specific protein Prop1 and stem cell markers. These GPS cells are able to produce different hormone-producing and neuron-like cells and they may therefore contribute to postnatal pituitary homeostasis. Indeed, the relative abundance of GPS numbers is altered in Cdk4-deficient mice, a model of hypopituitarism induced by the lack of this cyclin-dependent kinase. Thus, GPS cells may display functional relevance in the physiological expansion of the pituitary gland throughout life as well as protection from pituitary disease. PMID:19283075
The journey of islet cell transplantation and future development.
Gamble, Anissa; Pepper, Andrew R; Bruni, Antonio; Shapiro, A M James
2018-03-04
Intraportal islet transplantation has proven to be efficacious in preventing severe hypoglycemia and restoring insulin independence in selected patients with type 1 diabetes. Multiple islet infusions are often required to achieve and maintain insulin independence. Many challenges remain in clinical islet transplantation, including substantial islet cell loss early and late after islet infusion. Contributions to graft loss include the instant blood-mediated inflammatory reaction, potent host auto- and alloimmune responses, and beta cell toxicity from immunosuppressive agents. Protective strategies are being tested to circumvent several of these events including exploration of alternative transplantation sites, stem cell-derived insulin producing cell therapies, co-transplantation with mesenchymal stem cells or exploration of novel immune protective agents. Herein, we provide a brief introduction and history of islet cell transplantation, limitations associated with this procedure and methods to alleviate islet cell loss as a means to improve engraftment outcomes.
Cardona, Diana M; Detweiler, Claire J; Shealy, Michael J; Sung, Anthony D; Wild, Daniel M; Poleski, Martin H; Balmadrid, Bryan L; Cirrincione, Constance T; Howell, David N; Sullivan, Keith M
2018-04-26
- Graft-versus-host disease of the gastrointestinal tract is a common complication of hematopoietic stem cell transplant associated with significant morbidity and mortality. Accurate diagnosis can be difficult and is a truly clinicopathologic endeavor. - To assess the diagnostic sensitivity of gastrointestinal graft-versus-host disease using the 2015 National Institutes of Health (NIH) histology consensus guidelines and to analyze histologic findings that support the guidelines. - Patients with allogeneic hematopoietic stem cell transplants were identified via a retrospective search of our electronic medical record from January 1, 2005, to January 1, 2011. Endoscopies with available histology were reviewed by 2 pathologists using the 2015 NIH guidelines. The clinical diagnosis was used as the gold standard. A nontransplant set of endoscopic biopsies was used as a control. - Of the 250 total endoscopies, 217 (87%) had a clinical diagnosis of gastrointestinal graft-versus-host disease. Use of the NIH consensus guidelines showed a sensitivity of 86% and a specificity of 65%. Thirty-seven of 58 (64%) cases with an initial false-negative histopathologic diagnosis were diagnosed as graft-versus-host disease on our review. - Use of the NIH histology consensus guidelines results in a high sensitivity and specificity, thereby decreasing false-negatives. Additionally, use of the NIH guidelines aids in creating uniformity and diagnostic clarity. Correlation with clinical and laboratory findings is critical in evaluating the differential diagnosis and to avoid false-positives. As expected, increased apoptosis with decreased inflammation was associated with a pathologic diagnosis of graft-versus-host disease and supports the NIH guidelines.
Zhan, Weiqing; Tan, Shaun S; Lu, Feng
2016-08-01
In reconstructive surgery, there is a clinical need for adequate implants to repair soft tissue defects caused by traumatic injury, tumor resection, or congenital abnormalities. Adipose tissue engineering may provide answers to this increasing demand. This study comprehensively reviews current approaches to adipose tissue engineering, detailing different cell carriers under investigation, with a special focus on the application of adipose-derived stem cells (ASCs). ASCs act as building blocks for new tissue growth and as modulators of the host response. Recent studies have also demonstrated that the implantation of a hollow protected chamber, combined with a vascular pedicle within the fat flaps provides blood supply and enables the growth of large-volume of engineered soft tissue. Conceptually, it would be of value to co-regulate this unique chamber model with adipose-derived stem cells to obtain a greater volume of soft tissue constructs for clinical use. Our review provides a cogent update on these advances and details the generation of possible fat substitutes.
Mesenchymal stem cell-derived microparticles: a promising therapeutic strategy.
Tan, Xi; Gong, Yong-Zhen; Wu, Ping; Liao, Duan-Fang; Zheng, Xi-Long
2014-08-18
Mesenchymal stem cells (MSCs) are multipotent stem cells that give rise to various cell types of the mesodermal germ layer. Because of their unique ability to home in on injured and cancerous tissues, MSCs are of great potential in regenerative medicine. MSCs also contribute to reparative processes in different pathological conditions, including cardiovascular diseases and cancer. However, many studies have shown that only a small proportion of transplanted MSCs can actually survive and be incorporated into host tissues. The effects of MSCs cannot be fully explained by their number. Recent discoveries suggest that microparticles (MPs) derived from MSCs may be important for the physiological functions of their parent. Though the physiological role of MSC-MPs is currently not well understood, inspiring results indicate that, in tissue repair and anti-cancer therapy, MSC-MPs have similar pro-regenerative and protective properties as their cellular counterparts. Thus, MSC-MPs represent a promising approach that may overcome the obstacles and risks associated with the use of native or engineered MSCs.
Mesenchymal Stem Cell-Derived Microparticles: A Promising Therapeutic Strategy
Tan, Xi; Gong, Yong-Zhen; Wu, Ping; Liao, Duan-Fang; Zheng, Xi-Long
2014-01-01
Mesenchymal stem cells (MSCs) are multipotent stem cells that give rise to various cell types of the mesodermal germ layer. Because of their unique ability to home in on injured and cancerous tissues, MSCs are of great potential in regenerative medicine. MSCs also contribute to reparative processes in different pathological conditions, including cardiovascular diseases and cancer. However, many studies have shown that only a small proportion of transplanted MSCs can actually survive and be incorporated into host tissues. The effects of MSCs cannot be fully explained by their number. Recent discoveries suggest that microparticles (MPs) derived from MSCs may be important for the physiological functions of their parent. Though the physiological role of MSC-MPs is currently not well understood, inspiring results indicate that, in tissue repair and anti-cancer therapy, MSC-MPs have similar pro-regenerative and protective properties as their cellular counterparts. Thus, MSC-MPs represent a promising approach that may overcome the obstacles and risks associated with the use of native or engineered MSCs. PMID:25196436
Embryonic Stem Cell Therapy of Heart Failure in Genetic Cardiomyopathy
Yamada, Satsuki; Nelson, Timothy J.; Crespo-Diaz, Ruben J.; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre
2009-01-01
Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K+ (KATP) channel sub-units. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional KATP channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. PMID:18669912
Embryonic stem cell therapy of heart failure in genetic cardiomyopathy.
Yamada, Satsuki; Nelson, Timothy J; Crespo-Diaz, Ruben J; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre
2008-10-01
Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K(+) (K(ATP)) channel subunits. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional K(ATP) channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. Disclosure of potential conflicts of interest is found at the end of this article.
Wakeman, Dustin R; Redmond, D Eugene; Dodiya, Hemraj B; Sladek, John R; Leranth, Csaba; Teng, Yang D; Samulski, R Jude; Snyder, Evan Y
2014-06-01
Transplanted multipotent human fetal neural stem cells (hfNSCs) significantly improved the function of parkinsonian monkeys in a prior study primarily by neuroprotection, with only 3%-5% of cells expressing a dopamine (DA) phenotype. In this paper, we sought to determine whether further manipulation of the neural microenvironment by overexpression of a developmentally critical molecule, glial cell-derived neurotrophic factor (GDNF), in the host striatum could enhance DA differentiation of hfNSCs injected into the substantia nigra and elicit growth of their axons to the GDNF-expressing target. hfNSCs were transplanted into the midbrain of 10 green monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. GDNF was delivered concomitantly to the striatum via an adeno-associated virus serotype 5 vector, and the fate of grafted cells was assessed after 11 months. Donor cells remained predominantly within the midbrain at the injection site and sprouted numerous neurofilament-immunoreactive fibers that appeared to course rostrally toward the striatum in parallel with tyrosine hydroxylase-immunoreactive fibers from the host substantia nigra but did not mature into DA neurons. This work suggests that hfNSCs can generate neurons that project long fibers in the adult primate brain. However, in the absence of region-specific signals and despite GDNF overexpression, hfNSCs did not differentiate into mature DA neurons in large numbers. It is encouraging, however, that the adult primate brain appeared to retain axonal guidance cues. We believe that transplantation of stem cells, specifically instructed ex vivo to yield DA neurons, could lead to reconstruction of some portion of the nigrostriatal pathway and prove beneficial for the parkinsonian condition. ©AlphaMed Press.
Buxbaum, Nataliya P.; Farthing, Donald E.; Maglakelidze, Natella; Lizak, Martin; Merkle, Hellmut; Carpenter, Andrea C.; Oliver, Brittany U.; Kapoor, Veena; Castro, Ehydel; Swan, Gregory A.; dos Santos, Liliane M.; Bouladoux, Nicolas J.; Bare, Catherine V.; Flomerfelt, Francis A.; Eckhaus, Michael A.; Telford, William G.; Belkaid, Yasmine; Bosselut, Remy J.; Gress, Ronald E.
2017-01-01
Hematopoietic stem cell transplantation (HSCT) offers a cure for cancers that are refractory to chemotherapy and radiation. Most HSCT recipients develop chronic graft-versus-host disease (cGVHD), a systemic alloimmune attack on host organs. Diagnosis is based on clinical signs and symptoms, as biopsies are risky. T cells are central to the biology of cGVHD. We found that a low Treg/CD4+ T effector memory (Tem) ratio in circulation, lymphoid, and target organs identified early and established mouse cGVHD. Using deuterated water labeling to measure multicompartment in vivo kinetics of these subsets, we show robust Tem and Treg proliferation in lymphoid and target organs, while Tregs undergo apoptosis in target organs. Since deuterium enrichment into DNA serves as a proxy for cell proliferation, we developed a whole-body clinically relevant deuterium MRI approach to nonradioactively detect cGVHD and potentially allow imaging of other diseases characterized by rapidly proliferating cells. PMID:28614804
Translating G-CSF as an adjunct therapy to stem cell transplantation for stroke
dela Peña, Ike; Borlongan, Cesar V.
2015-01-01
Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis and produce behavioral and functional improvement through their “bystander effects.” Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., cotransplantation of stem cells or adjunct treatment with pharmacological agents and substrates, which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments, and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of co-treatment with granulocyte-colony stimulating factor (G-CSF) and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here, we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of G-CSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells (EPCs) , as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment. Further studies are also required to determine safety and efficacy of this intervention in both preclinical and clinical stroke studies. PMID:26482176
Three-dimensional cell culture models for investigating human viruses.
He, Bing; Chen, Guomin; Zeng, Yi
2016-10-01
Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.
Marrow transplantation in the treatment of a murine heritable hemolytic anemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, J.E.; McFarland-Starr, E.C.
1989-05-15
Mice with hemolytic anemia, sphha/sphha, have extremely fragile RBCs with a lifespan of approximately one day. Neither splenectomy nor simple transplantation of normal marrow after lethal irradiation cures the anemia but instead causes rapid deterioration and death of the mutant unless additional prophylactic procedures are used. In this report, we show that normal marrow transplantation preceded by sublethal irradiation increases but does not normalize RBC count. The mutant RBCs but not all the WBCs are replaced by donor cells. Splenectomy of the improved recipient causes a dramatic decrease in RBC count, indicating that the mutant spleen is a site ofmore » donor-origin erythropoiesis as well as of RBC destruction. Injections of iron dextran did not improve RBC counts. Transplantation of primary recipient marrow cells into a secondary host with a heritable stem cell deficiency (W/Wv) corrects the defect caused by residence of the normal cells in the sphha/sphha host. The original +/+ donor cells replace the RBCs of the secondary host, and the RBC count is normalized. Results indicate that the environment in the sphha/sphha host is detrimental to normal (as well as mutant) erythroid cells but the restriction is not transmitted.« less
NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.
Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo
2016-01-01
Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.
Human Muse Cells Reconstruct Neuronal Circuitry in Subacute Lacunar Stroke Model.
Uchida, Hiroki; Niizuma, Kuniyasu; Kushida, Yoshihiro; Wakao, Shohei; Tominaga, Teiji; Borlongan, Cesario V; Dezawa, Mari
2017-02-01
Multilineage-differentiating stress-enduring (muse) cells are endogenous nontumorigenic stem cells with pluripotency harvestable as pluripotent marker SSEA-3 + cells from the bone marrow from cultured bone marrow-mesenchymal stem cells. After transplantation into neurological disease models, muse cells exert repair effects, but the exact mechanism remains inconclusive. We conducted mechanism-based experiments by transplanting serum/xeno-free cultured-human bone marrow-muse cells into the perilesion brain at 2 weeks after lacunar infarction in immunodeficient mice. Approximately 28% of initially transplanted muse cells remained in the host brain at 8 weeks, spontaneously differentiated into cells expressing NeuN (≈62%), MAP2 (≈30%), and GST-pi (≈12%). Dextran tracing revealed connections between host neurons and muse cells at the lesioned motor cortex and the anterior horn. Muse cells extended neurites through the ipsilateral pyramidal tract, crossed to contralateral side, and reached to the pyramidal tract in the dorsal funiculus of spinal cord. Muse-transplanted stroke mice displayed significant recovery in cylinder tests, which was reverted by the human-selective diphtheria toxin. At 10 months post-transplantation, human-specific Alu sequence was detected only in the brain but not in other organs, with no evidence of tumor formation. Transplantation at the delayed subacute phase showed muse cells differentiated into neural cells, facilitated neural reconstruction, improved functions, and displayed solid safety outcomes over prolonged graft maturation period, indicating their therapeutic potential for lacunar stroke. © 2016 The Authors.
Graft-versus-leukemia effects of transplantation and donor lymphocytes.
Kolb, Hans-Jochem
2008-12-01
Allogeneic transplantation of hematopoietic cells is an effective treatment of leukemia, even in advanced stages. Allogeneic lymphocytes produce a strong graft-versus-leukemia (GVL) effect, but the beneficial effect is limited by graft-versus-host disease (GVHD). Depletion of T cells abrogates GVHD and GVL effects. Delayed transfusion of donor lymphocytes into chimeras after T cell-depleted stem cell transplantation produces a GVL effect without necessarily producing GVHD. Chimerism and tolerance provide a platform for immunotherapy using donor lymphocytes. The allogeneic GVL effects vary from one disease to another, the stage of the disease, donor histocompatibility, the degree of chimerism, and additional treatment. Immunosuppressive therapy before donor lymphocyte transfusions may augment the effect as well as concomitant cytokine treatment. Possible target antigens are histocompatibility antigens and tumor-associated antigens. Immune escape of tumor cells and changes in the reactivity of T cells are to be considered. Durable responses may be the result of the elimination of leukemia stem cells or the establishment of a durable immune control on their progeny. Recently, we have learned from adoptive immunotherapy of viral diseases and HLA-haploidentical stem cell transplantation that T-cell memory may be essential for the effective treatment of leukemia and other malignancies.
Immune evasion through competitive inhibition: the shielding effect of cancer non-stem cells.
Kareva, Irina
2015-01-07
It has been recently proposed that the two emerging hallmarks of cancer, namely altered glucose metabolism and immune evasion, may in fact be fundamentally linked. This connection comes from up-regulation of glycolysis by tumor cells, which can lead to active competition for resources in the tumor microenvironment between tumor and immune cells. Here it is further proposed that cancer stem cells (CSCs) can circumvent the anti-tumor immune response by creating a "protective shield" of non-stem cancer cells around them. This shield can protect the CSCs both by creating a physical barrier between them and cytotoxic lymphocytes (CTLs), and by promoting competition for the common resources, such as glucose, between non-stem cancer cells and CTLs. The implications of this hypothesis are investigated using an agent-based model, leading to a prediction that relative CSC to non-CSC ratio will vary depending on the strength of the host immune response. A discussion of possible therapeutic approaches concludes the paper, suggesting that a chemotherapeutic regimen consisting of regular pulsed doses, i.e., metronomic chemotherapy, would yield the best clinical outcome by removing the "protective shield" and thus allowing CTLs to most effectively reach and eliminate CSCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Madej, Monika J.; Taggart, Mary; Gautier, Philippe; Garcia-Perez, Jose Luis; Meehan, Richard R.; Adams, Ian R.
2012-01-01
Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells. PMID:22570599
Waller, Edmund K.; Logan, Brent R.; Harris, Wayne A.C.; Devine, Steven M.; Porter, David L.; Mineishi, Shin; McCarty, John M.; Gonzalez, Corina E.; Spitzer, Thomas R.; Krijanovski, Oleg I.; Linenberger, Michael L.; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L.; Anasetti, Claudio
2014-01-01
Purpose To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor–mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Patients and Methods Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Results Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8+ T cells (CD8Tns), or naïve CD4+ T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Conclusion Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. PMID:24982459
Waller, Edmund K; Logan, Brent R; Harris, Wayne A C; Devine, Steven M; Porter, David L; Mineishi, Shin; McCarty, John M; Gonzalez, Corina E; Spitzer, Thomas R; Krijanovski, Oleg I; Linenberger, Michael L; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L; Anasetti, Claudio
2014-08-01
To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor-mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8(+) T cells (CD8Tns), or naïve CD4(+) T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. © 2014 by American Society of Clinical Oncology.
Wang, Yue-Chun; Zhang, Yuan
2008-06-25
Strong proliferative capacity and the ability to differentiate into the derivative cell types of three embryonic germ layers are the two important characteristics of embryonic stem cells. To study whether the mesenchymal stem cells from human fetal bone marrow (hfBM-MSCs) possess these embryonic stem cell-like biological characteristics, hfBM-MSCs were isolated from bone barrows and further purified according to the different adherence of different kinds of cells to the wall of culture flask. The cell cycle of hfBM-MSCs and MSC-specific surface markers such as CD29, CD44, etc were identified using flow cytometry. The expressions of human telomerase reverse transcriptase (hTERT), the embryonic stem cell-specific antigens, such as Oct4 and SSEA-4 were detected with immunocytochemistry at the protein level and were also tested by RT-PCR at the mRNA level. Then, hfBM-MSCs were induced to differentiate toward neuron cells, adipose cells, and islet B cells under certain conditions. It was found that 92.3% passage-4 hfBM-MSCs and 96.1% passage-5 hfBM-MSCs were at G(0)/G(1) phase respectively. hfBM-MSCs expressed CD44, CD106 and adhesion molecule CD29, but not antigens of hematopoietic cells CD34 and CD45, and almost not antigens related to graft-versus-host disease (GVHD), such as HLA-DR, CD40 and CD80. hfBM-MSCs expressed the embryonic stem cell-specific antigens such as Oct4, SSEA-4, and also hTERT. Exposure of these cells to various inductive agents resulted in morphological changes towards neuron-like cells, adipose-like cells, and islet B-like cells and they were tested to be positive for related characteristic markers. These results suggest that there are plenty of MSCs in human fetal bone marrow, and hfBM-MSCs possess the embryonic stem cell-like biological characteristics, moreover, they have a lower immunogenic nature. Thus, hfBM-MSCs provide an ideal source for tissue engineering and cellular therapeutics.
Fibrin hydrogels to deliver dental stem cells of the apical papilla for regenerative medicine.
Germain, Loïc; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Jacobs, Damien; Vandermeulen, Gaëlle; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne
2015-01-01
Evaluation of survival, proliferation and neurodifferentiation of dental stem cells from the apical papilla (SCAP) in fibrin hydrogels. We hypothesized that fibrin composition will influence cell behavior. Modulus, pore and fiber size were measured. SCAP in vitro viability, proliferation and neural differentiation, as well as in vivo proliferation and angiogenesis were studied. Hydrogel moduli were influenced by fibrin formulation but not hydrogel morphology, SCAP in vitro viability and proliferation. In total 60% of SCAP expressed PanNeurofilament in vitro without induction in Fibrinogen50-Thrombin10. SCAP proliferated when implanted in vivo and stimulated host endothelial cell infiltration. Fibrinogen30-Thrombin10 or Thrombin50 would be more favorable to in vitro SCAP viability and in vivo proliferation, while Fibrinogen 50-Thrombin50 would be more adapted to neurodifferentiation.
Gut microbiota injury in allogeneic haematopoietic stem cell transplantation.
Shono, Yusuke; van den Brink, Marcel R M
2018-05-01
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is considered to be the strongest curative immunotherapy for various malignancies (primarily, but not limited to, haematologic malignancies). However, application of allo-HSCT is limited owing to its life-threatening major complications, such as graft-versus-host disease (GVHD), relapse and infections. Recent advances in large-scale DNA sequencing technology have facilitated rapid identification of the microorganisms that make up the microbiota and evaluation of their interactions with host immunity in various diseases, including cancer. This has resulted in renewed interest regarding the role of the intestinal flora in patients with haematopoietic malignancies who have received an allo-HSCT and in whether the microbiota affects clinical outcomes, including GVHD, relapse, infections and transplant-related mortality. In this Review, we discuss the potential role of intestinal microbiota in these major complications after allo-HSCT, summarize clinical trials evaluating the microbiota in patients who have received allo-HSCT and discuss how further studies of the microbiota could inform the development of strategies that improve outcomes of allo-HSCT.
Thyagarajan, Bhaskar; Scheyhing, Kelly; Xue, Haipeng; Fontes, Andrew; Chesnut, Jon; Rao, Mahendra; Lakshmipathy, Uma
2009-03-01
Stable expression of transgenes in stem cells has been a challenge due to the nonavailability of efficient transfection methods and the inability of transgenes to support sustained gene expression. Several methods have been reported to stably modify both embryonic and adult stem cells. These methods rely on integration of the transgene into the genome of the host cell, which could result in an expression pattern dependent on the number of integrations and the genomic locus of integration. To overcome this issue, site-specific integration methods mediated by integrase, adeno-associated virus or via homologous recombination have been used to generate stable human embryonic stem cell (hESC) lines. In this study, we describe a vector that is maintained episomally in hESCs. The vector used in this study is based on components derived from the Epstein-Barr virus, containing the Epstein-Barr virus nuclear antigen 1 expression cassette and the OriP origin of replication. The vector also expresses the drug-resistance marker gene hygromycin, which allows for selection and long-term maintenance of cells harboring the plasmid. Using this vector system, we show sustained expression of green fluorescent protein in undifferentiated hESCs and their differentiating embryoid bodies. In addition, the stable hESC clones show comparable expression with and without drug selection. Consistent with this observation, bulk-transfected adipose tissue-derived mesenchymal stem cells showed persistent marker gene expression as they differentiate into adipocytes, osteoblasts and chondroblasts. Episomal vectors offer a fast and efficient method to create hESC reporter lines, which in turn allows one to test the effect of overexpression of various genes on stem cell growth, proliferation and differentiation.
Wang, Yunfang; Lanzoni, Giacomo; Carpino, Guido; Cui, Cai-Bin; Dominguez-Bendala, Juan; Wauthier, Eliane; Cardinale, Vincenzo; Oikawa, Tsunekazu; Pileggi, Antonello; Gerber, David; Furth, Mark E.; Alvaro, Domenico; Gaudio, Eugenio; Inverardi, Luca; Reid, Lola M.
2013-01-01
Peribiliary glands (PBGs) in bile duct walls, and pancreatic duct glands (PDGs) associated with pancreatic ducts, in humans of all ages, contain a continuous, ramifying network of cells in overlapping maturational lineages. We show that proximal (PBGs)-to-distal (PDGs) maturational lineages start near the duodenum with cells expressing markers of pluripotency (NANOG,OCT4,SOX2), proliferation (Ki67), self-replication (SALL4), and early hepato-pancreatic commitment (SOX9,SOX17,PDX1,LGR5), transitioning to PDG cells with no expression of pluripotency or self-replication markers, maintenance of pancreatic genes (PDX1), and expression of markers of pancreatic endocrine maturation (NGN3,MUC6,insulin). Radial-axis lineages start in PBGs near the ducts’ fibromuscular layers with stem cells and end at the ducts’ lumens with cells devoid of stem cell traits and positive for pancreatic endocrine genes. Biliary tree-derived cells behaved as stem cells in culture under expansion conditions, culture plastic and serum-free Kubota’s Medium, proliferating for months as undifferentiated cells, whereas pancreas-derived cells underwent only ∼8-10 divisions, then partially differentiated towards an islet fate. Biliary tree-derived cells proved precursors of pancreas’ committed progenitors. Both could be driven by 3-dimensional conditions, islet-derived matrix components and a serum-free, hormonally defined medium for an islet fate (HDM-P), to form spheroids with ultrastructural, electrophysiological and functional characteristics of neoislets, including glucose regulatability. Implantation of these neoislets into epididymal fat pads of immuno-compromised mice, chemically rendered diabetic, resulted in secretion of human C-peptide, regulatable by glucose, and able to alleviate hyperglycemia in hosts. The biliary tree-derived stem cells and their connections to pancreatic committed progenitors constitute a biological framework for life-long pancreatic organogenesis. PMID:23847135
NASA Astrophysics Data System (ADS)
Weber, C.; Pohl, S.; Poertner, R.; Pino-Grace, Pablo; Freimark, D.; Wallrapp, C.; Geigle, P.; Czermak, P.
Cell based therapy promises the treatment of many diseases like diabetes mellitus, Parkinson disease or stroke. Microencapsulation of the cells protects them against host-vs-graft reactions and thus enables the usage of allogenic cell lines for the manufacturing of cell therapeutic implants. The production process of such implants consists mainly of the three steps expansion of the cells, encapsulation of the cells, and cultivation of the encapsulated cells in order to increase their vitality and thus quality. This chapter deals with the development of fixed-bed bioreactor-based cultivation procedures used in the first and third step of production. The bioreactor system for the expansion of the stem cell line (hMSC-TERT) is based on non-porous glass spheres, which support cell growth and harvesting with high yield and vitality. The cultivation process for the spherical cell based implants leads to an increase of vitality and additionally enables the application of a medium-based differentiation protocol.
Mok, Hoyan
1995-01-01
Mouse embryonic stem (ES) cells in culture can differentiate into late stages of many lineage-committed precursor cells. Under appropriate organ-culture conditions, ES cels differentiate into lymphoidlike cells at a stage equivalent to lymphoid cells found in fetal liver. These hematopoietic precursors are located in cup-shaped structures found in some embryoid bodies; we called such embryoid bodies “ES fetuses.” In this study, we have followed the maturation of hematopoietic cells after implantation of ES fetuses into nude mice for 3 weeks. ES-cell-derived lymphoid cells-pre-B cells, mature B cells, and mature T cells were found in all lymphoid organs. Interestingly, there was also an increase of T cells of host origin. Because native nude mouse lack thymus, these T cells might be educated by thymuslike epithelium generated from ES fetuses. Practical applications of this combined in vitro and in vivo system are discussed. PMID:9700357
Baugh, Katherine A; Tzannou, Ifigeneia; Leen, Ann M
2018-05-09
Allogeneic hematopoietic stem cell transplantation has proven curative for a range of malignant and nonmalignant disorders. However, the clinical success of this therapy is marred by the morbidity associated with viral infections, which are frequent (cytomegalovirus 15.6-28%, adenovirus 3-21%, BK virus 18.5-20.7%) post-transplant. These infections occur as a consequence of transplant conditioning regimens designed to eliminate not only malignant cells but also host immune cells that might interfere with stem cell engraftment. The result is a transient period of immune compromise when hematopoietic stem cell transplant recipients are at risk of infectious complications associated with both latent (cytomegalovirus, Epstein-Barr virus, BK virus, human herpes virus 6, herpes simplex virus, varicella-zoster virus) and community-acquired viruses including adenovirus, respiratory syncytial virus, and parainfluenza virus. Current standard of care for many of these infections involves pharmacologic agents, which are often ineffective and associated with side effects including nephrotoxicity and hepatotoxicity. Ultimately, because these agents do not address the underlying immune compromise, viral rebound often occurs. Thus, a number of groups have explored the clinical potential of adoptively transferred virus-specific T cells (VSTs) as an approach to prevent/treat virus-associated complications. The current review will highlight recent publications showcasing VST manufacturing technologies and clinical experience with such cells.
Restoration of heart functions using human embryonic stem cells derived heart muscle cells.
Gepstein, Lior; Kehat, Izhak
2005-02-01
Extract: Recent advances in molecular and cellular biology and specifically in the areas of stem cell biology and tissue engineering have paved the way for the development of a new field in biomedicine, regenerative medicine. This exciting approach seeks to develop new biological solutions, using the mobilization of endogenous stem cells or delivery of exogenous cells to replace or modify the function of diseased, absent, or malfunctioning tissue. The adult heart represents an attractive candidate for these emerging technologies, since adult cardiomyocytes have limited regenerative capacity. Thus, any significant heart cell loss or dysfunction, such as occurs during heart attack, is mostly irreversible and may lead to the development of progressive heart failure, one of the leading causes of world-wide morbidity and mortality. Similarly, dysfunction of the specialized electrical conduction system within the heart may result in inefficient rhythm initiation or impulse conduction, leading to significant slowing of the heart rate, usually requiring the implantation of a permanent electronic pacemaker. Replacement of the dysfunctional myocardium (heart muscle) by implantation of external heart muscle cells is emerging as a novel paradigm for restoration of the myocardial electromechanical properties, but has been significantly hampered by the paucity of cell sources for human heart cells and by the relatively limited evidence for functional integration between grafted and host cells. The recently described human embryonic stem cell (hESC) lines may provide a possible solution for the aforementioned cell sourcing problem.
Resistance in mango against infection by Ceratocystis fimbriata.
Araujo, Leonardo; Bispo, Wilka Messner Silva; Cacique, Isaías Severino; Moreira, Wiler Ribas; Rodrigues, Fabrício Ávila
2014-08-01
This study was designed to characterize and describe host cell responses of stem tissue to mango wilt disease caused by the fungus Ceratocystis fimbriata in Brazil. Disease progress was followed, through time, in inoculated stems for two cultivars, 'Ubá' (field resistant) and 'Haden' (field susceptible). Stem sections from inoculated areas were examined using fluorescence light microscopy and transmission and scanning electron microscopy, coupled with energy-dispersive X-ray microanalysis. Tissues from Ubá colonized by C. fimbriata had stronger autofluorescence than those from Haden. The X-ray microanalysis revealed that the tissues of Ubá had higher levels of insoluble sulfur and calcium than those of Haden. Scanning electron microscopy revealed that fungal hyphae, chlamydospores (aleurioconidia), and perithecia-like structures of C. fimbriata were more abundant in Haden relative to Ubá. At the ultrastructural level, pathogen hyphae had grown into the degraded walls of parenchyma, fiber cells, and xylem vessels in the tissue of Haden. However, in Ubá, plant cell walls were rarely degraded and hyphae were often surrounded by dense, amorphous granular materials and hyphae appeared to have died. Taken together, the results of this study characterize the susceptible and resistant basal cell responses of mango stem tissue to infection by C. fimbriata.
[Analysis of thyroid lesions in childhood recipients after hematopoietic stem cell transplantation].
Maeda, Naoko; Hamajima, Takashi; Yambe, Yuko; Sekimizu, Masahiro; Horibe, Keizo
2013-03-01
We performed a physical examination and ultrasonography of the thyroid gland in 24 patients who had received hematopoietic stem cell transplantation with a total-body irradiation (TBI)-containing regimen during childhood. When ultrasonography revealed thyroid nodules larger than 1 cm in diameter, fine-needle aspiration biopsies were performed. Of 5 patients with palpable masses and thyroid nodules larger than 1 cm, adenomatous goiter was diagnosed in 4 cases and thyroid cancer in 1. Of the remaining 19 patients in whom no palpable mass was detected in the physical examination, 5 had thyroid nodules (including 1 adenomatous goiter), 6 had cystic lesions, and 8 exhibited no abnormalities on ultrasonography. No significant differences in sex, age at transplantation, interval between transplantation and evaluation, primary disease, preconditioning regimen, status at transplantation, stem cell source, chronic graft-versus-host disease, hypogonadism, or hypothyroidism were observed between patients with and without nodules. Individuals who received hematopoietic stem cell transplantation with a TBI-containing regimen are at risk of secondary thyroid cancer due to radiotherapy and require regular clinical evaluations of the thyroid gland by palpation, and ultrasonography should be incorporated into these checkups.
Broers, A E; van Der Holt, R; van Esser, J W; Gratama, J W; Henzen-Logmans, S; Kuenen-Boumeester, V; Löwenberg, B; Cornelissen, J J
2000-04-01
We evaluated the efficacy, toxicity, and outcome of preemptive ganciclovir (GCV) therapy in 80 cytomegalovirus (CMV)-seropositive patients allografted between 1991 and 1996 and compared their outcome to 35 seronegative patients allografted during the same period. Both cohorts were comparable with respect to diagnosis and distribution of high- versus standard-risk patients. All patients received a stem cell graft from an HLA-identical sibling donor, and grafts were partially depleted of T cells in 109 patients. Patients were monitored for CMV antigenemia by leukocyte expression of the CMV-pp65 antigen. Fifty-two periods of CMV reactivation occurring in 30 patients were treated preemptively with GCV. A favorable response was observed in 48 of 50 periods, and only 2 patients developed CMV disease: 1 with esophagitis and 1 with pneumonia. Ten of 30 treated patients developed GCV-related neutropenia (less than 0.5 x 10(9)/L), which was associated with a high bilirubin at the start of GCV therapy. Overall survival at 5 years was 64% in the CMV-seronegative cohort and 40% in the CMV-seropositive cohort (P =.01). Increased treatment-related mortality accounted for inferior survival. CMV seropositivity proved an independent risk factor for developing acute graft-versus-host disease, and acute graft-versus-host disease predicted for higher treatment-related mortality and worse overall survival in a time-dependent analysis. We conclude that, although CMV disease can effectively be prevented by preemptive GCV therapy, CMV seropositivity remains a strong adverse risk factor for survival following partial T-cell-depleted allogeneic stem cell transplantation.
Curtis, Lauren M; Datiles, Manuel B; Steinberg, Seth M; Mitchell, Sandra A; Bishop, Rachel J; Cowen, Edward W; Mays, Jacqueline; McCarty, John M; Kuzmina, Zoya; Pirsl, Filip; Fowler, Daniel H; Gress, Ronald E; Pavletic, Steven Z
2015-09-01
Ocular chronic graft-versus-host disease is one of the most bothersome common complications following allogeneic hematopoietic stem cell transplantation. The National Institutes of Health Chronic Graft-versus-Host Disease Consensus Project provided expert recommendations for diagnosis and organ severity scoring. However, ocular chronic graft-versus-host disease can be diagnosed only after examination by an ophthalmologist. There are no currently accepted definitions of ocular chronic graft-versus-host disease activity. The goal of this study was to identify predictive models of diagnosis and activity for use in clinical transplant practice. A total of 210 patients with moderate or severe chronic graft-versus-host disease were enrolled in a prospective, cross-sectional, observational study (clinicaltrials.gov identifier: 00092235). Experienced ophthalmologists determined presence of ocular chronic graft-versus-host disease, diagnosis and activity. Measures gathered by the transplant clinician included Schirmer's tear test and National Institutes of Health 0-3 Eye Score. Patient-reported outcome measures were the ocular subscale of the Lee Chronic Graft-versus-Host Disease Symptom Scale and Chief Eye Symptom Intensity Score. Altogether, 157 (75%) patients were diagnosed with ocular chronic graft-versus-host disease; 133 of 157 patients (85%) had active disease. In a multivariable model, the National Institutes of Health Eye Score (P<0.0001) and Schirmer's tear test (P<0.0001) were independent predictors of ocular chronic graft-versus-host disease (sensitivity 93.0%, specificity 92.2%). The Lee ocular subscale was the strongest predictor of active ocular chronic graft-versus-host disease (P<0.0001) (sensitivity 68.5%, specificity 82.6%). Ophthalmology specialist measures that were most strongly predictive of diagnosis in a multivariate model were Oxford grand total staining (P<0.0001) and meibomian score (P=0.027). These results support the use of selected transplant clinician- and patient-reported outcome measures for ocular chronic graft-versus-host disease screening when providing care to allogeneic hematopoietic stem cell transplantation survivors with moderate to severe chronic graft-versus-host disease. Prospective studies are needed to determine if the Lee ocular subscale demonstrates adequate responsiveness as a disease activity outcome measure. Copyright© Ferrata Storti Foundation.
