Morrison, Juliet; Josset, Laurence; Tchitchek, Nicolas; Chang, Jean; Belser, Jessica A.; Swayne, David E.; Pantin-Jackwood, Mary J.; Tumpey, Terrence M.
2014-01-01
ABSTRACT Modulating the host response is a promising approach to treating influenza, caused by a virus whose pathogenesis is determined in part by the reaction it elicits within the host. Though the pathogenicity of emerging H7N9 influenza virus in several animal models has been reported, these studies have not included a detailed characterization of the host response following infection. Therefore, we characterized the transcriptomic response of BALB/c mice infected with H7N9 (A/Anhui/01/2013) virus and compared it to the responses induced by H5N1 (A/Vietnam/1203/2004), H7N7 (A/Netherlands/219/2003), and pandemic 2009 H1N1 (A/Mexico/4482/2009) influenza viruses. We found that responses to the H7 subtype viruses were intermediate to those elicited by H5N1 and pdm09H1N1 early in infection but that they evolved to resemble the H5N1 response as infection progressed. H5N1, H7N7, and H7N9 viruses were pathogenic in mice, and this pathogenicity correlated with increased transcription of cytokine response genes and decreased transcription of lipid metabolism and coagulation signaling genes. This three-pronged transcriptomic signature was observed in mice infected with pathogenic H1N1 strains such as the 1918 virus, indicating that it may be predictive of pathogenicity across multiple influenza virus strains. Finally, we used host transcriptomic profiling to computationally predict drugs that reverse the host response to H7N9 infection, and we identified six FDA-approved drugs that could potentially be repurposed to treat H7N9 and other pathogenic influenza viruses. IMPORTANCE Emerging avian influenza viruses are of global concern because the human population is immunologically naive to them. Current influenza drugs target viral molecules, but the high mutation rate of influenza viruses eventually leads to the development of antiviral resistance. As the host evolves far more slowly than the virus, and influenza pathogenesis is determined in part by the host response, targeting the host response is a promising approach to treating influenza. Here we characterize the host transcriptomic response to emerging H7N9 influenza virus and compare it with the responses to H7N7, H5N1, and pdm09H1N1. All three avian viruses were pathogenic in mice and elicited a transcriptomic signature that also occurs in response to the legendary 1918 influenza virus. Our work identifies host responses that could be targeted to treat severe H7N9 influenza and identifies six FDA-approved drugs that could potentially be repurposed as H7N9 influenza therapeutics. PMID:24991006
Morrison, Juliet; Josset, Laurence; Tchitchek, Nicolas; Chang, Jean; Belser, Jessica A; Swayne, David E; Pantin-Jackwood, Mary J; Tumpey, Terrence M; Katze, Michael G
2014-09-01
Modulating the host response is a promising approach to treating influenza, caused by a virus whose pathogenesis is determined in part by the reaction it elicits within the host. Though the pathogenicity of emerging H7N9 influenza virus in several animal models has been reported, these studies have not included a detailed characterization of the host response following infection. Therefore, we characterized the transcriptomic response of BALB/c mice infected with H7N9 (A/Anhui/01/2013) virus and compared it to the responses induced by H5N1 (A/Vietnam/1203/2004), H7N7 (A/Netherlands/219/2003), and pandemic 2009 H1N1 (A/Mexico/4482/2009) influenza viruses. We found that responses to the H7 subtype viruses were intermediate to those elicited by H5N1 and pdm09H1N1 early in infection but that they evolved to resemble the H5N1 response as infection progressed. H5N1, H7N7, and H7N9 viruses were pathogenic in mice, and this pathogenicity correlated with increased transcription of cytokine response genes and decreased transcription of lipid metabolism and coagulation signaling genes. This three-pronged transcriptomic signature was observed in mice infected with pathogenic H1N1 strains such as the 1918 virus, indicating that it may be predictive of pathogenicity across multiple influenza virus strains. Finally, we used host transcriptomic profiling to computationally predict drugs that reverse the host response to H7N9 infection, and we identified six FDA-approved drugs that could potentially be repurposed to treat H7N9 and other pathogenic influenza viruses. Emerging avian influenza viruses are of global concern because the human population is immunologically naive to them. Current influenza drugs target viral molecules, but the high mutation rate of influenza viruses eventually leads to the development of antiviral resistance. As the host evolves far more slowly than the virus, and influenza pathogenesis is determined in part by the host response, targeting the host response is a promising approach to treating influenza. Here we characterize the host transcriptomic response to emerging H7N9 influenza virus and compare it with the responses to H7N7, H5N1, and pdm09H1N1. All three avian viruses were pathogenic in mice and elicited a transcriptomic signature that also occurs in response to the legendary 1918 influenza virus. Our work identifies host responses that could be targeted to treat severe H7N9 influenza and identifies six FDA-approved drugs that could potentially be repurposed as H7N9 influenza therapeutics. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
2018-01-01
ABSTRACT To obtain an insight into host-pathogen interactions in clostridial myonecrosis, we carried out comparative transcriptome analysis of both the bacterium and the host in a murine Clostridium perfringens infection model, which is the first time that such an investigation has been conducted. Analysis of the host transcriptome from infected muscle tissues indicated that many genes were upregulated compared to the results seen with mock-infected mice. These genes were enriched for host defense pathways, including Toll-like receptor (TLR) and Nod-like receptor (NLR) signaling components. Real-time PCR confirmed that host TLR2 and NLRP3 inflammasome genes were induced in response to C. perfringens infection. Comparison of the transcriptome of C. perfringens cells from the infected tissues with that from broth cultures showed that host selective pressure induced a global change in C. perfringens gene expression. A total of 33% (923) of C. perfringens genes were differentially regulated, including 10 potential virulence genes that were upregulated relative to their expression in vitro. These genes encoded putative proteins that may be involved in the synthesis of cell wall-associated macromolecules, in adhesion to host cells, or in protection from host cationic antimicrobial peptides. This report presents the first successful expression profiling of coregulated transcriptomes of bacterial and host genes during a clostridial myonecrosis infection and provides new insights into disease pathogenesis and host-pathogen interactions. PMID:29588405
Detecting specific infections in children through host responses: a paradigm shift.
Mejias, Asuncion; Suarez, Nicolas M; Ramilo, Octavio
2014-06-01
There is a need for improved diagnosis and for optimal classification of patients with infectious diseases. An alternative approach to the pathogen-detection strategy is based on a comprehensive analysis of the host response to the infection. This review focuses on the value of transcriptome analyses of blood leukocytes for the diagnosis and management of patients with infectious diseases. Initial studies showed that RNA from blood leukocytes of children with acute viral and bacterial infections carried pathogen-specific transcriptional signatures. Subsequently, transcriptional signatures for several other infections have been described and validated in humans with malaria, dengue, salmonella, melioidosis, respiratory syncytial virus, influenza, tuberculosis, and HIV. In addition, transcriptome analyses represent an invaluable tool to understand disease pathogenesis and to objectively classify patients according to the clinical severity. Microarray studies have been shown to be highly reproducible using different platforms, and in different patient populations, confirming the value of blood transcriptome analyses to study pathogen-specific host immune responses in the clinical setting. Combining the detection of the pathogen with a comprehensive assessment of the host immune response will provide a new understanding of the correlations between specific causative agents, the host response, and the clinical manifestations of the disease.
Vera-Bizama, Fredy; Valenzuela-Muñoz, Valentina; Gonçalves, Ana Teresa; Marambio, Jorge Pino; Hawes, Christopher; Wadsworth, Simon; Gallardo-Escárate, Cristian
2015-12-01
The transcriptomic response of the sea louse Caligus rogercresseyi during the infestation on Atlantic salmon (Salmo salar) and coho salmon (Oncorhynchus kisutch) was evaluated using 27 genes related to immune response, antioxidant system and secretome. Results showed early responses of TLR/IMD signaling pathway in sea lice infesting Atlantic salmon. Overall, genes associated with oxidative stress responses were upregulated in both host species. This pattern suggests that reactive oxygen species emitted by the host as a response to the infestation, could modulate the sea louse antioxidant system. Secretome-related transcripts evidenced upregulation of trypsins and serpins, mainly associated to Atlantic salmon than coho salmon. Interestingly, cathepsins and trypsin2 were downregulated at 7 days post-infection (dpi) in coho salmon. The principal component analysis revealed an inverse time-dependent pattern based on the different responses of C. rogercresseyi infecting both salmon species. Here, Atlantic salmon strongly modulates the transcriptome responses at earlier infection stages; meanwhile coho salmon reveals a less marked modulation, increasing the transcription activity during the infection process. This study evidences transcriptome differences between two salmon host species and provides pivotal knowledge towards elaborating future control strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hsiang, Chien-Yun; Chen, Yueh-Sheng; Ho, Tin-Yun
2009-06-01
Establishment of a comprehensive platform for the assessment of host-biomaterial interaction in vivo is an important issue. Nuclear factor-kappaB (NF-kappaB) is an inducible transcription factor that is activated by numerous stimuli. Therefore, NF-kappaB-dependent luminescent signal in transgenic mice carrying the luciferase genes was used as the guide to monitor the biomaterials-affected organs, and transcriptomic analysis was further applied to evaluate the complex host responses in affected organs in this study. In vivo imaging showed that genipin-cross-linked gelatin conduit (GGC) implantation evoked the strong NF-kappaB activity at 6h in the implanted region, and transcriptomic analysis showed that the expressions of interleukin-6 (IL-6), IL-24, and IL-1 family were up-regulated. A strong luminescent signal was observed in spleen on 14 d, suggesting that GGC implantation might elicit the biological events in spleen. Transcriptomic analysis of spleen showed that 13 Kyoto Encyclopedia of Genes and Genomes pathways belonging to cell cycles, immune responses, and metabolism were significantly altered by GGC implants. Connectivity Map analysis suggested that the gene signatures of GGC were similar to those of compounds that affect lipid or glucose metabolism. GeneSetTest analysis further showed that host responses to GGC implants might be related to diseases states, especially the metabolic and cardiovascular diseases. In conclusion, our data provided a concept of molecular imaging-guided transcriptomic platform for the evaluation and the prediction of host-biomaterial interaction in vivo.
Shea, Patrick R; Virtaneva, Kimmo; Kupko, John J; Porcella, Stephen F; Barry, William T; Wright, Fred A; Kobayashi, Scott D; Carmody, Aaron; Ireland, Robin M; Sturdevant, Daniel E; Ricklefs, Stacy M; Babar, Imran; Johnson, Claire A; Graham, Morag R; Gardner, Donald J; Bailey, John R; Parnell, Michael J; Deleo, Frank R; Musser, James M
2010-03-09
Relatively little is understood about the dynamics of global host-pathogen transcriptome changes that occur during bacterial infection of mucosal surfaces. To test the hypothesis that group A Streptococcus (GAS) infection of the oropharynx provokes a distinct host transcriptome response, we performed genome-wide transcriptome analysis using a nonhuman primate model of experimental pharyngitis. We also identified host and pathogen biological processes and individual host and pathogen gene pairs with correlated patterns of expression, suggesting interaction. For this study, 509 host genes and seven biological pathways were differentially expressed throughout the entire 32-day infection cycle. GAS infection produced an initial widespread significant decrease in expression of many host genes, including those involved in cytokine production, vesicle formation, metabolism, and signal transduction. This repression lasted until day 4, at which time a large increase in expression of host genes was observed, including those involved in protein translation, antigen presentation, and GTP-mediated signaling. The interactome analysis identified 73 host and pathogen gene pairs with correlated expression levels. We discovered significant correlations between transcripts of GAS genes involved in hyaluronic capsule production and host endocytic vesicle formation, GAS GTPases and host fibrinolytic genes, and GAS response to interaction with neutrophils. We also identified a strong signal, suggesting interaction between host gammadelta T cells and genes in the GAS mevalonic acid synthesis pathway responsible for production of isopentenyl-pyrophosphate, a short-chain phospholipid that stimulates these T cells. Taken together, our results are unique in providing a comprehensive understanding of the host-pathogen interactome during mucosal infection by a bacterial pathogen.
Ehret, Totta; Spork, Simone; Dieterich, Christoph; Lucius, Richard; Heitlinger, Emanuel
2017-09-05
Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing it to coevolve with its host.
de Steenhuijsen Piters, Wouter A A; Heinonen, Santtu; Hasrat, Raiza; Bunsow, Eleonora; Smith, Bennett; Suarez-Arrabal, Maria-Carmen; Chaussabel, Damien; Cohen, Daniel M; Sanders, Elisabeth A M; Ramilo, Octavio; Bogaert, Debby; Mejias, Asuncion
2016-11-01
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections and hospitalizations in infants worldwide. Known risk factors, however, incompletely explain the variability of RSV disease severity, especially among healthy children. We postulate that the severity of RSV infection is influenced by modulation of the host immune response by the local bacterial ecosystem. To assess whether specific nasopharyngeal microbiota (clusters) are associated with distinct host transcriptome profiles and disease severity in children less than 2 years of age with RSV infection. We characterized the nasopharyngeal microbiota profiles of young children with mild and severe RSV disease and healthy children by 16S-rRNA sequencing. In parallel, using multivariable models, we analyzed whole-blood transcriptome profiles to study the relationship between microbial community composition, the RSV-induced host transcriptional response, and clinical disease severity. We identified five nasopharyngeal microbiota clusters characterized by enrichment of either Haemophilus influenzae, Streptococcus, Corynebacterium, Moraxella, or Staphylococcus aureus. RSV infection and RSV hospitalization were positively associated with H. influenzae and Streptococcus and negatively associated with S. aureus abundance, independent of age. Children with RSV showed overexpression of IFN-related genes, independent of the microbiota cluster. In addition, transcriptome profiles of children with RSV infection and H. influenzae- and Streptococcus-dominated microbiota were characterized by greater overexpression of genes linked to Toll-like receptor and by neutrophil and macrophage activation and signaling. Our data suggest that interactions between RSV and nasopharyngeal microbiota might modulate the host immune response, potentially affecting clinical disease severity.
Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani.
Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin
2013-01-01
Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction.
Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita
2016-01-01
Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523
Todd, Shawn; Boyd, Victoria; Tachedjian, Mary; Klein, Reuben; Shiell, Brian; Dearnley, Megan; McAuley, Alexander J.; Woon, Amanda P.; Purcell, Anthony W.; Marsh, Glenn A.; Baker, Michelle L.
2017-01-01
ABSTRACT Ebolavirus and Marburgvirus comprise two genera of negative-sense single-stranded RNA viruses that cause severe hemorrhagic fevers in humans. Despite considerable research efforts, the molecular events following Ebola virus (EBOV) infection are poorly understood. With the view of identifying host factors that underpin EBOV pathogenesis, we compared the transcriptomes of EBOV-infected human, pig, and bat kidney cells using a transcriptome sequencing (RNA-seq) approach. Despite a significant difference in viral transcription/replication between the cell lines, all cells responded to EBOV infection through a robust induction of extracellular growth factors. Furthermore, a significant upregulation of activator protein 1 (AP1) transcription factor complex members FOS and JUN was observed in permissive cell lines. Functional studies focusing on human cells showed that EBOV infection induces protein expression, phosphorylation, and nuclear accumulation of JUN and, to a lesser degree, FOS. Using a luciferase-based reporter, we show that EBOV infection induces AP1 transactivation activity within human cells at 48 and 72 h postinfection. Finally, we show that JUN knockdown decreases the expression of EBOV-induced host gene expression. Taken together, our study highlights the role of AP1 in promoting the host gene expression profile that defines EBOV pathogenesis. IMPORTANCE Many questions remain about the molecular events that underpin filovirus pathophysiology. The rational design of new intervention strategies, such as postexposure therapeutics, will be significantly enhanced through an in-depth understanding of these molecular events. We believe that new insights into the molecular pathogenesis of EBOV may be possible by examining the transcriptomic response of taxonomically diverse cell lines (derived from human, pig, and bat). We first identified the responsive pathways using an RNA-seq-based transcriptomics approach. Further functional and computational analysis focusing on human cells highlighted an important role for the AP1 transcription factor in mediating the transcriptional response to EBOV infection. Our study sheds new light on how host transcription factors respond to and promote the transcriptional landscape that follows viral infection. PMID:28931675
Braden, Laura M; Sutherland, Ben J G; Koop, Ben F; Jones, Simon R M
2017-01-30
Outcomes of infections with the salmon louse Lepeophtheirus salmonis vary considerably among its natural hosts (Salmo, Oncorhynchus spp.). Host-parasite interactions range from weak to strong host responses accompanied by high to low parasite abundances, respectively. Parasite behavioral studies indicate that the louse prefers the host Atlantic Salmon (Salmo salar), which is characterized by a weak immune response, and that this results in enhanced parasite reproduction and growth rates. Furthermore, parasite-derived immunosuppressive molecules (e.g., proteases) have been detected at higher amounts in response to the mucus of Atlantic Salmon relative to Coho Salmon (Oncorhynchus kisutch). However, the host-specific responses of the salmon louse have not been well characterized in either of the genetically distinct sub-species that occur in the Atlantic and Pacific Oceans. We assessed and compared the transcriptomic feeding response of the Pacific salmon louse (L. salmonis oncorhynchi,) while parasitizing the highly susceptible Atlantic Salmon and Sockeye Salmon (Oncorhynchus nerka) or the more resistant Coho Salmon (Oncorhynchus kisutch) using a 38 K oligonucleotide microarray. The response of the louse was enhanced both in the number of overexpressed genes and in the magnitude of expression while feeding on the non-native Atlantic Salmon, compared to either Coho or Sockeye Salmon. For example, putative virulence factors (e.g., cathepsin L, trypsin, carboxypeptidase B), metabolic enzymes (e.g., cytochrome B, cytochrome C), protein synthesis enzymes (e.g., ribosomal protein P2, 60S ribosomal protein L7), and reproduction-related genes (e.g., estrogen sulfotransferase) were overexpressed in Atlantic-fed lice, indicating heightened parasite fitness with this host species. In contrast, responses in Coho- or Sockeye-fed lice were more similar to those of parasites deprived of a host. To test for host acclimation by the parasite, we performed a reciprocal host transfer experiment and determined that the exaggerated response to Atlantic Salmon was independent of the initial host species, confirming our conclusion that the Pacific salmon louse exhibits an enhanced response to Atlantic Salmon. This study characterized global transcriptomic responses of Pacific salmon lice during infection of susceptible and resistant hosts. Similar parasite responses during infection of Coho or Sockeye Salmon, despite differences in natural immunity to infection between these host species, indicate that host susceptibility status alone does not drive the parasite response. We identified an enhanced louse response after feeding on Atlantic Salmon, characterized by up-regulation of virulence factors, energy metabolism and reproductive-associated transcripts. In contrast, the responses of lice infecting Coho or Sockeye Salmon were weaker, with reduced expression of virulence factors. These observations indicate that the response of the louse is independent of host susceptibility and suggest that co-evolutionary host-parasite relationships may influence contemporary host-parasite interactions. This research improves our understanding of the susceptibility of Atlantic Salmon and may assist in the development of novel control measures against the salmon louse.
Yang, Huiying; Wang, Tong; Tian, Guang; Zhang, Qingwen; Wu, Xiaohong; Xin, Youqian; Yan, Yanfeng; Tan, Yafang; Cao, Shiyang; Liu, Wanbing; Cui, Yujun; Yang, Ruifu; Du, Zongmin
2017-01-01
Pneumonic plague is the most deadly form of infection caused by Yersinia pestis and can progress extremely fast. However, our understanding on the host transcriptomic response to pneumonic plague is insufficient. Here, we used RNA-sequencing technology to analyze transcriptomic responses in mice infected with fully virulent strain 201 or EV76, a live attenuated vaccine strain lacking the pigmentation locus. Approximately 600 differentially expressed genes (DEGs) were detected in lungs from both 201- and EV76-infected mice at 12h post-infection (hpi). DEGs in lungs of 201-infected mice exceeded 2000 at 48hpi, accompanied by sustained large numbers of DEGs in the liver and spleen; however, limited numbers of DEGs were detected in those organs of EV-infected mice. Remarkably, DEGs in lungs were significantly enriched in critical immune responses pathways in EV76-infected but not 201-infected mice, including antigen processing and presentation, T cell receptor signaling among others. Pathological and bacterial load analyses confirmed the rapid systemic dissemination of 201-infection and the confined EV76-infection in lungs. Our results suggest that fully virulent Y. pestis inhibits both the innate and adaptive immune responses that are substantially stimulated in a self-limited infection, which update our holistic views on the transcriptomic response to pneumonic plague. Copyright © 2016 Elsevier GmbH. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Infiltration of Erwinia amylovora (Ea) into host leaves induces an oxidative burst similar to that observed during incompatible reactions associated with Hypersensitive Response (HR). However, the subsequent progressive development of necrosis in apple and other hosts is unlike an incompatible reac...
Site-specific programming of the host epithelial transcriptome by the gut microbiota.
Sommer, Felix; Nookaew, Intawat; Sommer, Nina; Fogelstrand, Per; Bäckhed, Fredrik
2015-03-28
The intestinal epithelium separates us from the microbiota but also interacts with it and thus affects host immune status and physiology. Previous studies investigated microbiota-induced responses in the gut using intact tissues or unfractionated epithelial cells, thereby limiting conclusions about regional differences in the epithelium. Here, we sought to investigate microbiota-induced transcriptional responses in specific fractions of intestinal epithelial cells. To this end, we used microarray analysis of laser capture microdissection (LCM)-harvested ileal and colonic tip and crypt epithelial fractions from germ-free and conventionally raised mice and from mice during the time course of colonization. We found that about 10% of the host's transcriptome was microbially regulated, mainly including genes annotated with functions in immunity, cell proliferation, and metabolism. The microbial impact on host gene expression was highly site specific, as epithelial responses to the microbiota differed between cell fractions. Specific transcriptional regulators were enriched in each fraction. In general, the gut microbiota induced a more rapid response in the colon than in the ileum. Our study indicates that the microbiota engage different regulatory networks to alter host gene expression in a particular niche. Understanding host-microbiota interactions on a cellular level may facilitate signaling pathways that contribute to health and disease and thus provide new therapeutic strategies.
Transcriptomic Immune Response of Tenebrio molitor Pupae to Parasitization by Scleroderma guani
Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin
2013-01-01
Background Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. Methodology/Principal Findings In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. Conclusions/Significance obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction. PMID:23342153
Pierce, Erica J; Rey, M E Chrissie
2013-01-01
In susceptible plant hosts, co-evolution has favoured viral strategies to evade host defenses and utilize resources to their own benefit. The degree of manipulation of host gene expression is dependent on host-virus specificity and certain abiotic factors. In order to gain insight into global transcriptome changes for a geminivirus pathosystem, South African cassava mosaic virus [ZA:99] and Arabidopsis thaliana, 4×44K Agilent microarrays were adopted. After normalization, a log2 fold change filtering of data (p<0.05) identified 1,743 differentially expressed genes in apical leaf tissue. A significant increase in differential gene expression over time correlated with an increase in SACMV accumulation, as virus copies were 5-fold higher at 24 dpi and 6-fold higher at 36 dpi than at 14 dpi. Many altered transcripts were primarily involved in stress and defense responses, phytohormone signalling pathways, cellular transport, cell-cycle regulation, transcription, oxidation-reduction, and other metabolic processes. Only forty-one genes (2.3%) were shown to be continuously expressed across the infection period, indicating that the majority of genes were transient and unique to a particular time point during infection. A significant number of pathogen-responsive genes were suppressed during the late stages of pathogenesis, while during active systemic infection (14 to 24 dpi), there was an increase in up-regulated genes in several GO functional categories. An adaptive response was initiated to divert energy from growth-related processes to defense, leading to disruption of normal biological host processes. Similarities in cell-cycle regulation correlated between SACMV and Cabbage leaf curl virus (CaLCuV), but differences were also evident. Differences in gene expression between the two geminiviruses clearly demonstrated that, while some global transcriptome responses are generally common in plant virus infections, temporal host-specific interactions are required for successful geminivirus infection. To our knowledge this is the first geminivirus microarray study identifying global differentially expressed transcripts at 3 time points.
Pierce, Erica J.; Rey, M. E. Chrissie
2013-01-01
In susceptible plant hosts, co-evolution has favoured viral strategies to evade host defenses and utilize resources to their own benefit. The degree of manipulation of host gene expression is dependent on host-virus specificity and certain abiotic factors. In order to gain insight into global transcriptome changes for a geminivirus pathosystem, South African cassava mosaic virus [ZA:99] and Arabidopsis thaliana, 4×44K Agilent microarrays were adopted. After normalization, a log2 fold change filtering of data (p<0.05) identified 1,743 differentially expressed genes in apical leaf tissue. A significant increase in differential gene expression over time correlated with an increase in SACMV accumulation, as virus copies were 5-fold higher at 24 dpi and 6-fold higher at 36 dpi than at 14 dpi. Many altered transcripts were primarily involved in stress and defense responses, phytohormone signalling pathways, cellular transport, cell-cycle regulation, transcription, oxidation-reduction, and other metabolic processes. Only forty-one genes (2.3%) were shown to be continuously expressed across the infection period, indicating that the majority of genes were transient and unique to a particular time point during infection. A significant number of pathogen-responsive genes were suppressed during the late stages of pathogenesis, while during active systemic infection (14 to 24 dpi), there was an increase in up-regulated genes in several GO functional categories. An adaptive response was initiated to divert energy from growth-related processes to defense, leading to disruption of normal biological host processes. Similarities in cell-cycle regulation correlated between SACMV and Cabbage leaf curl virus (CaLCuV), but differences were also evident. Differences in gene expression between the two geminiviruses clearly demonstrated that, while some global transcriptome responses are generally common in plant virus infections, temporal host-specific interactions are required for successful geminivirus infection. To our knowledge this is the first geminivirus microarray study identifying global differentially expressed transcripts at 3 time points. PMID:23826319
Galbraith, David A.; Grozinger, Christina M.; Felton, Gary W.
2017-01-01
Generalist herbivores feed on a wide array of plants and need to adapt to varying host qualities and defenses. One of the first insect derived secretions to come in contact with the plant is the saliva. Insect saliva is potentially involved in both the pre-digestion of the host plant as well as induction/suppression of plant defenses, yet how the salivary glands respond to changes in host plant at the transcriptional level is largely unknown. The objective of this study was to determine how the labial salivary gland transcriptome varies according to the host plant on which the insect is feeding. In order to determine this, cabbage looper (Trichoplusia ni) larvae were reared on cabbage, tomato, and pinto bean artificial diet. Labial glands were dissected from fifth instar larvae and used to extract RNA for RNASeq analysis. Assembly of the resulting sequencing reads resulted in a transcriptome library for T. ni salivary glands consisting of 14,037 expressed genes. Feeding on different host plant diets resulted in substantial remodeling of the gland transcriptomes, with 4,501 transcripts significantly differentially expressed across the three treatment groups. Gene expression profiles were most similar between cabbage and artificial diet, which corresponded to the two diets on which larvae perform best. Expression of several transcripts involved in detoxification processes were differentially expressed, and transcripts involved in the spliceosome pathway were significantly downregulated in tomato-reared larvae. Overall, this study demonstrates that the transcriptomes of the salivary glands of the cabbage looper are strongly responsive to diet. It also provides a foundation for future functional studies that can help us understand the role of saliva of chewing insects in plant-herbivore interactions. PMID:28792546
Polinski, Mark P; Bradshaw, Julia C; Inkpen, Sabrina M; Richard, Jon; Fritsvold, Camilla; Poppe, Trygve T; Rise, Matthew L; Garver, Kyle A; Johnson, Stewart C
2016-11-02
Piscine reovirus (PRV) has been associated with the serious disease known as Heart and Skeletal Muscle Inflammation (HSMI) in cultured Atlantic salmon Salmo salar in Norway. PRV is also prevalent in wild and farmed salmon without overt disease manifestations, suggesting multifactorial triggers or PRV variant-specific factors are required to initiate disease. In this study, we explore the head kidney transcriptome of Sockeye salmon Oncorhynchus nerka during early PRV infection to identify host responses in the absence of disease in hopes of elucidating mechanisms by which PRV may directly alter host functions and contribute to the development of a disease state. We further investigate the role of PRV as a coinfecting agent following superinfection with infectious hematopoietic necrosis virus (IHNV) - a highly pathogenic rhabdovirus endemic to the west coast of North America. Challenge of Sockeye salmon with PRV resulted in high quantities of viral transcripts to become present in the blood and kidney of infected fish without manifestations of disease. De novo transcriptome assembly of over 2.3 billion paired RNA-seq reads from the head kidneys of 36 fish identified more than 320,000 putative unigenes, of which less than 20 were suggested to be differentially expressed in response to PRV at either 2 or 3 weeks post challenge by DESeq2 and edgeR analysis. Of these, only one, Ependymin, was confirmed to be differentially expressed by qPCR in an expanded sample set. In contrast, IHNV induced substantial transcriptional changes (differential expression of > 20,000 unigenes) which included transcripts involved in antiviral and inflammatory response pathways. Prior infection with PRV had no significant effect on host responses to superinfecting IHNV, nor did host responses initiated by IHNV exposure influence increasing PRV loads. PRV does not substantially alter the head kidney transcriptome of Sockeye salmon during early (2 to 3 week) infection and dissemination in a period of significant increasing viral load, nor does the presence of PRV change the host transcriptional response to an IHNV superinfection. Further, concurrent infections of PRV and IHNV do not appear to significantly influence the infectivity or severity of IHNV associated disease, or conversely, PRV load.
Juranic Lisnic, Vanda; Babic Cac, Marina; Lisnic, Berislav; Trsan, Tihana; Mefferd, Adam; Das Mukhopadhyay, Chitrangada; Cook, Charles H.; Jonjic, Stipan; Trgovcich, Joanne
2013-01-01
Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq). We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus-associated diseases. PMID:24086132
Transcriptome profiling during a natural host-parasite interaction.
McTaggart, Seanna J; Cézard, Timothée; Garbutt, Jennie S; Wilson, Phil J; Little, Tom J
2015-08-28
Infection outcome in some coevolving host-pathogens is characterised by host-pathogen genetic interactions, where particular host genotypes are susceptible only to a subset of pathogen genotypes. To identify candidate genes responsible for the infection status of the host, we exposed a Daphnia magna host genotype to two bacterial strains of Pasteuria ramosa, one of which results in infection, while the other does not. At three time points (four, eight and 12 h) post pathogen exposure, we sequenced the complete transcriptome of the hosts using RNA-Seq (Illumina). We observed a rapid and transient response to pathogen treatment. Specifically, at the four-hour time point, eight genes were differentially expressed. At the eight-hour time point, a single gene was differentially expressed in the resistant combination only, and no genes were differentially expressed at the 12-h time point. We found that pathogen-associated transcriptional activity is greatest soon after exposure. Genome-wide resistant combinations were more likely to show upregulation of genes, while susceptible combinations were more likely to be downregulated, relative to controls. Our results also provide several novel candidate genes that may play a pivotal role in determining infection outcomes.
Bost, Alyssa; Franzenburg, Soeren; Adair, Karen L; Martinson, Vincent G; Loeb, Greg; Douglas, Angela E
2018-04-01
Despite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota-responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions. Wild Drosophila from six field collections made over two years had gut bacterial communities of diverse composition, dominated to varying extents by Acetobacteraceae and Enterobacteriaceae. The gut transcriptomes also varied among collections and differed markedly from those of laboratory flies. However, no overall relationship between variation in the wild fly transcriptome and taxonomic composition of the gut microbiota was evident at all taxonomic scales of bacteria tested for both individual fly genes and functional categories in Gene Ontology. We conclude that the interaction between microbiota composition and host functional traits may be confounded by uncontrolled variation in both ecological circumstance and host traits (e.g., genotype, age physiological condition) under natural conditions, and that microbiota effects on host traits identified in the laboratory should, therefore, be extrapolated to field population with great caution. © 2017 John Wiley & Sons Ltd.
An integrated genomic and transcriptomic survey of mucormycosis-causing fungi
Chibucos, Marcus C.; Soliman, Sameh; Gebremariam, Teclegiorgis; Lee, Hongkyu; Daugherty, Sean; Orvis, Joshua; Shetty, Amol C.; Crabtree, Jonathan; Hazen, Tracy H.; Etienne, Kizee A.; Kumari, Priti; O'Connor, Timothy D.; Rasko, David A.; Filler, Scott G.; Fraser, Claire M.; Lockhart, Shawn R.; Skory, Christopher D.; Ibrahim, Ashraf S.; Bruno, Vincent M.
2016-01-01
Mucormycosis is a life-threatening infection caused by Mucorales fungi. Here we sequence 30 fungal genomes, and perform transcriptomics with three representative Rhizopus and Mucor strains and with human airway epithelial cells during fungal invasion, to reveal key host and fungal determinants contributing to pathogenesis. Analysis of the host transcriptional response to Mucorales reveals platelet-derived growth factor receptor B (PDGFRB) signaling as part of a core response to divergent pathogenic fungi; inhibition of PDGFRB reduces Mucorales-induced damage to host cells. The unique presence of CotH invasins in all invasive Mucorales, and the correlation between CotH gene copy number and clinical prevalence, are consistent with an important role for these proteins in mucormycosis pathogenesis. Our work provides insight into the evolution of this medically and economically important group of fungi, and identifies several molecular pathways that might be exploited as potential therapeutic targets. PMID:27447865
Bartonella quintana Deploys Host and Vector Temperature-Specific Transcriptomes
Previte, Domenic; Yoon, Kyong S.; Clark, J. Marshall; DeRisi, Joseph L.; Koehler, Jane E.
2013-01-01
The bacterial pathogen Bartonella quintana is passed between humans by body lice. B. quintana has adapted to both the human host and body louse vector niches, producing persistent infection with high titer bacterial loads in both the host (up to 105 colony-forming units [CFU]/ml) and vector (more than 108 CFU/ml). Using a novel custom microarray platform, we analyzed bacterial transcription at temperatures corresponding to the host (37°C) and vector (28°C), to probe for temperature-specific and growth phase-specific transcriptomes. We observed that transcription of 7% (93 genes) of the B. quintana genome is modified in response to change in growth phase, and that 5% (68 genes) of the genome is temperature-responsive. Among these transcriptional changes in response to temperature shift and growth phase was the induction of known B. quintana virulence genes and several previously unannotated genes. Hemin binding proteins, secretion systems, response regulators, and genes for invasion and cell attachment were prominent among the differentially-regulated B. quintana genes. This study represents the first analysis of global transcriptional responses by B. quintana. In addition, the in vivo experiments provide novel insight into the B. quintana transcriptional program within the body louse environment. These data and approaches will facilitate study of the adaptation mechanisms employed by Bartonella during the transition between human host and arthropod vector. PMID:23554923
The transcriptomic profiles of Giardia duodenalis infected calves
USDA-ARS?s Scientific Manuscript database
Giardia duodenalis is one of the most commonly found intestinal pathogens in humans and animals. However, little is known about the host-parasite interaction in its natural hosts. The objective of this study was to investigate the intestinal response in calves following a G. duodenalis infection, us...
Blomström, Anne-Lie; Gu, Quan; Barry, Gerald; Wilkie, Gavin; Skelton, Jessica K; Baird, Margaret; McFarlane, Melanie; Schnettler, Esther; Elliott, Richard M; Palmarini, Massimo; Kohl, Alain
2015-04-19
Schmallenberg virus (SBV) is a member of the Orthobunyavirus genus (Bunyaviridae family) causing malformations and abortions in ruminants. Although, as for other members of this family/genus, the non-structural protein NSs has been shown to be an interferon antagonist, very little is known regarding the overall inhibitory effects and targets of orthobunyavirus NSs proteins on host gene expression during infection. Therefore, using RNA-seq this study describes changes to the transcriptome of primary bovine cells following infection with Schmallenberg virus (SBV) or with a mutant lacking the non-structural protein NSs (SBVdelNSs) providing a detailed comparison of the effect of NSs expression on the host cell. The sequence reads from all samples (uninfected cells, SBV and SBVdelNSs) assembled well to the bovine host reference genome (on average 87.43% of the reads). During infection with SBVdelNSs, 649 genes were differentially expressed compared to uninfected cells (78.7% upregulated) and many of these were known antiviral and IFN-stimulated genes. On the other hand, only nine genes were differentially expressed in SBV infected cells compared to uninfected control cells, demonstrating the strong inhibitory effect of NSs on cellular gene expression. However, the majority of the genes that were expressed during SBV infection are involved in restriction of viral replication and spread indicating that SBV does not completely manage to shutdown the host antiviral response. In this study we show the effects of SBV NSs on the transcriptome of infected cells as well as the cellular response to wild type SBV. Although NSs is very efficient in shutting down genes of the host innate response, a number of possible antiviral factors were identified. Thus the data from this study can serve as a base for more detailed mechanistic studies of SBV and other orthobunyaviruses.
Host Transcriptional Response to Ebola Virus Infection
Speranza, Emily; Connor, John H
2017-01-01
Ebola virus disease (EVD) is a serious illness that causes severe disease in humans and non-human primates (NHPs) and has mortality rates up to 90%. EVD is caused by the Ebolavirus and currently there are no licensed therapeutics or vaccines to treat EVD. Due to its high mortality rates and potential as a bioterrorist weapon, a better understanding of the disease is of high priority. Multiparametric analysis techniques allow for a more complete understanding of a disease and the host response. Analysis of RNA species present in a sample can lead to a greater understanding of activation or suppression of different states of the immune response. Transcriptomic analyses such as microarrays and RNA-Sequencing (RNA-Seq) have been important tools to better understand the global gene expression response to EVD. In this review, we outline the current knowledge gained by transcriptomic analysis of EVD. PMID:28930167
Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto
2014-01-01
Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire “coral holobiont”. We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral symbioses and stress responses. PMID:24454815
Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto
2014-01-01
Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire "coral holobiont". We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral symbioses and stress responses.
Oshota, Olusegun; Fookes, Maria; Schreiber, Fernanda; Chaudhuri, Roy R.; Yu, Lu; Clare, Simon; Choudhary, Jyoti; Thomson, Nicholas R.; Lio, Pietro
2017-01-01
Salmonella enterica are a threat to public health. Current vaccines are not fully effective. The ability to grow in infected tissues within phagocytes is required for S. enterica virulence in systemic disease. As the infection progresses the bacteria are exposed to a complex host immune response. Consequently, in order to continue growing in the tissues, S. enterica requires the coordinated regulation of fitness genes. Bacterial gene regulation has so far been investigated largely using exposure to artificial environmental conditions or to in vitro cultured cells, and little information is available on how S. enterica adapts in vivo to sustain cell division and survival. We have studied the transcriptome, proteome and metabolic flux of Salmonella, and the transcriptome of the host during infection of wild type C57BL/6 and immune-deficient gp91-/-phox mice. Our analyses advance the understanding of how S. enterica and the host behaves during infection to a more sophisticated level than has previously been reported. PMID:28796780
Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens.
Doublet, Vincent; Poeschl, Yvonne; Gogol-Döring, Andreas; Alaux, Cédric; Annoscia, Desiderato; Aurori, Christian; Barribeau, Seth M; Bedoya-Reina, Oscar C; Brown, Mark J F; Bull, James C; Flenniken, Michelle L; Galbraith, David A; Genersch, Elke; Gisder, Sebastian; Grosse, Ivo; Holt, Holly L; Hultmark, Dan; Lattorff, H Michael G; Le Conte, Yves; Manfredini, Fabio; McMahon, Dino P; Moritz, Robin F A; Nazzi, Francesco; Niño, Elina L; Nowick, Katja; van Rij, Ronald P; Paxton, Robert J; Grozinger, Christina M
2017-03-02
Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.
Li, Robert W; Choudhary, Ratan K; Capuco, Anthony V; Urban, Joseph F
2012-11-23
Nematode infections in ruminants are a major impediment to the profitable production of meat and dairy products, especially for small farms. Gastrointestinal parasitism not only negatively impacts weight gain and milk yield, but is also a major cause of mortality in small ruminants. The current parasite control strategy involves heavy use of anthelmintics that has resulted in the emergence of drug-resistant parasite strains. This, in addition to increasing consumer demand for animal products that are free of drug residues has stimulated development of alternative strategies, including selective breeding of parasite resistant ruminants. The development of protective immunity and manifestations of resistance to nematode infections relies upon the precise expression of the host genome that is often confounded by mechanisms simultaneously required to control multiple nematode species as well as ecto- and protozoan parasites, and microbial and viral pathogens. Understanding the molecular mechanisms underlying these processes represents a key step toward development of effective new parasite control strategies. Recent progress in characterizing the transcriptome of both hosts and parasites, utilizing high-throughput microarrays and RNA-seq technology, has led to the recognition of unique interactions and the identification of genes and biological pathways involved in the response to parasitism. Innovative use of the knowledge gained by these technologies should provide a basis for enhancing innate immunity while limiting the polarization of acquired immunity can negatively affect optimal responses to co-infection. Strategies for parasite control that use diet and vaccine/adjuvant combination could be evaluated by monitoring the host transcriptome for induction of appropriate mechanisms for imparting parasite resistance. Knowledge of different mechanisms of host immunity and the critical regulation of parasite development, physiology, and virulence can also selectively identify targets for parasite control. Comparative transcriptome analysis, in concert with genome-wide association (GWS) studies to identify quantitative trait loci (QTLs) affecting host resistance, represents a promising molecular technology to evaluate integrated control strategies that involve breed and environmental factors that contribute to parasite resistance and improved performance. Tailoring these factors to control parasitism without severely affecting production qualities, management efficiencies, and responses to pathogenic co-infection will remain a challenge. This review summarizes recent progress and limitations of understanding regulatory genetic networks and biological pathways that affect host resistance and susceptibility to nematode infection in ruminants. Published by Elsevier B.V.
Comer, Jason E; Sturdevant, Daniel E; Carmody, Aaron B; Virtaneva, Kimmo; Gardner, Donald; Long, Dan; Rosenke, Rebecca; Porcella, Stephen F; Hinnebusch, B Joseph
2010-12-01
A delayed inflammatory response is a prominent feature of infection with Yersinia pestis, the agent of bubonic and pneumonic plague. Using a rat model of bubonic plague, we examined lymph node histopathology, transcriptome, and extracellular cytokine levels to broadly characterize the kinetics and extent of the host response to Y. pestis and how it is influenced by the Yersinia virulence plasmid (pYV). Remarkably, dissemination and multiplication of wild-type Y. pestis during the bubonic stage of disease did not induce any detectable gene expression or cytokine response by host lymph node cells in the developing bubo. Only after systemic spread had led to terminal septicemic plague was a transcriptomic response detected, which included upregulation of several cytokine, chemokine, and other immune response genes. Although an initial intracellular phase of Y. pestis infection has been postulated, a Th1-type cytokine response associated with classical activation of macrophages was not observed during the bubonic stage of disease. However, elevated levels of interleukin-17 (IL-17) were present in infected lymph nodes. In the absence of pYV, sustained recruitment to the lymph node of polymorphonuclear leukocytes (PMN, or neutrophils), the major IL-17 effector cells, correlated with clearance of infection. Thus, the ability to counteract a PMN response in the lymph node appears to be a major in vivo function of the Y. pestis virulence plasmid.
Transcriptomic changes in an animal-bacterial symbiosis under modeled microgravity conditions
Casaburi, Giorgio; Goncharenko-Foster, Irina; Duscher, Alexandrea A.; Foster, Jamie S.
2017-01-01
Spaceflight imposes numerous adaptive challenges for terrestrial life. The reduction in gravity, or microgravity, represents a novel environment that can disrupt homeostasis of many physiological processes. Additionally, it is becoming increasingly clear that an organism’s microbiome is critical for host health and examining its resiliency in microgravity represents a new frontier for space biology research. In this study, we examine the impact of microgravity on the interactions between the squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri, which form a highly specific binary mutualism. First, animals inoculated with V. fischeri aboard the space shuttle showed effective colonization of the host light organ, the site of the symbiosis, during space flight. Second, RNA-Seq analysis of squid exposed to modeled microgravity conditions exhibited extensive differential gene expression in the presence and absence of the symbiotic partner. Transcriptomic analyses revealed in the absence of the symbiont during modeled microgravity there was an enrichment of genes and pathways associated with the innate immune and oxidative stress response. The results suggest that V. fischeri may help modulate the host stress responses under modeled microgravity. This study provides a window into the adaptive responses that the host animal and its symbiont use during modeled microgravity. PMID:28393904
The duck genome and transcriptome provide insight into an avian influenza virus reservoir species
Chen, Hualan; Zhang, Yong; Qian, Wubin; Kim, Heebal; Gan, Shangquan; Zhao, Yiqiang; Li, Jianwen; Yi, Kang; Feng, Huapeng; Zhu, Pengyang; Li, Bo; Liu, Qiuyue; Fairley, Suan; Magor, Katharine E; Du, Zhenlin; Hu, Xiaoxiang; Goodman, Laurie; Tafer, Hakim; Vignal, Alain; Lee, Taeheon; Kim, Kyu-Won; Sheng, Zheya; An, Yang; Searle, Steve; Herrero, Javier; Groenen, Martien A M; Crooijmans, Richard P M A; Faraut, Thomas; Cai, Qingle; Webster, Robert G; Aldridge, Jerry R; Warren, Wesley C; Bartschat, Sebastian; Kehr, Stephanie; Marz, Manja; Stadler, Peter F; Smith, Jacqueline; Kraus, Robert H S; Zhao, Yaofeng; Ren, Liming; Fei, Jing; Morisson, Mireille; Kaiser, Pete; Griffin, Darren K; Rao, Man; Pitel, Frederique; Wang, Jun; Li, Ning
2014-01-01
The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the duck’s defense mechanisms against influenza infection have been optimized through the diversification of its β-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses. PMID:23749191
Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D
2016-11-03
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.
Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.
2016-01-01
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111
Davy, Christina M; Donaldson, Michael E; Willis, Craig K R; Saville, Barry J; McGuire, Liam P; Mayberry, Heather; Wilcox, Alana; Wibbelt, Gudrun; Misra, Vikram; Bollinger, Trent; Kyle, Christopher J
2017-09-01
Mitigation of emerging infectious diseases that threaten global biodiversity requires an understanding of critical host and pathogen responses to infection. For multihost pathogens where pathogen virulence or host susceptibility is variable, host-pathogen interactions in tolerant species may identify potential avenues for adaptive evolution in recently exposed, susceptible hosts. For example, the fungus Pseudogymnoascus destructans causes white-nose syndrome (WNS) in hibernating bats and is responsible for catastrophic declines in some species in North America, where it was recently introduced. Bats in Europe and Asia, where the pathogen is endemic, are only mildly affected. Different environmental conditions among Nearctic and Palearctic hibernacula have been proposed as an explanation for variable disease outcomes, but this hypothesis has not been experimentally tested. We report the first controlled, experimental investigation of response to P. destructans in a tolerant, European species of bat (the greater mouse-eared bat, Myotis myotis ). We compared body condition, disease outcomes and gene expression in control (sham-exposed) and exposed M. myotis that hibernated under controlled environmental conditions following treatment. Tolerant M. myotis experienced extremely limited fungal growth and did not exhibit symptoms of WNS. However, we detected no differential expression of genes associated with immune response in exposed bats, indicating that immune response does not drive tolerance of P. destructans in late hibernation. Variable responses to P. destructans among bat species cannot be attributed solely to environmental or ecological factors. Instead, our results implicate coevolution with the pathogen, and highlight the dynamic nature of the "white-nose syndrome transcriptome." Interspecific variation in response to exposure by the host (and possibly pathogen) emphasizes the importance of context in studies of the bat-WNS system, and robust characterization of genetic responses to exposure in various hosts and the pathogen should precede any attempts to use particular bat species as generalizable "model hosts."
Evangelisti, Edouard; Gogleva, Anna; Hainaux, Thomas; Doumane, Mehdi; Tulin, Frej; Quan, Clément; Yunusov, Temur; Floch, Kévin; Schornack, Sebastian
2017-05-11
Plant-pathogenic oomycetes are responsible for economically important losses in crops worldwide. Phytophthora palmivora, a tropical relative of the potato late blight pathogen, causes rotting diseases in many tropical crops including papaya, cocoa, oil palm, black pepper, rubber, coconut, durian, mango, cassava and citrus. Transcriptomics have helped to identify repertoires of host-translocated microbial effector proteins which counteract defenses and reprogram the host in support of infection. As such, these studies have helped in understanding how pathogens cause diseases. Despite the importance of P. palmivora diseases, genetic resources to allow for disease resistance breeding and identification of microbial effectors are scarce. We employed the model plant Nicotiana benthamiana to study the P. palmivora root infections at the cellular and molecular levels. Time-resolved dual transcriptomics revealed different pathogen and host transcriptome dynamics. De novo assembly of P. palmivora transcriptome and semi-automated prediction and annotation of the secretome enabled robust identification of conserved infection-promoting effectors. We show that one of them, REX3, suppresses plant secretion processes. In a survey for early transcriptionally activated plant genes we identified a N. benthamiana gene specifically induced at infected root tips that encodes a peptide with danger-associated molecular features. These results constitute a major advance in our understanding of P. palmivora diseases and establish extensive resources for P. palmivora pathogenomics, effector-aided resistance breeding and the generation of induced resistance to Phytophthora root infections. Furthermore, our approach to find infection-relevant secreted genes is transferable to other pathogen-host interactions and not restricted to plants.
Josset, Laurence; Menachery, Vineet D; Gralinski, Lisa E; Agnihothram, Sudhakar; Sova, Pavel; Carter, Victoria S; Yount, Boyd L; Graham, Rachel L; Baric, Ralph S; Katze, Michael G
2013-04-30
A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce similar or distinct host responses after infection of a human lung epithelial cell line. HCoV-EMC was able to replicate as efficiently as SARS-CoV in Calu-3 cells and similarly induced minimal transcriptomic changes before 12 h postinfection. Later in infection, HCoV-EMC induced a massive dysregulation of the host transcriptome, to a much greater extent than SARS-CoV. Both viruses induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17) pathway, but HCoV-EMC specifically down-regulated the expression of several genes within the antigen presentation pathway, including both type I and II major histocompatibility complex (MHC) genes. This could have an important impact on the ability of the host to mount an adaptive host response. A unique set of 207 genes was dysregulated early and permanently throughout infection with HCoV-EMC, and was used in a computational screen to predict potential antiviral compounds, including kinase inhibitors and glucocorticoids. Overall, HCoV-EMC and SARS-CoV elicit distinct host gene expression responses, which might impact in vivo pathogenesis and could orient therapeutic strategies against that emergent virus. Identification of a novel coronavirus causing fatal respiratory infection in humans raises concerns about a possible widespread outbreak of severe respiratory infection similar to the one caused by SARS-CoV. Using a human lung epithelial cell line and global transcriptomic profiling, we identified differences in the host response between HCoV-EMC and SARS-CoV. This enables rapid assessment of viral properties and the ability to anticipate possible differences in human clinical responses to HCoV-EMC and SARS-CoV. We used this information to predict potential effective drugs against HCoV-EMC, a method that could be more generally used to identify candidate therapeutics in future disease outbreaks. These data will help to generate hypotheses and make rapid advancements in characterizing this new virus.
Martin, Kathleen; Singh, Jugpreet; Hill, John H; Whitham, Steven A; Cannon, Steven B
2016-08-11
Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. The molecular responses in Phaseolus to BCMV infection have not yet been well characterized. We report the transcriptional responses of a widely susceptible variety of common bean (Phaseolus vulgaris L., cultivar 'Stringless green refugee') to two BCMV strains, in a time-course experiment. We also report the genome sequence of a previously unreported BCMV strain. The interaction with the known strain NL1-Iowa causes moderate symptoms and large transcriptional responses, and the newly identified strain (Strain 2 or S2) causes severe symptoms and moderate transcriptional responses. The transcriptional profiles of host plants infected with the two isolates are distinct, and involve numerous differences in splice forms in particular genes, and pathway specific expression patterns. We identified differential host transcriptome response after infection of two different strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.). Virus infection initiated a suite of changes in gene expression level and patterns in the host plants. Pathways related to defense, gene regulation, metabolic processes, photosynthesis were specifically altered after virus infection. Results presented in this study can increase the understanding of host-pathogen interactions and provide resources for further investigations of the biological mechanisms in BCMV infection and defense.
Enguita, Francisco J.; Costa, Marina C.; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José; Leitão, Ana Lúcia
2016-01-01
Fungal invasive infections are an increasing health problem. The intrinsic complexity of pathogenic fungi and the unmet clinical need for new and more effective treatments requires a detailed knowledge of the infection process. During infection, fungal pathogens are able to trigger a specific transcriptional program in their host cells. The detailed knowledge of this transcriptional program will allow for a better understanding of the infection process and consequently will help in the future design of more efficient therapeutic strategies. Simultaneous transcriptomic studies of pathogen and host by high-throughput sequencing (dual RNA-seq) is an unbiased protocol to understand the intricate regulatory networks underlying the infectious process. This protocol is starting to be applied to the study of the interactions between fungal pathogens and their hosts. To date, our knowledge of the molecular basis of infection for fungal pathogens is still very limited, and the putative role of regulatory players such as non-coding RNAs or epigenetic factors remains elusive. The wider application of high-throughput transcriptomics in the near future will help to understand the fungal mechanisms for colonization and survival, as well as to characterize the molecular responses of the host cell against a fungal infection. PMID:29376924
Fernandes, Maria Cecilia; Dillon, Laura A. L.; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M.
2016-01-01
ABSTRACT Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. PMID:27165796
Maldonado-Aguayo, W; Gallardo-Escárate, C
2014-06-01
Serine protease inhibitors, or serpins, target serine proteases, and are important regulators of intra- and extracellular proteolysis. For parasite survival, parasite-derived protease inhibitors have been suggested to play essential roles in evading the host's immune system and protecting against exogenous host proteases. The aim of this work was to identify serpins via high throughput transcriptome sequencing and elucidate their potential functions during the lifecycle of the salmon louse Caligus rogercresseyi. Eleven putative, partial serpin sequences in the C. rogercresseyi transcriptome were identified and denoted as Cr-serpins 1 to 11. Comparative analysis of the deduced serpin-like amino acid sequences revealed a highly conserved reactive center loop region. Interestingly, P1 residues suggest putative functions involved with the trypsin/subtilisin, elastase, or subtilisin inhibitors, which evidenced increasing gene expression profiles from the copepodid to adult stage in C. rogercresseyi. Concerning this, Cr-serpin 10 was mainly expressed in the copepodid stage, while Cr-serpins 3, 4, 5, and 11 were mostly expressed in chalimus and adult stages. These results suggest that serpins could be involved in evading the immune response of the host fish. The identification of these serpins furthers the understanding of the immune system in this important ectoparasite species. Copyright © 2014 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Modulating the host response is a promising approach to treating influenza, a virus whose pathogenesis is determined in part by the host response it elicits. Though the pathogenicity of emerging H7N9 influenza virus has been reported in several animal models, these studies have not included a detai...