Curtis, Lauren M.; Datiles, Manuel B.; Steinberg, Seth M.; Mitchell, Sandra A.; Bishop, Rachel J.; Cowen, Edward W.; Mays, Jacqueline; McCarty, John M.; Kuzmina, Zoya; Pirsl, Filip; Fowler, Daniel H.; Gress, Ronald E.; Pavletic, Steven Z.
2015-01-01
Ocular chronic graft-versus-host disease is one of the most bothersome common complications following allogeneic hematopoietic stem cell transplantation. The National Institutes of Health Chronic Graft-versus-Host Disease Consensus Project provided expert recommendations for diagnosis and organ severity scoring. However, ocular chronic graft-versus-host disease can be diagnosed only after examination by an ophthalmologist. There are no currently accepted definitions of ocular chronic graft-versus-host disease activity. The goal of this study was to identify predictive models of diagnosis and activity for use in clinical transplant practice. A total of 210 patients with moderate or severe chronic graft-versus-host disease were enrolled in a prospective, cross-sectional, observational study (clinicaltrials.gov identifier: 00092235). Experienced ophthalmologists determined presence of ocular chronic graft-versus-host disease, diagnosis and activity. Measures gathered by the transplant clinician included Schirmer’s tear test and National Institutes of Health 0–3 Eye Score. Patient-reported outcome measures were the ocular subscale of the Lee Chronic Graft-versus-Host Disease Symptom Scale and Chief Eye Symptom Intensity Score. Altogether, 157 (75%) patients were diagnosed with ocular chronic graft-versus-host disease; 133 of 157 patients (85%) had active disease. In a multivariable model, the National Institutes of Health Eye Score (P<0.0001) and Schirmer’s tear test (P<0.0001) were independent predictors of ocular chronic graft-versus-host disease (sensitivity 93.0%, specificity 92.2%). The Lee ocular subscale was the strongest predictor of active ocular chronic graft-versus-host disease (P<0.0001) (sensitivity 68.5%, specificity 82.6%). Ophthalmology specialist measures that were most strongly predictive of diagnosis in a multivariate model were Oxford grand total staining (P<0.0001) and meibomian score (P=0.027). These results support the use of selected transplant clinician- and patient-reported outcome measures for ocular chronic graft-versus-host disease screening when providing care to allogeneic hematopoietic stem cell transplantation survivors with moderate to severe chronic graft-versus-host disease. Prospective studies are needed to determine if the Lee ocular subscale demonstrates adequate responsiveness as a disease activity outcome measure. PMID:26088932
Xu, Kedi; Cantu, David Antonio; Fu, Yao; Kim, Jaehyup; Zheng, Xiaoxiang; Hematti, Peiman; Kao, W. John
2013-01-01
Mesenchymal stromal/stem cells (MSCs) are considered promising cellular therapeutics in the fields of tissue engineering and regenerative medicine. MSCs secrete high concentrations of immunomodulatory cytokines and growth factors, which exert paracrine effects on infiltrating immune and resident cells of the wound microenvironment that could favorably promote healing after acute injury. However, better spatial delivery and improved retention at the site of injury are two factors that could improve the clinical application of MSCs. In this study, we utilized thiol-ene Michael-type addition for rapid encapsulation of MSCs within a gelatin/poly(ethylene glycol) biomatrix; this biomatrix was also applied as a provisional dressing to full-thickness wounds in Sprague-Dawley rats. The three-way interaction of MSCs, gelatin/poly(ethylene glycol) biomatrices, and host immune cells and adjacent resident cells of the wound microenvironment favorably modulated wound progression and host response. In this model we observed attenuated immune cell infiltration, lack of foreign giant cell (FBGC) formation, accelerated wound closure and re-epithelialization, as well as enhanced neovascularization and granulation tissue formation by 7 days. The MSC-entrapped gelatin/poly(ethylene glycol) biomatrix localized the presentation of MSCs adjacent to the wound microenvironment and thus, mediated early resolution of inflammatory events and facilitated proliferative phases in wound healing. PMID:23811217
Optical reprogramming with ultrashort femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten
2015-03-01
The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.
Diecke, Sebastian; Lisowski, Leszek; Kooreman, Nigel G; Wu, Joseph C
2014-01-01
The ability to induce pluripotency in somatic cells is one of the most important scientific achievements in the fields of stem cell research and regenerative medicine. This technique allows researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful tool for disease modeling and drug screening approaches. However, using viruses for the delivery of reprogramming genes and transcription factors may result in integration into the host genome and cause random mutations within the target cell, thus limiting the use of these cells for downstream applications. To overcome this limitation, various non-integrating techniques, including Sendai virus, mRNA, minicircle, and plasmid-based methods, have recently been developed. Utilizing a newly developed codon optimized 4-in-1 minicircle (CoMiC), we were able to reprogram human adult fibroblasts using chemically defined media and without the need for feeder cells.
Sundin, Mikael; Lindblom, Anna; Örvell, Claes; Barrett, A.John; Sundberg, Berit; Watz, Emma; Wikman, Agneta; Broliden, Kristina; Le Blanc, Katarina
2014-01-01
Multipotent mesenchymal stromal cells (MSC) are used to improve the outcome of hematopoietic stem cell transplantation and in regenerative medicine. However, MSC may harbor persistent viruses that may compromise their clinical benefit. Retrospectively screened, 1 of 20 MSC from healthy donors contained parvovirus B19 (B19) DNA. We found that MSC express the B19 receptor (the globoside P antigen) and a co-receptor (Ku 80), and can transmit B19 to bone marrow cells in vitro, suggesting that the virus can persist in the marrow stroma of healthy individuals. Two stem cell transplant patients received the B19 positive MSC as treatment for graft-versus-host disease. Neither developed viremia nor symptomatic B19 infection. These results demonstrate for the first time that persistent B19 in MSC can infect hematopoietic cells and underscore the importance of monitoring B19 transmission by MSC products. PMID:18804048
Kim, Seo Yeon; Lee, Hyewon; Han, Mi-Soon; Shim, Hyoeun; Eom, Hyeon-Seok; Park, Boram; Kong, Sun-Young
2016-09-01
Reconstitution of the immune system after allogeneic hematopoietic stem cell transplantation (allo-HSCT) plays an important role in post-transplant outcomes. However, the clinical relevance of the lymphocyte subset (LST) counts to transplant-related complications and survival outcomes after allo-HSCT has not been fully elucidated. A total of 70 patients who had undergone allo-HSCT from 2007 to 2013, with LST results both 7 days before conditioning and 30 or 90 days after allo-HSCT were included. The LST counts in the peripheral blood were determined using 6-color flow cytometry. Clinical information, including transplant-related events during the first 100 days after allo-HSCT, was reviewed, and any association between these events and LST was analyzed. At 30 days after allo-HSCT, the CD4 + T-cell (P = .009) and B-cell (P = .035) counts were lower and the natural killer (NK) cell count was greater (P < .001) than before conditioning. The CD8 + T-cell (P = .001) and NK cell (P < .001) counts were high 90 days after transplantation. The hazard ratios for a low NK cell count on days 30 and 90 for acute graft-versus-host disease were 6.22 and 14.67, respectively. Patients with low NK cell counts at 30 and 90 days after allo-HSCT had poorer overall survival (P = .043 and P = .028, respectively) and greater nonrelapse mortality (P = .036 and P = .033, respectively). A low NK cell count on day 30 was still prognostic for overall survival (P = .039) on multivariable analysis. NK cell counts after allo-HSCT, especially on day 30, were predictive of acute graft-versus-host disease, nonrelapse mortality, and survival. Serial lymphocyte subset analysis can be used to identify and treat patients at risk during the early period after allo-HSCT. Copyright © 2016 Elsevier Inc. All rights reserved.
Glass, Bertram; Hasenkamp, Justin; Wulf, Gerald; Dreger, Peter; Pfreundschuh, Michael; Gramatzki, Martin; Silling, Gerda; Wilhelm, Christian; Zeis, Matthias; Görlitz, Anke; Pfeiffer, Sebastian; Hilgers, Reinhard; Truemper, Lorenz; Schmitz, Norbert
2014-06-01
Allogeneic stem-cell transplantation has had limited success for patients with refractory and relapsed aggressive B-cell or T-cell lymphoma. We investigated the effect of adding rituximab to standard prophylaxis for graft-versus-host disease after transplantation and estimated overall survival when using a lymphoma-directed myeloablative conditioning regimen. We did this randomised, open-label, phase 2 study at seven German transplantation centres. We enrolled patients with aggressive B-cell or T-cell lymphoma and primary refractory disease, early relapse (<12 months after first-line treatment), or relapse after autologous transplantation. Conditioning with fludarabine (125 mg/m(2)), busulfan (12 mg/kg oral or 9·6 mg/kg intravenous), and cyclophosphamide (120 mg/kg) was followed by allogeneic stem-cell transplantation. Patients were randomly assigned (1:1) to receive rituximab (375 mg/m(2) on days 21, 28, 35, 42, 175, 182, 189, and 196) or not. Allocation was done with a centralised computer-generated procedure; patients were stratified by histological subtype (B-cell vs T-cell lymphoma) and donor match (HLA-identical vs non-identical). Neither investigators nor patients were masked to allocation. The primary endpoints were the incidence of acute graft-versus-host disease grade 2-4 in each treatment group and overall survival at 1 year in both groups combined. All analyses were done for the intention-to-treat population. The study is registered with ClinicalTrials.gov, number NCT00785330. Between June 16, 2004, and March 24, 2009, we screened 86 patients and enrolled 84; 42 were randomly assigned to each group. The cumulative incidence of grade 2-4 acute graft-versus-host disease was 46% (95% CI 32-62) in the rituximab group and 42% (95% CI 29-59) in the no rituximab group (hazard ratio [HR] 0·91, 95% CI 0·52-1·60; p=0·74). Overall survival at 1 year for the whole study population was 52% (95% CI 41-62). Grade 4 haematological toxic effects and grade 3 alopecia occurred in all patients. The most common non-haematological grade 5 toxic effects were pneumonia (nine in the no rituximab group vs ten in the rituximab group) and other infections (seven vs four). The lymphoma-directed myeloablative conditioning regimen developed here is promising for patients with refractory and relapsed aggressive B-cell and T-cell lymphomas. However, the addition of rituximab did not affect the incidence of graft-versus-host disease or overall survival. Hoffmann-La Roche, Amgen, Astellas Pharma. Copyright © 2014 Elsevier Ltd. All rights reserved.
Targeting Leukemia Stem Cells in the Bone Marrow Niche
Bornhäuser, Martin
2018-01-01
The bone marrow (BM) niche encompasses multiple cells of mesenchymal and hematopoietic origin and represents a unique microenvironment that is poised to maintain hematopoietic stem cells. In addition to its role as a primary lymphoid organ through the support of lymphoid development, the BM hosts various mature lymphoid cell types, including naïve T cells, memory T cells and plasma cells, as well as mature myeloid elements such as monocyte/macrophages and neutrophils, all of which are crucially important to control leukemia initiation and progression. The BM niche provides an attractive milieu for tumor cell colonization given its ability to provide signals which accelerate tumor cell proliferation and facilitate tumor cell survival. Cancer stem cells (CSCs) share phenotypic and functional features with normal counterparts from the tissue of origin of the tumor and can self-renew, differentiate and initiate tumor formation. CSCs possess a distinct immunological profile compared with the bulk population of tumor cells and have evolved complex strategies to suppress immune responses through multiple mechanisms, including the release of soluble factors and the over-expression of molecules implicated in cancer immune evasion. This chapter discusses the latest advancements in understanding of the immunological BM niche and highlights current and future immunotherapeutic strategies to target leukemia CSCs and overcome therapeutic resistance in the clinic. PMID:29466292
Mismatched related hematopoietic stem cell transplantation in primary immunodeficiency.
Wahadneh, Adel M; Bin Dahman, Haifa A; Abu Shukear, Mohammed E; Habahbeh, Zeyad M; Ajarmeh, Mohammad A; Zyood, Raed M; Habashneh, Mueen S
2013-11-01
Hematopoietic stem cell transplantation (HSCT) is the definitive therapy for a variety of primary immunodeficiency syndromes (PIDs). However, no more than 30% of the patients will have a human leukocyte antigen (HLA)-identical sibling. We retrospectively analyzed our results of ten patients with PID; severe combined immunodeficiency (SCID) (n = 7), hyper IgM (HIgM) (n = 1) and combined immunodeficiency (CID) (n = 2), who lacked a fully matched donor and underwent mismatched related HSCT during the period from 2008 to 2010. The median age at the time of transplantation ranged between 3 and 84 months (median 6.5 months). Peripheral blood stem cells (PBSC) were used in all HSCTs. The mean value of the peripheral CD34+ cells infused was 9.19 × 10 (6) /kg recipient weight. Patients received different conditioning protocols. All patients received anti graft versus host disease (GVHD) prophylaxis and all were engrafted. Mixed chimerism (5-55%) was noticed. GVHD was observed in 50% of the patients. Post-transplant follow-up ranged from 3 weeks to 36 months (median 15 months). Five patients are still alive while one patient developed engraftment syndrome followed by graft slippage for which a second transplant with CD34+ stem cells 5.8 × 10 (6) /kg recipient's weight was infused. The others died from sepsis and transplant-related complications. Immune reconstitution was noticed in four patients. In conclusion, HLA-haploidentical stem cell transplantation may be feasible, with appropriate GVHD prophylaxis, for patients with PID who lack a fully matched donor.
van Wilgenburg, Bonnie; Browne, Cathy; Vowles, Jane; Cowley, Sally A.
2013-01-01
Human macrophages are specialised hosts for HIV-1, dengue virus, Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens, because available myeloid cell lines are, by definition, not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined, feeder- and serum-free culture conditions and produces very consistent, pure, high yields across both human Embryonic Stem Cell (hESC) and multiple human induced Pluripotent Stem Cell (hiPSC) lines over time periods of up to one year. Cumulatively, up to ∼3×107 monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14+, CD16low, CD163+). Differentiation with M-CSF produces macrophages that are highly phagocytic, HIV-1-infectable, and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate, as they recognise foreign nucleic acids; the lentivector system described here overcomes this, as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells, surmounting issues of transgene silencing. Overall, the method we describe here is an efficient, effective, scalable system for the reproducible production and genetic modification of human macrophages, facilitating the interrogation of human macrophage biology. PMID:23951090
Beers, Michael F; Moodley, Yuben
2017-07-01
Generating mature, differentiated, adult lung cells from pluripotent cells, such as induced pluripotent stem cells and embryonic stem cells, offers the hope of both generating disease-specific in vitro models and creating definitive and personalized therapies for a host of debilitating lung parenchymal and airway diseases. With the goal of advancing lung-regenerative medicine, several groups have developed and reported on protocols using defined media, coculture with mesenchymal components, or sequential treatments mimicking lung development, to obtain distal lung epithelial cells from stem cell precursors. However, there remains significant controversy about the degree of differentiation of these cells compared with their primary counterparts, coupled with a lack of consistency or uniformity in assessing the resultant phenotypes. Given the inevitable, exponential expansion of these approaches and the probable, but yet-to-emerge second and higher generation techniques to create such assets, we were prompted to pose the question, what makes a lung epithelial cell a lung epithelial cell? More specifically for this Perspective, we also posed the question, what are the minimum features that constitute an alveolar type (AT) 2 epithelial cell? In addressing this, we summarize a body of work spanning nearly five decades, amassed by a series of "lung epithelial cell biology pioneers," which carefully describes well characterized molecular, functional, and morphological features critical for discriminately assessing an AT2 phenotype. Armed with this, we propose a series of core criteria to assist the field in confirming that cells obtained following a differentiation protocol are indeed mature and functional AT2 epithelial cells.
α-Mannan induces Th17-mediated pulmonary graft-versus-host disease in mice.
Uryu, Hidetaka; Hashimoto, Daigo; Kato, Koji; Hayase, Eiko; Matsuoka, Satomi; Ogasawara, Reiki; Takahashi, Shuichiro; Maeda, Yoshinobu; Iwasaki, Hiromi; Miyamoto, Toshihiro; Saijo, Shinobu; Iwakura, Yoichiro; Hill, Geoffrey R; Akashi, Koichi; Teshima, Takanori
2015-05-07
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative therapy for various hematopoietic disorders. Graft-versus-host disease (GVHD) and infections are the major obstacles of HSCT, and their close relationship has been suggested. Although roles of bacterial and viral infections in the pathophysiology of GVHD are well described, impacts of fungal infection on GVHD remain to be elucidated. In mouse models of GVHD, injection of α-mannan (Mn), a major component of fungal cell wall, or heat-killed Candida albicans exacerbated GVHD, particularly in the lung. Mn-induced donor T-cell polarization toward Th17 and lung-specific chemokine environment in GVHD led to accumulation of Th17 cells in the lung. The detrimental effects of Mn on GVHD depended on donor IL-17A production and host C-type lectin receptor Dectin-2. These results suggest a previously unrecognized link between pulmonary GVHD and fungal infection after allogeneic HSCT. © 2015 by The American Society of Hematology.
[Adipose-derived stromal cells (ASC) - basics and therapeutic approaches in otorhinolaryngology].
Frölich, K; Hagen, R; Kleinsasser, N
2014-06-01
Adipose-derived Stromal Cells (ASC) - Basics and Therapeutic Approaches in Otorhinolaryngology Mesenchymal stem cells from adipose tissue can be easily harvested with less discomfort, low donor-site morbidity and high amount compared to bone marrow-derived stem cells. Due to their multilineage differentiation potential in various cell types, immunmodulatory properties and their capability to enhance wound healing, ASC are a promising cell source for tissue engineering approaches and regenerative medicine. They are characterized by the expression of specific surface marker proteins and their differentiation potential into the mesenchymal lineages. Whereas only preclinical studies are published for otorhinolaryngology-related therapeutic options using ASC, various diseases, for instance graft-versus-host disease, have already been treated with ASC in single cases or clinical trials. Safety and genomic stability of ASC as well as the risk of spontaneous malignant transformation are still disputed. This review summarizes the current literature on characterization and anatomic localization of ASC. In addition, beside the presentation of preclinical studies concerning therapeutic approaches in otorhinolaryngology as well as of current clinical applications, the issue of safety of ASC in human stem cell therapy is discussed. © Georg Thieme Verlag KG Stuttgart · New York.
Remberger, Mats; Mattsson, Jonas; Hausenberger, Dan; Schaffer, Marie; Svahn, Britt-Marie; Ringdén, Olle
2008-05-01
Sixty-one leukaemia patients treated with haematopoietic stem cell transplantation (HSCT) from a genomic human leucocyte antigen (HLA)-A, -B and -DRbeta1 matched unrelated donor (MUD) were compared with 121 patients with an HLA-identical sibling donor. All patients received conventional conditioning. We selected all patients with unrelated donors who received optimal antithymocyte globuline (ATG) dose, 6 mg/kg. One hundred and seven patients received stem cells from peripheral blood and 75 patients received bone marrow (BM) cells. The incidences of acute graft-versus-host disease (GVHD) grades II-IV were 33.4% and 34.7% in the MUD and sibling group, respectively. After year 2001, the incidence of chronic GVHD was similar in the two groups (27.8% vs. 25.8%). There was no difference in overall survival (60% vs. 60%), transplant-related mortality (18.6% vs. 16.6%) and relapse (23% vs. 26.4%) between the two groups. Haematopoietic stem cell transplantation with unrelated donors results in similar GVHD, relapse and survival as compared to using sibling donors. Reasons for this may be improved tissue-typing techniques and supportive care and optimisation of the ATG dose.
NASA Astrophysics Data System (ADS)
Pan, Jian-Feng; Li, Shuo; Guo, Chang-An; Xu, Du-Liang; Zhang, Feng; Yan, Zuo-Qin; Mo, Xiu-Mei
2015-08-01
Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF-Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF-Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering.
A Reinterpretation of Cell Transplantation: GFP Transfer From Donor to Host Photoreceptors.
Ortin-Martinez, Arturo; Tsai, En Leh Samuel; Nickerson, Philip E; Bergeret, Miriam; Lu, Yao; Smiley, Sheila; Comanita, Lacrimioara; Wallace, Valerie A
2017-04-01
The utilization of fluorescent reporter transgenes to discriminate donor versus host cells has been a mainstay of photoreceptor transplantation research, the assumption being that the presence of reporter+ cells in outer nuclear layer (ONL) of transplant recipients represents the integration of donor photoreceptors. We previously reported that GFP + cells in the ONL of cone-GFP transplanted retinas exhibited rod-like characteristics, raising the possibility that GFP signal in recipient tissue may not be a consequence of donor cell integration. To investigate the basis for this mismatch, we performed a series of transplantations using multiple transgenic donor and recipient models, and assessed cell identity using nuclear architecture, immunocytochemistry, and DNA prelabeling. Our results indicate that GFP + cells in the ONL fail to exhibit hallmark elements of donor cells, including nuclear hetero/euchromatin architecture. Furthermore, GFP signal does not appear to be a consequence of classic donor/host cell fusion or transfating post-transplant, but is most likely due to material exchange between donor and host photoreceptors. This transfer can be mediated by rods and cones, is bidirectional between donor and host cells, requires viable photoreceptors, occurs preferentially at sites of outer limiting membrane disruption and can be detected in second-order retinal neurons and Müller glia. Collectively, these data warrant re-evaluation of the use of lineage tracing fluorescent reporters in transplantation studies involving the retina and other CNS tissues. Furthermore, the reinterpretation of previous functional rescue data, based on material exchange, rather than cell integration, may offer a novel approach to vision rescue. Stem Cells 2017;35:932-939. © 2016 AlphaMed Press.
Melanoma induced immunosuppression is mediated by hematopoietic dysregulation.
Kamran, Neha; Li, Youping; Sierra, Maria; Alghamri, Mahmoud S; Kadiyala, Padma; Appelman, Henry D; Edwards, Marta; Lowenstein, Pedro R; Castro, Maria G
2018-01-01
Tumors are associated with expansion of immunosuppressive cells such as tumor associated macrophages (TAMs), regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs). These cells promote tumor growth, angiogenesis, metastasis and immune escape. Cancer patients frequently present symptoms such as anemia, leukocytosis and/or cytopenia; associated with poor prognosis. To uncover tumor-mediated hematopoietic abnormalities and identify novel targets that can be harnessed to improve tumor-specific immune responses, we investigated the hematopoietic stem and progenitor cell compartment in melanoma bearing mice. We show that melanoma growth results in expansion of myeloid lineages such as MDSCs, macrophages and DCs along with a reduction in mature RBCs and platelets. Mature B lymphocytes in the blood and BM of melanoma mice were also reduced. Mice bearing melanoma showed extramedullary hematopoiesis in the spleen. Increased expansion of myeloid lineages occurred directly at the level of stem and progenitor cells. The reduction in mature B lymphocytes resulted from a block at the Pro-B cell stage in the bone marrow. Addition of recombinant IL-3 to bone marrow cells resulted in the expansion of committed myeloid progenitors including common myeloid precursors, granulocyte-monocyte precursors and megakaryocyte-erythrocyte precursors. In vivo , IL-3 receptor stimulation in melanoma bearing mice using an IL-3 antibody also resulted in a robust expansion of committed myeloid progenitors and hematopoietic stem cells. Collectively our findings demonstrate that tumor growth plays a pivotal role in reprogramming the host immune system by impacting hematopoiesis directly at the level of stem cell compartment.
Gordeeva, O F; Nikonova, T M
2013-01-01
Pluripotent stem cells represent an attractive cell source for regenerative medicine. However, the risk of teratoma formation after transplantation restricts their clinical application. Therefore, to adequately evaluate the potential risk of tumorigenicity after cell transplantation into human tissues, effective animal transplantation assays need to be developed. We performed a multiparameter (cell number, transplantation site, cell type, host) comparative analysis of the efficiency of tumor development after transplantation of mouse and human embryonic stem (ES) cells and their malignant counterparts, teratocarcinoma (EC) cells, into animal recipients and revealed several key correlations. We found that the efficiency of tumor growth was higher after intraperitoneal than after subcutaneous transplantations of all cell lines studied. The minimal cell numbers sufficient for tumor growth in immunodeficient nude mice were 100-fold lower for intraperitoneal than for subcutaneous transplantations of mouse and human ES cells (10(3) vs. 10(5) and 10(4) vs. 10(6), respectively). Moreover, mouse ES and EC cells formed tumors in immunodeficient and immunocompetent mice more effectively than human ES and EC cells. After intraperitoneal transplantation of 10(3), 10(4), and 10(5) mouse ES cells, teratomas developed in 83%, 100%, and 100% of nude mice, whereas after human ES cell transplantation, teratomas developed in 0%, 17%, and 60%, respectively. In addition, malignant mouse and human EC cells initiated tumor growth after intraperitoneal transplantation significantly faster and more effectively than ES cells. Mouse and human ES cells formed different types of teratomas containing derivatives of three germ layers but different numbers of undifferentiated cells. ES cell-like sublines with differentiation potential similar to the parental cell line were recloned only from mouse, but not from human, ES cell teratomas. These findings provide new information about the possibility and efficiency of tumor growth after transplantation of pluripotent stem cells. This information allows one to predict and possibly prevent the possible risks of tumorigenicity that could arise from stem cell therapeutics.
Aoki, Hitomi; Hara, Akira; Niwa, Masayuki; Motohashi, Tsutomu; Suzuki, Takashi; Kunisada, Takahiro
2008-02-01
An embryonic stem (ES) cell-derived eye-like structure, made up of neural retinal lineage cells, retinal pigment epithelial (RPE) cells, and lens cells was constructed in our laboratory. We have shown that cells from these eye-like structures can be integrated into the developing optic vesicle of chicks. The purpose of this study was to determine whether the cells from these eye-like structures can differentiate into retinal ganglion cells (RGCs) when transplanted into the vitreous of an injured adult mouse retina. ES cells were induced to differentiate into eye-like structures in vitro for 6 or 11 days. Recipient mouse eyes were injected with NMDA to injure the RGCs prior to the transplantation. Sham-treated eyes received the same amount of carrier vehicle. Cells were extracted from the eye-like structures and transplanted into the vitreous of damaged and control eyes. The host eyes were analyzed both qualitatively and quantitatively by immunohistochemistry 10 days or 8 weeks after transplantation. Cells from the ES cell-derived eye-like structures were integrated into the RGC layer, and differentiated into neurons when transplanted into control (non-NMDA-treated) adult eyes. However, they rarely expressed RGC markers. When they were transplanted into NMDA-treated eyes, the cells spread on the surface of the retina and covered a relatively large area of the host RGC layer that had been injured by the NMDA. The cells from the ES cell-derived eye cells frequently differentiated into cells expressing RGC-specific markers, and formed a new RGC layer. In addition, a small number of these ES cell-derived cells were observed to extend axon-like processes toward the optic disc of the host. However, visually evoked responses could not be recorded from the visual cortex. These findings suggest that ES cell-derived eye-like structures contain cells that can differentiate into RG-like cells and regenerate a new RGC layer. These cells also appeared to be integrated into the retina and extend axon-like processes toward the optic nerve head.
Stem loop recognition by DDX17 facilitates miRNA processing and antiviral defense
Moy, Ryan H.; Cole, Brian S.; Yasunaga, Ari; Gold, Beth; Shankarling, Ganesh; Varble, Andrew; Molleston, Jerome M.; tenOever, Benjamin R.; Lynch, Kristen W.; Cherry, Sara
2014-01-01
DEAD-box helicases play essential roles in RNA metabolism across species, but emerging data suggest that they have additional functions in immunity. Through RNAi screening we identify an evolutionarily conserved and interferon-independent role for the DEAD-box helicase DDX17 in restricting Rift Valley fever virus (RVFV), a mosquito-transmitted virus in the bunyavirus family that causes severe morbidity and mortality in humans and livestock. Loss of Drosophila DDX17 (Rm62) in cells and flies enhanced RVFV infection. Similarly, depletion of DDX17 but not the related helicase DDX5 increased RVFV replication in human cells. Using cross-linking immunoprecipitation high-throughput sequencing (CLIP-seq), we show that DDX17 binds the stem loops of host pri-miRNA to facilitate their processing, and also an essential stem loop in bunyaviral RNA to restrict infection. Thus, DDX17 has dual roles in the recognition of stem loops: in the nucleus for endogenous miRNA biogenesis and in the cytoplasm for surveillance against structured non-self elements. PMID:25126784
FGF2 activates TRPC and Ca2+ signaling leading to satellite cell activation
Liu, Yewei; Schneider, Martin F.
2013-01-01
Satellite cells, as stem cells of adult skeletal muscle, are tightly associated with the differentiated muscle fibers and remain quiescent in the absence of muscle damage. In response to an injury, the quiescent satellite cell is activated by soluble factors, including FGFs released from injured myofibers. Using immunostaining, we here first show that TRPC1 channels are highly expressed in satellite cells attached to muscle fibers. Since CD34, a traditional stem cell marker, was recently found to be expressed in skeletal muscle satellite cells we labeled living satellite cells in their physiological niche associated with host FDB fibers using anti-CD34-FITC antibody. We then monitored intra-cellular calcium in anti-CD34-FITC labeled satellite cells attached to muscle fibers using the calcium sensitive dye X rhod-1 which has little fluorescence cross talk with FITC. FGF2 increased intracellular calcium in satellite cells, which was antagonized by the TRPC channel blocker SKF 96365. Immunostaining showed that NFATc3 is highly expressed in satellite cells, but not in host FDB fibers. Elevation of intracellular calcium by FGF2 is accompanied by nuclear translocation of NFATc3 and NFATc2 and by an increase in the number of MyoD positive cells per muscle fiber, both of which were attenuated by TRPC blocker SKF 96365. Our results suggest a novel pathway of satellite cell activation where FGF2 enhances calcium influx through a TRPC channel, and the increased cytosolic calcium leads to both NFATc3 and NFATc2 nuclear translocation and enhanced number of MyoD positive satellite cells per muscle fiber. PMID:24575047
Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.
Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah
2017-12-01
The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34 + cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in leukemia patients, such down-regulating changes in c-Rel levels could be counter-productive.
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Donegà, Matteo; Giusto, Elena; Cossetti, Chiara; Schaeffer, Julia; Pluchino, Stefano
2014-01-01
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology. PMID:24798882
At the Edge of Translation – Materials to Program Cells for Directed Differentiation
Arany, Praveen R; Mooney, David J
2010-01-01
The rapid advancement in basic biology knowledge, especially in the stem cell field, has created new opportunities to develop biomaterials capable of orchestrating the behavior of transplanted and host cells. Based on our current understanding of cellular differentiation, a conceptual framework for the use of materials to program cells in situ is presented, namely a domino versus a switchboard model, to highlight the use of single versus multiple cues in a controlled manner to modulate biological processes. Further, specific design principles of material systems to present soluble and insoluble cues that are capable of recruiting, programming and deploying host cells for various applications are presented. The evolution of biomaterials from simple inert substances used to fill defects, to the recent development of sophisticated material systems capable of programming cells in situ is providing a platform to translate our understanding of basic biological mechanisms to clinical care. PMID:20860763
Ichim, Thomas E; Solano, Fabio; Glenn, Eduardo; Morales, Frank; Smith, Leonard; Zabrecky, George; Riordan, Neil H
2007-01-01
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions whose incidence is reaching epidemic proportions, afflicting approximately 1 in 166 children. Autistic disorder, or autism is the most common form of ASD. Although several neurophysiological alterations have been associated with autism, immune abnormalities and neural hypoperfusion appear to be broadly consistent. These appear to be causative since correlation of altered inflammatory responses, and hypoperfusion with symptology is reported. Mesenchymal stem cells (MSC) are in late phases of clinical development for treatment of graft versus host disease and Crohn's Disease, two conditions of immune dysregulation. Cord blood CD34+ cells are known to be potent angiogenic stimulators, having demonstrated positive effects in not only peripheral ischemia, but also in models of cerebral ischemia. Additionally, anecdotal clinical cases have reported responses in autistic children receiving cord blood CD34+ cells. We propose the combined use of MSC and cord blood CD34+cells may be useful in the treatment of autism. PMID:17597540
Fierabracci, Alessandra; Del Fattore, Andrea; Muraca, Marta; Delfino, Domenico Vittorio; Muraca, Maurizio
2016-01-01
Mesenchymal stem cells are multipotent progenitors able to differentiate into osteoblasts, chondrocytes and adipocytes. These cells also exhibit remarkable immune regulatory properties, which stimulated both in vitro and in vivo experimental studies to unravel the underlying mechanisms as well as extensive clinical applications. Here, we describe the effects of MSCs on immune cells and their application in animal models as well as in clinical trials of autoimmune diseases. It should be pointed out that, while the number of clinical applications is increasing steadily, results should be interpreted with caution, in order to avoid rising false expectations. Major issues conditioning clinical application are the heterogeneity of MSCs and their unpredictable behavior following therapeutic administration. However, increasing knowledge on the interaction between exogenous cell and host tissue, as well as some encouraging clinical observations suggest that the therapeutic applications of MSCs will be further expanded on firmer grounds in the near future.
Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications
Castro-Manrreza, Marta E.; Montesinos, Juan J.
2015-01-01
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiation into mesenchymal lineages and that can be isolated from various tissues and easily cultivated in vitro. Currently, MSCs are of considerable interest because of the biological characteristics that confer high potential applicability in the clinical treatment of many diseases. Specifically, because of their high immunoregulatory capacity, MSCs are used as tools in cellular therapies for clinical protocols involving immune system alterations. In this review, we discuss the current knowledge about the capacity of MSCs for the immunoregulation of immunocompetent cells and emphasize the effects of MSCs on T cells, principal effectors of the immune response, and the immunosuppressive effects mediated by the secretion of soluble factors and membrane molecules. We also describe the mechanisms of MSC immunoregulatory modulation and the participation of MSCs as immune response regulators in several autoimmune diseases, and we emphasize the clinical application in graft versus host disease (GVHD). PMID:25961059
Intrinsically active and pacemaker neurons in pluripotent stem cell-derived neuronal populations.
Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig
2014-03-11
Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks.