Xia, Changjian; Li, Shifang; Hou, Wanying; Fan, Zaifeng; Xiao, Hong; Lu, Meiguang; Sano, Teruo; Zhang, Zhixiang
2017-01-01
Fifteen years after transfer to hops, hop stunt viroid-grapevine (HSVd-g) was replaced by HSVd-hop (HSVd-h), a sequence variant that contains changes at five different positions. HSVd-g54 is a laboratory mutant derived from HSVd-g that differs from its progenitor by a single G to A substitution at position 54. While infection by HSVd-h induces only mild stunting in cucumber ( Cucumis sativus L.), HSVd-g54 induces much more severe symptoms in this indicator host. Comparison of transcriptome profiles of cucumber infected with HSVd-h or HSVd-g54 with those of mock-inoculated controls obtained by whole transcriptome shotgun sequencing revealed that many genes related to photosynthesis were down-regulated following infection. In contrast, genes encoding RNA-dependent RNA polymerase 1 ( CsRDR1 ), especially CsRDR1c1 and CsRDR1c2 , as well as those related to basal defense responses were up-regulated. Expression of genes associated with phytohormone signaling pathways were also altered, indicating that viroid infection initiates a complex array of changes in the host transcriptome. HSVd-g54 induced an earlier and stronger response than HSVd-h, and further examination of these differences will contribute to a better understanding of the mechanisms that determine viroid pathogenicity.
Pas de deux: An Intricate Dance of Anther Smut and Its Host.
San Toh, Su; Chen, Zehua; Rouchka, Eric C; Schultz, David J; Cuomo, Christina A; Perlin, Michael H
2018-02-02
The successful interaction between pathogen/parasite and host requires a delicate balance between fitness of the former and survival of the latter. To optimize fitness a parasite/pathogen must effectively create an environment conducive to reproductive success, while simultaneously avoiding or minimizing detrimental host defense response. The association between Microbotryum lychnidis-dioicae and its host Silene latifolia serves as an excellent model to examine such interactions. This fungus is part of a species complex that infects species of the Caryophyllaceae, replacing pollen with the fungal spores. In the current study, transcriptome analyses of the fungus and its host were conducted during discrete stages of bud development so as to identify changes in fungal gene expression that lead to spore development and to identify changes associated with infection in the host plant. In contrast to early biotrophic phase stages of infection for the fungus, the latter stages involve tissue necrosis and in the case of infected female flowers, further changes in the developmental program in which the ovary aborts and a pseudoanther is produced. Transcriptome analysis via Illumina RNA sequencing revealed enrichment of fungal genes encoding small secreted proteins, with hallmarks of effectors and genes found to be relatively unique to the Microbotryum species complex. Host gene expression analyses also identified interesting sets of genes up-regulated, including those involving stress response, host defense response, and several agamous-like MADS-box genes (AGL61 and AGL80), predicted to interact and be involved in male gametophyte development. Copyright © 2018 Toh et al.
Virtaneva, Kimmo; Porcella, Stephen F; Graham, Morag R; Ireland, Robin M; Johnson, Claire A; Ricklefs, Stacy M; Babar, Imran; Parkins, Larye D; Romero, Romina A; Corn, G Judson; Gardner, Don J; Bailey, John R; Parnell, Michael J; Musser, James M
2005-06-21
Identification of the genetic events that contribute to host-pathogen interactions is important for understanding the natural history of infectious diseases and developing therapeutics. Transcriptome studies conducted on pathogens have been central to this goal in recent years. However, most of these investigations have focused on specific end points or disease phases, rather than analysis of the entire time course of infection. To gain a more complete understanding of how bacterial gene expression changes over time in a primate host, the transcriptome of group A Streptococcus (GAS) was analyzed during an 86-day infection protocol in 20 cynomolgus macaques with experimental pharyngitis. The study used 260 custom Affymetrix (Santa Clara, CA) chips, and data were confirmed by TaqMan analysis. Colonization, acute, and asymptomatic phases of disease were identified. Successful colonization and severe inflammation were significantly correlated with an early onset of superantigen gene expression. The differential expression of two-component regulators covR and spy0680 (M1_spy0874) was significantly associated with GAS colony-forming units, inflammation, and phases of disease. Prophage virulence gene expression and prophage induction occurred predominantly during high pathogen cell densities and acute inflammation. We discovered that temporal changes in the GAS transcriptome were integrally linked to the phase of clinical disease and host-defense response. Knowledge of the gene expression patterns characterizing each phase of pathogen-host interaction provides avenues for targeted investigation of proven and putative virulence factors and genes of unknown function and will assist vaccine research.
Sun, H.; Liu, P.; Nolan, L. K.; Lamont, S. J.
2016-01-01
Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus. PMID:27466434
Scheerlinck, Jean-Pierre; Ansell, Brendan R. E.; Hall, Ross S.; Gasser, Robin B.; Jex, Aaron R.
2016-01-01
Fasciola hepatica is a parasitic trematode that infects a wide range of mammalian hosts, including livestock and humans, in temperate and tropical regions globally. This trematode causes the disease fascioliasis, which consists of an acute phase (≤ 12 weeks) during which juvenile parasites migrate through the host liver tissues, and a chronic phase (> 12 weeks) following the establishment of adult parasites in the liver bile ducts. Few studies have explored the progression of the host response over the course of Fasciola infection in the same animals. In this study, we characterized transcriptomic changes in peripheral blood mononuclear cells (PBMCs) collected from sheep at three time points over the first eight weeks of infection relative to uninfected controls. In total, 183 and 76 genes were found to be differentially transcribed at two and eight weeks post-infection respectively. Functional and pathway analysis of differentially transcribed genes revealed changes related to T-cell activation that may underpin a Th2-biased immune response against this parasite. This first insight into the dynamics of host responses during the early stages of infection improves the understanding of the pathogenesis of acute fascioliasis, informs vaccine development and presents a set of PBMC markers with diagnostic potential. PMID:27438474
Tan, Chee K.; Carey, Alison J.; Cui, Xiangqin; Webb, Richard I.; Ipe, Deepak; Crowley, Michael; Cripps, Allan W.; Benjamin, William H.; Ulett, Kimberly B.; Schembri, Mark A.
2012-01-01
The most common causes of urinary tract infections (UTIs) are Gram-negative pathogens such as Escherichia coli; however, Gram-positive organisms, including Streptococcus agalactiae, or group B streptococcus (GBS), also cause UTI. In GBS infection, UTI progresses to cystitis once the bacteria colonize the bladder, but the host responses triggered in the bladder immediately following infection are largely unknown. Here, we used genome-wide expression profiling to map the bladder transcriptome of GBS UTI in mice infected transurethrally with uropathogenic GBS that was cultured from a 35-year-old women with cystitis. RNA from bladders was applied to Affymetrix Gene-1.0ST microarrays; quantitative reverse transcriptase PCR (qRT-PCR) was used to analyze selected gene responses identified in array data sets. A surprisingly small significant-gene list of 172 genes was identified at 24 h; this compared to 2,507 genes identified in a side-by-side comparison with uropathogenic E. coli (UPEC). No genes exhibited significantly altered expression at 2 h in GBS-infected mice according to arrays despite high bladder bacterial loads at this early time point. The absence of a marked early host response to GBS juxtaposed with broad-based bladder responses activated by UPEC at 2 h. Bioinformatics analyses, including integrative system-level network mapping, revealed multiple activated biological pathways in the GBS bladder transcriptome that regulate leukocyte activation, inflammation, apoptosis, and cytokine-chemokine biosynthesis. These findings define a novel, minimalistic type of bladder host response triggered by GBS UTI, which comprises collective antimicrobial pathways that differ dramatically from those activated by UPEC. Overall, this study emphasizes the unique nature of bladder immune activation mechanisms triggered by distinct uropathogens. PMID:22733575
Casey, Maura E; Meade, Kieran G; Nalpas, Nicolas C; Taraktsoglou, Maria; Browne, John A; Killick, Kate E; Park, Stephen D E; Gormley, Eamonn; Hokamp, Karsten; Magee, David A; MacHugh, David E
2015-01-01
Johne's disease, caused by infection with Mycobacterium avium subsp. paratuberculosis, (MAP), is a chronic intestinal disease of ruminants with serious economic consequences for cattle production in the United States and elsewhere. During infection, MAP bacilli are phagocytosed and subvert host macrophage processes, resulting in subclinical infections that can lead to immunopathology and dissemination of disease. Analysis of the host macrophage transcriptome during infection can therefore shed light on the molecular mechanisms and host-pathogen interplay associated with Johne's disease. Here, we describe results of an in vitro study of the bovine monocyte-derived macrophage (MDM) transcriptome response during MAP infection using RNA-seq. MDM were obtained from seven age- and sex-matched Holstein-Friesian cattle and were infected with MAP across a 6-h infection time course with non-infected controls. We observed 245 and 574 differentially expressed (DE) genes in MAP-infected versus non-infected control samples (adjusted P value ≤0.05) at 2 and 6 h post-infection, respectively. Functional analyses of these DE genes, including biological pathway enrichment, highlighted potential functional roles for genes that have not been previously described in the host response to infection with MAP bacilli. In addition, differential expression of pro- and anti-inflammatory cytokine genes, such as those associated with the IL-10 signaling pathway, and other immune-related genes that encode proteins involved in the bovine macrophage response to MAP infection emphasize the balance between protective host immunity and bacilli survival and proliferation. Systematic comparisons of RNA-seq gene expression results with Affymetrix(®) microarray data generated from the same experimental samples also demonstrated that RNA-seq represents a superior technology for studying host transcriptional responses to intracellular infection.
Casey, Maura E.; Meade, Kieran G.; Nalpas, Nicolas C.; Taraktsoglou, Maria; Browne, John A.; Killick, Kate E.; Park, Stephen D. E.; Gormley, Eamonn; Hokamp, Karsten; Magee, David A.; MacHugh, David E.
2015-01-01
Johne’s disease, caused by infection with Mycobacterium avium subsp. paratuberculosis, (MAP), is a chronic intestinal disease of ruminants with serious economic consequences for cattle production in the United States and elsewhere. During infection, MAP bacilli are phagocytosed and subvert host macrophage processes, resulting in subclinical infections that can lead to immunopathology and dissemination of disease. Analysis of the host macrophage transcriptome during infection can therefore shed light on the molecular mechanisms and host-pathogen interplay associated with Johne’s disease. Here, we describe results of an in vitro study of the bovine monocyte-derived macrophage (MDM) transcriptome response during MAP infection using RNA-seq. MDM were obtained from seven age- and sex-matched Holstein-Friesian cattle and were infected with MAP across a 6-h infection time course with non-infected controls. We observed 245 and 574 differentially expressed (DE) genes in MAP-infected versus non-infected control samples (adjusted P value ≤0.05) at 2 and 6 h post-infection, respectively. Functional analyses of these DE genes, including biological pathway enrichment, highlighted potential functional roles for genes that have not been previously described in the host response to infection with MAP bacilli. In addition, differential expression of pro- and anti-inflammatory cytokine genes, such as those associated with the IL-10 signaling pathway, and other immune-related genes that encode proteins involved in the bovine macrophage response to MAP infection emphasize the balance between protective host immunity and bacilli survival and proliferation. Systematic comparisons of RNA-seq gene expression results with Affymetrix® microarray data generated from the same experimental samples also demonstrated that RNA-seq represents a superior technology for studying host transcriptional responses to intracellular infection. PMID:25699042
2018-01-01
SUMMARY Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling. PMID:29695497
Lee, Hyun Jae; Georgiadou, Athina; Otto, Thomas D; Levin, Michael; Coin, Lachlan J; Conway, David J; Cunnington, Aubrey J
2018-06-01
Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling. Copyright © 2018 Lee et al.
Marisch, Karoline; Bayer, Karl; Scharl, Theresa; Mairhofer, Juergen; Krempl, Peter M.; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Striedner, Gerald
2013-01-01
Escherichia coli K–12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (EttanTM DIGE). Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K–12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data and suggest similar regulation within a host at both levels for the identified groups. Such host attributes need to be considered in future process design and operation. PMID:23950949
Marisch, Karoline; Bayer, Karl; Scharl, Theresa; Mairhofer, Juergen; Krempl, Peter M; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Striedner, Gerald
2013-01-01
Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (Ettan(TM) DIGE). Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K-12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data and suggest similar regulation within a host at both levels for the identified groups. Such host attributes need to be considered in future process design and operation.
USDA-ARS?s Scientific Manuscript database
Technological developments in both the collection and analysis of molecular genetic data over the past few years have provided new opportunities for an improved understanding of the global response to pathogen exposure. Such developments are particularly dramatic for scientists studying the pig, whe...
Deciphering life history transcriptomes in different environments
Etges, William J.; Trotter, Meredith V.; de Oliveira, Cássia C.; Rajpurohit, Subhash; Gibbs, Allen G.; Tuljapurkar, Shripad
2014-01-01
We compared whole transcriptome variation in six preadult stages and seven adult female ages in two populations of cactophilic Drosophila mojavensis reared on two host plants in order to understand how differences in gene expression influence standing life history variation. We used Singular Value Decomposition (SVD) to identify dominant trajectories of life cycle gene expression variation, performed pair-wise comparisons of stage and age differences in gene expression across the life cycle, identified when genes exhibited maximum levels of life cycle gene expression, and assessed population and host cactus effects on gene expression. Life cycle SVD analysis returned four significant components of transcriptional variation, revealing functional enrichment of genes responsible for growth, metabolic function, sensory perception, neural function, translation and aging. Host cactus effects on female gene expression revealed population and stage specific differences, including significant host plant effects on larval metabolism and development, as well as adult neurotransmitter binding and courtship behavior gene expression levels. In 3 - 6 day old virgin females, significant up-regulation of genes associated with meiosis and oogenesis was accompanied by down-regulation of genes associated with somatic maintenance, evidence for a life history tradeoff. The transcriptome of D. mojavensis reared in natural environments throughout its life cycle revealed core developmental transitions and genome wide influences on life history variation in natural populations. PMID:25442828
Etges, William J; de Oliveira, Cássia C; Rajpurohit, Subhash; Gibbs, Allen G
2017-01-01
We assessed the effects of temperature differences on gene expression using whole-transcriptome microarrays and cuticular hydrocarbon variation in populations of cactophilic Drosophila mojavensis . Four populations from Baja California and mainland Mexico and Arizona were each reared on two different host cacti, reared to sexual maturity on laboratory media, and adults were exposed for 12 hr to 15, 25, or 35°C. Temperature differences influenced the expression of 3,294 genes, while population differences and host plants affected >2,400 each in adult flies. Enriched, functionally related groups of genes whose expression changed at high temperatures included heat response genes, as well as genes affecting chromatin structure. Gene expression differences between mainland and peninsular populations included genes involved in metabolism of secondary compounds, mitochondrial activity, and tRNA synthases. Flies reared on the ancestral host plant, pitaya agria cactus, showed upregulation of genes involved in metabolism, while flies reared on organ pipe cactus had higher expression of DNA repair and chromatin remodeling genes. Population × environment (G × E) interactions had widespread effects on the transcriptome where population × temperature interactions affected the expression of >5,000 orthologs, and there were >4,000 orthologs that showed temperature × host plant interactions. Adults exposed to 35°C had lower amounts of most cuticular hydrocarbons than those exposed to 15 or 25°C, including abundant unsaturated alkadienes. For insects adapted to different host plants and climatic regimes, our results suggest that temperature shifts associated with climate change have large and significant effects on transcriptomes of genetically differentiated natural populations.
Baddal, Buket; Muzzi, Alessandro; Censini, Stefano; Calogero, Raffaele A; Torricelli, Giulia; Guidotti, Silvia; Taddei, Anna R; Covacci, Antonello; Pizza, Mariagrazia; Rappuoli, Rino; Soriani, Marco; Pezzicoli, Alfredo
2015-11-17
The ability to adhere and adapt to the human respiratory tract mucosa plays a pivotal role in the pathogenic lifestyle of nontypeable Haemophilus influenzae (NTHi). However, the temporal events associated with a successful colonization have not been fully characterized. In this study, by reconstituting the ciliated human bronchial epithelium in vitro, we monitored the global transcriptional changes in NTHi and infected mucosal epithelium simultaneously for up to 72 h by dual RNA sequencing. The initial stage of colonization was characterized by the binding of NTHi to ciliated cells. Temporal profiling of host mRNA signatures revealed significant dysregulation of the target cell cytoskeleton elicited by bacterial infection, with a profound effect on the intermediate filament network and junctional complexes. In response to environmental stimuli of the host epithelium, NTHi downregulated its central metabolism and increased the expression of transporters, indicating a change in the metabolic regime due to the availability of host substrates. Concurrently, the oxidative environment generated by infected cells instigated bacterial expression of stress-induced defense mechanisms, including the transport of exogenous glutathione and activation of the toxin-antitoxin system. The results of this analysis were validated by those of confocal microscopy, Western blotting, Bio-plex, and real-time quantitative reverse transcription-PCR (qRT-PCR). Notably, as part of our screening for novel signatures of infection, we identified a global profile of noncoding transcripts that are candidate small RNAs (sRNAs) regulated during human host infection in Haemophilus species. Our data, by providing a robust and comprehensive representation of the cross talk between the host and invading pathogen, provides important insights into NTHi pathogenesis and the development of efficacious preventive strategies. Simultaneous monitoring of infection-linked transcriptome alterations in an invading pathogen and its target host cells represents a key strategy for identifying regulatory responses that drive pathogenesis. In this study, we report the progressive events of NTHi colonization in a highly differentiated model of ciliated bronchial epithelium. Genome-wide transcriptome maps of NTHi during infection provided mechanistic insights into bacterial adaptive responses to the host niche, with modulation of the central metabolism as an important signature of the evolving milieu. Our data indicate that infected epithelia respond by substantial alteration of the cytoskeletal network and cytokine repertoire, revealing a dynamic cross talk that is responsible for the onset of inflammation. This work significantly enhances our understanding of the means by which NTHi promotes infection on human mucosae and reveals novel strategies exploited by this important pathogen to cause invasive disease. Copyright © 2015 Baddal et al.
Dissection of Influenza Infection In Vivo by Single-Cell RNA Sequencing.
Steuerman, Yael; Cohen, Merav; Peshes-Yaloz, Naama; Valadarsky, Liran; Cohn, Ofir; David, Eyal; Frishberg, Amit; Mayo, Lior; Bacharach, Eran; Amit, Ido; Gat-Viks, Irit
2018-06-01
The influenza virus is a major cause of morbidity and mortality worldwide. Yet, both the impact of intracellular viral replication and the variation in host response across different cell types remain uncharacterized. Here we used single-cell RNA sequencing to investigate the heterogeneity in the response of lung tissue cells to in vivo influenza infection. Analysis of viral and host transcriptomes in the same single cell enabled us to resolve the cellular heterogeneity of bystander (exposed but uninfected) as compared with infected cells. We reveal that all major immune and non-immune cell types manifest substantial fractions of infected cells, albeit at low viral transcriptome loads relative to epithelial cells. We show that all cell types respond primarily with a robust generic transcriptional response, and we demonstrate novel markers specific for influenza-infected as opposed to bystander cells. These findings open new avenues for targeted therapy aimed exclusively at infected cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Ranjan, Aashish; Ichihashi, Yasunori; Farhi, Moran; Zumstein, Kristina; Townsley, Brad; David-Schwartz, Rakefet; Sinha, Neelima R
2014-11-01
Parasitic flowering plants are one of the most destructive agricultural pests and have major impact on crop yields throughout the world. Being dependent on finding a host plant for growth, parasitic plants penetrate their host using specialized organs called haustoria. Haustoria establish vascular connections with the host, which enable the parasite to steal nutrients and water. The underlying molecular and developmental basis of parasitism by plants is largely unknown. In order to investigate the process of parasitism, RNAs from different stages (i.e. seed, seedling, vegetative strand, prehaustoria, haustoria, and flower) were used to de novo assemble and annotate the transcriptome of the obligate plant stem parasite dodder (Cuscuta pentagona). The assembled transcriptome was used to dissect transcriptional dynamics during dodder development and parasitism and identified key gene categories involved in the process of plant parasitism. Host plant infection is accompanied by increased expression of parasite genes underlying transport and transporter categories, response to stress and stimuli, as well as genes encoding enzymes involved in cell wall modifications. By contrast, expression of photosynthetic genes is decreased in the dodder infective stages compared with normal stem. In addition, genes relating to biosynthesis, transport, and response of phytohormones, such as auxin, gibberellins, and strigolactone, were differentially expressed in the dodder infective stages compared with stems and seedlings. This analysis sheds light on the transcriptional changes that accompany plant parasitism and will aid in identifying potential gene targets for use in controlling the infestation of crops by parasitic weeds. © 2014 American Society of Plant Biologists. All Rights Reserved.
Ranjan, Aashish; Ichihashi, Yasunori; Farhi, Moran; Zumstein, Kristina; Townsley, Brad; David-Schwartz, Rakefet; Sinha, Neelima R.
2014-01-01
Parasitic flowering plants are one of the most destructive agricultural pests and have major impact on crop yields throughout the world. Being dependent on finding a host plant for growth, parasitic plants penetrate their host using specialized organs called haustoria. Haustoria establish vascular connections with the host, which enable the parasite to steal nutrients and water. The underlying molecular and developmental basis of parasitism by plants is largely unknown. In order to investigate the process of parasitism, RNAs from different stages (i.e. seed, seedling, vegetative strand, prehaustoria, haustoria, and flower) were used to de novo assemble and annotate the transcriptome of the obligate plant stem parasite dodder (Cuscuta pentagona). The assembled transcriptome was used to dissect transcriptional dynamics during dodder development and parasitism and identified key gene categories involved in the process of plant parasitism. Host plant infection is accompanied by increased expression of parasite genes underlying transport and transporter categories, response to stress and stimuli, as well as genes encoding enzymes involved in cell wall modifications. By contrast, expression of photosynthetic genes is decreased in the dodder infective stages compared with normal stem. In addition, genes relating to biosynthesis, transport, and response of phytohormones, such as auxin, gibberellins, and strigolactone, were differentially expressed in the dodder infective stages compared with stems and seedlings. This analysis sheds light on the transcriptional changes that accompany plant parasitism and will aid in identifying potential gene targets for use in controlling the infestation of crops by parasitic weeds. PMID:24399359
Zemp, Niklaus; Tavares, Raquel; Widmer, Alex
2015-01-01
Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia) displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism. PMID:26448481
Zemp, Niklaus; Tavares, Raquel; Widmer, Alex
2015-10-01
Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia) displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism.
Skvortsov, T A; Ignatov, D V; Majorov, K B; Apt, A S; Azhikina, T L
2013-04-01
Whole transcriptome profiling is now almost routinely used in various fields of biology, including microbiology. In vivo transcriptome studies usually provide relevant information about the biological processes in the organism and thus are indispensable for the formulation of hypotheses, testing, and correcting. In this study, we describe the results of genome-wide transcriptional profiling of the major human bacterial pathogen M. tuberculosis during its persistence in lungs. Two mouse strains differing in their susceptibility to tuberculosis were used for experimental infection with M. tuberculosis. Mycobacterial transcriptomes obtained from the infected tissues of the mice at two different time points were analyzed by deep sequencing and compared. It was hypothesized that the changes in the M. tuberculosis transcriptome may attest to the activation of the metabolism of lipids and amino acids, transition to anaerobic respiration, and increased expression of the factors modulating the immune response. A total of 209 genes were determined whose expression increased with disease progression in both host strains (commonly upregulated genes, CUG). Among them, the genes related to the functional categories of lipid metabolism, cell wall, and cell processes are of great interest. It was assumed that the products of these genes are involved in M. tuberculosis adaptation to the host immune system defense, thus being potential targets for drug development.
Vidal-Dupiol, Jeremie; Dheilly, Nolwenn M.; Rondon, Rodolfo; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M.; Freitag, Michael; Adjeroud, Mehdi; Mitta, Guillaume
2014-01-01
Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an ‘efficient’ immune response, whereas virulent bacterium caused immuno-suppression in its host. PMID:25259845
Josset, Laurence; Menachery, Vineet D.; Gralinski, Lisa E.; Agnihothram, Sudhakar; Sova, Pavel; Carter, Victoria S.; Yount, Boyd L.; Graham, Rachel L.; Baric, Ralph S.; Katze, Michael G.
2013-01-01
ABSTRACT A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce similar or distinct host responses after infection of a human lung epithelial cell line. HCoV-EMC was able to replicate as efficiently as SARS-CoV in Calu-3 cells and similarly induced minimal transcriptomic changes before 12 h postinfection. Later in infection, HCoV-EMC induced a massive dysregulation of the host transcriptome, to a much greater extent than SARS-CoV. Both viruses induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17) pathway, but HCoV-EMC specifically down-regulated the expression of several genes within the antigen presentation pathway, including both type I and II major histocompatibility complex (MHC) genes. This could have an important impact on the ability of the host to mount an adaptive host response. A unique set of 207 genes was dysregulated early and permanently throughout infection with HCoV-EMC, and was used in a computational screen to predict potential antiviral compounds, including kinase inhibitors and glucocorticoids. Overall, HCoV-EMC and SARS-CoV elicit distinct host gene expression responses, which might impact in vivo pathogenesis and could orient therapeutic strategies against that emergent virus. PMID:23631916
He, Yongqun
2011-01-01
Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning. PMID:22919594
He, Yongqun
2012-01-01
Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.
Naor, Adit; Panas, Michael W; Marino, Nicole; Coffey, Michael J; Tonkin, Christopher J; Boothroyd, John C
2018-04-03
The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV) by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5) and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma , we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT), RHΔ myr1 , and RHΔ asp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, "hidden" responses arising in RHΔ myr1 - but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite's ability to co-opt host cell functions. IMPORTANCE Toxoplasma gondii is unique in its ability to successfully invade and replicate in a broad range of host species and cells within those hosts. The complex interplay of effector proteins exported by Toxoplasma is key to its success in co-opting the host cell to create a favorable replicative niche. Here we show that a majority of the transcriptomic effects in tachyzoite-infected cells depend on the activity of a novel translocation system involving MYR1 and that the effectors delivered by this system are part of an intricate interplay of activators and suppressors. Removal of all MYR1-dependent effectors reveals previously unknown activities that are masked or hidden by the action of these proteins. Copyright © 2018 Naor et al.
Schneweis, Derek J; Whitfield, Anna E; Rotenberg, Dorith
2017-01-01
Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a circulative-propagative manner. Little is known about thrips vector response to TSWV during the infection process from larval acquisition to adult inoculation of plants. Whole-body transcriptome response to virus infection was determined for first-instar larval, pre-pupal and adult thrips using RNA-Seq. TSWV responsive genes were identified using preliminary sequence of a draft genome of F. occidentalis as a reference and three developmental-stage transcriptomes were assembled. Processes and functions associated with host defense, insect cuticle structure and development, metabolism and transport were perturbed by TSWV infection as inferred by ontologies of responsive genes. The repertoire of genes responsive to TSWV varied between developmental stages, possibly reflecting the link between thrips development and the virus dissemination route in the vector. This study provides the foundation for exploration of tissue-specific expression in response to TSWV and functional analysis of thrips gene function. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeng, Jiqing; Yu, Hui; Kjellberg, Finn
2018-07-01
The mutualism of figs and their pollinating fig wasps is widely regarded as a model for coevolved mutualism. A high degree of host specificity is ensured by female wasps only being attracted by their specific fig tree species through the volatile organic compounds (VOCs) released by the figs when they are ready to be pollinated. However, very little is known about the molecular mechanisms underlying the production of VOCs and how pollinators respond to these VOCs. Here we present transcriptome sequencing data from VOC-treated fig wasps and control fig wasps. Using Illumina paired-end sequencing, approximately 6.47 Gbp and 6.48 Gbp high quality reads were generated for fig wasps that had been exposed or not to VOCs of their host fig. After read trimming, the de novo assembly of both types of reads produced 58,192 unigenes with an average length of 817 bp. Then functional annotation and GO enrichment analysis was performed by aligning all-unigenes with public protein databases including NR, SwissProt, and KEGG. Differentially expressed genes (DEGs) were investigated using the RPKM method. Overall, 16 up-regulated genes and 13 down-regulated genes were identified. We further performed GO enrichment and metabolic pathway enrichment analyses. One gene involved in the synoptic vesicle cycle and two genes coding for odorant binding proteins (OBP) are likely to have potential impacts on the response of fig wasps to the VOCs emitted by their host figs. This is the first transcriptome sequencing of a fig wasp in the presence of VOCs of its host figs using the next-generation sequencing technology. Our studies suggest that the expression of some genes in the olfactory neural system of the fig wasps is affected by the VOCs released from the figs. This suggests the presence of a dynamic molecular system of detection and hence response to host plant VOCs. As such our findings provide indications for further mechanistic studies on the fig-fig wasp interactions.
Sun, H; Liu, P; Nolan, L K; Lamont, S J
2016-12-01
Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.
USDA-ARS?s Scientific Manuscript database
Penicillium expansum is the causal agent of blue mould of pome fruits and is responsible for important economical losses during postharvest handling in all producing countries. Although control of this pathogen can be achieved by using chemical fungicides, the appearance of resistant strains and in...
Bent, Zachary W.; Poorey, Kunal; Brazel, David M.; ...
2015-04-20
Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocoliticabiovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26°C to establish amore » baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37°C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.« less
Deshpande, Nandan P.; Man, Si Ming; Burgos-Portugal, Jose A.; Khattak, Faisal A.; Raftery, Mark J.; Wilkins, Marc R.; Mitchell, Hazel M.
2014-01-01
Pathogenic species within the genus Campylobacter are responsible for a considerable burden on global health. Campylobacter concisus is an emergent pathogen that plays a role in acute and chronic gastrointestinal disease. Despite ongoing research on Campylobacter virulence mechanisms, little is known regarding the immunological profile of the host response to Campylobacter infection. In this study, we describe a comprehensive global profile of innate immune responses to C. concisus infection in differentiated THP-1 macrophages infected with an adherent and invasive strain of C. concisus. Using RNA sequencing (RNA-seq), quantitative PCR (qPCR), mass spectrometry, and confocal microscopy, we observed differential expression of pattern recognition receptors and robust upregulation of DNA- and RNA-sensing molecules. In particular, we observed IFI16 inflammasome assembly in C. concisus-infected macrophages. Global profiling of the transcriptome revealed the significant regulation of a total of 8,343 transcripts upon infection with C. concisus, which included the activation of key inflammatory pathways involving CREB1, NF-κB, STAT, and interferon regulatory factor signaling. Thirteen microRNAs and 333 noncoding RNAs were significantly regulated upon infection, including MIR221, which has been associated with colorectal carcinogenesis. This study represents a major advance in our understanding of host recognition and innate immune responses to infection by C. concisus. PMID:25486993
Influenza-Omics and the Host Response: Recent Advances and Future Prospects
Powell, Joshua D.; Waters, Katrina M.
2017-01-01
Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. The various-omics infection systems that include but are not limited to ferrets, mice, pigs, and even the controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infection outcomes. PMID:28604586
Influenza-Omics and the Host Response: Recent Advances and Future Prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Joshua D.; Waters, Katrina M.
Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. Here, the various –omics infection systems that include but are not limited to ferrets, mice, pigs and even controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infectionmore » outcomes.« less
Influenza-Omics and the Host Response: Recent Advances and Future Prospects
Powell, Joshua D.; Waters, Katrina M.
2017-06-10
Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. Here, the various –omics infection systems that include but are not limited to ferrets, mice, pigs and even controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infectionmore » outcomes.« less
Jiménez-Guerrero, Irene; Acosta-Jurado, Sebastián; Navarro-Gómez, Pilar; López-Baena, Francisco Javier; Ollero, Francisco Javier
2017-01-01
Simultaneous quantification of transcripts of the whole bacterial genome allows the analysis of the global transcriptional response under changing conditions. RNA-seq and microarrays are the most used techniques to measure these transcriptomic changes, and both complement each other in transcriptome profiling. In this review, we exhaustively compiled the symbiosis-related transcriptomic reports (microarrays and RNA sequencing) carried out hitherto in rhizobia. This review is specially focused on transcriptomic changes that takes place when five rhizobial species, Bradyrhizobium japonicum (=diazoefficiens) USDA 110, Rhizobium leguminosarum biovar viciae 3841, Rhizobium tropici CIAT 899, Sinorhizobium (=Ensifer) meliloti 1021 and S. fredii HH103, recognize inducing flavonoids, plant-exuded phenolic compounds that activate the biosynthesis and export of Nod factors (NF) in all analysed rhizobia. Interestingly, our global transcriptomic comparison also indicates that each rhizobial species possesses its own arsenal of molecular weapons accompanying the set of NF in order to establish a successful interaction with host legumes. PMID:29267254
Petti, Carloalberto; Khan, Mojibur; Doohan, Fiona
2010-11-01
Strains of non-pathogenic pseudomonad bacteria, can elicit host defence responses against pathogenic microorganisms. Pseudomonas fluorescens strain MKB158 can protect cereals from pathogenesis by Fusarium fungi, including Fusarium head blight which is an economically important disease due to its association with both yield loss and mycotoxin contamination of grain. Using the 22 K barley Affymetrix chip, trancriptome studies were undertaken to determine the local effect of P. fluorescens strain MKB158 on the transcriptome of barley head tissue, and to discriminate transcripts primed by the bacterium to respond to challenge by Fusarium culmorum, a causal agent of the economically important Fusarium head blight disease of cereals. The bacterium significantly affected the accumulation of 1203 transcripts and primed 74 to positively, and 14 to negatively, respond to the pathogen (P = 0.05). This is the first study to give insights into bacterium priming in the Triticeae tribe of grasses and associated transcripts were classified into 13 functional classes, associated with diverse functions, including detoxification, cell wall biosynthesis and the amplification of host defence responses. In silico analysis of Arabidopsis homologs of bacterium-primed barley genes indicated that, as is the case in dicots, jasmonic acid plays a role in pseudomonad priming of host responses. Additionally, the transcriptome studies described herein also reveal new insights into bacterium-mediated priming of host defences against necrotrophs, including the positive effects on grain filling, lignin deposition, oxidative stress responses, and the inhibition of protease inhibitors and proteins that play a key role in programmed cell death.
Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong
2015-06-01
The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.
Voll, Lars Matthias; Horst, Robin Jonathan; Voitsik, Anna-Maria; Zajic, Doreen; Samans, Birgit; Pons-Kühnemann, Jörn; Doehlemann, Gunther; Münch, Steffen; Wahl, Ramon; Molitor, Alexandra; Hofmann, Jörg; Schmiedl, Alfred; Waller, Frank; Deising, Holger Bruno; Kahmann, Regine; Kämper, Jörg; Kogel, Karl-Heinz; Sonnewald, Uwe
2011-01-01
During compatible interactions with their host plants, biotrophic plant–pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism toward colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei), the corn smut fungus Ustilago maydis, and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment. Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. However, increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during early biotrophy for the three investigated interactions. PMID:22645534
Xue, Shuxia; Liu, Yichen; Zhang, Yichen; Sun, Yan; Geng, Xuyun; Sun, Jinsheng
2013-01-01
White spot syndrome virus (WSSV) is a causative pathogen found in most shrimp farming areas of the world and causes large economic losses to the shrimp aquaculture. The mechanism underlying the molecular pathogenesis of the highly virulent WSSV remains unknown. To better understand the virus-host interactions at the molecular level, the transcriptome profiles in hemocytes of unchallenged and WSSV-challenged shrimp (Litopenaeus vannamei) were compared using a short-read deep sequencing method (Illumina). RNA-seq analysis generated more than 25.81 million clean pair end (PE) reads, which were assembled into 52,073 unigenes (mean size = 520 bp). Based on sequence similarity searches, 23,568 (45.3%) genes were identified, among which 6,562 and 7,822 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 14,941 (63.4%) unigenes to 240 KEGG pathways. Among all the annotated unigenes, 1,179 were associated with immune-related genes. Digital gene expression (DGE) analysis revealed that the host transcriptome profile was slightly changed in the early infection (5 hours post injection) of the virus, while large transcriptional differences were identified in the late infection (48 hpi) of WSSV. The differentially expressed genes mainly involved in pattern recognition genes and some immune response factors. The results indicated that antiviral immune mechanisms were probably involved in the recognition of pathogen-associated molecular patterns. This study provided a global survey of host gene activities against virus infection in a non-model organism, pacific white shrimp. Results can contribute to the in-depth study of candidate genes in white shrimp, and help to improve the current understanding of host-pathogen interactions.
Multivariate inference of pathway activity in host immunity and response to therapeutics
Goel, Gautam; Conway, Kara L.; Jaeger, Martin; Netea, Mihai G.; Xavier, Ramnik J.
2014-01-01
Developing a quantitative view of how biological pathways are regulated in response to environmental factors is central for understanding of disease phenotypes. We present a computational framework, named Multivariate Inference of Pathway Activity (MIPA), which quantifies degree of activity induced in a biological pathway by computing five distinct measures from transcriptomic profiles of its member genes. Statistical significance of inferred activity is examined using multiple independent self-contained tests followed by a competitive analysis. The method incorporates a new algorithm to identify a subset of genes that may regulate the extent of activity induced in a pathway. We present an in-depth evaluation of specificity, robustness, and reproducibility of our method. We benchmarked MIPA's false positive rate at less than 1%. Using transcriptomic profiles representing distinct physiological and disease states, we illustrate applicability of our method in (i) identifying gene–gene interactions in autophagy-dependent response to Salmonella infection, (ii) uncovering gene–environment interactions in host response to bacterial and viral pathogens and (iii) identifying driver genes and processes that contribute to wound healing and response to anti-TNFα therapy. We provide relevant experimental validation that corroborates the accuracy and advantage of our method. PMID:25147207
Luck, Ashley N; Slatko, Barton E; Foster, Jeremy M
2017-01-01
Efficient transcriptomic sequencing of microbial mRNA derived from host-microbe associations is often compromised by the much lower relative abundance of microbial RNA in the mixed total RNA sample. One solution to this problem is to perform extensive sequencing until an acceptable level of transcriptome coverage is obtained. More cost-effective methods include use of prokaryotic and/or eukaryotic rRNA depletion strategies, sometimes in conjunction with depletion of polyadenylated eukaryotic mRNA. Here, we report use of Cappable-seq™ to specifically enrich, in a single step, Wolbachia endobacterial mRNA transcripts from total RNA prepared from the parasitic filarial nematode, Brugia malayi. The obligate Wolbachia endosymbiont is a proven drug target for many human filarial infections, yet the precise nature of its symbiosis with the nematode host is poorly understood. Insightful analysis of the expression levels of Wolbachia genes predicted to underpin the mutualistic association and of known drug target genes at different life cycle stages or in response to drug treatments is typically challenged by low transcriptomic coverage. Cappable-seq resulted in up to ~ 5-fold increase in the number of reads mapping to Wolbachia. On average, coverage of Wolbachia transcripts from B. malayi microfilariae was enriched ~40-fold by Cappable-seq. Additionally, this method has an additional benefit of selectively removing abundant prokaryotic ribosomal RNAs.The deeper microbial transcriptome sequencing afforded by Cappable-seq facilitates more detailed characterization of gene expression levels of pathogens and symbionts present in animal tissues.
USDA-ARS?s Scientific Manuscript database
A major production restriction on sand pear (Pyrus pyrifolia) is black spot disease caused by the necrotrophic fungus Alternaria alternata. However, pear response mechanism to A. alternata is unknown at molecular level. Here, host responses of a resistant cultivar Cuiguan (CG) and a susceptible cult...
RNA-Seq Technology and Its Application in Fish Transcriptomics
Ba, Yi; Zhuang, Qianfeng
2014-01-01
Abstract High-throughput sequencing technologies, also known as next-generation sequencing (NGS) technologies, have revolutionized the way that genomic research is advancing. In addition to the static genome, these state-of-art technologies have been recently exploited to analyze the dynamic transcriptome, and the resulting technology is termed RNA sequencing (RNA-seq). RNA-seq is free from many limitations of other transcriptomic approaches, such as microarray and tag-based sequencing method. Although RNA-seq has only been available for a short time, studies using this method have completely changed our perspective of the breadth and depth of eukaryotic transcriptomes. In terms of the transcriptomics of teleost fishes, both model and non-model species have benefited from the RNA-seq approach and have undergone tremendous advances in the past several years. RNA-seq has helped not only in mapping and annotating fish transcriptome but also in our understanding of many biological processes in fish, such as development, adaptive evolution, host immune response, and stress response. In this review, we first provide an overview of each step of RNA-seq from library construction to the bioinformatic analysis of the data. We then summarize and discuss the recent biological insights obtained from the RNA-seq studies in a variety of fish species. PMID:24380445
Patino, Luz Helena; Ramírez, Juan David
2017-04-01
The kinetoplastids include a large number of parasites responsible for serious diseases in humans and animals (Leishmania and Trypanosoma brucei) considered endemic in several regions of the world. These parasites are characterized by digenetic life cycles that undergo morphological and genetic changes that allow them to adapt to different microenvironments on their vertebrates and invertebrates hosts. Recent advances in ´omics´ technology, specifically transcriptomics have allowed to reveal aspects associated with such molecular changes. So far, different techniques have been used to evaluate the gene expression profile during the various stages of the life cycle of these parasites and during the host-parasite interactions. However, some of them have serious drawbacks that limit the precise study and full understanding of their transcriptomes. Therefore, recently has been implemented the latest technology (RNA-seq), which overcomes the drawbacks of traditional methods. In this review, studies that so far have used RNA-seq are presented and allowed to expand our knowledge regarding the biology of these parasites and their interactions with their hosts. Copyright © 2017 Elsevier B.V. All rights reserved.
Rossetti, C.A.; Galindo, C.L.; Everts, R.E.; Lewin, H.A.; Garner, H.R.; Adams, L.G.
2010-01-01
Brucellosis is a worldwide zoonotic infectious disease that has a significant economic impact on animal production and human public health. We characterized the gene expression profile of B. abortus-infected monocyte-derived macrophages (MDMs) from naïve cattle naturally resistant (R) or susceptible (S) to brucellosis using a cDNA microarray technology. Our data indicate that 1) B. abortus induced a slightly increased genome activation in R MDMs and a down-regulated transcriptome in S MDMs, during the onset of infection, 2) R MDMs had the ability to mount a type 1 immune response against B. abortus infection which was impaired in S cells, and 3) the host cell activity was not altered after 12h post-B. abortus infection in R MDMs while the cell cycle was largely arrested in infected S MDMs at 12h p.i. These results contribute to understand of how host responses may be manipulated to prevent infection by brucellae. PMID:20932540
Remote reprogramming of hepatic circadian transcriptome by breast cancer.
Hojo, Hiroaki; Enya, Sora; Arai, Miki; Suzuki, Yutaka; Nojiri, Takashi; Kangawa, Kenji; Koyama, Shinsuke; Kawaoka, Shinpei
2017-05-23
Cancers adversely affect organismal physiology. To date, the genes within a patient responsible for systemically spreading cancer-induced physiological disruption remain elusive. To identify host genes responsible for transmitting disruptive, cancer-driven signals, we thoroughly analyzed the transcriptome of a suite of host organs from mice bearing 4T1 breast cancer, and discovered complexly rewired patterns of circadian gene expression in the liver. Our data revealed that 7 core clock transcription factors, represented by Rev-erba and Rorg, exhibited abnormal daily expression rhythm in the liver of 4T1-bearing mice. Accordingly, expression patterns of specific set of downstream circadian genes were compromised. Osgin1, a marker for oxidative stress, was an example. Specific downstream genes, including E2f8, a transcriptional repressor that controls cellular polyploidy, displayed a striking pattern of disruption, "day-night reversal." Meanwhile, we found that the liver of 4T1-bearing mice suffered from increased oxidative stress. The tetraploid hepatocytes population was concomitantly increased in 4T1-bearing mice, which has not been previously appreciated as a cancer-induced phenotype. In summary, the current study provides a comprehensive characterization of the 4T1-affected hepatic circadian transcriptome that possibly underlies cancer-induced physiological alteration in the liver.
Dual Transcriptomic Profiling of Host and Microbiota during Health and Disease in Pediatric Asthma.
Pérez-Losada, Marcos; Castro-Nallar, Eduardo; Bendall, Matthew L; Freishtat, Robert J; Crandall, Keith A
2015-01-01
High-throughput sequencing (HTS) analysis of microbial communities from the respiratory airways has heavily relied on the 16S rRNA gene. Given the intrinsic limitations of this approach, airway microbiome research has focused on assessing bacterial composition during health and disease, and its variation in relation to clinical and environmental factors, or other microbiomes. Consequently, very little effort has been dedicated to describing the functional characteristics of the airway microbiota and even less to explore the microbe-host interactions. Here we present a simultaneous assessment of microbiome and host functional diversity and host-microbe interactions from the same RNA-seq experiment, while accounting for variation in clinical metadata. Transcriptomic (host) and metatranscriptomic (microbiota) sequences from the nasal epithelium of 8 asthmatics and 6 healthy controls were separated in silico and mapped to available human and NCBI-NR protein reference databases. Human genes differentially expressed in asthmatics and controls were then used to infer upstream regulators involved in immune and inflammatory responses. Concomitantly, microbial genes were mapped to metabolic databases (COG, SEED, and KEGG) to infer microbial functions differentially expressed in asthmatics and controls. Finally, multivariate analysis was applied to find associations between microbiome characteristics and host upstream regulators while accounting for clinical variation. Our study showed significant differences in the metabolism of microbiomes from asthmatic and non-asthmatic children for up to 25% of the functional properties tested. Enrichment analysis of 499 differentially expressed host genes for inflammatory and immune responses revealed 43 upstream regulators differentially activated in asthma. Microbial adhesion (virulence) and Proteobacteria abundance were significantly associated with variation in the expression of the upstream regulator IL1A; suggesting that microbiome characteristics modulate host inflammatory and immune systems during asthma.
Wage, Justin; Ma, Lili; Peluso, Michael; Lamont, Clare; Evens, Andrew M; Hahnfeldt, Philip; Hlatky, Lynn; Beheshti, Afshin
2015-09-01
Age plays a crucial role in the interplay between tumor and host, with additional impact due to irradiation. Proton irradiation of tumors induces biological modulations including inhibition of angiogenic and immune factors critical to 'hallmark' processes impacting tumor development. Proton irradiation has also provided promising results for proton therapy in cancer due to targeting advantages. Additionally, protons may contribute to the carcinogenesis risk from space travel (due to the high proportion of high-energy protons in space radiation). Through a systems biology approach, we investigated how host tissue (i.e. splenic tissue) of tumor-bearing mice was altered with age, with or without whole-body proton exposure. Transcriptome analysis was performed on splenic tissue from adolescent (68-day) versus old (736-day) C57BL/6 male mice injected with Lewis lung carcinoma cells with or without three fractionations of 0.5 Gy (1-GeV) proton irradiation. Global transcriptome analysis indicated that proton irradiation of adolescent hosts caused significant signaling changes within splenic tissues that support carcinogenesis within the mice, as compared with older subjects. Increases in cell cycling and immunosuppression in irradiated adolescent hosts with CDK2, MCM7, CD74 and RUVBL2 indicated these were the key genes involved in the regulatory changes in the host environment response (i.e. the spleen). Collectively, these results suggest that a significant biological component of proton irradiation is modulated by host age through promotion of carcinogenesis in adolescence and resistance to immunosuppression, carcinogenesis and genetic perturbation associated with advancing age. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Fernandes, Maria Cecilia; Dillon, Laura A L; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M; El-Sayed, Najib M
2016-05-10
Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. Little is known about the transcriptional changes that occur within mammalian cells harboring intracellular pathogens. This study characterizes the gene expression signatures of Leishmania spp. parasites and the coordinated response of infected human macrophages as the pathogen enters and persists within them. After accounting for the generic effects of large-particle phagocytosis, we observed a parasite-specific response of the human macrophages early in infection that was reduced at later time points. A similar expression pattern was observed in the parasites. Our analyses provide specific insights into the interplay between human macrophages and Leishmania parasites and constitute an important general resource for the study of how pathogens evade host defenses and modulate the functions of the cell to survive intracellularly. Copyright © 2016 Fernandes et al.
An in vivo transcriptome for entomopathogenic fungus Metarhizium robertsii ARSEF 2575
USDA-ARS?s Scientific Manuscript database
Molecular mechanisms underlying the pathogenic process of the insect pathogen Metarhizium robertsii ARSEF 2575 in its host are only partially understood. To probe the transcriptional responses of the fungus during the interaction with insects, we have developed a method to specifically recover patho...
Caimano, Melissa J.; Sivasankaran, Sathesh K.; Allard, Anna; Hurley, Daniel; Hokamp, Karsten; Grassmann, André A.; Hinton, Jay C. D.; Nally, Jarlath E.
2014-01-01
Leptospirosis, an emerging zoonotic disease with worldwide distribution, is caused by spirochetes belonging to the genus Leptospira. More than 500,000 cases of severe leptospirosis are reported annually, with >10% of these being fatal. Leptospires can survive for weeks in suitably moist conditions before encountering a new host. Reservoir hosts, typically rodents, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. In humans, leptospires can cause a variety of clinical manifestations, ranging from asymptomatic or mild fever to severe icteric (Weil's) disease and pulmonary haemorrhage. Currently, little is known about how Leptospira persist within a reservoir host. Prior in vitro studies have suggested that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. However, no study has examined gene expression by leptospires within a mammalian host-adapted state. To obtain a more faithful representation of how leptospires respond to host-derived signals, we used RNA-Seq to compare the transcriptome of L. interrogans cultivated within dialysis membrane chambers (DMCs) implanted into the peritoneal cavities of rats with that of organisms grown in vitro. In addition to determining the relative expression levels of “core” housekeeping genes under both growth conditions, we identified 166 genes that are differentially-expressed by L. interrogans in vivo. Our analyses highlight physiological aspects of host adaptation by leptospires relating to heme uptake and utilization. We also identified 11 novel non-coding transcripts that are candidate small regulatory RNAs. The DMC model provides a facile system for studying the transcriptional and antigenic changes associated with mammalian host-adaption, selection of targets for mutagenesis, and the identification of previously unrecognized virulence determinants. PMID:24626166
Transcriptome landscape of a bacterial pathogen under plant immunity.
Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi
2018-03-27
Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.
De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.).
Ho, Chai-Ling; Tan, Yung-Chie; Yeoh, Keat-Ai; Ghazali, Ahmad-Kamal; Yee, Wai-Yan; Hoh, Chee-Choong
2016-01-19
Basal stem rot (BSR) is a fungal disease in oil palm (Elaeis guineensis Jacq.) which is caused by hemibiotrophic white rot fungi belonging to the Ganoderma genus. Molecular responses of oil palm to these pathogens are not well known although this information is crucial to strategize effective measures to eradicate BSR. In order to elucidate the molecular interactions between oil palm and G. boninense and its biocontrol fungus Trichoderma harzianum, we compared the root transcriptomes of untreated oil palm seedlings with those inoculated with G. boninense and T. harzianum, respectively. Differential gene expression analyses revealed that jasmonate (JA) and salicylate (SA) may act in an antagonistic manner in affecting the hormone biosynthesis, signaling, and downstream defense responses in G. boninense-treated oil palm roots. In addition, G. boninense may compete with the host to control disease symptom through the transcriptional regulation of ethylene (ET) biosynthesis, reactive oxygen species (ROS) production and scavenging. The strengthening of host cell walls and production of pathogenesis-related proteins as well as antifungal secondary metabolites in host plants, are among the important defense mechanisms deployed by oil palm against G. boninense. Meanwhile, endophytic T. harzianum was shown to improve the of nutrition status and nutrient transportation in host plants. The findings of this analysis have enhanced our understanding on the molecular interactions of G. boninense and oil palm, and also the biocontrol mechanisms involving T. harzianum, thus contributing to future formulations of better strategies for prevention and treatment of BSR.
An insight into the sialome of the bed bug, Cimex lectularius
Francischetti, Ivo M.B.; Calvo, Eric; Andersen, John F.; Pham, Van M.; Favreau, Amanda J.; Barbian, Kent D.; Romero, Alvaro; Valenzuela, Jesus G.; Ribeiro., José M.C.
2010-01-01
The evolution of insects to a blood diet leads to the development of a saliva that antagonizes their hosts' hemostasis and inflammation. Hemostasis and inflammation are redundant processes, and thus a complex salivary potion comprised of dozens or near one hundred different polypeptides is commonly found by transcriptome or proteome analysis of these organisms. Several insect orders or families evolved independently to hematophagy creating unique salivary potions in the form of novel pharmacological use of endogenous substances, and in the form of unique proteins not matching other known proteins, these probably arriving by fast evolution of salivary proteins as they evade their hosts' immune response. In this work we present a preliminary description of the sialome (from the Greek Sialo = saliva) of the common bed bug Cimex lectularius, the first such work from a member of the Cimicidae family. This manuscript is a guide for the supplemental database files http://exon.niaid.nih.gov/transcriptome/C_lectularius/S1/Cimex-S1.zip and http://exon.niaid.nih.gov/transcriptome/C_lectularius/S2/Cimex-S2.xls PMID:20441151
Insight into the Sialome of the Bed Bug, Cimex lectularius.
Francischetti, Ivo M B; Calvo, Eric; Andersen, John F; Pham, Van M; Favreau, Amanda J; Barbian, Kent D; Romero, Alvaro; Valenzuela, Jesus G; Ribeiro, José M C
2010-08-06
The evolution of insects to a blood diet leads to the development of a saliva that antagonizes their hosts' hemostasis and inflammation. Hemostasis and inflammation are redundant processes, and thus a complex salivary potion composed of dozens or near 100 different polypeptides is commonly found by transcriptome or proteome analysis of these organisms. Several insect orders or families evolved independently to hematophagy, creating unique salivary potions in the form of novel pharmacological use of endogenous substances and in the form of unique proteins not matching other known proteins, these probably arriving by fast evolution of salivary proteins as they evade their hosts' immune response. In this work we present a preliminary description of the sialome (from the Greek Sialo = saliva) of the common bed bug Cimex lectularius, the first such work from a member of the Cimicidae family. This manuscript is a guide for the supplemental database files http://exon.niaid.nih.gov/transcriptome/C_lectularius/S1/Cimex-S1.zip and http://exon.niaid.nih.gov/transcriptome/C_lectularius/S2/Cimex-S2.xls.
Transcriptome and proteome profiling of host responses to Marek's disease virus in chickens
USDA-ARS?s Scientific Manuscript database
Marek’s disease (MD) is an immunosuppressive and proliferative disease of domestic chickens caused by a highly oncogenic cell-associated alpha-herpesvirus, named Marek’s disease virus (MDV). Despite the availability of highly efficacious vaccines for control of MD and existence of lines of chickens ...
USDA-ARS?s Scientific Manuscript database
Arthropods transmit a variety of important infectious diseases of humans and animals. Importantly, replication and development of pathogen infectivity is tightly linked to vector feeding on the mammalian host; thus analysis of the transcriptomes of both vector and pathogen during feeding is fundamen...
González-Mula, Almudena; Lang, Julien; Grandclément, Catherine; Naquin, Delphine; Ahmar, Mohammed; Soulère, Laurent; Queneau, Yves; Dessaux, Yves; Faure, Denis
2018-07-01
Agrobacterium tumefaciens constructs an ecological niche in its host plant by transferring the T-DNA from its Ti plasmid into the host genome and by diverting the host metabolism. We combined transcriptomics and genetics for understanding the A. tumefaciens lifestyle when it colonizes Arabidopsis thaliana tumors. Transcriptomics highlighted: a transition from a motile to sessile behavior that mobilizes some master regulators (Hfq, CtrA, DivK and PleD); a remodeling of some cell surface components (O-antigen, succinoglucan, curdlan, att genes, putative fasciclin) and functions associated with plant defense (Ef-Tu and flagellin pathogen-associated molecular pattern-response and glycerol-3-phosphate and nitric oxide signaling); and an exploitation of a wide variety of host resources, including opines, amino acids, sugars, organic acids, phosphate, phosphorylated compounds, and iron. In addition, construction of transgenic A. thaliana lines expressing a lactonase enzyme showed that Ti plasmid transfer could escape host-mediated quorum-quenching. Finally, construction of knock-out mutants in A. tumefaciens showed that expression of some At plasmid genes seemed more costly than the selective advantage they would have conferred in tumor colonization. We provide the first overview of A. tumefaciens lifestyle in a plant tumor and reveal novel signaling and trophic interplays for investigating host-pathogen interactions. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Boltaña, Sebastian; Valenzuela-Miranda, Diego; Aguilar, Andrea; Mackenzie, Simon; Gallardo-Escárate, Cristian
2016-03-04
Despite evidence for participation in the host response to infection, the roles of many long non-coding RNAs (lncRNAs) remain unknown. Therefore, the aims of this study were to identify lncRNAs in Atlantic salmon (Salmo salar) and evaluate their transcriptomic regulation during ISA virus (ISAV) infection, an Orthomyxoviridae virus associated with high mortalities in salmonid aquaculture. Using next-generation sequencing, whole-transcriptome analysis of the Salmo salar response to ISAV infection was performed, identifying 5,636 putative lncRNAs with a mean length of 695 base pairs. The transcriptional modulation evidenced a similar number of differentially expressed lncRNAs in the gills (3,294), head-kidney (3,275), and liver (3,325) over the course of the infection. Moreover, analysis of a subset of these lncRNAs showed the following: (i) Most were similarly regulated in response to ISA virus infection; (ii) The transcript subsets were uniquely modulated in each tissue (gills, liver, and head-kidney); and (iii) A subset of lncRNAs were upregulated for each tissue and time analysed, indicating potential markers for ISAV infection. These findings represent the first discovery of widespread differential expression of lncRNAs in response to virus infection in non-model species, suggesting that lncRNAs could be involved in regulating the host response during ISAV infection.
Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection.
Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A; Widen, Steven G; Wood, Thomas G; Asgari, Sassan; Hughes, Grant L
2017-01-01
Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti , which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection.
Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection
Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A.; Widen, Steven G.; Wood, Thomas G.
2017-01-01
ABSTRACT Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti, which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection. PMID:29202041
Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.
2015-01-01
Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686
Nalpas, Nicolas C; Magee, David A; Conlon, Kevin M; Browne, John A; Healy, Claire; McLoughlin, Kirsten E; Rue-Albrecht, Kévin; McGettigan, Paul A; Killick, Kate E; Gormley, Eamonn; Gordon, Stephen V; MacHugh, David E
2015-09-08
Mycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48 hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms.
Wang, Lin; Tang, Nan; Gao, Xinlei; Guo, Dongyang; Chang, Zhaoxia; Fu, Yating; Akinyemi, Ibukun A; Wu, Qingfa
2016-11-02
Sogatella furcifera, the white-backed planthopper (WBPH), has become one of the most destructive pests in rice production owing to its plant sap-sucking behavior and efficient transmission of Southern rice black-streaked dwarf virus (SRBSDV) in a circulative, propagative and persistent manner. The dynamic and complex SRBSDV-WBPH-rice plant interaction is still poorly understood. In this study, based on a homology-based genome-wide analysis, 348 immune-related genes belonging to 28 families were identified in WBPH. A transcriptome analysis of non-viruliferous (NVF) and viruliferous groups with high viral titers (HVT) and median viral titers (MVT) revealed that feeding on SRBSDV-infected rice plants has a significant impact on gene expression, regardless of viral titers in insects. We identified 278 up-regulated and 406 down-regulated genes shared among the NVF, MVT, and HVT groups and detected significant down-regulation of primary metabolism-related genes and oxidoreductase. In viruliferous WBPH with viral titer-specific transcriptome changes, 1,906 and 1,467 genes exhibited strict monotonically increasing and decreasing expression, respectively. The RNAi pathway was the major antiviral response to increasing viral titers among diverse immune responses. These results clarify the responses of immune genes and the transcriptome of WBPH to SRBSDV and improve our knowledge of the functional relationship between pathogen, vector, and host.
Morrison, Juliet; Rathore, Abhay P S; Mantri, Chinmay K; Aman, Siti A B; Nishida, Andrew; St John, Ashley L
2017-09-15
There are no approved therapeutics for the treatment of dengue disease despite the global prevalence of dengue virus (DENV) and its mosquito vectors. DENV infections can lead to vascular complications, hemorrhage, and shock due to the ability of DENV to infect a variety of immune and nonimmune cell populations. Increasingly, studies have implicated the host response as a major contributor to severe disease. Inflammatory products of various cell types, including responding T cells, mast cells (MCs), and infected monocytes, can contribute to immune pathology. In this study, we show that the host response to DENV infection in immunocompetent mice recapitulates transcriptional changes that have been described in human studies. We found that DENV infection strongly induced metabolic dysregulation, complement signaling, and inflammation. DENV also affected the immune cell content of the spleen and liver, enhancing NK, NKT, and CD8 + T cell activation. The MC-stabilizing drug ketotifen reversed many of these responses without suppressing memory T cell formation and induced additional changes in the transcriptome and immune cell composition of the spleen, consistent with reduced inflammation. This study provides a global transcriptional map of immune activation in DENV target organs of an immunocompetent host and supports the further development of targeted immunomodulatory strategies to treat DENV disease. IMPORTANCE Dengue virus (DENV), which causes febrile illness, is transmitted by mosquito vectors throughout tropical and subtropical regions of the world. Symptoms of DENV infection involve damage to blood vessels and, in rare cases, hemorrhage and shock. Currently, there are no targeted therapies to treat DENV infection, but it is thought that drugs that target the host immune response may be effective in limiting symptoms that result from excessive inflammation. In this study, we measured the host transcriptional response to infection in multiple DENV target organs using a mouse model of disease. We found that DENV infection induced metabolic dysregulation and inflammatory responses and affected the immune cell content of the spleen and liver. The use of the mast cell stabilization drug ketotifen reversed many of these responses and induced additional changes in the transcriptome and immune cell repertoire that contribute to decreased dengue disease. Copyright © 2017 Morrison et al.
Transcriptome profilng of defense responses to aphid feeding in wheat
USDA-ARS?s Scientific Manuscript database
Greenbug (Schizaphis graminum) is a serious aphid pest in small grain crops in the southern Great Plains of the US. We are trying to understand the molecular mechanisms of host resistance against aphid infestation in the grass genome using wheat-greenbug as a model system. In the present study, a mi...
Guan, Wenda; Wu, Nicholas C; Lee, Horace H Y; Li, Yimin; Jiang, Wenxin; Shen, Lihan; Wu, Douglas C; Chen, Rongchang; Zhong, Nanshan; Wilson, Ian A; Peiris, Malik; Yang, Zifeng; Mok, Chris K P
2018-05-28
Avian influenza A (H7N9) viruses emerged in China in 2013 and caused zoonotic disease associated with a case-fatality ratio of over 30%. Transcriptional profiles in peripheral blood reflect host responses and can help to elucidate disease pathogenesis. We correlated serial blood transcriptomic profiles of patients with avian influenza A (H7N9) virus infection and determined the biological significances from the analysis. We found that specific gene expression profiles in the blood were strongly correlated with the PaO2/FiO2 ratio and viral load in the lower respiratory tract (LRT). Cell cycle and leukocyte-related immunity were activated at the acute stage of the infection while T cell functions and various metabolic processes were associated with the recovery phase of the illness. A transition from systemic innate to adaptive immunity was found. We developed a novel approach for transcriptomic analysis to identify key host responses that were strongly correlated with specific clinical and virologic parameters in patients with H7N9 infection.
2010-01-01
Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE) are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host-pathogen interactions and evolutionary history of immunogenetics from fish to mammals. PMID:20707909
Geng, Lei; Xu, Jia-Ping; Yu, Dong; Zhang, Shang-Zhi; Ma, Yan; Fei, Dong-Qiong
2016-01-01
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens causing severe economic losses in sericulture. However, the molecular mechanism of silkworm resistance to BmNPV remains largely unknown. Here, the recurrent parent P50 (susceptible strain) and the near-isogenic line BC9 (resistance strain) were used in a comparative transcriptome study examining the response to infection with BmNPV. A total of 14,300 unigenes were obtained from two different resistant strains; of these, 869 differentially expressed genes (DEGs) were identified after comparing the four transcriptomes. Many DEGs associated with protein metabolism, cytoskeleton, and apoptosis may be involved in the host response to BmNPV infection. Moreover, some immunity related genes were also altered following BmNPV infection. Specifically, after removing genetic background and individual immune stress response genes, 22 genes were found to be potentially involved in repressing BmNPV infection. These genes were related to transport, virus replication, intracellular innate immune, and apoptosis. Our study provided an overview of the molecular mechanism of silkworm resistance to BmNPV infection and laid a foundation for controlling BmNPV in the future. PMID:27168061
Transcriptome sequencing and annotation for the Jamaican fruit bat (Artibeus jamaicensis).
Shaw, Timothy I; Srivastava, Anuj; Chou, Wen-Chi; Liu, Liang; Hawkinson, Ann; Glenn, Travis C; Adams, Rick; Schountz, Tony
2012-01-01
The Jamaican fruit bat (Artibeus jamaicensis) is one of the most common bats in the tropical Americas. It is thought to be a potential reservoir host of Tacaribe virus, an arenavirus closely related to the South American hemorrhagic fever viruses. We performed transcriptome sequencing and annotation from lung, kidney and spleen tissues using 454 and Illumina platforms to develop this species as an animal model. More than 100,000 contigs were assembled, with 25,000 genes that were functionally annotated. Of the remaining unannotated contigs, 80% were found within bat genomes or transcriptomes. Annotated genes are involved in a broad range of activities ranging from cellular metabolism to genome regulation through ncRNAs. Reciprocal BLAST best hits yielded 8,785 sequences that are orthologous to mouse, rat, cattle, horse and human. Species tree analysis of sequences from 2,378 loci was used to achieve 95% bootstrap support for the placement of bat as sister to the clade containing horse, dog, and cattle. Through substitution rate estimation between bat and human, 32 genes were identified with evidence for positive selection. We also identified 466 immune-related genes, which may be useful for studying Tacaribe virus infection of this species. The Jamaican fruit bat transcriptome dataset is a resource that should provide additional candidate markers for studying bat evolution and ecology, and tools for analysis of the host response and pathology of disease.
Pan, Wei; Shen, Yujuan; Han, Xiuming; Wang, Ying; Liu, Hua; Jiang, Yanyan; Zhang, Yumei; Wang, Yanjuan; Xu, Yuxin; Cao, Jianping
2014-01-01
Background Cystic hydatid disease (CHD) is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs) are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs) released by the parasite. Methodology/Principal Findings A large number of nonredundant sequences as unigenes were generated (26,514), of which 22,910 (86.4%) were mapped to the newly published E. granulosus genome and 17,705 (66.8%) were distributed within the coding sequence (CDS) regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN) pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways. Conclusions/Significance This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control. PMID:25500817
2012-01-01
Background We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera) that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. Results We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. Conclusions This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management. PMID:22747707
The role of saliva in tick feeding.
Francischetti, Ivo M B; Sa-Nunes, Anderson; Mans, Ben J; Santos, Isabel M; Ribeiro, Jose M C
2009-01-01
When attempting to feed on their hosts, ticks face the problem of host hemostasis (the vertebrate mechanisms that prevent blood loss), inflammation (that can produce itching or pain and thus initiate defensive behavior on their hosts) and adaptive immunity (by way of both cellular and humoral responses). Against these barriers, ticks evolved a complex and sophisticated pharmacological armamentarium, consisting of bioactive lipids and proteins, to assist blood feeding. Recent progress in transcriptome research has uncovered that hard ticks have hundreds of different proteins expressed in their salivary glands, the majority of which have no known function, and include many novel protein families (e.g., their primary structure is unique to ticks). This review will address the vertebrate mechanisms of these barriers as a guide to identify the possible targets of these large numbers of known salivary proteins with unknown function. We additionally provide a supplemental Table that catalogues over 3,500 putative salivary proteins from various tick species, which might assist the scientific community in the process of functional identification of these unique proteins. This supplemental file is accessble fromhttp://exon.niaid.nih.gov/transcriptome/tick_review/Sup-Table-1.xls.gz.
Ryabov, Eugene V.; Wood, Graham R.; Fannon, Jessica M.; Moore, Jonathan D.; Bull, James C.; Chandler, Dave; Mead, Andrew; Burroughs, Nigel; Evans, David J.
2014-01-01
The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera), in particular the Iflavirus Deformed Wing Virus (DWV). In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine whether changes in the virus population were due Varroa amplifying and introducing virulent virus strains and/or suppressing the host immune responses, we exposed Varroa-naïve larvae to oral and Varroa-transmitted DWV. We monitored virus levels and diversity in developing pupae and associated Varroa, the resulting RNAi response and transcriptome changes in the host. Exposed pupae were stratified by Varroa association (presence/absence) and virus levels (low/high) into three groups. Varroa-free pupae all exhibited low levels of a highly diverse DWV population, with those exposed per os (group NV) exhibiting changes in the population composition. Varroa-associated pupae exhibited either low levels of a diverse DWV population (group VL) or high levels of a near-clonal virulent variant of DWV (group VH). These groups and unexposed controls (C) could be also discriminated by principal component analysis of the transcriptome changes observed, which included several genes involved in development and the immune response. All Varroa tested contained a diverse replicating DWV population implying the virulent variant present in group VH, and predominating in RNA-seq analysis of temporally and geographically separate Varroa-infested colonies, was selected upon transmission from Varroa, a conclusion supported by direct injection of pupae in vitro with mixed virus populations. Identification of a virulent variant of DWV, the role of Varroa in its transmission and the resulting host transcriptome changes furthers our understanding of this important viral pathogen of honeybees. PMID:24968198
2011-01-01
The response of the abomasal transcriptome to gastrointestinal parasites was evaluated in parasite-susceptible and parasite-resistant Angus cattle using RNA-seq at a depth of 23.7 million sequences per sample. These cattle displayed distinctly separate resistance phenotypes as assessed by fecal egg counts. Approximately 65.3% of the 23 632 bovine genes were expressed in the fundic abomasum. Of these, 13 758 genes were expressed in all samples tested and likely represent core components of the bovine abomasal transcriptome. The gene (BT14427) with the most abundant transcript, accounting for 10.4% of sequences in the transcriptome, is located on chromosome 29 and has unknown functions. Additionally, PIGR (1.6%), Complement C3 (0.7%), and Immunoglobulin J chain (0.5%) were among the most abundant transcripts in the transcriptome. Among the 203 genes impacted, 64 were significantly over-expressed in resistant animals at a stringent cutoff (FDR < 5%). Among the 94 224 splice junctions identified, 133 were uniquely present: 90 were observed only in resistant animals, and 43 were present only in susceptible animals. Gene Ontology (GO) enrichment of the genes under study uncovered an association with lipid metabolism, which was confirmed by an independent pathway analysis. Several pathways, such as FXR/RXR activation, LXR/RXR activation, LPS/IL-1 mediated inhibition of RXR function, and arachidonic acid metabolism, were impacted in resistant animals, which are potentially involved in the development of parasite resistance in cattle. Our results provide insights into the development of host immunity to gastrointestinal nematode infection and will facilitate understanding of mechanism underlying host resistance. PMID:22129081
Josset, Laurence; Zeng, Hui; Kelly, Sara M; Tumpey, Terrence M; Katze, Michael G
2014-02-04
A novel avian-origin H7N9 influenza A virus (IAV) emerged in China in 2013, causing mild to lethal human respiratory infections. H7N9 originated with multiple reassortment events between avian viruses and carries genetic markers of human adaptation. Determining whether H7N9 induces a host response closer to that with human or avian IAV is important in order to better characterize this emerging virus. Here we compared the human lung epithelial cell response to infection with A/Anhui/01/13 (H7N9) or highly pathogenic avian-origin H5N1, H7N7, or human seasonal H3N2 IAV. The transcriptomic response to H7N9 was highly specific to this strain but was more similar to the response to human H3N2 than to that to other avian IAVs. H7N9 and H3N2 both elicited responses related to eicosanoid signaling and chromatin modification, whereas H7N9 specifically induced genes regulating the cell cycle and transcription. Among avian IAVs, the response to H7N9 was closest to that elicited by H5N1 virus. Host responses common to H7N9 and the other avian viruses included the lack of induction of the antigen presentation pathway and reduced proinflammatory cytokine induction compared to that with H3N2. Repression of these responses could have an important impact on the immunogenicity and virulence of H7N9 in humans. Finally, using a genome-based drug repurposing approach, we identified several drugs predicted to regulate the host response to H7N9 that may act as potential antivirals, including several kinase inhibitors, as well as FDA-approved drugs, such as troglitazone and minocycline. Importantly, we validated that minocycline inhibited H7N9 replication in vitro, suggesting that our computational approach holds promise for identifying novel antivirals. Whether H7N9 will be the next pandemic influenza virus or will persist and sporadically infect humans from its avian reservoir, similar to H5N1, is not known yet. High-throughput profiling of the host response to infection allows rapid characterization of virus-host interactions and generates many hypotheses that will accelerate understanding and responsiveness to this potential threat. We show that the cellular response to H7N9 virus is closer to that induced by H3N2 than to that induced by H5N1, reflecting the potential of this new virus for adaptation to humans. Importantly, dissecting the host response to H7N9 may guide host-directed antiviral development.
Boltaña, Sebastian; Valenzuela-Miranda, Diego; Aguilar, Andrea; Mackenzie, Simon; Gallardo-Escárate, Cristian
2016-01-01
Despite evidence for participation in the host response to infection, the roles of many long non-coding RNAs (lncRNAs) remain unknown. Therefore, the aims of this study were to identify lncRNAs in Atlantic salmon (Salmo salar) and evaluate their transcriptomic regulation during ISA virus (ISAV) infection, an Orthomyxoviridae virus associated with high mortalities in salmonid aquaculture. Using next-generation sequencing, whole-transcriptome analysis of the Salmo salar response to ISAV infection was performed, identifying 5,636 putative lncRNAs with a mean length of 695 base pairs. The transcriptional modulation evidenced a similar number of differentially expressed lncRNAs in the gills (3,294), head-kidney (3,275), and liver (3,325) over the course of the infection. Moreover, analysis of a subset of these lncRNAs showed the following: (i) Most were similarly regulated in response to ISA virus infection; (ii) The transcript subsets were uniquely modulated in each tissue (gills, liver, and head-kidney); and (iii) A subset of lncRNAs were upregulated for each tissue and time analysed, indicating potential markers for ISAV infection. These findings represent the first discovery of widespread differential expression of lncRNAs in response to virus infection in non-model species, suggesting that lncRNAs could be involved in regulating the host response during ISAV infection. PMID:26939752
Transcriptomic Signatures of Tacaribe Virus-Infected Jamaican Fruit Bats
Gerrard, Diana L.; Hawkinson, Ann; Sherman, Tyler; Modahl, Cassandra M.; Hume, Gretchen; Campbell, Corey L.; Schountz, Tony
2017-01-01
ABSTRACT Tacaribe virus (TCRV) is a mammalian arenavirus that was first isolated from artibeus bats in the 1950s. Subsequent experimental infection of Jamaican fruit bats (Artibeus jamaicensis) caused a disease similar to that of naturally infected bats. Although substantial attention has focused on bats as reservoir hosts of viruses that cause human disease, little is known about the interactions between bats and their pathogens. We performed a transcriptome-wide study to illuminate the response of Jamaican fruit bats experimentally infected with TCRV. Differential gene expression analysis of multiple tissues revealed global and organ-specific responses associated with innate antiviral responses, including interferon alpha/beta and Toll-like receptor signaling, activation of complement cascades, and cytokine signaling, among others. Genes encoding proteins involved in adaptive immune responses, such as gamma interferon signaling and costimulation of T cells by the CD28 family, were also altered in response to TCRV infection. Immunoglobulin gene expression was also elevated in the spleens of infected bats, including IgG, IgA, and IgE isotypes. These results indicate an active innate and adaptive immune response to TCRV infection occurred but did not prevent fatal disease. This de novo assembly provides a high-throughput data set of the Jamaican fruit bat and its host response to TCRV infection, which remains a valuable tool to understand the molecular signatures involved in antiviral responses in bats. IMPORTANCE As reservoir hosts of viruses associated with human disease, little is known about the interactions between bats and viruses. Using Jamaican fruit bats infected with Tacaribe virus (TCRV) as a model, we characterized the gene expression responses to infection in different tissues and identified pathways involved with the response to infection. This report is the most detailed gene discovery work in the species to date and the first to describe immune gene expression responses in bats during a pathogenic viral infection. PMID:28959737
Sagawa, Janelle M.; Fritz, Heather M.; Boothroyd, John C.
2017-01-01
Toxoplasmosis is a zoonotic infection affecting approximately 30% of the world’s human population. After sexual reproduction in the definitive feline host, Toxoplasma oocysts, each containing 8 sporozoites, are shed into the environment where they can go on to infect humans and other warm-blooded intermediate hosts. Here, we use an in vitro model to assess host transcriptomic changes that occur in the earliest stages of such infections. We show that infection of rat intestinal epithelial cells with mature sporozoites primarily results in higher expression of genes associated with Tumor Necrosis Factor alpha (TNFα) signaling via NF-κB. Furthermore, we find that, consistent with their biology, these mature, invaded sporozoites display a transcriptome intermediate between the previously reported day 10 oocysts and that of their tachyzoite counterparts. Thus, this study uncovers novel host and pathogen factors that may be critical for the establishment of a successful intracellular niche following sporozoite-initiated infection. PMID:28362800
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus, a highly cell-associated oncogenic 'alpha-herpesvirus, is the causative agent of a T cell lymphoma and neuropathic disease called Marek’s disease. The skin is the only anatomical site where infectious enveloped cell-free virions are produced and shed into the environment. Stud...
USDA-ARS?s Scientific Manuscript database
Aflatoxin contamination of peanut and maize is exacerbated by drought stress. Reactive oxygen species (ROS) are produced in host plants during drought/heat stress, and are hypothesized to stimulate aflatoxin production. In order to better understand why Aspergillus flavus produces aflatoxin and the ...
Anjanappa, Ravi B; Mehta, Devang; Okoniewski, Michal J; Szabelska-Berȩsewicz, Alicja; Gruissem, Wilhelm; Vanderschuren, Hervé
2018-02-01
Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) are responsible for significant cassava yield losses in eastern sub-Saharan Africa. To study the possible mechanisms of plant resistance to CBSVs, we inoculated CBSV-susceptible and CBSV-resistant cassava varieties with a mixed infection of CBSVs using top-cleft grafting. Transcriptome profiling of the two cassava varieties was performed at the earliest time point of full infection (28 days after grafting) in the susceptible scions. The expression of genes encoding proteins in RNA silencing, salicylic acid pathways and callose deposition was altered in the susceptible cassava variety, but transcriptional changes were limited in the resistant variety. In total, the expression of 585 genes was altered in the resistant variety and 1292 in the susceptible variety. Transcriptional changes led to the activation of β-1,3-glucanase enzymatic activity and a reduction in callose deposition in the susceptible cassava variety. Time course analysis also showed that CBSV replication in susceptible cassava induced a strong up-regulation of RDR1, a gene previously reported to be a susceptibility factor in other potyvirus-host pathosystems. The differences in the transcriptional responses to CBSV infection indicated that susceptibility involves the restriction of callose deposition at plasmodesmata. Aniline blue staining of callose deposits also indicated that the resistant variety displays a moderate, but significant, increase in callose deposition at the plasmodesmata. Transcriptome data suggested that resistance does not involve typical antiviral defence responses (i.e. RNA silencing and salicylic acid). A meta-analysis of the current RNA-sequencing (RNA-seq) dataset and selected potyvirus-host and virus-cassava RNA-seq datasets revealed that the conservation of the host response across pathosystems is restricted to genes involved in developmental processes. © 2017 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.
Shrestha, Anita; Champagne, Donald E; Culbreath, Albert K; Rotenberg, Dorith; Whitfield, Anna E; Srinivasan, Rajagopalbabu
2017-08-01
Persistent propagative viruses maintain intricate interactions with their arthropod vectors. In this study, we investigated the transcriptome-level responses associated with a persistent propagative phytovirus infection in various life stages of its vector using an Illumina HiSeq sequencing platform. The pathosystem components included a Tospovirus, Tomato spotted wilt virus (TSWV), its insect vector, Frankliniella fusca (Hinds), and a plant host, Arachis hypogaea (L.). We assembled (de novo) reads from three developmental stage groups of virus-exposed and non-virus-exposed F. fusca into one transcriptome consisting of 72 366 contigs and identified 1161 differentially expressed (DE) contigs. The number of DE contigs was greatest in adults (female) (562) when compared with larvae (first and second instars) (395) and pupae (pre- and pupae) (204). Upregulated contigs in virus-exposed thrips had blastx annotations associated with intracellular transport and virus replication. Upregulated contigs were also assigned blastx annotations associated with immune responses, including apoptosis and phagocytosis. In virus-exposed larvae, Blast2GO analysis identified functional groups, such as multicellular development with downregulated contigs, while reproduction, embryo development and growth were identified with upregulated contigs in virus-exposed adults. This study provides insights into differences in transcriptome-level responses modulated by TSWV in various life stages of an important vector, F. fusca.
Damron, F. Heath; Oglesby-Sherrouse, Amanda G.; Wilks, Angela; Barbier, Mariette
2016-01-01
Determining bacterial gene expression during infection is fundamental to understand pathogenesis. In this study, we used dual RNA-seq to simultaneously measure P. aeruginosa and the murine host’s gene expression and response to respiratory infection. Bacterial genes encoding products involved in metabolism and virulence were differentially expressed during infection and the type III and VI secretion systems were highly expressed in vivo. Strikingly, heme acquisition, ferric-enterobactin transport, and pyoverdine biosynthesis genes were found to be significantly up-regulated during infection. In the mouse, we profiled the acute immune response to P. aeruginosa and identified the pro-inflammatory cytokines involved in acute response to the bacterium in the lung. Additionally, we also identified numerous host iron sequestration systems upregulated during infection. Overall, this work sheds light on how P. aeruginosa triggers a pro-inflammatory response and competes for iron with the host during infection, as iron is one of the central elements for which both pathogen and host fight during acute pneumonia. PMID:27982111
Sharma, Vivek; Salwan, Richa; Sharma, Prem N; Kanwar, S S
2017-02-01
In the present study, different transcripts of Trichoderma harzianum ThHP-3 were evaluated for their response against four fungal pathogens Fusarium oxysporum, Colletotrichum capsici, Colletotrichum truncatum and Gloesercospora sorghi using RT-qPCR. The time course study of T. harzianum transcripts related to signal transduction, lytic enzymes, secondary metabolites and various transporters revealed variation in expression against four fungal pathogens. In a broader term, the transcripts were upregulated at various time intervals but the optimum expression of cyp3, abc, nrp, tga1, pmk, ech42 and glh20 varied with respect to host fungi. Additionally, the expression of transcripts related to transporters/cytochromes was also observed against Fusarium oxysporum after 96h whereas transcripts related to secondary metabolites and lytic enzymes showed significant difference in expression against Colletotrichum spp. from 72 to 96h. This is first study on transcriptomic response of T. harzianum against pathogenic fungi which shows their host specific response. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanisms of macroevolution: polyphagous plasticity in butterfly larvae revealed by RNA-Seq.
de la Paz Celorio-Mancera, Maria; Wheat, Christopher W; Vogel, Heiko; Söderlind, Lina; Janz, Niklas; Nylin, Sören
2013-10-01
Transcriptome studies of insect herbivory are still rare, yet studies in model systems have uncovered patterns of transcript regulation that appear to provide insights into how insect herbivores attain polyphagy, such as a general increase in expression breadth and regulation of ribosomal, digestion- and detoxification-related genes. We investigated the potential generality of these emerging patterns, in the Swedish comma, Polygonia c-album, which is a polyphagous, widely-distributed butterfly. Urtica dioica and Ribes uva-crispa are hosts of P. c-album, but Ribes represents a recent evolutionary shift onto a very divergent host. Utilizing the assembled transcriptome for read mapping, we assessed gene expression finding that caterpillar life-history (i.e. 2nd vs. 4th-instar regulation) had a limited influence on gene expression plasticity. In contrast, differential expression in response to host-plant identified genes encoding serine-type endopeptidases, membrane-associated proteins and transporters. Differential regulation of genes involved in nucleic acid binding was also observed suggesting that polyphagy involves large scale transcriptional changes. Additionally, transcripts coding for structural constituents of the cuticle were differentially expressed in caterpillars in response to their diet indicating that the insect cuticle may be a target for plant defence. Our results state that emerging patterns of transcript regulation from model species appear relevant in species when placed in an evolutionary context. © 2013 John Wiley & Sons Ltd.
Remus, Daniela M.; Bongers, Roger S.; Meijerink, Marjolein; Fusetti, Fabrizia; Poolman, Bert; de Vos, Paul; Wells, Jerry M.; Bron, Peter A.
2013-01-01
Sortases are transpeptidases that couple surface proteins to the peptidoglycan of Gram-positive bacteria, and several sortase-dependent proteins (SDPs) have been demonstrated to be crucial for the interactions of pathogenic and nonpathogenic bacteria with their hosts. Here, we studied the role of sortase A (SrtA) in Lactobacillus plantarum WCFS1, a model Lactobacillus for probiotic organisms. An isogenic srtA deletion derivative was constructed which did not show residual SrtA activity. DNA microarray-based transcriptome analysis revealed that the srtA deletion had only minor impact on the full-genome transcriptome of L. plantarum, while the expression of SDP-encoding genes remained completely unaffected. Mass spectrometry analysis of the bacterial cell surface proteome, which was assessed by trypsinization of intact bacterial cells and by LiCl protein extraction, revealed that SrtA is required for the appropriate subcellular location of specific SDPs and for their covalent coupling to the cell envelope, respectively. We further found that SrtA deficiency did not affect the persistence and/or survival of L. plantarum in the gastrointestinal tract of mice. In addition, an in vitro immature dendritic cell (iDC) assay revealed that the removal of surface proteins by LiCl strongly affected the proinflammatory signaling properties of the SrtA-deficient strain but not of the wild type, which suggests a role of SDPs in host immune response modulation. PMID:23175652
Wu, Ronghua; Sheng, Xiuzhen; Tang, Xiaoqian; Xing, Jing; Zhan, Wenbin
2018-01-01
Lymphocystis disease virus (LCDV) infection may induce a variety of host gene expression changes associated with disease development; however, our understanding of the molecular mechanisms underlying host-virus interactions is limited. In this study, RNA sequencing (RNA-seq) was employed to investigate differentially expressed genes (DEGs) in the gill of the flounder (Paralichthys olivaceus) at one week post LCDV infection. Transcriptome sequencing of the gill with and without LCDV infection was performed using the Illumina HiSeq 2500 platform. In total, RNA-seq analysis generated 193,225,170 clean reads aligned with 106,293 unigenes. Among them, 1812 genes were up-regulated and 1626 genes were down-regulated after LCDV infection. The DEGs related to cellular process and metabolism occupied the dominant position involved in the LCDV infection. A further function analysis demonstrated that the genes related to inflammation, the ubiquitin-proteasome pathway, cell proliferation, apoptosis, tumor formation, and anti-viral defense showed a differential expression. Several DEGs including β actin, toll-like receptors, cytokine-related genes, antiviral related genes, and apoptosis related genes were involved in LCDV entry and immune response. In addition, RNA-seq data was validated by quantitative real-time PCR. For the first time, the comprehensive gene expression study provided valuable insights into the host-pathogen interaction between flounder and LCDV. PMID:29304016
Wu, Ronghua; Sheng, Xiuzhen; Tang, Xiaoqian; Xing, Jing; Zhan, Wenbin
2018-01-05
Lymphocystis disease virus (LCDV) infection may induce a variety of host gene expression changes associated with disease development; however, our understanding of the molecular mechanisms underlying host-virus interactions is limited. In this study, RNA sequencing (RNA-seq) was employed to investigate differentially expressed genes (DEGs) in the gill of the flounder ( Paralichthys olivaceus ) at one week post LCDV infection. Transcriptome sequencing of the gill with and without LCDV infection was performed using the Illumina HiSeq 2500 platform. In total, RNA-seq analysis generated 193,225,170 clean reads aligned with 106,293 unigenes. Among them, 1812 genes were up-regulated and 1626 genes were down-regulated after LCDV infection. The DEGs related to cellular process and metabolism occupied the dominant position involved in the LCDV infection. A further function analysis demonstrated that the genes related to inflammation, the ubiquitin-proteasome pathway, cell proliferation, apoptosis, tumor formation, and anti-viral defense showed a differential expression. Several DEGs including β actin , toll-like receptors, cytokine-related genes, antiviral related genes, and apoptosis related genes were involved in LCDV entry and immune response. In addition, RNA-seq data was validated by quantitative real-time PCR. For the first time, the comprehensive gene expression study provided valuable insights into the host-pathogen interaction between flounder and LCDV.
Zhang, Qu; Hill, Geoffrey E; Edwards, Scott V; Backström, Niclas
2014-04-24
With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection.
Núñez-Acuña, Gustavo; Gallardo-Escárate, Cristian
2015-02-15
Peroxinectin (PX) is a protein involved in cell adhesion, peroxidase activities, and the encapsulation of invaders in diverse species, including parasitic copepods. Recently, a transcript denoted peroxinectin-like was identified in the salmon louse Lepeophtheirus salmonis, and this was significantly correlated with the immune response of host fish. Thus, the PX gene is a potential candidate to evaluate host-parasite interactions, as well as to analyze responses to delousing drugs used in the salmon aquaculture industry worldwide. The objective of this study was to identify Peroxinectin transcripts in the Chilean salmon louse Caligus rogercresseyi, and to determine expression levels after exposition to the antiparasitics deltamethrin and azamethiphos. Two novel transcript homologs to peroxinectins were identified from a transcriptomic library of C. rogercresseyi. Moreover, in silico gene transcription levels were evaluated through RNA-seq analyses based on unique gene read levels in transcriptomic libraries that were constructed from sea lice exposed to delousing drugs. The identified transcripts were named Peroxinectin-Cr1 and Peroxinectin-Cr2, which, respectively, had lengths of 2543 and 2555 base pairs. Both PX transcripts were highly associated with male adults, and transcription levels were significantly reduced by deltamethrin and azamethiphos. This result suggests a modulation of peroxinectin in response to delousing drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Núñez-Acuña, Gustavo; Gonçalves, Ana Teresa; Valenzuela-Muñoz, Valentina; Pino-Marambio, Jorge; Wadsworth, Simon; Gallardo-Escárate, Cristian
2015-11-01
One of the most significant threats to the Chilean salmon aquaculture industry is the ectoparasitic sea louse Caligus rogercresseyi. To cope with sea lice infestations, functional diets have become an important component in strengthening the host immune response. The aim of this study was to evaluate molecular mechanisms activated through immunostimulation by in-feed plant-derived additives in Atlantic salmon infected with sea lice. Herein, a transcriptome-wide sequencing analysis was performed from skin and head kidney tissues, evidencing that the immune response genes were the most variable after the challenge, especially in the head kidney, while other genes involved in metabolism were highly expressed individuals fed with the immunostimulants. Interestingly, defensive enzymes such as Cytochrome p450 and serpins were down-regulated in infested individuals, especially in skin tissue. Additionally, MHC-I and MHC-II genes were differentially expressed after the incorporation of the in-feed additives, giving some cues about the protection mechanisms of plant-derived compound as immunostimulants for infested salmons. This is the first published study that evaluates the transcriptomic response of sea lice-infested Atlantic salmon fed with in-feed additives. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xing, Xuexia; Li, Xiaohui; Zhang, Mingzhen; Wang, Yuan; Liu, Bingyang; Xi, Qiliang; Zhao, Ke; Wu, Yunjie; Yang, Tiezhao
2017-01-22
The root-knot nematode (RKN) Meloidogyne incognita reproduces on the roots of tobacco (Nicotiana tabacum), damaging crops, reducing crop yield, and causing economic losses annually. The development of resistant genotypes is an alternative strategy to effectively control these losses. However, the molecular mechanism responsible for host pathogenesis and defense responses in tobacco specifically against RKNs remain poorly understood. Here, root transcriptome analysis of resistant (Yuyan12) and susceptible (Changbohuang) tobacco varieties infected with RKNs was performed. Moreover, 2623 and 545 differentially expressed genes (DEGs) in RKN-infected roots were observed in Yuyan12 and Changbohuang, respectively, compared to those in non-infected roots, including 289 DEGs commonly expressed in the two genotypes. Among these DEGs, genes encoding cell wall modifying proteins, auxin-related proteins, the ROS scavenging system, and transcription factors involved in various biological and physiochemical processes were significantly expressed in both the resistant and susceptible genotypes. This work is thus the first report on the relationships in the RKN-tobacco interaction using transcriptome analysis, and the results provide important information on the mechanism of RKN resistance in tobacco. Copyright © 2016 Elsevier Inc. All rights reserved.
Parasite-induced ER stress response in hepatocytes facilitates Plasmodium liver stage infection.
Inácio, Patricia; Zuzarte-Luís, Vanessa; Ruivo, Margarida T G; Falkard, Brie; Nagaraj, Nagarjuna; Rooijers, Koos; Mann, Matthias; Mair, Gunnar; Fidock, David A; Mota, Maria M
2015-08-01
Upon infection of a mammalian host, Plasmodium parasites first replicate inside hepatocytes, generating thousands of new parasites. Although Plasmodium intra-hepatic development represents a substantial metabolic challenge to the host hepatocyte, how infected cells respond to and integrate this stress remains poorly understood. Here, we present proteomic and transcriptomic analyses, revealing that the endoplasmic reticulum (ER)-resident unfolded protein response (UPR) is activated in host hepatocytes upon Plasmodium berghei infection. The expression of XBP1s--the active form of the UPR mediator XBP1--and the liver-specific UPR mediator CREBH is induced by P. berghei infection in vivo. Furthermore, this UPR induction increases parasite liver burden. Altogether, our data suggest that ER stress is a central feature of P. berghei intra-hepatic development, contributing to the success of infection. © 2015 The Authors.
Parasite-induced ER stress response in hepatocytes facilitates Plasmodium liver stage infection
Inácio, Patricia; Zuzarte-Luís, Vanessa; Ruivo, Margarida TG; Falkard, Brie; Nagaraj, Nagarjuna; Rooijers, Koos; Mann, Matthias; Mair, Gunnar; Fidock, David A; Mota, Maria M
2015-01-01
Upon infection of a mammalian host, Plasmodium parasites first replicate inside hepatocytes, generating thousands of new parasites. Although Plasmodium intra-hepatic development represents a substantial metabolic challenge to the host hepatocyte, how infected cells respond to and integrate this stress remains poorly understood. Here, we present proteomic and transcriptomic analyses, revealing that the endoplasmic reticulum (ER)-resident unfolded protein response (UPR) is activated in host hepatocytes upon Plasmodium berghei infection. The expression of XBP1s—the active form of the UPR mediator XBP1—and the liver-specific UPR mediator CREBH is induced by P. berghei infection in vivo. Furthermore, this UPR induction increases parasite liver burden. Altogether, our data suggest that ER stress is a central feature of P. berghei intra-hepatic development, contributing to the success of infection. PMID:26113366
Legeai, Fabrice; Gonzalez-Gonzalez, Angelica; Lavandero, Blas; Simon, Jean-Christophe
2017-01-01
The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity) depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea) on the transcriptome of adult A. ervi females. We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222). As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid) but originating from different host plants (pea versus alfalfa) were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts). We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways. These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if different biotypes of a certain aphid host species (A. pisum) are reared on the same host plant. This difference seems to persist even after the different wasp populations were reared on the same aphid host in the laboratory for more than 50 generations. This indicates that either the imprinting process is very persistent or there is enough genetic/allelic variation between A. ervi populations. The role of distinct molecular mechanisms is discussed in terms of the formation of host fidelity. PMID:28852588
Analysis of the Salivary Gland Transcriptome of Frankliniella occidentalis
Stafford-Banks, Candice A.; Rotenberg, Dorith; Johnson, Brian R.; Whitfield, Anna E.; Ullman, Diane E.
2014-01-01
Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E−6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they transmit. PMID:24736614
Analysis of the salivary gland transcriptome of Frankliniella occidentalis.
Stafford-Banks, Candice A; Rotenberg, Dorith; Johnson, Brian R; Whitfield, Anna E; Ullman, Diane E
2014-01-01
Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E-6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they transmit.
Characterization and analysis of a transcriptome from the boreal spider crab Hyas araneus.
Harms, Lars; Frickenhaus, Stephan; Schiffer, Melanie; Mark, Felix C; Storch, Daniela; Pörtner, Hans-Otto; Held, Christoph; Lucassen, Magnus
2013-12-01
Research investigating the genetic basis of physiological responses has significantly broadened our understanding of the mechanisms underlying organismic response to environmental change. However, genomic data are currently available for few taxa only, thus excluding physiological model species from this approach. In this study we report the transcriptome of the model organism Hyas araneus from Spitsbergen (Arctic). We generated 20,479 transcripts, using the 454 GS FLX sequencing technology in combination with an Illumina HiSeq sequencing approach. Annotation by Blastx revealed 7159 blast hits in the NCBI non-redundant protein database. The comparison between the spider crab H. araneus transcriptome and EST libraries of the European lobster Homarus americanus and the porcelain crab Petrolisthes cinctipes yielded 3229/2581 sequences with a significant hit, respectively. The clustering by the Markov Clustering Algorithm (MCL) revealed a common core of 1710 clusters present in all three species and 5903 unique clusters for H. araneus. The combined sequencing approaches generated transcripts that will greatly expand the limited genomic data available for crustaceans. We introduce the MCL clustering for transcriptome comparisons as a simple approach to estimate similarities between transcriptomic libraries of different size and quality and to analyze homologies within the selected group of species. In particular, we identified a large variety of reverse transcriptase (RT) sequences not only in the H. araneus transcriptome and other decapod crustaceans, but also sea urchin, supporting the hypothesis of a heritable, anti-viral immunity and the proposed viral fragment integration by host-derived RTs in marine invertebrates. © 2013.
USDA-ARS?s Scientific Manuscript database
Aflatoxin contamination of peanut and other crops is a major concern for producers globally, and has been shown to be exacerbated by drought stress. Previous transcriptomic and proteomic examination of the responses of isolates of Aspergillus flavus to drought-related oxidative stress in vitro have ...
Nejat, Naghmeh; Cahill, David M; Vadamalai, Ganesan; Ziemann, Mark; Rookes, James; Naderali, Neda
2015-10-01
Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host-phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.
Foth, Bernardo J; Tsai, Isheng J; Reid, Adam J; Bancroft, Allison J; Nichol, Sarah; Tracey, Alan; Holroyd, Nancy; Cotton, James A; Stanley, Eleanor J; Zarowiecki, Magdalena; Liu, Jimmy Z; Huckvale, Thomas; Cooper, Philip J; Grencis, Richard K; Berriman, Matthew
2014-07-01
Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. We report here the whole-genome sequences of the human-infective Trichuris trichiura and the mouse laboratory model Trichuris muris. On the basis of whole-transcriptome analyses, we identify many genes that are expressed in a sex- or life stage-specific manner and characterize the transcriptional landscape of a morphological region with unique biological adaptations, namely, bacillary band and stichosome, found only in whipworms and related parasites. Using RNA sequencing data from whipworm-infected mice, we describe the regulated T helper 1 (TH1)-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identified numerous new potential drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection.
Nichol, Sarah; Tracey, Alan; Holroyd, Nancy; Cotton, James A.; Stanley, Eleanor J.; Zarowiecki, Magdalena; Liu, Jimmy Z.; Huckvale, Thomas; Cooper, Philip J.; Grencis, Richard K.; Berriman, Matthew
2014-01-01
Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. Here we present the genome sequences of the human-infective Trichuris trichiura and the murine laboratory model T. muris. Based on whole transcriptome analyses we identify many genes that are expressed in a gender- or life stage-specific manner and characterise the transcriptional landscape of a morphological region with unique biological adaptations, namely bacillary band and stichosome, found only in whipworms and related parasites. Using RNAseq data from whipworm-infected mice we describe the regulated Th1-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identifies numerous potential new drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection. PMID:24929830
Microbiota-Induced Changes in Drosophila melanogaster Host Gene Expression and Gut Morphology
Buchon, Nicolas
2014-01-01
ABSTRACT To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. PMID:24865556
Lukša, Juliana; Ravoitytė, Bazilė; Konovalovas, Aleksandras; Aitmanaitė, Lina; Butenko, Anzhelika; Serva, Saulius; Servienė, Elena
2017-01-01
Competitive and naturally occurring yeast killer phenotype is governed by coinfection with dsRNA viruses. Long-term relationship between the host cell and viruses appear to be beneficial and co-adaptive; however, the impact of viral dsRNA on the host gene expression has barely been investigated. Here, we determined the transcriptomic profiles of the host Saccharomyces cerevisiae upon the loss of the M-2 dsRNA alone and the M-2 along with the L-A-lus dsRNAs. We provide a comprehensive study based on the high-throughput RNA-Seq data, Gene Ontology and the analysis of the interaction networks. We identified 486 genes differentially expressed after curing yeast cells of the M-2 dsRNA and 715 genes affected by the elimination of both M-2 and L-A-lus dsRNAs. We report that most of the transcriptional responses induced by viral dsRNAs are moderate. Differently expressed genes are related to ribosome biogenesis, mitochondrial functions, stress response, biosynthesis of lipids and amino acids. Our study also provided insight into the virus–host and virus–virus interplays. PMID:28757599
Lukša, Juliana; Ravoitytė, Bazilė; Konovalovas, Aleksandras; Aitmanaitė, Lina; Butenko, Anzhelika; Yurchenko, Vyacheslav; Serva, Saulius; Servienė, Elena
2017-07-25
Competitive and naturally occurring yeast killer phenotype is governed by coinfection with dsRNA viruses. Long-term relationship between the host cell and viruses appear to be beneficial and co-adaptive; however, the impact of viral dsRNA on the host gene expression has barely been investigated. Here, we determined the transcriptomic profiles of the host Saccharomyces cerevisiae upon the loss of the M-2 dsRNA alone and the M-2 along with the L-A-lus dsRNAs. We provide a comprehensive study based on the high-throughput RNA-Seq data, Gene Ontology and the analysis of the interaction networks. We identified 486 genes differentially expressed after curing yeast cells of the M-2 dsRNA and 715 genes affected by the elimination of both M-2 and L-A-lus dsRNAs. We report that most of the transcriptional responses induced by viral dsRNAs are moderate. Differently expressed genes are related to ribosome biogenesis, mitochondrial functions, stress response, biosynthesis of lipids and amino acids. Our study also provided insight into the virus-host and virus-virus interplays.
Verwaaijen, Bart; Wibberg, Daniel; Kröber, Magdalena; Winkler, Anika; Zrenner, Rita; Bednarz, Hanna; Niehaus, Karsten; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas
2017-01-01
The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1-symptomless, Zone 2-light brown discoloration, and Zone 3-dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited extremely high transcription levels. Most differentially higher expressed transcripts were found within Zone 2. In Zone 3, the zone with the strongest degree of interaction, gene transcripts indicative of apoptotic activity were highly abundant. The transcriptome data presented in this work support previous models of the disease and interaction cycle of R. solani and lettuce and may influence effective techniques for control of this pathogen.
Qin, Shiwen; Ji, Chunyan; Li, Yunfeng; Wang, Zhenzhong
2017-01-01
The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the “Gros Michel” banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity. PMID:28468818
Qin, Shiwen; Ji, Chunyan; Li, Yunfeng; Wang, Zhenzhong
2017-07-05
The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the "Gros Michel" banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity. Copyright © 2017 Qin et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev
The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archivedmore » at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). As a result, by comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.« less
Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev; ...
2014-10-14
The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archivedmore » at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). As a result, by comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.« less
Aevermann, Brian D; Pickett, Brett E; Kumar, Sanjeev; Klem, Edward B; Agnihothram, Sudhakar; Askovich, Peter S; Bankhead, Armand; Bolles, Meagen; Carter, Victoria; Chang, Jean; Clauss, Therese R W; Dash, Pradyot; Diercks, Alan H; Eisfeld, Amie J; Ellis, Amy; Fan, Shufang; Ferris, Martin T; Gralinski, Lisa E; Green, Richard R; Gritsenko, Marina A; Hatta, Masato; Heegel, Robert A; Jacobs, Jon M; Jeng, Sophia; Josset, Laurence; Kaiser, Shari M; Kelly, Sara; Law, G Lynn; Li, Chengjun; Li, Jiangning; Long, Casey; Luna, Maria L; Matzke, Melissa; McDermott, Jason; Menachery, Vineet; Metz, Thomas O; Mitchell, Hugh; Monroe, Matthew E; Navarro, Garnet; Neumann, Gabriele; Podyminogin, Rebecca L; Purvine, Samuel O; Rosenberger, Carrie M; Sanders, Catherine J; Schepmoes, Athena A; Shukla, Anil K; Sims, Amy; Sova, Pavel; Tam, Vincent C; Tchitchek, Nicolas; Thomas, Paul G; Tilton, Susan C; Totura, Allison; Wang, Jing; Webb-Robertson, Bobbie-Jo; Wen, Ji; Weiss, Jeffrey M; Yang, Feng; Yount, Boyd; Zhang, Qibin; McWeeney, Shannon; Smith, Richard D; Waters, Katrina M; Kawaoka, Yoshihiro; Baric, Ralph; Aderem, Alan; Katze, Michael G; Scheuermann, Richard H
2014-01-01
The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.
Aevermann, Brian D.; Pickett, Brett E.; Kumar, Sanjeev; Klem, Edward B.; Agnihothram, Sudhakar; Askovich, Peter S.; Bankhead, Armand; Bolles, Meagen; Carter, Victoria; Chang, Jean; Clauss, Therese R.W.; Dash, Pradyot; Diercks, Alan H.; Eisfeld, Amie J.; Ellis, Amy; Fan, Shufang; Ferris, Martin T.; Gralinski, Lisa E.; Green, Richard R.; Gritsenko, Marina A.; Hatta, Masato; Heegel, Robert A.; Jacobs, Jon M.; Jeng, Sophia; Josset, Laurence; Kaiser, Shari M.; Kelly, Sara; Law, G. Lynn; Li, Chengjun; Li, Jiangning; Long, Casey; Luna, Maria L.; Matzke, Melissa; McDermott, Jason; Menachery, Vineet; Metz, Thomas O.; Mitchell, Hugh; Monroe, Matthew E.; Navarro, Garnet; Neumann, Gabriele; Podyminogin, Rebecca L.; Purvine, Samuel O.; Rosenberger, Carrie M.; Sanders, Catherine J.; Schepmoes, Athena A.; Shukla, Anil K.; Sims, Amy; Sova, Pavel; Tam, Vincent C.; Tchitchek, Nicolas; Thomas, Paul G.; Tilton, Susan C.; Totura, Allison; Wang, Jing; Webb-Robertson, Bobbie-Jo; Wen, Ji; Weiss, Jeffrey M.; Yang, Feng; Yount, Boyd; Zhang, Qibin; McWeeney, Shannon; Smith, Richard D.; Waters, Katrina M.; Kawaoka, Yoshihiro; Baric, Ralph; Aderem, Alan; Katze, Michael G.; Scheuermann, Richard H.
2014-01-01
The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection. PMID:25977790
Nalpas, Nicolas C; Park, Stephen D E; Magee, David A; Taraktsoglou, Maria; Browne, John A; Conlon, Kevin M; Rue-Albrecht, Kévin; Killick, Kate E; Hokamp, Karsten; Lohan, Amanda J; Loftus, Brendan J; Gormley, Eamonn; Gordon, Stephen V; MacHugh, David E
2013-04-08
Mycobacterium bovis, the causative agent of bovine tuberculosis, is an intracellular pathogen that can persist inside host macrophages during infection via a diverse range of mechanisms that subvert the host immune response. In the current study, we have analysed and compared the transcriptomes of M. bovis-infected monocyte-derived macrophages (MDM) purified from six Holstein-Friesian females with the transcriptomes of non-infected control MDM from the same animals over a 24 h period using strand-specific RNA sequencing (RNA-seq). In addition, we compare gene expression profiles generated using RNA-seq with those previously generated by us using the high-density Affymetrix® GeneChip® Bovine Genome Array platform from the same MDM-extracted RNA. A mean of 7.2 million reads from each MDM sample mapped uniquely and unambiguously to single Bos taurus reference genome locations. Analysis of these mapped reads showed 2,584 genes (1,392 upregulated; 1,192 downregulated) and 757 putative natural antisense transcripts (558 upregulated; 119 downregulated) that were differentially expressed based on sense and antisense strand data, respectively (adjusted P-value ≤ 0.05). Of the differentially expressed genes, 694 were common to both the sense and antisense data sets, with the direction of expression (i.e. up- or downregulation) positively correlated for 693 genes and negatively correlated for the remaining gene. Gene ontology analysis of the differentially expressed genes revealed an enrichment of immune, apoptotic and cell signalling genes. Notably, the number of differentially expressed genes identified from RNA-seq sense strand analysis was greater than the number of differentially expressed genes detected from microarray analysis (2,584 genes versus 2,015 genes). Furthermore, our data reveal a greater dynamic range in the detection and quantification of gene transcripts for RNA-seq compared to microarray technology. This study highlights the value of RNA-seq in identifying novel immunomodulatory mechanisms that underlie host-mycobacterial pathogen interactions during infection, including possible complex post-transcriptional regulation of host gene expression involving antisense RNA.
Silva-Brandão, Karina Lucas; Horikoshi, Renato Jun; Bernardi, Daniel; Omoto, Celso; Figueira, Antonio; Brandão, Marcelo Mendes
2017-10-16
Our main purpose was to evaluate the expression of plastic and evolved genes involved in ecological speciation in the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW); and to demonstrate how host plants might influence lineage differentiation in this polyphagous insect. FAW is an important pest of several crops worldwide, and it is differentiated into host plant-related strains, corn (CS) and rice strains (RS). RNA-Seq and transcriptome characterization were applied to evaluate unbiased genetic expression differences in larvae from the two strains, fed on primary (corn) and alternative (rice) host plants. We consider that genes that are differently regulated by the same FAW strain, as a response to different hosts, are "plastic". Otherwise, differences in gene expression between the two strains fed on the same host are considered constitutive differences. Individual performance parameters (larval and pupal weight) varied among conditions (strains vs. hosts). A total of 3657 contigs was related to plastic response, and 2395 contigs were differentially regulated in the two strains feeding on preferential and alternative hosts (constitutive contigs). Three molecular functions were present in all comparisons, both down- and up-regulated: oxidoreductase activity, metal-ion binding, and hydrolase activity. Metabolization of foreign chemicals is among the key functions involved in the phenotypic variation of FAW strains. From an agricultural perspective, high plasticity in families of detoxifying genes indicates the capacity for a rapid response to control compounds such as insecticides.
2013-01-01
Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions. PMID:23302495
Leontovyč, Roman; Young, Neil D.; Korhonen, Pasi K.; Hall, Ross S.; Tan, Patrick; Mikeš, Libor; Kašný, Martin; Horák, Petr; Gasser, Robin B.