Intrinsically Active and Pacemaker Neurons in Pluripotent Stem Cell-Derived Neuronal Populations
Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig
2014-01-01
Summary Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks. PMID:24672755
Maya-Espinosa, Guadalupe; Collazo-Navarrete, Omar; Millán-Aldaco, Diana; Palomero-Rivero, Marcela; Guerrero-Flores, Gilda; Drucker-Colín, René; Covarrubias, Luis; Guerra-Crespo, Magdalena
2015-02-01
A neurogenic niche can be identified by the proliferation and differentiation of its naturally residing neural stem cells. However, it remains unclear whether "silent" neurogenic niches or regions suitable for neural differentiation, other than the areas of active neurogenesis, exist in the adult brain. Embryoid body (EB) cells derived from embryonic stem cells (ESCs) are endowed with a high potential to respond to specification and neuralization signals of the embryo. Hence, to identify microenvironments in the postnatal and adult rat brain with the capacity to support neuronal differentiation, we transplanted dissociated EB cells to conventional neurogenic and non-neurogenic regions. Our results show a neuronal differentiation pattern of EB cells that was dependent on the host region. Efficient neuronal differentiation of EB cells occurred within an adjacent region to the rostral migratory stream. EB cell differentiation was initially patchy and progressed toward an even distribution along the graft by 15-21 days post-transplantation, giving rise mostly to GABAergic neurons. EB cells in the striatum displayed a lower level of neuronal differentiation and derived into a significant number of astrocytes. Remarkably, when EB cells were transplanted to the striatum of adult rats after a local ischemic stroke, increased number of neuroblasts and neurons were observed. Unexpectedly, we determined that the adult substantia nigra pars compacta, considered a non-neurogenic area, harbors a robust neurogenic environment. Therefore, neurally uncommitted cells derived from ESCs can detect regions that support neuronal differentiation within the adult brain, a fundamental step for the development of stem cell-based replacement therapies. © 2014 AlphaMed Press.
Dietrich, Sascha; Okun, Jürgen G.; Schmidt, Kathrin; Falk, Christine S.; Wagner, Andreas H.; Karamustafa, Suzan; Radujkovic, Aleksandar; Hegenbart, Ute; Ho, Anthony D.; Dreger, Peter; Luft, Thomas
2014-01-01
Steroid-refractory graft-versus-host disease is a life-threatening complication after allogeneic stem cell transplantation. Evidence is accumulating that steroid-refractory graft-versus-host disease is associated with endothelial distress. Endothelial cell homeostasis is regulated by nitric oxide, and serum nitrates are derived from nitric oxide synthase activity or dietary sources. In this retrospective study based on 417 patients allografted at our institution we investigated whether quantification of serum nitrates could predict steroid-refractory graft-versus-host disease. Elevated pre-transplant levels of serum nitrates (>26.5 μM) predicted steroid-refractory graft-versus-host disease (P=0.026) and non-relapse mortality (P=0.028), particularly in combination with high pre-transplant angiopoietin-2 levels (P=0.0007 and P=0.021, respectively). Multivariate analyses confirmed serum nitrates as independent predictors of steroid-refractory graft-versus-host disease and non-relapse mortality. Differences in serum nitrate levels did not correlate with serum levels of tumor necrosis factor or C-reactive protein or expression of inducible nitric oxide synthase in blood cells. Patients with high pre-transplant nitrate levels had significantly reduced rates of refractory graft-versus-host disease (P=0.031) when pravastatin was taken. In summary, patients at high risk of developing steroid-refractory graft-versus-host disease could be identified prior to transplantation by serum markers linked to endothelial cell function. Retrospectively, statin medication was associated with a reduced incidence of refractory graft-versus-host disease in this endothelial high-risk cohort. PMID:24142995
Huang, Libin; Xu, Wei; Xu, Guoxing
2013-08-01
To investigate the neuroprotective and immunomodulatory effects of mesenchymal stem cells (MSCs) engineered to secrete CX3CL1 on the light-injured retinal structure and function. Normal MSCs and CX3CL1-expressing MSCs (CX3CL1-MSCs) were transplanted into the subretinal space of light-injured rats. By ERG and TUNEL methods, their rescue effect of the host retina was compared with untreated light-injured and vehicle-injected rats. Activated microglia in the retina were stained by ED-1 antibody, and Western blot was performed to quantify cytokines secreted by the retina post-transplantation. ERG analysis showed better function in CX3CL1-MSC-injected group than other groups at 21 days after transplantation (p < 0.05). CX3CL1-MSCs inhibited apoptosis of the retinal cells and microglial activation. Neurotrophic factors expression in host retina that received CX3CL1-MSCs was stronger than in the retina that received normal MSCs. Conversely, the expression of proinflammatory factors was downregulated. CX3CL1-MSCs subretinal transplantation may enhance protective effect against light-induced retinal degeneration.
Electrical and Mechanical Strategies to Enable Cardiac Repair and Regeneration
Cao, Hung; Kang, Bong Jin; Lee, Chia-An; Shung, K. Kirk; Hsiai, Tzung K.
2015-01-01
Inadequate replacement of lost ventricular myocardium from myocardial infarction leads to heart failure. Investigating the regenerative capacity of mammalian hearts represents an emerging direction for tissue engineering and cell-based therapy. Recent advances in stem cells hold promise to restore cardiac functions. However, embryonic or induced pluripotent stem cell-derived cardiomyocytes lack functional phenotypes of the native myocardium, and transplanted tissues are not fully integrated for synchronized electrical and mechanical coupling with the host. In this context, this review highlights the mechanical and electrical strategies to promote cardiomyocyte maturation and integration, and to assess the functional phenotypes of regenerating myocardium. Simultaneous micro-electrocardiogram and high-frequency ultrasound techniques will also be introduced to assess electrical and mechanical coupling for small animal models of heart regeneration. PMID:25974948
Listeria monocytogenes meningitis in an immunocompromised patient.
Barocci, Simone; Mancini, Alessio; Canovari, Benedetta; Petrelli, Enzo; Sbriscia-Fioretti, Emanuela; Licci, Alberto; D'Addesa, Simona; Petrini, Giancarlo; Giacomini, Marinella; Renzi, Antonella; Migali, Antonio; Briscolini, Sara
2015-01-01
This report describes a case of meningitis caused by Listeria monocytogenes in a stem cell transplant recipient on immunosuppressive therapy for cutaneous chronic graft-versus host disease. A 59-year-old woman had undergone allogeneic stem cell transplantation (from a matched unrelated donor) 13 months previously for chronic lymphocytic leukemia. She was on regular hematologic follow-up. Though her previous malignancy has been in remission, she was immunosuppressed due to the pharmacological treatment. We describe a meningitis caused by a typical food-borne pathogen, dangerous in patients with impaired cell-mediated immunity. Moreover the bacterium had a multidrug resistance, a rare characteristic in clinical listeriosis. Rapid diagnosis and treatment are key factors in these cases. We chose ampicillin and rifampicin that allowed a complete resolution of the clinical manifestations.
Jia, Yanhui; Yuan, Mei; Guo, Weimin; Huang, Jingxiang; Zhao, Bin; Xu, Wenjing; Lu, Shibi
2017-01-01
Umbilical cord Wharton's jelly-derived mesenchymal stem cell (WJMSC) is a new-found mesenchymal stem cell in recent years with multiple lineage potential. Due to its abundant resources, no damage procurement, and lower immunogenicity than other adult MSCs, WJMSC promises to be a good xenogenous cell candidate for tissue engineering. This in vivo pilot study explored the use of human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs) containing a tissue engineering construct xenotransplant in rabbits to repair full-thickness cartilage defects in the femoral patellar groove. We observed orderly spatial-temporal remodeling of hWJMSCs into cartilage tissues during repair over 16 months, with characteristic architectural features, including a hyaline-like neocartilage layer with good surface regularity, complete integration with adjacent host cartilage, and regenerated subchondral bone. No immune rejection was detected when xenograft hWJMSCs were implanted into rabbit cartilage defects. The repair results using hWJMSCs were superior to those of chondrogenically induced hWJMSCs after assessing gross appearance and histological grading scores. These preliminary results suggest that using novel undifferentiated hWJMSCs as seed cells might be a better approach than using transforming growth factor-β-induced differentiated hWJMSCs for in vivo tissue engineering treatment of cartilage defects. hWJMSC allografts may be promising for clinical applications. PMID:28261617
Tuckett, Andrea Z; Thornton, Raymond H; O'Reilly, Richard J; van den Brink, Marcel R M; Zakrzewski, Johannes L
2017-05-16
Even though hematopoietic stem cell transplantation can be curative in patients with severe combined immunodeficiency, there is a need for additional strategies boosting T cell immunity in individuals suffering from genetic disorders of lymphoid development. Here we show that image-guided intrathymic injection of hematopoietic stem and progenitor cells in NOD-scid IL2rγ null mice is feasible and facilitates the generation of functional T cells conferring protective immunity. Hematopoietic stem and progenitor cells were isolated from the bone marrow of healthy C57BL/6 mice (wild-type, Luciferase + , CD45.1 + ) and injected intravenously or intrathymically into both male and female, young or aged NOD-scid IL2rγ null recipients. The in vivo fate of injected cells was analyzed by bioluminescence imaging and flow cytometry of thymus- and spleen-derived T cell populations. In addition to T cell reconstitution, we evaluated mice for evidence of immune dysregulation based on diabetes development and graft-versus-host disease. T cell immunity following intrathymic injection of hematopoietic stem and progenitor cells in NOD-scid IL2rγ null mice was assessed in a B cell lymphoma model. Despite the small size of the thymic remnant in NOD-scid IL2rγ null mice, we were able to accomplish precise intrathymic delivery of hematopoietic stem and progenitor cells by ultrasound-guided injection. Thymic reconstitution following intrathymic injection of healthy allogeneic hematopoietic cells was most effective in young male recipients, indicating that even in the setting of severe immunodeficiency, sex and age are important variables for thymic function. Allogeneic T cells generated in intrathymically injected NOD-scid IL2rγ null mice displayed anti-lymphoma activity in vivo, but we found no evidence for severe auto/alloreactivity in T cell-producing NOD-scid IL2rγ null mice, suggesting that immune dysregulation is not a major concern. Our findings suggest that intrathymic injection of donor hematopoietic stem and progenitor cells is a safe and effective strategy to establish protective T cell immunity in a mouse model of severe combined immunodeficiency.
Bussard, Karen M.; Smith, Gilbert H.
2012-01-01
Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display ‘normal’ behavior when placed into ‘normal’ ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for ‘normal’ gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts) confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini) were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic) respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo. PMID:23155468
Hirayama, Masahiro; Azuma, Eiichi; Komada, Yoshihiro
2012-01-01
Acute graft-versus-host disease (aGVHD) remains a significant cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Infections may coexist and in certain circumstances aggravate aGVHD. It was described that type 1 as well as type 2 cytokines are important mediators of aGVHD. We measured spot-forming cells (SFCs) for interferon (IFN)-γ, interleukin (IL)-4, IL-10, and IL-17 in unstimulated peripheral blood from 80 patients with hematological disorders who underwent allogeneic hematopoietic stem cell transplantation by using the enzyme-linked immunospot (ELISPOT) assay that reflects the ongoing in vivo immune status. A serial monitoring showed that both type 1 and type 2 cytokine SFCs were correlated with aGVHD activity. The numbers of IFN-γ and IL-4 SFCs in patients with grade II-IV aGVHD were significantly higher than those in patients with grade 0 and/or I aGVHD. Elevation of IFN-γ and IL-4 SFCs was significantly correlated with the severity of aGVHD, but not with infection itself, e.g., cytomegalovirus infection. Cytokine SFCs are clinically relevant biomarkers for the diagnostic and therapeutic evaluation of aGVHD and concurrent infection. PMID:24710414
Wang, Jianbin; Holmes, Michael C
2016-11-01
The battle with human immunodeficiency virus (HIV) has been ongoing for more than 30 years, and although progress has been made, there are still significant challenges remaining. A few unique features render HIV to be one of the toughest viruses to conquer in the modern medicine era, such as the ability to target the host immune system, persist by integrating into the host genome and adapt to a hostile environment such as a single anti-HIV medication by continuously evolving. The finding of combination anti-retroviral therapy (cART) about 2 decades ago has transformed the treatment options for HIV-infected patients and significantly improved patient outcomes. However, finding an HIV cure has proven to be extremely challenging with the only known exception being the so-called "Berlin patient," whose immune system was replaced by stem cell transplants from a donor missing one of HIV's key co-receptors (CCR5). The broad application of this approach is limited by the requirement of an HLA-matched donor who is also homozygous for the rare CCR5 delta32 deletion. On the other hand, the Berlin patient provided the proof of concept of a potential cure for HIV using HIV-resistant hematopoietic stem cells (HSCs), revitalizing the hope to find an HIV cure that is broadly applicable. Here we will review strategies and recent attempts to engineer HIV-resistant HSCs as a path to an HIV cure. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Hematopoietic Stem Cell Transplantation—50 Years of Evolution and Future Perspectives
Henig, Israel; Zuckerman, Tsila
2014-01-01
Hematopoietic stem cell transplantation is a highly specialized and unique medical procedure. Autologous transplantation allows the administration of high-dose chemotherapy without prolonged bone marrow aplasia. In allogeneic transplantation, donor-derived stem cells provide alloimmunity that enables a graft-versus-tumor effect to eradicate residual disease and prevent relapse. The first allogeneic transplantation was performed by E. Donnall Thomas in 1957. Since then the field has evolved and expanded worldwide. New indications beside acute leukemia and aplastic anemia have been constantly explored and now include congenital disorders of the hematopoietic system, metabolic disorders, and autoimmune disease. The use of matched unrelated donors, umbilical cord blood units, and partially matched related donors has dramatically extended the availability of allogeneic transplantation. Transplant-related mortality has decreased due to improved supportive care, including better strategies to prevent severe infections and with the incorporation of reduced-intensity conditioning protocols that lowered the toxicity and allowed for transplantation in older patients. However, disease relapse and graft-versus-host disease remain the two major causes of mortality with unsatisfactory progress. Intense research aiming to improve adoptive immunotherapy and increase graft-versus-leukemia response while decreasing graft-versus-host response might bring the next breakthrough in allogeneic transplantation. Strategies of graft manipulation, tumor-associated antigen vaccinations, monoclonal antibodies, and adoptive cellular immunotherapy have already proved clinically efficient. In the following years, allogeneic transplantation is likely to become more complex, more individualized, and more efficient. PMID:25386344
Kim, You-Sun; Kokturk, Nurdan; Kim, Ji-Young; Lee, Sei Won; Lim, Jaeyun; Choi, Soo Jin; Oh, Wonil; Oh, Yeon-Mok
2016-10-01
Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.
Current and Future Perspectives on Alginate Encapsulated Pancreatic Islet.
Strand, Berit L; Coron, Abba E; Skjak-Braek, Gudmund
2017-04-01
Transplantation of pancreatic islets in immune protective capsules holds the promise as a functional cure for type 1 diabetes, also about 40 years after the first proof of principal study. The concept is simple in using semipermeable capsules that allow the ingress of oxygen and nutrients, but limit the access of the immune system. Encapsulated human islets have been evaluated in four small clinical trials where the procedure has been evaluated as safe, but lacking long-term efficacy. Host reactions toward the biomaterials used in the capsules may be one parameter limiting the long-term function of the graft in humans. The present article briefly discusses important capsule properties such as stability, permeability and biocompatibility, as well as possible strategies to overcome current challenges. Also, recent progress in capsule development as well as the production of insulin-producing cells from human stem cells that gives promising perspectives for the transplantation of encapsulated insulin-producing tissue is briefly discussed. Stem Cells Translational Medicine 2017;6:1053-1058. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Cord blood in regenerative medicine: do we need immune suppression?
Riordan, Neil H; Chan, Kyle; Marleau, Annette M; Ichim, Thomas E
2007-01-01
Cord blood is currently used as an alternative to bone marrow as a source of stem cells for hematopoietic reconstitution after ablation. It is also under intense preclinical investigation for a variety of indications ranging from stroke, to limb ischemia, to myocardial regeneration. A major drawback in the current use of cord blood is that substantial morbidity and mortality are associated with pre-transplant ablation of the recipient hematopoietic system. Here we raise the possibility that due to unique immunological properties of both the stem cell and non-stem cell components of cord blood, it may be possible to utilize allogeneic cells for regenerative applications without needing to fully compromise the recipient immune system. Issues raised will include: graft versus host potential, the immunogeneicity of the cord blood graft, and the parallels between cord blood transplantation and fetal to maternal trafficking. The previous use of unmatched cord blood in absence of any immune ablation, as well as potential steps for widespread clinical implementation of allogeneic cord blood grafts will also be discussed. PMID:17261200
Uehara, Taeko; Nakaseko, Chiaki; Hara, Satoru; Harima, Akane; Ejiri, Megumi; Yokota, Akira; Saito, Yasushi; Nishimura, Miki
2004-08-01
Chronic active Epstein-Barr virus infection (CAEBV) is a heterogeneous EBV-related disorder, ranging from mild/moderate forms to rapidly lethal disorders. The lethal form of CAEBV is characterized by multiple organ failure, hemophagocytic syndrome, and development of lymphomas. Allogeneic stem cell transplantation is considered as the only potentially curative treatment for the lethal form of CAEBV, but it is not always desirable because of the high incidence of regimen-related toxicities. A 17-year-old female with CAEBV, who was refractory to conventional therapies and considered to be unable to receive a myeloablative regimen because of multiple organ dysfunction, underwent allogeneic nonmyeloablative stem cell transplantation (allo-NST) before developing a hematological malignancy. She has been well without any signs of CAEBV for 27 months after allo-NST, and we confirmed that specific cytotoxic T lymphocyte activity against EBV was reconstituted. This outcome suggests that allo-NST can control CAEBV by reconstituting the host immunity against EBV. Copyright 2004 Wiley-Liss, Inc.
Vainieri, Maria L; Blagborough, Andrew M; MacLean, Adam L; Haltalli, Myriam L R; Ruivo, Nicola; Fletcher, Helen A; Stumpf, Michael P H; Sinden, Robert E; Celso, Cristina Lo
2016-06-01
Haematopoiesis is the complex developmental process that maintains the turnover of all blood cell lineages. It critically depends on the correct functioning of rare, quiescent haematopoietic stem cells (HSCs) and more numerous, HSC-derived, highly proliferative and differentiating haematopoietic progenitor cells (HPCs). Infection is known to affect HSCs, with severe and chronic inflammatory stimuli leading to stem cell pool depletion, while acute, non-lethal infections exert transient and even potentiating effects. Both whether this paradigm applies to all infections and whether the HSC response is the dominant driver of the changes observed during stressed haematopoiesis remain open questions. We use a mouse model of malaria, based on natural, sporozoite-driven Plasmodium berghei infection, as an experimental platform to gain a global view of haematopoietic perturbations during infection progression. We observe coordinated responses by the most primitive HSCs and multiple HPCs, some starting before blood parasitaemia is detected. We show that, despite highly variable inter-host responses, primitive HSCs become highly proliferative, but mathematical modelling suggests that this alone is not sufficient to significantly impact the whole haematopoietic cascade. We observe that the dramatic expansion of Sca-1(+) progenitors results from combined proliferation of direct HSC progeny and phenotypic changes in downstream populations. We observe that the simultaneous perturbation of HSC/HPC population dynamics is coupled with early signs of anaemia onset. Our data uncover a complex relationship between Plasmodium and its host's haematopoiesis and raise the question whether the variable responses observed may affect the outcome of the infection itself and its long-term consequences on the host. © 2016 The Authors.
Vainieri, Maria L.; Blagborough, Andrew M.; MacLean, Adam L.; Haltalli, Myriam L. R.; Ruivo, Nicola; Fletcher, Helen A.; Stumpf, Michael P. H.; Sinden, Robert E.; Lo Celso, Cristina
2016-01-01
Haematopoiesis is the complex developmental process that maintains the turnover of all blood cell lineages. It critically depends on the correct functioning of rare, quiescent haematopoietic stem cells (HSCs) and more numerous, HSC-derived, highly proliferative and differentiating haematopoietic progenitor cells (HPCs). Infection is known to affect HSCs, with severe and chronic inflammatory stimuli leading to stem cell pool depletion, while acute, non-lethal infections exert transient and even potentiating effects. Both whether this paradigm applies to all infections and whether the HSC response is the dominant driver of the changes observed during stressed haematopoiesis remain open questions. We use a mouse model of malaria, based on natural, sporozoite-driven Plasmodium berghei infection, as an experimental platform to gain a global view of haematopoietic perturbations during infection progression. We observe coordinated responses by the most primitive HSCs and multiple HPCs, some starting before blood parasitaemia is detected. We show that, despite highly variable inter-host responses, primitive HSCs become highly proliferative, but mathematical modelling suggests that this alone is not sufficient to significantly impact the whole haematopoietic cascade. We observe that the dramatic expansion of Sca-1+ progenitors results from combined proliferation of direct HSC progeny and phenotypic changes in downstream populations. We observe that the simultaneous perturbation of HSC/HPC population dynamics is coupled with early signs of anaemia onset. Our data uncover a complex relationship between Plasmodium and its host's haematopoiesis and raise the question whether the variable responses observed may affect the outcome of the infection itself and its long-term consequences on the host. PMID:27335321
Automatic Stem Cell Detection in Microscopic Whole Mouse Cryo-imaging
Wuttisarnwattana, Patiwet; Gargesha, Madhusudhana; Hof, Wouter van’t; Cooke, Kenneth R.
2016-01-01
With its single cell sensitivity over volumes as large as or larger than a mouse, cryo-imaging enables imaging of stem cell biodistribution, homing, engraftment, and molecular mechanisms. We developed and evaluated a highly automated software tool to detect fluorescently labeled stem cells within very large (~200GB) cryo-imaging datasets. Cell detection steps are: preprocess, remove immaterial regions, spatially filter to create features, identify candidate pixels, classify pixels using bagging decision trees, segment cell patches, and perform 3D labeling. There are options for analysis and visualization. To train the classifier, we created synthetic images by placing realistic digital cell models onto cryo-images of control mice devoid of cells. Very good cell detection results were (precision=98.49%, recall=99.97%) for synthetic cryo-images, (precision=97.81%, recall=97.71%) for manually evaluated, actual cryo-images, and <1% false positives in control mice. An α-multiplier applied to features allows one to correct for experimental variations in cell brightness due to labeling. On dim cells (37% of standard brightness), with correction, we improved recall (49.26%→99.36%) without a significant drop in precision (99.99%→99.75%). With tail vein injection, multipotent adult progenitor cells in a graft-versus-host-disease model in the first days post injection were predominantly found in lung, liver, spleen, and bone marrow. Distribution was not simply related to blood flow. The lung contained clusters of cells while other tissues contained single cells. Our methods provided stem cell distribution anywhere in mouse with single cell sensitivity. Methods should provide a rational means of evaluating dosing, delivery methods, cell enhancements, and mechanisms for therapeutic cells. PMID:26552080
Dasgupta, Shyamashree; Rai, Ramesh Chandra
2018-03-01
The success of Mycobacterium tuberculosis (Mtb) as a pathogen stems from its ability to manipulate the host macrophage towards increased lipid biogenesis and lipolysis inhibition. Inhibition of lipolysis requires augmented uptake of glucose into the host cell causing an upregulation of the glucose transporters GLUT1 and GLUT3 on the cell surface. Mechanism behind this upregulation of the GLUT proteins during Mtb infection is hitherto unknown and demands intensive investigation in order to understand the pathways linked with governing them. Our endeavor to investigate some of the key proteins that have been found to be affected during Mtb infection led us to investigate host molecular pathways such as Akt and PPAR-γ that remain closely associated with the survival of the bacilli by modulating the localization of glucose transporters GLUT1 and GLUT3.
Allogeneic peripheral blood stem cell transplantation in patients with haematological malignancies.
Shamsi, T S; Irfan, M; Ansari, S H; Farzana, T; Khalid, M Z; Panjwani, V K; Baig, M I; Shakoor, N
2004-09-01
To report the initial data on allogeneic peripheral blood stem cell transplantation for haematological malignancies in Pakistan. A single centre descriptive study. Bismillah Taqee Institute of Health Sciences and Blood Diseases Centre from September 1999 to June 2004. Patients with haematological malignancies were included who had received allogeneic PBSC transplantation of Filgrastim (rhG-CSF) mobilized peripheral blood stem cells from HLA-identical siblings (except one 5/6 antigen sibling) with Busulphan and Cyclophosphamide standard conditioning therapy in all patients. No patient received antibiotics for gut decontamination. Empirical antibiotics included Ceftriaxone and Amikacin for febrile neutropenia, oral Itraconazole for antifungal prophylaxis while oral acyclovir was used for antiviral prophylaxis. All donors and recipients were CMV IgG positive Cyclosporin A / Methotrexate were given for graft versus host disease (GvHD) prophylaxis. Stem cells were harvested using Haemonetics MCS+ cell separator. All patients received G-CSF starting from day +4 until their neutrophil count rose to normal. There were 21 patients with age range of 8-38 years and male to female ratio of 2:1. Engraftment was achieved in all patients; median time to absolute neutrophil count of > 0.5 x 10(9)/l was 10 days (range 8 - 12 days) and platelet count of > 20 x 10(9)/l was 14 days (12-17 days). Acute graft versus host disease ( aGvHD) was seen in 7 patients; one patient had grade IV skin and hepatic GvHD; another patient had grade III gut GvHD, grade II GvHD was seen in 3 patients while grade I skin aGvHD was seen in 2 patients. Median hospital stay was 34 days. Treatment related mortality was seen in 3 patients (18%). Chronic GvHD was seen in 5 patients. Four more patients died during the follow-up period. Malaria was seen in 2 while tuberculosis developed in one case. Relapse was seen in 2 patients. The estimated probability of survival at one hundred day, at one year and five years was 82, 47 and 40 percent respectively. Haematopoietic stem cell transplant programme can be developed in a developed country setting. Post transplant complications are similar to what have been reported in the developed countries. In endemic areas malaria could prove to be fatal if not recognised and treated early.
Gautam, Uma S.; Foreman, Taylor W.; Bucsan, Allison N.; Veatch, Ashley V.; Alvarez, Xavier; Adekambi, Toidi; Golden, Nadia A.; Gentry, Kaylee M.; Doyle-Meyers, Lara A.; Didier, Peter J.; Blanchard, James L.; Kousoulas, K. Gus; Lackner, Andrew A.; Kalman, Daniel; Rengarajan, Jyothi; Khader, Shabaana A.; Kaushal, Deepak
2018-01-01
Mycobacterium tuberculosis continues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that M. tuberculosis utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that M. tuberculosis induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease. In a macaque model of inhalation TB, suppression of IDO activity reduced bacterial burden, pathology, and clinical signs of TB disease, leading to increased host survival. This increased protection was accompanied by increased lung T cell proliferation, induction of inducible bronchus-associated lymphoid tissue and correlates of bacterial killing, reduced checkpoint signaling, and the relocation of effector T cells to the center of the granulomata. The enhanced killing of M. tuberculosis in macrophages in vivo by CD4+ T cells was also replicated in vitro, in cocultures of macaque macrophages and CD4+ T cells. Collectively, these results suggest that there exists a potential for using IDO inhibition as an effective and clinically relevant host-directed therapy for TB. PMID:29255022
Regeneration of skin tissue promoted by mesenchymal stem cells seeded in nanostructured membrane.
Souza, C M C O; Mesquita, L A F; Souza, D; Irioda, A C; Francisco, J C; Souza, C F; Guarita-Souza, L C; Sierakowski, M-R; Carvalho, K A T
2014-01-01
The mesenchymal stem cell therapy has proven to be an effective option in the treatment of skin injuries. The combination of these cells with nanostructured membranes seems to be the future for tissues recovery. The aim of this project was to use biomolecules of polysaccharides to be incorporated on regenerated cellulose membranes and to prospect the improvement as bioactive wound dressings with mesenchymal stem cells. The biocomposites were obtained after defibrillation with the use of never-dried bacterial cellulose to form a pulp, and, after the films were regenerated, in the presence of gellan gum with or without fluconazole. Membrane atomic force microscopy was performed for comparison of their structures. Adipose-derived mesenchymal stem cells were obtained from human adipose tissue liposuction in accordance with Zuk et al. The flow cytometric analysis and induction tests for adipocytes and osteocytes were performed. In vitro assays were performed on different membranes to evaluate the ability of these cells to adhere at 2 hours and proliferate at 7 days; the results were obtained by use of the MTT cell counting technique. In vivo testing allowed us to observe cell migration and participation in wound-healing by fluorescence labeling of the cells with BrdU. The bioactive curative, seeded with cells, was tested in skin burned in a murine model. The bacterial cellulose with gelan gum membrane incorporated with fluconazole presented the best performance in adhesion and proliferation tests. The cells can be identified in burned host tissue after occurrence of the wound. Copyright © 2014 Elsevier Inc. All rights reserved.
Proença, Sibéli de Fátima Ferraz Simão; Machado, Celina Mattos; Coelho, Raquel de Castro Figueiredo Pereira; Sarquis, Leila Maria Mansano; Guimarães, Paulo Ricardo Bittencourt; Kalinke, Luciana Puchalski
2016-01-01
Assessing the quality of life of adult patients with hematological cancer in the 100 days after transplantation of hematopoietic stem cells and verifying whether the variable graft-versus-host disease (GvHD) is predictive of worse results. An observational correlational and quantitative study with 36 adult participants diagnosed with hematologic cancer who underwent hematopoietic stem cell transplantation from September 2013 to June 2015. The mean age was 37 years, 52.78% were female, and 61.11% were diagnosed with leukemia. Quality of life scores showed a significant impact between pre-transplantation and pre-hospital discharge, and also within the 100 days post-transplantation. The statistical analysis between the scores for the groups with and without GvHD showed a significant difference between the presence of the complication and worse results. Quality of life is altered as a result of hematopoietic stem cells transplantation, especially in patients who have graft-versus-host disease. Avaliar a qualidade de vida de pacientes adultos com câncer hematológico nos 100 dias do transplante de células-tronco hematopoéticas e verificar se a variável doença do enxerto contra o hospedeiro é preditiva de piores resultados. Estudo observacional, correlacional e quantitativo, com 36 participantes adultos, diagnosticados com câncer hematológico que se submeteram ao transplante de células-tronco hematopoéticas de setembro de 2013 a junho de 2015. A média de idade foi 37 anos, 52,78% eram do sexo feminino, e 61,11% com diagnóstico de leucemia. Os escores de qualidade de vida demonstraram impacto significativo entre o pré-transplante e a pré-alta hospitalar e entre os 100 dias pós-transplante. A análise estatística entre os escores dos grupos com e sem doença do enxerto contra o hospedeiro evidenciou significância entre a presença desta complicação e piores resultados. A qualidade de vida é alterada em decorrência do transplante de células-tronco hematopoéticas, em especial nos pacientes que apresentam doença do enxerto contra o hospedeiro.
Stem cell mobilization with G-CSF analogs: a rational approach to separate GVHD and GVL?
Morris, Edward S; MacDonald, Kelli P A; Hill, Geoffrey R
2006-05-01
The separation of graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) remains the "holy grail" of allogeneic stem cell transplantation, and improvements are urgently needed to allow more effective therapy of malignant disease. The use of G-CSF-mobilized peripheral blood as a clinical stem cell source is associated with enhanced GVL effects without amplification of significant acute GVHD. Preclinical studies have demonstrated that G-CSF modulates donor T cell function before transplantation, promoting T(H)2 differentiation and regulatory T cell function. In addition, the expansion of immature antigen-presenting cells (APCs) and plasmacytoid dendritic cells (DCs) favors the maintenance of this pattern of T cell differentiation after transplantation. Although these patterns of T cell differentiation attenuate acute GVHD, they do not have an impact on the cytolytic pathways of the CD8(+) T cells that are critical for effective GVL. Recently, it has been demonstrated that modification of G-CSF, either by pegylation of the native cytokine or conjugation to Flt-3L, results in the expansion and activation of donor iNKT cells, which significantly augment CD8(+) T cell-mediated cytotoxicity and GVL effects after transplantation. Given that these cytokines also enhance the expansion of regulatory T cells and APCs, they further separate GVHD and GVL, offering potential clinical advantages for the transplant recipient.
Kuçi, Zyrafete; Bönig, Halvard; Kreyenberg, Hermann; Bunos, Milica; Jauch, Anna; Janssen, Johannes W.G.; Škifić, Marijana; Michel, Kristina; Eising, Ben; Lucchini, Giovanna; Bakhtiar, Shahrzad; Greil, Johann; Lang, Peter; Basu, Oliver; von Luettichau, Irene; Schulz, Ansgar; Sykora, Karl-Walter; Jarisch, Andrea; Soerensen, Jan; Salzmann-Manrique, Emilia; Seifried, Erhard; Klingebiel, Thomas; Bader, Peter; Kuçi, Selim
2016-01-01
To circumvent donor-to-donor heterogeneity which may lead to inconsistent results after treatment of acute graft-versus-host disease with mesenchymal stromal cells generated from single donors we developed a novel approach by generating these cells from pooled bone marrow mononuclear cells of 8 healthy “3rd-party” donors. Generated cells were frozen in 209 vials and designated as mesenchymal stromal cell bank. These vials served as a source for generation of clinical grade mesenchymal stromal cell end-products, which exhibited typical mesenchymal stromal cell phenotype, trilineage differentiation potential and at later passages expressed replicative senescence-related markers (p21 and p16). Genetic analysis demonstrated their genomic stability (normal karyotype and a diploid pattern). Importantly, clinical end-products exerted a significantly higher allosuppressive potential than the mean allosuppressive potential of mesenchymal stromal cells generated from the same donors individually. Administration of 81 mesenchymal stromal cell end-products to 26 patients with severe steroid-resistant acute graft-versus-host disease in 7 stem cell transplant centers who were refractory to many lines of treatment, induced a 77% overall response at the primary end point (day 28). Remarkably, although the cohort of patients was highly challenging (96% grade III/IV and only 4% grade II graft-versus-host disease), after treatment with mesenchymal stromal cell end-products the overall survival rate at two years follow up was 71±11% for the entire patient cohort, compared to 51.4±9.0% in graft-versus-host disease clinical studies, in which mesenchymal stromal cells were derived from single donors. Mesenchymal stromal cell end-products may, therefore, provide a novel therapeutic tool for the effective treatment of severe acute graft-versus-host disease. PMID:27175026
Basics of Hematopoietic Cell Transplantation for Primary Care Physicians and Internists.
Hashmi, Shahrukh Khurshid
2016-12-01
More than 60,000 hematopoietic cell transplantations (HCTs) are annually performed worldwide to treat a variety of malignant and nonmalignant conditions. Although HCT is complicated and risky, a majority of the HCT recipients are surviving for many years post-transplant. This article presents the basics of transplantation, HCT types/stem cell sources, mobilization and conditioning procedures, indications for HCT, conditioning regimens, engraftment, graft-versus-host-disease, and survivorship issues. Copyright © 2016 Elsevier Inc. All rights reserved.