2016-01-01
To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts’ immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes. PMID:26863542
Kingsley, Robert A; Kay, Sally; Connor, Thomas; Barquist, Lars; Sait, Leanne; Holt, Kathryn E; Sivaraman, Karthi; Wileman, Thomas; Goulding, David; Clare, Simon; Hale, Christine; Seshasayee, Aswin; Harris, Simon; Thomson, Nicholas R; Gardner, Paul; Rabsch, Wolfgang; Wigley, Paul; Humphrey, Tom; Parkhill, Julian; Dougan, Gordon
2013-08-27
Salmonella enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to Columba livia (rock or feral pigeon) but is also closely related to S. Typhimurium isolates that circulate in livestock and cause a zoonosis characterized by gastroenteritis in humans. DT2 isolates formed a distinct phylogenetic cluster within S. Typhimurium based on whole-genome-sequence polymorphisms. Comparative genome analysis of DT2 94-213 and S. Typhimurium SL1344, DT104, and D23580 identified few differences in gene content with the exception of variations within prophages. However, DT2 94-213 harbored 22 pseudogenes that were intact in other closely related S. Typhimurium strains. We report a novel in silico approach to identify single amino acid substitutions in proteins that have a high probability of a functional impact. One polymorphism identified using this method, a single-residue deletion in the Tar protein, abrogated chemotaxis to aspartate in vitro. DT2 94-213 also exhibited an altered transcriptional profile in response to culture at 42°C compared to that of SL1344. Such differentially regulated genes included a number involved in flagellum biosynthesis and motility. IMPORTANCE Whereas Salmonella enterica serovar Typhimurium can infect a wide range of animal species, some variants within this serovar exhibit a more limited host range and altered disease potential. Phylogenetic analysis based on whole-genome sequences can identify lineages associated with specific virulence traits, including host adaptation. This study represents one of the first to link pathogen-specific genetic signatures, including coding capacity, genome degradation, and transcriptional responses to host adaptation within a Salmonella serovar. We performed comparative genome analysis of reference and pigeon-adapted definitive type 2 (DT2) S. Typhimurium isolates alongside phenotypic and transcriptome analyses, to identify genetic signatures linked to host adaptation within the DT2 lineage.
Diversity within diversity: Parasite species richness in poison frogs assessed by transcriptomics.
Santos, Juan C; Tarvin, Rebecca D; O'Connell, Lauren A; Blackburn, David C; Coloma, Luis A
2018-08-01
Symbionts (e.g., endoparasites and commensals) play an integral role in their host's ecology, yet in many cases their diversity is likely underestimated. Although endoparasites are traditionally characterized using morphology, sequences of conserved genes, and shotgun metagenomics, host transcriptomes constitute an underused resource to identify these organisms' diversity. By isolating non-host transcripts from host transcriptomes, individual host tissues can now simultaneously reveal their endoparasite species richness (i.e., number of different taxa) and provide insights into parasite gene expression. These approaches can be used in host taxa whose endoparasites are mostly unknown, such as those of tropical amphibians. Here, we focus on the poison frogs (Dendrobatidae) as hosts, which are a Neotropical clade known for their bright coloration and defensive alkaloids. These toxins are an effective protection against vertebrate predators (e.g., snakes and birds), bacteria, and skin-biting ectoparasites (e.g., mosquitoes); however, little is known about their deterrence against eukaryotic endoparasites. With de novo transcriptomes of dendrobatids, we developed a bioinformatics pipeline for endoparasite identification that uses host annotated RNA-seq data and set of a priori parasite taxonomic terms, which are used to mine for specific endoparasites. We found a large community of helminths and protozoans that were mostly restricted to the digestive tract and a few systemic parasites (e.g., Trypanosoma). Contrary to our expectations, all dendrobatid frogs regardless of the presence of alkaloid defenses have endoparasites, with their highest species richness located in the frog digestive tract. Some of these organisms (e.g., roundworms) might prove to be generalists, as they were not found to be co-diversifying with their frog hosts. We propose that endoparasites may escape poison frogs' chemical defenses by colonizing tissues with fewer alkaloids than the frog's skin, where most toxins are stored. Copyright © 2018 Elsevier Inc. All rights reserved.
The immune gene repertoire of an important viral reservoir, the Australian black flying fox.
Papenfuss, Anthony T; Baker, Michelle L; Feng, Zhi-Ping; Tachedjian, Mary; Crameri, Gary; Cowled, Chris; Ng, Justin; Janardhana, Vijaya; Field, Hume E; Wang, Lin-Fa
2012-06-20
Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection.
Baumann, Kristin; Dato, Laura; Graf, Alexandra B; Frascotti, Gianni; Dragosits, Martin; Porro, Danilo; Mattanovich, Diethard; Ferrer, Pau; Branduardi, Paola
2011-05-09
Saccharomyces cerevisiae and Pichia pastoris are two of the most relevant microbial eukaryotic platforms for the production of recombinant proteins. Their known genome sequences enabled several transcriptomic profiling studies under many different environmental conditions, thus mimicking not only perturbations and adaptations which occur in their natural surroundings, but also in industrial processes. Notably, the majority of such transcriptome analyses were performed using non-engineered strains.In this comparative study, the gene expression profiles of S. cerevisiae and P. pastoris, a Crabtree positive and Crabtree negative yeast, respectively, were analyzed for three different oxygenation conditions (normoxic, oxygen-limited and hypoxic) under recombinant protein producing conditions in chemostat cultivations. The major differences in the transcriptomes of S. cerevisiae and P. pastoris were observed between hypoxic and normoxic conditions, where the availability of oxygen strongly affected ergosterol biosynthesis, central carbon metabolism and stress responses, particularly the unfolded protein response. Steady state conditions under low oxygen set-points seemed to perturb the transcriptome of S. cerevisiae to a much lesser extent than the one of P. pastoris, reflecting the major tolerance of the baker's yeast towards oxygen limitation, and a higher fermentative capacity. Further important differences were related to Fab production, which was not significantly affected by oxygen availability in S. cerevisiae, while a clear productivity increase had been previously reported for hypoxically grown P. pastoris. The effect of three different levels of oxygen availability on the physiology of P. pastoris and S. cerevisiae revealed a very distinct remodelling of the transcriptional program, leading to novel insights into the different adaptive responses of Crabtree negative and positive yeasts to oxygen availability. Moreover, the application of such comparative genomic studies to recombinant hosts grown in different environments might lead to the identification of key factors for efficient protein production.
Small RNA Regulators of Plant-Hemipteran Interactions: Micromanagers with Versatile Roles
Sattar, Sampurna; Thompson, Gary A.
2016-01-01
Non-coding small RNAs (sRNAs) in plants have important roles in regulating biological processes, including development, reproduction, and stress responses. Recent research indicates significant roles for sRNA-mediated gene silencing during plant-hemipteran interactions that involve all three of these biological processes. Plant responses to hemipteran feeding are determined by changes in the host transcriptome that appear to be fine-tuned by sRNAs. The role of sRNA in plant defense responses is complex. Different forms of sRNAs, with specific modes of action, regulate changes in the host transcriptome primarily through post-transcriptional gene silencing and occasionally through translational repression. Plant genetic resistance against hemipterans provides a model to explore the regulatory roles of sRNAs in plant defense. Aphid-induced sRNA expression in resistance genotypes delivers a new paradigm in understanding the regulation of R gene-mediated resistance in host plants. Unique sRNA profiles, including changes in sRNA biogenesis and expression can also provide insights into susceptibility to insect herbivores. Activation of phytohormone-mediated defense responses against insect herbivory is another hallmark of this interaction, and recent studies have shown that regulation of phytohormone signaling is under the control of sRNAs. Hemipterans feeding on resistant plants also show changes in insect sRNA profiles, possibly influencing insect development and reproduction. Changes in insect traits such as fecundity, host range, and resistance to insecticides are impacted by sRNAs and can directly contribute to the success of certain insect biotypes. In addition to causing direct damage to the host plant, hemipteran insects are often vectors of viral pathogens. Insect anti-viral RNAi machinery is activated to limit virus accumulation, suggesting a role in insect immunity. Virus-derived long sRNAs strongly resemble insect piRNAs, leading to the speculation that the piRNA pathway is induced in response to viral infection. Evidence for robust insect RNAi machinery in several hemipteran species is of immense interest and is being actively pursued as a possible tool for insect control. RNAi-induced gene silencing following uptake of exogenous dsRNA was successfully demonstrated in several hemipterans and the presence of sid-1 like genes support the concept of a systemic response in some species. PMID:27625654
Ji, Rui; Wang, Yujun; Cheng, Yanbin; Zhang, Meiping; Zhang, Hong-Bin; Zhu, Li; Fang, Jichao; Zhu-Salzman, Keyan
2016-01-01
Green peach aphid (Myzus persicae) and pea aphid (Acyrthosiphon pisum) are two phylogenetically closely related agricultural pests. While pea aphid is restricted to Fabaceae, green peach aphid feeds on hundreds of plant species from more than 40 families. Transcriptome comparison could shed light on the genetic factors underlying the difference in host range between the two species. Furthermore, a large scale study contrasting gene expression between immature nymphs and fully developed adult aphids would fill a previous knowledge gap. Here, we obtained transcriptomic sequences of green peach aphid nymphs and adults, respectively, using Illumina sequencing technology. A total of 2244 genes were found to be differentially expressed between the two developmental stages, many of which were associated with detoxification, hormone production, cuticle formation, metabolism, food digestion, and absorption. When searched against publically available pea aphid mRNA sequences, 13,752 unigenes were found to have no homologous counterparts. Interestingly, many of these unigenes that could be annotated in other databases were involved in the “xenobiotics biodegradation and metabolism” pathway, suggesting the two aphids differ in their adaptation to secondary metabolites of host plants. Conversely, 3989 orthologous gene pairs between the two species were subjected to calculations of synonymous and nonsynonymous substitutions, and 148 of the genes potentially evolved in response to positive selection. Some of these genes were predicted to be associated with insect-plant interactions. Our study has revealed certain molecular events related to aphid development, and provided some insight into biological variations in two aphid species, possibly as a result of host plant adaptation. PMID:27812361
Segarra, Amélie; Mauduit, Florian; Faury, Nicole; Trancart, Suzanne; Dégremont, Lionel; Tourbiez, Delphine; Haffner, Philippe; Barbosa-Solomieu, Valérie; Pépin, Jean-François; Travers, Marie-Agnès; Renault, Tristan
2014-07-09
Massive mortality outbreaks affecting Pacific oyster (Crassostrea gigas) spat in various countries have been associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). However, few studies have been performed to understand and follow viral gene expression, as it has been done in vertebrate herpesviruses. In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted in order to test the susceptibility of several bi-parental oyster families to this virus and to analyze host-pathogen interactions using in vivo transcriptomic approaches. The divergent response of these oyster families in terms of mortality confirmed that susceptibility to OsHV-1 infection has a significant genetic component. Two families with contrasted survival rates were selected. A total of 39 viral genes and five host genes were monitored by real-time PCR. Initial results provided information on (i) the virus cycle of OsHV-1 based on the kinetics of viral DNA replication and transcription and (ii) host defense mechanisms against the virus. In the two selected families, the detected amounts of viral DNA and RNA were significantly different. This result suggests that Pacific oysters are genetically diverse in terms of their susceptibility to OsHV-1 infection. This contrasted susceptibility was associated with dissimilar host gene expression profiles. Moreover, the present study showed a positive correlation between viral DNA amounts and the level of expression of selected oyster genes.
Caroline M. Press; Niklaus J. Grunwald
2008-01-01
The release of the draft genome sequence of P. ramorum strain Pr102, enabled the construction of an oligonucleotide microarray of the entire genome of Pr102. The array contains 344,680 features (oligos) that represent the transcriptome of Pr102. P. ramorum RNA was extracted from mycelium and sporangia and used to compare gene...
Yadav, Inderjit S.; Sharma, Amandeep; Kaur, Satinder; Nahar, Natasha; Bhardwaj, Subhash C.; Sharma, Tilak R.; Chhuneja, Parveen
2016-01-01
Leaf rust caused by Puccinia triticina (Pt) is one of the most important diseases of bread wheat globally. Recent advances in sequencing technologies have provided opportunities to analyse the complete transcriptomes of the host as well as pathogen for studying differential gene expression during infection. Pathogen induced differential gene expression was characterized in a near isogenic line carrying leaf rust resistance gene Lr57 and susceptible recipient genotype WL711. RNA samples were collected at five different time points 0, 12, 24, 48, and 72 h post inoculation (HPI) with Pt 77-5. A total of 3020 transcripts were differentially expressed with 1458 and 2692 transcripts in WL711 and WL711+Lr57, respectively. The highest number of differentially expressed transcripts was detected at 12 HPI. Functional categorization using Blast2GO classified the genes into biological processes, molecular function and cellular components. WL711+Lr57 showed much higher number of differentially expressed nucleotide binding and leucine rich repeat genes and expressed more protein kinases and pathogenesis related proteins such as chitinases, glucanases and other PR proteins as compared to susceptible genotype. Pathway annotation with KEGG categorized genes into 13 major classes with carbohydrate metabolism being the most prominent followed by amino acid, secondary metabolites, and nucleotide metabolism. Gene co-expression network analysis identified four and eight clusters of highly correlated genes in WL711 and WL711+Lr57, respectively. Comparative analysis of the differentially expressed transcripts led to the identification of some transcripts which were specifically expressed only in WL711+Lr57. It was apparent from the whole transcriptome sequencing that the resistance gene Lr57 directed the expression of different genes involved in building the resistance response in the host to combat invading pathogen. The RNAseq data and differentially expressed transcripts identified in present study is a genomic resource which can be used for further studying the host pathogen interaction for Lr57 and wheat transcriptome in general. PMID:28066494
Bian, Lei; Cai, Xiao-Ming; Luo, Zong-Xiu; Zhang, Yong-Jun; Chen, Zong-Mao
2016-01-01
Host selection by female moths is fundamental to the survival of their larvae. Detecting and perceiving the non-volatile chemicals of the plant surface involved in gustatory detection determine the host preference. In many lepidopteran species, tarsal chemosensilla are sensitive to non-volatile chemicals and responsible for taste detection. The tea geometrid Ectropis obliqua is one devastating chewing pest selectively feeding on limited plants, requiring the specialized sensors to forage certain host for oviposition. In present study, we revealed the distribution of chemosensilla in the ventral side of female fifth tarsomere in E. obliqua. To investigate its molecular mechanism of gustatory perception, we performed HiSeq 2500 sequencing of the male- and female- legs transcriptome and identified 24 candidate odorant binding proteins (OBPs), 21 chemosensory proteins (CSPs), 2 sensory neuron membrane proteins (SNMPs), 3 gustatory receptors (GRs) and 4 odorant receptors (ORs). Several leg-specific or enriched chemosensory genes were screened by tissue expression analysis, and clustered with functionally validated genes from other moths, suggesting the potential involvement in taste sensation or other physiological processes. The RPKM value analysis revealed that 9 EoblOBPs showed sex discrepancy in the leg expression, 8 being up-regulated in female and only 1 being over expressed in male. These female-biased EoblOBPs indicated an ecological adaption related with host-seeking and oviposition behaviors. Our work will provide basic knowledge for further studies on the molecular mechanism of gustatory perception, and enlighten a host-selection-based control strategy of insect pests. PMID:26930056
Trypsteen, Wim; Mohammadi, Pejman; Van Hecke, Clarissa; Mestdagh, Pieter; Lefever, Steve; Saeys, Yvan; De Bleser, Pieter; Vandesompele, Jo; Ciuffi, Angela; Vandekerckhove, Linos; De Spiegelaere, Ward
2016-10-26
Studying the effects of HIV infection on the host transcriptome has typically focused on protein-coding genes. However, recent advances in the field of RNA sequencing revealed that long non-coding RNAs (lncRNAs) add an extensive additional layer to the cell's molecular network. Here, we performed transcriptome profiling throughout a primary HIV infection in vitro to investigate lncRNA expression at the different HIV replication cycle processes (reverse transcription, integration and particle production). Subsequently, guilt-by-association, transcription factor and co-expression analysis were performed to infer biological roles for the lncRNAs identified in the HIV-host interplay. Many lncRNAs were suggested to play a role in mechanisms relying on proteasomal and ubiquitination pathways, apoptosis, DNA damage responses and cell cycle regulation. Through transcription factor binding analysis, we found that lncRNAs display a distinct transcriptional regulation profile as compared to protein coding mRNAs, suggesting that mRNAs and lncRNAs are independently modulated. In addition, we identified five differentially expressed lncRNA-mRNA pairs with mRNA involvement in HIV pathogenesis with possible cis regulatory lncRNAs that control nearby mRNA expression and function. Altogether, the present study demonstrates that lncRNAs add a new dimension to the HIV-host interplay and should be further investigated as they may represent targets for controlling HIV replication.
Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice.
Marco, Maria L; de Vries, Maaike C; Wels, Michiel; Molenaar, Douwe; Mangell, Peter; Ahrne, Siv; de Vos, Willem M; Vaughan, Elaine E; Kleerebezem, Michiel
2010-11-01
Probiotic bacteria provide unique opportunities to study the global responses and molecular mechanisms underlying the effects of gut-associated microorganisms in the human digestive tract. In this study, we show by comparative transcriptome analysis using DNA microarrays that the established probiotic Lactobacillus plantarum 299v specifically adapts its metabolic capacity in the human intestine for carbohydrate acquisition and expression of exopolysaccharide and proteinaceous cell surface compounds. This report constitutes the first application of global gene expression profiling of a commensal microorganism in the human gut. A core L. plantarum transcriptome expressed in the mammalian intestine was also determined through comparisons of L. plantarum 299v activities in humans to those found for L. plantarum WCFS1 in germ-free mice. These results identify the niche-specific adaptations of a dietary microorganism to the intestinal ecosystem and provide novel targets for molecular analysis of microbial-host interactions which affect human health.
Mei, Jiaqin; Ding, Yijuan; Li, Yuehua; Tong, Chaobo; Du, Hai; Yu, Yang; Wan, Huafan; Xiong, Qing; Yu, Jingyin; Liu, Shengyi; Li, Jiana; Qian, Wei
2016-09-20
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a devastating disease of Brassica crops, but not in rice. The leaves of a rice line, a partial resistant (R) and a susceptible (S) Brassica oleracea pool that bulked from a resistance-segregating F2 population were employed for transcriptome sequencing before and after inoculation by S. sclerotiorum for 6 and 12 h. Distinct transcriptome profiles were revealed between B. oleracea and rice in response to S. sclerotiorum. Enrichment analyses of GO and KEGG indicated an enhancement of antioxidant activity in the R B. oleracea and rice, and histochemical staining exhibited obvious lighter reactive oxygen species (ROS) accumulation and cell death in rice and the R B. oleracea as compared to that in the S B. oleracea. Significant enhancement of Ca(2+) signalling, a positive regulator of ROS and cell death, were detected in S B. oleracea after inoculation, while it was significantly repressed in the R B. oleracea group. Obvious difference was detected between two B. oleracea groups for WRKY transcription factors, particularly for those regulating cell death. These findings suggest diverse modulations on cell death in host in response to S. sclerotiorum. Our study provides useful insight into the resistant mechanism to S. sclerotiorum.
2014-01-01
Background With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. Results We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. Conclusions The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection. PMID:24758272
Zhang, Wei; Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Eshbaugh, Robert; Chen, Fang; Atwell, Susana; Kliebenstein, Daniel J
2017-11-01
To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana - Botrytis cinerea pathosystem to test how the host's defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1 , individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen. © 2017 American Society of Plant Biologists. All rights reserved.
2013-01-01
Background Huanglongbing (HLB) is arguably the most destructive disease for the citrus industry. HLB is caused by infection of the bacterium, Candidatus Liberibacter spp. Several citrus GeneChip studies have revealed thousands of genes that are up- or down-regulated by infection with Ca. Liberibacter asiaticus. However, whether and how these host genes act to protect against HLB remains poorly understood. Results As a first step towards a mechanistic view of citrus in response to the HLB bacterial infection, we performed a comparative transcriptome analysis and found that a total of 21 Probesets are commonly up-regulated by the HLB bacterial infection. In addition, a number of genes are likely regulated specifically at early, late or very late stages of the infection. Furthermore, using Pearson correlation coefficient-based gene coexpression analysis, we constructed a citrus HLB response network consisting of 3,507 Probesets and 56,287 interactions. Genes involved in carbohydrate and nitrogen metabolic processes, transport, defense, signaling and hormone response were overrepresented in the HLB response network and the subnetworks for these processes were constructed. Analysis of the defense and hormone response subnetworks indicates that hormone response is interconnected with defense response. In addition, mapping the commonly up-regulated HLB responsive genes into the HLB response network resulted in a core subnetwork where transport plays a key role in the citrus response to the HLB bacterial infection. Moreover, analysis of a phloem protein subnetwork indicates a role for this protein and zinc transporters or zinc-binding proteins in the citrus HLB defense response. Conclusion Through integrating transcriptome comparison and gene coexpression network analysis, we have provided for the first time a systems view of citrus in response to the Ca. Liberibacter spp. infection causing HLB. PMID:23324561
Grosser, Katrin; Ramasamy, Pathmanaban; Amirabad, Azim Dehghani; Schulz, Marcel H; Gasparoni, Gilles; Simon, Martin
2018-01-01
Abstract Endosymbiosis is a widespread phenomenon and hosts of bacterial endosymbionts can be found all-over the eukaryotic tree of life. Likely, this evolutionary success is connected to the altered phenotype arising from a symbiotic association. The potential variety of symbiont’s contributions to new characteristics or abilities of host organisms are largely unstudied. Addressing this aspect, we focused on an obligate bacterial endosymbiont that confers an intraspecific killer phenotype to its host. The symbiosis between Paramecium tetraurelia and Caedibacter taeniospiralis, living in the host’s cytoplasm, enables the infected paramecia to release Caedibacter symbionts, which can simultaneously produce a peculiar protein structure and a toxin. The ingestion of bacteria that harbor both components leads to the death of symbiont-free congeners. Thus, the symbiosis provides Caedibacter-infected cells a competitive advantage, the “killer trait.” We characterized the adaptive gene expression patterns in symbiont-harboring Paramecium as a second symbiosis-derived aspect next to the killer phenotype. Comparative transcriptomics of infected P. tetraurelia and genetically identical symbiont-free cells confirmed altered gene expression in the symbiont-bearing line. Our results show up-regulation of specific metabolic and heat shock genes whereas down-regulated genes were involved in signaling pathways and cell cycle regulation. Functional analyses to validate the transcriptomics results demonstrated that the symbiont increases host density hence providing a fitness advantage. Comparative transcriptomics shows gene expression modulation of a ciliate caused by its bacterial endosymbiont thus revealing new adaptive advantages of the symbiosis. Caedibacter taeniospiralis apparently increases its host fitness via manipulation of metabolic pathways and cell cycle control. PMID:29390087
Exploring viral infection using single-cell sequencing.
Rato, Sylvie; Golumbeanu, Monica; Telenti, Amalio; Ciuffi, Angela
2017-07-15
Single-cell sequencing (SCS) has emerged as a valuable tool to study cellular heterogeneity in diverse fields, including virology. By studying the viral and cellular genome and/or transcriptome, the dynamics of viral infection can be investigated at single cell level. Most studies have explored the impact of cell-to-cell variation on the viral life cycle from the point of view of the virus, by analyzing viral sequences, and from the point of view of the cell, mainly by analyzing the cellular host transcriptome. In this review, we will focus on recent studies that use single-cell sequencing to explore viral diversity and cell variability in response to viral replication. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Sato, Nana; Nochi, Tomonori; Aso, Hisashi; Salva, Susana; Alvarez, Susana; Kitazawa, Haruki; Villena, Julio
2017-01-01
Lactobacillus rhamnosus CRL1505 and Lactobacillus plantarum CRL1506 are immunobiotic strains able to increase protection against viral intestinal infections as demonstrated in animal models and humans. To gain insight into the host-immunobiotic interaction, the transcriptomic response of porcine intestinal epithelial (PIE) cells to the challenge with viral molecular associated pattern poly(I:C) and the changes in the transcriptomic profile induced by the immunobiotics strains CRL1505 and CRL1506 were investigated in this work. By using microarray technology and reverse transcription PCR, we obtained a global overview of the immune genes involved in the innate antiviral immune response in PIE cells. Stimulation of PIE cells with poly(I:C) significantly increased the expression of IFN- α and IFN- β, several interferon-stimulated genes, cytokines, chemokines, adhesion molecules, and genes involved in prostaglandin biosynthesis. It was also determined that lactobacilli differently modulated immune gene expression in poly(I:C)-challenged PIE cells. Most notable changes were found in antiviral factors ( IFN- α, IFN- β, NPLR3, OAS1, OASL, MX2 , and RNASEL ) and cytokines/chemokines ( IL-1 β, IL-6, CCL4, CCL5 , and CXCL10 ) that were significantly increased in lactobacilli-treated PIE cells. Immunobiotics reduced the expression of IL-15 and RAE1 genes that mediate poly(I:C) inflammatory damage. In addition, lactobacilli treatments increased the expression PLA2G4A, PTGES , and PTGS2 that are involved in prostaglandin E2 biosynthesis . L. rhamnosus CRL1505 and L. plantarum CRL1506 showed quantitative and qualitative differences in their capacities to modulate the innate antiviral immune response in PIE cells, which would explain the higher capacity of the CRL1505 strain when compared to CRL1506 to protect against viral infection and inflammatory damage in vivo . These results provided valuable information for the deeper understanding of the host-immunobiotic interaction and their effect on antiviral immunity. The comprehensive transcriptomic analyses successfully identified a group of genes ( IFN- β, RIG1, RNASEL, MX2, A20, IL27, CXCL5, CCL4, PTGES , and PTGER4 ), which can be used as prospective biomarkers for the screening of new antiviral immunobiotics in PIE cells and for the development of novel functional food and feeds, which may help to prevent viral infections.
Zhu, Li-Ping; Yue, Xin-Jing; Han, Kui; Li, Zhi-Feng; Zheng, Lian-Shuai; Yi, Xiu-Nan; Wang, Hai-Long; Zhang, You-Ming; Li, Yue-Zhong
2015-07-22
Exotic genes, especially clustered multiple-genes for a complex pathway, are normally integrated into chromosome for heterologous expression. The influences of insertion sites on heterologous expression and allotropic expressions of exotic genes on host remain mostly unclear. We compared the integration and expression efficiencies of single and multiple exotic genes that were inserted into Myxococcus xanthus genome by transposition and attB-site-directed recombination. While the site-directed integration had a rather stable chloramphenicol acetyl transferase (CAT) activity, the transposition produced varied CAT enzyme activities. We attempted to integrate the 56-kb gene cluster for the biosynthesis of antitumor polyketides epothilones into M. xanthus genome by site-direction but failed, which was determined to be due to the insertion size limitation at the attB site. The transposition technique produced many recombinants with varied production capabilities of epothilones, which, however, were not paralleled to the transcriptional characteristics of the local sites where the genes were integrated. Comparative transcriptomics analysis demonstrated that the allopatric integrations caused selective changes of host transcriptomes, leading to varied expressions of epothilone genes in different mutants. With the increase of insertion fragment size, transposition is a more practicable integration method for the expression of exotic genes. Allopatric integrations selectively change host transcriptomes, which lead to varied expression efficiencies of exotic genes.
The salivary gland transcriptome of the eastern tree hole mosquito, Ochlerotatus triseriatus.
Calvo, Eric; Sanchez-Vargas, Irma; Kotsyfakis, Michalis; Favreau, Amanda J; Barbian, Kent D; Pham, Van M; Olson, Kenneth E; Ribeiro, José M C
2010-05-01
Saliva of blood-sucking arthropods contains a complex mixture of peptides that affect their host's hemostasis, inflammation, and immunity. These activities can also modify the site of pathogen delivery and increase disease transmission. Saliva also induces hosts to mount an antisaliva immune response that can lead to skin allergies or even anaphylaxis. Accordingly, knowledge of the salivary repertoire, or sialome, of a mosquito is useful to provide a knowledge platform to mine for novel pharmacological activities, to develop novel vaccine targets for vector-borne diseases, and to develop epidemiological markers of vector exposure and candidate desensitization vaccines. The mosquito Ochlerotatus triseriatus is a vector of La Crosse virus and produces allergy in humans. In this work, a total of 1,575 clones randomly selected from an adult female O. triseriatus salivary gland cDNA library was sequenced and used to assemble a database that yielded 731 clusters of related sequences, 560 of which were singletons. Primer extension experiments were performed in selected clones to further extend sequence coverage, allowing for the identification of 159 protein sequences, 66 of which code for putative secreted proteins. Supplemental spreadsheets containing these data are available at http://exon.niaid.nih.gov/transcriptome/Ochlerotatus_triseriatus/S1/Ot-S1.xls and http://exon.niaid. nih.gov/transcriptome/Ochlerotatus_triseriatus/S2/Ot-S2.xls.
Sutherland, Ben J G; Koczka, Kim W; Yasuike, Motoshige; Jantzen, Stuart G; Yazawa, Ryosuke; Koop, Ben F; Jones, Simon R M
2014-03-15
Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection. In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon. Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance functions including local inflammation with cytokines, specific innate pattern recognition receptors, and iron homeostasis. Suppressed antiviral immunity in both susceptible and resistant species indicates the importance of future work investigating co-infections of viral pathogens and lice.
Pinzón, Jorge H; Kamel, Bishoy; Burge, Colleen A; Harvell, C Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D
2015-04-01
Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs.
Pinzón, Jorge H.; Kamel, Bishoy; Burge, Colleen A.; Harvell, C. Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D.
2015-01-01
Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs. PMID:26064625
Philipson, Casandra W.; Bassaganya-Riera, Josep; Viladomiu, Monica; Kronsteiner, Barbara; Abedi, Vida; Hoops, Stefan; Michalak, Pawel; Kang, Lin; Girardin, Stephen E.; Hontecillas, Raquel
2015-01-01
Helicobacter pylori colonizes half of the world’s population as the dominant member of the gastric microbiota resulting in a lifelong chronic infection. Host responses toward the bacterium can result in asymptomatic, pathogenic or even favorable health outcomes; however, mechanisms underlying the dual role of H. pylori as a commensal versus pathogenic organism are not well characterized. Recent evidence suggests mononuclear phagocytes are largely involved in shaping dominant immunity during infection mediating the balance between host tolerance and succumbing to overt disease. We combined computational modeling, bioinformatics and experimental validation in order to investigate interactions between macrophages and intracellular H. pylori. Global transcriptomic analysis on bone marrow-derived macrophages (BMDM) in a gentamycin protection assay at six time points unveiled the presence of three sequential host response waves: an early transient regulatory gene module followed by sustained and late effector responses. Kinetic behaviors of pattern recognition receptors (PRRs) are linked to differential expression of spatiotemporal response waves and function to induce effector immunity through extracellular and intracellular detection of H. pylori. We report that bacterial interaction with the host intracellular environment caused significant suppression of regulatory NLRC3 and NLRX1 in a pattern inverse to early regulatory responses. To further delineate complex immune responses and pathway crosstalk between effector and regulatory PRRs, we built a computational model calibrated using time-series RNAseq data. Our validated computational hypotheses are that: 1) NLRX1 expression regulates bacterial burden in macrophages; and 2) early host response cytokines down-regulate NLRX1 expression through a negative feedback circuit. This paper applies modeling approaches to characterize the regulatory role of NLRX1 in mechanisms of host tolerance employed by macrophages to respond to and/or to co-exist with intracellular H. pylori. PMID:26367386
Sutherland, Ben J G; Jantzen, Stuart G; Yasuike, Motoshige; Sanderson, Dan S; Koop, Ben F; Jones, Simon R M
2012-12-01
The salmon louse Lepeophtheirus salmonis is a marine ectoparasite of wild and farmed salmon in the Northern Hemisphere. Infections of farmed salmon are of economic and ecological concern. Nauplius and copepodid salmon lice larvae are free-swimming and disperse in the water column until they encounter a host. In this study, we characterized the sublethal stress responses of L. salmonis copepodid larvae by applying a 38K oligonucleotide microarray to profile transcriptomes following 24 h exposures to suboptimal salinity (30-10 parts per thousand (‰)) or temperature (16-4 °C) environments. Hyposalinity exposure resulted in large-scale gene expression changes relative to those elicited by a thermal gradient. Subsequently, transcriptome responses to a more finely resolved salinity gradient between 30 ‰ and 25 ‰ were profiled. Minimal changes occurred at 29 ‰ or 28 ‰, a threshold of response was identified at 27 ‰, and the largest response was at 25 ‰. Differentially expressed genes were clustered by pattern of expression, and clusters were characterized by functional enrichment analysis. Results indicate larval copepods adopt two distinct coping strategies in response to short-term hyposaline stress: a primary response using molecular chaperones and catabolic processes at 27 ‰; and a secondary response up-regulating ion pumps, transporters, a different suite of chaperones and apoptosis-related transcripts at 26 ‰ and 25 ‰. The results further our understanding of the tolerances of L. salmonis copepodids to salinity and temperature gradients and may assist in the development of salmon louse management strategies. © 2012 Blackwell Publishing Ltd.
Bielecki, Piotr; Suárez-Diez, María; Puchałka, Jacek; Albertí, Sebastian; dos Santos, Vitor Martins; Goldberg, Joanna B.
2014-01-01
Pseudomonas aeruginosa is a highly versatile opportunistic pathogen capable of colonizing multiple ecological niches. This bacterium is responsible for a wide range of both acute and chronic infections in a variety of hosts. The success of this microorganism relies on its ability to adapt to environmental changes and re-program its regulatory and metabolic networks. The study of P. aeruginosa adaptation to temperature is crucial to understanding the pathogenesis upon infection of its mammalian host. We examined the effects of growth temperature on the transcriptome of the P. aeruginosa PAO1. Microarray analysis of PAO1 grown in Lysogeny broth at mid-exponential phase at 22°C and 37°C revealed that temperature changes are responsible for the differential transcriptional regulation of 6.4% of the genome. Major alterations were observed in bacterial metabolism, replication, and nutrient acquisition. Quorum-sensing and exoproteins secreted by type I, II, and III secretion systems, involved in the adaptation of P. aeruginosa to the mammalian host during infection, were up-regulated at 37°C compared to 22°C. Genes encoding arginine degradation enzymes were highly up-regulated at 22°C, together with the genes involved in the synthesis of pyoverdine. However, genes involved in pyochelin biosynthesis were up-regulated at 37°C. We observed that the changes in expression of P. aeruginosa siderophores correlated to an overall increase in Fe2+ extracellular concentration at 37°C and a peak in Fe3+ extracellular concentration at 22°C. This suggests a distinct change in iron acquisition strategies when the bacterium switches from the external environment to the host. Our work identifies global changes in bacterial metabolism and nutrient acquisition induced by growth at different temperatures. Overall, this study identifies factors that are regulated in genome-wide adaptation processes and discusses how this life-threatening pathogen responds to temperature. PMID:24587139
Poley, Jordan D; Sutherland, Ben J G; Fast, Mark D; Koop, Ben F; Jones, Simon R M
2017-08-17
Microsporidia are highly specialized, parasitic fungi that infect a wide range of eukaryotic hosts from all major taxa. Infections cause a variety of damaging effects on host physiology from increased stress to death. The microsporidian Facilispora margolisi infects the Pacific salmon louse (Lepeophtheirus salmonis oncorhynchi), an economically and ecologically important ectoparasitic copepod that can impact wild and cultured salmonids. Vertical transmission of F. margolisi was demonstrated by using PCR and in situ hybridization to identify and localize microsporidia in female L. salmonis and their offspring. Spores and developmental structures of F. margolisi were identified in 77% of F 1 generation copepods derived from infected females while offspring from uninfected females all tested negative for the microsporidia. The transcriptomic response of the salmon louse to F. margolisi was profiled at both the copepodid larval stage and the pre-adult stage using microarray technology. Infected copepodids differentially expressed 577 transcripts related to stress, ATP generation and structural components of muscle and cuticle. The infection also impacted the response of the copepodid to the parasiticide emamectin benzoate (EMB) at a low dose of 1.0 ppb for 24 h. A set of 48 transcripts putatively involved in feeding and host immunomodulation were up to 8-fold underexpressed in the F. margolisi infected copepodids treated with EMB compared with controls or either stressor alone. Additionally, these infected lice treated with EMB also overexpressed 101 transcripts involved in stress resistance and signalling compared to the other groups. In contrast, infected pre-adult lice did not display a stress response, suggesting a decrease in microsporidian virulence associated with lice maturity. Furthermore, copepodid infectivity and moulting was not affected by the microsporidian infection. This study demonstrated that F. margolisi is transmitted vertically between salmon louse generations and that biological impacts of infection differ depending on the stage of the copepod host. The infection caused significant perturbations of larval transcriptomes and therefore must be considered in future studies in which impacts to host development and environmental factors are assessed. Fitness impacts are probably minor, although the interaction between pesticide exposure and microsporidian infection merits further study.
Zhuang, Huifu; Li, Juan; Song, Juan; Hettenhausen, Christian; Schuman, Meredith C; Sun, Guiling; Zhang, Cuiping; Li, Jing; Song, Dunlun; Wu, Jianqiang
2018-06-01
Dodders (Cuscuta spp.) are shoot holoparasites, whose haustoria penetrate host tissues to enable fusion between the parasite and host vascular systems, allowing Cuscuta to extract water, nutrients and other molecules from hosts. Aphids are piercing-sucking herbivores that use specialized stylets to feed on phloem sap. Aphids are known to feed on Cuscuta, but how Cuscuta and its host plant respond to aphids attacking the parasite was unknown. Phytohormone quantification, transcriptomic analysis and bioassays were performed to determine the responses of Cuscuta australis and its soybean (Glycine max) hosts to the feeding of green peach aphid (GPA; Myzus persicae) on C. australis. Decreased salicylic acid levels and 172 differentially expressed genes (DEGs) were found in GPA-attacked C. australis, and the soybean hosts exhibited increased jasmonic acid contents and 1015 DEGs, including > 100 transcription factor genes. Importantly, GPA feeding on C. australis increased the resistance of the soybean host to subsequent feeding by the leafworm Spodoptera litura and soybean aphid Aphis glycines, resulting in 21% decreased leafworm mass and 41% reduced aphid survival rate. These data strongly suggest that GPA feeding on Cuscuta induces a systemic signal, which is translocated to hosts and activates defense against herbivores. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Kelly, Steven; Ivens, Alasdair; Mott, G. Adam; O’Neill, Ellis; Emms, David; Macleod, Olivia; Voorheis, Paul; Tyler, Kevin; Clark, Matthew; Matthews, Jacqueline
2017-01-01
Abstract There are hundreds of Trypanosoma species that live in the blood and tissue spaces of their vertebrate hosts. The vast majority of these do not have the ornate system of antigenic variation that has evolved in the small number of African trypanosome species, but can still maintain long-term infections in the face of the vertebrate adaptive immune system. Trypanosoma theileri is a typical example, has a restricted host range of cattle and other Bovinae, and is only occasionally reported to cause patent disease although no systematic survey of the effect of infection on agricultural productivity has been performed. Here, a detailed genome sequence and a transcriptome analysis of gene expression in bloodstream form T. theileri have been performed. Analysis of the genome sequence and expression showed that T. theileri has a typical kinetoplastid genome structure and allowed a prediction that it is capable of meiotic exchange, gene silencing via RNA interference and, potentially, density-dependent growth control. In particular, the transcriptome analysis has allowed a comparison of two distinct trypanosome cell surfaces, T. brucei and T. theileri, that have each evolved to enable the maintenance of a long-term extracellular infection in cattle. The T. theileri cell surface can be modeled to contain a mixture of proteins encoded by four novel large and divergent gene families and by members of a major surface protease gene family. This surface composition is distinct from the uniform variant surface glycoprotein coat on African trypanosomes providing an insight into a second mechanism used by trypanosome species that proliferate in an extracellular milieu in vertebrate hosts to avoid the adaptive immune response. PMID:28903536
The Transcriptome of Exophiala dermatitidis during Ex-vivo Skin Model Infection
Poyntner, Caroline; Blasi, Barbara; Arcalis, Elsa; Mirastschijski, Ursula; Sterflinger, Katja; Tafer, Hakim
2016-01-01
The black yeast Exophiala dermatitidis is a widespread polyextremophile and human pathogen, that is found in extreme natural habitats and man-made environments such as dishwashers. It can cause various diseases ranging from phaeohyphomycosis and systemic infections, with fatality rates reaching 40%. While the number of cases in immunocompromised patients are increasing, knowledge of the infections, virulence factors and host response is still scarce. In this study, for the first time, an artificial infection of an ex-vivo skin model with Exophiala dermatitidis was monitored microscopically and transcriptomically. Results show that Exophiala dermatitidis is able to actively grow and penetrate the skin. The analysis of the genomic and RNA-sequencing data delivers a rich and complex transcriptome where circular RNAs, fusion transcripts, long non-coding RNAs and antisense transcripts are found. Changes in transcription strongly affect pathways related to nutrients acquisition, energy metabolism, cell wall, morphological switch, and known virulence factors. The L-Tyrosine melanin pathway is specifically upregulated during infection. Moreover the production of secondary metabolites, especially alkaloids, is increased. Our study is the first that gives an insight into the complexity of the transcriptome of Exophiala dermatitidis during artificial skin infections and reveals new virulence factors. PMID:27822460
Malone, Kerri M.; Rue-Albrecht, Kévin; Magee, David A.; Conlon, Kevin; Schubert, Olga T.; Nalpas, Nicolas C.; Browne, John A.; Smyth, Alicia; Gormley, Eamonn; Aebersold, Ruedi; MacHugh, David E.; Gordon, Stephen V.
2018-01-01
Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection. PMID:29557774
Wiewel, Maryse A; Scicluna, Brendon P; van Vught, Lonneke A; Hoogendijk, Arie J; Zwinderman, Aeilko H; Lutter, René; Horn, Janneke; Cremer, Olaf L; Bonten, Marc J; Schultz, Marcus J; van der Poll, Tom
2018-01-18
Statins can exert pleiotropic anti-inflammatory, vascular protective and anticoagulant effects, which in theory could improve the dysregulated host response during sepsis. We aimed to determine the association between prior statin use and host response characteristics in critically ill patients with sepsis. We performed a prospective observational study in 1060 patients admitted with sepsis to the mixed intensive care units (ICUs) of two hospitals in the Netherlands between January 2011 and July 2013. Of these, 351 patients (33%) were on statin therapy before admission. The host response was evaluated by measuring 23 biomarkers providing insight into key pathways implicated in sepsis pathogenesis and by analyzing whole-blood leukocyte transcriptomes in samples obtained within 24 h after ICU admission. To account for indication bias, a propensity score-matched cohort was created (N = 194 in both groups for protein biomarkers and N = 95 in both groups for gene expression analysis). Prior statin use was not associated with an altered mortality up to 90 days after admission (38.0 vs. 39.7% in the non-statin users in the propensity-matched analysis). Statin use did not modify systemic inflammatory responses, activation of the vascular endothelium or the coagulation system. The blood leukocyte genomic response, characterized by over-expression of genes involved in inflammatory and innate immune signaling pathways as well as under-expression of genes associated to T cell function, was not different between patients with and without prior statin use. Statin therapy is not associated with a modified host response in sepsis patients on admission to the ICU.
Transcriptome Changes Associated with Anaerobic Growth in Yersinia intermedia (ATCC29909)
Kiley, Patricia J.; Glasner, Jeremy D.; Perna, Nicole T.
2013-01-01
Background The yersiniae (Enterobacteriaceae) occupy a variety of niches, including some in human and flea hosts. Metabolic adaptations of the yersiniae, which contribute to their success in these specialized environments, remain largely unknown. We report results of an investigation of the transcriptome under aerobic and anaerobic conditions for Y. intermedia, a non-pathogenic member of the genus that has been used as a research surrogate for Y. pestis. Y. intermedia shares characteristics of pathogenic yersiniae, but is not known to cause disease in humans. Oxygen restriction is an important environmental stimulus experienced by many bacteria during their life-cycles and greatly influences their survival in specific environments. How oxygen availability affects physiology in the yersiniae is of importance in their life cycles but has not been extensively characterized. Methodology/Principal Findings Tiled oligonucleotide arrays based on a draft genome sequence of Y. intermedia were used in transcript profiling experiments to identify genes that change expression in response to oxygen availability during growth in minimal media with glucose. The expression of more than 400 genes, constituting about 10% of the genome, was significantly altered due to oxygen-limitation in early log phase under these conditions. Broad functional categorization indicated that, in addition to genes involved in central metabolism, genes involved in adaptation to stress and genes likely involved with host interactions were affected by oxygen-availability. Notable among these, were genes encoding functions for motility, chemotaxis and biosynthesis of cobalamin, which were up-regulated and those for iron/heme utilization, methionine metabolism and urease, which were down-regulated. Conclusions/Significance This is the first transcriptome analysis of a non-pathogenic Yersinia spp. and one of few elucidating the global response to oxygen limitation for any of the yersiniae. Thus this study lays the foundation for further experimental characterization of oxygen-responsive genes and pathways in this ecologically diverse genus. PMID:24116118
Transcriptome changes associated with anaerobic growth in Yersinia intermedia (ATCC29909).
Babujee, Lavanya; Balakrishnan, Venkatesh; Kiley, Patricia J; Glasner, Jeremy D; Perna, Nicole T
2013-01-01
The yersiniae (Enterobacteriaceae) occupy a variety of niches, including some in human and flea hosts. Metabolic adaptations of the yersiniae, which contribute to their success in these specialized environments, remain largely unknown. We report results of an investigation of the transcriptome under aerobic and anaerobic conditions for Y. intermedia, a non-pathogenic member of the genus that has been used as a research surrogate for Y. pestis. Y. intermedia shares characteristics of pathogenic yersiniae, but is not known to cause disease in humans. Oxygen restriction is an important environmental stimulus experienced by many bacteria during their life-cycles and greatly influences their survival in specific environments. How oxygen availability affects physiology in the yersiniae is of importance in their life cycles but has not been extensively characterized. Tiled oligonucleotide arrays based on a draft genome sequence of Y. intermedia were used in transcript profiling experiments to identify genes that change expression in response to oxygen availability during growth in minimal media with glucose. The expression of more than 400 genes, constituting about 10% of the genome, was significantly altered due to oxygen-limitation in early log phase under these conditions. Broad functional categorization indicated that, in addition to genes involved in central metabolism, genes involved in adaptation to stress and genes likely involved with host interactions were affected by oxygen-availability. Notable among these, were genes encoding functions for motility, chemotaxis and biosynthesis of cobalamin, which were up-regulated and those for iron/heme utilization, methionine metabolism and urease, which were down-regulated. This is the first transcriptome analysis of a non-pathogenic Yersinia spp. and one of few elucidating the global response to oxygen limitation for any of the yersiniae. Thus this study lays the foundation for further experimental characterization of oxygen-responsive genes and pathways in this ecologically diverse genus.
Burns, John A; Zhang, Huanjia; Hill, Elizabeth; Kim, Eunsoo; Kerney, Ryan
2017-01-01
During embryonic development, cells of the green alga Oophila amblystomatis enter cells of the salamander Ambystoma maculatum forming an endosymbiosis. Here, using de novo dual-RNA seq, we compared the host salamander cells that harbored intracellular algae to those without algae and the algae inside the animal cells to those in the egg capsule. This two-by-two-way analysis revealed that intracellular algae exhibit hallmarks of cellular stress and undergo a striking metabolic shift from oxidative metabolism to fermentation. Culturing experiments with the alga showed that host glutamine may be utilized by the algal endosymbiont as a primary nitrogen source. Transcriptional changes in salamander cells suggest an innate immune response to the alga, with potential attenuation of NF-κB, and metabolic alterations indicative of modulation of insulin sensitivity. In stark contrast to its algal endosymbiont, the salamander cells did not exhibit major stress responses, suggesting that the host cell experience is neutral or beneficial. DOI: http://dx.doi.org/10.7554/eLife.22054.001 PMID:28462779
Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology.
Broderick, Nichole A; Buchon, Nicolas; Lemaitre, Bruno
2014-05-27
To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. The guts of animals are in constant association with microbes, and these interactions are understood to have important roles in animal development and physiology. Yet we know little about the mechanisms underlying the establishment and function of these associations. Here, we used the fruit fly to understand how the microbiota affects host function. Importantly, we found that the microbiota has far-reaching effects on host physiology, ranging from immunity to gut structure. Our results validate the notion that important insights on complex host-microbe relationships can be obtained from the use of a well-established and genetically tractable invertebrate model. Copyright © 2014 Broderick et al.
Rajpurohit, Subhash; Oliveira, Cássia C; Etges, William J; Gibbs, Allen G
2013-05-01
We used whole-transcriptome microarrays to assess changes in gene expression and monitored mortality rates and epicuticular hydrocarbons (CHCs) in response to desiccation stress in four natural populations of Drosophila mojavensis from Baja California and mainland Mexico. Desiccation had the greatest effect on gene expression, followed by biogeographical variation at regional and population levels. Genes involved in environmental sensing and cuticular structure were up-regulated in dry conditions, while genes involved in transcription itself were down-regulated. Flies from Baja California had higher expression of reproductive and mitochondrial genes, suggesting that these populations have greater fecundity and higher metabolic rates. Host plant differences had a surprisingly minor effect on the transcriptome. In most cases, desiccation-caused mortality was greater in flies reared on fermenting cactus tissues than that on laboratory media. Water content of adult females and males was significantly different and was lower in Baja California males. Different groups of CHCs simultaneously increased and decreased in amounts due to desiccation exposure of 9 and 18 h and were population-specific and dependent on larval rearing substrates. Overall, we observed that changes in gene expression involved a coordinated response of behavioural, cuticular and metabolic genes. Together with differential expression of cuticular hydrocarbons, this study revealed some of the mechanisms that have allowed D. mojavensis to exploit its harsh desert conditions. Certainly, for D. mojavensis that uses different host plants, population-level understanding of responses to stressors associated with future climate change in desert regions must be evaluated across geographical and local ecological scales. © 2013 Blackwell Publishing Ltd.
Microbiota and environmental stress: how pollution affects microbial communities in Manila clams.
Milan, M; Carraro, L; Fariselli, P; Martino, M E; Cavalieri, D; Vitali, F; Boffo, L; Patarnello, T; Bargelloni, L; Cardazzo, B
2018-01-01
Given the crucial role of microbiota in host development, health, and environmental interactions, genomic analyses focusing on host-microbiota interactions should certainly be considered in the investigation of the adaptive mechanisms to environmental stress. Recently, several studies suggested that microbiota associated to digestive tract is a key, although still not fully understood, player that must be considered to assess the toxicity of environmental contaminants. Bacteria-dependent metabolism of xenobiotics may indeed modulate the host toxicity. Conversely, environmental variables (including pollution) may alter the microbial community and/or its metabolic activity leading to host physiological alterations that may contribute to their toxicity. Here, 16s rRNA gene amplicon sequencing has been applied to characterize the hepatopancreas microbiota composition of the Manila clam, Ruditapes philippinarum. The animals were collected in the Venice lagoon area, which is subject to different anthropogenic pressures, mainly represented by the industrial activities of Porto Marghera (PM). Seasonal and geographic differences in clam microbiotas were explored and linked to host response to chemical stress identified in a previous study at the transcriptome level, establishing potential interactions among hosts, microbes, and environmental parameters. The obtained results showed the recurrent presence of putatively detoxifying bacterial taxa in PM clams during winter and over-representation of several metabolic pathways involved in xenobiotic degradation, which suggested the potential for host-microbial synergistic detoxifying actions. Strong interaction between seasonal and chemically-induced responses was also observed, which partially obscured such potentially synergistic actions. Seasonal variables and exposure to toxicants were therefore shown to interact and substantially affect clam microbiota, which appeared to mirror host response to environmental variation. It is clear that understanding how animals respond to chemical stress cannot ignore a key component of such response, the microbiota. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel transcriptome resources for three scleractinian coral species from the Indo-Pacific
Kenkel, Carly D.; Bay, Line K
2017-01-01
Abstract Transcriptomic resources for coral species can provide insight into coral evolutionary history and stress-response physiology. Goniopora columna, Galaxea astreata, and Galaxea acrhelia are scleractinian corals of the Indo-Pacific, representing a diversity of morphologies and life-history traits. G. columna and G. astreata are common and cosmopolitan, while G. acrhelia is largely restricted to the coral triangle and Great Barrier Reef. Reference transcriptomes for these species were assembled from replicate colony fragments exposed to elevated (31°C) and ambient (27°C) temperatures. Trinity was used to create de novo assemblies for each species from 92–102 million raw Illumina Hiseq 2 × 150 bp reads. Host-specific assemblies contained 65 460–72 405 contigs, representing 26 693–37 894 isogroups (∼genes) with an average N50 of 2254. Gene name and/or gene ontology annotations were possible for 58% of isogroups on average. Transcriptomes contained 93.1–94.3% of EuKaryotic Orthologous Groups comprising the core eukaryotic gene set, and 89.98–91.92% of the single-copy metazoan core gene set orthologs were complete, indicating fairly comprehensive assemblies. This work expands the complement of transcriptomic resources available for scleractinian coral species, including the first reference for a representative of Goniopora spp. as well as species with novel morphology. PMID:28938722
Novel transcriptome resources for three scleractinian coral species from the Indo-Pacific.
Kenkel, Carly D; Bay, Line K
2017-09-01
Transcriptomic resources for coral species can provide insight into coral evolutionary history and stress-response physiology. Goniopora columna, Galaxea astreata, and Galaxea acrhelia are scleractinian corals of the Indo-Pacific, representing a diversity of morphologies and life-history traits. G. columna and G. astreata are common and cosmopolitan, while G. acrhelia is largely restricted to the coral triangle and Great Barrier Reef. Reference transcriptomes for these species were assembled from replicate colony fragments exposed to elevated (31°C) and ambient (27°C) temperatures. Trinity was used to create de novo assemblies for each species from 92-102 million raw Illumina Hiseq 2 × 150 bp reads. Host-specific assemblies contained 65 460-72 405 contigs, representing 26 693-37 894 isogroups (∼genes) with an average N50 of 2254. Gene name and/or gene ontology annotations were possible for 58% of isogroups on average. Transcriptomes contained 93.1-94.3% of EuKaryotic Orthologous Groups comprising the core eukaryotic gene set, and 89.98-91.92% of the single-copy metazoan core gene set orthologs were complete, indicating fairly comprehensive assemblies. This work expands the complement of transcriptomic resources available for scleractinian coral species, including the first reference for a representative of Goniopora spp. as well as species with novel morphology. © The Authors 2017. Published by Oxford University Press.