2014-01-01
Compromised bone-regenerating capability following a long bone fracture is often the result of reduced host bone marrow (BM) progenitor cell numbers and efficacy. Without surgical intervention, these malunions result in mobility restrictions, deformities, and disability. The clinical application of BM-derived mesenchymal stem cells (MSCs) is a feasible, minimally invasive therapeutic option to treat non-union fractures. This review focuses on novel, newly identified cell surface markers in both the mouse and human enabling the isolation and purification of osteogenic progenitor cells as well as their direct and indirect contributions to fracture repair upon administration. Furthermore, clinical success to date is summarized with commentary on autologous versus allogeneic cell sources and the methodology of cell administration. Given our clinical success to date in combination with recent advances in the identification, isolation, and mechanism of action of MSCs, there is a significant opportunity to develop improved technologies for defining therapeutic MSCs and potential to critically inform future clinical strategies for MSC-based bone regeneration. PMID:25099622
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maggio-Price, L.; Wolf, N.S.; Priestley, G.V.
1988-09-01
Serial transplantation and competitive repopulation were used to evaluate any loss of self-replicative capacity of bone marrow stem cells in a mouse model with increased and persistent hemopoietic demands. Congenic marrows from old control and from young and old mice with hereditary spherocytic anemia (sphha/sphha) were serially transplanted at 35-day intervals into normal irradiated recipients. Old anemic marrow failed or reverted to recipient karyotype at a mean of 3.5 transplants, and young anemic marrow reverted at a mean of 4.0 transplants, whereas controls did so at a mean of 5.0 transplants. In a competitive assay in which a mixture ofmore » anemic and control marrow was transplanted, the anemic marrow persisted to 10 months following transplantation; anemic marrow repopulation was greater if anemic marrow sex matched with the host. It is possible that lifelong stress of severe anemia decreases stem cell reserve in the anemic sphha/sphha mouse marrow. However, marginal differences in serial transplantation number and the maintenance of anemic marrow in a competition assay would suggest that marrow stem cells, under prolonged stress, are capable of exhibiting good repopulating and self-replicating abilities.« less
Tootoonchian, Raziyeh; Pak, Fatemeh; Ardekani, Ali M; Sehati, Nasrin; Abedi-Valugerdi, Manuchehr; Kokhaei, Parviz
2016-11-01
The present study tried to explain CD56+ lymphocyte cells activities and possible prognostic role of these cells in Graft-Versus-Host-Disease (GVHD). The role of IL-12 activation and function is of interest in this study. Peripheral blood samples of 51 Hematopoietic Stem Cell Transplantation (HSCT) recipients collected at before (day -8) and after (days 7 and 14). PBMC were collected by Ficoll separation and analyzed by Flow Cytometry using triple antibody (CD45-PerCP, CD56-FITC, and CD69-PE staining and control antibody. Levels of the cytokine IL-12 in the patient's serum were evaluated by ELISA. Percentage of CD56+ lymphocytes (CD56+ bright ) cells was significantly increased at day 14 in patients with acute GVHD and percentage of lymphocytes expressing CD69 was significantly increased at days 7 and 14 posts HSCT in patients with acute GVHD in comparison to those in non-GVHD patients. Baseline serum IL-12 levels (pre-HSCT, day -8) were significantly higher in those HSCT recipients who did not develop GVHD. This study showed that post-transplant CD56+ lymphocytes and pre-transplant serum levels of IL-12 play significant roles in the induction of and protection against GVHD, respectively. The increase in the percentage of CD69+ cells indicates the activation of lymphocyte in acute GVHD group. Copyright © 2016 Elsevier B.V. All rights reserved.
Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy.
Eichler, Florian; Duncan, Christine; Musolino, Patricia L; Orchard, Paul J; De Oliveira, Satiro; Thrasher, Adrian J; Armant, Myriam; Dansereau, Colleen; Lund, Troy C; Miller, Weston P; Raymond, Gerald V; Sankar, Raman; Shah, Ami J; Sevin, Caroline; Gaspar, H Bobby; Gissen, Paul; Amartino, Hernan; Bratkovic, Drago; Smith, Nicholas J C; Paker, Asif M; Shamir, Esther; O'Meara, Tara; Davidson, David; Aubourg, Patrick; Williams, David A
2017-10-26
In X-linked adrenoleukodystrophy, mutations in ABCD1 lead to loss of function of the ALD protein. Cerebral adrenoleukodystrophy is characterized by demyelination and neurodegeneration. Disease progression, which leads to loss of neurologic function and death, can be halted only with allogeneic hematopoietic stem-cell transplantation. We enrolled boys with cerebral adrenoleukodystrophy in a single-group, open-label, phase 2-3 safety and efficacy study. Patients were required to have early-stage disease and gadolinium enhancement on magnetic resonance imaging (MRI) at screening. The investigational therapy involved infusion of autologous CD34+ cells transduced with the elivaldogene tavalentivec (Lenti-D) lentiviral vector. In this interim analysis, patients were assessed for the occurrence of graft-versus-host disease, death, and major functional disabilities, as well as changes in neurologic function and in the extent of lesions on MRI. The primary end point was being alive and having no major functional disability at 24 months after infusion. A total of 17 boys received Lenti-D gene therapy. At the time of the interim analysis, the median follow-up was 29.4 months (range, 21.6 to 42.0). All the patients had gene-marked cells after engraftment, with no evidence of preferential integration near known oncogenes or clonal outgrowth. Measurable ALD protein was observed in all the patients. No treatment-related death or graft-versus-host disease had been reported; 15 of the 17 patients (88%) were alive and free of major functional disability, with minimal clinical symptoms. One patient, who had had rapid neurologic deterioration, had died from disease progression. Another patient, who had had evidence of disease progression on MRI, had withdrawn from the study to undergo allogeneic stem-cell transplantation and later died from transplantation-related complications. Early results of this study suggest that Lenti-D gene therapy may be a safe and effective alternative to allogeneic stem-cell transplantation in boys with early-stage cerebral adrenoleukodystrophy. Additional follow-up is needed to fully assess the duration of response and long-term safety. (Funded by Bluebird Bio and others; STARBEAM ClinicalTrials.gov number, NCT01896102 ; ClinicalTrialsRegister.eu number, 2011-001953-10 .).
Wan, Jiangbo; Huang, Fang; Hao, Siguo; Hu, Weiwei; Liu, Chuanxu; Zhang, Wenhao; Deng, Xiaohui; Chen, Linjun; Ma, Liyuan; Tao, Rong
2017-01-01
Tr1 cells can induce peripheral tolerance to self- and foreign antigens, and have been developed as a therapeutic tool for the induction of tolerance to transplanted tissue. We explored the feasibility of generating Tr1 cells by using IL-10 gene-modified recipient DCs (DCLV-IL-10) to stimulate donor naive CD4+ T cells. We also investigated some biological properties of Tr1 cells. DCLV-IL-10 were generated through DCs transduced with a lentivirus vector carrying the IL-10 gene, and Tr1 cells were produced by using DCLV-IL-10 to stimulate naive CD4+ T cells. The effects of Tr1 cells on T-cell proliferation and the occurrence of graft versus host disease (GVHD) following allogeneic stem-cell transplantation (allo-HSCT) were investigated. The DCLV-IL-10-induced Tr1 cells co-expressed LAG-3 and CD49b. Moreover, they also expressed CD4, CD25, and IL-10, but not Foxp3, and secreted significantly higher levels of IL-10 (1,729.36 ± 185.79 pg/mL; P < 0.001) and INF-γ (1,524.48 ± 168.65 pg/mL; P < 0.01) than the control T cells upon the stimulation by allogeneic DCs. Tr1 cells markedly suppressed T-lymphocyte proliferation and the mixed lymphocytic response (MLR) in vitro. The mice used in the allo-HSCT model had longer survival times and lower clinical and pathological GVHD scores than the control mice. IL-10 gene-modified DC-induced Tr1 cells may be used as a potent cellular therapy for the prevention of GVHD after allo-HSCT. © 2017 The Author(s). Published by S. Karger AG, Basel.
Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake; Nishinakamura, Ryuichi
2016-06-01
Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator-like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm-like structures. Microarray analysis of sorted iPS cell-derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell-derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell-derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. Copyright © 2016 by the American Society of Nephrology.
Gao, Xueqin; Usas, Arvydas; Lu, Aiping; Kozemchak, Adam; Tang, Ying; Poddar, Minakshi; Sun, Xuying; Cummins, James H; Huard, Johnny
2016-08-01
This study investigated the role of cyclooxygenase-2 (COX-2) expression by donor and host cells in muscle-derived stem cell (MDSC)-mediated bone regeneration utilizing a critical size calvarial defect model. We found that BMP4/green fluorescent protein (GFP)-transduced MDSCs formed significantly less bone in COX-2 knock-out (Cox-2KO) than in COX-2 wild-type (WT) mice. BMP4/GFP-transduced Cox-2KO MDSCs also formed significantly less bone than transduced WT MDSCs when transplanted into calvarial defects created in CD-1 nude mice. The impaired bone regeneration in the Cox-2KO MDSCBMP4/GFP group is associated with downregulation of BMP4-pSMAD1/5 signaling, decreased osteogenic differentiation and lowered proliferation capacity after transplantation, compared with WT MDSCBMP4/GFP cells. The Cox-2KO MDSCBMP4/GFP group demonstrated a reduction in cell survival and direct osteogenic differentiation in vitro These effects were mediated in part by the downregulation of Igf1 and Igf2. In addition, the Cox-2KO MDSCBMP4/GFP cells recruited fewer macrophages than the WT MDSC/BMP4/GFP cells in the early phase after injury. We concluded that the bone regeneration capacity of Cox-2KO MDSCs was impaired because of a reduction in cell proliferation and survival capacities, reduction in osteogenic differentiation and a decrease in the ability of the cells to recruit host cells to the injury site. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
David-Schwartz, Rakefet; Runo, Steven; Townsley, Brad; Machuka, Jesse; Sinha, Neelima
2008-01-01
It has been shown that the parasitic plant dodder (Cuscuta pentagona) establishes a continuous vascular system through which water and nutrients are drawn. Along with solutes, viruses and proteins, mRNA transcripts are transported from the host to the parasite. The path of the transcripts and their stability in the parasite have yet to be revealed. To discover the route of mRNA transportation, the in situ reverse transcriptase-polymerase chain reaction (RT-PCR) technique was used to locally amplify host transcript within parasitic tissue. The stability of host mRNA molecules was also checked by monitoring specific transcripts along the growing dodder thread. Four mRNAs, alpha and beta subunits of PYROPHOSPHATE (PPi)-DEPENDENT PHOSPHOFRUCTOKINASE (LePFP), the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), and GIBBERELLIC ACID INSENSITIVE (LeGAI), were found to move from host (tomato (Solanum lycopersicum)) to dodder. LePFP mRNA was localized to the dodder parenchyma cells and to the phloem. LePFP transcripts were found in the growing dodder stem up to 30 cm from the tomato-dodder connection. These results suggest that mRNA molecules are transferred from host to parasite via symplastic connections between parenchyma cells, move towards the phloem, and are stable for a long distance in the parasite. This may allow developmental coordination between the parasite and its host.
Kawasaki, Yasufumi; Sato, Kazuya; Hayakawa, Hiroko; Takayama, Norihito; Nakano, Hirofumi; Ito, Ryoji; Mashima, Kiyomi; Oh, Iekuni; Minakata, Daisuke; Yamasaki, Ryoko; Morita, Kaoru; Ashizawa, Masahiro; Yamamoto, Chihiro; Hatano, Kaoru; Fujiwara, Shin-Ichiro; Ohmine, Ken; Muroi, Kazuo; Kanda, Yoshinobu
2018-04-17
Xenogeneic graft-versus-host disease (GVHD) models in highly immunodeficient mice are currently being used worldwide to investigate human immune responses against foreign antigens in vivo. However, the individual roles of CD4 + and CD8 + T cells, and donor/host hematopoietic and nonhematopoietic antigen-presenting cells (APCs) in the induction and development of GVHD have not been fully investigated. In the present study, we comprehensively investigated the immune responses of human T cells and the antigen presentation capacity of donor/host hematopoietic and nonhematopoietic APCs in xenogeneic GVHD models using nonobese diabetic/Shi-scid-IL2rg null mice. CD4 + T cells and, to a lesser extent, CD8 + T cells individually mediated potentially lethal GVHD. In addition to inflammatory cytokine production, CD4 + T cells also supported the activation and proliferation of CD8 + T cells. Using bone marrow chimeras, we demonstrated that host hematopoietic, but not nonhematopoietic, APCs play a critical role in the development of CD4 + T cell-mediated GVHD. During early GVHD, we detected 2 distinct populations in memory CD4 + T cells. One population was highly activated and proliferated in major histocompatibility complex antigen (MHC) +/+ mice but not in MHC -/- mice, indicating alloreactive T cells. The other population showed a less activated and slowly proliferative status regardless of host MHC expression, and was associated with higher susceptibility to apoptosis, indicating nonalloreactive T cells in homeostasis-driven proliferation. These observations are clinically relevant to donor T cell response after allogeneic hematopoietic stem cell transplantation. Our findings provide a better understanding of the immunobiology of humanized mice and support the development of novel options for the prevention and treatment for GVHD. Copyright © 2018. Published by Elsevier Inc.
Haus, Daniel L; López-Velázquez, Luci; Gold, Eric M; Cunningham, Kelly M; Perez, Harvey; Anderson, Aileen J; Cummings, Brian J
2016-07-01
Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically <1month post-injury and cell transplantation. Additionally, human cell engraftment and long-term survival in rodent models of TBI has been difficult to achieve due to host immunorejection of the transplanted human cells, which confounds conclusions pertaining to transplant-mediated behavioral improvement. To overcome these shortfalls, we have developed a novel TBI xenotransplantation model that utilizes immunodeficient athymic nude (ATN) rats as the host recipient for the post-TBI transplantation of human embryonic stem cell (hESC) derived NSCs and have evaluated cognition in these animals at long-term (≥2months) time points post-injury. We report that immunodeficient ATN rats demonstrate hippocampal-dependent spatial memory deficits (Novel Place, Morris Water Maze), but not non-spatial (Novel Object) or emotional/anxiety-related (Elevated Plus Maze, Conditioned Taste Aversion) deficits, at 2-3months post-TBI, confirming that ATN rats recapitulate some of the cognitive deficits found in immunosufficient animal strains. Approximately 9-25% of transplanted hNSCs survived for at least 5months post-transplantation and differentiated into mature neurons (NeuN, 18-38%), astrocytes (GFAP, 13-16%), and oligodendrocytes (Olig2, 11-13%). Furthermore, while this model of TBI (cortical impact) targets primarily cortex and the underlying hippocampus and generates a large lesion cavity, hNSC transplantation facilitated cognitive recovery without affecting either lesion volume or total spared cortical or hippocampal tissue volume. Instead, we have found an overall increase in host hippocampal neuron survival in hNSC transplanted animals and demonstrate that a correlation exists between hippocampal neuron survival and cognitive performance. Together, these findings support the use of immunodeficient rodents in models of TBI that involve the transplantation of human cells, and suggest that hNSC transplantation may be a viable, long-term therapy to restore cognition after brain injury. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Shreberk-Hassidim, Rony; Neumark, Michal; Greenberger, Shoshana; Goldstein, Gal; Hassidim, Ayal; Dukler, Yuval; Maly, Alexander; Stepensky, Polina; Molho-Pessach, Vered
2018-02-07
Chronic graft versus host disease (cGVHD) is a complication of allogeneic haematopoietic stem cell transplantation (HSCT). The aim of this study was to clinically characterize childhood cutaneous cGVHD. A retrospective study of children treated with HSCT at 2 tertiary medical centres in Israel between 2011 and 2014 was performed. A total of 112 children were included. Cutaneous cGVHD developed in 18% of subjects. Risk factors were older age, HSCT from peripheral blood and acute lymphoblastic leukaemia. The eruption was lichenoid in 90% of subjects, of whom one-third progressed to sclerosis. Topical treatments were usually sufficient in localized disease. Widespread eruption necessitated phototherapy, extracorporeal photopheresis and/or systemic immunosuppressants. Patients presenting with palmoplantar keratoderma, developed sclerosis. To the best of our knowledge, this is the first study describing childhood cutaneous cGVHD. Lichenoid eruption is the most common cutaneous pattern of cGVHD in children. Sclerotic changes may be associated with prior keratoderma. cGVHD poses a therapeutic challenge and better treatments should be sought.
The Paramyxea Levine 1979: An original example of evolution towards multicellularity
NASA Astrophysics Data System (ADS)
Desportes, Isabelle
1984-03-01
The Paramyxea are parasitic in marine invertebrates. Their development is a sporulation involving the differentiation within a stem cell of several sporonts which produce spores made of cells enclosed inside each other. Three genera are recognized according to the number of spores and sporal cells, and the taxonomic position of the host (Polychaeta, Mollusca, Crustacea). The Paramyxea exhibit both protistan and metazoan characters. Their nine singlets centrioles are observed in different Protoctists whereas the fact that their sporal cells acquire distinctive cytological features may be interpreted as an evolution towards multicellularity.
Wildes, Tyler J; Grippin, Adam; Dyson, Kyle A; Wummer, Brandon M; Damiani, David J; Abraham, Rebecca S; Flores, Catherine T; Mitchell, Duane A
2018-04-30
Purpose: Adoptive T-cell immunotherapy (ACT) has emerged as a viable therapeutic for peripheral and central nervous system (CNS) tumors. In peripheral cancers, optimal efficacy of ACT is reliant on dendritic cells (DCs) in the tumor microenvironment. However, the CNS is largely devoid of resident migratory DCs to function as antigen-presenting cells during immunotherapy. Herein, we demonstrate that cellular interactions between adoptively transferred tumor-reactive T cells and bone marrow-derived hematopoietic stem and progenitor cells (HSPCs) lead to the generation of potent intratumoral DCs within the CNS compartment. Experimental Design: We evaluated HSPC differentiation during ACT in vivo in glioma-bearing hosts and HSPC proliferation and differentiation in vitro using a T-cell coculture system. We utilized FACS, ELISAs, and gene expression profiling to study the phenotype and function of HSPC-derived cells ex vivo and in vivo. To demonstrate the impact of HSPC differentiation and function on antitumor efficacy, we performed survival experiments. Results: Transfer of HSPCs with concomitant ACT led to the production of activated CD86 + CD11c + MHCII + cells consistent with DC phenotype and function within the brain tumor microenvironment. These intratumoral DCs largely supplanted abundant host myeloid-derived suppressor cells. We determined that during ACT, HSPC-derived cells in gliomas rely on T-cell-released IFNγ to differentiate into DCs, activate T cells, and reject intracranial tumors. Conclusions: Our data support the use of HSPCs as a novel cellular therapy. Although DC vaccines induce robust immune responses in the periphery, our data demonstrate that HSPC transfer uniquely generates intratumoral DCs that potentiate T-cell responses and promote glioma rejection in situ Clin Cancer Res; 1-12. ©2018 AACR. ©2018 American Association for Cancer Research.
Gress, Ronald E; Miller, Jeffrey S; Battiwalla, Minoo; Bishop, Michael R; Giralt, Sergio A; Hardy, Nancy M; Kröger, Nicolaus; Wayne, Alan S; Landau, Dan A; Wu, Catherine J
2013-11-01
In the National Cancer Institute's Second Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation, the Scientific/Educational Session on the Biology of Relapse discussed recent advances in understanding some of the host-, disease-, and transplantation-related contributions to relapse, emphasizing concepts with potential therapeutic implications. Relapse after hematopoietic stem cell transplantation (HSCT) represents tumor escape, from the cytotoxic effects of the conditioning regimen and from immunologic control mediated by reconstituted lymphocyte populations. Factors influencing the biology of the therapeutic graft-versus-malignancy (GVM) effect-and relapse-include conditioning regimen effects on lymphocyte populations and homeostasis, immunologic niches, and the tumor microenvironment; reconstitution of lymphocyte populations and establishment of functional immune competence; and genetic heterogeneity within the malignancy defining potential for clonal escape. Recent developments in T cell and natural killer cell homeostasis and reconstitution are reviewed, with implications for prevention and treatment of relapse, as is the application of modern genome sequencing to defining the biologic basis of GVM, clonal escape, and relapse after HSCT. Published by Elsevier Inc.
Mesenchymal stem cells: angels or demons?
Wong, Rebecca S Y
2011-01-01
Mesenchymal stem cells (MSCs) have been used in cell-based therapy in various disease conditions such as graft-versus-host and heart diseases, osteogenesis imperfecta, and spinal cord injuries, and the results have been encouraging. However, as MSC therapy gains popularity among practitioners and researchers, there have been reports on the adverse effects of MSCs especially in the context of tumour modulation and malignant transformation. These cells have been found to enhance tumour growth and metastasis in some studies and have been related to anticancer-drug resistance in other instances. In addition, various studies have also reported spontaneous malignant transformation of MSCs. The mechanism of the modulatory behaviour and the tumorigenic potential of MSCs, warrant urgent exploration, and the use of MSCs in patients with cancer awaits further evaluation. However, if MSCs truly play a role in tumour modulation, they can also be potential targets of cancer treatment.
Mesenchymal Stem Cells: Angels or Demons?
Wong, Rebecca S. Y.
2011-01-01
Mesenchymal stem cells (MSCs) have been used in cell-based therapy in various disease conditions such as graft-versus-host and heart diseases, osteogenesis imperfecta, and spinal cord injuries, and the results have been encouraging. However, as MSC therapy gains popularity among practitioners and researchers, there have been reports on the adverse effects of MSCs especially in the context of tumour modulation and malignant transformation. These cells have been found to enhance tumour growth and metastasis in some studies and have been related to anticancer-drug resistance in other instances. In addition, various studies have also reported spontaneous malignant transformation of MSCs. The mechanism of the modulatory behaviour and the tumorigenic potential of MSCs, warrant urgent exploration, and the use of MSCs in patients with cancer awaits further evaluation. However, if MSCs truly play a role in tumour modulation, they can also be potential targets of cancer treatment. PMID:21822372
Schroeder, Mark A.; Rettig, Michael P.; Lopez, Sandra; Christ, Stephanie; Fiala, Mark; Eades, William; Mir, Fazia A.; Shao, Jin; McFarland, Kyle; Trinkaus, Kathryn; Shannon, William; Deych, Elena; Yu, Jinsheng; Vij, Ravi; Stockerl-Goldstein, Keith; Cashen, Amanda F.; Uy, Geoffrey L.; Abboud, Camille N.; Westervelt, Peter
2017-01-01
A single subcutaneous (SC) injection of plerixafor results in rapid mobilization of hematopoietic progenitors, but fails to mobilize 33% of normal allogeneic sibling donors in 1 apheresis. We hypothesized that changing the route of administration of plerixafor from SC to IV may overcome the low stem cell yields and allow collection in 1 day. A phase 1 trial followed by a phase 2 efficacy trial was conducted in allogeneic sibling donors. The optimal dose of IV plerixafor was determined to be 0.32 mg/kg. The primary outcome of reducing the failure to collect ≥2 × 106 CD34+/kg recipient weight in 1 apheresis collection to ≤10% was not reached. The failure rate was 34%. Studies evaluating the stem cell phenotype and gene expression revealed a novel plasmacytoid dendritic cell precursor preferentially mobilized by plerixafor with high interferon-α producing ability. The observed cytomegalovirus (CMV) viremia rate for patients at risk was low (15%), as were the rates of acute grade 2-4 graft-versus-host disease (GVHD) (21%). Day 100 treatment related mortality was low (3%). In conclusion, plerixafor results in rapid stem cell mobilization regardless of route of administration and resulted in novel cellular composition of the graft and favorable recipient outcomes. These trials were registered at clinicaltrials.gov as #NCT00241358 and #NCT00914849. PMID:28292947
Lakatos, Anita; Goldberg, Natalie R S; Blurton-Jones, Mathew
2017-03-10
We previously demonstrated that transplantation of murine neural stem cells (NSCs) can improve motor and cognitive function in a transgenic model of Dementia with Lewy Bodies (DLB). These benefits occurred without changes in human α-synuclein pathology and were mediated in part by stem cell-induced elevation of brain-derived neurotrophic factor (BDNF). However, instrastriatal NSC transplantation likely alters the brain microenvironment via multiple mechanisms that may synergize to promote cognitive and motor recovery. The underlying neurobiology that mediates such restoration no doubt involves numerous genes acting in concert to modulate signaling within and between host brain cells and transplanted NSCs. In order to identify functionally connected gene networks and additional mechanisms that may contribute to stem cell-induced benefits, we performed weighted gene co-expression network analysis (WGCNA) on striatal tissue isolated from NSC- and vehicle-injected wild-type and DLB mice. Combining continuous behavioral and biochemical data with genome wide expression via network analysis proved to be a powerful approach; revealing significant alterations in immune response, neurotransmission, and mitochondria function. Taken together, these data shed further light on the gene network and biological processes that underlie the therapeutic effects of NSC transplantation on α-synuclein induced cognitive and motor impairments, thereby highlighting additional therapeutic targets for synucleinopathies.
Mesenchymal Stem Cell as Targeted-Delivery Vehicle in Breast Cancer
2010-06-01
osteogenesis imperfect [2], graft-versus-host disease [3], and autoimmune diseases [4, 5], and to deliver therapy for malignancies [6, 7]. For the current...Gordon PL, Neel M, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis ... imperfecta . Nat Med. 1999;5:309-13. 3. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus
Canaani, Jonathan; Savani, Bipin N; Labopin, Myriam; Huang, Xiao-Jun; Ciceri, Fabio; Arcese, William; Tischer, Johanna; Koc, Yener; Bruno, Benedetto; Gülbas, Zafer; Blaise, Didier; Maertens, Johan; Ehninger, Gerhard; Mohty, Mohamad; Nagler, Arnon
2017-06-01
A significant proportion of hematopoietic stem cell transplants are performed with ABO-mismatched donors. The impact of ABO mismatch on outcome following transplantation remains controversial and there are no published data regarding the impact of ABO mismatch in acute myeloid leukemia patients receiving haploidentical transplants. Using the European Blood and Marrow Transplant Acute Leukemia Working Group registry we identified 837 patients who underwent haploidentical transplantation. Comparative analysis was performed between patients who received ABO-matched versus ABO-mismatched haploidentical transplants for common clinical outcome variables. Our cohort consisted of 522 ABO-matched patients and 315 ABO-mismatched patients including 150 with minor, 127 with major, and 38 with bi-directional ABO mismatching. There were no significant differences between ABO matched and mismatched patients in terms of baseline disease and clinical characteristics. Major ABO mismatching was associated with inferior day 100 engraftment rate whereas multivariate analysis showed that bi-directional mismatching was associated with increased risk of grade II-IV acute graft- versus -host disease [hazard ratio (HR) 2.387; 95% confidence interval (CI): 1.22-4.66; P =0.01). Non-relapse mortality, relapse incidence, leukemia-free survival, overall survival, and chronic graft- versus -host disease rates were comparable between ABO-matched and -mismatched patients. Focused analysis on stem cell source showed that patients with minor mismatching transplanted with bone marrow grafts experienced increased grade II-IV acute graft- versus -host disease rates (HR 2.03; 95% CI: 1.00-4.10; P =0.04). Patients with major ABO mismatching and bone marrow grafts had decreased survival (HR=1.82; CI 95%: 1.048 - 3.18; P =0.033). In conclusion, ABO incompatibility has a marginal but significant clinical effect in acute myeloid leukemia patients undergoing haploidentical transplantation. Copyright© Ferrata Storti Foundation.
Canaani, Jonathan; Savani, Bipin N; Labopin, Myriam; Huang, Xiao-jun; Ciceri, Fabio; Arcese, William; Tischer, Johanna; Koc, Yener; Bruno, Benedetto; Gülbas, Zafer; Blaise, Didier; Maertens, Johan; Ehninger, Gerhard; Mohty, Mohamad; Nagler, Arnon
2017-01-01
A significant proportion of hematopoietic stem cell transplants are performed with ABO-mismatched donors. The impact of ABO mismatch on outcome following transplantation remains controversial and there are no published data regarding the impact of ABO mismatch in acute myeloid leukemia patients receiving haploidentical transplants. Using the European Blood and Marrow Transplant Acute Leukemia Working Group registry we identified 837 patients who underwent haploidentical transplantation. Comparative analysis was performed between patients who received ABO-matched versus ABO-mismatched haploidentical transplants for common clinical outcome variables. Our cohort consisted of 522 ABO-matched patients and 315 ABO-mismatched patients including 150 with minor, 127 with major, and 38 with bi-directional ABO mismatching. There were no significant differences between ABO matched and mismatched patients in terms of baseline disease and clinical characteristics. Major ABO mismatching was associated with inferior day 100 engraftment rate whereas multivariate analysis showed that bi-directional mismatching was associated with increased risk of grade II–IV acute graft-versus-host disease [hazard ratio (HR) 2.387; 95% confidence interval (CI): 1.22–4.66; P=0.01). Non-relapse mortality, relapse incidence, leukemia-free survival, overall survival, and chronic graft-versus-host disease rates were comparable between ABO-matched and -mismatched patients. Focused analysis on stem cell source showed that patients with minor mismatching transplanted with bone marrow grafts experienced increased grade II–IV acute graft-versus-host disease rates (HR 2.03; 95% CI: 1.00–4.10; P=0.04). Patients with major ABO mismatching and bone marrow grafts had decreased survival (HR=1.82; CI 95%: 1.048 – 3.18; P=0.033). In conclusion, ABO incompatibility has a marginal but significant clinical effect in acute myeloid leukemia patients undergoing haploidentical transplantation. PMID:28255020
Berro, Mariano; Mayor, Neema P.; Maldonado-Torres, Hazael; Cooke, Louise; Kusminsky, Gustavo; Marsh, Steven G.E.; Madrigal, J. Alejandro; Shaw, Bronwen E.
2010-01-01
Background Many genetic factors play major roles in the outcome of hematopoietic stem cell transplants from unrelated donors. Transforming growth factor β1 is a member of a highly pleiotrophic family of growth factors involved in the regulation of numerous immunomodulatory processes. Design and Methods We investigated the impact of single nucleotide polymorphisms at codons 10 and 25 of TGFB1, the gene encoding for transforming growth factor β1, on outcomes in 427 mye-loablative-conditioned transplanted patients. In addition, transforming growth factor β1 plasma levels were measured in 263 patients and 327 donors. Results Patients homozygous for the single nucleotide polymorphism at codon 10 had increased non-relapse mortality (at 3 years: 46.8% versus 29.4%, P=0.014) and reduced overall survival (at 5 years 29.3% versus 42.2%, P=0.013); the differences remained statistically significant in multivariate analysis. Donor genotype alone had no impact, although multiple single nucleotide polymorphisms within the pair were significantly associated with higher non-relapse mortality (at 3 years: 44% versus 29%, P=0.021) and decreased overall survival (at 5 years: 33.8% versus 41.9%, P=0.033). In the 10/10 HLA matched transplants (n=280), recipients of non-wild type grafts tended to have a higher incidence of acute graft-versus-host disease grades II-IV (P=0.052). In multivariate analysis, when analyzed with patients’ genotype, the incidences of both overall and grades II-IV acute graft-versus-host disease were increased (P=0.025 and P=0.009, respectively) in non-wild-type pairs. Conclusions We conclude that increasing numbers of single nucleotide polymorphisms in codon 10 of TGFB1 in patients and donors are associated with a worse outcome following hematopoietic stem cell transplantation from unrelated donors. PMID:19713222
Drokov, Mikhail Y; Davydova, Julia O; Kuzmina, Larisa A; Galtseva, Irina V; Kapranov, Nikolay M; Vasilyeva, Vera A; Dubnyak, Darya S; Koroleva, Olga M; Mikhalcova, Ekaterina D; Popova, Natalia N; Parovichnikova, Elena N; Savchenko, Valery G
2017-03-01
Acute Graft-versus-host-disease (aGVHD), the major complication and one of the main causes of poor outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Nowadays there are no widely accepted cell, plasma or another biomarker that can be used for aGVHD prediction. We hypothesized that a level of Granzyme B-positive T regulatory (GZMB-positive Treg) cells on day+30 after allo-HSCT could be the measure of immune response suppression and could predict aGVHD development after day +30. We applied a widespread and easy-to-perform method of multicolor flow cytometry to measure level of GZMB-positive Treg cells. Levels of GZMB-positive Tregs on day +30 after allo-HSCT were significantly higher in those patients who never developed aGVHD in comparison with the other group of patient with aGVHD after day +30 (p=0.0229). We conclude that the level of GZMB-positive Treg cells is a strong predictor of acute Graft-versus-host disease after day +30 after allo-HSCT. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cellular and molecular interactions of mesenchymal stem cells in innate immunity.
Spaggiari, Grazia Maria; Moretta, Lorenzo
2013-01-01
In recent years, human mesenchymal stem/stromal cells (MSC) have attracted major attention for their possible clinical applications. In addition to their tissue regenerative capacity, they display immune-modulatory properties for which they have been used in the treatment of acute graft-versus-host disease and autoimmune diseases. Various studies have analyzed the inhibitory effect exerted by MSC on cells belonging to acquired or to innate immunity. In this context, MSC have been shown to inhibit proliferation and function of natural killer (NK) cells and to hinder the generation of dendritic cells and macrophages, thus interfering with inflammatory processes and with the generation of type I immune responses. In addition, MSC promote the differentiation of regulatory cells and participate in the regeneration of tissues damaged as a consequence of the inflammatory process. Different molecular mechanisms are involved in the immunosuppressive effect. Further investigation on the biology of MSC and on the regulatory events involved in their functional activities can help to optimize their use in clinical practice.
NASA Astrophysics Data System (ADS)
Armstrong, James P. K.; Shakur, Rameen; Horne, Joseph P.; Dickinson, Sally C.; Armstrong, Craig T.; Lau, Katherine; Kadiwala, Juned; Lowe, Robert; Seddon, Annela; Mann, Stephen; Anderson, J. L. Ross; Perriman, Adam W.; Hollander, Anthony P.
2015-06-01
Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.