The immune gene repertoire of an important viral reservoir, the Australian black flying fox
2012-01-01
Background Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. Results Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. Conclusions This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection. PMID:22716473
Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae
2011-01-01
Background Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore, mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the implications of the robust transcriptional response to anaerobic growth. Results We determined that 198 chromosomal genes were differentially expressed (~10% of the genome) in response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive to iron and/or oxidative stress. Conclusions Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous studies would suggest. Many new targets for future research have been uncovered, and the results derived from this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been overlooked. PMID:21251255
Burge, Colleen A.; Mouchka, Morgan E.; Harvell, C. Drew; Roberts, Steven
2013-01-01
Coral reef communities are undergoing marked declines due to a variety of stressors including disease. The sea fan coral, Gorgonia ventalina, is a tractable study system to investigate mechanisms of immunity to a naturally occurring pathogen. Functional studies in Gorgonia ventalina immunity indicate that several key pathways and cellular components are involved in response to natural microbial invaders, although to date the functional and regulatory pathways remain largely un-described. This study used short-read sequencing (Illumina GAIIx) to identify genes involved in the response of G. ventalina to a naturally occurring Aplanochytrium spp. parasite. De novo assembly of the G. ventalina transcriptome yielded 90,230 contigs of which 40,142 were annotated. RNA-Seq analysis revealed 210 differentially expressed genes in sea fans exposed to the Aplanochytrium parasite. Differentially expressed genes involved in immunity include pattern recognition molecules, anti-microbial peptides, and genes involved in wound repair and reactive oxygen species formation. Gene enrichment analysis indicated eight biological processes were enriched representing 36 genes, largely involved with protein translation and energy production. This is the first report using high-throughput sequencing to characterize the host response of a coral to a natural pathogen. Furthermore, we have generated the first transcriptome for a soft (octocoral or non-scleractinian) coral species. Expression analysis revealed genes important in invertebrate innate immune pathways, as well as those whose role is previously un-described in cnidarians. This resource will be valuable in characterizing G. ventalina immune response to infection and co-infection of pathogens in the context of environmental change. PMID:23898300
The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus
2013-01-01
Background The barber's pole worm, Haemonchus contortus, is one of the most economically important parasites of small ruminants worldwide. Although this parasite can be controlled using anthelmintic drugs, resistance against most drugs in common use has become a widespread problem. We provide a draft of the genome and the transcriptomes of all key developmental stages of H. contortus to support biological and biotechnological research areas of this and related parasites. Results The draft genome of H. contortus is 320 Mb in size and encodes 23,610 protein-coding genes. On a fundamental level, we elucidate transcriptional alterations taking place throughout the life cycle, characterize the parasite's gene silencing machinery, and explore molecules involved in development, reproduction, host-parasite interactions, immunity, and disease. The secretome of H. contortus is particularly rich in peptidases linked to blood-feeding activity and interactions with host tissues, and a diverse array of molecules is involved in complex immune responses. On an applied level, we predict drug targets and identify vaccine molecules. Conclusions The draft genome and developmental transcriptome of H. contortus provide a major resource to the scientific community for a wide range of genomic, genetic, proteomic, metabolomic, evolutionary, biological, ecological, and epidemiological investigations, and a solid foundation for biotechnological outcomes, including new anthelmintics, vaccines and diagnostic tests. This first draft genome of any strongylid nematode paves the way for a rapid acceleration in our understanding of a wide range of socioeconomically important parasites of one of the largest nematode orders. PMID:23985341
Transcription Profiling Analysis of Mango–Fusarium mangiferae Interaction
Liu, Feng; Wu, Jing-bo; Zhan, Ru-lin; Ou, Xiong-chang
2016-01-01
Malformation caused by Fusarium mangiferae is one of the most destructive mango diseases affecting the canopy and floral development, leading to dramatic reduction in fruit yield. To further understand the mechanism of interaction between mango and F. mangiferae, we monitored the transcriptome profiles of buds from susceptible mango plants, which were challenged with F. mangiferae. More than 99 million reads were deduced by RNA-sequencing and were assembled into 121,267 unigenes. Based on the sequence similarity searches, 61,706 unigenes were identified, of which 21,273 and 50,410 were assigned to gene ontology categories and clusters of orthologous groups, respectively, and 33,243 were mapped to 119 KEGG pathways. The differentially expressed genes of mango were detected, having 15,830, 26,061, and 20,146 DEGs respectively, after infection for 45, 75, and 120 days. The analysis of the comparative transcriptome suggests that basic defense mechanisms play important roles in disease resistance. The data also show the transcriptional responses of interactions between mango and the pathogen and more drastic changes in the host transcriptome in response to the pathogen. These results could be used to develop new methods to broaden the resistance of mango to malformation, including the over-expression of key mango genes. PMID:27683574
Roquigny, Roxane; Novinscak, Amy; Arseneault, Tanya; Joly, David L; Filion, Martin
2018-06-19
Phytophthora infestans is responsible for late blight, one of the most important potato diseases. Phenazine-1-carboxylic acid (PCA)-producing Pseudomonas fluorescens strain LBUM223 isolated in our laboratory shows biocontrol potential against various plant pathogens. To characterize the effect of LBUM223 on the transcriptome of P. infestans, we conducted an in vitro time-course study. Confrontational assay was performed using P. infestans inoculated alone (control) or with LBUM223, its phzC- isogenic mutant (not producing PCA), or exogenically applied PCA. Destructive sampling was performed at 6, 9 and 12 days and the transcriptome of P. infestans was analysed using RNA-Seq. The expression of a subset of differentially expressed genes was validated by RT-qPCR. Both LBUM223 and exogenically applied PCA significantly repressed P. infestans' growth at all times. Compared to the control treatment, transcriptomic analyses showed that the percentages of all P. infestans' genes significantly altered by LBUM223 and exogenically applied PCA increased as time progressed, from 50 to 61% and from to 32 to 46%, respectively. When applying an absolute cut-off value of 3 fold change or more for all three harvesting times, 207 genes were found significantly differentially expressed by PCA, either produced by LBUM223 or exogenically applied. Gene ontology analysis revealed that both treatments altered the expression of key functional genes involved in major functions like phosphorylation mechanisms, transmembrane transport and oxidoreduction activities. Interestingly, even though no host plant tissue was present in the in vitro system, PCA also led to the overexpression of several genes encoding effectors. The mutant only slightly repressed P. infestans' growth and barely altered its transcriptome. Our study suggests that PCA is involved in P. infestans' growth repression and led to important transcriptomic changes by both up- and down-regulating gene expression in P. infestans over time. Different metabolic functions were altered and many effectors were found to be upregulated, suggesting their implication in biocontrol.
Guccione, Edward J.; Kendall, John J.; Hitchcock, Andrew; Garg, Nitanshu; White, Michael A.; Mulholland, Francis; Poole, Robert K.
2017-01-01
Summary Campylobacter jejuni, the most frequent cause of food‐borne bacterial gastroenteritis worldwide, is a microaerophile that has to survive high environmental oxygen tensions, adapt to oxygen limitation in the intestine and resist host oxidative attack. Here, oxygen‐dependent changes in C. jejuni physiology were studied at constant growth rate using carbon (serine)‐limited continuous chemostat cultures. We show that a perceived aerobiosis scale can be calibrated by the acetate excretion flux, which becomes zero when metabolism is fully aerobic (100% aerobiosis). Transcriptome changes in a downshift experiment from 150% to 40% aerobiosis revealed many novel oxygen‐regulated genes and highlighted re‐modelling of the electron transport chains. A label‐free proteomic analysis showed that at 40% aerobiosis, many proteins involved in host colonisation (e.g., PorA, CadF, FlpA, CjkT) became more abundant. PorA abundance increased steeply below 100% aerobiosis. In contrast, several citric‐acid cycle enzymes, the peptide transporter CstA, PEB1 aspartate/glutamate transporter, LutABC lactate dehydrogenase and PutA proline dehydrogenase became more abundant with increasing aerobiosis. We also observed a co‐ordinated response of oxidative stress protection enzymes and Fe‐S cluster biogenesis proteins above 100% aerobiosis. Our approaches reveal key virulence factors that respond to restricted oxygen availability and specific transporters and catabolic pathways activated with increasing aerobiosis. PMID:28892295
Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections
Reeder, Sophia M.; Palmer, Jonathan M.; Prokkola, Jenni M.; Lilley, Thomas M.; Reeder, DeeAnn M.
2017-01-01
ABSTRACT White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases. PMID:28614673
Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections.
Reeder, Sophia M; Palmer, Jonathan M; Prokkola, Jenni M; Lilley, Thomas M; Reeder, DeeAnn M; Field, Kenneth A
2017-11-17
White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases.
2011-01-01
Background Parasitoid insects manipulate their hosts' physiology by injecting various factors into their host upon parasitization. Transcriptomic approaches provide a powerful approach to study insect host-parasitoid interactions at the molecular level. In order to investigate the effects of parasitization by an ichneumonid wasp (Diadegma semiclausum) on the host (Plutella xylostella), the larval transcriptome profile was analyzed using a short-read deep sequencing method (Illumina). Symbiotic polydnaviruses (PDVs) associated with ichneumonid parasitoids, known as ichnoviruses, play significant roles in host immune suppression and developmental regulation. In the current study, D. semiclausum ichnovirus (DsIV) genes expressed in P. xylostella were identified and their sequences compared with other reported PDVs. Five of these genes encode proteins of unknown identity, that have not previously been reported. Results De novo assembly of cDNA sequence data generated 172,660 contigs between 100 and 10000 bp in length; with 35% of > 200 bp in length. Parasitization had significant impacts on expression levels of 928 identified insect host transcripts. Gene ontology data illustrated that the majority of the differentially expressed genes are involved in binding, catalytic activity, and metabolic and cellular processes. In addition, the results show that transcription levels of antimicrobial peptides, such as gloverin, cecropin E and lysozyme, were up-regulated after parasitism. Expression of ichnovirus genes were detected in parasitized larvae with 19 unique sequences identified from five PDV gene families including vankyrin, viral innexin, repeat elements, a cysteine-rich motif, and polar residue rich protein. Vankyrin 1 and repeat element 1 genes showed the highest transcription levels among the DsIV genes. Conclusion This study provides detailed information on differential expression of P. xylostella larval genes following parasitization, DsIV genes expressed in the host and also improves our current understanding of this host-parasitoid interaction. PMID:21906285
Upper airway gene expression in smokers: the mouth as a "window to the soul" of lung carcinogenesis?
Spira, Avrum
2010-03-01
This perspective on Boyle et al. (beginning on page 266 in this issue of the journal) explores transcriptomic profiling of upper airway epithelium as a biomarker of host response to tobacco smoke exposure. Boyle et al. have shown a striking relationship between smoking-related gene expression changes in the mouth and bronchus. This relationship suggests that buccal gene expression may serve as a relatively noninvasive surrogate marker of the physiologic response of the lung to tobacco smoke that could be used in large-scale screening and chemoprevention studies for lung cancer.
Marcatili, Paolo; Nielsen, Martin W; Sicheritz-Pontén, Thomas; Jensen, Tim K; Schafer-Nielsen, Claus; Boye, Mette; Nielsen, Morten; Klitgaard, Kirstine
2016-12-01
Polymicrobial infections represent a great challenge for the clarification of disease etiology and the development of comprehensive diagnostic or therapeutic tools, particularly for fastidious and difficult-to-cultivate bacteria. Using bovine digital dermatitis (DD) as a disease model, we introduce a novel strategy to study the pathogenesis of complex infections. The strategy combines meta-transcriptomics with high-density peptide-microarray technology to screen for in vivo-expressed microbial genes and the host antibody response at the site of infection. Bacterial expression patterns supported the assumption that treponemes were the major DD pathogens but also indicated the active involvement of other phyla (primarily Bacteroidetes). Bacterial genes involved in chemotaxis, flagellar synthesis and protection against oxidative and acidic stress were among the major factors defining the disease. The extraordinary diversity observed in bacterial expression, antigens and host antibody responses between individual cows pointed toward microbial variability as a hallmark of DD. Persistence of infection and DD reinfection in the same individual is common; thus, high microbial diversity may undermine the host's capacity to mount an efficient immune response and maintain immunological memory towards DD. The common antigenic markers identified here using a high-density peptide microarray address this issue and may be useful for future preventive measures against DD.
Transcriptome profiling reveals the immune response of goose T cells under selenium stimuli.
Cao, Nan; Li, Wanyan; Li, Bingxin; Tian, Yunbo; Xu, Danning
2017-12-01
The goose is an economically important poultry species and a principal natural host of avian viruses. This study aimed to determine the effects of selenium on the immune response of geese. Under selenium stimulation, gene expression profiling was investigated using transcriptome sequencing. The selenoproteins were promoted by selenium stimulation, while the heat shock proteins, interleukin and interferons were mainly down-regulated. After comparison, 2228 differentially expressed genes were primarily involved in immune and environmental response, and infectious disease and genetic information processing related pathways were identified. Specifically, the enzymes of the lysosomes which acted as a safeguard in preventing pathogens were mostly up-regulated and six randomly selected differentially expressed genes were validated by quantitative polymerase chain reaction. In addition, the most proportional increased transcription factor family basic helix-loop-helix (bHLH) located in the 5' flank of selenoprotein P-like protein for selenium metabolism was identified by response to the selenium stimulation in this study. These analyses show that selenium can promote immune function by activating selenoproteins, transcript factors and lysosome pathway related genes, while weakening cytokine content genes in geese. © 2017 Japanese Society of Animal Science.
Ishihara, Takeaki; Mitsuhara, Ichiro; Takahashi, Hideki; Nakaho, Kazuhiro
2012-01-01
Bacterial wilt, caused by the soil-borne bacterium Ralstonia solanacearum, is a lethal disease of tomato, but the molecular mechanisms of the host resistance responses to R. solanacearum remain unclear. In this study, we report the first work describing the transcriptome of cultivar resistance and susceptible tomato cultivar after inoculation with R. solanacearum. To elucidate the characteristics of resistance early in the interaction, we analyzed microarrays for resistant cultivar LS-89 and susceptible cultivar Ponderosa 1 day after stem inoculation. No change in gene expression was detected for Ponderosa, but expression levels of over 140 genes, including pathogenesis-related, hormone signaling and lignin biosynthesis genes, increased in LS-89. Expression of β-1,3-glucanase genes increased substantially. In an immunohistochemical study, glucanase in LS-89 accumulated in the xylem and pith tissues surrounding xylem vessels filled with R. solanacearum. The expression of these genes also increased in four other resistant cultivars, but changed little in four susceptible cultivars in response to R. solanacearum, suggesting that similar reactions occur in other cultivars. These gene expression profiles will serve as fundamental information to elucidate the molecular mechanisms in the resistance response to R. solanacearum in tomato. PMID:23071630
Shrinet, Jatin; Srivastava, Pratibha; Sunil, Sujatha
2017-10-28
Chikungunya virus (CHIKV) and Dengue virus (DENV) spread via the bite of infected Aedes mosquitoes. Both these viruses exist as co-infections in the host as well as the vector and are known to exploit their cellular machinery for their replication. While there are studies reporting the changes in Aedes transcriptome when infected with DENV and CHIKV individually, the effect both these viruses have on the mosquitoes when present as co-infections is not clearly understood. In the present study, we infected Aedes aegypti mosquitoes with DENV and CHIKV individually and as co-infection through nanoinjections. We performed high throughput RNA sequencing of the infected Aedes aegypti to understand the changes in the Aedes transcriptome during the early stages of infection, i.e., 24 h post infection and compared the transcriptome profiles during DENV and CHIKV mono-infections with that of co-infections. We identified 190 significantly regulated genes identified in CHIKV infected library, 37 genes from DENV library and 100 genes from co-infected library and they were classified into different pathways. Our study reveal that distinct pathways and transcripts are being regulated during the three types of infection states in Aedes aegypti mosquitoes. Copyright © 2017 Elsevier Inc. All rights reserved.
Transcriptome profiling indicating canine parvovirus type 2a as a potential immune activator.
Fan, Xu-Xu; Gao, Yuan; Shu, Long; Wei, Yan-Quan; Yao, Xue-Ping; Cao, Sui-Zhong; Peng, Guang-Neng; Liu, Xiang-Tao; Sun, Shi-Qi
2016-12-01
Canine parvovirus type 2a (CPV-2a) is a variant of CPV-2, which is a highly contagious pathogen causing severe gastroenteritis and death in young dogs. However, how CPV-2 participates in cell regulation and immune response remains unknown. In this study, persistently infected MDCK cells were generated through culture passage of the CPV-2a-infected cells for ten generations. Our study showed that CPV-2a induces cell proliferation arrest and cell morphology alternation before the fourth generation, whereas, the cell morphology returns to normal after five times of passages. PCR detection of viral VP2 gene demonstrated that CPV-2a proliferate with cell passage. An immunofluorescence assay revealed that CPV-2a particles were mainly located in the cell nuclei of MDCK cell. Then transcriptome microarray revealed that gene expression pattern of MDCK with CPV-2a persistent infection is distinct compared with normal cells. Gene ontology annotation and Kyoto Encyclopedia of Genes and Genome pathway analysis demonstrated that CPV-2a infection induces a series of membrane-associated genes expression, including many MHC protein or MHC-related complexes. These genes are closely related to signaling pathways of virus-host interaction, including antigen processing and presentation pathway, intestinal immune network, graft-versus-host disease, and RIG-I-like helicases signaling pathway. In contrast, the suppressed genes mediated by CPV-2a showed low enrichment in any category, and were only involved in pathways linking to synthesis and metabolism of amino acids, which was confirmed by qPCR analysis. Our studies indicated that CPV-2a is a natural immune activator and has the capacity to activate host immune responses, which could be used for the development of antiviral strategy and biomaterial for medicine.
Peng, Xinxia; Gralinski, Lisa; Armour, Christopher D; Ferris, Martin T; Thomas, Matthew J; Proll, Sean; Bradel-Tretheway, Birgit G; Korth, Marcus J; Castle, John C; Biery, Matthew C; Bouzek, Heather K; Haynor, David R; Frieman, Matthew B; Heise, Mark; Raymond, Christopher K; Baric, Ralph S; Katze, Michael G
2010-10-26
Studies of the host response to virus infection typically focus on protein-coding genes. However, non-protein-coding RNAs (ncRNAs) are transcribed in mammalian cells, and the roles of many of these ncRNAs remain enigmas. Using next-generation sequencing, we performed a whole-transcriptome analysis of the host response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection across four founder mouse strains of the Collaborative Cross. We observed differential expression of approximately 500 annotated, long ncRNAs and 1,000 nonannotated genomic regions during infection. Moreover, studies of a subset of these ncRNAs and genomic regions showed the following. (i) Most were similarly regulated in response to influenza virus infection. (ii) They had distinctive kinetic expression profiles in type I interferon receptor and STAT1 knockout mice during SARS-CoV infection, including unique signatures of ncRNA expression associated with lethal infection. (iii) Over 40% were similarly regulated in vitro in response to both influenza virus infection and interferon treatment. These findings represent the first discovery of the widespread differential expression of long ncRNAs in response to virus infection and suggest that ncRNAs are involved in regulating the host response, including innate immunity. At the same time, virus infection models provide a unique platform for studying the biology and regulation of ncRNAs.
Peng, Xinxia; Gralinski, Lisa; Armour, Christopher D.; Ferris, Martin T.; Thomas, Matthew J.; Proll, Sean; Bradel-Tretheway, Birgit G.; Korth, Marcus J.; Castle, John C.; Biery, Matthew C.; Bouzek, Heather K.; Haynor, David R.; Frieman, Matthew B.; Heise, Mark; Raymond, Christopher K.; Baric, Ralph S.; Katze, Michael G.
2010-01-01
Studies of the host response to virus infection typically focus on protein-coding genes. However, non-protein-coding RNAs (ncRNAs) are transcribed in mammalian cells, and the roles of many of these ncRNAs remain enigmas. Using next-generation sequencing, we performed a whole-transcriptome analysis of the host response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection across four founder mouse strains of the Collaborative Cross. We observed differential expression of approximately 500 annotated, long ncRNAs and 1,000 nonannotated genomic regions during infection. Moreover, studies of a subset of these ncRNAs and genomic regions showed the following. (i) Most were similarly regulated in response to influenza virus infection. (ii) They had distinctive kinetic expression profiles in type I interferon receptor and STAT1 knockout mice during SARS-CoV infection, including unique signatures of ncRNA expression associated with lethal infection. (iii) Over 40% were similarly regulated in vitro in response to both influenza virus infection and interferon treatment. These findings represent the first discovery of the widespread differential expression of long ncRNAs in response to virus infection and suggest that ncRNAs are involved in regulating the host response, including innate immunity. At the same time, virus infection models provide a unique platform for studying the biology and regulation of ncRNAs. PMID:20978541
Pedrini, Nicolás
2018-06-01
Entomopathogenic fungi of the order Hypocreales infect their insect hosts mainly by penetrating through the cuticle and colonize them by proliferating throughout the body cavity. In order to ensure a successful infection, fungi first produce a variety of degrading enzymes that help to breach the insect cuticle, and then secrete toxic secondary metabolites that facilitate fungal invasion of the hemolymph. In response, insect hosts activate their innate immune system by triggering both cellular and humoral immune reactions. As fungi are exposed to stress in both cuticle and hemolymph, several mechanisms are activated not only to deal with this situation but also to mimic host epitopes and evade the insect's immune response. In this review, several components involved in the molecular interaction between insects and fungal pathogens are described including chemical, metabolomics, and dual transcriptomics approaches; with emphasis in the involvement of cuticle surface components in (pre-) infection processes, and fungal secondary metabolite (non-ribosomally synthesized peptides and polyketides) analysis. Some of the mechanisms involved in such interaction are also discussed. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Comparative genomics explains the evolutionary success of reef-forming corals.
Bhattacharya, Debashish; Agrawal, Shobhit; Aranda, Manuel; Baumgarten, Sebastian; Belcaid, Mahdi; Drake, Jeana L; Erwin, Douglas; Foret, Sylvian; Gates, Ruth D; Gruber, David F; Kamel, Bishoy; Lesser, Michael P; Levy, Oren; Liew, Yi Jin; MacManes, Matthew; Mass, Tali; Medina, Monica; Mehr, Shaadi; Meyer, Eli; Price, Dana C; Putnam, Hollie M; Qiu, Huan; Shinzato, Chuya; Shoguchi, Eiichi; Stokes, Alexander J; Tambutté, Sylvie; Tchernov, Dan; Voolstra, Christian R; Wagner, Nicole; Walker, Charles W; Weber, Andreas Pm; Weis, Virginia; Zelzion, Ehud; Zoccola, Didier; Falkowski, Paul G
2016-05-24
Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years.
Transposable elements re-wire and fine-tune the transcriptome.
Cowley, Michael; Oakey, Rebecca J
2013-01-01
What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs-particularly retrotransposons-contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription. We also discuss a critical role for the mobilome in engineering transcriptional networks, permitting coordinated gene expression, and facilitating the evolution of novel physiological processes.
Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress
Lin, Wenwei; de Sessions, Paola Florez; Teoh, Garrett Hor Keong; Mohamed, Ahmad Naim Nazri; Zhu, Yuan O.; Koh, Vanessa Hui Qi; Ang, Michelle Lay Teng; Dedon, Peter C.; Hibberd, Martin Lloyd
2016-01-01
Increasing experimental evidence supports the idea that Mycobacterium tuberculosis has evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge of M. tuberculosis response to the hostile lysosomal environment, we profiled the global transcriptional activity of M. tuberculosis when exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication, M. tuberculosis expressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified the glgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection and in vitro stress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding gene Rv1258c was selected for validation. An M. tuberculosis ΔRv1258c mutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1. PMID:27324481
Wu, Chia-Chou; Chen, Bor-Sen
2016-01-01
Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.
Valenzuela-Muñoz, V; Boltaña, S; Gallardo-Escárate, C
2017-09-01
Salmon species cultured in Chile evidence different levels of susceptibility to the sea louse Caligus rogercresseyi. These differences have mainly been associated with specific immune responses. Moreover, iron regulation seems to be an important mechanism to confer immunity during the host infestation. This response called nutritional immunity has been described in bacterial infections, despite that no comprehensive studies involving in marine ectoparasites infestation have been reported. With this aim, we analysed the transcriptome profiles of Atlantic and coho salmon infected with C. rogercresseyi to evidence modulation of the iron metabolism as a proxy of nutritional immune responses. Whole transcriptome sequencing was performed in samples of skin and head kidney from Atlantic and coho salmon infected with sea lice. RNA-seq analyses revealed significant upregulation of transcripts in both salmon species at 7 and 14 dpi in skin and head kidney, respectively. However, iron regulation transcripts were differentially modulated, evidencing species-specific expression profiles. Genes related to heme degradation and iron transport such as hepcidin, transferrin and haptoglobin were primary upregulated in Atlantic salmon; meanwhile, in coho salmon, genes associated with heme biosynthesis were strongly transcribed. In summary, Atlantic salmon, which are more susceptible to infestation, presented molecular mechanisms to deplete cellular iron availability, suggesting putative mechanisms of nutritional immunity. In contrast, resistant coho salmon were less affected by sea lice, mainly activating pro-inflammatory mechanisms to cope with infestation. © 2017 John Wiley & Sons Ltd.
2013-01-01
Background The interaction between insect pests and their host plants is a never-ending race of evolutionary adaption. Plants have developed an armament against insect herbivore attacks, and attackers continuously learn how to address it. Using a combined transcriptomic and metabolomic approach, we investigated the molecular and biochemical differences between Quercus robur L. trees that resisted (defined as resistant oak type) or were susceptible (defined as susceptible oak type) to infestation by the major oak pest, Tortrix viridana L. Results Next generation RNA sequencing revealed hundreds of genes that exhibited constitutive and/or inducible differential expression in the resistant oak compared to the susceptible oak. Distinct differences were found in the transcript levels and the metabolic content with regard to tannins, flavonoids, and terpenoids, which are compounds involved in the defence against insect pests. The results of our transcriptomic and metabolomic analyses are in agreement with those of a previous study in which we showed that female moths prefer susceptible oaks due to their specific profile of herbivore-induced volatiles. These data therefore define two oak genotypes that clearly differ on the transcriptomic and metabolomic levels, as reflected by their specific defensive compound profiles. Conclusions We conclude that the resistant oak type seem to prefer a strategy of constitutive defence responses in contrast to more induced defence responses of the susceptible oaks triggered by feeding. These results pave the way for the development of biomarkers for an early determination of potentially green oak leaf roller-resistant genotypes in natural pedunculate oak populations in Europe. PMID:24160444
USDA-ARS?s Scientific Manuscript database
The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic ne...
USDA-ARS?s Scientific Manuscript database
Illumina paired end oligo-dT sequencing technology was used to sequence the transcriptome from newly molted adult females from the cattle tick, Rhipicephalus microplus. These samples include newly molted unfed whole adult females, newly molted whole adult females feeding for 2 hours on a bovine host...
Single-cell transcriptional dynamics of flavivirus infection
Bekerman, Elena
2018-01-01
Dengue and Zika viral infections affect millions of people annually and can be complicated by hemorrhage and shock or neurological manifestations, respectively. However, a thorough understanding of the host response to these viruses is lacking, partly because conventional approaches ignore heterogeneity in virus abundance across cells. We present viscRNA-Seq (virus-inclusive single cell RNA-Seq), an approach to probe the host transcriptome together with intracellular viral RNA at the single cell level. We applied viscRNA-Seq to monitor dengue and Zika virus infection in cultured cells and discovered extreme heterogeneity in virus abundance. We exploited this variation to identify host factors that show complex dynamics and a high degree of specificity for either virus, including proteins involved in the endoplasmic reticulum translocon, signal peptide processing, and membrane trafficking. We validated the viscRNA-Seq hits and discovered novel proviral and antiviral factors. viscRNA-Seq is a powerful approach to assess the genome-wide virus-host dynamics at single cell level. PMID:29451494
Franco, Magdalena; Shastri, Anjali J.
2014-01-01
Toxoplasma gondii infection has previously been described to cause dramatic changes in the host transcriptome by manipulating key regulators, including STATs, NF-κB, and microRNAs. Here, we report that Toxoplasma tachyzoites also mediate rapid and sustained induction of another pivotal regulator of host cell transcription, c-Myc. This induction is seen in cells infected with all three canonical types of Toxoplasma but not the closely related apicomplexan parasite Neospora caninum. Coinfection of cells with both Toxoplasma and Neospora still results in an increase in the level of host c-Myc, showing that c-Myc is actively upregulated by Toxoplasma infection (rather than repressed by Neospora). We further demonstrate that this upregulation may be mediated through c-Jun N-terminal protein kinase (JNK) and is unlikely to be a nonspecific host response, as heat-killed Toxoplasma parasites do not induce this increase and neither do nonviable parasites inside the host cell. Finally, we show that the induced c-Myc is active and that transcripts dependent on its function are upregulated, as predicted. Hence, c-Myc represents an additional way in which Toxoplasma tachyzoites have evolved to specifically alter host cell functions during intracellular growth. PMID:24532536
Leisching, Gina; Pietersen, Ray-Dean; Mpongoshe, Vuyiseka; van Heerden, Carel; van Helden, Paul; Wiid, Ian; Baker, Bienyameen
2016-01-01
During Mycobacterium tuberculosis (M.tb) infection, the initial interactions between the pathogen and the host cell determines internalization and innate immune response events. It is established that detergents such as Tween alter the mycobacterial cell wall and solubilize various lipids and proteins. The implication of this is significant since induced changes on the cell wall affect macrophage uptake and the immune response to M.tb. Importantly, during transmission between hosts, aerosolized M.tb enters the host in its native form, i.e. in a detergent-free environment, thus in vitro and in vivo studies should mimic this as closely as possible. To this end, we have optimized a procedure for growing and processing detergent-free M.tb and assessed the response of murine macrophages (BMDM) infected with multi drug-resistant M.tb (R179 Beijing 220 clinical isolate) using RNAseq. We compared the effects of the host response to M.tb cultured under standard laboratory conditions (Tween 80 containing medium -R179T), or in detergent-free medium (R179NT). RNAseq comparisons reveal 2651 differentially expressed genes in BMDMs infected with R179T M.tb vs. BMDMs infected with R179NT M.tb. A range of differentially expressed genes involved in BMDM receptor interaction with M.tb (Mrc1, Ifngr1, Tlr9, Fpr1 and Itgax) and pro-inflammatory cytokines/chemokines (Il6, Il1b, Tnf, Ccl5 and Cxcl14) were selected for analysis through qPCR. BMDMs infected with R179NT stimulate a robust inflammatory response. Interestingly, R179NT M.tb induce transcription of Fpr1, a receptor which detects bacterial formyl peptides and initiates a myriad of immune responses. Additionally we show that the host components Cxcl14, with an unknown role in M.tb infection, and Tlr9, an emerging role player, are only stimulated by infection with R179NT M.tb. Taken together, our results suggest that the host response differs significantly in response to Tween 80 cultured M.tb and should therefore not be used in infection experiments.
Liu, Hong; Lee, Mark J.; Snarr, Brendan D.; Chen, Dan; Xu, Wenjie; Kravtsov, Ilia; Hoareau, Christopher M. Q.; Vanier, Ghyslaine; Urb, Mirjam; Campoli, Paolo; Al Abdallah, Qusai; Lehoux, Melanie; Chabot, Josée C.; Ouimet, Marie-Claude; Baptista, Stefanie D.; Fritz, Jörg H.; Nierman, William C.; Latgé, Jean Paul; Mitchell, Aaron P.; Filler, Scott G.; Fontaine, Thierry; Sheppard, Donald C.
2013-01-01
Aspergillus fumigatus is the most common cause of invasive mold disease in humans. The mechanisms underlying the adherence of this mold to host cells and macromolecules have remained elusive. Using mutants with different adhesive properties and comparative transcriptomics, we discovered that the gene uge3, encoding a fungal epimerase, is required for adherence through mediating the synthesis of galactosaminogalactan. Galactosaminogalactan functions as the dominant adhesin of A. fumigatus and mediates adherence to plastic, fibronectin, and epithelial cells. In addition, galactosaminogalactan suppresses host inflammatory responses in vitro and in vivo, in part through masking cell wall β-glucans from recognition by dectin-1. Finally, galactosaminogalactan is essential for full virulence in two murine models of invasive aspergillosis. Collectively these data establish a role for galactosaminogalactan as a pivotal bifunctional virulence factor in the pathogenesis of invasive aspergillosis. PMID:23990787
Islam, Md. Aminul; Große-Brinkhaus, Christine; Pröll, Maren Julia; Uddin, Muhammad Jasim; Aqter Rony, Sharmin; Tesfaye, Dawit; Tholen, Ernst; Hoelker, Michael; Schellander, Karl; Neuhoff, Christiane
2017-01-01
The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting swine production, health and welfare throughout the world. A synergistic action of the innate and the adaptive immune system of the host is essential for mounting a durable protective immunity through vaccination. Therefore, the current study aimed to investigate the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain pigs. The Affymetrix gene chip porcine gene 1.0 ST array was used for the transcriptome profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post PRRSV vaccination with three biological replications. With FDR <0.05 and log2 fold change ±1.5 as cutoff criteria, 295 and 115 transcripts were found to be differentially expressed in PBMCs during the stage of innate and adaptive response, respectively. The microarray expression results were technically validated by qRT-PCR. The gene ontology terms such as viral life cycle, regulation of lymphocyte activation, cytokine activity and inflammatory response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and AP-1 transcription factor network pathways were indicating the involvement of altered genes in the antiviral defense. Network analysis revealed that four network modules were functionally involved with the transcriptional network of innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, RAD21, SP1 and GZMB are likely to be predictive for the adaptive immune transcriptional response to PRRSV vaccine in PBMCs. Results of the current immunogenomics study advances our understanding of PRRS in term of host-vaccine interaction, and thereby contribute to design a rationale for disease control strategy. PMID:28278192
Cervera, Héctor; Ambrós, Silvia; Bernet, Guillermo P; Rodrigo, Guillermo; Elena, Santiago F
2018-07-01
Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts.
Chun, Carlene K; Troll, Joshua V; Koroleva, Irina; Brown, Bartley; Manzella, Liliana; Snir, Einat; Almabrazi, Hakeem; Scheetz, Todd E; Bonaldo, Maria de Fatima; Casavant, Thomas L; Soares, M Bento; Ruby, Edward G; McFall-Ngai, Margaret J
2008-08-12
The light-organ symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri offers the opportunity to decipher the hour-by-hour events that occur during the natural colonization of an animal's epithelial surface by its microbial partners. To determine the genetic basis of these events, a glass-slide microarray was used to characterize the light-organ transcriptome of juvenile squid in response to the initiation of symbiosis. Patterns of gene expression were compared between animals not exposed to the symbiont, exposed to the wild-type symbiont, or exposed to a mutant symbiont defective in either of two key characters of this association: bacterial luminescence or autoinducer (AI) production. Hundreds of genes were differentially regulated as a result of symbiosis initiation, and a hierarchy existed in the magnitude of the host's response to three symbiont features: bacterial presence > luminescence > AI production. Putative host receptors for bacterial surface molecules known to induce squid development are up-regulated by symbiont light production, suggesting that bioluminescence plays a key role in preparing the host for bacteria-induced development. Further, because the transcriptional response of tissues exposed to AI in the natural context (i.e., with the symbionts) differed from that to AI alone, the presence of the bacteria potentiates the role of quorum signals in symbiosis. Comparison of these microarray data with those from other symbioses, such as germ-free/conventionalized mice and zebrafish, revealed a set of shared genes that may represent a core set of ancient host responses conserved throughout animal evolution.
Chun, Carlene K.; Troll, Joshua V.; Koroleva, Irina; Brown, Bartley; Manzella, Liliana; Snir, Einat; Almabrazi, Hakeem; Scheetz, Todd E.; de Fatima Bonaldo, Maria; Casavant, Thomas L.; Soares, M. Bento; Ruby, Edward G.; McFall-Ngai, Margaret J.
2008-01-01
The light–organ symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri offers the opportunity to decipher the hour-by-hour events that occur during the natural colonization of an animal's epithelial surface by its microbial partners. To determine the genetic basis of these events, a glass-slide microarray was used to characterize the light-organ transcriptome of juvenile squid in response to the initiation of symbiosis. Patterns of gene expression were compared between animals not exposed to the symbiont, exposed to the wild-type symbiont, or exposed to a mutant symbiont defective in either of two key characters of this association: bacterial luminescence or autoinducer (AI) production. Hundreds of genes were differentially regulated as a result of symbiosis initiation, and a hierarchy existed in the magnitude of the host's response to three symbiont features: bacterial presence > luminescence > AI production. Putative host receptors for bacterial surface molecules known to induce squid development are up-regulated by symbiont light production, suggesting that bioluminescence plays a key role in preparing the host for bacteria-induced development. Further, because the transcriptional response of tissues exposed to AI in the natural context (i.e., with the symbionts) differed from that to AI alone, the presence of the bacteria potentiates the role of quorum signals in symbiosis. Comparison of these microarray data with those from other symbioses, such as germ-free/conventionalized mice and zebrafish, revealed a set of shared genes that may represent a core set of ancient host responses conserved throughout animal evolution. PMID:18682555
Vargas, Lívia; Santa Brígida, Ailton B; Mota Filho, José P; de Carvalho, Thais G; Rojas, Cristian A; Vaneechoutte, Dries; Van Bel, Michiel; Farrinelli, Laurent; Ferreira, Paulo C G; Vandepoele, Klaas; Hemerly, Adriana S
2014-01-01
Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to sugarcane cv. SP70-1143, and it describes the initial molecular events that may trigger the increased drought tolerance in the host plant.
Vargas, Lívia; Santa Brígida, Ailton B.; Mota Filho, José P.; de Carvalho, Thais G.; Rojas, Cristian A.; Vaneechoutte, Dries; Van Bel, Michiel; Farrinelli, Laurent; Ferreira, Paulo C. G.; Vandepoele, Klaas; Hemerly, Adriana S.
2014-01-01
Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to sugarcane cv. SP70-1143, and it describes the initial molecular events that may trigger the increased drought tolerance in the host plant. PMID:25489849
Herranz, Mari Carmen; Niehl, Annette; Rosales, Marlene; Fiore, Nicola; Zamorano, Alan; Granell, Antonio; Pallas, Vicente
2013-05-28
Microarray profiling is a powerful technique to investigate expression changes of large amounts of genes in response to specific environmental conditions. The majority of the studies investigating gene expression changes in virus-infected plants are limited to interactions between a virus and a model host plant, which usually is Arabidopsis thaliana or Nicotiana benthamiana. In the present work, we performed microarray profiling to explore changes in the expression profile of field-grown Prunus persica (peach) originating from Chile upon single and double infection with Prunus necrotic ringspot virus (PNRSV) and Peach latent mosaic viroid (PLMVd), worldwide natural pathogens of peach trees. Upon single PLMVd or PNRSV infection, the number of statistically significant gene expression changes was relatively low. By contrast, doubly-infected fruits presented a high number of differentially regulated genes. Among these, down-regulated genes were prevalent. Functional categorization of the gene expression changes upon double PLMVd and PNRSV infection revealed protein modification and degradation as the functional category with the highest percentage of repressed genes whereas induced genes encoded mainly proteins related to phosphate, C-compound and carbohydrate metabolism and also protein modification. Overrepresentation analysis upon double infection with PLMVd and PNRSV revealed specific functional categories over- and underrepresented among the repressed genes indicating active counter-defense mechanisms of the pathogens during infection. Our results identify a novel synergistic effect of PLMVd and PNRSV on the transcriptome of peach fruits. We demonstrate that mixed infections, which occur frequently in field conditions, result in a more complex transcriptional response than that observed in single infections. Thus, our data demonstrate for the first time that the simultaneous infection of a viroid and a plant virus synergistically affect the host transcriptome in infected peach fruits. These field studies can help to fully understand plant-pathogen interactions and to develop appropriate crop protection strategies.
2013-01-01
Background Microarray profiling is a powerful technique to investigate expression changes of large amounts of genes in response to specific environmental conditions. The majority of the studies investigating gene expression changes in virus-infected plants are limited to interactions between a virus and a model host plant, which usually is Arabidopsis thaliana or Nicotiana benthamiana. In the present work, we performed microarray profiling to explore changes in the expression profile of field-grown Prunus persica (peach) originating from Chile upon single and double infection with Prunus necrotic ringspot virus (PNRSV) and Peach latent mosaic viroid (PLMVd), worldwide natural pathogens of peach trees. Results Upon single PLMVd or PNRSV infection, the number of statistically significant gene expression changes was relatively low. By contrast, doubly-infected fruits presented a high number of differentially regulated genes. Among these, down-regulated genes were prevalent. Functional categorization of the gene expression changes upon double PLMVd and PNRSV infection revealed protein modification and degradation as the functional category with the highest percentage of repressed genes whereas induced genes encoded mainly proteins related to phosphate, C-compound and carbohydrate metabolism and also protein modification. Overrepresentation analysis upon double infection with PLMVd and PNRSV revealed specific functional categories over- and underrepresented among the repressed genes indicating active counter-defense mechanisms of the pathogens during infection. Conclusions Our results identify a novel synergistic effect of PLMVd and PNRSV on the transcriptome of peach fruits. We demonstrate that mixed infections, which occur frequently in field conditions, result in a more complex transcriptional response than that observed in single infections. Thus, our data demonstrate for the first time that the simultaneous infection of a viroid and a plant virus synergistically affect the host transcriptome in infected peach fruits. These field studies can help to fully understand plant-pathogen interactions and to develop appropriate crop protection strategies. PMID:23710752
Zhong, Huaqing; Hu, Xinran; Janowski, Andrew B; Storch, Gregory A; Su, Liyun; Cao, Lingfeng; Yu, Jinsheng; Xu, Jin
2017-12-19
Epstein-Barr virus (EBV) is a common human pathogen that infects over 95% of the population worldwide. In the present study, the whole transcriptome microarray data were generated from peripheral blood mononuclear cells from Chinese children with acute infectious mononucleosis (AIM) and chronic active EBV infection (CAEBV) that were also compared with a publicly available microarray dataset from a study of American college students with AIM. Our study characterized for the first time a broad spectrum of molecular signatures in AIM and CAEBV. The key findings from the transcriptome profiling were validated with qPCR and flow cytometry assays. The most important finding in our study is the discovery of predominant γδ TCR expression and γδ T cell expansion in AIM. This finding, in combination with the striking up-regulation of CD3, CD8 and CD94, suggests that CD8+ T cells and CD94+ NK cells may play a major role in AIM. Moreover, the unique up-regulation of CD64A/B and its significant correlation with the monocyte marker CD14 was observed in CAEBV and that implies an important role of monocytes in CAEBV. In conclusion, our study reveals major cell types (particularly γδ T cells) in the host cellular immune response against AIM and CAEBV.
Choi, Young-Jun; Fuchs, Jeremy F.; Mayhew, George F.; Yu, Helen E.; Christensen, Bruce M.
2012-01-01
Hemocytes are integral components of mosquito immune mechanisms such as phagocytosis, melanization, and production of antimicrobial peptides. However, our understanding of hemocyte-specific molecular processes and their contribution to shaping the host immune response remains limited. To better understand the immunophysiological features distinctive of hemocytes, we conducted genome-wide analysis of hemocyte-enriched transcripts, and examined how tissue-enriched expression patterns change with the immune status of the host. Our microarray data indicate that the hemocyte-enriched trascriptome is dynamic and context-dependent. Analysis of transcripts enriched after bacterial challenge in circulating hemocytes with respect to carcass added a dimension to evaluating infection-responsive genes and immune-related gene families. We resolved patterns of transcriptional change unique to hemocytes from those that are likely shared by other immune responsive tissues, and identified clusters of genes preferentially induced in hemocytes, likely reflecting their involvement in cell type specific functions. In addition, the study revealed conserved hemocyte-enriched molecular repertoires which might be implicated in core hemocyte function by cross-species meta-analysis of microarray expression data from Anopheles gambiae and Drosophila melanogaster. PMID:22796331
Differential immune responses of Monochamus alternatus against symbiotic and entomopathogenic fungi.
Zhang, Wei; Meng, Jie; Ning, Jing; Qin, Peijun; Zhou, Jiao; Zou, Zhen; Wang, Yanhong; Jiang, Hong; Ahmad, Faheem; Zhao, Lilin; Sun, Jianghua
2017-08-01
Monochamus alternatus, the main vector beetles of invasive pinewood nematode, has established a symbiotic relationship with a native ectotrophic fungal symbiont, Sporothrix sp. 1, in China. The immune response of M. alternatus to S. sp. 1 in the coexistence of beetles and fungi is, however, unknown. Here, we report that immune responses of M. alternatus pupae to infection caused by ectotrophic symbiotic fungus S. sp. 1 and entomopathogenic fungus Beauveria bassiana differ significantly. The S. sp. 1 did not kill the beetles while B. bassiana killed all upon injection. The transcriptome results showed that the numbers of differentially expressed genes in M. alternatus infected with S. sp. 1 were 2-fold less than those infected with B. bassiana at 48 hours post infection. It was noticed that Toll and IMD pathways played a leading role in the beetle's immune system when infected by symbiotic fungus, but upon infection by entomopathogenic fungus, only the Toll pathway gets triggered actively. Furthermore, the beetles could tolerate the infection of symbiotic fungi by retracing their Toll and IMD pathways at 48 h. This study provided a comprehensive sequence resource of M. alternatus transcriptome for further study of the immune interactions between host and associated fungi.
Long-Term Transcriptomic Effects of Prebiotics and Synbiotics Delivered In Ovo in Broiler Chickens.
Slawinska, Anna; Plowiec, Arkadiusz; Siwek, Maria; Jaroszewski, Marcin; Bednarczyk, Marek
2016-01-01
In ovo delivery of prebiotics and synbiotics in chickens allows for the development of intestinal microflora prior to hatching, which boosts their robustness. The goal of this study was to determine the transcriptomic profile of the spleen (S), cecal tonsils (CT), and large intestine (LI) of adult chickens injected with prebiotics and synbiotics in ovo. On day 12 of embryo development, incubating eggs were injected with prebiotics: inulin alone (P1) or in combination with Lactococcus lactis subsp. lactis IBB2955 (S1), galactooligosaccharides (GOS) alone (P2) or in combination with Lactococcus lactis subsp. cremoris IBB477 (S2); control group (C) was mock injected with physiological saline. Gene expression analysis was conducted using an Affymetrix Chicken Gene 1.1 ST Array Strip. Most of the differentially expressed genes (DEG) were detected in the cecal tonsils of P2 (378 DEG), and were assigned to gene ontology categories: lymphocyte proliferation, activation and differentiation, and cytokine production. Ingenuity pathway analysis of the DEG (CT of P2) indicated the inhibition of humoral and cellular immune responses, e.g., role of NFAT in regulation of immune responses, phagocytosis, production of nitric oxide, NF-κB, IL-8, and CXCR4 signaling. The DEG with the highest up-regulation from S1 and P2 were involved in gene expression (PAPOLA, RPL27A, RPLP1, and RPS29) from P1 and P2 in transport (BEST4, SLC9A3, and SLC13A2), metabolism (OGT, ALPP, CA4, and CA7), signaling (FGG, G3BP2, UBB, G3BP2, CACNA1G, and ATP6V0A4), and immune responses (MSMB, LGALS3, CABIN1, CXCR5, PAX5, and TNFRSF14). Two DEG influencing the complement system (SERPING1 and MIR1674) were down-regulated in P2 and S1. In conclusion, GOS injected in ovo provided the most potent stimulation of the host transcriptome. This is likely due to its strong bifidogenic effect, which triggers proliferation of indigenous embryonic microflora in ovo, and indirectly influences gene expression regulation in host tissues, especially cecal tonsils.
Long-Term Transcriptomic Effects of Prebiotics and Synbiotics Delivered In Ovo in Broiler Chickens
Slawinska, Anna; Plowiec, Arkadiusz; Siwek, Maria; Jaroszewski, Marcin; Bednarczyk, Marek
2016-01-01
In ovo delivery of prebiotics and synbiotics in chickens allows for the development of intestinal microflora prior to hatching, which boosts their robustness. The goal of this study was to determine the transcriptomic profile of the spleen (S), cecal tonsils (CT), and large intestine (LI) of adult chickens injected with prebiotics and synbiotics in ovo. On day 12 of embryo development, incubating eggs were injected with prebiotics: inulin alone (P1) or in combination with Lactococcus lactis subsp. lactis IBB2955 (S1), galactooligosaccharides (GOS) alone (P2) or in combination with Lactococcus lactis subsp. cremoris IBB477 (S2); control group (C) was mock injected with physiological saline. Gene expression analysis was conducted using an Affymetrix Chicken Gene 1.1 ST Array Strip. Most of the differentially expressed genes (DEG) were detected in the cecal tonsils of P2 (378 DEG), and were assigned to gene ontology categories: lymphocyte proliferation, activation and differentiation, and cytokine production. Ingenuity pathway analysis of the DEG (CT of P2) indicated the inhibition of humoral and cellular immune responses, e.g., role of NFAT in regulation of immune responses, phagocytosis, production of nitric oxide, NF-κB, IL-8, and CXCR4 signaling. The DEG with the highest up-regulation from S1 and P2 were involved in gene expression (PAPOLA, RPL27A, RPLP1, and RPS29) from P1 and P2 in transport (BEST4, SLC9A3, and SLC13A2), metabolism (OGT, ALPP, CA4, and CA7), signaling (FGG, G3BP2, UBB, G3BP2, CACNA1G, and ATP6V0A4), and immune responses (MSMB, LGALS3, CABIN1, CXCR5, PAX5, and TNFRSF14). Two DEG influencing the complement system (SERPING1 and MIR1674) were down-regulated in P2 and S1. In conclusion, GOS injected in ovo provided the most potent stimulation of the host transcriptome. This is likely due to its strong bifidogenic effect, which triggers proliferation of indigenous embryonic microflora in ovo, and indirectly influences gene expression regulation in host tissues, especially cecal tonsils. PMID:28002487
Behrendt, Lars; Raina, Jean-Baptiste; Lutz, Adrian; Kot, Witold; Albertsen, Mads; Halkjær-Nielsen, Per; Sørensen, Søren J; Larkum, Anthony Wd; Kühl, Michael
2017-10-31
The tropical ascidian Lissoclinum patella hosts two enigmatic cyanobacteria: (1) the photoendosymbiont Prochloron spp., a producer of valuable bioactive compounds and (2) the chlorophyll-d containing Acaryochloris spp., residing in the near-infrared enriched underside of the animal. Despite numerous efforts, Prochloron remains uncultivable, restricting the investigation of its biochemical potential to cultivation-independent techniques. Likewise, in both cyanobacteria, universally important parameters on light-niche adaptation and in situ photosynthetic regulation are unknown. Here we used genome sequencing, transcriptomics and metabolomics to investigate the symbiotic linkage between host and photoendosymbiont and simultaneously probed the transcriptional response of Acaryochloris in situ. During high light, both cyanobacteria downregulate CO 2 fixing pathways, likely a result of O 2 photorespiration on the functioning of RuBisCO, and employ a variety of stress-quenching mechanisms, even under less stressful far-red light (Acaryochloris). Metabolomics reveals a distinct biochemical modulation between Prochloron and L. patella, including noon/midnight-dependent signatures of amino acids, nitrogenous waste products and primary photosynthates. Surprisingly, Prochloron constitutively expressed genes coding for patellamides, that is, cyclic peptides of great pharmaceutical value, with yet unknown ecological significance. Together these findings shed further light on far-red-driven photosynthesis in natural consortia, the interplay of Prochloron and its ascidian partner in a model chordate photosymbiosis and the uncultivability of Prochloron.The ISME Journal advance online publication, 31 October 2017; doi:10.1038/ismej.2017.192.
Ilott, Nicholas Edward; Bollrath, Julia; Danne, Camille; Schiering, Chris; Shale, Matthew; Adelmann, Krista; Krausgruber, Thomas; Heger, Andreas; Sims, David; Powrie, Fiona
2016-01-01
The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess modifications to both bacterial community structure and transcriptional activity in a mouse model of colitis. By using transcriptomic analysis of colonic tissue and luminal RNA derived from the host, we have also characterised how host transcription relates to the microbial transcriptional response in inflammation. In colitis, increased abundance and transcription of diverse microbial gene families involved in responses to nutrient deprivation, antimicrobial peptide production and oxidative stress support an adaptation of multiple commensal genera to withstand a diverse set of environmental stressors in the inflammatory environment. These data are supported by a transcriptional signature of activated macrophages and granulocytes in the gut lumen during colitis, a signature that includes the transcription of the key antimicrobial genes S100a8 and S100a9 (calprotectin). Genes involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase were identified as changing to a greater extent at the level of transcription than would be predicted by DNA abundance changes, implicating a role for increased oxygen tension and/or host-derived reactive oxygen species in driving transcriptional changes in commensal microbes. PMID:27003245
Segment-specific responses of intestinal epithelium transcriptome to in-feed antibiotics in pigs.
Yu, Kaifan; Mu, Chunlong; Yang, Yuxiang; Su, Yong; Zhu, Weiyun
2017-10-01
Despite widespread use of antibiotics for treatment of human diseases and promotion of growth of agricultural animals, our understanding of their effects on the host is still very limited. We used a model in which pigs were fed with or without a cocktail of antibiotics and found, based on the denaturing gradient gel electrophoresis (DGGE) patterns, that the fecal bacteria from the treatment and control animals were distinct. Furthermore, the total bacterial population in the feces tended to be decreased by the antibiotic treatment ( P = 0.07), and the counts of Lactobacillus and Clostridium XIVa were significantly reduced ( P < 0.05). To explore the effects of antibiotics on host intestinal epithelium, we assessed gene expression profiles of the jejunum and ileum and their response to antibiotic administration. The results indicate that in-feed antibiotics increased expression of genes involved in immune functions in both the jejunum and ileum, some of which were clustered in the coexpression network. Gene ontology terms of metabolic processes were altered predominantly in the jejunum but not in the ileum. Notably, antibiotics diminished intestinal segment-specific transcriptional changes, especially for genes associated with metabolic functions. This study reveals segment-specific responses of host intestinal epithelium to in-feed antibiotics, which can be a valuable resource for deciphering antibiotic-microbiota-host interactions. Copyright © 2017 the American Physiological Society.
Transposable Elements Re-Wire and Fine-Tune the Transcriptome
Cowley, Michael; Oakey, Rebecca J.
2013-01-01
What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs—particularly retrotransposons—contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription. We also discuss a critical role for the mobilome in engineering transcriptional networks, permitting coordinated gene expression, and facilitating the evolution of novel physiological processes. PMID:23358118
Omics Approaches for the Engineering of Pathogen Resistant Plants.
Gomez-Casati, Diego F; Pagani, María A; Busi, María V; Bhadauria, Vijai
2016-01-01
The attack of different pathogens, such as bacteria, fungi and viruses has a negative impact on crop production. In counter such attacks, plants have developed different strategies involving the modification of gene expression, activation of several metabolic pathways and post-translational modification of proteins, which culminate into the accumulation of primary and secondary metabolites implicated in plant defense responses. The recent advancement in omics techniques allows the increase coverage of plants transcriptomes, proteomes and metabolomes during pathogen attack, and the modulation of the response after the infection. Omics techniques also allow us to learn more about the biological cycle of the pathogens in addition to the identification of novel virulence factors in pathogens and their host targets. Both approaches become important to decipher the mechanism underlying pathogen attacks and to develop strategies for improving disease-resistant plants. In this review, we summarize some of the contribution of genomics, transcriptomics, proteomics, metabolomics and metallomics in devising the strategies to obtain plants with increased resistance to pathogens. These approaches constitute important research tools in the development of new technologies for the protection against diseases and increase plant production.
Shankar, Jata; Cerqueira, Gustavo C; Wortman, Jennifer R; Clemons, Karl V; Stevens, David A
2018-03-02
With the increasing numbers of immunocompromised hosts, Aspergillus fumigatus emerges as a lethal opportunistic fungal pathogen. Understanding innate and acquired immunity responses of the host is important for a better therapeutic strategy to deal with aspergillosis patients. To determine the transcriptome in the kidneys in aspergillosis, we employed RNA-Seq to obtain single 76-base reads of whole-genome transcripts of murine kidneys on a temporal basis (days 0; uninfected, 1, 2, 3 and 8) during invasive aspergillosis. A total of 6284 transcripts were downregulated, and 5602 were upregulated compared to baseline expression. Gene ontology enrichment analysis identified genes involved in innate and adaptive immune response, as well as iron binding and homeostasis, among others. Our results showed activation of pathogen recognition receptors, e.g., β-defensins, C-type lectins (e.g., dectin-1), Toll-like receptors (TLR-2, TLR-3, TLR-8, TLR-9 and TLR-13), as well as Ptx-3 and C-reactive protein among the soluble receptors. Upregulated transcripts encoding various differentiating cytokines and effector proinflammatory cytokines, as well as those encoding for chemokines and chemokine receptors, revealed Th-1 and Th-17-type immune responses. These studies form a basic dataset for experimental prioritization, including other target organs, to determine the global response of the host against Aspergillus infection.