Poiret, Thomas; Axelsson-Robertson, Rebecca; Remberger, Mats; Luo, Xiao-Hua; Rao, Martin; Nagchowdhury, Anurupa; Von Landenberg, Anna; Ernberg, Ingemar; Ringden, Olle; Maeurer, Markus
2018-01-01
Virus-specific T-cell responses are crucial to control cytomegalovirus (CMV) infections/reactivation in immunocompromised individuals. Adoptive cellular therapy with CMV-specific T-cells has become a viable treatment option. High-affinity anti-viral cellular immune responses are associated with improved long-term immune protection against CMV infection. To date, the characterization of high-affinity T-cell responses against CMV has not been achieved in blood from patients after allogeneic hematopoietic stem cell transplantation (HSCT). Therefore, the purpose of this study was to describe and analyze the phenotype and clinical impact of different CMV-specific CD8+ cytotoxic T-lymphocytes (CMV-CTL) classes based on their T-cell receptor (TCR) affinity. T-cells isolated from 23 patients during the first year following HSCT were tested for the expression of memory markers, programmed cell death 1 (PD-1), as well as TCR affinity, using three different HLA-A*02:01 CMVNLVPMVATV-Pp65 tetramers (wild-type, a245v and q226a mutants). High-affinity CMV-CTL defined by q226a tetramer binding, exhibited a higher frequency in CD8+ T-cells in the first month post-HSCT and exhibited an effector memory phenotype associated with strong PD-1 expression as compared to the medium- and low-affinity CMV-CTLs. High-affinity CMV-CTL was found at higher proportion in patients with chronic graft-versus-host disease (p < 0.001). This study provides a first insight into the detailed TCR affinities of CMV-CTL. This may be useful in order to improve current immunotherapy protocols using isolation of viral-specific T-cell populations based on their TCR affinity. PMID:29692783
Li, Dong-Mei; Staehelin, Christian; Zhang, Yi-Shun; Peng, Shao-Lin
2009-09-01
The influence of Cuscuta campestris on its host Mikania micrantha has been studied with respect to biomass accumulation, physiology and ecology. Molecular events of this parasitic plant-plant interaction are poorly understood, however. In this study, we identified novel genes from M. micrantha induced by C. campestris infection. Genes expressed upon parasitization by C. campestris at early post-penetration stages were investigated by construction and characterization of subtracted cDNA libraries from shoots and stems of M. micrantha. Three hundred and three presumably up-regulated expressed sequence tags (ESTs) were identified and classified in functional categories, such as "metabolism", "cell defence and stress", "transcription factor", "signal transduction", "transportation" and "photosynthesis". In shoots and stems of infected M. micrantha, genes associated with defence responses and cell wall modifications were induced, confirming similar data from other parasitic plant-plant interactions. However, gene expression profiles in infected shoots and stems were found to be different. Compared to infected shoots, more genes induced in response to biotic and abiotic stress factors were identified in infected stems. Furthermore, database comparisons revealed a notable number of M. micrantha ESTs that matched genes with unknown function. Expression analysis by quantitative real-time RT-PCR of 21 genes (from different functional categories) showed significantly increased levels for 13 transcripts in response to C. campestris infection. In conclusion, this study provides an overview of genes from parasitized M. micrantha at early post-penetration stages. The acquired data form the basis for a molecular understanding of host reactions in response to parasitic plants.
Host plants of the wheat stem sawfly (Hymenoptera: Cephidae)
USDA-ARS?s Scientific Manuscript database
Wheat stem sawfly (Cephus cinctus Norton) is a pest of economic importance across much of the wheat cultivating areas of the western Great Plains as well as an ecologically important insect due to its wide range of grass hosts. Little research has been published involving the native host preference ...
Lower hospital mortality and complications after pediatric hematopoietic stem cell transplantation.
Bratton, Susan L; Van Duker, Heather; Statler, Kimberly D; Pulsipher, Michael A; McArthur, Jennifer; Keenan, Heather T
2008-03-01
To assess protective and risk factors for mortality among pediatric patients during initial care after hematopoietic stem cell transplantation (HSCT) and to evaluate changes in hospital mortality. Retrospective cohort using the 1997, 2000, and 2003 Kids Inpatient Database, a probabilistic sample of children hospitalized in the United States with a procedure code for HSCT. Hospitalized patients in the United States submitted to the database. Age, <19 yrs. None. Hospital mortality significantly decreased from 12% in 1997 to 6% in 2003. Source of stem cells changed with increased use of cord blood. Rates of sepsis, graft versus host disease, and mechanical ventilation significantly decreased. Compared with autologous HSCT, patients who received an allogenic HSCT without T-cell depletion were more likely to die (adjusted odds ratio, 2.4; 95% confidence interval, 1.5, 3.9), while children who received cord blood HSCT were at the greatest risk of hospital death (adjusted odds ratio, 4.8; 95% confidence interval, 2.6, 9.1). Mechanical ventilation (adjusted odds ratio, 26.32; 95% confidence interval, 16.3-42.2), dialysis (adjusted odds ratio, 12.9; 95% confidence interval, 4.7-35.4), and sepsis (adjusted odds ratio, 3.9; 95% confidence interval, 2.5-6.1) were all independently associated with death, while care in 2003 was associated with decreased risk (adjusted odds ratio, 0.4; 95% confidence interval, 0.2-0.7) of death. Hospital mortality after HSCT in children decreased over time as did complications including need for mechanical ventilation, graft versus host disease, and sepsis. Prevention of complications is essential as the need for invasive support continues to be associated with high mortality risk.
TIA-1 and TIAR interact with 5'-UTR of enterovirus 71 genome and facilitate viral replication.
Wang, Xiaohui; Wang, Huanru; Li, Yixuan; Jin, Yu; Chu, Ying; Su, Airong; Wu, Zhiwei
2015-10-16
Enterovirus 71 is one of the major causative pathogens of HFMD in children. Upon infection, the viral RNA is translated in an IRES-dependent manner and requires several host factors for effective replication. Here, we found that T-cell-restricted intracellular antigen 1 (TIA-1), and TIA-1 related protein (TIAR) were translocated from nucleus to cytoplasm after EV71 infection and localized to the sites of viral replication. We found that TIA-1 and TIAR can facilitate EV71 replication by enhancing the viral genome synthesis in host cells. We demonstrated that both proteins bound to the stem-loop I of 5'-UTR of viral genome and improved the stability of viral genomic RNA. Our results suggest that TIA-1 and TIAR are two new host factors that interact with 5-UTR of EV71 genome and positively regulate viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.
Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Macías, David; Gálvez, Victoria; Pastor, Angel M
2014-04-01
Transplantation of neural stem/progenitor cells (NPCs) in the lesioned brain is able to restore morphological and physiological alterations induced by different injuries. The local microenvironment created at the site of grafting and the communication between grafted and host cells are crucial in the beneficial effects attributed to the NPC implants. We have previously described that NPC transplantation in an animal model of central axotomy restores firing properties and synaptic coverage of lesioned neurons and modulates their trophic factor content. In this study, we aim to explore anatomical relationships between implanted NPCs and host glia that might account for the implant-induced neuroprotective effects. Postnatal rat subventricular zone NPCs were isolated and grafted in adult rats after transection of the medial longitudinal fascicle. Brains were removed and analyzed eight weeks later. Immunohistochemistry for different glial markers revealed that NPC-grafted animals displayed significantly greater microglial activation than animals that received only vehicle injections. Implanted NPCs were located in close apposition to activated microglia and reactive astrocytes. The gap junction protein connexin43 was present in NPCs and glial cells at the lesion site and was often found interposed within adjacent implanted and glial cells. Gap junctions were identified between implanted NPCs and host astrocytes and less frequently between NPCs and microglia. Our results show that implanted NPCs modulate the glial reaction to lesion and establish the possibility of communication through gap junctions between grafted and host glial cells which might be involved in the restorative effects of NPC implants. Copyright © 2014 Wiley Periodicals, Inc.
Li, Qian; Luo, Changying; Luo, Chengjuan; Wang, Jianmin; Li, Benshang; Ding, Lixia; Chen, Jing
2017-08-01
Hematopoietic stem cell transplantation (HSCT) using an optimized conditioning regimen is essential for the long-term survival of patients with inherited bone marrow failure syndromes (IBMFS). We report HSCT in 24 children with Fanconi anemia (FA, n = 12), Diamond-Blackfan anemia (DBA, n = 7), and dyskeratosis congenita (DC, n = 5) from a single HSCT center. The graft source was peripheral blood stem cells (n = 19) or cord blood stem cells (n = 5). FA and DC patients received reduced-intensity conditioning, while DBA patients had myeloablative conditioning. The median numbers of infused mononuclear cells and CD34+ cells were 14.20 × 10 8 /kg and 4.3 × 10 6 /kg, respectively. The median time for neutrophil and platelet recovery was 12 and 18 days, respectively. Complete donor engraftment was achieved in 23 of 24 patients. There was one primary graft failure. During a median follow-up of 27.5 months (range, 2-130 months), the overall survival in all patients was 95.8%. The incidence of grade II-III acute graft versus host disease (GvHD) and chronic GvHD was 29.2% and 16.7%, respectively. We conclude that HSCT can be a curative option for patients with IBMFS. Modification of the conditioning regimen based on the type of disease may lead to encouraging long-term outcomes.
A novel reduced-intensity stem cell transplant regimen for nonmalignant disorders.
Shenoy, S; Grossman, W J; DiPersio, J; Yu, L C; Wilson, D; Barnes, Y J; Mohanakumar, T; Rao, A; Hayashi, R J
2005-02-01
Bone marrow transplantation (BMT) benefits nonmalignant diseases but is limited by regimen-related toxicity, graft-versus-host disease (GVHD), donor availability, and graft rejection (GR). To overcome some of these barriers, we developed a new conditioning strategy for these patients. In total, 16 patients received Campath-1H (33/48 mg; days -21 to -19), fludarabine (150 mg/m(2); days -8 to -4), melphalan (140/70 mg/m(2); day -3), and transplant using related/unrelated stem cells. GVHD prophylaxis included cyclosporine/methylprednisolone for cord cells. Other recipients also received methotrexate. Risk factors for GR included multiple transfusions (6), low stem cell numbers (1), and immunologic/metabolic disorders (3). Donor engraftment was present in 14/16 recipients. Neutrophils (ANC>0.5 x 10(9)/l) and platelets (>50 x 10(9)/l) engrafted at a median of 13 and 24 days. Two patients died of Pseudomonas sepsis prior to engraftment, one of CMV disease, and another of intracranial hemorrhage. With median follow-up of 281 days (78-907), 12/16 are stable/improved, or cured. Acute GVHD was absent (n=10) or mild and transient (grade1-2 skin) (n=4). There was no chronic GVHD. Toxicities were predominantly early infections within 100 days, and correlated with lymphopenia (CD4+ T and B cells). Stable engraftment and low incidence of significant GVHD, irrespective of age or stem cell source, make this reduced-intensity regimen attractive for nonmalignant disorders.
Aoyama, Takashi; Imataki, Osamu; Mori, Keita; Yoshitsugu, Kanako; Fukaya, Masafumi; Okamura, Ikue; Enami, Terukazu; Tatara, Raine; Ikeda, Takashi
2017-04-01
Hematopoietic stem cell transplantation carries nutrition-related risks. Therefore, nutritional therapy needs to be initiated before transplantation even takes place. We assessed nutritional risk among patients who underwent allogeneic stem cell transplantation. We assessed nutrient supply (calorie supply and protein supply) by chart review. Assessments were made from the pretreatment phase of transplantation to after the end of parenteral nutrition in 51 patients who underwent allogeneic stem cell transplantation at Shizuoka Cancer Center between 2007 and 2012. We compared nutrition-related adverse events and parameters between two groups: those in whom % loss of body weight was ≥7.5 and those in whom % loss of body weight was <7.5. A correlation was observed between changes in weight and skeletal muscle mass (r = 0.89; P < 0.0001). A weak correlation was observed between % loss of body weight and nutrient supply of calories (r = 0.517; P = 0.0001). There were significant differences between the % loss of body weight ≥7.5 group and the % loss of body weight <7.5 group in the following variables: % loss of body weight, nutrient supply from calories and protein; orally ingested nutrient supply from calories and protein; start day of oral intake; and acute graft-versus-host disease. Orally ingested calories were negatively correlated with nutrition-related adverse events in both groups. Early and customized nutritional intervention may be optimal for all patients who undergo allogeneic stem cell transplantation to ameliorate body weight loss associated with nutrition-related adverse events.
The innate immune system in host mice targets cells with allogenic mitochondrial DNA
Ishikawa, Kaori; Nakada, Kazuto; Morimoto, Mami; Imanishi, Hirotake; Yoshizaki, Mariko; Sasawatari, Shigemi; Niikura, Mamoru; Takenaga, Keizo; Yonekawa, Hiromichi
2010-01-01
Mitochondrial DNA (mtDNA) has been proposed to be involved in respiratory function, and mtDNA mutations have been associated with aging, tumors, and various disorders, but the effects of mtDNA imported into transplants from different individuals or aged subjects have been unclear. We examined this issue by generating trans-mitochondrial tumor cells and embryonic stem cells that shared the syngenic C57BL/6 (B6) strain–derived nuclear DNA background but possessed mtDNA derived from allogenic mouse strains. We demonstrate that transplants with mtDNA from the NZB/B1NJ strain were rejected from the host B6 mice, not by the acquired immune system but by the innate immune system. This rejection was caused partly by NK cells and involved a MyD88-dependent pathway. These results introduce novel roles of mtDNA and innate immunity in tumor immunology and transplantation medicine. PMID:20937705
Terai, Shuji; Tsuchiya, Atsunori
2017-02-01
The treatment of liver cirrhosis is currently being standardized and developed specifically to reduce activation of hepatic stellate cells (HSCs), inhibit fibrosis, increase degradation of matrix components, and reduce activated myofibroblasts. Cell therapy can be applied in the treatment of liver cirrhosis; however, the characteristic features of this therapy differ from those of other treatments because of the involvement of a living body origin and production of multiple cytokines, chemokines, matrix metalloproteinases (MMPs), and growth factors. Thus, cell therapies can potentially have multiple effects on the damaged liver, including alleviating liver cirrhosis and stimulating liver regeneration with affecting the host cells. Cell therapies initially involved autologous bone marrow cell infusion, and have recently developed to include the use of specific cells such as mesenchymal stem cells and macrophages. The associated molecular mechanisms, routes of administration, possibility of allogeneic cell therapy, and host conditions appropriate for cell therapies are now being extensively analyzed. In this review, we summarize the status and future prospects of cell therapy for liver cirrhosis.
Yazid, Farinawati Binti; Gnanasegaran, Nareshwaran; Kunasekaran, Wijenthiran; Govindasamy, Vijayendran; Musa, Sabri
2014-12-01
The aim of this study was to investigate the immunodulatory properties of dental pulp stem cells derived from healthy (SCD) and inflamed pulp deciduous (SCDIP) tissues. The overall hypothesis is that SCDIP possess equal immune properties with SCD and could be used as an alternative tissue source in regenerative medicine. An intra-oral examination was carried out to assess the status of the pulp tissues and group them according to healthy or inflamed. Primary cells were established from these groups, and basic mesenchymal stem cells (MSC) characterizations were conducted. The expression of human leukocyte antigen (HLA), namely HLA-G, HLA-DR, and HLA-ABC were examined in both cell lines using flow cytometry. We further compared the immunosuppressive effects of SCD and SCDIP on phytohemagglutinin-induced T cell proliferation. Supernatants were tested for cytokine profiling using multiplex array. While SCD exhibited typical MSC characteristics, SCDIP on the other hand, did not. Compared with SCDIP, SCD effectively suppresses mitogen-induced T cells proliferation in a dose-dependent manner, as well as express a higher percentage of HLA-ABC and HLA-G. In addition, levels of several cytokines, such as TNF-α, TNF-β, and IL-2, were drastically suppressed in SCD than SCDIP. Furthermore, a high level of IL-10, an important anti-inflammatory cytokine, was present in SCD compared with SCDIP. These findings suggest that SCDIP is highly dysfunctional in terms of their stemness and immunomodulatory properties. SCDIP is not a viable therapeutic cell source especially when used in graft versus host disease (GvHD) and organ rejection.
The Role of Intestinal Microbiota in Acute Graft-versus-Host Disease.
Chen, Yuanyuan; Zhao, Ye; Cheng, Qiao; Wu, Depei; Liu, Haiyan
2015-01-01
The mammalian intestinal microbiota is a complex ecosystem that plays an important role in host immune responses. Recent studies have demonstrated that alterations in intestinal microbiota composition are linked to multiple inflammatory diseases in humans, including acute graft-versus-host disease (aGVHD). aGVHD is one of the major obstacles in allogeneic hematopoietic stem cell transplantation (allo-HSCT), characterized by tissue damage in the gastrointestinal (GI) tract, liver, lung, and skin. Here, we review the current understanding of the role of intestinal microbiota in the control of immune responses during aGVHD. Additionally, the possibility of using probiotic strains for potential treatment or prevention of aGVHD will be discussed.
The Role of Intestinal Microbiota in Acute Graft-versus-Host Disease
Chen, Yuanyuan; Zhao, Ye; Cheng, Qiao; Wu, Depei; Liu, Haiyan
2015-01-01
The mammalian intestinal microbiota is a complex ecosystem that plays an important role in host immune responses. Recent studies have demonstrated that alterations in intestinal microbiota composition are linked to multiple inflammatory diseases in humans, including acute graft-versus-host disease (aGVHD). aGVHD is one of the major obstacles in allogeneic hematopoietic stem cell transplantation (allo-HSCT), characterized by tissue damage in the gastrointestinal (GI) tract, liver, lung, and skin. Here, we review the current understanding of the role of intestinal microbiota in the control of immune responses during aGVHD. Additionally, the possibility of using probiotic strains for potential treatment or prevention of aGVHD will be discussed. PMID:26090477
Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D
2016-07-01
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.
A prosurvival and proangiogenic stem cell delivery system to promote ischemic limb regeneration.
Xu, Yanyi; Fu, Minghuan; Li, Zhihong; Fan, Zhaobo; Li, Xiaofei; Liu, Ying; Anderson, Peter M; Xie, Xiaoyun; Liu, Zhenguo; Guan, Jianjun
2016-02-01
Stem cell therapy is one of the most promising strategies to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the low oxygen and nutrient environment of the injured limbs. To increase therapeutic efficacy, high rates of both short- and long-term cell survival are essential, which current approaches do not support. In this work, we hypothesized that a high rate of short-term cell survival can be achieved by introducing a prosurvival environment into the stem cell delivery system to enhance cell survival before vascularization is established; and that a high rate of long-term cell survival can be attained by building a proangiogenic environment in the system to quickly vascularize the limbs. The system was based on a biodegradable and thermosensitive poly(N-Isopropylacrylamide)-based hydrogel, a prosurvival and proangiogenic growth factor bFGF, and bone marrow-derived mesenchymal stem cells (MSCs). bFGF can be continuously released from the system for 4weeks. The released bFGF significantly improved MSC survival and paracrine effects under low nutrient and oxygen conditions (0% FBS and 1% O2) in vitro. The prosurvival effect of the bFGF on MSCs was resulted from activating cell Kruppel-like factor 4 (KLF4) pathway. When transplanted into the ischemic limbs, the system dramatically improved MSC survival. Some of the engrafted cells were differentiated into skeletal muscle and endothelial cells, respectively. The system also promoted the proliferation of host cells. After only 2weeks of implantation, tissue blood perfusion was completely recovered; and after 4weeks, the muscle fiber diameter was restored similarly to that of the normal limbs. These pronounced results demonstrate that the developed stem cell delivery system has a potential for ischemic limb regeneration. Stem cell therapy is a promising strategy to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the ischemic environment of the injured limbs. To increase therapeutic efficacy, high rate of cell survival is essential, which current approaches do not support. In this work, we tested the hypothesis that a stem cell delivery system that can continuously release a prosurvival and proangiogenic growth factor will promote high rates of cell survival in the ischemic limbs. The prosurvival effect could augment cell survival before vascularization is established, while the proangiogenic effect could stimulate quick angiogenesis to achieve long-term cell survival. Meanwhile, the differentiation of stem cells into endothelial and myogenic lineages, and cell paracrine effects will enhance vascularization and muscle regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Murphy, Kaitlin C; Whitehead, Jacklyn; Falahee, Patrick C; Zhou, Dejie; Simon, Scott I; Leach, J Kent
2017-06-01
Mesenchymal stem cell therapies promote wound healing by manipulating the local environment to enhance the function of host cells. Aggregation of mesenchymal stem cells (MSCs) into three-dimensional spheroids increases cell survival and augments their anti-inflammatory and proangiogenic potential, yet there is no consensus on the preferred conditions for maximizing spheroid function in this application. The objective of this study was to optimize conditions for forming MSC spheroids that simultaneously enhance their anti-inflammatory and proangiogenic nature. We applied a design of experiments (DOE) approach to determine the interaction between three input variables (number of cells per spheroid, oxygen tension, and inflammatory stimulus) on MSC spheroids by quantifying secretion of prostaglandin E 2 (PGE 2 ) and vascular endothelial growth factor (VEGF), two potent molecules in the MSC secretome. DOE results revealed that MSC spheroids formed with 40,000 cells per spheroid in 1% oxygen with an inflammatory stimulus (Spheroid 1) would exhibit enhanced PGE 2 and VEGF production versus those formed with 10,000 cells per spheroid in 21% oxygen with no inflammatory stimulus (Spheroid 2). Compared to Spheroid 2, Spheroid 1 produced fivefold more PGE 2 and fourfold more VEGF, providing the opportunity to simultaneously upregulate the secretion of these factors from the same spheroid. The spheroids induced macrophage polarization, sprout formation with endothelial cells, and keratinocyte migration in a human skin equivalent model-demonstrating efficacy on three key cell types that are dysfunctional in chronic non-healing wounds. We conclude that DOE-based analysis effectively identifies optimal culture conditions to enhance the anti-inflammatory and proangiogenic potential of MSC spheroids. Stem Cells 2017;35:1493-1504. © 2017 AlphaMed Press.
Modeling HSV-1 Latency in Human Embryonic Stem Cell-Derived Neurons
Pourchet, Aldo; Modrek, Aram S.; Placantonakis, Dimitris G.; Mohr, Ian; Wilson, Angus C.
2017-01-01
Herpes simplex virus 1 (HSV-1) uses latency in peripheral ganglia to persist in its human host, however, recurrent reactivation from this reservoir can cause debilitating and potentially life-threatening disease. Most studies of latency use live-animal infection models, but these are complex, multilayered systems and can be difficult to manipulate. Infection of cultured primary neurons provides a powerful alternative, yielding important insights into host signaling pathways controlling latency. However, small animal models do not recapitulate all aspects of HSV-1 infection in humans and are limited in terms of the available molecular tools. To address this, we have developed a latency model based on human neurons differentiated in culture from an NIH-approved embryonic stem cell line. The resulting neurons are highly permissive for replication of wild-type HSV-1, but establish a non-productive infection state resembling latency when infected at low viral doses in the presence of the antivirals acyclovir and interferon-α. In this state, viral replication and expression of a late viral gene marker are not detected but there is an accumulation of the viral latency-associated transcript (LAT) RNA. After a six-day establishment period, antivirals can be removed and the infected cultures maintained for several weeks. Subsequent treatment with sodium butyrate induces reactivation and production of new infectious virus. Human neurons derived from stem cells provide the appropriate species context to study this exclusively human virus with the potential for more extensive manipulation of the progenitors and access to a wide range of preexisting molecular tools. PMID:28594343
Schneidewind, Laila; Neumann, Thomas; Knoll, Florian; Zimmermann, Kathrin; Smola, Sigrun; Schmidt, Christian Andreas; Krüger, William
2017-01-01
The association of polyomaviruses BK and JC with other opportunistic infections and graft-versus-host disease (GvHD) in allogeneic stem cell transplantation is controversially discussed. We conducted a retrospective study of 64 adult patients who received their first allogeneic stem cell transplantation between March 2010 and December 2014; the follow-up time was 2 years. Acute leukemia was the most frequent underlying disease (45.3%), and conditioning included myeloablative (67.2%) and nonmyeloablative protocols (32.8%). All patients received 10 mg of alemtuzumab on day -2 (20 mg in case of mismatch) as GvHD prophylaxis. Twenty-seven patients (41.5%) developed cytomegalovirus (CMV) reactivation. BKPyV-associated hemorrhagic cystitis was diagnosed in 10 patients (15.6%). Other opportunistic infections caused by viruses or protozoa occurred rarely (<10%). There was no association of BKPyV or JCPyV with CMV reactivation, Epstein-Barr virus reactivation, human herpes virus 6, or parvovirus B19 infection requiring treatment. There was a significant correlation of BKPyV-associated hemorrhagic cystitis with toxoplasmosis (p = 0.013). Additionally, there was a significant link of simultaneous BKPyV and JCPyV viruria with toxoplasmosis (p = 0.047). BKPyV and JCPyV were not associated with GvHD, relapse, or death. We found no association of BKPyV or JCPyV with viral infections or GvHD. Only the correlation of both polyomaviruses with toxoplasmosis was significant. This is a novel and interesting finding. © 2017 S. Karger AG, Basel.
Wireless capsule endoscopy for diagnosis of acute intestinal graft-versus-host disease.
Neumann, Susanne; Schoppmeyer, Konrad; Lange, Thoralf; Wiedmann, Marcus; Golsong, Johannes; Tannapfel, Andrea; Mossner, Joachim; Niederwieser, Dietger; Caca, Karel
2007-03-01
The small intestine is the most common location of intestinal graft-versus-host disease (GVHD). EGD with duodenal biopsies yields the highest diagnostic sensitivity, but the jejunum and ileum are not accessible by regular endoscopy. In contrast, wireless capsule endoscopy (WCE) is a noninvasive imaging procedure offering complete evaluation of the small intestine. The objective was to compare the diagnostic value of EGD, including biopsies, with the results of WCE in patients with acute intestinal symptoms who received allogeneic blood stem cell transplantation and to analyze the appearance and distribution of acute intestinal GVHD lesions in these patients. An investigator-blinded, single-center prospective study. Patients with acute intestinal symptoms after allogeneic stem cell transplantation underwent both EGD and WCE within 24 hours. Clinical data were recorded during 2 months of follow-up. Fourteen consecutive patients with clinical symptoms of acute intestinal GVHD were recruited. In 1 patient, the capsule remained in the stomach and was removed endoscopically. In 7 of 13 patients who could be evaluated, acute intestinal GVHD was diagnosed by EGD with biopsies, but 3 of these would have been missed by EGD alone. In all 7 patients with histologically confirmed acute intestinal GVHD, WCE revealed typical signs of GVHD. Lesions were scattered throughout the small intestine, but were most accentuated in the ileum. This study had a small number of patients. WCE, which is less invasive than EGD with biopsies, showed a comparable sensitivity and a high negative predictive value for diagnosing acute intestinal GVHD. It may be helpful to avoid repeated endoscopic procedures in patients who have undergone stem cell transplantation.
Burnett, James C.; Nuss, Jonathan E.; Wanner, Laura M.; Peyser, Brian D.; Du, Hao T.; Gomba, Glenn Y.; Kota, Krishna P.; Panchal, Rekha G.; Gussio, Rick; Kane, Christopher D.; Tessarollo, Lino
2015-01-01
Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins’ proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin’s enzymatic components, to antagonize multiple BoNT serotypes in motor neurons. PMID:25782580
USDA-ARS?s Scientific Manuscript database
Grapevine trunk diseases cause important economic losses in vineyards worldwide. Neofusicoccum parvum, one of the most aggressive causal agents of the trunk disease Botryosphaeria dieback, colonizes cells and tissues of the grapevine wood, leading to the formation of an internal canker. Symptoms the...
Kuzmina, Zoya; Greinix, Hildegard T; Weigl, Roman; Körmöczi, Ulrike; Rottal, Arno; Frantal, Sophie; Eder, Sandra; Pickl, Winfried F
2011-02-17
Manifestations of chronic graft-versus-host disease (cGVHD) can resemble those seen in immunodeficiency states and autoimmune disorders. Reports by us and others suggest an involvement of B cells in the pathogenesis of cGVHD. We investigated B-lymphocyte subpopulations in cGVHD cohorts defined by serum immunoglobulin G (IgG) levels to characterize novel biomarkers for impairment of humoral immunity after allogeneic hematopoietic stem cell transplantation. Seventy-six patients were enrolled a median of 46 months after hematopoietic stem cell transplantation. The hypogammaglobulinemia group had significantly diminished CD19(+) B cells (165 vs 454 vs 417 × 10⁶L) with elevated CD19(+)CD21(low) immature (16.5%, 7.7%, and 9.1%) and CD19(+)CD21(int-high)CD38(high)IgM(high) transitional (10.5% vs 4.2% vs 6.3%) B-cell proportions compared with the normogammaglobulinemia and hypergammaglobulinemia groups. CD19(+)CD10(-)CD27(-)CD21(high) naive B cells were highly elevated in all patients with cGVHD. CD19(+)CD27(+)IgD(+) non-class-switched (4 vs 12 vs 11 × 10⁶/L) and class-switched (7 vs 35 vs 42 × 10⁶/L) memory B cells were significantly lower in the hypogammaglobulinemia group compared with the others. Besides significantly higher B-cell activation factor/B-cell ratios, significantly more cGVHD patients with hypergammaglobulinemia had autoantibodies compared with the hypogammaglobulinemia subgroup (68% vs 24%, P = .024). In conclusion, B-cell subpopulations can serve as novel cellular biomarkers for immunodeficiency and autoimmunity indicating different pathogenetic mechanisms of cGVHD and encouraging future prospective longitudinal studies.
Sundarasetty, Balasai; Volk, Valery; Theobald, Sebastian J; Rittinghausen, Susanne; Schaudien, Dirk; Neuhaus, Vanessa; Figueiredo, Constanca; Schneider, Andreas; Gerasch, Laura; Mucci, Adele; Moritz, Thomas; von Kaisenberg, Constantin; Spineli, Loukia M; Sewald, Katherina; Braun, Armin; Weigt, Henning; Ganser, Arnold; Stripecke, Renata
2017-06-01
Humanized mice engrafted with human hematopoietic stem cells and developing functional human T-cell adaptive responses are in critical demand to test human-specific therapeutics. We previously showed that humanized mice immunized with long-lived induced-dendritic cells loaded with the pp65 viral antigen (iDCpp65) exhibited a faster development and maturation of T cells. Herein, we evaluated these effects in a long-term (36 weeks) nonclinical model using two stem cell donors to assess efficacy and safety. Relative to baseline, iDCpp65 immunization boosted the output of effector memory CD4 + T cells in peripheral blood and lymph nodes. No weight loss, human malignancies, or systemic graft-versus-host (GVH) disease were observed. However, for one reconstitution cohort, some mice immunized with iDCpp65 showed GVH-like signs on the skin. Histopathology analyses of the inflamed skin revealed intrafollicular and perifollicular human CD4 + cells near F4/80 + mouse macrophages around hair follicles. In spleen, CD4 + cells formed large clusters surrounded by mouse macrophages. In plasma, high levels of human T helper 2-type inflammatory cytokines were detectable, which activated in vitro the STAT5 pathway of murine macrophages. Despite this inflammatory pattern, human CD8 + T cells from mice with GVH reacted against the pp65 antigen in vitro. These results uncover a dynamic cross-species interaction between human memory T cells and mouse macrophages in the skin and lymphatic tissues of humanized mice. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Chiodi, Sandra; Spinelli, Simonetta; Bruzzi, Paolo; Anserini, Paola; Di Grazia, Carmen; Bacigalupo, Andrea
2016-08-01
Two-hundred and sixty-nine females aged ≤42 and undergoing an allogeneic stem cell transplant were retrospectively studied to assess the effect of age, conditioning regimen and chronic graft-versus-host disease (cGVHD) on resumption of stable menstrual cyclicity. Overall, a stable menstrual cyclicity was observed in 22% of cases. The cumulative probability of menses resumption was significantly age and conditioning regimen related. A statistically significant inverse correlation between cGVHD severity and menses resumption was observed only in univariate analysis. In patients with residual ovarian function, infertility was found in 43% and early menopause in 45%. An increased incidence of prematurity and low birth weight (LBW) was observed among the single spontaneous pregnancies. Follicle-stimulating hormone (FSH) and 17 beta-oestradiol levels were found to be inadequate to detect both early signs of menses resumption and menstrual stability. Our study confirms the crucial role of full dose total body irradiation (TBI) and age on menses recovery and fertility after haematopoietic stem cell transplantation (HSCT). The impact of severe cGVHD remains unclear.
Kriebel, Katja; Hieke, Cathleen; Engelmann, Robby; Potempa, Jan; Müller-Hilke, Brigitte; Lang, Hermann; Kreikemeyer, Bernd
2018-06-01
Periodontitis (PD) is a widespread chronic inflammatory disease in the human population. Porphyromonas gingivalis is associated with PD and can citrullinate host proteins via P. gingivalis peptidyl arginine deiminase (PPAD). Here, we hypothesized that infection of human dental follicle stem cells (hDFSCs) with P. gingivalis and subsequent interaction with neutrophils will alter the neutrophil phenotype. To test this hypothesis, we established and analyzed a triple-culture system of neutrophils and hDFSCs primed with P. gingivalis. Mitogen-activated pathway blocking reagents were applied to gain insight into stem cell signaling after infection. Naïve hDFSCs do not influence the neutrophil phenotype. However, infection of hDFSCs with P. gingivalis prolongs the survival of neutrophils and increases their migration. These phenotypic changes depend on direct cellular contacts and PPAD expression by P. gingivalis. Active JNK and ERK pathways in primed hDFSCs are essential for the phenotypic changes in neutrophils. Collectively, our results confirm that P. gingivalis modifies hDFSCs, thereby causing an immune imbalance. © 2018 S. Karger AG, Basel.
Long, Teng; Zhu, Zhenan; Awad, Hani A.; Schwarz, Edward M.; Hilton, Matthew J.; Dong, Yufeng
2014-01-01
Structural bone allografts are widely used in the clinic to treat critical sized bone defects, despite lacking the osteoinductive characteristics of live autografts. To address this, we generated revitalized structural allografts wrapped with mesenchymal stem/progenitor cell (MSC) sheets, which were produced by expanding primary syngenic bone marrow derived cells on temperature-responsive plates, as a tissue engineered periosteum. In vitro assays demonstrated maintenance of the MSC phenotype in the sheets, suggesting that short-term culturing of MSC sheets is not detrimental. To test their efficacy in vivo, allografts wrapped with MSC sheets were transplanted into 4-mm murine femoral defects and compared to allografts with direct seeding of MSCs and allografts without cells. Evaluations consisted of x-ray plain radiography, 3D microCT, histology, and biomechanical testing at 4- and 6-weeks post-surgery. Our findings demonstrate that MSC sheets induce prolonged cartilage formation at the graft-host junction and enhanced bone callus formation, as well as graft-host osteointegration. Moreover, a large periosteal callus was observed spanning the allografts with MSC sheets, which partially mimics live autograft healing. Finally, biomechanical testing showed a significant increase in the structural and functional properties of MSC sheet grafted femurs. Taken together, MSC sheets exhibit enhanced osteogenicity during critical sized bone defect repair, demonstrating the feasibility of this tissue engineering solution for massive allograft healing. PMID:24393269
Diagnostic value of highly-sensitive chimerism analysis after allogeneic stem cell transplantation.
Sellmann, Lea; Rabe, Kim; Bünting, Ivonne; Dammann, Elke; Göhring, Gudrun; Ganser, Arnold; Stadler, Michael; Weissinger, Eva M; Hambach, Lothar
2018-05-02
Conventional analysis of host chimerism (HC) frequently fails to detect relapse before its clinical manifestation in patients with hematological malignancies after allogeneic stem cell transplantation (allo-SCT). Quantitative PCR (qPCR)-based highly-sensitive chimerism analysis extends the detection limit of conventional (short tandem repeats-based) chimerism analysis from 1 to 0.01% host cells in whole blood. To date, the diagnostic value of highly-sensitive chimerism analysis is hardly defined. Here, we applied qPCR-based chimerism analysis to 901 blood samples of 71 out-patients with hematological malignancies after allo-SCT. Receiver operating characteristics (ROC) curves were calculated for absolute HC values and for the increments of HC before relapse. Using the best cut-offs, relapse was detected with sensitivities of 74 or 85% and specificities of 69 or 75%, respectively. Positive predictive values (PPVs) were only 12 or 18%, but the respective negative predictive values were 98 or 99%. Relapse was detected median 38 or 45 days prior to clinical diagnosis, respectively. Considering also durations of steadily increasing HC of more than 28 days improved PPVs to more than 28 or 59%, respectively. Overall, highly-sensitive chimerism analysis excludes relapses with high certainty and predicts relapses with high sensitivity and specificity more than a month prior to clinical diagnosis.