The Drosophila transcriptional network is structured by microbiota.
Dobson, Adam J; Chaston, John M; Douglas, Angela E
2016-11-25
Resident microorganisms (microbiota) have far-reaching effects on the biology of their animal hosts, with major consequences for the host's health and fitness. A full understanding of microbiota-dependent gene regulation requires analysis of the overall architecture of the host transcriptome, by identifying suites of genes that are expressed synchronously. In this study, we investigated the impact of the microbiota on gene coexpression in Drosophila. Our transcriptomic analysis, of 17 lines representative of the global genetic diversity of Drosophila, yielded a total of 11 transcriptional modules of co-expressed genes. For seven of these modules, the strength of the transcriptional network (defined as gene-gene coexpression) differed significantly between flies bearing a defined gut microbiota (gnotobiotic flies) and flies reared under microbiologically sterile conditions (axenic flies). Furthermore, gene coexpression was uniformly stronger in these microbiota-dependent modules than in both the microbiota-independent modules in gnotobiotic flies and all modules in axenic flies, indicating that the presence of the microbiota directs gene regulation in a subset of the transcriptome. The genes constituting the microbiota-dependent transcriptional modules include regulators of growth, metabolism and neurophysiology, previously implicated in mediating phenotypic effects of microbiota on Drosophila phenotype. Together these results provide the first evidence that the microbiota enhances the coexpression of specific and functionally-related genes relative to the animal's intrinsic baseline level of coexpression. Our system-wide analysis demonstrates that the presence of microbiota enhances gene coexpression, thereby structuring the transcriptional network in the animal host. This finding has potentially major implications for understanding of the mechanisms by which microbiota affect host health and fitness, and the ways in which hosts and their resident microbiota coevolve.
Feintuch, Catherine Manix; Saidi, Alex; Seydel, Karl; Chen, Grace; Goldman-Yassen, Adam; Mita-Mendoza, Neida K.; Kim, Ryung S.; Frenette, Paul S.; Taylor, Terrie
2016-01-01
ABSTRACT Most patients with cerebral malaria (CM) sustain cerebral microvascular sequestration of Plasmodium falciparum-infected red blood cells (iRBCs). Although many young children are infected with P. falciparum, CM remains a rare outcome; thus, we hypothesized that specific host conditions facilitate iRBC cerebral sequestration. To identify these host factors, we compared the peripheral whole-blood transcriptomes of Malawian children with iRBC cerebral sequestration, identified as malarial-retinopathy-positive CM (Ret+CM), to the transcriptomes of children with CM and no cerebral iRBC sequestration, defined as malarial-retinopathy-negative CM (Ret-CM). Ret+CM was associated with upregulation of 103 gene set pathways, including cytokine, blood coagulation, and extracellular matrix (ECM) pathways (P < 0.01; false-discovery rate [FDR] of <0.05). Neutrophil transcripts were the most highly upregulated individual transcripts in Ret+CM patients. Activated neutrophils can modulate diverse host processes, including the ECM, inflammation, and platelet biology to potentially facilitate parasite sequestration. Therefore, we compared plasma neutrophil proteins and neutrophil chemotaxis between Ret+CM and Ret-CM patients. Plasma levels of human neutrophil elastase, myeloperoxidase, and proteinase 3, but not lactoferrin or lipocalin, were elevated in Ret+CM patients, and neutrophil chemotaxis was impaired, possibly related to increased plasma heme. Neutrophils were rarely seen in CM brain microvasculature autopsy samples, and no neutrophil extracellular traps were found, suggesting that a putative neutrophil effect on endothelial cell biology results from neutrophil soluble factors rather than direct neutrophil cellular tissue effects. Meanwhile, children with Ret-CM had lower levels of inflammation, higher levels of alpha interferon, and upregulation of Toll-like receptor pathways and other host transcriptional pathways, which may represent responses that do not favor cerebral iRBC sequestration. PMID:26884431
Xue, Jian; Qiao, Nan; Zhang, Wei; Cheng, Ruo-Lin; Zhang, Xiao-Qin; Bao, Yan-Yuan; Xu, Yi-Peng; Gu, Lin-Zhu
2012-01-01
Although microarray and expressed sequence tag (EST)-based approaches have been used to profile gene expression during baculovirus infection, the response of host genes to baculovirus infection and the interaction between baculovirus and its host remain largely unknown. To determine the host response to Bombyx mori nucleopolyhedrovirus infection and the dynamic interaction between the virus and its host, eight digital gene expression libraries were examined in a Bm5 cell line before infection and at 1.5, 3, 6, 12, 24, 48, and 96 h postinfection. Gene set enrichment analysis of differentially expressed genes at each time point following infection showed that gene sets including cytoskeleton, transcription, translation, energy metabolism, iron ion metabolism, and the ubiquitin-proteasome pathway were altered after viral infection. In addition, a time course depicting protein-protein interaction networks between the baculovirus and the host were constructed and revealed that viral proteins interact with a multitude of cellular machineries, such as the proteasome, cytoskeleton, and spliceosome. Several viral proteins, including IE2, CG30, PE38, and PK-1/2, were predicted to play key roles in mediating virus-host interactions. Based on these results, we tested the role of the ubiquitin-proteasome pathway and iron ion metabolism in the viral infection cycle. Treatment with a proteasome inhibitor and deferoxamine mesylate in vitro and in vivo confirmed that these pathways regulate viral infection. Taken together, these findings provide new insights into the interaction between the baculovirus and its host and identify molecular mechanisms that can be used to block viral infection and improve baculovirus expression systems. PMID:22532689
Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions
Papa, Anna; Tsergouli, Katerina; Tsioka, Katerina; Mirazimi, Ali
2017-01-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is transmitted to humans by bite of infected ticks or by direct contact with blood or tissues of viremic patients or animals. It causes to humans a severe disease with fatality up to 30%. The current knowledge about the vector-host-CCHFV interactions is very limited due to the high-level containment required for CCHFV studies. Among ticks, Hyalomma spp. are considered the most competent virus vectors. CCHFV evades the tick immune response, and following its replication in the lining of the tick's midgut, it is disseminated by the hemolymph in the salivary glands and reproductive organs. The introduction of salivary gland secretions into the host cells is the major route via which CCHFV enters the host. Following an initial amplification at the site of inoculation, the virus is spread to the target organs. Apoptosis is induced via both intrinsic and extrinsic pathways. Genetic factors and immune status of the host may affect the release of cytokines which play a major role in disease progression and outcome. It is expected that the use of new technology of metabolomics, transcriptomics and proteomics will lead to improved understanding of CCHFV-host interactions and identify potential targets for blocking the CCHFV transmission. PMID:28603698
Zhang, Juncheng; Zheng, Hongyuan; Li, Yiwen; Li, Hongjie; Liu, Xin; Qin, Huanju; Dong, Lingli; Wang, Daowen
2016-01-01
Powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) inflicts severe economic losses in wheat crops. A systematic understanding of the molecular mechanisms involved in wheat resistance to Bgt is essential for effectively controlling the disease. Here, using the diploid wheat Triticum urartu as a host, the genes regulated by immune (IM) and hypersensitive reaction (HR) resistance responses to Bgt were investigated through transcriptome sequencing. Four gene coexpression networks (GCNs) were developed using transcriptomic data generated for 20 T. urartu accessions showing IM, HR or susceptible responses. The powdery mildew resistance regulated (PMRR) genes whose expression was significantly correlated with Bgt resistance were identified, and they tended to be hubs and enriched in six major modules. A wide occurrence of negative regulation of PMRR genes was observed. Three new candidate immune receptor genes (TRIUR3_13045, TRIUR3_01037 and TRIUR3_06195) positively associated with Bgt resistance were discovered. Finally, the involvement of TRIUR3_01037 in Bgt resistance was tentatively verified through cosegregation analysis in a F2 population and functional expression assay in Bgt susceptible leaf cells. This research provides insights into the global network properties of PMRR genes. Potential molecular differences between IM and HR resistance responses to Bgt are discussed. PMID:27033636
Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn
2011-05-01
The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.
USDA-ARS?s Scientific Manuscript database
Colletotrichum species are devastating fungal pathogens of major crop plants worldwide. Infection involves differentiation of specialized cell-types associated with host surface penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). Here we report genome and t...
Rao, Chinthalapally V; Sanghera, Saira; Zhang, Yuting; Biddick, Laura; Reddy, Arun; Lightfoot, Stan; Janakiram, Naveena B; Mohammed, Altaf; Dai, Wei; Yamada, Hiroshi Y
2016-02-01
Colon cancer is the second most lethal cancer and is predicted to claim 49,700 lives in the United States this year. Chromosome instability (CIN) is observed in 80% to 90% of colon cancers and is thought to contribute to colon cancer progression and recurrence. To investigate the impact of CIN on colon cancer development, we developed shugoshin-1 (Sgo1) haploinsufficient (-/+) mice, an animal model focusing on mitotic error-induced CIN. In this study, we analyzed signature changes in the colonic transcriptome of Sgo1(-/+) mice to examine the molecular events underlying the altered carcinogenesis profiles in Sgo1(-/+) mice. We performed next-generation sequencing of normal-looking colonic mucosal tissue from mice treated with the carcinogen azoxymethane after 24 weeks. Transcriptome profiling revealed 349 hits with a 2-fold expression difference threshold (217 upregulated genes, 132 downregulated genes, P < 0.05). Pathway analyses indicated that the Sgo1-CIN tissues upregulated pathways known to be activated in colon cancer, including lipid metabolism (z score 4.47), Notch signaling (4.47), insulin signaling (3.81), and PPAR pathways (3.75), and downregulated pathways involved in immune responses including allograft rejection (6.69) and graft-versus-host disease (6.54). Notably, stem cell markers were also misregulated. Collectively, our findings demonstrate that systemic CIN results in transcriptomic changes in metabolism, proliferation, cell fate, and immune responses in the colon, which may foster a microenvironment amenable to cancer development. Therefore, therapeutic approaches focusing on these identified pathways may be valuable for colon cancer prevention and treatment. ©2016 American Association for Cancer Research.
Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung
2016-01-01
Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It's therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection.
Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung
2016-01-01
Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It’s therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection. PMID:27088873
Severson, David W.; Behura, Susanta K.
2016-01-01
Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The “vectorial capacity” of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as “vector competence”. Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions. PMID:27809220
Adaptive Strategies and Pathogenesis of Clostridium difficile from In Vivo Transcriptomics
Janoir, Claire; Denève, Cécile; Bouttier, Sylvie; Barbut, Frédéric; Hoys, Sandra; Caleechum, Laxmee; Chapetón-Montes, Diana; Pereira, Fátima C.; Henriques, Adriano O.; Collignon, Anne; Monot, Marc
2013-01-01
Clostridium difficile is currently the major cause of nosocomial intestinal diseases associated with antibiotic therapy in adults. In order to improve our knowledge of C. difficile-host interactions, we analyzed the genome-wide temporal expression of C. difficile 630 genes during the first 38 h of mouse colonization to identify genes whose expression is modulated in vivo, suggesting that they may play a role in facilitating the colonization process. In the ceca of the C. difficile-monoassociated mice, 549 genes of the C. difficile genome were differentially expressed compared to their expression during in vitro growth, and they were distributed in several functional categories. Overall, our results emphasize the roles of genes involved in host adaptation. Colonization results in a metabolic shift, with genes responsible for the fermentation as well as several other metabolic pathways being regulated inversely to those involved in carbon metabolism. In addition, several genes involved in stress responses, such as ferrous iron uptake or the response to oxidative stress, were regulated in vivo. Interestingly, many genes encoding conserved hypothetical proteins (CHP) were highly and specifically upregulated in vivo. Moreover, genes for all stages of sporulation were quickly induced in vivo, highlighting the observation that sporulation is central to the persistence of C. difficile in the gut and to its ability to spread in the environment. Finally, we inactivated two genes that were differentially expressed in vivo and evaluated the relative colonization fitness of the wild-type and mutant strains in coinfection experiments. We identified a CHP as a putative colonization factor, supporting the suggestion that the in vivo transcriptomic approach can unravel new C. difficile virulence genes. PMID:23897605
Barad, Shiri; Sela, Noa; Kumar, Dilip; Kumar-Dubey, Amit; Glam-Matana, Nofar; Sherman, Amir; Prusky, Dov
2016-05-04
Penicillium expansum is a destructive phytopathogen that causes decay in deciduous fruits during postharvest handling and storage. During colonization the fungus secretes D-gluconic acid (GLA), which modulates environmental pH and regulates mycotoxin accumulation in colonized tissue. Till now no transcriptomic analysis has addressed the specific contribution of the pathogen's pH regulation to the P. expansum colonization process. For this purpose total RNA from the leading edge of P. expansum-colonized apple tissue of cv. 'Golden Delicious' and from fungal cultures grown under pH 4 or 7 were sequenced and their gene expression patterns were compared. We present a large-scale analysis of the transcriptome data of P. expansum and apple response to fungal colonization. The fungal analysis revealed nine different clusters of gene expression patterns that were divided among three major groups in which the colonized tissue showed, respectively: (i) differing transcript expression patterns between mycelial growth at pH 4 and pH 7; (ii) similar transcript expression patterns of mycelial growth at pH 4; and (iii) similar transcript expression patterns of mycelial growth at pH 7. Each group was functionally characterized in order to decipher genes that are important for pH regulation and also for colonization of apple fruits by Penicillium. Furthermore, comparison of gene expression of healthy apple tissue with that of colonized tissue showed that differentially expressed genes revealed up-regulation of the jasmonic acid and mevalonate pathways, and also down-regulation of the glycogen and starch biosynthesis pathways. Overall, we identified important genes and functionalities of P. expansum that were controlled by the environmental pH. Differential expression patterns of genes belonging to the same gene family suggest that genes were selectively activated according to their optimal environmental conditions (pH, in vitro or in vivo) to enable the fungus to cope with varying conditions and to make optimal use of available enzymes. Comparison between the activation of the colonized host's gene responses by alkalizing Colletotrichum gloeosporioides and acidifying P. expansum pathogens indicated similar gene response patterns, but stronger responses to P. expansum, suggesting the importance of acidification by P. expansum as a factor in its increased aggressiveness.
Chan, Agnes P; Choi, Yongwook; Brinkac, Lauren M; Krishnakumar, Radha; DePew, Jessica; Kim, Maria; Hinkle, Mary K; Lesho, Emil P; Fouts, Derrick E
2018-06-05
In light of the ongoing antimicrobial resistance crisis, there is a need to understand the role of co-pathogens, commensals, and the local microbiome in modulating virulence and antibiotic resistance. To identify possible interactions that influence the expression of virulence or survival mechanisms in both the multidrug-resistant organisms (MDROs) and human host cells, unique cohorts of clinical isolates were selected for whole genome sequencing with enhanced assembly and full annotation, pairwise co-culturing, and transcriptome profiling. The MDROs were co-cultured in pairwise combinations either with: (1) another MDRO, (2) skin commensals (Staphylococcus epidermidis and Corynebacterium jeikeium), (3) the common probiotic Lactobacillus reuteri, and (4) human fibroblasts. RNA-Seq analysis showed distinct regulation of virulence and antimicrobial resistance gene responses across different combinations of MDROs, commensals, and human cells. Co-culture assays demonstrated that microbial interactions can modulate gene responses of both the target and pathogen/commensal species, and that the responses are specific to the identity of the pathogen/commensal species. In summary, bacteria have mechanisms to distinguish between friends, foe and host cells. These results provide foundational data and insight into the possibility of manipulating the local microbiome when treating complicated polymicrobial wound, intra-abdominal, or respiratory infections.
Kreuder, Amanda J.; Schleining, Jennifer A.; Yaeger, Michael; Zhang, Qijing; Plummer, Paul J.
2017-01-01
Colonization of the gallbladder by enteric pathogens such as Salmonella typhi, Listeria monocytogenes, and Campylobacter jejuni is thought to play a key role in transmission and persistence of these important zoonotic agents; however, little is known about the molecular mechanisms that allow for bacterial survival within this harsh environment. Recently, a highly virulent C. jejuni sheep abortion (SA) clone represented by the clinical isolate IA3902 has emerged as the dominant cause for sheep abortion in the United States. Previous studies have indicated that the C. jejuni clone SA can frequently be isolated from the gallbladders of otherwise healthy sheep, suggesting that the gallbladder may serve as an important reservoir for infection. To begin to understand the molecular mechanisms associated with survival in the host gallbladder, C. jejuni IA3902 was exposed for up to 24 h to both the natural ovine host in vivo gallbladder environment, as well as ovine bile in vitro. Following exposure, total RNA was isolated from the bile and high throughput deep sequencing of strand specific rRNA-depleted total RNA was used to characterize the transcriptome of IA3902 under these conditions. Our results demonstrated for the first time the complete transcriptome of C. jejuni IA3902 during exposure to an important host environment, the sheep gallbladder. Exposure to the host environment as compared to in vitro bile alone provided a more robust picture of the complexity of gene regulation required for survival in the host gallbladder. A subset of genes including a large number of protein coding genes as well as seven previously identified non-coding RNAs were confirmed to be differentially expressed within our data, suggesting that they may play a key role in adaptation upon exposure to these conditions. This research provides valuable insights into the molecular mechanisms that may be utilized by C. jejuni IA3902 to colonize and survive within the inhospitable gallbladder environment. PMID:28611744
A. L. Ross-Davis; J. E. Stewart; J. W. Hanna; M.-S. Kim; B. J. Knaus; R. Cronn; H. Rai; B. A. Richardson; G. I. McDonald; N. B. Klopfenstein
2013-01-01
Armillaria species display diverse ecological roles ranging from beneficial saprobe to virulent pathogen. Armillaria solidipes (formerly A. ostoyae), a causal agent of Armillaria root disease, is a virulent primary pathogen with a broad host range of woody plants across the Northern Hemisphere. This white-rot pathogen grows between trees as rhizomorphs and attacks...
2013-01-01
Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205
Wang, Jing-Jie; Bai, Wen-Wen; Zhou, Wei; Liu, Jing; Chen, Jie; Liu, Xiao-Yuan; Xiang, Ting-Ting; Liu, Ren-Hua; Wang, Wen-Hui; Zhang, Bao-Ling; Wan, Yong-Ji
2017-05-01
Beauveria bassiana is an important entomopathogenic fungus which not only widely distributes in the environment but also shows phenotypic diversity. However, the mechanism of pathogenic differences among natural B. bassiana strains has not been revealed at transcriptome-wide level. In the present study, in order to explore the mechanism, two B. bassiana strains with different pathogenicity were isolated from silkworms (Bombyx mori L.) and selected to analyze the gene expression of early stage by culturing on cuticle extracts of the silkworm and using RNA-sequencing technique. A total of 2108 up-regulated and 1115 down-regulated genes were identified in B. bassiana strain GXsk1011 (hyper-virulent strain) compared with B. bassiana strain GXtr1009 (hypo-virulent strain), respectively. The function categorization of differential expressed genes (DEGs) showed that most of them involved in metabolic process, biosynthesis of secondary metabolites, catalytic activity, and some involved in nutrition uptake, adhesion and host defense were also noted. Based on our data, distinct pathogenicity among different strains of B. bassiana may largely attribute to unique gene expression pattern which differed at very early infection process. Most of the genes involved in conidia adhesion, cuticle degradation and fungal growth were up-regulated in hyper-virulent B. bassiana strain GXsk1011. Furthermore, in combination with fungal growth analysis, our research provided a clue that fungal growth may also play an important role during early infection process. The results will help to explain why different B. bassiana strains show distinct pathogenicity on the same host even under same condition. Moreover, the transcriptome data were also useful for screening potential virulence factors. Copyright © 2017 Elsevier Inc. All rights reserved.
Gómez-Chiarri, Marta; Warren, Wesley C; Guo, Ximing; Proestou, Dina
2015-09-01
The eastern oyster, Crassostrea virginica, provides important ecological and economical services, making it the target of restoration projects and supporting a significant fishery/aquaculture industry with landings valued at more than $100 million in 2012 in the United States of America. Due to the impact of infectious diseases on wild, restored, and cultured populations, the eastern oyster has been the focus of studies on host-pathogen interactions and immunity, as well as the target of selective breeding efforts for disease resistant oyster lines. Despite these efforts, relatively little is known about the genetic basis of resistance to diseases or environmental stress, not only in eastern oyster, but also in other molluscan species of commercial interest worldwide. In order to develop tools and resources to assist in the elucidation of the genomic basis of traits of commercial, biological, and ecological interest in oysters, a team of genome and bioinformatics experts, in collaboration with the oyster research community, is sequencing, assembling, and annotating the first reference genome for the eastern oyster and producing an exhaustive transcriptome from a variety of oyster developmental stages and tissues in response to a diverse set of environmentally-relevant stimuli. These transcriptomes and reference genome for the eastern oyster, added to the already available genome and transcriptomes for the Pacific oyster (Crassostrea gigas) and other bivalve species, will be an essential resource for the discovery of candidate genes and markers associated with traits of commercial, biological, and ecologic importance in bivalve molluscs, including those related to host-pathogen interactions and immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Donaldson, Michael E; Davy, Christina M; Vanderwolf, Karen J; Willis, Craig K R; Saville, Barry J; Kyle, Christopher J
2018-02-23
Pseudogymnoascus destructans is the causal agent of bat white-nose syndrome (WNS), which is devastating some North American bat populations. Previous transcriptome studies provided insight regarding the molecular mechanisms involved in WNS; however, it is unclear how different environmental parameters could influence pathogenicity. This information could be useful in developing management strategies to mitigate the negative impacts of P. destructans on bats. We cultured three P. destructans isolates from Atlantic Canada on two growth media (potato dextrose agar and Sabouraud dextrose agar) that differ in their nitrogen source, and at two separate incubation temperatures (4 C and 15 C) that approximate the temperature range of bat hibernacula during the winter and a temperature within its optimal mycelial growth range. We conducted RNA sequencing to determine transcript levels in each sample and performed differential gene expression (DGE) analyses to test the influence of growth medium and incubation temperature on gene expression. We also compared our in vitro results with previous RNA-sequencing data sets generated from P. destructans growing on the wings of a susceptible host, Myotis lucifugus. Our findings point to a critical role for substrate and incubation temperature in influencing the P. destructans transcriptome. DGE analyses suggested that growth medium plays a larger role than temperature in determining P. destructans gene expression and that although the psychrophilic fungus responds to different nitrogen sources, it may have evolved for continued growth at a broad range of low temperatures. Further, our data suggest that down-regulation of the RNA-interference pathway and increased fatty acid metabolism are involved in the P. destructans-bat interaction. Finally, we speculate that to reduce the activation of host defense responses, P. destructans minimizes changes in the expression of genes encoding secreted proteins during bat colonization.
Understanding the host-adapted state of Citrobacter rodentium by transcriptomic analysis
USDA-ARS?s Scientific Manuscript database
Citrobacter rodentium (Cr) is a mouse pathogen that mimics many aspects of enteropathogenic Escherichia coli infections including producing attaching and effacing (A/E) lesions. Host-adapted (HA) Cr cells that are shed at the peak of infection have been reported to be hyperinfective. The exact mecha...
Picone, Barbara; Rhode, Clint; Roodt-Wilding, Rouvay
2017-02-01
Aquatic animal diseases are one of the most important limitations to the growth of aquaculture. miRNAs represent an important class of small ncRNAs able to modulate host immune and stress responses. In Mollusca, a large phylum of invertebrates, miRNAs have been identified in several species. The current preliminary study identified known miRNAs from the South African abalone, Haliotis midae. The economic and ecological importance of abalone makes this species a suitable model for studying and understanding stress response in marine gastropods. Furthermore, the identification of miRNA, represents an alternative and powerful tool to combat infectious disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparative genomics explains the evolutionary success of reef-forming corals
Bhattacharya, Debashish; Agrawal, Shobhit; Aranda, Manuel; Baumgarten, Sebastian; Belcaid, Mahdi; Drake, Jeana L; Erwin, Douglas; Foret, Sylvian; Gates, Ruth D; Gruber, David F; Kamel, Bishoy; Lesser, Michael P; Levy, Oren; Liew, Yi Jin; MacManes, Matthew; Mass, Tali; Medina, Monica; Mehr, Shaadi; Meyer, Eli; Price, Dana C; Putnam, Hollie M; Qiu, Huan; Shinzato, Chuya; Shoguchi, Eiichi; Stokes, Alexander J; Tambutté, Sylvie; Tchernov, Dan; Voolstra, Christian R; Wagner, Nicole; Walker, Charles W; Weber, Andreas PM; Weis, Virginia; Zelzion, Ehud; Zoccola, Didier; Falkowski, Paul G
2016-01-01
Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years. DOI: http://dx.doi.org/10.7554/eLife.13288.001 PMID:27218454
Differentially expressed genes in healthy and plum pox virus-infected Nicotiana benthamiana plants.
Vozárová, Z; Žilová, M; Šubr, Z
2015-12-01
Viruses use both material and energy sources of their hosts and redirect the production of disposable compounds in order to make viral replication more efficient. Metabolism of infected organisms is modified by these enhanced requirements as well by their own defense response. Resulting complex story consists of many regulation events on various gene expression levels. Elucidating these processes may contribute to the knowledge on virus-host interactions and to evolving new antiviral strategies. In our work we applied a subtractive cloning technique to compare the transcriptomes of healthy and plum pox virus (PPV)-infected Nicotiana benthamiana plants. Several genes were found to be induced or repressed by the PPV infection. The induced genes were mainly related to general stress response or photosynthesis, several repressed genes could be connected with growth defects evoked by the infection. Interestingly, some genes usually up-regulated by fungal or bacterial infection were found repressed in PPV-infected plants. Potential involvement of particular differently expressed genes in the process of PPV infection is discussed.
Insights into teichoic acid biosynthesis by Bifidobacterium bifidum PRL2010.
Colagiorgi, Angelo; Turroni, Francesca; Mancabelli, Leonardo; Serafini, Fausta; Secchi, Andrea; van Sinderen, Douwe; Ventura, Marco
2015-09-01
Bifidobacteria are colonizers of the human gut, where they are interacting with their host as well as with other members of the intestinal microbiota. Teichoic acids (TAs) have previously been shown to play an important role in modulating microbe-host interactions in the human gut. However, so far, there is a paucity of information regarding the presence of TAs in the cell envelope of bifidobacteria. In silico analyses targeting the chromosomes of all 48 (sub)species that currently represent the genus Bifidobacterium revealed the presence of genes responsible for TA biosynthesis, suggesting that bifidobacteria contain both wall TAs and lipoteichoic acids. Transcriptome analyses of the infant gut commensal Bifidobacterium bifidum PRL2010 highlighted that the transcription of the presumptive TA biosynthetic loci is modulated in response to environmental conditions reflecting those of the human gut. Furthermore, chemical characterization of TAs produced by PRL2010 indicates the presence of lipoteichoic acids. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Nutrient sensing modulates malaria parasite virulence.
Mancio-Silva, Liliana; Slavic, Ksenija; Grilo Ruivo, Margarida T; Grosso, Ana Rita; Modrzynska, Katarzyna K; Vera, Iset Medina; Sales-Dias, Joana; Gomes, Ana Rita; MacPherson, Cameron Ross; Crozet, Pierre; Adamo, Mattia; Baena-Gonzalez, Elena; Tewari, Rita; Llinás, Manuel; Billker, Oliver; Mota, Maria M
2017-07-13
The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host, primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions. Canonical nutrient-sensing pathways are presumed to be absent from the causative agent of malaria, Plasmodium, thus raising the question of whether these parasites can sense and cope with fluctuations in host nutrient levels. Here we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through rearrangement of their transcriptome accompanied by substantial adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology with SNF1/AMPKα, and yeast complementation studies suggest that it is part of a functionally conserved cellular energy-sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical for modulating parasite replication and virulence.
Cervera, Héctor; Ambrós, Silvia; Bernet, Guillermo P; Rodrigo, Guillermo; Elena, Santiago F
2018-01-01
Abstract Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts. PMID:29562354
Arnold, Nicole; Girke, Thomas; Sureshchandra, Suhas
2016-01-01
ABSTRACT Primary infection with varicella-zoster virus (VZV), a neurotropic alphaherpesvirus, results in varicella. VZV establishes latency in the sensory ganglia and can reactivate later in life to cause herpes zoster. The relationship between VZV and its host during acute infection in the sensory ganglia is not well understood due to limited access to clinical specimens. Intrabronchial inoculation of rhesus macaques with simian varicella virus (SVV) recapitulates the hallmarks of VZV infection in humans. We leveraged this animal model to characterize the host-pathogen interactions in the ganglia during both acute and latent infection by measuring both viral and host transcriptomes on days postinfection (dpi) 3, 7, 10, 14, and 100. SVV DNA and transcripts were detected in sensory ganglia 3 dpi, before the appearance of rash. CD4 and CD8 T cells were also detected in the sensory ganglia 3 dpi. Moreover, lung-resident T cells isolated from the same animals 3 dpi also harbored SVV DNA and transcripts, suggesting that T cells may be responsible for trafficking SVV to the ganglia. Transcriptome sequencing (RNA-Seq) analysis showed that cessation of viral transcription 7 dpi coincides with a robust antiviral innate immune response in the ganglia. Interestingly, a significant number of genes that play a critical role in nervous system development and function remained downregulated into latency. These studies provide novel insights into host-pathogen interactions in the sensory ganglia during acute varicella and demonstrate that SVV infection results in profound and sustained changes in neuronal gene expression. IMPORTANCE Many aspects of VZV infection of sensory ganglia remain poorly understood, due to limited access to human specimens and the fact that VZV is strictly a human virus. Infection of rhesus macaques with simian varicella virus (SVV), a homolog of VZV, provides a robust model of the human disease. Using this model, we show that SVV reaches the ganglia early after infection, most likely by T cells, and that the induction of a robust innate immune response correlates with cessation of virus transcription. We also report significant changes in the expression of genes that play an important role in neuronal function. Importantly, these changes persist long after viral replication ceases. Given the homology between SVV and VZV, and the genetic and physiological similarities between rhesus macaques and humans, our results provide novel insight into the interactions between VZV and its human host and explain some of the neurological consequences of VZV infection. PMID:27681124
Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host
Salem, Hassan; Bauer, Eugen; Strauss, Anja S.; Vogel, Heiko; Marz, Manja; Kaltenpoth, Martin
2014-01-01
Despite the demonstrated functional importance of gut microbes, our understanding of how animals regulate their metabolism in response to nutritionally beneficial symbionts remains limited. Here, we elucidate the functional importance of the African cotton stainer's (Dysdercus fasciatus) association with two actinobacterial gut symbionts and subsequently examine the insect's transcriptional response following symbiont elimination. In line with bioassays demonstrating the symbionts' contribution towards host fitness through the supplementation of B vitamins, comparative transcriptomic analyses of genes involved in import and processing of B vitamins revealed an upregulation of gene expression in aposymbiotic (symbiont-free) compared with symbiotic individuals; an expression pattern that is indicative of B vitamin deficiency in animals. Normal expression levels of these genes, however, can be restored by either artificial supplementation of B vitamins into the insect's diet or reinfection with the actinobacterial symbionts. Furthermore, the functional characterization of the differentially expressed thiamine transporter 2 through heterologous expression in Xenopus laevis oocytes confirms its role in cellular uptake of vitamin B1. These findings demonstrate that despite an extracellular localization, beneficial gut microbes can be integral to the host's metabolic homeostasis, reminiscent of bacteriome-localized intracellular mutualists. PMID:25339726
Loureiro, Andreia; Azinheira, Helena Gil; Silva, Maria do Céu; Talhinhas, Pedro
2015-11-01
Appressoria are the first infection structures developed by rust fungi and require specific topographic signals from the host for their differentiation. The ease in obtaining appressoria in vitro for these biotrophic fungi led to studies concerning gene expression and gene discovery at appressorial level, avoiding the need to distinguish plant and fungal transcripts. However, in some pathosystems, it was observed that gene expression in appressoria seems to be influenced by host-derived signals, suggesting that transcriptomic analyses performed from in planta differentiated appressoria would be potentially more informative than those from in vitro differentiated appressoria. Nevertheless analysing appressorial RNA obtained from in planta samples is often hampered by an excessive dilution of fungal RNA within plant RNA, besides uncertainty regarding the fungal or plant origin of RNA from highly conserved genes. To circumvent these difficulties, we have recovered Hemileia vastatrix appressoria from Arabica coffee leaf surface using a film of nitrocellulose dissolved in butyl and ethyl acetates (nail polish), and extracted fungal RNA from the polish peel. RNA thus obtained is of good quality and usable for cDNA synthesis and transcriptomic (quantitative PCR) studies. This method could provide the means to investigate specific host-induced appressoria-related fungal pathogenicity factors. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Discovery of parvovirus-related sequences in an unexpected broad range of animals.
François, S; Filloux, D; Roumagnac, P; Bigot, D; Gayral, P; Martin, D P; Froissart, R; Ogliastro, M
2016-09-07
Our knowledge of the genetic diversity and host ranges of viruses is fragmentary. This is particularly true for the Parvoviridae family. Genetic diversity studies of single stranded DNA viruses within this family have been largely focused on arthropod- and vertebrate-infecting species that cause diseases of humans and our domesticated animals: a focus that has biased our perception of parvovirus diversity. While metagenomics approaches could help rectify this bias, so too could transcriptomics studies. Large amounts of transcriptomic data are available for a diverse array of animal species and whenever this data has inadvertently been gathered from virus-infected individuals, it could contain detectable viral transcripts. We therefore performed a systematic search for parvovirus-related sequences (PRSs) within publicly available transcript, genome and protein databases and eleven new transcriptome datasets. This revealed 463 PRSs in the transcript databases of 118 animals. At least 41 of these PRSs are likely integrated within animal genomes in that they were also found within genomic sequence databases. Besides illuminating the ubiquity of parvoviruses, the number of parvoviral sequences discovered within public databases revealed numerous previously unknown parvovirus-host combinations; particularly in invertebrates. Our findings suggest that the host-ranges of extant parvoviruses might span the entire animal kingdom.
Gallardo, Rodrigo A.; Bunn, David A.; Kelly, Terra R.; Dekkers, Jack C. M.; Zhou, Huaijun
2017-01-01
ABSTRACT Newcastle disease virus (NDV) has a devastating impact on poultry production in developing countries. This study examined the transcriptome of tracheal epithelial cells from two inbred chicken lines that differ in NDV susceptibility after challenge with a high-titer inoculum of lentogenic NDV. The Fayoumi line had a significantly lower NDV load postchallenge than the Leghorn line, demonstrating the Fayoumi line's classification as a relatively NDV-resistant breed. Examination of the trachea transcriptome showed a large increase in immune cell infiltration in the trachea in both lines at all times postinfection. The pathways conserved across lines and at all three time points postinfection included iCOS-iCOSL signaling in T helper cells, NF-κB signaling, the role of nuclear factor of activated T cells in the regulation of the immune response, calcium-induced T lymphocyte apoptosis, phospholipase C signaling, and CD28 signaling in T helper cells. Although shared pathways were seen in the Fayoumi and Leghorn lines, each line showed unique responses as well. The downregulation of collagen and the activation of eukaryotic translation initiation factor 2 signaling in the Fayoumis relative to the Leghorns at 2 days postinfection may contribute to the resistance phenotype seen in the Fayoumis. This study provides a further understanding of host-pathogen interactions which could improve vaccine efficacy and, in combination with genome-wide association studies, has the potential to advance strategies for breeding chickens with enhanced resistance to NDV. PMID:28331077
Nutrient sensing modulates malaria parasite virulence
Mancio-Silva, Liliana; Slavic, Ksenija; Grilo Ruivo, Margarida T.; Grosso, Ana Rita; Modrzynska, Katarzyna K.; Vera, Iset Medina; Sales-Dias, Joana; Gomes, Ana Rita; MacPherson, Cameron Ross; Crozet, Pierre; Adamo, Mattia; Baena-Gonzalez, Elena; Tewari, Rita; Llinás, Manuel; Billker, Oliver; Mota, Maria M.
2017-01-01
The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host(s), primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signaling networks that confer to cells the ability to sense and adapt to varying environmental conditions1,2. Canonical nutrient-sensing pathways are presumably absent in the causing agent of malaria Plasmodium3–5, thus raising the question of whether these parasites possess the capacity to sense and cope with host nutrient fluctuations. Here, we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through a rearrangement of their transcriptome accompanied by a significant adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology to SNF1/AMPKα and yeast complementation studies suggest functional conservation of an ancient cellular energy sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical to modulate parasite replication and virulence. PMID:28678779
Transcriptional changes of rice in response to rice black-streaked dwarf virus.
Ahmed, Mohamed M S; Ji, Wen; Wang, Muyue; Bian, Shiquan; Xu, Meng; Wang, Weiyun; Zhang, Jiangxiang; Xu, Zhihao; Yu, Meimei; Liu, Qiaoquan; Zhang, Changquan; Zhang, Honggen; Tang, Shuzhu; Gu, Minghong; Yu, Hengxiu
2017-09-10
Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Although a great deal of effort has been made to elucidate the interactions among the virus, insect vectors, host and environmental conditions, few RBSDV proteins involved in pathogenesis have been identified, and the biological basis of disease development in rice remains largely unknown. Transcriptomic information associated with the disease development in rice would be helpful to unravel the biological mechanism. To determine how the rice transcriptome changes in response to RBSDV infection, we carried out RNA-Seq to perform a genome-wide gene expression analysis of a susceptible rice cultivar KTWYJ3. The transcriptomes of RBSDV-infected samples were compared to those of RBSDV-free (healthy) at two time points (time points are represented by group I and II). The results derived from the differential expression analysis in RBSDV-infected libraries vs. healthy ones in group I revealed that 102 out of a total of 281 significant differentially expressed genes (DEGs) were up-regulated and 179 DEGs were down-regulated. Of the 2592 identified DEGs in group II, 1588 DEGs were up-regulated and 1004 DEGs were down-regulated. A total of 66 DEGs were commonly identified in both groups. Of these 66 DEGs, expression patterns for 36 DEGs were similar in both groups. Our analysis demonstrated that some genes related to disease defense and stress resistance were up-regulated while genes associated with chloroplast were down-regulated in response to RBSDV infection. In addition, some genes associated with plant-height were differentially expressed. This result indicates those genes might be involved in dwarf symptoms caused by RBSDV. Taken together, our results provide a genome-wide transcriptome analysis for rice plants in response to RBSDV infection which may contribute to the understanding of the regulatory mechanisms involved in rice-RBSDV interaction and the biological basis of rice black-streaked dwarf disease development in rice. Copyright © 2017 Elsevier B.V. All rights reserved.
Host–Microbial Interactions in Idiopathic Pulmonary Fibrosis
Willis-Owen, Saffron A. G.; Cox, Michael J.; James, Phillip; Cowman, Steven; Loebinger, Michael; Blanchard, Andrew; Edwards, Lindsay M.; Stock, Carmel; Daccord, Cécile; Renzoni, Elisabetta A.; Wells, Athol U.; Moffatt, Miriam F.; Cookson, William O. C.; Maher, Toby M.
2017-01-01
Rationale: Changes in the respiratory microbiome are associated with disease progression in idiopathic pulmonary fibrosis (IPF). The role of the host response to the respiratory microbiome remains unknown. Objectives: To explore the host–microbial interactions in IPF. Methods: Sixty patients diagnosed with IPF were prospectively enrolled together with 20 matched control subjects. Subjects underwent bronchoalveolar lavage (BAL), and peripheral whole blood was collected into PAXgene tubes for all subjects at baseline. For subjects with IPF, additional samples were taken at 1, 3, and 6 months and (if alive) 1 year. Gene expression profiles were generated using Affymetrix Human Gene 1.1 ST arrays. Measurements and Main Results: By network analysis of gene expression data, we identified two gene modules that strongly associated with a diagnosis of IPF, BAL bacterial burden (determined by 16S quantitative polymerase chain reaction), and specific microbial operational taxonomic units, as well as with lavage and peripheral blood neutrophilia. Genes within these modules that are involved in the host defense response include NLRC4, PGLYRP1, MMP9, and DEFA4. The modules also contain two genes encoding specific antimicrobial peptides (SLPI and CAMP). Many of these particular transcripts were associated with survival and showed longitudinal overexpression in subjects experiencing disease progression, further strengthening the relationship of the transcripts with disease. Conclusions: Integrated analysis of the host transcriptome and microbial signatures demonstrated an apparent host response to the presence of an altered or more abundant microbiome. These responses remained elevated in longitudinal follow-up, suggesting that the bacterial communities of the lower airways may act as persistent stimuli for repetitive alveolar injury in IPF. PMID:28085486
Asai, Shuta; Rallapalli, Ghanasyam; Piquerez, Sophie J M; Caillaud, Marie-Cécile; Furzer, Oliver J; Ishaque, Naveed; Wirthmueller, Lennart; Fabro, Georgina; Shirasu, Ken; Jones, Jonathan D G
2014-10-01
Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome.
Liu, Qing; Gao, Wen-Wei; Elsheikha, Hany M; He, Jun-Jun; Li, Fa-Cai; Yang, Wen-Bin; Zhu, Xing-Quan
2018-06-19
Growth and replication of the protozoan parasite Toxoplasma gondii within host cell entail the production of several effector proteins, which the parasite exploits for counteracting the host's immune response. Despite considerable research to define the host signaling pathways manipulated by T. gondii and their effectors, there has been limited progress into understanding how individual members of the dense granule proteins (GRAs) modulate gene expression within host cells. The aim of this study was to evaluate whether T. gondii GRA15 protein plays any role in regulating host gene expression. Baby hamster kidney cells (BHK-21) were transfected with plasmids encoding GRA15 genes of either type I GT1 strain (GRA15 I ) or type II PRU strain (GRA15 II ). Gene expression patterns of transfected and nontransfected BHK-21 cells were investigated using RNA-sequencing analysis. GRA15 I and GRA15 II induced both known and novel transcriptional changes in the transfected BHK-21 cells compared with nontransfected cells. Pathway analysis revealed that GRA15 II was mainly involved in the regulation of tumor necrosis factor (TNF), NF-κB, HTLV-I infection, and NOD-like receptor signaling pathways. GRA15 I preferentially influenced the synthesis of unsaturated fatty acids in host cells. Our findings support the hypothesis that certain functions of GRA15 protein are strain dependent and that GRA15 modulates the expression of signaling pathways and genes with important roles in T. gondii pathophysiology. A greater understanding of host signaling pathways influenced by T. gondii effectors would allow the development of more efficient anti-T. gondii therapeutic schemes, capitalizing on disrupting parasite virulence factors to advance the treatment of toxoplasmosis.
Dong, Yanhan; Li, Ying; Zhao, Miaomiao; Jing, Maofeng; Liu, Xinyu; Liu, Muxing; Guo, Xianxian; Zhang, Xing; Chen, Yue; Liu, Yongfeng; Liu, Yanhong; Ye, Wenwu; Zhang, Haifeng; Wang, Yuanchao; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang
2015-01-01
Genome dynamics of pathogenic organisms are driven by pathogen and host co-evolution, in which pathogen genomes are shaped to overcome stresses imposed by hosts with various genetic backgrounds through generation of a variety of isolates. This same principle applies to the rice blast pathogen Magnaporthe oryzae and the rice host; however, genetic variations among different isolates of M. oryzae remain largely unknown, particularly at genome and transcriptome levels. Here, we applied genomic and transcriptomic analytical tools to investigate M. oryzae isolate 98-06 that is the most aggressive in infection of susceptible rice cultivars. A unique 1.4 Mb of genomic sequences was found in isolate 98-06 in comparison to reference strain 70-15. Genome-wide expression profiling revealed the presence of two critical expression patterns of M. oryzae based on 64 known pathogenicity-related (PaR) genes. In addition, 134 candidate effectors with various segregation patterns were identified. Five tested proteins could suppress BAX-mediated programmed cell death in Nicotiana benthamiana leaves. Characterization of isolate-specific effector candidates Iug6 and Iug9 and PaR candidate Iug18 revealed that they have a role in fungal propagation and pathogenicity. Moreover, Iug6 and Iug9 are located exclusively in the biotrophic interfacial complex (BIC) and their overexpression leads to suppression of defense-related gene expression in rice, suggesting that they might participate in biotrophy by inhibiting the SA and ET pathways within the host. Thus, our studies identify novel effector and PaR proteins involved in pathogenicity of the highly aggressive M. oryzae field isolate 98-06, and reveal molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions. PMID:25837042
Analysis of Transcriptomic Dose Response Data in the ...
Slide presentation at the HESI-HEALTH Canada-McGill Workshop on Transcriptomic Dose Response Data in the Context of Chemical Risk Assessment Slide presentation at the HESI-HEALTH Canada-McGill Workshop on Transcriptomic Dose Response Data in the Context of Chemical Risk Assessment
Lysøe, Erik; Dees, Merete W; Brurberg, May Bente
2017-08-01
Helminthosporium solani causes silver scurf, which affects the quality of potato. The biocontrol agent Clonostachys rosea greatly limited the severity of silver scurf symptoms and amount of H. solani genomic DNA in laboratory experiments. Transcriptomic analysis during interaction showed that H. solani gene expression was highly reduced when coinoculated with the biocontrol agent C. rosea, whereas gene expression of C. rosea was clearly boosted as a response to the pathogen. The most notable upregulated C. rosea genes were those encoding proteins involved in cellular response to oxidative stress, proteases, G-protein signaling, and the methyltransferase LaeA. The most notable potato response to both fungi was downregulation of defense-related genes and mitogen-activated protein kinase kinase kinases. At a later stage, this shifted, and most potato defense genes were turned on, especially those involved in terpenoid biosynthesis when H. solani was present. Some biocontrol-activated defense-related genes in potato were upregulated during early interaction with C. rosea alone that were not triggered by H. solani alone. Our results indicate that the reductions of silver scurf using C. rosea are probably due to a combination of mechanisms, including mycoparasitism, biocontrol-activated stimulation of plant defense mechanisms, microbial competition for nutrients, space, and antibiosis.
Cao, Jun; Wu, Lei; Jin, Min; Li, Tingting; Hui, Kaimin; Ren, Qian
2017-08-01
Macrobrachium rosenbergii is a crustacean with economic importance, and adult prawns are generally thought to be tolerant to white spot syndrome virus (WSSV) infection. Although certain genes are known to respond to WSSV infection and lymphoid tissue is an important immune organ, the response of lymphoid organ to WSSV infection is unclear. Next-generation sequencing was employed in this study to determine the transcriptome differences between WSSV infection and mock lymphoid organs. A total of 44,606,694 and 40,384,856 clean reads were generated and assembled into 73,658 and 72,374 unigenes from the control sample and the WSSV infection sample, respectively. Based on homology searches, KEGG, GO, and COG analysis, 21,323 unigenes were annotated. Among them, 4951 differential expression genes were identified and categorized into 244 metabolic pathways. Coagulation cascades, and pattern recognition receptor signaling pathways were used as examples to discuss the response of host to WSSV infection. We also identified 12,308 simple sequence repeats, which can be further used as functional markers. Results contribute to a better understanding of the immune response of prawn lymphoid organ to WSSV and provide information for identifying novel genes in the absence of the prawn genome. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reverón, Inés; Plaza-Vinuesa, Laura; Franch, Mónica; de Las Rivas, Blanca; Muñoz, Rosario; López de Felipe, Félix
2018-05-01
This study was undertaken to expand our insights into the mechanisms involved in the tolerance to resveratrol (RSV) that operate at system-level in gut microorganisms and advance knowledge on new RSV-responsive gene circuits. Whole genome transcriptional profiling was used to characterize the molecular response of Lactobacillus plantarum WCFS1 to RSV. DNA repair mechanisms were induced by RSV and responses were triggered to decrease the load of copper, a metal required for RSV-mediated DNA cleavage, and H 2 S, a genotoxic gas. To counter the effects of RSV, L. plantarum strongly up- or downregulated efflux systems and ABC transporters pointing to transport control of RSV across the membrane as a key mechanism for RSV tolerance. L. plantarum also downregulated tRNAs, induced chaperones, and reprogrammed its transcriptome to tightly control ammonia levels. RSV induced a probiotic effector gene and a likely deoxycholate transporter, two functions that improve the host health status. Our data identify novel protective mechanisms involved in RSV tolerance operating at system level in a gut microbe. These insights could influence the way RSV is used for a better management of gut microbial ecosystems to obtain associated health benefits. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Grieshaber, Scott; Grieshaber, Nicole; Yang, Hong; Baxter, Briana; Hackstadt, Ted; Omsland, Anders
2018-07-15
Bacteria of the genus Chlamydia include the significant human pathogens Chlamydia trachomatis and C. pneumoniae All chlamydiae are obligate intracellular parasites that depend on infection of a host cell and transition through a biphasic developmental cycle. Following host cell invasion by the infectious elementary body (EB), the pathogen transitions to the replicative but noninfectious reticulate body (RB). Differentiation of the RB back to the EB is essential to generate infectious progeny. While the EB form has historically been regarded as metabolically inert, maintenance of infectivity during incubation with specific nutrients has revealed active maintenance of the infectious phenotype. Using transcriptome sequencing, we show that the transcriptome of extracellular EBs incubated under metabolically stimulating conditions does not cluster with germinating EBs but rather with the transcriptome of EBs isolated directly from infected cells. In addition, the transcriptional profile of the extracellular metabolizing EBs more closely resembled that of EB production than germination. Maintenance of infectivity of extracellular EBs was achieved by metabolizing chemically diverse compounds, including glucose 6-phosphate, ATP, and amino acids, all of which can be found in extracellular environments, including mucosal secretions. We further show that the EB cell type actively maintains infectivity in the inclusion after terminal differentiation. Overall, these findings contribute to the emerging understanding that the EB cell form is actively maintained through metabolic processes after terminal differentiation to facilitate prolonged infectivity within the inclusion and under host cell free conditions, for example, following deposition at mucosal surfaces. IMPORTANCE Chlamydiae are obligate intracellular Gram-negative bacteria that are responsible for a wide range of diseases in both animal and human hosts. According to the Centers for Disease Control and Prevention, C. trachomatis is the most frequently reported sexually transmitted infection in the United States, costing the American health care system nearly $2.4 billion annually. Every year, there are over 4 million new cases of Chlamydia infections in the United States and an estimated 100 million cases worldwide. To cause disease, Chlamydia must successfully complete its complex biphasic developmental cycle, alternating between an infectious cell form (EB) specialized for initiating entry into target cells and a replicative form (RB) specialized for creating and maintaining the intracellular replication niche. The EB cell form has historically been considered metabolically quiescent, a passive entity simply waiting for contact with a host cell to initiate the next round of infection. Recent studies and data presented here demonstrate that the EB maintains its infectious phenotype by actively metabolizing a variety of nutrients. Therefore, the EB appears to have an active role in chlamydial biology, possibly within multiple environments, such as mucosal surfaces, fomites, and inside the host cell after formation. Copyright © 2018 American Society for Microbiology.
Kumar, A; Vijayakumar, P; Gandhale, P N; Ranaware, P B; Kumar, H; Kulkarni, D D; Raut, A A; Mishra, A
The differences in the influenza viral pathogenesis observed between different pathogenic strains are associated with distinct properties of virus strains and the host immune responses. In order to determine the differences in the duck immune response against two different pathogenic strains, we studied genome-wide host immune gene response of ducks infected with A/duck/India/02CA10/2011 and A/duck/Tripura/103597/2008 H5N1 viruses using custom-designed microarray. A/duck/India/02CA10/2011 is highly pathogenic virus (HP) to ducks, whereas A/duck/Tripura/103597/2008 is a low pathogenic (LP) virus strain. Comparative lung tissue transcriptome analysis of differentially expressed genes revealed that 686 genes were commonly expressed, 880 and 1556 genes are expressed uniquely to infection with HP and LP virus, respectively. The up-regulation of chemokines (CCL4 and CXCR4) and IFN-stimulated genes (IFITM2, STAT3, TGFB1 and TGFB3) was observed in the lung tissues of ducks infected with HP virus. The up-regulation of other immune genes (IL17, OAS, SOCS3, MHC I and MHC II) was observed in both infection conditions. The expression of important antiviral immune genes MX, IFIT5, IFITM5, ISG12, β-defensins, RSAD2, EIF2AK2, TRIM23 and SLC16A3 was observed in LP virus infection, but not in HP virus infection. Several immune-related gene ontology terms and pathways activated by both the viruses were qualitatively similar but quantitatively different. Based on these findings, the differences in the host immune response might explain a part of the difference observed in the viral pathogenesis of high and low pathogenic influenza strains in ducks.
Lanubile, Alessandra; Muppirala, Usha K; Severin, Andrew J; Marocco, Adriano; Munkvold, Gary P
2015-12-21
Fusarium oxysporum is one of the most common fungal pathogens causing soybean root rot and seedling blight in U.S.A. In a recent study, significant variation in aggressiveness was observed among isolates of F. oxysporum collected from roots in Iowa, ranging from highly pathogenic to weakly or non-pathogenic isolates. We used RNA-seq analysis to investigate the molecular aspects of the interactions of a partially resistant soybean genotype with non-pathogenic/pathogenic isolates of F. oxysporum at 72 and 96 h post inoculation (hpi). Markedly different gene expression profiles were observed in response to the two isolates. A peak of highly differentially expressed genes (HDEGs) was triggered at 72 hpi in soybean roots and the number of HDEGs was about eight times higher in response to the pathogenic isolate compared to the non-pathogenic one (1,659 vs. 203 HDEGs, respectively). Furthermore, the magnitude of induction was much greater in response to the pathogenic isolate. This response included a stronger activation of defense-related genes, transcription factors, and genes involved in ethylene biosynthesis, secondary and sugar metabolism. The obtained data provide an important insight into the transcriptional responses of soybean-F. oxysporum interactions and illustrate the more drastic changes in the host transcriptome in response to the pathogenic isolate. These results may be useful in the developing new methods of broadening resistance of soybean to F. oxysporum, including the over-expression of key soybean genes.
USDA-ARS?s Scientific Manuscript database
Sclerotinia sclerotiorum and S. trifoliorum cause Sclerotinia stem and crown rot of chickpea and white mold on many economically important crops. The host range of S. trifoliorum is mainly on cool season forage and grain legumes of about 40 plant species, whereas the host range of S. sclerotiorum ...
Gene expression in the tanoak-Phytophthora ramorum interaction
Katherine J. Hayden; Matteo Garbelotto; Hardeep Fai; Brian Knaus; Richard Cronn; Jessica W. Wright
2012-01-01
Disease processes are dynamic, involving a suite of gene expression changes in both the host and the pathogen, all within a single tissue. As such, they lend themselves well to transcriptomic analysis. Here we focus on a generalist invasive pathogen (Phytophthora ramorum) and its most susceptible California Floristic Province native host, tanoak (...
Rosenwasser, Shilo; Mausz, Michaela A.; Schatz, Daniella; Sheyn, Uri; Malitsky, Sergey; Aharoni, Asaph; Weinstock, Eyal; Tzfadia, Oren; Ben-Dor, Shifra; Feldmesser, Ester; Pohnert, Georg; Vardi, Assaf
2014-01-01
Marine viruses are major ecological and evolutionary drivers of microbial food webs regulating the fate of carbon in the ocean. We combined transcriptomic and metabolomic analyses to explore the cellular pathways mediating the interaction between the bloom-forming coccolithophore Emiliania huxleyi and its specific coccolithoviruses (E. huxleyi virus [EhV]). We show that EhV induces profound transcriptome remodeling targeted toward fatty acid synthesis to support viral assembly. A metabolic shift toward production of viral-derived sphingolipids was detected during infection and coincided with downregulation of host de novo sphingolipid genes and induction of the viral-encoded homologous pathway. The depletion of host-specific sterols during lytic infection and their detection in purified virions revealed their novel role in viral life cycle. We identify an essential function of the mevalonate-isoprenoid branch of sterol biosynthesis during infection and propose its downregulation as an antiviral mechanism. We demonstrate how viral replication depends on the hijacking of host lipid metabolism during the chemical “arms race” in the ocean. PMID:24920329
2018-01-01
Host responses to infection encompass many processes in addition to activation of the immune system, including metabolic adaptations, stress responses, tissue repair, and other reactions. The response to bacterial infection in Drosophila melanogaster has been classically described in studies that focused on the immune response elicited by a small set of largely avirulent microbes. Thus, we have surprisingly limited knowledge of responses to infection that are outside the canonical immune response, of how the response to pathogenic infection differs from that to avirulent bacteria, or even of how generic the response to various microbes is and what regulates that core response. In this study, we addressed these questions by profiling the D. melanogaster transcriptomic response to 10 bacteria that span the spectrum of virulence. We found that each bacterium triggers a unique transcriptional response, with distinct genes making up to one third of the response elicited by highly virulent bacteria. We also identified a core set of 252 genes that are differentially expressed in response to the majority of bacteria tested. Among these, we determined that the transcription factor CrebA is a novel regulator of infection tolerance. Knock-down of CrebA significantly increased mortality from microbial infection without any concomitant change in bacterial number. Upon infection, CrebA is upregulated by both the Toll and Imd pathways in the fat body, where it is required to induce the expression of secretory pathway genes. Loss of CrebA during infection triggered endoplasmic reticulum (ER) stress and activated the unfolded protein response (UPR), which contributed to infection-induced mortality. Altogether, our study reveals essential features of the response to bacterial infection and elucidates the function of a novel regulator of infection tolerance. PMID:29394281
Chandra, Saket; Singh, Dharmendra; Pathak, Jyoti; Kumari, Supriya; Kumar, Manish; Poddar, Raju; Balyan, Harindra Singh; Gupta, Puspendra Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal
2016-01-01
Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants.
Pathak, Jyoti; Kumari, Supriya; Kumar, Manish; Poddar, Raju; Balyan, Harindra Singh; Gupta, Puspendra Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal
2016-01-01
Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants. PMID:26840746
Fan, Huiyan; Zhang, Yongliang; Sun, Haiwen; Liu, Junying; Wang, Ying; Wang, Xianbing; Li, Dawei; Yu, Jialin; Han, Chenggui
2015-01-01
Rhizomania is one of the most devastating diseases of sugar beet. It is caused by Beet necrotic yellow vein virus (BNYVV) transmitted by the obligate root-infecting parasite Polymyxa betae. Beta macrocarpa, a wild beet species widely used as a systemic host in the laboratory, can be rub-inoculated with BNYVV to avoid variation associated with the presence of the vector P. betae. To better understand disease and resistance between beets and BNYVV, we characterized the transcriptome of B. macrocarpa and analyzed global gene expression of B. macrocarpa in response to BNYVV infection using the Illumina sequencing platform. The overall de novo assembly of cDNA sequence data generated 75,917 unigenes, with an average length of 1054 bp. Based on a BLASTX search (E-value ≤ 10-5) against the non-redundant (NR, NCBI) protein, Swiss-Prot, the Gene Ontology (GO), Clusters of Orthologous Groups of proteins (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, there were 39,372 unigenes annotated. In addition, 4,834 simple sequence repeats (SSRs) were also predicted, which could serve as a foundation for various applications in beet breeding. Furthermore, comparative analysis of the two transcriptomes revealed that 261 genes were differentially expressed in infected compared to control plants, including 128 up- and 133 down-regulated genes. GO analysis showed that the changes in the differently expressed genes were mainly enrichment in response to biotic stimulus and primary metabolic process. Our results not only provide a rich genomic resource for beets, but also benefit research into the molecular mechanisms of beet- BNYV Vinteraction.
Mitterhuemer, Simone; Petzl, Wolfram; Krebs, Stefan; Mehne, Daniel; Klanner, Andrea; Wolf, Eckhard; Zerbe, Holm; Blum, Helmut
2010-02-25
Coliform bacteria are the most common etiologic agents in severe mastitis of cows. Escherichia coli infections are mostly restricted to a single udder quarter whereas neighboring quarters stay clinically inapparent, implicating the presence of a systemic defense reaction. To address its underlying mechanism, we performed a transcriptome study of mammary tissue from udder quarters inoculated with E. coli (6 h and 24 h post infection), from neighboring quarters of the same animals, and from untreated control animals. After 6 h 13 probe sets of differentially expressed genes (DEG) were detected in infected quarters versus control animals. Eighteen hours later 2154 and 476 DEG were found in infected and in neighboring quarters vs. control animals. Cluster analysis revealed DEG found only in infected quarters (local response) and DEG detected in both infected and neighboring quarters (systemic response). The first group includes genes mainly involved in immune response and inflammation, while the systemic reaction comprises antigen processing and presentation, cytokines, protein degradation and apoptosis. Enhanced expression of antimicrobial genes (S100A8, S100A9, S100A12, CXCL2, GNLY), acute phase genes (LBP, SAA3, CP, BF, C6, C4BPA, IF), and indicators of oxidative stress (GPX3, MT1A, MT2A, SOD2) point to an active defense reaction in infected and neighboring healthy quarters. Its early onset is indicated by increased transcription of NFIL3 at 6 h. NFIL3 is a predicted regulator of many genes of the systemic response at 24 h. The significance of our transcriptome study was evidenced by some recent findings with candidate gene based approaches. The discovery and holistic analysis of an extensive systemic reaction in the mammary gland significantly expands the knowledge of host-pathogen interactions in mastitis which may be relevant for the development of novel therapies and for genetic selection towards mastitis resistance.
Boltaña, Sebastian; Castellana, Barbara; Goetz, Giles; Tort, Lluis; Teles, Mariana; Mulero, Victor; Novoa, Beatriz; Figueras, Antonio; Goetz, Frederick W; Gallardo-Escarate, Cristian; Planas, Josep V; Mackenzie, Simon
2017-02-03
This study describes the development and validation of an enriched oligonucleotide-microarray platform for Sparus aurata (SAQ) to provide a platform for transcriptomic studies in this species. A transcriptome database was constructed by assembly of gilthead sea bream sequences derived from public repositories of mRNA together with reads from a large collection of expressed sequence tags (EST) from two extensive targeted cDNA libraries characterizing mRNA transcripts regulated by both bacterial and viral challenge. The developed microarray was further validated by analysing monocyte/macrophage activation profiles after challenge with two Gram-negative bacterial pathogen-associated molecular patterns (PAMPs; lipopolysaccharide (LPS) and peptidoglycan (PGN)). Of the approximately 10,000 EST sequenced, we obtained a total of 6837 EST longer than 100 nt, with 3778 and 3059 EST obtained from the bacterial-primed and from the viral-primed cDNA libraries, respectively. Functional classification of contigs from the bacterial- and viral-primed cDNA libraries by Gene Ontology (GO) showed that the top five represented categories were equally represented in the two libraries: metabolism (approximately 24% of the total number of contigs), carrier proteins/membrane transport (approximately 15%), effectors/modulators and cell communication (approximately 11%), nucleoside, nucleotide and nucleic acid metabolism (approximately 7.5%) and intracellular transducers/signal transduction (approximately 5%). Transcriptome analyses using this enriched oligonucleotide platform identified differential shifts in the response to PGN and LPS in macrophage-like cells, highlighting responsive gene-cassettes tightly related to PAMP host recognition. As observed in other fish species, PGN is a powerful activator of the inflammatory response in S. aurata macrophage-like cells. We have developed and validated an oligonucleotide microarray (SAQ) that provides a platform enriched for the study of gene expression in S. aurata with an emphasis upon immunity and the immune response.
Hong, Hyerim; Jung, Jaejoon; Park, Woojun
2014-01-01
Acquisition of the extracellular tetracycline (TC) resistance plasmid pAST2 affected host gene expression and phenotype in the oil-degrading soil bacterium, Acinetobacter oleivorans DR1. Whole-transcriptome profiling of DR1 cells harboring pAST2 revealed that all the plasmid genes were highly expressed under TC conditions, and the expression levels of many host chromosomal genes were modulated by the presence of pAST2. The host energy burden imposed by replication of pAST2 led to (i) lowered ATP concentrations, (ii) downregulated expression of many genes involved in cellular growth, and (iii) reduced growth rate. Interestingly, some phenotypes were restored by deleting the plasmid-encoded efflux pump gene tetH, suggesting that the membrane integrity changes resulting from the incorporation of efflux pump proteins also resulted in altered host response under the tested conditions. Alteration of membrane integrity by tetH deletion was shown by measuring permeability of fluorescent probe and membrane hydrophobicity. The presence of the plasmid conferred peroxide and superoxide resistance to cells, but only peroxide resistance was diminished by tetH gene deletion, suggesting that the plasmid-encoded membrane-bound efflux pump protein provided peroxide resistance. The downregulation of fimbriae-related genes presumably led to reduced swimming motility, but this phenotype was recovered by tetH gene deletion. Our data suggest that not only the plasmid replication burden, but also its encoded efflux pump protein altered host chromosomal gene expression and phenotype, which also alters the ecological fitness of the host in the environment. PMID:25229538
Melo, Mariane B; Nguyen, Quynh P; Cordeiro, Cynthia; Hassan, Musa A; Yang, Ninghan; McKell, Renée; Rosowski, Emily E; Julien, Lindsay; Butty, Vincent; Dardé, Marie-Laure; Ajzenberg, Daniel; Fitzgerald, Katherine; Young, Lucy H; Saeij, Jeroen P J
2013-01-01
Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.
Hong, Hyerim; Jung, Jaejoon; Park, Woojun
2014-01-01
Acquisition of the extracellular tetracycline (TC) resistance plasmid pAST2 affected host gene expression and phenotype in the oil-degrading soil bacterium, Acinetobacter oleivorans DR1. Whole-transcriptome profiling of DR1 cells harboring pAST2 revealed that all the plasmid genes were highly expressed under TC conditions, and the expression levels of many host chromosomal genes were modulated by the presence of pAST2. The host energy burden imposed by replication of pAST2 led to (i) lowered ATP concentrations, (ii) downregulated expression of many genes involved in cellular growth, and (iii) reduced growth rate. Interestingly, some phenotypes were restored by deleting the plasmid-encoded efflux pump gene tetH, suggesting that the membrane integrity changes resulting from the incorporation of efflux pump proteins also resulted in altered host response under the tested conditions. Alteration of membrane integrity by tetH deletion was shown by measuring permeability of fluorescent probe and membrane hydrophobicity. The presence of the plasmid conferred peroxide and superoxide resistance to cells, but only peroxide resistance was diminished by tetH gene deletion, suggesting that the plasmid-encoded membrane-bound efflux pump protein provided peroxide resistance. The downregulation of fimbriae-related genes presumably led to reduced swimming motility, but this phenotype was recovered by tetH gene deletion. Our data suggest that not only the plasmid replication burden, but also its encoded efflux pump protein altered host chromosomal gene expression and phenotype, which also alters the ecological fitness of the host in the environment.
Transcriptomic Profiling of High-Density Giardia Foci Encysting in the Murine Proximal Intestine.
Pham, Jonathan K; Nosala, Christopher; Scott, Erica Y; Nguyen, Kristofer F; Hagen, Kari D; Starcevich, Hannah N; Dawson, Scott C
2017-01-01
Giardia is a highly prevalent, understudied protistan parasite causing significant diarrheal disease worldwide. Its life cycle consists of two stages: infectious cysts ingested from contaminated food or water sources, and motile trophozoites that colonize and attach to the gut epithelium, later encysting to form new cysts that are excreted into the environment. Current understanding of parasite physiology in the host is largely inferred from transcriptomic studies using Giardia grown axenically or in co-culture with mammalian cell lines. The dearth of information about the diversity of host-parasite interactions occurring within distinct regions of the gastrointestinal tract has been exacerbated by a lack of methods to directly and non-invasively interrogate disease progression and parasite physiology in live animal hosts. By visualizing Giardia infections in the mouse gastrointestinal tract using bioluminescent imaging (BLI) of tagged parasites, we recently showed that parasites colonize the gut in high-density foci. Encystation is initiated in these foci throughout the entire course of infection, yet how the physiology of parasites within high-density foci in the host gut differs from that of cells in laboratory culture is unclear. Here we use BLI to precisely select parasite samples from high-density foci in the proximal intestine to interrogate in vivo Giardia gene expression in the host. Relative to axenic culture, we noted significantly higher expression (>10-fold) of oxidative stress, membrane transporter, and metabolic and structural genes associated with encystation in the high-density foci. These differences in gene expression within parasite foci in the host may reflect physiological changes associated with high-density growth in localized regions of the gut. We also identified and verified six novel cyst-specific proteins, including new components of the cyst wall that were highly expressed in these foci. Our in vivo transcriptome data support an emerging view that parasites encyst early in localized regions in the gut, possibly as a consequence of nutrient limitation, and also impact local metabolism and physiology.
Transcriptomic Profiling of High-Density Giardia Foci Encysting in the Murine Proximal Intestine
Pham, Jonathan K.; Nosala, Christopher; Scott, Erica Y.; Nguyen, Kristofer F.; Hagen, Kari D.; Starcevich, Hannah N.; Dawson, Scott C.
2017-01-01
Giardia is a highly prevalent, understudied protistan parasite causing significant diarrheal disease worldwide. Its life cycle consists of two stages: infectious cysts ingested from contaminated food or water sources, and motile trophozoites that colonize and attach to the gut epithelium, later encysting to form new cysts that are excreted into the environment. Current understanding of parasite physiology in the host is largely inferred from transcriptomic studies using Giardia grown axenically or in co-culture with mammalian cell lines. The dearth of information about the diversity of host-parasite interactions occurring within distinct regions of the gastrointestinal tract has been exacerbated by a lack of methods to directly and non-invasively interrogate disease progression and parasite physiology in live animal hosts. By visualizing Giardia infections in the mouse gastrointestinal tract using bioluminescent imaging (BLI) of tagged parasites, we recently showed that parasites colonize the gut in high-density foci. Encystation is initiated in these foci throughout the entire course of infection, yet how the physiology of parasites within high-density foci in the host gut differs from that of cells in laboratory culture is unclear. Here we use BLI to precisely select parasite samples from high-density foci in the proximal intestine to interrogate in vivo Giardia gene expression in the host. Relative to axenic culture, we noted significantly higher expression (>10-fold) of oxidative stress, membrane transporter, and metabolic and structural genes associated with encystation in the high-density foci. These differences in gene expression within parasite foci in the host may reflect physiological changes associated with high-density growth in localized regions of the gut. We also identified and verified six novel cyst-specific proteins, including new components of the cyst wall that were highly expressed in these foci. Our in vivo transcriptome data support an emerging view that parasites encyst early in localized regions in the gut, possibly as a consequence of nutrient limitation, and also impact local metabolism and physiology. PMID:28620589
Lin, Zhenyue; Chen, Mingliang; Dong, Xu; Zheng, Xinqing; Huang, Haining; Xu, Xun; Chen, Jianming
2017-01-01
In the South China Sea, coastal eutrophication in the Beibu Gulf has seriously threatened reef habitats by subjecting corals to chronic physiological stress. To determine how coral holobionts may tolerate such conditions, we examined the transcriptomes of healthy colonies of the galaxy coral Galaxea fascicularis and its endosymbiont Symbiodinium from two reef sites experiencing pristine or eutrophied nutrient regimes. We identified 236 and 205 genes that were differentially expressed in eutrophied hosts and symbionts, respectively. Both gene sets included pathways related to stress responses and metabolic interactions. An analysis of genes originating from each partner revealed striking metabolic integration with respect to vitamins, cofactors, amino acids, fatty acids, and secondary metabolite biosynthesis. The expression levels of these genes supported the existence of a continuum of mutualism in this coral-algal symbiosis. Additionally, large sets of transcription factors, cell signal transduction molecules, biomineralization components, and galaxin-related proteins were expanded in G. fascicularis relative to other coral species. PMID:28181581
The effect of skin fatty acids on Staphylococcus aureus.
Neumann, Yvonne; Ohlsen, Knut; Donat, Stefanie; Engelmann, Susanne; Kusch, Harald; Albrecht, Dirk; Cartron, Michael; Hurd, Alexander; Foster, Simon J
2015-03-01
Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb, hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS.
2011-01-01
Background Avocado (Persea americana) belongs to the Lauraceae family and is an important commercial fruit crop in over 50 countries. The most serious pathogen affecting avocado production is Phytophthora cinnamomi which causes Phytophthora root rot (PRR). Root pathogens such as P. cinnamomi and their interactions with hosts are poorly understood and despite the importance of both the avocado crop and the effect Phytophthora has on its cultivation, there is a lack of molecular knowledge underpinning our understanding of defence strategies against the pathogen. In order to initiate a better understanding of host-specific defence we have generated EST data using 454 pyrosequencing and profiled nine defence-related genes from Pc-infected avocado roots. Results 2.0 Mb of data was generated consisting of ~10,000 reads on a single lane of the GS FLX platform. Using the Newbler assembler 371 contigs were assembled, of which 367 are novel for Persea americana. Genes were classified according to Gene Ontology terms. In addition to identifying root-specific ESTs we were also able to identify and quantify the expression of nine defence-related genes that were differentially regulated in response to P. cinnamomi. Genes such as metallothionein, thaumatin and the pathogenesis related PsemI, mlo and profilin were found to be differentially regulated. Conclusions This is the first study in elucidating the avocado root transcriptome as well as identifying defence responses of avocado roots to the root pathogen P. cinnamomi. Our data is currently the only EST data that has been generated for avocado rootstocks, and the ESTs identified in this study have already been useful in identifying defence-related genes as well as providing gene information for other studies looking at processes such as ROS regulation as well as hypoxia in avocado roots. Our EST data will aid in the elucidation of the avocado transcriptome and identification of markers for improved rootstock breeding and screening. The characterization of the avocado transcriptome will furthermore form a basis for functional genomics of basal angiosperms. PMID:22108245
Mahomed, Waheed; Berg, Noëlani van den
2011-11-23
Avocado (Persea americana) belongs to the Lauraceae family and is an important commercial fruit crop in over 50 countries. The most serious pathogen affecting avocado production is Phytophthora cinnamomi which causes Phytophthora root rot (PRR). Root pathogens such as P. cinnamomi and their interactions with hosts are poorly understood and despite the importance of both the avocado crop and the effect Phytophthora has on its cultivation, there is a lack of molecular knowledge underpinning our understanding of defence strategies against the pathogen. In order to initiate a better understanding of host-specific defence we have generated EST data using 454 pyrosequencing and profiled nine defence-related genes from Pc-infected avocado roots. 2.0 Mb of data was generated consisting of ~10,000 reads on a single lane of the GS FLX platform. Using the Newbler assembler 371 contigs were assembled, of which 367 are novel for Persea americana. Genes were classified according to Gene Ontology terms. In addition to identifying root-specific ESTs we were also able to identify and quantify the expression of nine defence-related genes that were differentially regulated in response to P. cinnamomi. Genes such as metallothionein, thaumatin and the pathogenesis related PsemI, mlo and profilin were found to be differentially regulated. This is the first study in elucidating the avocado root transcriptome as well as identifying defence responses of avocado roots to the root pathogen P. cinnamomi. Our data is currently the only EST data that has been generated for avocado rootstocks, and the ESTs identified in this study have already been useful in identifying defence-related genes as well as providing gene information for other studies looking at processes such as ROS regulation as well as hypoxia in avocado roots. Our EST data will aid in the elucidation of the avocado transcriptome and identification of markers for improved rootstock breeding and screening. The characterization of the avocado transcriptome will furthermore form a basis for functional genomics of basal angiosperms.
Heekin, Andrew M; Guerrero, Felix D; Bendele, Kylie G; Saldivar, Leo; Scoles, Glen A; Dowd, Scot E; Gondro, Cedric; Nene, Vishvanath; Djikeng, Appolinaire; Brayton, Kelly A
2013-09-23
Cattle babesiosis is a tick-borne disease of cattle with the most severe form of the disease caused by the apicomplexan, Babesia bovis. Babesiosis is transmitted to cattle through the bite of infected cattle ticks of the genus Rhipicephalus. The most prevalent species is Rhipicephalus (Boophilus) microplus, which is distributed throughout the tropical and subtropical countries of the world. The transmission of B. bovis is transovarian and a previous study of the R. microplus ovarian proteome identified several R. microplus proteins that were differentially expressed in response to infection. Through various approaches, we studied the reaction of the R. microplus ovarian transcriptome in response to infection by B. bovis. A group of ticks were allowed to feed on a B. bovis-infected splenectomized calf while a second group fed on an uninfected splenectomized control calf. RNA was purified from dissected adult female ovaries of both infected and uninfected ticks and a subtracted B. bovis-infected cDNA library was synthesized, subtracting with the uninfected ovarian RNA. Four thousand ESTs were sequenced from the ovary subtracted library and annotated. The subtracted library dataset assembled into 727 unique contigs and 2,161 singletons for a total of 2,888 unigenes, Microarray experiments designed to detect B. bovis-induced gene expression changes indicated at least 15 transcripts were expressed at a higher level in ovaries from ticks feeding upon the B. bovis-infected calf as compared with ovaries from ticks feeding on an uninfected calf. We did not detect any transcripts from these microarray experiments that were expressed at a lower level in the infected ovaries compared with the uninfected ovaries. Using the technique called serial analysis of gene expression, 41 ovarian transcripts from infected ticks were differentially expressed when compared with transcripts of controls. Collectively, our experimental approaches provide the first comprehensive profile of the R. microplus ovarian transcriptome responding to infection by B. bovis. This dataset should prove useful in molecular studies of host-pathogen interactions between this tick and its apicomplexan parasite.
2013-01-01
Background Cattle babesiosis is a tick-borne disease of cattle with the most severe form of the disease caused by the apicomplexan, Babesia bovis. Babesiosis is transmitted to cattle through the bite of infected cattle ticks of the genus Rhipicephalus. The most prevalent species is Rhipicephalus (Boophilus) microplus, which is distributed throughout the tropical and subtropical countries of the world. The transmission of B. bovis is transovarian and a previous study of the R. microplus ovarian proteome identified several R. microplus proteins that were differentially expressed in response to infection. Through various approaches, we studied the reaction of the R. microplus ovarian transcriptome in response to infection by B. bovis. Methods A group of ticks were allowed to feed on a B. bovis-infected splenectomized calf while a second group fed on an uninfected splenectomized control calf. RNA was purified from dissected adult female ovaries of both infected and uninfected ticks and a subtracted B. bovis-infected cDNA library was synthesized, subtracting with the uninfected ovarian RNA. Four thousand ESTs were sequenced from the ovary subtracted library and annotated. Results The subtracted library dataset assembled into 727 unique contigs and 2,161 singletons for a total of 2,888 unigenes, Microarray experiments designed to detect B. bovis-induced gene expression changes indicated at least 15 transcripts were expressed at a higher level in ovaries from ticks feeding upon the B. bovis-infected calf as compared with ovaries from ticks feeding on an uninfected calf. We did not detect any transcripts from these microarray experiments that were expressed at a lower level in the infected ovaries compared with the uninfected ovaries. Using the technique called serial analysis of gene expression, 41 ovarian transcripts from infected ticks were differentially expressed when compared with transcripts of controls. Conclusion Collectively, our experimental approaches provide the first comprehensive profile of the R. microplus ovarian transcriptome responding to infection by B. bovis. This dataset should prove useful in molecular studies of host-pathogen interactions between this tick and its apicomplexan parasite. PMID:24330595
Gu, Xiao-Cui; Zhang, Ya-Nan; Kang, Ke; Dong, Shuang-Lin; Zhang, Long-Wa
2015-01-01
The red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae), is a destructive invasive pest of conifers which has become the second most important forest pest nationwide in China. Dendroctonus valens is known to use host odors and aggregation pheromones, as well as non-host volatiles, in host location and mass-attack modulation, and thus antennal olfaction is of the utmost importance for the beetles' survival and fitness. However, information on the genes underlying olfaction has been lacking in D. valens. Here, we report the antennal transcriptome of D. valens from next-generation sequencing, with the goal of identifying the olfaction gene repertoire that is involved in D. valens odor-processing. We obtained 51 million reads that were assembled into 61,889 genes, including 39,831 contigs and 22,058 unigenes. In total, we identified 68 novel putative odorant reception genes, including 21 transcripts encoding for putative odorant binding proteins (OBP), six chemosensory proteins (CSP), four sensory neuron membrane proteins (SNMP), 22 odorant receptors (OR), four gustatory receptors (GR), three ionotropic receptors (IR), and eight ionotropic glutamate receptors. We also identified 155 odorant/xenobiotic degradation enzymes from the antennal transcriptome, putatively identified to be involved in olfaction processes including cytochrome P450s, glutathione-S-transferases, and aldehyde dehydrogenase. Predicted protein sequences were compared with counterparts in Tribolium castaneum, Megacyllene caryae, Ips typographus, Dendroctonus ponderosae, and Agrilus planipennis. The antennal transcriptome described here represents the first study of the repertoire of odor processing genes in D. valens. The genes reported here provide a significant addition to the pool of identified olfactory genes in Coleoptera, which might represent novel targets for insect management. The results from our study also will assist with evolutionary analyses of coleopteran olfaction.
Dong, Shuang-Lin; Zhang, Long-Wa
2015-01-01
Background The red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae), is a destructive invasive pest of conifers which has become the second most important forest pest nationwide in China. Dendroctonus valens is known to use host odors and aggregation pheromones, as well as non-host volatiles, in host location and mass-attack modulation, and thus antennal olfaction is of the utmost importance for the beetles’ survival and fitness. However, information on the genes underlying olfaction has been lacking in D. valens. Here, we report the antennal transcriptome of D. valens from next-generation sequencing, with the goal of identifying the olfaction gene repertoire that is involved in D. valens odor-processing. Results We obtained 51 million reads that were assembled into 61,889 genes, including 39,831 contigs and 22,058 unigenes. In total, we identified 68 novel putative odorant reception genes, including 21 transcripts encoding for putative odorant binding proteins (OBP), six chemosensory proteins (CSP), four sensory neuron membrane proteins (SNMP), 22 odorant receptors (OR), four gustatory receptors (GR), three ionotropic receptors (IR), and eight ionotropic glutamate receptors. We also identified 155 odorant/xenobiotic degradation enzymes from the antennal transcriptome, putatively identified to be involved in olfaction processes including cytochrome P450s, glutathione-S-transferases, and aldehyde dehydrogenase. Predicted protein sequences were compared with counterparts in Tribolium castaneum, Megacyllene caryae, Ips typographus, Dendroctonus ponderosae, and Agrilus planipennis. Conclusion The antennal transcriptome described here represents the first study of the repertoire of odor processing genes in D. valens. The genes reported here provide a significant addition to the pool of identified olfactory genes in Coleoptera, which might represent novel targets for insect management. The results from our study also will assist with evolutionary analyses of coleopteran olfaction. PMID:25938508
Rurangwa, Eugene; Sipkema, Detmer; Kals, Jeroen; ter Veld, Menno; Forlenza, Maria; Bacanu, Gianina M.; Smidt, Hauke; Palstra, Arjan P.
2015-01-01
Larval zebrafish was subjected to a methodological exploration of the gastrointestinal microbiota and transcriptome. Assessed was the impact of two dietary inclusion levels of a novel protein meal (NPM) of animal origin (ragworm Nereis virens) on the gastrointestinal tract (GIT). Microbial development was assessed over the first 21 days post egg fertilization (dpf) through 16S rRNA gene-based microbial composition profiling by pyrosequencing. Differentially expressed genes in the GIT were demonstrated at 21 dpf by whole transcriptome sequencing (mRNAseq). Larval zebrafish showed rapid temporal changes in microbial colonization but domination occurred by one to three bacterial species generally belonging to Proteobacteria and Firmicutes. The high iron content of NPM may have led to an increased relative abundance of bacteria that were related to potential pathogens and bacteria with an increased iron metabolism. Functional classification of the 328 differentially expressed genes indicated that the GIT of larvae fed at higher NPM level was more active in transmembrane ion transport and protein synthesis. mRNAseq analysis did not reveal a major activation of genes involved in the immune response or indicating differences in iron uptake and homeostasis in zebrafish fed at the high inclusion level of NPM. PMID:25983694
Transcriptome analysis of grey mullet (Mugil cephalus) after challenge with Lactococcus garvieae.
Byadgi, Omkar; Chen, Yao-Chung; Barnes, Andrew C; Tsai, Ming-An; Wang, Pei-Chyi; Chen, Shih-Chu
2016-11-01
Grey mullet (Mugil cephalus) is an economically important fish species in Taiwan mariculture industry. Moreover, grey mullet are common hosts of a bacterial infection by Lactococcus garvieae. However, until now the information related to the immune system of grey mullet is unclear. Therefore, to understand the molecular basis underlying the host immune response to L. garvieae infection, Illumina HiSeq™ 2000 was used to analyse the head kidney and spleen transcriptome of infected grey mullet. De novo assembly of paired-end reads yielded 55,203 unigenes. Comparative analysis of the expression profiles between bacterial challenge fish and control fish identified a total of 7192 from head kidney and 7280 in spleen differentially expressed genes (P < 0.05), including 4211 upregulated genes and 2981 downregulated genes in head kidney, while in spleen 3598 genes were upregulated and 3682 downregulated. A significant enrichment analysis of these differentially expressed genes (DEG) in spleen and head kidney revealed major immune-related pathways, including complement and coagulation cascades, Toll-like receptor signalling, and antigen processing and presentation. Moreover, selected DEGs were validated using qPCR. Altogether, the results obtained on immune-related genes may allow for a better understanding of immunity in grey mullet to Lactococcus garvieae, carrying out detailed functional analysis of these genes and developing strategies for efficient immune protection against infections in grey mullet. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Yang, Zhenzhen; Wafula, Eric K.; Honaas, Loren A.; Zhang, Huiting; Das, Malay; Fernandez-Aparicio, Monica; Huang, Kan; Bandaranayake, Pradeepa C.G.; Wu, Biao; Der, Joshua P.; Clarke, Christopher R.; Ralph, Paula E.; Landherr, Lena; Altman, Naomi S.; Timko, Michael P.; Yoder, John I.; Westwood, James H.; dePamphilis, Claude W.
2015-01-01
The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative “parasitism genes.” Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria. PMID:25534030
2011-01-01
Background The rhizosphere is the microbe-rich zone around plant roots and is a key determinant of the biosphere's productivity. Comparative transcriptomics was used to investigate general and plant-specific adaptations during rhizosphere colonization. Rhizobium leguminosarum biovar viciae was grown in the rhizospheres of pea (its legume nodulation host), alfalfa (a non-host legume) and sugar beet (non-legume). Gene expression data were compared to metabolic and transportome maps to understand adaptation to the rhizosphere. Results Carbon metabolism was dominated by organic acids, with a strong bias towards aromatic amino acids, C1 and C2 compounds. This was confirmed by induction of the glyoxylate cycle required for C2 metabolism and gluconeogenesis in all rhizospheres. Gluconeogenesis is repressed in R. leguminosarum by sugars, suggesting that although numerous sugar and putative complex carbohydrate transport systems are induced in the rhizosphere, they are less important carbon sources than organic acids. A common core of rhizosphere-induced genes was identified, of which 66% are of unknown function. Many genes were induced in the rhizosphere of the legumes, but not sugar beet, and several were plant specific. The plasmid pRL8 can be considered pea rhizosphere specific, enabling adaptation of R. leguminosarum to its host. Mutation of many of the up-regulated genes reduced competitiveness for pea rhizosphere colonization, while two genes specifically up-regulated in the pea rhizosphere reduced colonization of the pea but not alfalfa rhizosphere. Conclusions Comparative transcriptome analysis has enabled differentiation between factors conserved across plants for rhizosphere colonization as well as identification of exquisite specific adaptation to host plants. PMID:22018401
Hopfe, Miriam; Deenen, René; Degrandi, Daniel; Köhrer, Karl; Henrich, Birgit
2013-01-01
Mycoplasma hominis is a facultative human pathogen primarily associated with bacterial vaginosis and pelvic inflammatory disease, but it is also able to spread to other sites, leading to arthritis or, in neonates, meningitis. With a minimal set of 537 annotated genes, M. hominis is the second smallest self-replicating mycoplasma and thus an ideal model organism for studying the effects of an infectious agent on its host more closely. M. hominis adherence, colonisation and invasion of HeLa cells were characterised in a time-course study using scanning electron microscopy, confocal microscopy and microarray-based analysis of the HeLa cell transcriptome. At 4 h post infection, cytoadherence of M. hominis to the HeLa cell surface was accompanied by differential regulation of 723 host genes (>2 fold change in expression). Genes associated with immune responses and signal transduction pathways were mainly affected and components involved in cell-cycle regulation, growth and death were highly upregulated. At 48 h post infection, when mycoplasma invasion started, 1588 host genes were differentially expressed and expression of genes for lysosome-specific proteins associated with bacterial lysis was detected. In a chronically infected HeLa cell line (2 weeks), the proportion of intracellular mycoplasmas reached a maximum of 10% and M. hominis-filled protrusions of the host cell membrane were seen by confocal microscopy, suggesting exocytotic dissemination. Of the 1972 regulated host genes, components of the ECM-receptor interaction pathway and phagosome-related integrins were markedly increased. The immune response was quite different to that at the beginning of infection, with a prominent induction of IL1B gene expression, affecting pathways of MAPK signalling, and genes connected with cytokine-cytokine interactions and apoptosis. These data show for the first time the complex, time-dependent reaction of the host directed at mycoplasmal clearance and the counter measures of this pestering pathogen. PMID:23326599
Transcriptional and Proteomic Responses to Carbon Starvation in Paracoccidioides
Lima, Patrícia de Sousa; Casaletti, Luciana; Bailão, Alexandre Melo; de Vasconcelos, Ana Tereza Ribeiro; Fernandes, Gabriel da Rocha; Soares, Célia Maria de Almeida
2014-01-01
Background The genus Paracoccidioides comprises human thermal dimorphic fungi, which cause paracoccidioidomycosis (PCM), an important mycosis in Latin America. Adaptation to environmental conditions is key to fungal survival during human host infection. The adaptability of carbon metabolism is a vital fitness attribute during pathogenesis. Methodology/Principal Findings The fungal pathogen Paracoccidioides spp. is exposed to numerous adverse conditions, such as nutrient deprivation, in the human host. In this study, a comprehensive response of Paracoccidioides, Pb01, under carbon starvation was investigated using high-resolution transcriptomic (RNAseq) and proteomic (NanoUPLC-MSE) approaches. A total of 1,063 transcripts and 421 proteins were differentially regulated, providing a global view of metabolic reprogramming during carbon starvation. The main changes were those related to cells shifting to gluconeogenesis and ethanol production, supported by the degradation of amino acids and fatty acids and by the modulation of the glyoxylate and tricarboxylic cycles. This proposed carbon flow hypothesis was supported by gene and protein expression profiles assessed using qRT-PCR and western blot analysis, respectively, as well as using enzymatic, cell dry weight and fungus-macrophage interaction assays. The carbon source provides a survival advantage to Paracoccidioides inside macrophages. Conclusions/Significance For a complete understanding of the physiological processes in an organism, the integration of approaches addressing different levels of regulation is important. To the best of our knowledge, this report presents the first description of the responses of Paracoccidioides spp. to host-like conditions using large-scale expression approaches. The alternative metabolic pathways that could be adopted by the organism during carbon starvation can be important for a better understanding of the fungal adaptation to the host, because systems for detecting and responding to carbon sources play a major role in adaptation and persistence in the host niche. PMID:24811072
Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus
Howard-Varona, Cristina; Roux, Simon; Dore, Hugo; ...
2016-05-17
Microbes impact human health and disease, industrial processes and natural ecosystems, but do so under the influence of viruses. Problematically, knowledge of viral infection efficiencies and outcomes (e.g. lysis, lysogeny) derives from few model systems that over-represent efficient, lytic infections and under-represent virus-host natural diversity. Here we sought to understand how infection efficiency is regulated in an environmental Bacteroidetes virus that represents a globally abundant viral group and has drastically different infection efficiencies when infecting two nearly identical bacterial strains. To this end, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout the infection of bothmore » bacterial hosts. While the phage transcriptome was similar during both infections, host transcriptional differences appeared to have altered infection efficiency. Specifically, host transcriptomes suggested that the phage failed to repress early host expression in the inefficient nfection, thereby allowing the host to respond against infection by delaying phage DNA replication and protein translation. Further measurements showed that phage DNA and particle production were delayed (by >30 minutes) and reduced (by >50%) in the inefficient versus efficient infection as the host over-expressed DNA degradation genes and under-expressed translation genes, respectively. Together these results suggest that multiple levels of regulation can impact infection efficiencies as failure to repress host transcription allowed the host to defend against both phage DNA and protein production. Given that this phage type is ubiquitous and abundant in the global oceans and that variably efficient viral infections are likely common in any ecosystem with varying phage-host abundances and physiological states, these data provide a critically needed foundation for understanding and modeling viral infection efficiency in nature.« less
Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard-Varona, Cristina; Roux, Simon; Dore, Hugo
Microbes impact human health and disease, industrial processes and natural ecosystems, but do so under the influence of viruses. Problematically, knowledge of viral infection efficiencies and outcomes (e.g. lysis, lysogeny) derives from few model systems that over-represent efficient, lytic infections and under-represent virus-host natural diversity. Here we sought to understand how infection efficiency is regulated in an environmental Bacteroidetes virus that represents a globally abundant viral group and has drastically different infection efficiencies when infecting two nearly identical bacterial strains. To this end, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout the infection of bothmore » bacterial hosts. While the phage transcriptome was similar during both infections, host transcriptional differences appeared to have altered infection efficiency. Specifically, host transcriptomes suggested that the phage failed to repress early host expression in the inefficient nfection, thereby allowing the host to respond against infection by delaying phage DNA replication and protein translation. Further measurements showed that phage DNA and particle production were delayed (by >30 minutes) and reduced (by >50%) in the inefficient versus efficient infection as the host over-expressed DNA degradation genes and under-expressed translation genes, respectively. Together these results suggest that multiple levels of regulation can impact infection efficiencies as failure to repress host transcription allowed the host to defend against both phage DNA and protein production. Given that this phage type is ubiquitous and abundant in the global oceans and that variably efficient viral infections are likely common in any ecosystem with varying phage-host abundances and physiological states, these data provide a critically needed foundation for understanding and modeling viral infection efficiency in nature.« less
Bouquet, Jerome; Soloski, Mark J; Swei, Andrea; Cheadle, Chris; Federman, Scot; Billaud, Jean-Noel; Rebman, Alison W; Kabre, Beniwende; Halpert, Richard; Boorgula, Meher; Aucott, John N; Chiu, Charles Y
2016-02-12
Lyme disease is a tick-borne illness caused by the bacterium Borrelia burgdorferi, and approximately 10 to 20% of patients report persistent symptoms lasting months to years despite appropriate treatment with antibiotics. To gain insights into the molecular basis of acute Lyme disease and the ensuing development of post-treatment symptoms, we conducted a longitudinal transcriptome study of 29 Lyme disease patients (and 13 matched controls) enrolled at the time of diagnosis and followed for up to 6 months. The differential gene expression signature of Lyme disease following the acute phase of infection persisted for at least 3 weeks and had fewer than 44% differentially expressed genes (DEGs) in common with other infectious or noninfectious syndromes. Early Lyme disease prior to antibiotic therapy was characterized by marked upregulation of Toll-like receptor signaling but lack of activation of the inflammatory T-cell apoptotic and B-cell developmental pathways seen in other acute infectious syndromes. Six months after completion of therapy, Lyme disease patients were found to have 31 to 60% of their pathways in common with three different immune-mediated chronic diseases. No differential gene expression signature was observed between Lyme disease patients with resolved illness to those with persistent symptoms at 6 months post-treatment. The identification of a sustained differential gene expression signature in Lyme disease suggests that a panel of selected human host-based biomarkers may address the need for sensitive clinical diagnostics during the "window period" of infection prior to the appearance of a detectable antibody response and may also inform the development of new therapeutic targets. Lyme disease is the most common tick-borne infection in the United States, and some patients report lingering symptoms lasting months to years despite antibiotic treatment. To better understand the role of the human host response in acute Lyme disease and the development of post-treatment symptoms, we conducted the first longitudinal gene expression (transcriptome) study of patients enrolled at the time of diagnosis and followed up for up to 6 months after treatment. Importantly, we found that the gene expression signature of early Lyme disease is distinct from that of other acute infectious diseases and persists for at least 3 weeks following infection. This study also uncovered multiple previously undescribed pathways and genes that may be useful in the future as human host biomarkers for diagnosis and that constitute potential targets for the development of new therapies. Copyright © 2016 Bouquet et al.
Wang, Xuyong; Ribeiro, José M C; Broce, Alberto B; Wilkerson, Melinda J; Kanost, Michael R
2009-09-01
Adult stable flies are blood feeders, a nuisance, and mechanical vectors of veterinary diseases. To enable efficient feeding, blood sucking insects have evolved a sophisticated array of salivary compounds to disarm their host's hemostasis and inflammatory reaction. While the sialomes of several blood sucking Nematocera flies have been described, no thorough description has been made so far of any Brachycera, except for a detailed proteome analysis of a tabanid (Xu et al., 2008). In this work we provide an insight into the sialome of the muscid Stomoxys calcitrans, revealing a complex mixture of serine proteases, endonucleases, Kazal-containing peptides, anti-thrombins, antigen 5 related proteins, antimicrobial peptides, and the usual finding of mysterious secreted peptides that have no known partners, and may reflect the very fast evolution of salivary proteins due to the vertebrate host immune pressure. Supplemental Tables S1 and S2 can be downloaded from http://exon.niaid.nih.gov/transcriptome/S_calcitrans/T1/Sc-tb1-web.xls and http://exon.niaid.nih.gov/transcriptome/S_calcitrans/T2/Sc-tb2-web.xls.
Wang, Xuyong; Ribeiro, José M. C.; Broce, Alberto B.; Wilkerson, Melinda J.; Kanost, Michael R.
2009-01-01
Adult stable flies are blood feeders, a nuisance, and mechanical vectors of veterinary diseases. To enable efficient feeding, blood sucking insects have evolved a sophisticated array of salivary compounds to disarm their host's hemostasis and inflammatory reaction. While the sialomes of several blood sucking Nematocera flies have been described, no thorough description has been made so far of any Brachycera, except for a detailed proteome analysis of a tabanid (Xu et al., 2008). In this work we provide an insight into the sialome of the muscid Stomoxys calcitrans, revealing a complex mixture of serine proteases, endonucleases, Kazal-containing peptides, anti-thrombins, antigen-5 related proteins, antimicrobial peptides, and the usual finding of mysterious secreted peptides that have no known partners, and may reflect the very fast evolution of salivary proteins due to the vertebrate host immune pressure. Supplemental tables S1 and S2 can be downloaded from http://exon.niaid.nih.gov/transcriptome/S_calcitrans/T1/Sc-tb1-web.xls and http://exon.niaid.nih.gov/transcriptome/S_calcitrans/T2/Sc-tb2-web.xls. PMID:19576987
Ubrihien, Rodney P; Ezaz, Tariq; Taylor, Anne M; Stevens, Mark M; Krikowa, Frank; Foster, Simon; Maher, William A
2017-04-01
This study describes the transcriptomic response of the Australian endemic freshwater gastropod Isidorella newcombi exposed to 80±1μg/L of copper for 3days. Analysis of copper tissue concentration, lysosomal membrane destabilisation and RNA-seq were conducted. Copper tissue concentrations confirmed that copper was bioaccumulated by the snails. Increased lysosomal membrane destabilisation in the copper-exposed snails indicated that the snails were stressed as a result of the exposure. Both copper tissue concentrations and lysosomal destabilisation were significantly greater in snails exposed to copper. In order to interpret the RNA-seq data from an ecotoxicological perspective an integrated biological response model was developed that grouped transcriptomic responses into those associated with copper transport and storage, survival mechanisms and cell death. A conceptual model of expected transcriptomic changes resulting from the copper exposure was developed as a basis to assess transcriptomic responses. Transcriptomic changes were evident at all the three levels of the integrated biological response model. Despite lacking statistical significance, increased expression of the gene encoding copper transporting ATPase provided an indication of increased internal transport of copper. Increased expression of genes associated with endocytosis are associated with increased transport of copper to the lysosome for storage in a detoxified form. Survival mechanisms included metabolic depression and processes associated with cellular repair and recycling. There was transcriptomic evidence of increased cell death by apoptosis in the copper-exposed organisms. Increased apoptosis is supported by the increase in lysosomal membrane destabilisation in the copper-exposed snails. Transcriptomic changes relating to apoptosis, phagocytosis, protein degradation and the lysosome were evident and these processes can be linked to the degradation of post-apoptotic debris. The study identified contaminant specific transcriptomic markers as well as markers of general stress. From an ecotoxicological perspective, the use of a framework to group transcriptomic responses into those associated with copper transport, survival and cell death assisted with the complex process of interpretation of RNA-seq data. The broad adoption of such a framework in ecotoxicology studies would assist in comparison between studies and the identification of reliable transcriptomic markers of contaminant exposure and response. Copyright © 2017 Elsevier B.V. All rights reserved.
2012-01-01
Background The 2009 pandemic H1N1 influenza virus emerged in swine and quickly became a major global health threat. In mouse, non human primate, and swine infection models, the pH1N1 virus efficiently replicates in the lung and induces pro-inflammatory host responses; however, whether similar or different cellular pathways were impacted by pH1N1 virus across independent infection models remains to be further defined. To address this we have performed a comparative transcriptomic analysis of acute phase responses to a single pH1N1 influenza virus, A/California/04/2009 (CA04), in the lung of mice, macaques and swine. Results Despite similarities in the clinical course, we observed differences in inflammatory molecules elicited, and the kinetics of their gene expression changes across all three species. We found genes associated with the retinoid X receptor (RXR) signaling pathway known to control pro-inflammatory and metabolic processes that were differentially regulated during infection in each species, though the heterodimeric RXR partner, pathway associated signaling molecules, and gene expression patterns varied among the three species. Conclusions By comparing transcriptional changes in the context of clinical and virological measures, we identified differences in the host transcriptional response to pH1N1 virus across independent models of acute infection. Antiviral resistance and the emergence of new influenza viruses have placed more focus on developing drugs that target the immune system. Underlying overt clinical disease are molecular events that suggest therapeutic targets identified in one host may not be appropriate in another. PMID:23153050
Valenzuela-Miranda, Diego; Boltaña, Sebastian; Cabrejos, Maria E; Yáñez, José M; Gallardo-Escárate, Cristian
2015-08-01
Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing high mortality in farmed Atlantic salmon (Salmo salar). The collective data from the Atlantic salmon-ISAV interactions, performed "in vitro" using various salmon cell lines and "in vivo" fish infected with different ISAV isolates, have shown a strong regulation of immune related transcripts during the infection. Despite this strong defence response, the majority of fish succumb to infections with ISAV. The deficient protection of the host against ISAV is in part due to virulence factors of the virus, which allow evade the host-defence machinery. As such, the viral replication is uninhibited and viral loads quickly spread to several tissues causing massive cellular damage before the host can develop an effective cell-mediated and humoral outcome. To interrogate the correlation of the viral replication with the host defence response, we used fish that have been infected by cohabitation with ISAV-injected salmons. Whole gene expression patterns were measured with RNA-seq using RNA extracted from Head-kidney, Liver and Gills. The results show divergent mRNA abundance of functional modules related to interferon pathway, adaptive/innate immune response and cellular proliferation/differentiation. Furthermore, gene regulation in distinct tissues during the infection process was independently controlled within the each tissue and the observed mRNA expression suggests high modulation of the ISAV-segment transcription. Importantly this is the first time that strong correlations between functional modules containing significant immune process with protein-protein affinities and viral-segment transcription have been made between different tissues of ISAV-infected fish. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fu, Shimin; Shao, Jonathan; Zhou, Changyong; Hartung, John S
2016-05-11
Huanglongbing (HLB) and tristeza, are diseases of citrus caused by a member of the α-proteobacteria, 'Candidatus Liberibacter asiaticus' (CaLas), and Citrus tristeza virus (CTV) respectively. HLB is a devastating disease, but CTV strains vary from very severe to very mild. Both CaLas and CTV are phloem-restricted. The CaLas-B232 strain and CTV-B6 cause a wide range of severe and similar symptoms. The mild strain CTV-B2 doesn't induce significant symptoms or damage to plants. Transcriptome profiles obtained through RNA-seq revealed 611, 404 and 285 differentially expressed transcripts (DETs) after infection with CaLas-B232, CTV-B6 and CTV-B2. These DETs were components of a wide range of pathways involved in circadian rhythm, cell wall modification and cell organization, as well as transcription factors, transport, hormone response and secondary metabolism, signaling and stress response. The number of transcripts that responded to both CTV-B6 and CaLas-B232 was much larger than the number of transcripts that responded to both strains of CTV or to both CTV-B2 and CaLas-B232. A total of 38 genes were assayed by RT-qPCR and the correlation coefficients between Gfold and RT-qPCR were 0.82, 0.69, 0.81 for sweet orange plants infected with CTV-B2, CTV-B6 and CaLas-B232, respectively. The number and composition of DETs reflected the complexity of symptoms caused by the pathogens in established infections, although the leaf tissues sampled were asymptomatic. There were greater similarities between the sweet orange in response to CTV-B6 and CaLas-B232 than between the two CTV strains, reflecting the similar physiological changes caused by both CTV-B6 and CaLas-B232. The circadian rhythm system of plants was perturbed by all three pathogens, especially by CTV-B6, and the ion balance was also disrupted by all three pathogens, especially by CaLas-B232. Defense responses related to cell wall modification, transcriptional regulation, hormones, secondary metabolites, kinases and stress were activated by all three pathogens but with different patterns. The transcriptome profiles of Citrus sinensis identified host genes whose expression is affected by the presence of a pathogen in the phloem without producing symptoms (CTV-B2), and host genes whose expression leads to induction of symptoms in the plant (CTV-B6, CaLas-B232).
Deist, Melissa S; Gallardo, Rodrigo A; Bunn, David A; Kelly, Terra R; Dekkers, Jack C M; Zhou, Huaijun; Lamont, Susan J
2017-05-01
Newcastle disease virus (NDV) has a devastating impact on poultry production in developing countries. This study examined the transcriptome of tracheal epithelial cells from two inbred chicken lines that differ in NDV susceptibility after challenge with a high-titer inoculum of lentogenic NDV. The Fayoumi line had a significantly lower NDV load postchallenge than the Leghorn line, demonstrating the Fayoumi line's classification as a relatively NDV-resistant breed. Examination of the trachea transcriptome showed a large increase in immune cell infiltration in the trachea in both lines at all times postinfection. The pathways conserved across lines and at all three time points postinfection included iCOS-iCOSL signaling in T helper cells, NF-κB signaling, the role of nuclear factor of activated T cells in the regulation of the immune response, calcium-induced T lymphocyte apoptosis, phospholipase C signaling, and CD28 signaling in T helper cells. Although shared pathways were seen in the Fayoumi and Leghorn lines, each line showed unique responses as well. The downregulation of collagen and the activation of eukaryotic translation initiation factor 2 signaling in the Fayoumis relative to the Leghorns at 2 days postinfection may contribute to the resistance phenotype seen in the Fayoumis. This study provides a further understanding of host-pathogen interactions which could improve vaccine efficacy and, in combination with genome-wide association studies, has the potential to advance strategies for breeding chickens with enhanced resistance to NDV. Copyright © 2017 Deist et al.
Wippler, Juliane; Kleiner, Manuel; Lott, Christian; ...
2016-11-21
The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. We generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, mostmore » likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm’s symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. In addition, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins.We also show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. These results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.« less
Bent, Zachary W.; Poorey, Kunal; LaBauve, Annette E.; ...
2016-12-21
When analyzing pathogen transcriptomes during the infection of host cells, the signal-to-background (pathogen-to-host) ratio of nucleic acids (NA) in infected samples is very small. Despite the advancements in next-generation sequencing, the minute amount of pathogen NA makes standard RNA-seq library preps inadequate for effective gene-level analysis of the pathogen in cases with low bacterial loads. In order to provide a more complete picture of the pathogen transcriptome during an infection, we developed a novel pathogen enrichment technique, which can enrich for transcripts from any cultivable bacteria or virus, using common, readily available laboratory equipment and reagents. To evenly enrich formore » pathogen transcripts, we generate biotinylated pathogen-targeted capture probes in an enzymatic process using the entire genome of the pathogen as a template. The capture probes are hybridized to a strand-specific cDNA library generated from an RNA sample. The biotinylated probes are captured on a monomeric avidin resin in a miniature spin column, and enriched pathogen-specific cDNA is eluted following a series of washes. To test this method, we performed an in vitro time-course infection using Klebsiella pneumoniae to infect murine macrophage cells. K. pneumoniae transcript enrichment efficiency was evaluated using RNA-seq. Bacterial transcripts were enriched up to ~400-fold, and allowed the recovery of transcripts from ~2000–3600 genes not observed in untreated control samples. These additional transcripts revealed interesting aspects of K. pneumoniae biology including the expression of putative virulence factors and the expression of several genes responsible for antibiotic resistance even in the absence of drugs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wippler, Juliane; Kleiner, Manuel; Lott, Christian
The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. We generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, mostmore » likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm’s symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. In addition, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins.We also show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. These results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, Zachary W.; Poorey, Kunal; LaBauve, Annette E.
When analyzing pathogen transcriptomes during the infection of host cells, the signal-to-background (pathogen-to-host) ratio of nucleic acids (NA) in infected samples is very small. Despite the advancements in next-generation sequencing, the minute amount of pathogen NA makes standard RNA-seq library preps inadequate for effective gene-level analysis of the pathogen in cases with low bacterial loads. In order to provide a more complete picture of the pathogen transcriptome during an infection, we developed a novel pathogen enrichment technique, which can enrich for transcripts from any cultivable bacteria or virus, using common, readily available laboratory equipment and reagents. To evenly enrich formore » pathogen transcripts, we generate biotinylated pathogen-targeted capture probes in an enzymatic process using the entire genome of the pathogen as a template. The capture probes are hybridized to a strand-specific cDNA library generated from an RNA sample. The biotinylated probes are captured on a monomeric avidin resin in a miniature spin column, and enriched pathogen-specific cDNA is eluted following a series of washes. To test this method, we performed an in vitro time-course infection using Klebsiella pneumoniae to infect murine macrophage cells. K. pneumoniae transcript enrichment efficiency was evaluated using RNA-seq. Bacterial transcripts were enriched up to ~400-fold, and allowed the recovery of transcripts from ~2000–3600 genes not observed in untreated control samples. These additional transcripts revealed interesting aspects of K. pneumoniae biology including the expression of putative virulence factors and the expression of several genes responsible for antibiotic resistance even in the absence of drugs.« less
Wippler, Juliane; Kleiner, Manuel; Lott, Christian; Gruhl, Alexander; Abraham, Paul E; Giannone, Richard J; Young, Jacque C; Hettich, Robert L; Dubilier, Nicole
2016-11-21
The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. Here, we generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, most likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm's symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. Additionally, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins. We show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. Our results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.