Aritua, Valente; Achor, Diann; Gmitter, Frederick G; Albrigo, Gene; Wang, Nian
2013-01-01
Huanglongbing (HLB) is the most destructive disease that affects citrus worldwide. The disease has been associated with Candidatus Liberibacter. HLB diseased citrus plants develop a multitude of symptoms including zinc and copper deficiencies, blotchy mottle, corky veins, stunting, and twig dieback. Ca. L. asiaticus infection also seriously affects the roots. Previous study focused on gene expression of leaves and fruit to Ca. L. asiaticus infection. In this study, we compared the gene expression levels of stems and roots of healthy plants with those in Ca. L. asiaticus infected plants using microarrays. Affymetrix microarray analysis showed a total of 988 genes were significantly altered in expression, of which 885 were in the stems, and 111 in the roots. Of these, 551 and 56 were up-regulated, while 334 and 55 were down-regulated in the stem and root samples of HLB diseased trees compared to healthy plants, respectively. Dramatic differences in the transcriptional responses were observed between citrus stems and roots to Ca. L. asiaticus infection, with only 8 genes affected in both the roots and stems. The affected genes are involved in diverse cellular functions, including carbohydrate metabolism, cell wall biogenesis, biotic and abiotic stress responses, signaling and transcriptional factors, transportation, cell organization, protein modification and degradation, development, hormone signaling, metal handling, and redox. Microscopy analysis showed the depletion of starch in the roots of the infected plants but not in healthy plants. Collapse and thickening of cell walls were observed in HLB affected roots, but not as severe as in the stems. This study provides insight into the host response of the stems and roots to Ca. L. asiaticus infection.
Aritua, Valente; Achor, Diann; Gmitter, Frederick G.; Albrigo, Gene; Wang, Nian
2013-01-01
Huanglongbing (HLB) is the most destructive disease that affects citrus worldwide. The disease has been associated with Candidatus Liberibacter. HLB diseased citrus plants develop a multitude of symptoms including zinc and copper deficiencies, blotchy mottle, corky veins, stunting, and twig dieback. Ca. L. asiaticus infection also seriously affects the roots. Previous study focused on gene expression of leaves and fruit to Ca. L. asiaticus infection. In this study, we compared the gene expression levels of stems and roots of healthy plants with those in Ca. L. asiaticus infected plants using microarrays. Affymetrix microarray analysis showed a total of 988 genes were significantly altered in expression, of which 885 were in the stems, and 111 in the roots. Of these, 551 and 56 were up-regulated, while 334 and 55 were down-regulated in the stem and root samples of HLB diseased trees compared to healthy plants, respectively. Dramatic differences in the transcriptional responses were observed between citrus stems and roots to Ca. L. asiaticus infection, with only 8 genes affected in both the roots and stems. The affected genes are involved in diverse cellular functions, including carbohydrate metabolism, cell wall biogenesis, biotic and abiotic stress responses, signaling and transcriptional factors, transportation, cell organization, protein modification and degradation, development, hormone signaling, metal handling, and redox. Microscopy analysis showed the depletion of starch in the roots of the infected plants but not in healthy plants. Collapse and thickening of cell walls were observed in HLB affected roots, but not as severe as in the stems. This study provides insight into the host response of the stems and roots to Ca. L. asiaticus infection. PMID:24058486
Ranjan, Aashish; Ichihashi, Yasunori; Farhi, Moran; Zumstein, Kristina; Townsley, Brad; David-Schwartz, Rakefet; Sinha, Neelima R
2014-11-01
Parasitic flowering plants are one of the most destructive agricultural pests and have major impact on crop yields throughout the world. Being dependent on finding a host plant for growth, parasitic plants penetrate their host using specialized organs called haustoria. Haustoria establish vascular connections with the host, which enable the parasite to steal nutrients and water. The underlying molecular and developmental basis of parasitism by plants is largely unknown. In order to investigate the process of parasitism, RNAs from different stages (i.e. seed, seedling, vegetative strand, prehaustoria, haustoria, and flower) were used to de novo assemble and annotate the transcriptome of the obligate plant stem parasite dodder (Cuscuta pentagona). The assembled transcriptome was used to dissect transcriptional dynamics during dodder development and parasitism and identified key gene categories involved in the process of plant parasitism. Host plant infection is accompanied by increased expression of parasite genes underlying transport and transporter categories, response to stress and stimuli, as well as genes encoding enzymes involved in cell wall modifications. By contrast, expression of photosynthetic genes is decreased in the dodder infective stages compared with normal stem. In addition, genes relating to biosynthesis, transport, and response of phytohormones, such as auxin, gibberellins, and strigolactone, were differentially expressed in the dodder infective stages compared with stems and seedlings. This analysis sheds light on the transcriptional changes that accompany plant parasitism and will aid in identifying potential gene targets for use in controlling the infestation of crops by parasitic weeds. © 2014 American Society of Plant Biologists. All Rights Reserved.
Ranjan, Aashish; Ichihashi, Yasunori; Farhi, Moran; Zumstein, Kristina; Townsley, Brad; David-Schwartz, Rakefet; Sinha, Neelima R.
2014-01-01
Parasitic flowering plants are one of the most destructive agricultural pests and have major impact on crop yields throughout the world. Being dependent on finding a host plant for growth, parasitic plants penetrate their host using specialized organs called haustoria. Haustoria establish vascular connections with the host, which enable the parasite to steal nutrients and water. The underlying molecular and developmental basis of parasitism by plants is largely unknown. In order to investigate the process of parasitism, RNAs from different stages (i.e. seed, seedling, vegetative strand, prehaustoria, haustoria, and flower) were used to de novo assemble and annotate the transcriptome of the obligate plant stem parasite dodder (Cuscuta pentagona). The assembled transcriptome was used to dissect transcriptional dynamics during dodder development and parasitism and identified key gene categories involved in the process of plant parasitism. Host plant infection is accompanied by increased expression of parasite genes underlying transport and transporter categories, response to stress and stimuli, as well as genes encoding enzymes involved in cell wall modifications. By contrast, expression of photosynthetic genes is decreased in the dodder infective stages compared with normal stem. In addition, genes relating to biosynthesis, transport, and response of phytohormones, such as auxin, gibberellins, and strigolactone, were differentially expressed in the dodder infective stages compared with stems and seedlings. This analysis sheds light on the transcriptional changes that accompany plant parasitism and will aid in identifying potential gene targets for use in controlling the infestation of crops by parasitic weeds. PMID:24399359
TLR/MyD88-mediated Innate Immunity in Intestinal Graft-versus-Host Disease.
Lee, Young-Kwan; Kang, Myungsoo; Choi, Eun Young
2017-06-01
Graft-versus-host disease (GHVD) is a severe complication after allogeneic hematopoietic stem cell transplantation. The degree of inflammation in the gastrointestinal tract, a major GVHD target organ, correlates with the disease severity. Intestinal inflammation is initiated by epithelial damage caused by pre-conditioning irradiation. In combination with damages caused by donor-derived T cells, such damage disrupts the epithelial barrier and exposes innate immune cells to pathogenic and commensal intestinal bacteria, which release ligands for Toll-like receptors (TLRs). Dysbiosis of intestinal microbiota and signaling through the TLR/myeloid differentiation primary response gene 88 (MyD88) pathways contribute to the development of intestinal GVHD. Understanding the changes in the microbial flora and the roles of TLR signaling in intestinal GVHD will facilitate the development of preventative and therapeutic strategies.
Tumor initiation in human malignant melanoma and potential cancer therapies.
Ma, Jie; Frank, Markus H
2010-02-01
Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment.
Tumor Initiation in Human Malignant Melanoma and Potential Cancer Therapies
Ma, Jie; Frank, Markus H.
2010-01-01
Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment. PMID:20184545
Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells.
Ho, Beatrice Xuan; Pek, Nicole Min Qian; Soh, Boon-Seng
2018-03-21
The rising interest in human induced pluripotent stem cell (hiPSC)-derived organoid culture has stemmed from the manipulation of various combinations of directed multi-lineage differentiation and morphogenetic processes that mimic organogenesis. Organoids are three-dimensional (3D) structures that are comprised of multiple cell types, self-organized to recapitulate embryonic and tissue development in vitro. This model has been shown to be superior to conventional two-dimensional (2D) cell culture methods in mirroring functionality, architecture, and geometric features of tissues seen in vivo. This review serves to highlight recent advances in the 3D organoid technology for use in modeling complex hereditary diseases, cancer, host-microbe interactions, and possible use in translational and personalized medicine where organoid cultures were used to uncover diagnostic biomarkers for early disease detection via high throughput pharmaceutical screening. In addition, this review also aims to discuss the advantages and shortcomings of utilizing organoids in disease modeling. In summary, studying human diseases using hiPSC-derived organoids may better illustrate the processes involved due to similarities in the architecture and microenvironment present in an organoid, which also allows drug responses to be properly recapitulated in vitro.
Mohammadi, Alireza; Maleki-Jamshid, Ali; Sanooghi, Davood; Milan, Peiman Brouki; Rahmani, Arash; Sefat, Farshid; Shahpasand, Koorosh; Soleimani, Mansoureh; Bakhtiari, Mehrdad; Belali, Rafie; Faghihi, Faezeh; Joghataei, Mohammad Taghi; Perry, George; Mozafari, Masoud
2018-03-16
A neurological disorder is any disorder or abnormality in the nervous system. Among different neurological disorders, Alzheimer's disease (AD) is recognized as the sixth leading cause of death globally. Considerable research has been conducted to find pioneer treatments for this devastating disorder among which cell therapy has attracted remarkable attentions over the last decade. Up to now, targeted differentiation into specific desirable cell types has remained a major obstacle to clinical application of cell therapy. Also, potential risks including uncontrolled growth of stem cells could be disastrous. In our novel protocol, we used basal forebrain cholinergic progenitor cells (BFCN) derived from human chorion-derived mesenchymal stem cells (hC-MSCs) which made it possible to obtain high-quality population of cholinergic neurons and in vivo in much shorter time period than previous established methods. Remarkably, the transplanted progenitors fully differentiated to cholinergic neurons which in turn integrated in higher cortical networks of host brains, resulting in significant improvement in cognitive assessments. This method may have profound implications in cell therapies for any other neurodegenerative disorders. Graphical Abstract ᅟ.
Interactions between human mesenchymal stem cells and natural killer cells.
Sotiropoulou, Panagiota A; Perez, Sonia A; Gritzapis, Angelos D; Baxevanis, Constantin N; Papamichail, Michael
2006-01-01
Mesenchymal stem cells (MSCs) are multipotent progenitor cells representing an attractive therapeutic tool for regenerative medicine. They possess unique immunomodulatory properties, being capable of suppressing T-cell responses and modifying dendritic cell differentiation, maturation, and function, whereas they are not inherently immunogenic, failing to induce alloreactivity to T cells and freshly isolated natural killer (NK) cells. To clarify the generation of host immune responses to implanted MSCs in tissue engineering and their potential use as immunosuppressive elements, the effect of MSCs on NK cells was investigated. We demonstrate that at low NK-to-MSC ratios, MSCs alter the phenotype of NK cells and suppress proliferation, cytokine secretion, and cyto-toxicity against HLA-class I- expressing targets. Some of these effects require cell-to-cell contact, whereas others are mediated by soluble factors, including transforming growth factor-beta1 and prostaglandin E2, suggesting the existence of diverse mechanisms for MSC-mediated NK-cell suppression. On the other hand, MSCs are susceptible to lysis by activated NK cells. Overall, these data improve our knowledge of interactions between MSCs and NK cells and consequently of their effect on innate immune responses and their contribution to the regulation of adaptive immunity, graft rejection, and cancer immunotherapy.
Gao, Tao; Li, Liudi; Wang, Bei; Zhi, Jun; Xiang, Yang; Li, Genxi
2016-10-18
Artificial control of cell adhesion on smart surface is an on-demand technique in areas ranging from tissue engineering, stem cell differentiation, to the design of cell-based diagnostic system. In this paper, we report an electrochemical system for dynamic control of cell catch-and-release, which is based on the redox-controlled host-guest interaction. Experimental results reveal that the interaction between guest molecule (ferrocene, Fc) and host molecule (β-cyclodextrin, β-CD) is highly sensitive to electrochemical stimulus. By applying a reduction voltage, the uncharged Fc can bind to β-CD that is immobilized at the electrode surface. Otherwise, it is disassociated from the surface as a result of electrochemical oxidation, thus releasing the captured cells. The catch-and-release process on this voltage-responsive surface is noninvasive with the cell viability over 86%. Moreover, because Fc can act as an electrochemical probe for signal readout, the integration of this property has further extended the ability of this system to cell detection. Electrochemical signal has been greatly enhanced for cell detection by introducing branched polymer scaffold that are carrying large quantities of Fc moieties. Therefore, a minimum of 10 cells can be analyzed. It is anticipated that such redox-controlled system can be an important tool in biological and biomedical research, especially for electrochemical stimulated tissue engineering and cell-based clinical diagnosis.
Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence
2012-05-01
Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.
Lim, Ji-Young; Ryu, Da-Bin; Lee, Sung-Eun; Park, Gyeongsin; Min, Chang-Ki
2017-09-01
Human chronic graft-versus-host disease (GVHD) shares clinical characteristics with a murine sclerodermatous GVHD model that is characterized by skin thickening and lung fibrosis. A B10.D2 → BALB/c transplant model of sclerodermatous GVHD was used to address the therapeutic effect of mesenchymal stem cells (MSCs) on the development of chronic GVHD. The clinical and pathological severity of cutaneous sclerodermatous GVHD was significantly attenuated in MSC-treated recipients relative to sclerodermatous GVHD control subjects. After MSC treatment, skin collagen production was significantly reduced, with consistent down-regulation of Tgfb expression. Effects of MSCs on molecular markers implicated in persistent transforming growth factor-β signaling and fibrosis, such as PTEN, phosphorylated Smad-2/3, and matrix metalloproteinase-1, were observed in skin tissue. MSCs neither migrate to the skin nor affect the in vivo expansion of immune effector cells, but they inhibited the infiltration of immune effector cells into skin via down-regulation of CCR4 and CCR8 expression on CD4 + T cells and CCR1 on CD11b + monocyte/macrophages. MSCs diminished expression of chemokines such as CCL1, CCL3, CCL8, CCL17, and CCL22 in skin. MSCs were also dependent on stimulated splenocytes to suppress fibroblast proliferation. Our findings indicate that MSCs attenuate the cutaneous sclerodermatous GVHD by selectively blocking immune cell migration and down-regulating chemokines and chemokine receptors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Aligholi, Hadi; Hassanzadeh, Gholamreza; Gorji, Ali; Azari, Hassan
2016-01-01
Despite all attempts the problem of regeneration in damaged central nervous system (CNS) has remained challenging due to its cellular complexity and highly organized and sophisticated connections. In this regard, stem cell therapy might serve as a viable therapeutic approach aiming either to support the damaged tissue and hence to reduce the subsequent neurological dysfunctions and impairments or to replace the lost cells and re-establish damaged circuitries. Adult neural stem/progenitor cells (NS/PCs) are one of the outstanding cell sources that can be isolated from the subventricular zone (SVZ) of the lateral ventricles. These cells can differentiate into neurons, astrocytes, and oligodendrocytes. Implanting autologous NS/PCs will greatly benefit the patients by avoiding immune rejection after implantation, better survival, and integration with the host tissue. Developing safe and efficient methods in small animal models will provide us with the opportunity to optimize procedures required to achieve successful human autologous NS/PC transplantation in near future. In this chapter, a highly controlled and safe biopsy method for harvesting stem cell containing tissue from the SVZ of adult rat brain is introduced. Then, isolation and expansion of NS/PCs from harvested specimen as well as the techniques to verify proliferation and differentiation capacity of the resulting NS/PCs are discussed. Finally, a method for assessing the biopsy lesion volume in the brain is described. This safe biopsy method in rat provides a unique tool to study autologous NS/PC transplantation in different CNS injury models.
Triploid or hybrid tetra: Which is the ideal sterile host for surrogate technology?
Piva, Lucas Henrique; de Siqueira-Silva, Diógenes Henrique; Goes, Caio Augusto Gomes; Fujimoto, Takafumi; Saito, Taiju; Dragone, Letícia Veroni; Senhorini, José Augusto; Porto-Foresti, Fabio; Ferraz, José Bento Sterman; Yasui, George Shigueki
2018-03-01
This work was aimed at developing an effective procedure to obtain sterile ideal host fish in mass scale with no endogenous germ cells in the germinal epithelium, owning permanent stem-cell niches able to be colonized by transplanted germ cells in surrogate technology experiments. Thus, triploids, diploid hybrids, and triploid hybrids were produced. To obtain hybrid offspring, oocytes from a single Astyanax altiparanae female were inseminated by sperm from five males (A. altiparanae, A. fasciatus, A. schubarti, Hyphessobrycon anisitsi, and Oligosarcus pintoi). Triploidization was conducted by inhibition of the second polar body release using heat shock treatment at 40 °C for 2 min. At 9-months of age, the offspring from each crossing was histologically evaluated to access the gonadal status of the fish. Variable morphological characteristics of the gonads were found in the different hybrids offspring: normal gametogenesis, gametogenesis without production of gametes, sterile specimens holding germ cells, and sterile specimens without germ cells, which were considered "ideal hosts". However, only in the hybrid derived from crossing between A. altiparanae and A. fasciatus, 100% of the individuals were completely sterile. Among them 83.3% of the male did not present germ cells inside germinal epithelium, having only somatic cells in the gonad. The other 16.7% also presented spermatogonia inside the niches. Such a methodology allows the production of sterile host in mass scale, opening new insights for application of surrogate technologies. Copyright © 2017 Elsevier Inc. All rights reserved.
Buces, Elena; Pion, Marjorie; Sánchez-Hernández, Noemí; Martín-Antonio, Beatriz; Guillem, Vicent; Bosch-Vizcaya, Anna; Bento, Leyre; González-Rivera, Milagros; Balsalobre, Pascual; Kwon, Mi; Serrano, David; Gayoso, Jorge; de la Cámara, Rafael; Brunet, Salut; Rojas-Contreras, Rafael; Nieto, José B.; Martínez, Carmen; Gónzalez, Marcos; Espigado, Ildefonso; Vallejo, Juan C.; Sampol, Antonia; Jiménez-Velasco, Antonio; Urbano-Ispizua, Alvaro; Solano, Carlos; Gallardo, David; Díez-Martín, José L.; Buño, Ismael
2015-01-01
The FOXP3 gene encodes for a protein (Foxp3) involved in the development and functional activity of regulatory T cells (CD4+/CD25+/Foxp3+), which exert regulatory and suppressive roles over the immune system. After allogeneic stem cell transplantation, regulatory T cells are known to mitigate graft versus host disease while probably maintaining a graft versus leukemia effect. Short alleles (≤(GT)15) for the (GT)n polymorphism in the promoter/enhancer of FOXP3 are associated with a higher expression of FOXP3, and hypothetically with an increase of regulatory T cell activity. This polymorphism has been related to the development of auto- or alloimmune conditions including type 1 diabetes or graft rejection in renal transplant recipients. However, its impact in the allo-transplant setting has not been analyzed. In the present study, which includes 252 myeloablative HLA-identical allo-transplants, multivariate analysis revealed a lower incidence of grade III-IV acute graft versus host disease (GVHD) in patients transplanted from donors harboring short alleles (OR = 0.26, CI 0.08–0.82, p = 0.021); without affecting chronic GVHD or graft versus leukemia effect, since cumulative incidence of relapse, event free survival and overall survival rates are similar in both groups of patients. PMID:26473355
Noriega, Víctor; Martínez-Laperche, Carolina; Buces, Elena; Pion, Marjorie; Sánchez-Hernández, Noemí; Martín-Antonio, Beatriz; Guillem, Vicent; Bosch-Vizcaya, Anna; Bento, Leyre; González-Rivera, Milagros; Balsalobre, Pascual; Kwon, Mi; Serrano, David; Gayoso, Jorge; de la Cámara, Rafael; Brunet, Salut; Rojas-Contreras, Rafael; Nieto, José B; Martínez, Carmen; Gónzalez, Marcos; Espigado, Ildefonso; Vallejo, Juan C; Sampol, Antonia; Jiménez-Velasco, Antonio; Urbano-Ispizua, Alvaro; Solano, Carlos; Gallardo, David; Díez-Martín, José L; Buño, Ismael
2015-01-01
The FOXP3 gene encodes for a protein (Foxp3) involved in the development and functional activity of regulatory T cells (CD4+/CD25+/Foxp3+), which exert regulatory and suppressive roles over the immune system. After allogeneic stem cell transplantation, regulatory T cells are known to mitigate graft versus host disease while probably maintaining a graft versus leukemia effect. Short alleles (≤(GT)15) for the (GT)n polymorphism in the promoter/enhancer of FOXP3 are associated with a higher expression of FOXP3, and hypothetically with an increase of regulatory T cell activity. This polymorphism has been related to the development of auto- or alloimmune conditions including type 1 diabetes or graft rejection in renal transplant recipients. However, its impact in the allo-transplant setting has not been analyzed. In the present study, which includes 252 myeloablative HLA-identical allo-transplants, multivariate analysis revealed a lower incidence of grade III-IV acute graft versus host disease (GVHD) in patients transplanted from donors harboring short alleles (OR = 0.26, CI 0.08-0.82, p = 0.021); without affecting chronic GVHD or graft versus leukemia effect, since cumulative incidence of relapse, event free survival and overall survival rates are similar in both groups of patients.
Peripheral-blood stem cells versus bone marrow from unrelated donors.
Anasetti, Claudio; Logan, Brent R; Lee, Stephanie J; Waller, Edmund K; Weisdorf, Daniel J; Wingard, John R; Cutler, Corey S; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T; Pulsipher, Michael A; Porter, David L; Mineishi, Shin; McCarty, John M; Khan, Shakila P; Anderlini, Paolo; Bensinger, William I; Leitman, Susan F; Rowley, Scott D; Bredeson, Christopher; Carter, Shelly L; Horowitz, Mary M; Confer, Dennis L
2012-10-18
Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P=0.29), with an absolute difference of 5 percentage points (95% CI, -3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P=0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P=0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute-National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.).
Hsieh, Matthew M; Fitzhugh, Courtney D; Weitzel, R Patrick; Link, Mary E; Coles, Wynona A; Zhao, Xiongce; Rodgers, Griffin P; Powell, Jonathan D; Tisdale, John F
2014-07-02
Myeloablative allogeneic hematopoietic stem cell transplantation (HSCT) is curative for children with severe sickle cell disease, but toxicity may be prohibitive for adults. Nonmyeloablative transplantation has been attempted with degrees of preparative regimen intensity, but graft rejection and graft-vs-host disease remain significant. To determine the efficacy, safety, and outcome on end-organ function with this low-intensity regimen for sickle cell phenotype with or without thalassemia. From July 16, 2004, to October 25, 2013, 30 patients aged 16-65 years with severe disease enrolled in this nonmyeloablative transplant study, consisting of alemtuzumab (1 mg/kg in divided doses), total-body irradiation (300 cGy), sirolimus, and infusion of unmanipulated filgrastim mobilized peripheral blood stem cells (5.5-31.7 × 10(6) cells/kg) from human leukocyte antigen-matched siblings. The primary end point was treatment success at 1 year after the transplant, defined as a full donor-type hemoglobin for patients with sickle cell disease and transfusion independence for patients with thalassemia. The secondary end points were the level of donor leukocyte chimerism; incidence of acute and chronic graft-vs-host disease; and sickle cell-thalassemia disease-free survival, immunologic recovery, and changes in organ function, assessed by annual brain imaging, pulmonary function, echocardiographic image, and laboratory testing. Twenty-nine patients survived a median 3.4 years (range, 1-8.6), with no nonrelapse mortality. One patient died from intracranial bleeding after relapse. As of October 25, 2013, 26 patients (87%) had long-term stable donor engraftment without acute or chronic graft-vs-host disease. The mean donor T-cell level was 48% (95% CI, 34%-62%); the myeloid chimerism levels, 86% (95% CI, 70%-100%). Fifteen engrafted patients discontinued immunosuppression medication with continued stable donor chimerism and no graft-vs-host disease. The normalized hemoglobin and resolution of hemolysis among engrafted patients were accompanied by stabilization in brain imaging, a reduction of echocardiographic estimates of pulmonary pressure, and allowed for phlebotomy to reduce hepatic iron. The mean annual hospitalization rate was 3.23 (95% CI, 1.83-4.63) the year before, 0.63 (95% CI, 0.26-1.01) the first year after, 0.19 (95% CI, 0-0.45) the second year after, and 0.11 (95% CI, 0.04-0.19) the third year after transplant. For patients taking long-term narcotics, the mean use per week was 639 mg (95% CI, 220-1058) of intravenous morphine-equivalent dose the week of their transplants and 140 mg (95% CI, 56-225) 6 months after transplant. There were 38 serious adverse events: pain and related management, infections, abdominal events, and sirolimus related toxic effects. Among 30 patients with sickle cell phenotype with or without thalassemia who underwent nonmyeloablative allogeneic HSCT, the rate of stable mixed-donor chimerism was high and allowed for complete replacement with circulating donor red blood cells among engrafted participants. Further accrual and follow-up are required to assess longer-term clinical outcomes, adverse events, and transplant tolerance. clinicaltrials.gov Identifier: NCT00061568.
Stem cell transplantation as a dynamical system: are clinical outcomes deterministic?
Toor, Amir A; Kobulnicky, Jared D; Salman, Salman; Roberts, Catherine H; Jameson-Lee, Max; Meier, Jeremy; Scalora, Allison; Sheth, Nihar; Koparde, Vishal; Serrano, Myrna; Buck, Gregory A; Clark, William B; McCarty, John M; Chung, Harold M; Manjili, Masoud H; Sabo, Roy T; Neale, Michael C
2014-01-01
Outcomes in stem cell transplantation (SCT) are modeled using probability theory. However, the clinical course following SCT appears to demonstrate many characteristics of dynamical systems, especially when outcomes are considered in the context of immune reconstitution. Dynamical systems tend to evolve over time according to mathematically determined rules. Characteristically, the future states of the system are predicated on the states preceding them, and there is sensitivity to initial conditions. In SCT, the interaction between donor T cells and the recipient may be considered as such a system in which, graft source, conditioning, and early immunosuppression profoundly influence immune reconstitution over time. This eventually determines clinical outcomes, either the emergence of tolerance or the development of graft versus host disease. In this paper, parallels between SCT and dynamical systems are explored and a conceptual framework for developing mathematical models to understand disparate transplant outcomes is proposed.
Stem Cell Transplantation as a Dynamical System: Are Clinical Outcomes Deterministic?
Toor, Amir A.; Kobulnicky, Jared D.; Salman, Salman; Roberts, Catherine H.; Jameson-Lee, Max; Meier, Jeremy; Scalora, Allison; Sheth, Nihar; Koparde, Vishal; Serrano, Myrna; Buck, Gregory A.; Clark, William B.; McCarty, John M.; Chung, Harold M.; Manjili, Masoud H.; Sabo, Roy T.; Neale, Michael C.
2014-01-01
Outcomes in stem cell transplantation (SCT) are modeled using probability theory. However, the clinical course following SCT appears to demonstrate many characteristics of dynamical systems, especially when outcomes are considered in the context of immune reconstitution. Dynamical systems tend to evolve over time according to mathematically determined rules. Characteristically, the future states of the system are predicated on the states preceding them, and there is sensitivity to initial conditions. In SCT, the interaction between donor T cells and the recipient may be considered as such a system in which, graft source, conditioning, and early immunosuppression profoundly influence immune reconstitution over time. This eventually determines clinical outcomes, either the emergence of tolerance or the development of graft versus host disease. In this paper, parallels between SCT and dynamical systems are explored and a conceptual framework for developing mathematical models to understand disparate transplant outcomes is proposed. PMID:25520720
Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation
Ogonek, Justyna; Kralj Juric, Mateja; Ghimire, Sakhila; Varanasi, Pavankumar Reddy; Holler, Ernst; Greinix, Hildegard; Weissinger, Eva
2016-01-01
The timely reconstitution and regain of function of a donor-derived immune system is of utmost importance for the recovery and long-term survival of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Of note, new developments such as umbilical cord blood or haploidentical grafts were associated with prolonged immunodeficiency due to delayed immune reconstitution, raising the need for better understanding and enhancing the process of immune reconstitution and finding strategies to further optimize these transplant procedures. Immune reconstitution post-HSCT occurs in several phases, innate immunity being the first to regain function. The slow T cell reconstitution is regarded as primarily responsible for deleterious infections with latent viruses or fungi, occurrence of graft-versus-host disease, and relapse. Here we aim to summarize the major steps of the adaptive immune reconstitution and will discuss the importance of immune balance in patients after HSCT. PMID:27909435
High on Cannabis and Calcineurin Inhibitors: A Word of Warning in an Era of Legalized Marijuana.
Hauser, Naomi; Sahai, Tanmay; Richards, Rocco; Roberts, Todd
2016-01-01
Tacrolimus, a potent immunosuppressant medication, acts by inhibiting calcineurin, which eventually leads to inhibition of T-cell activation. The drug is commonly used to prevent graft rejection in solid organ transplant and graft-versus-host disease in hematopoietic stem cell transplant patients. Tacrolimus has a narrow therapeutic index with variable oral bioavailability and metabolism via cytochrome P-450 3A enzyme. Toxicity can occur from overdosing or from drug-drug interactions with the simultaneous administration of cytochrome P-450 3A inhibitors and possibly P-glycoprotein inhibitors. Tacrolimus toxicity can be severe and may include multiorgan damage. We present a case of suspected tacrolimus toxicity in a postallogeneic hematopoietic stem cell transplant patient who was concurrently using oral marijuana. This case represents an important and growing clinical scenario with the increasing legalization and use of marijuana throughout the United States.
Faleo, Gaetano; Lee, Karim; Nguyen, Vinh; Tang, Qizhi
2016-01-01
Background Embryonic-stem-cell (ESC)-derived islets hold the promise of providing a renewable source of tissue for the treatment of insulin-dependent diabetes. Encapsulation may allow ESC-derived islets to be transplanted without immunosuppression, thus enabling wider application of this therapy. Methods In this study, we investigated the immunogenicity of mouse pancreatic progenitor cells and efficacy of a new macroencapsulation device in protecting these cells against alloimmune and autoimmune responses in mouse models. Results Mouse pancreatic progenitor cells activated the indirect but not the direct pathway of alloimmune response and were promptly rejected in immune competent hosts. The new macroencapsulation device abolished T cell activation induced by allogeneic splenocytes and protected allogeneic MIN6 β cells and pancreatic progenitors from rejection even in pre-sensitized recipients. In addition, the device was effective in protecting MIN6 cells in spontaneously diabetic non-obese diabetic recipients against both alloimmune and recurring autoimmune responses. Conclusion Our results demonstrate that macroencapsulation can effectively prevent immune sensing and rejection of allogeneic pancreatic progenitor cells in fully sensitized and autoimmune hosts. PMID:26982952
Production of medakafish chimeras from a stable embryonic stem cell line.
Hong, Y; Winkler, C; Schartl, M
1998-03-31
Embryonic stem (ES) cell lines provide a unique tool for introducing targeted or random genetic alterations through gene replacement, insertional mutagenesis, and gene addition because they offer the possibility for in vitro selection for the desired, but extremely rare, recombinant genotypes. So far only mouse blastocyst embryos are known to have the competence to give rise to such ES cell lines. We recently have established a stable cell line (Mes1) from blastulae of the medakafish (Oryzias latipes) that shows all characteristics of mouse ES cells in vitro. Here, we demonstrate that Mes1 cells also have the competence for chimera formation; 90% of host blastulae transplanted with Mes1 cells developed into chimeric fry. This high frequency was not compromised by cryostorage or DNA transfection of the donor cells. The Mes1 cells contributed to numerous organs derived from all three germ layers and differentiated into various types of functional cells, most readily observable in pigmented chimeras. These features suggest the possibility that Mes1 cells may be a fish equivalent of mouse ES cells and that medaka can be used as another system for the application of the ES cell technology.
Production of medakafish chimeras from a stable embryonic stem cell line
Hong, Yunhan; Winkler, Christoph; Schartl, Manfred
1998-01-01
Embryonic stem (ES) cell lines provide a unique tool for introducing targeted or random genetic alterations through gene replacement, insertional mutagenesis, and gene addition because they offer the possibility for in vitro selection for the desired, but extremely rare, recombinant genotypes. So far only mouse blastocyst embryos are known to have the competence to give rise to such ES cell lines. We recently have established a stable cell line (Mes1) from blastulae of the medakafish (Oryzias latipes) that shows all characteristics of mouse ES cells in vitro. Here, we demonstrate that Mes1 cells also have the competence for chimera formation; 90% of host blastulae transplanted with Mes1 cells developed into chimeric fry. This high frequency was not compromised by cryostorage or DNA transfection of the donor cells. The Mes1 cells contributed to numerous organs derived from all three germ layers and differentiated into various types of functional cells, most readily observable in pigmented chimeras. These features suggest the possibility that Mes1 cells may be a fish equivalent of mouse ES cells and that medaka can be used as another system for the application of the ES cell technology. PMID:9520425
Thymus-autonomous T cell development in the absence of progenitor import.
Martins, Vera C; Ruggiero, Eliana; Schlenner, Susan M; Madan, Vikas; Schmidt, Manfred; Fink, Pamela J; von Kalle, Christof; Rodewald, Hans-Reimer
2012-07-30
Thymus function is thought to depend on a steady supply of T cell progenitors from the bone marrow. The notion that the thymus lacks progenitors with self-renewal capacity is based on thymus transplantation experiments in which host-derived thymocytes replaced thymus-resident cells within 4 wk. Thymus grafting into T cell-deficient mice resulted in a wave of T cell export from the thymus, followed by colonization of the thymus by host-derived progenitors, and cessation of T cell development. Compound Rag2(-/-)γ(c)(-/-)Kit(W/Wv) mutants lack competitive hematopoietic stem cells (HSCs) and are devoid of T cell progenitors. In this study, using this strain as recipients for wild-type thymus grafts, we noticed thymus-autonomous T cell development lasting several months. However, we found no evidence for export of donor HSCs from thymus to bone marrow. A diverse T cell antigen receptor repertoire in progenitor-deprived thymus grafts implied that many thymocytes were capable of self-renewal. Although the process was most efficient in Rag2(-/-)γ(c)(-/-)Kit(W/Wv) hosts, γ(c)-mediated signals alone played a key role in the competition between thymus-resident and bone marrow-derived progenitors. Hence, the turnover of each generation of thymocytes is not only based on short life span but is also driven via expulsion of resident thymocytes by fresh progenitors entering the thymus.
Alternative donor hematopoietic stem cell transplantation for sickle cell disease
Eckrich, Michael J.; Epstein, Stacy; Barnhart, Carrie; Cannon, Mark; Fukes, Tracy; Hyland, Michelle; Shah, Krishna; Grochowski, Darci; Champion, Elizabeth; Ivanova, Anastasia
2017-01-01
Most patients who could be cured of sickle cell disease (SCD) with stem cell transplantation do not have a matched sibling donor. Successful use of alternative donors, including mismatched family members, could provide a donor for almost all patients with SCD. The use of a reduced-intensity conditioning regimen may decrease late adverse effects. Ten patients with symptomatic SCD underwent CD34+ cell-selected, T-cell–depleted peripheral blood stem cell transplantation from a mismatched family member or unrelated donor. A reduced-intensity conditioning regimen including melphalan, thiotepa, fludarabine, and rabbit anti-thymocyte globulin was used. Patients were screened for a companion study for immune reconstitution that included a donor lymphocyte infusion given 30-42 days after transplant with intravenous methotrexate as graft-versus-host disease (GVHD) prophylaxis. Seven eligible patients were treated on the companion study. Nine of 10 patients are alive with a median follow-up of 49 months (range, 14-60 months). Surviving patients have stable donor hematopoietic engraftment (mean donor chimerism, 99.1% ± 0.7%). There were no sickle cell complications after transplant. Two patients had grade II-IV acute GVHD. One patient had chronic GVHD. Epstein-Barr virus–related posttransplant lymphoproliferative disorder (PTLD) occurred in 3 patients, and 1 patient died as a consequence of treatment of PTLD. Two-year overall survival was 90%, and event-free survival was 80%. A reduced-intensity conditioning regimen followed by CD34+ cell-selected, T-cell–depleted alternative donor peripheral blood stem cell transplantation achieved primary engraftment in all patients with a low incidence of GVHD, although PTLD was problematic. This trial was registered at clinicaltrials.gov as #NCT00968864. PMID:29296761
Golan, Karin; Kollet, Orit; Lapidot, Tsvee
2013-01-01
Hematopoietic stem cells (HSCs) are mostly retained in a quiescent non-motile mode in their bone marrow (BM) niches, shifting to a migratory cycling and differentiating state to replenish the blood with mature leukocytes on demand. The balance between the major chemo-attractants CXCL12, predominantly in the BM, and S1P, mainly in the blood, dynamically regulates HSC recruitment to the circulation versus their retention in the BM. During alarm situations, stress-signals induce a decrease in CXCL12 levels in the BM, while S1P levels are rapidly and transiently increased in the circulation, thus favoring mobilization of stem cells as part of host defense and repair mechanisms. Myeloid cytokines, including G-CSF, up-regulate S1P signaling in the BM via the PI3K pathway. Induced CXCL12 secretion from stromal cells via reactive oxygen species (ROS) generation and increased S1P1 expression and ROS signaling in HSCs, all facilitate mobilization. Bone turnover is also modulated by both CXCL12 and S1P, regulating the dynamic BM stromal microenvironment, osteoclasts and stem cell niches which all functionally express CXCL12 and S1P receptors. Overall, CXCL12 and S1P levels in the BM and circulation are synchronized to mutually control HSC motility, leukocyte production and osteoclast/osteoblast bone turnover during homeostasis and stress situations. PMID:24276423
Yu, Ping; Liu, Jin; Zhang, Li; Li, Shrng-Fu; Bu, Hong; Li, You-Ping; Cheng, Jing-Qui; Lu, Yan-Rong; Long, Dan
2005-11-01
To detect the integration and expression of porcine endogenous retrovirus (PERV) in the immortal cell line of Banna Minipig Inbred Line-Mesenchymal Stem Cells (BMI-MSCs). DNA and total RNA of the immortal cell line of BMI-MSCs were extracted and PCR, RT-PCR were performed to detect PERV-gag, pol and env gene, and the type of PERV was also detected. PERV-gag, pol and env gene were all detected in the primary culture and immortal cell line (passage 150 and passage 180) of BMI-MSCs, and the type of PERV was PERV-A, B. Functional expression of PERV-gag and pol mRNA was also detected. In this laboratory, PERV was not lost during the proceeding of pig inbred and since has been in long-term culture of pig cells in vitro. PERV has integrated into the genome of its natural host, and virus mRNA can effectively express. So it is very essential to evaluate the possibility of xenozoonoses in pig-to-human xenotransplantation.
Yin, Jin; Wang, Chunyan; Huang, Min; Mao, Xia; Zhou, Jianfeng; Zhang, Yicheng
2016-07-01
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population that includes immature myeloid cells and the progenitor cells of macrophages, dendritic cells (DCs), monocytes, and neutrophils. The expansion and functional importance of MDSCs in patients with cancer and noncancer pathogenic conditions has been recognized. As a result, there has been growing interest in understanding their roles in acute graft-versus-host disease (aGVHD) after allogenetic hematopoietic stem cell transplantation (allo-HSCT). In order to evaluate possible effects of MDSCs on aGVHD development and clinical outcomes, this study systematically detected the dynamic changes of MDSCs accumulation in patients during the first 100 days after allo-HSCT, and investigated the levels of other cell types and relative cytokines during MDSCs accumulation. Results showed that accumulation of MDSCs in the graft and in peripheral blood when engraftment might contribute to patients' overall immune suppression and result in the successful control of severe aGVHD and long-term survival without influence on risk of recurrence after allo-HSCT. But MDSCs levels in the graft had more favorable predictive abilities. Furthermore, MDSCs proportion significantly increased in patients developing aGVHD after allo-HSCT. It might be caused by secondary inflammatory response, especially related to high concentrations of IL-6 and TNF-α. But this accumulation would not be able to counterbalance the aggravation of aGVHD and would not have influence on clinical outcomes and risk of relapse. Overall, MDSCs might be considered as potential new therapeutic option for aGVHD and achieve long-term immunological tolerance and survival. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Bible, Ellen; Dell’Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter; Badylak, Stephen F.; Ahrens, Eric T.; Modo, Michel
2012-01-01
Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based 1H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a 19F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on 1H-MRI scans. Twenty percent of cells labeled with the 19F-agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T2- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. PMID:22244696
Current Review of Iron Overload and Related Complications in Hematopoietic Stem Cell Transplantation
Atilla, Erden; Toprak, Selami K.; Demirer, Taner
2017-01-01
Iron overload is an adverse prognostic factor for patients undergoing hematopoietic stem cell transplantation (HSCT). In the HSCT setting, pretransplant and early posttransplant ferritin and transferrin saturation were found to be highly elevated due to high transfusion requirements. In addition to that, post-HSCT iron overload was shown to be related to infections, hepatic sinusoidal obstruction syndrome, mucositis, liver dysfunction, and acute graft-versus-host disease. Hyperferritinemia causes decreased survival rates in both pre- and posttransplant settings. Serum ferritin levels, magnetic resonance imaging, and liver biopsy are diagnostic tools for iron overload. Organ dysfunction due to iron overload may cause high mortality rates and therefore sufficient iron chelation therapy is recommended in this setting. In this review the management of iron overload in adult HSCT is discussed. PMID:27956374
Nishida, Tetsuya; Hudecek, Michael; Kostic, Ana; Bleakley, Marie; Warren, Edus H; Maloney, David; Storb, Rainer; Riddell, Stanley R
2009-07-15
Allogeneic nonmyeloablative hematopoietic stem cell transplant (NM-HSCT) can result in durable remission of chronic lymphocytic leukemia (CLL). It is thought that the efficacy of NM-HSCT is mediated by recognition of tumor cells by T cells in the donor stem cell graft. We evaluated the development of CTLs specific for CLL after NM-HSCT to determine if their presence correlated with antitumor efficacy. Peripheral blood mononuclear cells obtained from 12 transplant recipients at intervals after NM-HSCT were stimulated in vitro with CLL cells. Polyclonal T-cell lines and CD8(+) T-cell clones were derived from these cultures and evaluated for lysis of donor and recipient target cells including CLL. The presence and specificity of responses was correlated with clinical outcomes. Eight of the 12 patients achieved remission or a major antitumor response and all 8 developed CD8(+) and CD4(+) T cells specific for antigens expressed by CLL. A clonal analysis of the CD8(+) T-cell response identified T cells specific for multiple minor histocompatibility (H) antigens expressed on CLL in six of the responding patients. A significant fraction of the CD8(+) T-cell response in some patients was also directed against nonshared tumor-specific antigens. By contrast, CLL-reactive T cells were not detected in the four patients who had persistent CLL after NM-HSCT, despite the development of graft-versus-host disease. The development of a diverse T-cell response specific for minor H and tumor-associated antigens expressed by CLL predicts an effective graft-versus-leukemia response after NM-HSCT.
Podvyaznaya, Irina M; Galaktionov, Kirill V
2014-03-01
The germinal mass in Himasthla elongata rediae was studied in detail using transmission electron microscopy. It was shown to be a specialized reproductive organ consisting of germinal cells at various maturation stages, supporting cells and stem cells. The germinal mass also contains early cercarial embryos emerging as a result of cleavage division of mature germinal cells. The stem cells that give rise to germinal cells have heterochromatin-rich nuclei with distinct nucleoli and scarce cytoplasm containing mainly free ribosomes and few mitochondria. The differentiating germinal cells undergo a growth, which is accompanied by an emergence of annulate lamellae and the nuage in their cytoplasm, a noticeable development of RER and Golgi apparatus and an increase in the number of mitochondria. The mitochondria form a large group at one of the cell poles. During differentiation, the nucleus and nucleolus of the germinal cell enlarge while the chromatin becomes gradually less condensed. The supporting tissue of the germinal mass is made up of cells connected by septate junctions. These supporting cells are distinctly different in cellular shape and nuclear ultrastructure. Their outgrowths form a tight meshwork housing stem cells, germinal cells and early cercarial embryos. The cytoplasm of the supporting cells in the mesh area is separated into fine parallel layers by labyrinthine narrow cavities communicating with the intercellular space. The supporting tissue contains differentiating and degenerating cells which indicates its renewal. The results of this ultrastructural study lend support to the hypothesis that the germinal cells of digeneans are germ line cells.
Bacchetta, Rosa; Lucarelli, Barbarella; Sartirana, Claudia; Gregori, Silvia; Lupo Stanghellini, Maria T.; Miqueu, Patrick; Tomiuk, Stefan; Hernandez-Fuentes, Maria; Gianolini, Monica E.; Greco, Raffaella; Bernardi, Massimo; Zappone, Elisabetta; Rossini, Silvano; Janssen, Uwe; Ambrosi, Alessandro; Salomoni, Monica; Peccatori, Jacopo; Ciceri, Fabio; Roncarolo, Maria-Grazia
2013-01-01
T-cell therapy after hematopoietic stem cell transplantation (HSCT) has been used alone or in combination with immunosuppression to cure hematologic malignancies and to prevent disease recurrence. Here, we describe the outcome of patients with high-risk/advanced stage hematologic malignancies, who received T-cell depleted (TCD) haploidentical-HSCT (haplo-HSCT) combined with donor T lymphocytes pretreated with IL-10 (ALT-TEN trial). IL-10-anergized donor T cells (IL-10-DLI) contained T regulatory type 1 (Tr1) cells specific for the host alloantigens, limiting donor-vs.-host-reactivity, and memory T cells able to respond to pathogens. IL-10-DLI were infused in 12 patients with the goal of improving immune reconstitution after haplo-HSCT without increasing the risk of graft-versus-host-disease (GvHD). IL-10-DLI led to fast immune reconstitution in five patients. In four out of the five patients, total T-cell counts, TCR-Vβ repertoire and T-cell functions progressively normalized after IL-10-DLI. These four patients are alive, in complete disease remission and immunosuppression-free at 7.2 years (median follow-up) after haplo-HSCT. Transient GvHD was observed in the immune reconstituted (IR) patients, despite persistent host-specific hypo-responsiveness of donor T cells in vitro and enrichment of cells with Tr1-specific biomarkers in vivo. Gene-expression profiles of IR patients showed a common signature of tolerance. This study provides the first indication of the feasibility of Tr1 cell-based therapy and paves way for the use of these Tr1 cells as adjuvant treatment for malignancies and immune-mediated disorders. PMID:24550909
2017-10-30
Adult Acute Lymphoblastic Leukemia; Adult Acute Myeloid Leukemia; Adult Diffuse Large B-Cell Lymphoma; Adult Myelodysplastic Syndrome; Adult Non-Hodgkin Lymphoma; Aggressive Non-Hodgkin Lymphoma; Childhood Acute Lymphoblastic Leukemia; Childhood Acute Myeloid Leukemia; Childhood Diffuse Large B-Cell Lymphoma; Childhood Myelodysplastic Syndrome; Childhood Non-Hodgkin Lymphoma; Chronic Lymphocytic Leukemia; Chronic Lymphocytic Leukemia in Remission; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Hematopoietic and Lymphoid Cell Neoplasm; Mantle Cell Lymphoma; Plasma Cell Myeloma; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia; Waldenstrom Macroglobulinemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Hodgkin Lymphoma
Zhou, Zuping; French, Deborah L.; Ma, Ge; Eisenstein, Samuel; Chen, Ying; Divino, Celia M.; Keller, Gordon; Chen, Shu-Hsia; Pan, Ping-Ying
2015-01-01
Emerging evidence suggests that myeloid-derived suppressor cells (MDSCs) have great potential as a novel immune intervention modality in the fields of transplantation and autoimmune diseases. Thus far, efforts to develop MDSC-based therapeutic strategies have been hampered by the lack of a reliable source of MDSCs. Here we show that functional MDSCs can be efficiently generated from mouse embryonic stem (ES) cells and bone marrow hematopoietic stem (HS) cells. In vitro-derived MDSCs encompass two homogenous subpopulations: CD115+Ly-6C+ and CD115+Ly-6C− cells. The CD115+Ly-6C+ subset is equivalent to the monocytic Gr-1+CD115+F4/80+ MDSCs found in tumor-bearing mice. In contrast, the CD115+Ly-6C− cells, a previously unreported population of MDSCs, resemble the granulocyte/macrophage progenitors developmentally. In vitro, ES- and HS-MDSCs exhibit robust suppression against T-cell proliferation induced by polyclonal stimuli or alloantigens via multiple mechanisms involving nitric oxide synthase-mediated NO production and interleukin (IL)-10. Impressively, they display even stronger suppressive activity and significantly enhance ability to induce CD4+CD25+Foxp3+ regulatory T-cell development compared with tumor-derived MDSCs. Furthermore, adoptive transfer of ES-MDSCs can effectively prevent alloreactive T-cell-mediated lethal graft-versus-host disease, leading to nearly 82% long-term survival among treated mice. The successful in vitro generation of MDSCs may represent a critical step toward potential clinical application of MDSCs. PMID:20073041
Wang, S Keisin; Green, Linden A; Gutwein, Ashley R; Drucker, Natalie A; Motaganahalli, Raghu L; Fajardo, Andres; Babbey, Clifford M; Murphy, Michael P
2018-02-01
Abdominal aortic aneurysms (AAAs) are a major source of morbidity and mortality despite continuing advances in surgical technique and care. Although the inciting factors for AAA development continue to be elusive, accumulating evidence suggests a significant periaortic inflammatory response leading to degradation and dilation of the aortic wall. Previous human trials have demonstrated safety and efficacy of mesenchymal stem cells (MSCs) in the treatment of inflammation-related pathologies such as rheumatoid arthritis, graft versus host disease, and transplant rejection. Therefore, herein, we describe the Aortic Aneurysm Repression with Mesenchymal Stem Cells (ARREST) trial, a phase I investigation into the safety of MSC infusion for patients with small AAA and the cells' effects on modulation of AAA-related inflammation. ARREST is a phase I, single-center, double-blind, randomized controlled trial (RCT) investigating infusion both dilute and concentrated MSCs compared to placebo in 36 small AAA (35-45 mm) patients. Subjects will be followed by study personnel for 12 months to ascertain incidence of adverse events, immune cell phenotype expression, peripheral cytokine profile, and periaortic inflammation. Maximum transverse aortic diameter will be assessed regularly for 5 years by a combination of computed tomography and duplex sonography. Four patients have thus far been enrolled, randomized, and treated per protocol. We anticipate the conclusion of the treatment phase within the next 24 months with ongoing long-term follow-up. ARREST will be pivotal in assessing the safety of MSC infusion and provide preliminary data on the ability of MSCs to favorably modulate the pathogenic AAA host immune response. The data gleaned from this phase I trial will provide the groundwork for a larger, phase III RCT which may provide the first pharmaceutical intervention for AAA. Copyright © 2017 Elsevier Inc. All rights reserved.
Hautmann, Anke Heidewig; Elad, Sharon; Lawitschka, Anita; Greinix, Hildegard; Bertz, Hartmut; Halter, Joerg; Faraci, Maura; Hofbauer, Lorenz Christian; Lee, Stephanie; Wolff, Daniel; Holler, Ernst
2011-09-01
With improved outcome of allogeneic stem cell transplantation (allo-SCT) for hematologic malignancies, long-term complications gain greater importance. Skeletal complications such as osteoporosis or avascular necrosis (AVN) occur frequently in allogeneic recipients with a cumulative incidence of diminished bone mineral density of 24-50% between 2 and 12 months after allo-SCT and a cumulative incidence of AVN in as many as 19% of patients 3 years after allo-SCT. Here, we present a review as part of the German, Austrian, and Swiss Consensus Conference on clinical practice in chronic graft-versus-host disease, held 2009 in Regensburg. The Consensus Conference aimed to achieve a consensus on the current evidence of diagnosis, prevention, and therapeutic options of late complications after allo-SCT summarizing and discussing the literature on these topics. In this report, we provide recommendations for metabolic bone diseases agreed upon by the working party. This includes guidelines for diagnosis, prevention, and therapeutic options in patients with low bone mass or AVN. © 2011 The Authors. Transplant International © 2011 European Society for Organ Transplantation.
Mohty, Mohamad; Szydlo, Richard M; Yong, Agnes S M; Apperley, Jane F; Goldman, John M; Melo, Junia V
2008-09-01
Expression of CD7, ELA-2, PR-3, and the polycomb group gene BMI-1 reflects the intrinsic heterogeneity and predicts prognosis of patients with chronic myeloid leukemia (CML) who were not treated with allogeneic stem cell transplantation (allo-SCT). This study investigated whether expression of these genes determined outcome following allo-SCT in a cohort of 84 patients with chronic-phase (CP) CML. We found that patients expressing BMI-1 at a "high" level before allo-SCT had an improved overall survival (P = .005) related to a reduced transplantation-related mortality. In multivariate analysis, when adjusted for the European Group for Blood and Marrow Transplantation (EBMT)-Gratwohl score and other prog-nostic factors, there was an independent association between BMI-1 expression and grades 2 to 4 acute graft-versus-host disease (relative risk [RR] = 2.85; 95% confidence interval [CI], 1.3-6.4; P = .011), suggesting that BMI-1 measured prior to allo-SCT can serve as a biomarker for predicting outcome in patients with CP-CML receiving allo-SCT, and may thus contribute to better therapeutic decisions.
Demodex folliculitis mimicking acute graft-vs-host disease.
Cotliar, Jonathan; Frankfurt, Olga
2013-12-01
Acute graft-vs-host disease (GVHD) typically requires high-dose systemic steroids as first-line treatment. Like drug eruptions, viral exanthema, and toxic erythema of chemotherapy, Demodex folliculitis is a clinical mimicker of acute GVHD and requires nonimmunosuppressive therapy. This case of Demodex folliculitis mimicking acute GVHD highlights the need for skin biopsy in patients who have undergone a stem cell transplant with eruptions on the head and neck. A 46-year-old white woman with a history of Fms-like tyrosine kinase 3 acute myeloid leukemia presented to the dermatology clinic with a 5-day history of a nonpruritic eruption on her face and neck 28 days after undergoing a double umbilical cord blood hematopoietic stem cell transplant (HSCT). Findings from the skin biopsy demonstrated a deep dermal lymphocytic infiltrate adjacent to follicular units along with an abundance of Demodex mites noted within the hair follicles consistent with Demodex folliculitis. Oral ivermectin, 12 mg, was given, and the eruption cleared within 24 hours. To our knowledge, this is only the fifth reported case of Demodex folliculitis following HSCT, but the first ever reported to be successfully treated with oral ivermectin. Demodex folliculitis should be added to the differential diagnosis of skin eruptions that arise after HSCT.
Al-Chaqmaqchi, Heevy; Sadeghi, Behnam; Abedi-Valugerdi, Manuchehr; Al-Hashmi, Sulaiman; Fares, Mona; Kuiper, Raoul; Lundahl, Joachim
2013-01-01
Programmed cell death ligand-1 (PD-L1/CD274) is an immunomodulatory molecule involved in cancer and complications of bone marrow transplantation, such as graft rejection and graft-versus-host disease. The present study was designed to assess the dynamic expression of this molecule after hematopoietic stem cell transplantation in relation to acute graft-versus-host disease. Female BALB/c mice were conditioned with busulfan and cyclophosphamide and transplanted with either syngeneic or allogeneic (male C57BL/6 mice) bone marrow and splenic cells. The expression of PD-L1 was evaluated at different time points employing qPCR, western blot and immunohistochemistry. Allogeneic- but not syngeneic-transplanted animals exhibited a marked up-regulation of PD-L1 expression in the muscle and kidney, but not the liver, at days 5 and 7 post transplantation. In mice transplanted with allogeneic bone marrow cells, the enhanced expression of PD-L1 was associated with high serum levels of IFNγ and TNFα at corresponding intervals. Our findings demonstrate that PD-L1 is differently induced and expressed after allogeneic transplantation than it is after syngeneic transplantation, and that it is in favor of target rather than non-target organs at the early stages of acute graft-versus-host disease. This is the first study to correlate the dynamics of PD-L1 at the gene-, protein- and activity levels with the early development of acute graft-versus-host disease. Our results suggest that the higher expression of PD-L1 in the muscle and kidney (non-target tissues) plays a protective role in skeletal muscle during acute graft-versus-host disease. PMID:23593203
Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake
2016-01-01
Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro. These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm–like structures. Microarray analysis of sorted iPS cell–derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo. Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell–derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell–derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. PMID:26586691
Arbez, Jessy; Saas, Philippe; Lamarthée, Baptiste; Malard, Florent; Couturier, Mélanie; Mohty, Mohamad; Gaugler, Béatrice
2015-07-01
This study aimed to characterize the immune effectors contained in the grafts from donor mice mobilized by granulocyte colony-stimulating factor (G-CSF) and plerixafor and to evaluate their impact on the development of acute graft-versus-host-disease (aGVHD). Mobilization was done with G-CSF alone or G-CSF plus plerixafor (G+P). In grafts collected after G+P mobilization, we observed a significantly higher proportion of c-kit(+)Sca-1(+) hematopoietic stem cells compared with G-CSF. A significant increase in the percentage of plasmacytoid dendritic cells was detected in the G+P graft compared with G-CSF graft. We also studied the ability of stem cell grafts mobilized with G+P to induce GVHD in a mouse model. We observed higher mortality (P < 0.001) associated with increased aGVHD clinical score (P < 0.0001) as well as higher pathology score in the intestine of mice receiving G+P as compared with G-CSF grafts (P < 0.001). Moreover, the exacerbated aGVHD severity was associated with upregulation of CCR6 expression on both CD4(+) and CD8(+) T cells from the G+P grafts, as well as on T cells from mice transplanted with G+P grafts. In conclusion, we showed that grafts mobilized with G+P exhibited functional features different from those mobilized with G-CSF alone, which increase the severity of aGVHD in the recipients. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Do autologous peripheral blood cell transplants provide more than hematopoietic recovery?
Kessinger, A
1995-07-01
Bone marrow damage caused by myeloablative radiation therapy and/or chemotherapy can be repaired by intravenously infusing viable stem/progenitor cells collected from either blood or bone marrow. The hematopoietic graft product contains both stem/progenitor cells and populations of hematopoietic and nonhematopoietic (accessory) cells. The frequency of accessory cell types varies with the source of the graft product; marrow or blood. Reinfusion of these accessory cells causes effects other than the hematopoietic restoration provided by the stem/progenitor cells such as graft versus host disease and graft versus leukemia effect after allogeneic transplants. Effects of infused accessory cells in the autologous setting are less well studied and could provide ancillary advantages and/or disadvantages to the patient. Do these additional effects actually occur, and, if they do, are they more likely to appear following peripheral blood cell transplants (PBCT) or after autologous bone marrow transplants (AMBT)? Preliminary data are beginning to accumulate which suggest that reinfusion of occult tumor cells is less likely with PBCT, that immune reconstitution is different depending on the source of the autograft and that, for certain diseases, patient event-free survival following PBCT rather than ABMT may be better. However, infusion of occult tumor cells may result in re-establishment of the malignancy. If the accessory cells (including potential occult tumor cells) are eliminated from the product before transplant, will the patient have a better clinical outcome, or would benefits provided by infused accessory cells outweigh the risks of infused occult tumor cells? These controversial issues are in the very early stages of investigation.
Omole, Adekunle Ebenezer; Fakoya, Adegbenro Omotuyi John
2018-01-01
The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogram human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers to reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSC generation. Distinct barriers and enhancers of reprogramming have been elucidated, and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSC field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling, drug discovery and regenerative medicine. Additionally, this study appraises the role of genomic editing technology in the generation of healthy iPSCs.
2018-01-01
The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogram human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers to reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSC generation. Distinct barriers and enhancers of reprogramming have been elucidated, and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSC field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling, drug discovery and regenerative medicine. Additionally, this study appraises the role of genomic editing technology in the generation of healthy iPSCs. PMID:29770269
Bae, Yoon-Kyung; Kim, Gee-Hye; Lee, Jae Cheoun; Seo, Byoung-Moo; Joo, Kyeung-Min; Lee, Gene; Nam, Hyun
2017-06-30
Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, αsmooth muscle actin, platelet-derived growth factor receptor β, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HU-VECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the SDF-1α and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the peri-vascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.
Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art.
Malgieri, Arianna; Kantzari, Eugenia; Patrizi, Maria Patrizia; Gambardella, Stefano
2010-09-07
Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in all tissues, as part of the perivascular population. As multipotent cells, MSCs can differentiate into different tissues originating from mesoderm ranging from bone and cartilage, to cardiac muscle. MSCs are an excellent candidate for cell therapy because they are easily accessible, their isolation is straightforward, they can be bio-preserved with minimal loss of potency, and they have shown no adverse reactions to allogeneic versus autologous MSCs transplants. Therefore, MSCs are being explored to regenerate damaged tissue and treat inflammation, resulting from cardiovascular disease and myo-cardial infarction (MI), brain and spinal cord injury, stroke, diabetes, cartilage and bone injury, Crohn's disease and graft versus host disease (GvHD). Most of the application and clinical trials involve MSCs from bone marrow (BMMSCs). Transplantation of MSCs from bone marrow is considered safe and has been widely tested in clinical trials of cardiovascular, neurological, and immunological disease with encouraging results. There are examples of MSCs utilization in the repair of kidney, muscle and lung. The cells were also found to promote angiogenesis, and were used in chronic skin wound treatment. Recent studies involve also mesenchymal stem cell transplant from umbilical cord (UCMSCt). One of these demonstrate that UCMSCt may improve symptoms and biochemical values in patients with severe refractory systemic lupus erythematosus (SLE), and therefore this source of MSCs need deeper studies and require more attention. However, also if there are 79 registered clinical trial sites for evaluating MSC therapy throughout the world, it is still a long way to go before using these cells as a routinely applied therapy in clinics.
Sebrango, Ana; Vicuña, Isabel; de Laiglesia, Almudena; Millán, Isabel; Bautista, Guiomar; Martín-Donaire, Trinidad; Regidor, Carmen; Cabrera, Rafael; Fernandez, Manuel N
2010-06-01
We describe results of the strategy, developed by our group, of co-infusion of mobilized haematopoietic stem cells as a support for single-unit unrelated cord blood transplant (dual CB/TPD-MHSC transplants) for treatment of haematological malignancies in adults, and a comparative analysis of results obtained using this strategy and transplants performed with mobilized haematopoietic stem cells from related HLA-identical donors (RTD) for treatment of adults with acute leukaemia and myelodysplastic syndromes. Our data show that the dual CB/TPD-MHSC transplant strategy results in periods of post-transplant neutropenia, final rates of full donor chimerism and transplant-related mortality rates comparable to those of the RTD. Final survival outcomes are comparable in adults transplanted because of acute leukaemia, with different incidences of the complications that most influence these: a higher incidence of infections related to late recovery of protective immunity dependent on T cell functions, and a lower incidence of serious acute graft-versus-host disease and relapses. Recent advances in cord blood transplant techniques allow allogeneic haematopoietic stem cell transplantation (HSCT) to be a viable option for almost every patient who may benefit from this therapeutic approach. Development of innovative strategies to improve the post-transplant recovery of T cells function is currently the main challenge to further improving the possibilities of unrelated cord blood transplantation. Copyright © 2010 Elsevier Ltd. All rights reserved.
A real-time multi-channel monitoring system for stem cell culture process.
Xicai Yue; Drakakis, E M; Lim, M; Radomska, A; Hua Ye; Mantalaris, A; Panoskaltsis, N; Cass, A
2008-06-01
A novel, up to 128 channels, multi-parametric physiological measurement system suitable for monitoring hematopoietic stem cell culture processes and cell cultures in general is presented in this paper. The system aims to measure in real-time the most important physical and chemical culture parameters of hematopoietic stem cells, including physicochemical parameters, nutrients, and metabolites, in a long-term culture process. The overarching scope of this research effort is to control and optimize the whole bioprocess by means of the acquisition of real-time quantitative physiological information from the culture. The system is designed in a modular manner. Each hardware module can operate as an independent gain programmable, level shift adjustable, 16 channel data acquisition system specific to a sensor type. Up to eight such data acquisition modules can be combined and connected to the host PC to realize the whole system hardware. The control of data acquisition and the subsequent management of data is performed by the system's software which is coded in LabVIEW. Preliminary experimental results presented here show that the system not only has the ability to interface to various types of sensors allowing the monitoring of different types of culture parameters. Moreover, it can capture dynamic variations of culture parameters by means of real-time multi-channel measurements thus providing additional information on both temporal and spatial profiles of these parameters within a bioreactor. The system is by no means constrained in the hematopoietic stem cell culture field only. It is suitable for cell growth monitoring applications in general.
Zhu, Ling; Wang, Zhidong; Zheng, Xiaoli; Ding, Li; Han, Dongmei; Yan, Hongmin; Guo, Zikuan; Wang, Hengxiang
2015-05-01
In this study, 25 children with high-risk acute leukemia received haploidentical hematopoietic stem cell transplant (haplo-HSCT) with co-transfusion of umbilical cord multipotent mesenchymal cells (UC-MSCs). Adverse effects, hematopoietic recovery, complications and outcome were observed during a median follow-up of 12.8 months (range: 3-25 months). Myeloid engraftment was rapid, and the median time to neutrophil and platelet recovery was 15.12 days and 20.08 days, respectively. Eight patients developed grade I skin acute graft-versus-host disease (aGVHD) that responded well to standard steroid therapy. Of note, cytomegalovirus viremia was observed in most patients (23/25 cases). Patients died mainly of leukemia relapse and pulmonary complication. Fourteen patients are currently alive and remain with full donor chimerism at the time of reporting. The present results suggest further clinical trials to testify the effectiveness of UC-MSCs to prevent aGVHD in haplo-HSCT for treating children with high-risk leukemia.
Donor parity no longer a barrier for female-to-male hematopoietic stem cell transplantation.
van Halteren, Astrid G S; Dierselhuis, Miranda P; Netelenbos, Tanja; Fechter, Mirjam
2014-01-01
Allogeneic hematopoietic stem cell transplantation (HSCT) is a widely applied treatment for disorders mainly involving the hematopoietic system. The success of this treatment depends on many different patient- and donor-specific factors. Based on higher CD34+ yields and superior clinical outcomes associated with the use of male donors, males are generally seen as the preferred HSCT donor. In addition, female donors are notorious for bearing memory type lymphocytes induced by previous pregnancies; such alloimmune cells may provoke unwanted immune reactions such as graft-vs.-host disease in transplant recipients. Consequently, many transplant centers try to avoid parous donors, particularly when searching the best unrelated donor for a male patient. We recently showed that parous women with female offspring have an anti-male directed tolerogenic immune status comparable to that of nulliparous donors. As discussed in this article addendum, the sex of the donor's offspring combined with the presence of HY-specific T regulator cells are possibly better selection criteria than parity status per se.
MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells
NASA Astrophysics Data System (ADS)
Li, Chen Xi; Talele, Nilesh P.; Boo, Stellar; Koehler, Anne; Knee-Walden, Ericka; Balestrini, Jenna L.; Speight, Pam; Kapus, Andras; Hinz, Boris
2017-03-01
Expansion on stiff culture substrates activates pro-fibrotic cell programs that are retained by mechanical memory. Here, we show that priming on physiologically soft silicone substrates suppresses fibrogenesis and desensitizes mesenchymal stem cells (MSCs) against subsequent mechanical activation in vitro and in vivo, and identify the microRNA miR-21 as a long-term memory keeper of the fibrogenic program in MSCs. During stiff priming, miR-21 levels were gradually increased by continued regulation through the acutely mechanosensitive myocardin-related transcription factor-A (MRTF-A/MLK-1) and remained high over 2 weeks after removal of the mechanical stimulus. Knocking down miR-21 once by the end of the stiff-priming period was sufficient to erase the mechanical memory and sensitize MSCs to subsequent exposure to soft substrates. Soft priming and erasing mechanical memory following cell culture expansion protects MSCs from fibrogenesis in the host wound environment and increases the chances for success of MSC therapy in tissue-repair applications.
Selection and dynamics of embryonic stem cell integration into early mouse embryos
Alexandrova, Stoyana; Kalkan, Tuzer; Humphreys, Peter; Riddell, Andrew; Scognamiglio, Roberta; Trumpp, Andreas; Nichols, Jennifer
2016-01-01
The process by which pluripotent cells incorporate into host embryos is of interest to investigate cell potency and cell fate decisions. Previous studies suggest that only a minority of the embryonic stem cell (ESC) inoculum contributes to the adult chimaera. How incoming cells are chosen for integration or elimination remains unclear. By comparing a heterogeneous mix of undifferentiated and differentiating ESCs (serum/LIF) with more homogeneous undifferentiated culture (2i/LIF), we examine the role of cellular heterogeneity in this process. Time-lapse ex vivo imaging revealed a drastic elimination of serum/LIF ESCs during early development in comparison with 2i/LIF ESCs. Using a fluorescent reporter for naive pluripotency (Rex1-GFP), we established that the acutely eliminated serum/LIF ESCs had started to differentiate. The rejected cells were apparently killed by apoptosis. We conclude that a selection process exists by which unwanted differentiating cells are eliminated from the embryo. However, occasional Rex1− cells were able to integrate. Upregulation of Rex1 occurred in a proportion of these cells, reflecting the potential of the embryonic environment to expedite diversion from differentiation priming to enhance the developing embryonic epiblast. PMID:26586221
Cell replacement and visual restoration by retinal sheet transplants
Seiler, Magdalene J.; Aramant, Robert B.
2012-01-01
Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans. Most other approaches are restricted to rescue endogenous retinal cells of the recipient in earlier disease stages by a ‘nursing’ role of the implanted cells and are not aimed at neural retinal cell replacement. Sheet transplants restore lost visual responses in several retinal degeneration models in the superior colliculus (SC) corresponding to the location of the transplant in the retina. They do not simply preserve visual performance – they increase visual responsiveness to light. Restoration of visual responses in the SC can be directly traced to neural cells in the transplant, demonstrating that synaptic connections between transplant and host contribute to the visual improvement. Transplant processes invade the inner plexiform layer of the host retina and form synapses with presumable host cells. In a Phase II trial of RP and ARMD patients, transplants of retina together with its RPE improved visual acuity. In summary, retinal progenitor sheet transplantation provides an excellent model to answer questions about how to repair and restore function of a degenerating retina. Supply of fetal donor tissue will always be limited but the model can set a standard and provide an informative base for optimal cell replacement therapies such as embryonic stem cell (ESC)-derived therapy. PMID:22771454
Kim, Hani; Darwish, Ilyse; Monroy, Maria-Fernanda; Prockop, Darwin J; Liles, W Conrad; Kain, Kevin C
2014-01-14
Toxic shock syndrome (TSS) is caused by an overwhelming host-mediated response to bacterial superantigens produced mainly by Staphylococcus aureus and Streptococcus pyogenes. TSS is characterized by aberrant activation of T cells and excessive release of pro-inflammatory cytokines ultimately resulting in capillary leak, septic shock, multiple organ dysfunction and high mortality rates. No therapeutic or vaccine has been approved by the U.S. Food and Drug Administration for TSS, and novel therapeutic strategies to improve clinical outcome are needed. Mesenchymal stromal (stem) cells (MSCs) are stromal cells capable of self-renewal and differentiation. Moreover, MSCs have immunomodulatory properties, including profound effects on activities of T cells and macrophages in specific contexts. Based on the critical role of host-derived immune mediators in TSS, we hypothesized that MSCs could modulate the host-derived proinflammatory response triggered by Staphylococcal enterotoxin B (SEB) and improve survival in experimental TSS. Effects of MSCs on proinflammatory cytokines in peripheral blood were measured in wild-type C57BL/6 mice injected with 50 μg of SEB. Effects of MSCs on survival were monitored in fatal experimental TSS induced by consecutive doses of D-galactosamine (10 mg) and SEB (10 μg) in HLA-DR4 transgenic mice. Despite significantly decreasing serum levels of IL-2, IL-6 and TNF induced by SEB in wild-type mice, human MSCs failed to improve survival in experimental TSS in HLA-DR4 transgenic mice. Similarly, a previously described downstream mediator of human MSCs, TNF-stimulated gene 6 (TSG-6), did not significantly improve survival in experimental TSS. Furthermore, murine MSCs, whether unstimulated or pre-treated with IFNγ, failed to improve survival in experimental TSS. Our results suggest that the immunomodulatory effects of MSCs are insufficient to rescue mice from experimental TSS, and that mediators other than IL-2, IL-6 and TNF are likely to play critical mechanistic roles in the pathogenesis of experimental TSS.
Effect of HLA mismatch on acute graft-versus-host disease.
Kanda, Junya
2013-09-01
HLA matching between donors and recipients is the most important factor associated with acute graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation. With improvements in GVHD prophylaxis and supportive care, transplantations from HLA mismatched donors are performed increasingly frequently, drawing greater attention to the effects of HLA mismatch. In related transplantation, HLA 1-antigen mismatch at the HLA-A, HLA-B, and HLA-DR loci is considered acceptable, but the incidence of severe acute GVHD under standard prophylaxis is higher than that for matched related and unrelated transplantation, highlighting the need for a modification of GVHD prophylaxis. Development of new GVHD prophylaxes has now made HLA 2-3-antigen mismatched related transplantation feasible, and has almost overcome the HLA barrier. In unrelated bone marrow or peripheral blood stem cell transplantation, donors matched for HLA-A, HLA-B, HLA-C, and HLA-DRB1 alleles are the most preferable. The impact of allele or antigen mismatch has been evaluated in a number of studies, but the results of these have not been consistent, partly due to differences in race and HLA distribution. The effects of HLA mismatch may differ depending on the year of transplantation and the form of GVHD prophylaxis administered. In cord blood transplantation, successful transplantation can be achieved with up to two HLA mismatches. In children, compared to the use of HLA mismatched units, the use of HLA-matched units is associated with a lower risk of acute GVHD and mortality, while in adults HLA mismatches may have a lower impact on outcome. Thus, the effect of HLA matching should be evaluated separately for different stem cell sources.
Cell and tissue engineering and clinical applications: an overview.
Stoltz, J F; Bensoussan, D; Decot, V; Ciree, A; Netter, P; Gillet, P
2006-01-01
Most human tissues do not regenerate spontaneously; this is why cell therapies and tissue engineering are promising alternatives. The principle is simple: cells are collected in a patient and introduced in the damaged tissue or in a tridimentional porous support and harvested in a bioreactor in which the physico-chemical and mechanical parameters are controlled. Once the tissues (or the cells) are mature they may be implanted. In parallel, the development of biotherapies with stem cells is a field of research in turmoil given the hopes for clinical applications that it brings up. Embryonic stem cells are potentially more interesting since they are totipotent, but they can only be obtained at the very early stages of the embryo. The potential of adult stem cells is limited but isolating them induces no ethical problem and it has been known for more than 40 years that bone marrow does possess the regenerating functions of blood cells. Finally, the properties of foetal stem cells (blood cells from the umbilical cord) are forerunners of the haematopoietic system but the ability of these cells to participate to the formation of other tissues is more problematic. Another field for therapeutic research is that of dendritic cells, antigen presenting cells. Their efficiency in cell therapy relies on the initiation of specific immune responses. They represent a promising tool in the development of a protective immune response against antigens which the host is usually unable to generate an efficient response (melanomas, breast against cancer, prostate cancer, ..). Finally, gene therapy, has been nourishing high hopes but few clinical applications can be envisaged in the short term, although potential applications are multiple (haemophilia, myopathies, ..). A large number of clinical areas stand as candidates for clinical applications: leukaemia and cancers, cardiac insufficiency and vascular diseases, cartilage and bone repair, ligaments and tendons, liver diseases, ophthalmology, diabetes, neurological diseases (Parkinson, Huntington disease, ..), .. Various aspects of this new regenerative therapeutic medicine are developed in this work.
Generation of Functional Blood Vessels from a Single c-kit+ Adult Vascular Endothelial Stem Cell
Fang, Shentong; Wei, Jing; Pentinmikko, Nalle; Leinonen, Hannele; Salven, Petri
2012-01-01
In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth. PMID:23091420
Integrated multi-omic analysis of host-microbiota interactions in acute oak decline.
Broberg, Martin; Doonan, James; Mundt, Filip; Denman, Sandra; McDonald, James E
2018-01-30
Britain's native oak species are currently under threat from acute oak decline (AOD), a decline-disease where stem bleeds overlying necrotic lesions in the inner bark and larval galleries of the bark-boring beetle, Agrilus biguttatus, represent the primary symptoms. It is known that complex interactions between the plant host and its microbiome, i.e. the holobiont, significantly influence the health status of the plant. In AOD, necrotic lesions are caused by a microbiome shift to a pathobiome consisting predominantly of Brenneria goodwinii, Gibbsiella quercinecans, Rahnella victoriana and potentially other bacteria. However, the specific mechanistic processes of the microbiota causing tissue necrosis, and the host response, have not been established and represent a barrier to understanding and managing this decline. We profiled the metagenome, metatranscriptome and metaproteome of inner bark tissue from AOD symptomatic and non-symptomatic trees to characterise microbiota-host interactions. Active bacterial virulence factors such as plant cell wall-degrading enzymes, reactive oxygen species defence and flagella in AOD lesions, along with host defence responses including reactive oxygen species, cell wall modification and defence regulators were identified. B. goodwinii dominated the lesion microbiome, with significant expression of virulence factors such as the phytopathogen effector avrE. A smaller proportion of microbiome activity was attributed to G. quercinecans and R. victoriana. In addition, we describe for the first time the potential role of two previously uncharacterised Gram-positive bacteria predicted from metagenomic binning and identified as active in the AOD lesion metatranscriptome and metaproteome, implicating them in lesion formation. This multi-omic study provides novel functional insights into microbiota-host interactions in AOD, a complex arboreal decline disease where polymicrobial-host interactions result in lesion formation on tree stems. We present the first descriptions of holobiont function in oak health and disease, specifically, the relative lesion activity of B. goodwinii, G. quercinecans, Rahnella victoriana and other bacteria. Thus, the research presented here provides evidence of some of the mechanisms used by members of the lesion microbiome and a template for future multi-omic research into holobiont characterisation, plant polymicrobial diseases and pathogen defence in trees.
Generating Porcine Chimeras Using Inner Cell Mass Cells and Parthenogenetic Preimplantation Embryos
Nakano, Kazuaki; Watanabe, Masahito; Matsunari, Hitomi; Matsuda, Taisuke; Honda, Kasumi; Maehara, Miki; Kanai, Takahiro; Hayashida, Gota; Kobayashi, Mirina; Kuramoto, Momoko; Arai, Yoshikazu; Umeyama, Kazuhiro; Fujishiro, Shuh-hei; Mizukami, Yoshihisa; Nagaya, Masaki; Hanazono, Yutaka; Nagashima, Hiroshi
2013-01-01
Background The development and validation of stem cell therapies using induced pluripotent stem (iPS) cells can be optimized through translational research using pigs as large animal models, because pigs have the closest characteristics to humans among non-primate animals. As the recent investigations have been heading for establishment of the human iPS cells with naïve type characteristics, it is an indispensable challenge to develop naïve type porcine iPS cells. The pluripotency of the porcine iPS cells can be evaluated using their abilities to form chimeras. Here, we describe a simple aggregation method using parthenogenetic host embryos that offers a reliable and effective means of determining the chimera formation ability of pluripotent porcine cells. Methodology/Significant Principal Findings In this study, we show that a high yield of chimeric blastocysts can be achieved by aggregating the inner cell mass (ICM) from porcine blastocysts with parthenogenetic porcine embryos. ICMs cultured with morulae or 4–8 cell-stage parthenogenetic embryos derived from in vitro-matured (IVM) oocytes can aggregate to form chimeric blastocysts that can develop into chimeric fetuses after transfer. The rate of production of chimeric blastocysts after aggregation with host morulae (20/24, 83.3%) was similar to that after the injection of ICMs into morulae (24/29, 82.8%). We also found that 4–8 cell-stage embryos could be used; chimeric blastocysts were produced with a similar efficiency (17/26, 65.4%). After transfer into recipients, these blastocysts yielded chimeric fetuses at frequencies of 36.0% and 13.6%, respectively. Conclusion/Significance Our findings indicate that the aggregation method using parthenogenetic morulae or 4–8 cell-stage embryos offers a highly reproducible approach for producing chimeric fetuses from porcine pluripotent cells. This method provides a practical and highly accurate system for evaluating pluripotency of undifferentiated cells, such as iPS cells, based on their ability to form chimeras. PMID:23626746
Cho, Sang-Yun; Cho, Won Kyong; Sohn, Seong-Han; Kim, Kook-Hyung
2012-01-06
Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP. Copyright © 2011 Elsevier Inc. All rights reserved.
Li, Zhang-hua; Liao, Wen; Cui, Xi-long; Zhao, Qiang; Liu, Ming; Chen, You-hao; Liu, Tian-shu; Liu, Nong-le; Wang, Fang; Yi, Yang; Shao, Ning-sheng
2011-01-09
In this study, we investigated the feasibility and safety of intravenous transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) for femoral head repair, and observed the migration and distribution of MSCs in hosts. MSCs were labeled with green fluorescent protein (GFP) in vitro and injected into nude mice via vena caudalis, and the distribution of MSCs was dynamically monitored at 0, 6, 24, 48, 72 and 96 h after transplantation. Two weeks after the establishment of a rabbit model of femoral head necrosis, GFP labeled MSCs were injected into these rabbits via ear vein, immunological rejection and graft versus host disease were observed and necrotic and normal femoral heads, bone marrows, lungs, and livers were harvested at 2, 4 and 6 w after transplantation. The sections of these tissues were observed under fluorescent microscope. More than 70 % MSCs were successfully labeled with GFP at 72 h after labeling. MSCs were uniformly distributed in multiple organs and tissues including brain, lungs, heart, kidneys, intestine and bilateral hip joints of nude mice. In rabbits, at 6 w after intravenous transplantation, GFP labeled MSCs were noted in the lungs, liver, bone marrow and normal and necrotic femoral heads of rabbits, and the number of MSCs in bone marrow was higher than that in the, femoral head, liver and lungs. Furthermore, the number of MSCs peaked at 6 w after transplantation. Moreover, no immunological rejection and graft versus host disease were found after transplantation in rabbits. Our results revealed intravenously implanted MSCs could migrate into the femoral head of hosts, and especially migrate directionally and survive in the necrotic femoral heads. Thus, it is feasible and safe to treat femoral head necrosis by intravenous transplantation of allogeneic MSCs.
Long, Teng; Zhu, Zhenan; Awad, Hani A; Schwarz, Edward M; Hilton, Matthew J; Dong, Yufeng
2014-03-01
Structural bone allografts are widely used in the clinic to treat critical sized bone defects, despite lacking the osteoinductive characteristics of live autografts. To address this, we generated revitalized structural allografts wrapped with mesenchymal stem/progenitor cell (MSC) sheets, which were produced by expanding primary syngenic bone marrow derived cells on temperature-responsive plates, as a tissue-engineered periosteum. In vitro assays demonstrated maintenance of the MSC phenotype in the sheets, suggesting that short-term culturing of MSC sheets is not detrimental. To test their efficacy in vivo, allografts wrapped with MSC sheets were transplanted into 4-mm murine femoral defects and compared to allografts with direct seeding of MSCs and allografts without cells. Evaluations consisted of X-ray plain radiography, 3D microCT, histology, and biomechanical testing at 4- and 6-weeks post-surgery. Our findings demonstrate that MSC sheets induce prolonged cartilage formation at the graft-host junction and enhanced bone callus formation, as well as graft-host osteointegration. Moreover, a large periosteal callus was observed spanning the allografts with MSC sheets, which partially mimics live autograft healing. Finally, biomechanical testing showed a significant increase in the structural and functional properties of MSC sheet grafted femurs. Taken together, MSC sheets exhibit enhanced osteogenicity during critical sized bone defect repair, demonstrating the feasibility of this tissue engineering solution for massive allograft healing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.
Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude
2011-01-01
Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.
Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha
2018-02-01
Understanding the pathophysiology and associated host parasite interactions of the malaria infection is the prerequisite for developing effective prevention and treatment strategies. The exact mechanism underlying malaria associated ineffective and dyserythropoiesis is not yet fully understood. Being an important protein, haemoglobin serves as the main amino acid reservoir available to the intra-erythrocytic plasmodium. It is important to check the expression profiling of globin genes which may help us to understand host parasite interactions and its potential contribution to both infection and disease. Here, an in-vitro culture system was used to study the effect of different doses of Plasmodium falciparum on haematopoietic stem cell expansion, differentiation and expression of globin genes. Upon exposure to the different doses of P. falciparum parasites of strains 3D7, Dd2 and RKL9 (intact and lysed form) at different stages of erythroid development, cells demonstrated suppression in growth and differentiation. At almost all stages of erythroid development upon parasite exposure, the γ globin gene was found to be downregulated and the α/β as well as α/non- α globin mRNA ratios in late stage erythroid cells were found to be reduced (p < .01) compared to the untreated controls. The imbalance in globin chain expression might be considered as one of the factors involved in malaria associated inappropriate erythropoietic responses. Copyright © 2018 Elsevier Inc. All rights reserved.
Hacke, Katrin; Falahati, Rustom; Flebbe-Rehwaldt, Linda; Kasahara, Noriyuki; Gaensler, Karin M. L.
2010-01-01
Current approaches for hematopoietic stem cell (HSC) and organ transplantation are limited by donor and host-mediated immune responses to allo-antigens. Application of these therapies is limited by the toxicity of preparative and post-transplant immunosuppressive regimens and a shortage of appropriate HLA-matched donors. We have been exploring two complementary approaches for genetically modifying donor cells that achieve long-term suppression of cellular proteins that elicit host immune responses to mismatched donor antigens, and provide a selective advantage to genetically engineered donor cells after transplantation. The first approach is based on recent advances that make feasible targeted down-regulation of HLA expression. Suppression of HLA expression could help to overcome limitations imposed by extensive HLA polymorphisms that restrict the availability of suitable donors. Accordingly, we have recently investigated whether knockdown of HLA by RNA interference (RNAi) enables allogeneic cells to evade immune recognition. For efficient and stable delivery of short hairpin-type RNAi constructs (shRNA), we employed lentivirus-based gene transfer vectors that integrate into genomic DNA, thereby permanently modifying transduced donor cells. Lentivirus-mediated delivery of shRNA targeting pan-Class I and allele-specific HLA achieved efficient and dose-dependent reduction in surface expression of HLA in human cells, and enhanced resistance to allo-reactive T lymphocyte-mediated cytotoxicity, while avoiding non-MHC restricted killing. Complementary strategies for genetic engineering of HSC that would provide a selective advantage for transplanted donor cells and enable successful engraftment with less toxic preparative and immunosuppressive regimens would increase the numbers of individuals to whom HLA suppression therapy could be offered. Our second strategy is to provide a mechanism for in vivo selection of genetically modified HSC and other donor cells. We have uniquely combined transplantation during the neonatal period, when tolerance may be more readily achieved, with a positive selection strategy for in vivo amplification of drug-resistant donor HSC. This model system enables the evaluation of mechanisms of tolerance induction to neo-antigens, and allogeneic stem cells during immune ontogeny. HSC are transduced ex vivo by lentivirus-mediated gene transfer of P140K-O6-methylguanine-methyltransferase (MGMTP140K). The MGMTP140K DNA repair enzyme confers resistance to benzylguanine, an inhibitor of endogenous MGMT, and to chloroethylating agents such as BCNU. In vivo chemoselection enables enrichment of donor cells at the stem cell level. Using complementary approaches of in vivo chemoselection and RNAi-induced silencing of HLA expression may enable the generation of histocompatibility-enhanced, and eventually, perhaps “universally” compatible cellular grafts. PMID:19048410
Mistletoe Infection in an Oak Forest Is Influenced by Competition and Host Size
Matula, Radim; Svátek, Martin; Pálková, Marcela; Volařík, Daniel; Vrška, Tomáš
2015-01-01
Host size and distance from an infected plant have been previously found to affect mistletoe occurrence in woody vegetation but the effect of host plant competition on mistletoe infection has not been empirically tested. For an individual tree, increasing competition from neighbouring trees decreases its resource availability, and resource availability is also known to affect the establishment of mistletoes on host trees. Therefore, competition is likely to affect mistletoe infection but evidence for such a mechanism is lacking. Based on this, we hypothesised that the probability of occurrence as well as the abundance of mistletoes on a tree would increase not only with increasing host size and decreasing distance from an infected tree but also with decreasing competition by neighbouring trees. Our hypothesis was tested using generalized linear models (GLMs) with data on Loranthus europaeus Jacq., one of the two most common mistletoes in Europe, on 1015 potential host stems collected in a large fully mapped plot in the Czech Republic. Because many trees were multi-stemmed, we ran the analyses for both individual stems and whole trees. We found that the probability of mistletoe occurrence on individual stems was affected mostly by stem size, whereas competition had the most important effects on the probability of mistletoe occurrence on whole trees as well as on mistletoe abundance. Therefore, we confirmed our hypothesis that competition among trees has a negative effect on mistletoe occurrence. PMID:25992920
Wharton, Robert; Norrbom, Allen L.
2013-01-01
Abstract New host records (all members of the family Tephritidae) are presented for 14 newly described species of opiine Braconidae from the neotropics and two previously described species, one from the neotropics and one from the Nearctic Region. Doryctobracon anneae Wharton, Opius baderae Wharton, O. baeblus Wharton, O. cablus Wharton, O. dablus Wharton, O. danielsae Wharton, O. gabriellae Wharton, O. godfrayi Wharton, O. marshi Wharton, O. nablus Wharton, O. pipitae Wharton, O. stecki Wharton, O. taramegillae Wharton, and O. yoderi Wharton are newly described. Hosts are newly recorded for the previously described species Opius nympha Fischer and O. peleus Fischer. A key is presented to Opiinae that have been reared from flower, stem, and leaf feeding tephritids in the New World. Host and host plant associations are discussed; a few of the tephritid host plant records are also new. Opius cosa (Fischer), is a comb. n. PMID:24294078
Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B.; Albert, Markus
2015-01-01
By comparison with plant–microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant–plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato. PMID:25699071
Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B; Albert, Markus
2015-01-01
By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato.
Shin, Dong-Yeop; Kim, Inho; Kim, Jin Hee; Lee, Yun-Gyoo; Kang, Eun Joo; Cho, Hyeon Jin; Lee, Kyung-Hun; Kim, Hye Jin; Park, Eun-Hee; Lee, Jong-Eun; Bae, Ji-Yeon; See, Cha Ja; Yoon, Sung-Soo; Park, Sung Sup; Han, Kyou-Sup; Park, Myoung Hee; Hong, Yun-Chul; Park, Seonyang; Kim, Byoung Kook
2013-01-01
We investigated the association between RANTES (regulated upon activation, normal T cell expressed and secreted) polymorphisms and clinical outcomes in patients treated with allogeneic hematopoietic stem cell transplantation (allo-HSCT). Three RANTES gene polymorphisms, i.e., -403G/A (rs2107538), -28C/G (rs2280788) and In1.1T/C (rs2280789), were genotyped, and the effects of the genotypes and haplotypes of RANTES on clinical outcomes were analyzed. The competing risk regression analysis was used to investigate the relationship between the polymorphisms and the cumulative risk of graft-versus-host disease (GVHD). An AGC haplotype in a recessive model showed significant harmful effects on the cumulative risk of acute GVHD and relapse-free survival (adjusted hazard ratios 2.42 and 2.71, 95% confidence intervals 1.29-4.55 and 1.30-5.64; p = 0.018 and 0.024, respectively), whereas a GCT haplotype did not. RANTES polymorphisms were not significantly associated with overall survival and the risk of chronic GVHD. This study suggests that RANTES polymorphisms might be associated with the occurrence of acute GVHD rather than of chronic GVHD and also of relapse-free survival in the patients treated with allo-HSCT. Further larger prospective investigations are needed to establish the role of RANTES polymorphisms in patients treated with allo-HSCT. Copyright © 2012 S. Karger AG, Basel.
Kruse, Astrid LD; Grätz, Klaus W
2009-01-01
Background Patients undergoing hematopoietic stem cell transplantation (HSCT) have a higher risk of developing secondary solid tumors, in particular squamous cell carcinoma, because of several risk factors, including full-body irradiation (TBI), chemotherapy, and chronic graft versus host disease (GVHD). Based on the review presented here, a classification of oral changes is suggested in order to provide a tool to detect high-risk patients. Methods and Results The literature over the last 30 years was reviewed for development of malignoma of the oral cavity after HSCT. Overall, 64 cases were found. In 16 out of 30 cases, the tongue was the primary location, followed by the salivary gland (10 out of 30); 56.4% appeared in a latency time of 5 to 9 years after HSCT. In 76.6%, GVHD was noticed before the occurrence of oral malignancy. Premalignant changes of the oral mucosa were mucositis, xerostomia, and lichenoid changes, developing into erosive form. Conclusion All physicians involved in the treatment of post-HSCT patients should be aware of the increased risk, even after 5 years from the development of oral malignancy, in particular when oral graft versus host changes are visible. In order to develop evidence based management, screening and offer adequate therapy as early as possible in this patient group, multicenter studies, involving oncologists and head and neck surgeons, should be established. PMID:19624855
Zantomio, D; Grigg, A P; MacGregor, L; Panek-Hudson, Y; Szer, J; Ayton, R
2006-10-01
Female genital tract graft-versus-host disease (GVHD) is an under-recognized complication of allogeneic stem cell transplantation impacting on quality of life. We describe a prospective surveillance programme for female genital GVHD to better characterize incidence, risk factors and clinical features and the impact of a structured intervention policy. A retrospective audit was conducted on the medical records of all female transplant recipients surviving at least 6 months at a single centre over a 5-year period. Patients commenced topical vaginal oestrogen early post transplant with hormone replacement as appropriate for age, prior menopausal status and co-morbidities. A genital tract management programme included regular gynaecological review and self-maintenance of vaginal capacity by dilator or intercourse. The incidence of genital GVHD was 35% (95% confidence interval (CI) (25, 50%)) at 1 year and 49% (95% CI (36, 63%)) at 2 years. Topical therapy was effective in most cases; no patient required surgical intervention to divide vaginal adhesions. The main risk factor was stem cell source with peripheral blood progenitor cells posing a higher risk than marrow (hazard ratio=3.07 (1.22, 7.73), P=0.017). Extensive GVHD in other organs was a common association. We conclude that female genital GVHD is common, and early detection and commencement of topical immunosuppression with dilator use appears to be highly effective at preventing progression.
Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells.
Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun
2016-05-25
Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents.
Cesaro, Simone; Peffault de Latour, Regis; Tridello, Gloria; Pillon, Marta; Carlson, Kristina; Fagioli, Franca; Jouet, Jean-Pierre; Koh, Mickey B C; Panizzolo, Irene Sara; Kyrcz-Krzemien, Slawomira; Maertens, Johan; Rambaldi, Alessandro; Strahm, Brigitte; Blaise, Didier; Maschan, Alexei; Marsh, Judith; Dufour, Carlo
2015-11-01
We analysed the outcome of a second allogeneic haematopoietic stem cell transplant (alloHSCT) in 162 patients reported to the European Society for Blood and Marrow Transplantation between 1998 and 2009. Donor origin was a sibling in 110 and an unrelated donor in 52 transplants, respectively. The stem cell source was bone marrow in 31% and peripheral blood in 69% of transplants. The same donor as for the first alloHSCT was used in 81% of transplants whereas a change in the choice of stem cell source was reported in 56% of patients, mainly from bone marrow to peripheral blood. Neutrophil and platelet engraftment occurred in 85% and 72% of patients, after a median time of 15 and 17 days, respectively. Grade II-IV acute graft-versus-host disease (GVHD) and chronic GVHD occurred in 21% and 37% of patients, respectively. Graft failure (GF) occurred in 42 patients (26%). After a median follow-up of 3·5 years, the 5-year overall survival (OS) was 60·7%. In multivariate analysis, the only factor significantly associated with a better outcome was a Karnofsky/Lansky score ≥80 (higher OS). We conclude that a second alloHSCT is feasible rescue option for GF in SAA, with a successful outcome in 60% of cases. © 2015 John Wiley & Sons Ltd.
Petry, Florian; Weidner, Tobias; Salzig, Denise
2018-01-01
Diabetes is a prominent health problem caused by the failure of pancreatic beta cells. One therapeutic approach is the transplantation of functional beta cells, but it is difficult to generate sufficient beta cells in vitro and to ensure these cells remain viable at the transplantation site. Beta cells suffer from hypoxia, undergo apoptosis, or are attacked by the host immune system. Human mesenchymal stem/stromal cells (hMSCs) can improve the functionality and survival of beta cells in vivo and in vitro due to direct cell contact or the secretion of trophic factors. Current cocultivation concepts with beta cells are simple and cannot exploit the favorable properties of hMSCs. Beta cells need a three-dimensional (3D) environment to function correctly, and the cocultivation setup is therefore more complex. This review discusses 3D cultivation forms (aggregates, capsules, and carriers) for hMSCs and beta cells and strategies for large-scale cultivation. We have determined process parameters that must be balanced and considered for the cocultivation of hMSCs and beta cells, and we present several bioreactor setups that are suitable for such an innovative cocultivation approach. Bioprocess engineering of the cocultivation processes is necessary to achieve successful beta cell therapy. PMID:29731775
Okiyama, Naoko; Furumoto, Yasuko; Villarroel, Vadim A; Linton, Jay T; Tsai, Wanxia L; Gutermuth, Jan; Ghoreschi, Kamran; Gadina, Massimo; O'Shea, John J; Katz, Stephen I
2014-01-01
The utility of allogeneic hematopoietic stem cell transplantation is limited by graft-versus-host disease (GVHD), a significant cause of morbidity and mortality. Patients with GVHD exhibit cutaneous manifestations with histological features of interface dermatitis followed by scleroderma-like changes. JAK inhibitors represent a class of immunomodulatory drugs that inhibit signaling by multiple cytokines. Herein we report the effects of tofacitinib in a murine model of GVHD. Oral administration of tofacitinib prevented GVHD-like disease manifested by weight loss and mucocutaneous lesions. More importantly, tofacitinib was also effective in reversing established disease. Tofacitinib diminished the expansion and activation of murine CD8 T cells in this model, and had similar effects on IL-2-stimulated human CD8 T cells. Tofacitinib also inhibited the expression of IFN-γ-inducible chemoattractants by keratinocytes, and IFN-γ-inducible cell death of keratinocytes. Tofacitinib may be an effective drug for treatment against CD8 T-cell–mediated mucocutaneous diseases in patients with GVHD. PMID:24213371
R-Spondin1 expands Paneth cells and prevents dysbiosis induced by graft-versus-host disease
Hayase, Eiko; Nakamura, Kiminori; Noizat, Clara; Ogasawara, Reiki; Ohigashi, Hiroyuki; Sugimoto, Rina; Matsuoka, Satomi; Ara, Takahide; Yokoyama, Emi; Yamakawa, Tomohiro; Ebata, Ko; Kondo, Takeshi; Aizawa, Tomoyasu; Ogura, Yoshitoshi; Hayashi, Tetsuya; Mori, Hiroshi; Tomizuka, Kazuma; Ayabe, Tokiyoshi
2017-01-01
The intestinal microbial ecosystem is actively regulated by Paneth cell–derived antimicrobial peptides such as α-defensins. Various disorders, including graft-versus-host disease (GVHD), disrupt Paneth cell functions, resulting in unfavorably altered intestinal microbiota (dysbiosis), which further accelerates the underlying diseases. Current strategies to restore the gut ecosystem are bacteriotherapy such as fecal microbiota transplantation and probiotics, and no physiological approach has been developed so far. In this study, we demonstrate a novel approach to restore gut microbial ecology by Wnt agonist R-Spondin1 (R-Spo1) or recombinant α-defensin in mice. R-Spo1 stimulates intestinal stem cells to differentiate to Paneth cells and enhances luminal secretion of α-defensins. Administration of R-Spo1 or recombinant α-defensin prevents GVHD-mediated dysbiosis, thus representing a novel and physiological approach at modifying the gut ecosystem to restore intestinal homeostasis and host–microbiota cross talk toward therapeutic benefits. PMID:29066578
Schönhuber, Nina; Seidler, Barbara; Schuck, Kathleen; Veltkamp, Christian; Schachtler, Christina; Zukowska, Magdalena; Eser, Stefan; Feyerabend, Thorsten B; Paul, Mariel C; Eser, Philipp; Klein, Sabine; Lowy, Andrew M; Banerjee, Ruby; Yang, Fangtang; Lee, Chang-Lung; Moding, Everett J; Kirsch, David G; Scheideler, Angelika; Alessi, Dario R; Varela, Ignacio; Bradley, Allan; Kind, Alexander; Schnieke, Angelika E; Rodewald, Hans-Reimer; Rad, Roland; Schmid, Roland M; Schneider, Günter; Saur, Dieter
2014-11-01
Genetically engineered mouse models (GEMMs) have dramatically improved our understanding of tumor evolution and therapeutic resistance. However, sequential genetic manipulation of gene expression and targeting of the host is almost impossible using conventional Cre-loxP-based models. We have developed an inducible dual-recombinase system by combining flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies to improve GEMMs of pancreatic cancer. This enables investigation of multistep carcinogenesis, genetic manipulation of tumor subpopulations (such as cancer stem cells), selective targeting of the tumor microenvironment and genetic validation of therapeutic targets in autochthonous tumors on a genome-wide scale. As a proof of concept, we performed tumor cell-autonomous and nonautonomous targeting, recapitulated hallmarks of human multistep carcinogenesis, validated genetic therapy by 3-phosphoinositide-dependent protein kinase inactivation as well as cancer cell depletion and show that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are dispensable for tumor formation.
Nitkin, Christopher R.
2016-01-01
Abstract Mesenchymal stem cells (MSCs) represent a potentially revolutionary therapy for a wide variety of pediatric diseases, but the optimal cell‐based therapeutics for such diversity have not yet been specified. The published clinical trials for pediatric pulmonary, cardiac, orthopedic, endocrine, neurologic, and hematologic diseases provide evidence that MSCs are indeed efficacious, but the significant heterogeneity in therapeutic approaches between studies raises new questions. The purpose of this review is to stimulate new preclinical and clinical trials to investigate these factors. First, we discuss recent clinical trials for pediatric diseases studying MSCs obtained from bone marrow, umbilical cord and umbilical cord blood, placenta, amniotic fluid, and adipose tissue. We then identify factors, some unique to pediatrics, which must be examined to optimize therapeutic efficacy, including route of administration, dose, timing of administration, the role of ex vivo differentiation, cell culture techniques, donor factors, host factors, and the immunologic implications of allogeneic therapy. Finally, we discuss some of the practicalities of bringing cell‐based therapy into the clinic, including regulatory and manufacturing considerations. The aim of this review is to inform future studies seeking to maximize therapeutic efficacy for each disease and for each patient. Stem Cells Translational Medicine 2017;6:539–565 PMID:28191766
Role of Pharmacogenetics in Hematopoietic Stem Cell Transplantation Outcome in Children
Franca, Raffaella; Stocco, Gabriele; Favretto, Diego; Giurici, Nagua; Decorti, Giuliana; Rabusin, Marco
2015-01-01
Hematopoietic stem cell transplantation (HSCT) is an established therapeutic procedure for several congenital and acquired disorders, both malignant and nonmalignant. Despite the great improvements in HSCT clinical practices over the last few decades, complications, such as graft vs. host disease (GVHD) and sinusoidal obstructive syndrome (SOS), are still largely unpredictable and remain the major causes of morbidity and mortality. Both donor and patient genetic background might influence the success of bone marrow transplantation and could at least partially explain the inter-individual variability in HSCT outcome. This review summarizes some of the recent studies on candidate gene polymorphisms in HSCT, with particular reference to pediatric cohorts. The interest is especially focused on pharmacogenetic variants affecting myeloablative and immunosuppressive drugs, although genetic traits involved in SOS susceptibility and transplant-related mortality are also reviewed. PMID:26266406
Evans, Nick R; Davies, Evan M; Dare, Chris J; Oreffo, Richard Oc
2013-01-01
Skeletal disorders requiring the regeneration or de novo production of bone present considerable reconstructive challenges and are one of the main driving forces for the development of skeletal tissue engineering strategies. The skeletal or mesenchymal stem cell is a fundamental requirement for osteogenesis and plays a pivotal role in the design and application of these strategies. Research activity has focused on incorporating the biological role of the mesenchymal stem cell with the developing fields of material science and gene therapy in order to create a construct that is not only capable of inducing host osteoblasts to produce bone, but is also osteogenic in its own right. This review explores the clinical need for reparative approaches in spinal arthrodesis, identifying recent tissue engineering strategies employed to promote spinal fusion, and considers the ongoing challenges to successful clinical translation.