Tizioto, Polyana C; Kim, JaeWoo; Seabury, Christopher M; Schnabel, Robert D; Gershwin, Laurel J; Van Eenennaam, Alison L; Toaff-Rosenstein, Rachel; Neibergs, Holly L; Taylor, Jeremy F
2015-01-01
Susceptibility to bovine respiratory disease (BRD) is multi-factorial and is influenced by stress in conjunction with infection by both bacterial and viral pathogens. While vaccination is broadly used in an effort to prevent BRD, it is far from being fully protective and cases diagnosed from a combination of observed clinical signs without any attempt at identifying the causal pathogens are usually treated with antibiotics. Dairy and beef cattle losses from BRD are profound worldwide and genetic studies have now been initiated to elucidate host loci which underlie susceptibility with the objective of enabling molecular breeding to reduce disease prevalence. In this study, we employed RNA sequencing to examine the bronchial lymph node transcriptomes of controls and beef cattle which had individually been experimentally challenged with bovine respiratory syncytial virus, infectious bovine rhinotracheitis, bovine viral diarrhea virus, Pasteurella multocida, Mannheimia haemolytica or Mycoplasma bovis to identify the genes that are involved in the bovine immune response to infection. We found that 142 differentially expressed genes were located in previously described quantitative trait locus regions associated with risk of BRD. Mutations affecting the expression or amino acid composition of these genes may affect disease susceptibility and could be incorporated into molecular breeding programs. Genes involved in innate immunity were generally found to be differentially expressed between the control and pathogen-challenged animals suggesting that variation in these genes may lead to a heritability of susceptibility that is pathogen independent. However, we also found pathogen-specific expression profiles which suggest that host genetic variation for BRD susceptibility is pathogen dependent.
Castell-Miller, Claudia V.; Gutierrez-Gonzalez, Juan J.; Tu, Zheng Jin; ...
2016-06-02
Here, the fungus Cochliobolus miyabeanus causes severe leaf spot disease on rice ( Oryza sativa) and two North American specialty crops, American wildrice ( Zizania palustris) and switchgrass ( Panicum virgatu). Despite the importance of C. miyabeanus as a disease-causing agent in wildrice, little is known about either the mechanisms of pathogenicity or host defense responses. To start bridging these gaps, the genome of C. miyabeanus strain TG12bL2 was shotgun sequenced using Illumina technology. The genome assembly consists of 31.79 Mbp in 2,378 scaffolds with an N 50 = 74,921. It contains 11,000 predicted genes of which 94.5% were annotated.more » Approximately 10% of total gene number is expected to be secreted. The C. miyabeanus genome is rich in carbohydrate active enzymes, and harbors 187 small secreted peptides (SSPs) and some fungal effector homologs. Detoxification systems were represented by a variety of enzymes that could offer protection against plant defense compounds. The non-ribosomal peptide synthetases and polyketide synthases (PKS) present were common to other Cochliobolus species. Additionally, the fungal transcriptome was analyzed at 48 hours after inoculation in planta. A total of 10,674 genes were found to be expressed, some of which are known to be involved in pathogenicity or response to host defenses including hydrophobins, cutinase, cell wall degrading enzymes, enzymes related to reactive oxygen species scavenging, PKS, detoxification systems, SSPs, and a known fungal effector. This work will facilitate future research on C. miyabeanus pathogen-associated molecular patterns and effectors, and in the identification of their corresponding wildrice defense mechanisms.« less
Castell-Miller, Claudia V.; Gutierrez-Gonzalez, Juan J.; Tu, Zheng Jin; Bushley, Kathryn E.; Hainaut, Matthieu; Henrissat, Bernard; Samac, Deborah A.
2016-01-01
The fungus Cochliobolus miyabeanus causes severe leaf spot disease on rice (Oryza sativa) and two North American specialty crops, American wildrice (Zizania palustris) and switchgrass (Panicum virgatum). Despite the importance of C. miyabeanus as a disease-causing agent in wildrice, little is known about either the mechanisms of pathogenicity or host defense responses. To start bridging these gaps, the genome of C. miyabeanus strain TG12bL2 was shotgun sequenced using Illumina technology. The genome assembly consists of 31.79 Mbp in 2,378 scaffolds with an N50 = 74,921. It contains 11,000 predicted genes of which 94.5% were annotated. Approximately 10% of total gene number is expected to be secreted. The C. miyabeanus genome is rich in carbohydrate active enzymes, and harbors 187 small secreted peptides (SSPs) and some fungal effector homologs. Detoxification systems were represented by a variety of enzymes that could offer protection against plant defense compounds. The non-ribosomal peptide synthetases and polyketide synthases (PKS) present were common to other Cochliobolus species. Additionally, the fungal transcriptome was analyzed at 48 hours after inoculation in planta. A total of 10,674 genes were found to be expressed, some of which are known to be involved in pathogenicity or response to host defenses including hydrophobins, cutinase, cell wall degrading enzymes, enzymes related to reactive oxygen species scavenging, PKS, detoxification systems, SSPs, and a known fungal effector. This work will facilitate future research on C. miyabeanus pathogen-associated molecular patterns and effectors, and in the identification of their corresponding wildrice defense mechanisms. PMID:27253872
He, Ruifeng; Nelson, William; Yin, Guohua; Cicero, Joseph M.; Willer, Mark; Kim, Ryan; Kramer, Robin; May, Greg A.; Crow, John A.; Soderlund, Carol A.; Gang, David R.; Brown, Judith K.
2015-01-01
The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the insect vector of the fastidious bacterium Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease, or Huanglongbing (HLB). The widespread invasiveness of the psyllid vector and HLB in citrus trees worldwide has underscored the need for non-traditional approaches to manage the disease. One tenable solution is through the deployment of RNA interference technology to silence protein-protein interactions essential for ACP-mediated CLas invasion and transmission. To identify psyllid interactor-bacterial effector combinations associated with psyllid-CLas interactions, cDNA libraries were constructed from CLas-infected and CLas-free ACP adults and nymphs, and analyzed for differential expression. Library assemblies comprised 24,039,255 reads and yielded 45,976 consensus contigs. They were annotated (UniProt), classified using Gene Ontology, and subjected to in silico expression analyses using the Transcriptome Computational Workbench (TCW) (http://www.sohomoptera.org/ACPPoP/). Functional-biological pathway interpretations were carried out using the Kyoto Encyclopedia of Genes and Genomes databases. Differentially expressed contigs in adults and/or nymphs represented genes and/or metabolic/pathogenesis pathways involved in adhesion, biofilm formation, development-related, immunity, nutrition, stress, and virulence. Notably, contigs involved in gene silencing and transposon-related responses were documented in a psyllid for the first time. This is the first comparative transcriptomic analysis of ACP adults and nymphs infected and uninfected with CLas. The results provide key initial insights into host-parasite interactions involving CLas effectors that contribute to invasion-virulence, and to host nutritional exploitation and immune-related responses that appear to be essential for successful ACP-mediated circulative, propagative CLas transmission. PMID:26091106
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castell-Miller, Claudia V.; Gutierrez-Gonzalez, Juan J.; Tu, Zheng Jin
Here, the fungus Cochliobolus miyabeanus causes severe leaf spot disease on rice ( Oryza sativa) and two North American specialty crops, American wildrice ( Zizania palustris) and switchgrass ( Panicum virgatu). Despite the importance of C. miyabeanus as a disease-causing agent in wildrice, little is known about either the mechanisms of pathogenicity or host defense responses. To start bridging these gaps, the genome of C. miyabeanus strain TG12bL2 was shotgun sequenced using Illumina technology. The genome assembly consists of 31.79 Mbp in 2,378 scaffolds with an N 50 = 74,921. It contains 11,000 predicted genes of which 94.5% were annotated.more » Approximately 10% of total gene number is expected to be secreted. The C. miyabeanus genome is rich in carbohydrate active enzymes, and harbors 187 small secreted peptides (SSPs) and some fungal effector homologs. Detoxification systems were represented by a variety of enzymes that could offer protection against plant defense compounds. The non-ribosomal peptide synthetases and polyketide synthases (PKS) present were common to other Cochliobolus species. Additionally, the fungal transcriptome was analyzed at 48 hours after inoculation in planta. A total of 10,674 genes were found to be expressed, some of which are known to be involved in pathogenicity or response to host defenses including hydrophobins, cutinase, cell wall degrading enzymes, enzymes related to reactive oxygen species scavenging, PKS, detoxification systems, SSPs, and a known fungal effector. This work will facilitate future research on C. miyabeanus pathogen-associated molecular patterns and effectors, and in the identification of their corresponding wildrice defense mechanisms.« less
Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome
Chaudhuri, Roy R.; Yu, Lu; Kanji, Alpa; Perkins, Timothy T.; Gardner, Paul P.; Choudhary, Jyoti; Maskell, Duncan J.
2011-01-01
Campylobacter jejuni is the most common bacterial cause of foodborne disease in the developed world. Its general physiology and biochemistry, as well as the mechanisms enabling it to colonize and cause disease in various hosts, are not well understood, and new approaches are required to understand its basic biology. High-throughput sequencing technologies provide unprecedented opportunities for functional genomic research. Recent studies have shown that direct Illumina sequencing of cDNA (RNA-seq) is a useful technique for the quantitative and qualitative examination of transcriptomes. In this study we report RNA-seq analyses of the transcriptomes of C. jejuni (NCTC11168) and its rpoN mutant. This has allowed the identification of hitherto unknown transcriptional units, and further defines the regulon that is dependent on rpoN for expression. The analysis of the NCTC11168 transcriptome was supplemented by additional proteomic analysis using liquid chromatography-MS. The transcriptomic and proteomic datasets represent an important resource for the Campylobacter research community. PMID:21816880
The Role of Oligosaccharides in Host-Microbial Interactions for Human Health.
Ross, Sarah A; Lane, Jonathan A; Marotta, Mariarosaria; Kavanaugh, Devon; Ryan, Joseph Thomas; Joshi, Lokesh; Hickey, Rita M
Milk oligosaccharides have many associated bioactivities which can contribute to human health and offer protective properties to the host. Such bioactivities include anti-infective properties whereby oligosaccharides interact with bacterial cells and prevent adhesion to the host and subsequent colonization. Milk oligosaccharides have also been shown to alter the glycosylation of intestinal cells, leading to a reduction in pathogenic colonization. In addition, these sugars promote adhesion of commensal bacterial strains to host cells as well as possessing the ability to alter mucin expression in intestinal cells and improve barrier function. The ability of milk oligosaccharides to alter the transcriptome of both commensal bacterial strains and intestinal epithelial cells has also been revealed, indicating the potential of many cell types to detect the presence of milk oligosaccharides and respond accordingly at the genetic level. Interestingly, domestic animal milk may provide a bioactive source of oligosaccharides for formula supplementation with the aim of emulating the gold standard that is human milk. Overall, this review highlights the ability of milk oligosaccharides to promote health in a variety of ways, for example, through direct bacterial interactions, immunomodulatory activities, promotion of gut barrier function, and induction of protective transcriptional responses.
NASA Astrophysics Data System (ADS)
Li, Tianzhi; Chang, De; Xu, Huiwen; Chen, Jiapeng; Su, Longxiang; Guo, Yinghua; Chen, Zhenhong; Wang, Yajuan; Wang, Li; Wang, Junfeng; Fang, Xiangqun; Liu, Changting
2015-07-01
Escherichia coli (E. coli) is the most widely applied model organism in current biological science. As a widespread opportunistic pathogen, E. coli can survive not only by symbiosis with human, but also outside the host as well, which necessitates the evaluation of its response to the space environment. Therefore, to keep humans safe in space, it is necessary to understand how the bacteria respond to this environment. Despite extensive investigations for a few decades, the response of E. coli to the real space environment is still controversial. To better understand the mechanisms how E. coli overcomes harsh environments such as microgravity in space and to investigate whether these factors may induce pathogenic changes in E. coli that are potentially detrimental to astronauts, we conducted detailed genomics, transcriptomic and proteomic studies on E. coli that experienced 17 days of spaceflight. By comparing two flight strains LCT-EC52 and LCT-EC59 to a control strain LCT-EC106 that was cultured under the same temperature conditions on the ground, we identified metabolism changes, polymorphism changes, differentially expressed genes and proteins in the two flight strains. The flight strains differed from the control in the utilization of more than 30 carbon sources. Two single nucleotide polymorphisms (SNPs) and one deletion were identified in the flight strains. The expression level of more than 1000 genes altered in flight strains. Genes involved in chemotaxis, lipid metabolism and cell motility express differently. Moreover, the two flight strains also differed extensively from each other in terms of metabolism, transcriptome and proteome, indicating the impact of space environment on individual cells is heterogeneous and probably genotype-dependent. This study presents the first systematic profile of E. coli genome, transcriptome and proteome after spaceflight, which helps to elucidate the mechanism that controls the adaptation of microbes to the space environment.
Wu, Chia-Chou; Chen, Bor-Sen
2016-01-01
Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host–pathogen dynamic interaction networks. The consideration of host–pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host–pathogen molecular interaction networks, and consequent inferences of the host–pathogen relationship could be translated into biomedical applications. PMID:26881892
Kraiselburd, Ivana; Daurelio, Lucas D.; Tondo, María Laura; Merelo, Paz; Cortadi, Adriana A.; Talón, Manuel; Tadeo, Francisco R.; Orellano, Elena G.
2013-01-01
Pathogens interaction with a host plant starts a set of immune responses that result in complex changes in gene expression and plant physiology. Light is an important modulator of plant defense response and recent studies have evidenced the novel influence of this environmental stimulus in the virulence of several bacterial pathogens. Xanthomonas citri subsp. citri is the bacterium responsible for citrus canker disease, which affects most citrus cultivars. The ability of this bacterium to colonize host plants is influenced by bacterial blue-light sensing through a LOV-domain protein and disease symptoms are considerably altered upon deletion of this protein. In this work we aimed to unravel the role of this photoreceptor during the bacterial counteraction of plant immune responses leading to citrus canker development. We performed a transcriptomic analysis in Citrus sinensis leaves inoculated with the wild type X. citri subsp. citri and with a mutant strain lacking the LOV protein by a cDNA microarray and evaluated the differentially regulated genes corresponding to specific biological processes. A down-regulation of photosynthesis-related genes (together with a corresponding decrease in photosynthesis rates) was observed upon bacterial infection, this effect being more pronounced in plants infected with the lov-mutant bacterial strain. Infection with this strain was also accompanied with the up-regulation of several secondary metabolism- and defense response-related genes. Moreover, we found that relevant plant physiological alterations triggered by pathogen attack such as cell wall fortification and tissue disruption were amplified during the lov-mutant strain infection. These results suggest the participation of the LOV-domain protein from X. citri subsp. citri in the bacterial counteraction of host plant defense response, contributing in this way to disease development. PMID:24260514
Petitot, Anne-Sophie; Kyndt, Tina; Haidar, Rana; Dereeper, Alexis; Collin, Myriam; de Almeida Engler, Janice; Gheysen, Godelieve
2017-01-01
Abstract Background and Aims The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice (Oryza sativa) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima, presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Methods Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype ‘Nipponbare’ were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Key Results Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to ‘Nipponbare’. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. Conclusions This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice-M. graminicola pathosystem as a model to study plant-nematode incompatible interactions. PMID:28334204
He, Zhangjiang; Zhao, Xin; Lu, Zhuoyue; Wang, Huifang; Liu, Pengfei; Zeng, Fanqin; Zhang, Yongjun
2018-01-01
Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. Beauveria bassiana is an economically important insect-pathogenic fungus which is widely used as a biocontrol agent to control a variety of insect pests. The fungal pathogen unavoidably encounters a variety of adverse environmental stresses and defense response from the host insects during application of the fungal agents. However, few are known about the transcription response of the fungus to respond or adapt varied adverse stresses. Here, we comparatively analyzed the transcriptome of B. bassiana in globe genome under the varied stationary-phase stresses including osmotic agent (0.8 M NaCl), high temperature (32 °C), cell wall-perturbing agent (Congo red), and oxidative agents (H 2 O 2 or menadione). Total of 12,412 reads were obtained, and mapped to the 6767 genes of the B. bassiana. All of these stresses caused transcription responses involved in basal metabolism, cell wall construction, stress response or cell rescue/detoxification, signaling transduction and gene transcription regulation, and likely other cellular processes. An array of genes displayed similar transcription patterns in response to at least two of the five stresses, suggesting a shared transcription response to varied adverse stresses. Gene co-expression network analysis revealed that mTOR signaling pathway, but not HOG1 MAP kinase pathway, played a central role in regulation the varied adverse stress responses, which was verified by RNAi-mediated knockdown of TOR1. Our findings provided an insight of transcription response and gene co-expression network of B. bassiana in adaptation to varied environments. Copyright © 2017 Elsevier Inc. All rights reserved.
Systems responses of rats to mequindox revealed by metabolic and transcriptomic profiling.
Zhao, Xiu-Ju; Hao, Fuhua; Huang, Chongyang; Rantalainen, Mattias; Lei, Hehua; Tang, Huiru; Wang, Yulan
2012-09-07
Mequindox is used as an antibiotic drug in livestock; however, its toxicity remains largely unclear. Previously, we investigated metabolic responses of mice to mequindox exposure. In order to evaluate dependences of animal species in response to mequindox insult, we present the metabolic consequences of mequindox exposure in a rat model, by employing the combination of metabonomics and transcriptomics. Metabolic profiling of urine revealed that metabolic recovery is achieved for rats exposed to a low or moderate dose of mequindox, whereas high levels of mequindox exposure trigger liver dysfunction, causing no such recovery. We found that mequindox exposure causes suppression of the tricarboxylic acid cycle and stimulation of glycolysis, which is in contrast to a mouse model previously investigated. In addition, mequindox dosage induces promotion of β-oxidation of fatty acids, which was confirmed by elevated expressions of acox1, hsd17b2, and cpt1a in liver. Furthermore, altered levels of N-methylnicotinate, 1-methylnicotinamide, and glutathione disulfide highlighted the promotion of vitamin B3 antioxidative cycle in rats exposed to mequindox. Moreover, mequindox exposure altered levels of gut microbiotal related co-metabolites, suggesting a perturbation of the gut microflora of the host. Our work provides a comprehensive view of the toxicological effects of mequindox, which is important in the usage of mequindox in animal and human food safety.
Coate, Jeremy E; Doyle, Jeff J
2010-01-01
Evolutionary biologists are increasingly comparing gene expression patterns across species. Due to the way in which expression assays are normalized, such studies provide no direct information about expression per gene copy (dosage responses) or per cell and can give a misleading picture of genes that are differentially expressed. We describe an assay for estimating relative expression per cell. When used in conjunction with transcript profiling data, it is possible to compare the sizes of whole transcriptomes, which in turn makes it possible to compare expression per cell for each gene in the transcript profiling data set. We applied this approach, using quantitative reverse transcriptase-polymerase chain reaction and high throughput RNA sequencing, to a recently formed allopolyploid and showed that its leaf transcriptome was approximately 1.4-fold larger than either progenitor transcriptome (70% of the sum of the progenitor transcriptomes). In contrast, the allopolyploid genome is 94.3% as large as the sum of its progenitor genomes and retains > or =93.5% of the sum of its progenitor gene complements. Thus, "transcriptome downsizing" is greater than genome downsizing. Using this transcriptome size estimate, we inferred dosage responses for several thousand genes and showed that the majority exhibit partial dosage compensation. Homoeologue silencing is nonrandomly distributed across dosage responses, with genes showing extreme responses in either direction significantly more likely to have a silent homoeologue. This experimental approach will add value to transcript profiling experiments involving interspecies and interploidy comparisons by converting expression per transcriptome to expression per genome, eliminating the need for assumptions about transcriptome size.
Decrease of Staphylococcus aureus Virulence by Helcococcus kunzii in a Caenorhabditis elegans Model.
Ngba Essebe, Christelle; Visvikis, Orane; Fines-Guyon, Marguerite; Vergne, Anne; Cattoir, Vincent; Lecoustumier, Alain; Lemichez, Emmanuel; Sotto, Albert; Lavigne, Jean-Philippe; Dunyach-Remy, Catherine
2017-01-01
Social bacterial interactions are considered essential in numerous infectious diseases, particularly in wounds. Foot ulcers are a common complication in diabetic patients and these ulcers become frequently infected. This infection is usually polymicrobial promoting cell-to-cell communications. Staphylococcus aureus is the most prevalent pathogen isolated. Its association with Helcococcus kunzii , commensal Gram-positive cocci, is frequently described. The aim of this study was to assess the impact of co-infection on virulence of both H. kunzii and S. aureus strains in a Caenorhabditis elegans model. To study the host response, qRT-PCRs targeting host defense genes were performed. We observed that H. kunzii strains harbored a very low (LT50: 5.7 days ± 0.4) or an absence of virulence (LT50: 6.9 days ± 0.5). In contrast, S. aureus strains (LT50: 2.9 days ± 0.4) were significantly more virulent than all H. kunzii ( P < 0.001). When H. kunzii and S. aureus strains were associated, H. kunzii significantly reduced the virulence of the S. aureus strain in nematodes (LT50 between 4.4 and 5.2 days; P < 0.001). To evaluate the impact of these strains on host response, transcriptomic analysis showed that the ingestion of S. aureus led to a strong induction of defense genes ( lys-5, sodh-1 , and cyp-37B1 ) while H. kunzii did not. No statistical difference of host response genes expression was observed when C. elegans were infected with either S. aureus alone or with S. aureus + H. kunzii . Moreover, two well-characterized virulence factors ( hla and agr ) present in S. aureus were down-regulated when S. aureus were co-infected with H. kunzii . This study showed that H. kunzii decreased the virulence of S. aureus without modifying directly the host defense response. Factor(s) produced by this bacterium modulating the staphylococci virulence must be investigated.
Purcell, Maureen K.; Marjara, Inderjit Singh; Batts, William; Kurath, Gael; Hansen, John D.
2010-01-01
There are three main genetic lineages or genogroups of Infectious hematopoietic necrosis virus (IHNV) in N. America. Strains representing the M genogroup are more virulent in rainbow trout relative to the U genogroup. In this study, we used microarray analysis to evaluate potential mechanisms responsible for host-specific virulence in rainbow trout that were given intraperitoneal injections of buffer or a representative M or U type virus strain. Reverse transcriptase quantitative PCR (RT-qPCR) was used to assess viral load and gene expression of select immune genes. Viral load was significantly higher in trout infected with the M virus starting at 24 h post-infection (p.i.) and continuing until 72 h p.i. Microarray analysis of the 48 h time point revealed 153 up-regulated and 248 down-regulated features in response to M virus infection but only 62 up-regulated and 49 down-regulated features following U virus infection. Translation and transcription features were among the most frequent down-regulated features in response to M virus infection and may be associated with the host cell shutoff phenomenon. A greater host cell shutoff response by the M virus may facilitate subversion of the host cell transcriptional machinery and enhance viral replication, suggesting the M virus may be better optimized to manipulate the rainbow trout transcriptional and translational machinery. Anti-viral associated features were the most commonly up-regulated features. A common set of features were up-regulated in both the M and U infection groups, but were induced to a higher magnitude in the M infection group. Gene expression of the anti-viral genes Mx-1 and Vig-1 was correlated but not entirely dependent on viral load in the anterior kidney. Slower replication of the U virus may allow the host more time to induce protective anti-viral immune mechanisms.
Decrease of Staphylococcus aureus Virulence by Helcococcus kunzii in a Caenorhabditis elegans Model
Ngba Essebe, Christelle; Visvikis, Orane; Fines-Guyon, Marguerite; Vergne, Anne; Cattoir, Vincent; Lecoustumier, Alain; Lemichez, Emmanuel; Sotto, Albert; Lavigne, Jean-Philippe; Dunyach-Remy, Catherine
2017-01-01
Social bacterial interactions are considered essential in numerous infectious diseases, particularly in wounds. Foot ulcers are a common complication in diabetic patients and these ulcers become frequently infected. This infection is usually polymicrobial promoting cell-to-cell communications. Staphylococcus aureus is the most prevalent pathogen isolated. Its association with Helcococcus kunzii, commensal Gram-positive cocci, is frequently described. The aim of this study was to assess the impact of co-infection on virulence of both H. kunzii and S. aureus strains in a Caenorhabditis elegans model. To study the host response, qRT-PCRs targeting host defense genes were performed. We observed that H. kunzii strains harbored a very low (LT50: 5.7 days ± 0.4) or an absence of virulence (LT50: 6.9 days ± 0.5). In contrast, S. aureus strains (LT50: 2.9 days ± 0.4) were significantly more virulent than all H. kunzii (P < 0.001). When H. kunzii and S. aureus strains were associated, H. kunzii significantly reduced the virulence of the S. aureus strain in nematodes (LT50 between 4.4 and 5.2 days; P < 0.001). To evaluate the impact of these strains on host response, transcriptomic analysis showed that the ingestion of S. aureus led to a strong induction of defense genes (lys-5, sodh-1, and cyp-37B1) while H. kunzii did not. No statistical difference of host response genes expression was observed when C. elegans were infected with either S. aureus alone or with S. aureus + H. kunzii. Moreover, two well-characterized virulence factors (hla and agr) present in S. aureus were down-regulated when S. aureus were co-infected with H. kunzii. This study showed that H. kunzii decreased the virulence of S. aureus without modifying directly the host defense response. Factor(s) produced by this bacterium modulating the staphylococci virulence must be investigated. PMID:28361041
RNAseq Analysis of the Drosophila Response to the Entomopathogenic Nematode Steinernema.
Yadav, Shruti; Daugherty, Sean; Shetty, Amol Carl; Eleftherianos, Ioannis
2017-06-07
Drosophila melanogaster is an outstanding model to study the molecular and functional basis of host-pathogen interactions. Currently, our knowledge of microbial infections in D. melanogaster is well understood; however, the response of flies to nematode infections is still in its infancy. Here, we have used the potent parasitic nematode Steinernema carpocapsae , which lives in mutualism with its endosymbiotic bacteria Xenorhabdus nematophila , to examine the transcriptomic basis of the interaction between D. melanogaster and entomopathogenic nematodes. We have employed next-generation RNA sequencing (RNAseq) to investigate the transcriptomic profile of D. melanogaster larvae in response to infection by S. carpocapsae symbiotic (carrying X. nematophila ) or axenic (lacking X. nematophila ) nematodes. Bioinformatic analyses have identified the strong induction of genes that are associated with the peritrophic membrane and the stress response, as well as several genes that participate in developmental processes. We have also found that genes with different biological functions are enriched in D. melanogaster larvae responding to either symbiotic or axenic nematodes. We further show that while symbiotic nematode infection enriched certain known immune-related genes, axenic nematode infection enriched several genes associated with chitin binding, lipid metabolic functions, and neuroactive ligand receptors. In addition, we have identified genes with a potential role in nematode recognition and genes with potential antinematode activity. Findings from this study will undoubtedly set the stage for the identification of key regulators of antinematode immune mechanisms in D. melanogaster , as well as in other insects of socioeconomic importance. Copyright © 2017 Yadav et al.
Transcriptomic analysis of vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome.
Bruno, Vincent M; Shetty, Amol C; Yano, Junko; Fidel, Paul L; Noverr, Mairi C; Peters, Brian M
2015-04-21
Treatment of vulvovaginal candidiasis (VVC), caused most frequently by Candida albicans, represents a significant unmet clinical need. C. albicans, as both a commensal and a pathogenic organism, has a complex and poorly understood interaction with the vaginal environment. Understanding the complex nature of this relationship is necessary for the development of desperately needed therapies to treat symptomatic infection. Using transcriptome sequencing (RNA-seq), we characterized the early murine vaginal and fungal transcriptomes of the organism during VVC. Network analysis of host genes that were differentially expressed between infected and naive mice predicted the activation or repression of several signaling pathways that have not been previously associated with VVC, including NLRP3 inflammasome activation. Intravaginal challenge of Nlrp3(-/-) mice with C. albicans demonstrated severely reduced levels of polymorphonuclear leukocytes (PMNs), alarmins, and inflammatory cytokines, including interleukin-1β (IL-1β) (the hallmarks of VVC immunopathogenesis) in vaginal lavage fluid. Intravaginal administration of wild-type (WT) mice with glyburide, a potent inhibitor of the NLRP3 inflammasome, reduced PMN infiltration and IL-1β to levels comparable to those observed in Nlrp3(-/-) mice. Furthermore, RNA-seq analysis of C. albicans genes indicated robust expression of hypha-associated secreted aspartyl proteinases 4, 5, and 6 (SAP4-6), which are known inflammasome activators. Despite colonization similar to that of the WT strain, ΔSAP4-6 triple and ΔSAP5 single mutants induced significantly less PMN influx and IL-1β during intravaginal challenge. Our findings demonstrate a novel role for the inflammasome in the immunopathogenesis of VVC and implicate the hypha-associated SAPs as major C. albicans virulence determinants during vulvovaginal candidiasis. Vaginitis, most commonly caused by the fungus Candida albicans, results in significant quality-of-life issues for all women of reproductive age. Recent efforts have suggested that vaginitis results from an immunopathological response governed by host innate immunity, although an explanatory mechanism has remained undefined. Using comprehensive genomic, immunological, and pharmacological approaches, we have elucidated the NLRP3 inflammasome as a crucial molecular mechanism contributing to host immunopathology. We have also demonstrated that C. albicans hypha-associated secreted aspartyl proteinases (SAP4-6 and SAP5, more specifically) contribute to disease immunopathology. Ultimately, this study enhances our understanding of the complex interplay between host and fungus at the vaginal mucosa and provides proof-of-principle evidence for therapeutic targeting of inflammasomes for symptomatic vulvovaginal candidiasis. Copyright © 2015 Bruno et al.
King, Thea; Lucchini, Sacha; Hinton, Jay C D; Gobius, Kari
2010-10-01
The food-borne pathogen Escherichia coli O157:H7 is commonly exposed to organic acid in processed and preserved foods, allowing adaptation and the development of tolerance to pH levels otherwise lethal. Since little is known about the molecular basis of adaptation of E. coli to organic acids, we studied K-12 MG1655 and O157:H7 Sakai during exposure to acetic, lactic, and hydrochloric acid at pH 5.5. This is the first analysis of the pH-dependent transcriptomic response of stationary-phase E. coli. Thirty-four genes and three intergenic regions were upregulated by both strains during exposure to all acids. This universal acid response included genes involved in oxidative, envelope, and cold stress resistance and iron and manganese uptake, as well as 10 genes of unknown function. Acidulant- and strain-specific responses were also revealed. The acidulant-specific response reflects differences in the modes of microbial inactivation, even between weak organic acids. The two strains exhibited similar responses to lactic and hydrochloric acid, while the response to acetic acid was distinct. Acidulant-dependent differences between the strains involved induction of genes involved in the heat shock response, osmoregulation, inorganic ion and nucleotide transport and metabolism, translation, and energy production. E. coli O157:H7-specific acid-inducible genes were identified, suggesting that the enterohemorrhagic E. coli strain possesses additional molecular mechanisms contributing to acid resistance that are absent in K-12. While E. coli K-12 was most resistant to lactic and hydrochloric acid, O157:H7 may have a greater ability to survive in more complex acidic environments, such as those encountered in the host and during food processing.
Elbahesh, Husni; Schughart, Klaus
2016-05-19
Influenza A viruses (IAV) are zoonotic pathogens that pose a major threat to human and animal health. Influenza virus disease severity is influenced by viral virulence factors as well as individual differences in host response. We analyzed gene expression changes in the blood of infected mice using a previously defined set of signature genes that was derived from changes in the blood transcriptome of IAV-infected human volunteers. We found that the human signature was reproduced well in the founder strains of the Collaborative Cross (CC) mice, thus demonstrating the relevance and importance of mouse experimental model systems for studying human influenza disease.
Detailed transcriptome description of the neglected cestode Taenia multiceps.
Wu, Xuhang; Fu, Yan; Yang, Deying; Zhang, Runhui; Zheng, Wanpeng; Nie, Huaming; Xie, Yue; Yan, Ning; Hao, Guiying; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou
2012-01-01
The larval stage of Taenia multiceps, a global cestode, encysts in the central nervous system (CNS) of sheep and other livestock. This frequently leads to their death and huge socioeconomic losses, especially in developing countries. This parasite can also cause zoonotic infections in humans, but has been largely neglected due to a lack of diagnostic techniques and studies. Recent developments in next-generation sequencing provide an opportunity to explore the transcriptome of T. multiceps. We obtained a total of 31,282 unigenes (mean length 920 bp) using Illumina paired-end sequencing technology and a new Trinity de novo assembler without a referenced genome. Individual transcription molecules were determined by sequence-based annotations and/or domain-based annotations against public databases (Nr, UniprotKB/Swiss-Prot, COG, KEGG, UniProtKB/TrEMBL, InterPro and Pfam). We identified 26,110 (83.47%) unigenes and inferred 20,896 (66.8%) coding sequences (CDS). Further comparative transcripts analysis with other cestodes (Taenia pisiformis, Taenia solium, Echincoccus granulosus and Echincoccus multilocularis) and intestinal parasites (Trichinella spiralis, Ancylostoma caninum and Ascaris suum) showed that 5,100 common genes were shared among three Taenia tapeworms, 261 conserved genes were detected among five Taeniidae cestodes, and 109 common genes were found in four zoonotic intestinal parasites. Some of the common genes were genes required for parasite survival, involved in parasite-host interactions. In addition, we amplified two full-length CDS of unigenes from the common genes using RT-PCR. This study provides an extensive transcriptome of the adult stage of T. multiceps, and demonstrates that comparative transcriptomic investigations deserve to be further studied. This transcriptome dataset forms a substantial public information platform to achieve a fundamental understanding of the biology of T. multiceps, and helps in the identification of drug targets and parasite-host interaction studies.
Almelli, Talleh; Nuel, Grégory; Bischoff, Emmanuel; Aubouy, Agnès; Elati, Mohamed; Wang, Christian William; Dillies, Marie-Agnès; Coppée, Jean-Yves; Ayissi, Georges Nko; Basco, Leonardo Kishi; Rogier, Christophe; Ndam, Nicaise Tuikue; Deloron, Philippe; Tahar, Rachida
2014-01-01
The mechanisms underlying the heterogeneity of clinical malaria remain largely unknown. We hypothesized that differential gene expression contributes to phenotypic variation of parasites which results in a specific interaction with the host, leading to different clinical features of malaria. In this study, we analyzed the transcriptomes of isolates obtained from asymptomatic carriers and patients with uncomplicated or cerebral malaria. We also investigated the transcriptomes of 3D7 clone and 3D7-Lib that expresses severe malaria associated-variant surface antigen. Our findings revealed a specific up-regulation of genes involved in pathogenesis, adhesion to host cell, and erythrocyte aggregation in parasites from patients with cerebral malaria and 3D7-Lib, compared to parasites from asymptomatic carriers and 3D7, respectively. However, we did not find any significant difference between the transcriptomes of parasites from cerebral malaria and uncomplicated malaria, suggesting similar transcriptomic pattern in these two parasite populations. The difference between isolates from asymptomatic children and cerebral malaria concerned genes coding for exported proteins, Maurer's cleft proteins, transcriptional factor proteins, proteins implicated in protein transport, as well as Plasmodium conserved and hypothetical proteins. Interestingly, UPs A1, A2, A3 and UPs B1 of var genes were predominantly found in cerebral malaria-associated isolates and those containing architectural domains of DC4, DC5, DC13 and their neighboring rif genes in 3D7-lib. Therefore, more investigations are needed to analyze the effective role of these genes during malaria infection to provide with new knowledge on malaria pathology. In addition, concomitant regulation of genes within the chromosomal neighborhood suggests a common mechanism of gene regulation in P. falciparum. PMID:25479608
Boulain, Hélène; Legeai, Fabrice; Guy, Endrick; Morlière, Stéphanie; Douglas, Nadine E; Oh, Jonghee; Murugan, Marimuthu; Smith, Michael; Jaquiéry, Julie; Peccoud, Jean; White, Frank F; Carolan, James C; Simon, Jean-Christophe; Sugio, Akiko
2018-05-18
Effector proteins play crucial roles in plant-parasite interactions by suppressing plant defenses and hijacking plant physiological responses to facilitate parasite invasion and propagation. Although effector proteins have been characterized in many microbial plant pathogens, their nature and role in adaptation to host plants are largely unknown in insect herbivores. Aphids rely on salivary effector proteins injected into the host plants to promote phloem sap uptake. Therefore, gaining insight into the repertoire and evolution of aphid effectors is key to unveiling the mechanisms responsible for aphid virulence and host plant specialization. With this aim in mind, we assembled catalogues of putative effectors in the legume specialist aphid, Acyrthosiphon pisum, using transcriptomics and proteomics approaches. We identified 3603 candidate effector genes predicted to be expressed in A. pisum salivary glands (SGs), and 740 of which displayed up-regulated expression in SGs in comparison to the alimentary tract. A search for orthologs in 17 arthropod genomes revealed that SG-up-regulated effector candidates of A. pisum are enriched in aphid-specific genes and tend to evolve faster compared to the whole gene set. We also found that a large fraction of proteins detected in the A. pisum saliva belonged to three gene families, of which certain members show evidence consistent with positive selection. Overall, this comprehensive analysis suggests that the large repertoire of effector candidates in A. pisum constitutes a source of novelties promoting plant adaptation to legumes.
2013-01-01
Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported. PMID:24168212
Tang, Cheng; Lan, Daoliang; Zhang, Huanrong; Ma, Jing; Yue, Hua
2013-01-01
Duck is an economically important poultry and animal model for human viral hepatitis B. However, the molecular mechanisms underlying host-virus interaction remain unclear because of limited information on the duck genome. This study aims to characterize the duck normal liver transcriptome and to identify the differentially expressed transcripts at 24 h after duck hepatitis A virus genotype C (DHAV-C) infection using Illumina-Solexa sequencing. After removal of low-quality sequences and assembly, a total of 52,757 unigenes was obtained from the normal liver group. Further blast analysis showed that 18,918 unigenes successfully matched the known genes in the database. GO analysis revealed that 25,116 unigenes took part in 61 categories of biological processes, cellular components, and molecular functions. Among the 25 clusters of orthologous group categories (COG), the cluster for "General function prediction only" represented the largest group, followed by "Transcription" and "Replication, recombination, and repair." KEGG analysis showed that 17,628 unigenes were involved in 301 pathways. Through comparison of normal and infected transcriptome data, we identified 20 significantly differentially expressed unigenes, which were further confirmed by real-time polymerase chain reaction. Of the 20 unigenes, nine matched the known genes in the database, including three up-regulated genes (virus replicase polyprotein, LRRC3B, and PCK1) and six down-regulated genes (CRP, AICL-like 2, L1CAM, CYB26A1, CHAC1, and ADAM32). The remaining 11 novel unigenes that did not match any known genes in the database may provide a basis for the discovery of new transcripts associated with infection. This study provided a gene expression pattern for normal duck liver and for the previously unrecognized changes in gene transcription that are altered during DHAV-C infection. Our data revealed useful information for future studies on the duck genome and provided new insights into the molecular mechanism of host-DHAV-C interaction.
Ronza, Paolo; Robledo, Diego; Bermúdez, Roberto; Losada, Ana Paula; Pardo, Belén G; Sitjà-Bobadilla, Ariadna; Quiroga, María Isabel; Martínez, Paulino
2016-07-01
Enteromyxum scophthalmi, an intestinal myxozoan parasite, is the causative agent of a threatening disease for turbot (Scophthalmus maximus, L.) aquaculture. The colonisation of the digestive tract by this parasite leads to a cachectic syndrome associated with high morbidity and mortality rates. This myxosporidiosis has a long pre-patent period and the first detectable clinical and histopathological changes are subtle. The pathogenic mechanisms acting in the early stages of infection are still far from being fully understood. Further information on the host-parasite interaction is needed to assist in finding efficient preventive and therapeutic measures. Here, a RNA-seq-based transcriptome analysis of head kidney, spleen and pyloric caeca from experimentally-infected and control turbot was performed. Only infected fish with early signs of infection, determined by histopathology and immunohistochemical detection of E. scophthalmi, were selected. The RNA-seq analysis revealed, as expected, less intense transcriptomic changes than those previously found during later stages of the disease. Several genes involved in IFN-related pathways were up-regulated in the three organs, suggesting that the IFN-mediated immune response plays a main role in this phase of the disease. Interestingly, an opposite expression pattern had been found in a previous study on severely infected turbot. In addition, possible strategies for immune system evasion were suggested by the down-regulation of different genes encoding complement components and acute phase proteins. At the site of infection (pyloric caeca), modulation of genes related to different structural proteins was detected and the expression profile indicated the inhibition of cell proliferation and differentiation. These transcriptomic changes provide indications regarding the mechanisms of parasite attachment to and invasion of the host. The current results contribute to a better knowledge of the events that characterise the early stages of turbot enteromyxosis and provide valuable information to identify molecular markers for early detection and control of this important parasitosis. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Leite, Ricardo B; Milan, Massimo; Coppe, Alessandro; Bortoluzzi, Stefania; dos Anjos, António; Reinhardt, Richard; Saavedra, Carlos; Patarnello, Tomaso; Cancela, M Leonor; Bargelloni, Luca
2013-10-29
The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported.
Nally, Jarlath E; Grassmann, Andre A; Planchon, Sébastien; Sergeant, Kjell; Renaut, Jenny; Seshu, Janakiram; McBride, Alan J; Caimano, Melissa J
2017-01-01
Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC) peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE). Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed ( p < 0.05, fold change >1.25 or < -1.25) across all three conditions. Differentially expressed proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs) are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30 leptospires by 2-D immunoblotting confirmed that modification of proteins with trimethyllysine and acetyllysine occurs to a different degree in response to mammalian host signals encountered during persistent renal colonization. These results provide novel insights into differential protein and PTMs present in response to mammalian host signals which can be used to further define the unique equilibrium that exists between pathogenic leptospires and their reservoir host of infection.
Sychev, Zoi E.; Hu, Alex; Lagunoff, Michael
2017-01-01
Kaposi’s Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi’s Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells. PMID:28257516
USDA-ARS?s Scientific Manuscript database
Large animals (both livestock and wildlife) serve as important reservoirs of zoonotic pathogens, including Brucella, Salmonella, and E. coli, as well as useful models for the study of pathogenesis and/or spread of the bacteria in non-murine hosts. With the key function of lymph nodes in the host imm...
Sng, Natasha J.; Zupanska, Agata K.; Krishnamurthy, Aparna; Schultz, Eric R.; Ferl, Robert J.
2017-01-01
Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response than Col-0, suggesting that the in-space light environment affects physiological adaptation, which implies that manipulating the local habitat can also substantially impact the metabolic cost of spaceflight adaptation. PMID:28662188
Paul, Anna-Lisa; Sng, Natasha J; Zupanska, Agata K; Krishnamurthy, Aparna; Schultz, Eric R; Ferl, Robert J
2017-01-01
Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response than Col-0, suggesting that the in-space light environment affects physiological adaptation, which implies that manipulating the local habitat can also substantially impact the metabolic cost of spaceflight adaptation.
Hamilton, John P.; Vaillancourt, Brieanne; Buell, C. Robin; Day, Brad
2012-01-01
Pseudoperonospora cubensis, an oomycete, is the causal agent of cucurbit downy mildew, and is responsible for significant losses on cucurbit crops worldwide. While other oomycete plant pathogens have been extensively studied at the molecular level, Ps. cubensis and the molecular basis of its interaction with cucurbit hosts has not been well examined. Here, we present the first large-scale global gene expression analysis of Ps. cubensis infection of a susceptible Cucumis sativus cultivar, ‘Vlaspik’, and identification of genes with putative roles in infection, growth, and pathogenicity. Using high throughput whole transcriptome sequencing, we captured differential expression of 2383 Ps. cubensis genes in sporangia and at 1, 2, 3, 4, 6, and 8 days post-inoculation (dpi). Additionally, comparison of Ps. cubensis expression profiles with expression profiles from an infection time course of the oomycete pathogen Phytophthora infestans on Solanum tuberosum revealed similarities in expression patterns of 1,576–6,806 orthologous genes suggesting a substantial degree of overlap in molecular events in virulence between the biotrophic Ps. cubensis and the hemi-biotrophic P. infestans. Co-expression analyses identified distinct modules of Ps. cubensis genes that were representative of early, intermediate, and late infection stages. Collectively, these expression data have advanced our understanding of key molecular and genetic events in the virulence of Ps. cubensis and thus, provides a foundation for identifying mechanism(s) by which to engineer or effect resistance in the host. PMID:22545137
Moyo, Lindani; Ramesh, Shunmugiah V; Kappagantu, Madhu; Mitter, Neena; Sathuvalli, Vidyasagar; Pappu, Hanu R
2017-07-17
Potato virus Y (PVY) is one of the most economically important pathogen of potato that is present as biologically distinct strains. The virus-derived small interfering RNAs (vsiRNAs) from potato cv. Russet Burbank individually infected with PVY-N, PVY-NTN and PVY-O strains were recently characterized. Plant defense RNA-silencing mechanisms deployed against viruses produce vsiRNAs to degrade homologous viral transcripts. Based on sequence complementarity, the vsiRNAs can potentially degrade host RNA transcripts raising the prospect of vsiRNAs as pathogenicity determinants in virus-host interactions. This study investigated the global effects of PVY vsiRNAs on the host potato transcriptome. The strain-specific vsiRNAs of PVY, expressed in high copy number, were analyzed in silico for their proclivity to target potato coding and non-coding RNAs using psRobot and psRNATarget algorithms. Functional annotation of target coding transcripts was carried out to predict physiological effects of the vsiRNAs on the potato cv. Russet Burbank. The downregulation of selected target coding transcripts was further validated using qRT-PCR. The vsiRNAs derived from biologically distinct strains of PVY displayed diversity in terms of absolute number, copy number and hotspots for siRNAs on their respective genomes. The vsiRNAs populations were derived with a high frequency from 6 K1, P1 and Hc-Pro for PVY-N, P1, Hc-Pro and P3 for PVY-NTN, and P1, 3' UTR and NIa for PVY-O genomic regions. The number of vsiRNAs that displayed interaction with potato coding transcripts and number of putative coding target transcripts were comparable between PVY-N and PVY-O, and were relatively higher for PVY-NTN. The most abundant target non-coding RNA transcripts for the strain specific PVY-derived vsiRNAs were found to be MIR821, 28S rRNA,18S rRNA, snoR71, tRNA-Met and U5. Functional annotation and qRT-PCR validation suggested that the vsiRNAs target genes involved in plant hormone signaling, genetic information processing, plant-pathogen interactions, plant defense and stress response processes in potato. The findings suggested that the PVY-derived vsiRNAs could act as a pathogenicity determinant and as a counter-defense strategy to host RNA silencing in PVY-potato interactions. The broad range of host genes targeted by PVY vsiRNAs in infected potato suggests a diverse role for vsiRNAs that includes suppression of host stress responses and developmental processes. The interactome scenario is the first report on the interaction between one of the most important Potyvirus genome-derived siRNAs and the potato transcripts.
Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi
2015-08-01
Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.
Teng, Zi-Wen; Xiong, Shi-Jiao; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Stanley, David; Yan, Zhi-Chao; Ye, Gong-Yin; Fang, Qi
2017-01-01
Many species of endoparasitoid wasps provide biological control services in agroecosystems. Although there is a great deal of information on the ecology and physiology of host/parasitoid interactions, relatively little is known about the protein composition of venom and how specific venom proteins influence physiological systems within host insects. This is a crucial gap in our knowledge because venom proteins act in modulating host physiology in ways that favor parasitoid development. Here, we identified 37 possible venom proteins from the polydnavirus-carrying endoparasitoid Cotesia chilonis by combining transcriptomic and proteomic analyses. The most abundant proteins were hydrolases, such as proteases, peptidases, esterases, glycosyl hydrolase, and endonucleases. Some components are classical parasitoid venom proteins with known functions, including extracellular superoxide dismutase 3, serine protease inhibitor and calreticulin. The venom contains novel proteins, not recorded from any other parasitoid species, including tolloid-like proteins, chitooligosaccharidolytic β-N-acetylglucosaminidase, FK506-binding protein 14, corticotropin-releasing factor-binding protein and vascular endothelial growth factor receptor 2. These new data generate hypotheses and provide a platform for functional analysis of venom components. PMID:28417942
Yan, Zhichao; Fang, Qi; Wang, Lei; Liu, Jinding; Zhu, Yu; Wang, Fei; Li, Fei; Werren, John H.; Ye, Gongyin
2016-01-01
Parasitoid wasps are abundant and diverse hymenopteran insects that lay their eggs into the internal body (endoparasitoid) or on the external surface (ectoparasitoid) of their hosts. To make a more conducive environment for the wasps’ young, both ecto- and endoparasitoids inject venoms into the host to modulate host immunity, metabolism and development. Endoparasitoids have evolved from ectoparasitoids independently in different hymenopteran lineages. Pteromalus puparum, a pupal endoparasitoid of various butterflies, represents a relatively recent evolution of endoparasitism within pteromalids. Using a combination of transcriptomic and proteomic approaches, we have identified 70 putative venom proteins in P. puparum. Most of them show higher similarity to venom proteins from the related ectoparasitoid Nasonia vitripennis than from other more distantly related endoparasitoids. In addition, 13 venom proteins are similar to venoms of distantly related endoparasitoids but have no detectable venom matches in Nasonia. These venom proteins may have a role in adaptation to endoparasitism. Overall, these results lay the groundwork for more detailed studies of venom function and adaptation to the endoparasitic lifestyle. PMID:26803989
Gyetvai, Gabor; Sønderkær, Mads; Göbel, Ulrike; Basekow, Rico; Ballvora, Agim; Imhoff, Maren; Kersten, Birgit; Nielsen, Kåre-Lehman; Gebhardt, Christiane
2012-01-01
Late blight, caused by the oomycete Phytophthora infestans, is the most important disease of potato (Solanum tuberosum). Understanding the molecular basis of resistance and susceptibility to late blight is therefore highly relevant for developing resistant cultivars, either by marker-assissted selection or by transgenic approaches. Specific P. infestans races having the Avr1 effector gene trigger a hypersensitive resistance response in potato plants carrying the R1 resistance gene (incompatible interaction) and cause disease in plants lacking R1 (compatible interaction). The transcriptomes of the compatible and incompatible interaction were captured by DeepSAGE analysis of 44 biological samples comprising five genotypes, differing only by the presence or absence of the R1 transgene, three infection time points and three biological replicates. 30.859 unique 21 base pair sequence tags were obtained, one third of which did not match any known potato transcript sequence. Two third of the tags were expressed at low frequency (<10 tag counts/million). 20.470 unitags matched to approximately twelve thousand potato transcribed genes. Tag frequencies were compared between compatible and incompatible interactions over the infection time course and between compatible and incompatible genotypes. Transcriptional changes were more numerous in compatible than in incompatible interactions. In contrast to incompatible interactions, transcriptional changes in the compatible interaction were observed predominantly for multigene families encoding defense response genes and genes functional in photosynthesis and CO2 fixation. Numerous transcriptional differences were also observed between near isogenic genotypes prior to infection with P. infestans. Our DeepSAGE transcriptome analysis uncovered novel candidate genes for plant host pathogen interactions, examples of which are discussed with respect to possible function. PMID:22328937
Zhong, Shengping; Mao, Yong; Wang, Jun; Liu, Min; Zhang, Man; Su, Yongquan
2017-11-01
Kuruma shrimp (Marsupenaeus japonicus) is one of the most valuable crustacean species in capture fisheries and mariculture in the Indo-West Pacific. White spot syndrome virus (WSSV) is a highly virulent pathogen which has seriously threatened Kuruma shrimp aquaculture sector. However, little information is available in relation to underlying mechanisms of host-virus interaction in Kuruma shrimp. In this study, we performed a transcriptome analysis from the hepatopancreas of Kuruma shrimp challenged by WSSV, using Illumina-based RNA-Seq. A total of 39,084,942 pair end (PE) reads, including 19,566,190 reads from WSSV-infected group and 19,518,752 reads from non-infected (control) group, were obtained and assembled into 33,215 unigenes with an average length of 503.7 bp and N50 of 601 bp. Approximately 17,000 unigenes were predicted and classified based on homology search, gene ontology, clusters of orthologous groups of proteins, and biological pathway mapping. Differentially expressed genes (DEGs), including 2150 up-regulated and 1931 down-regulated, were found. Among those, 805 DEGs were identified and categorized into 14 groups based on their possible functions. Many genes associated with JAK-STAT signaling pathways, Integrin-mediated signal transduction, Ras signaling pathways, apoptosis and phagocytosis were positively modified after WSSV challenge. The proteolytic cascades including Complement-like activation and Hemolymph coagulations likely participated in antiviral immune response. The transcriptome data from hepatopancreas of Kuruma shrimp under WSSV challenge provided comprehensive information for identifying novel immune related genes in this valuable crustacean species despite the absence of the genome database of crustaceans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Amin, Shivam V; Roberts, Justin T; Patterson, Dillon G; Coley, Alexander B; Allred, Jonathan A; Denner, Jason M; Johnson, Justin P; Mullen, Genevieve E; O'Neal, Trenton K; Smith, Jason T; Cardin, Sara E; Carr, Hank T; Carr, Stacie L; Cowart, Holly E; DaCosta, David H; Herring, Brendon R; King, Valeria M; Polska, Caroline J; Ward, Erin E; Wise, Alice A; McAllister, Kathleen N; Chevalier, David; Spector, Michael P; Borchert, Glen M
2016-01-01
Small RNAs (sRNAs) are short (∼50-200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from "gene-empty" regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands.
Amin, Shivam V.; Roberts, Justin T.; Patterson, Dillon G.; Coley, Alexander B.; Allred, Jonathan A.; Denner, Jason M.; Johnson, Justin P.; Mullen, Genevieve E.; O'Neal, Trenton K.; Smith, Jason T.; Cardin, Sara E.; Carr, Hank T.; Carr, Stacie L.; Cowart, Holly E.; DaCosta, David H.; Herring, Brendon R.; King, Valeria M.; Polska, Caroline J.; Ward, Erin E.; Wise, Alice A.; McAllister, Kathleen N.; Chevalier, David; Spector, Michael P.; Borchert, Glen M.
2016-01-01
ABSTRACT Small RNAs (sRNAs) are short (∼50–200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from “gene-empty” regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands. PMID:26853797
Coral thermal tolerance: tuning gene expression to resist thermal stress.
Bellantuono, Anthony J; Granados-Cifuentes, Camila; Miller, David J; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio
2012-01-01
The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios.
Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress
Bellantuono, Anthony J.; Granados-Cifuentes, Camila; Miller, David J.; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio
2012-01-01
The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios. PMID:23226355
Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B
2016-11-03
Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity protein features facilitated the identification of differentially expressed pathogenicity associated genes and novel effector candidates expressed during infection of a resistant or susceptible M. truncatula host. The knowledge from this first in depth in planta transcriptome sequencing of any F. oxysporum ff. spp. pathogenic on legumes will facilitate the dissection of Fusarium wilt pathogenicity mechanisms on many important legume crops.
Santos, Leonardo N; Silva, Eduardo S; Santos, André S; De Sá, Pablo H; Ramos, Rommel T; Silva, Artur; Cooper, Philip J; Barreto, Maurício L; Loureiro, Sebastião; Pinheiro, Carina S; Alcantara-Neves, Neuza M; Pacheco, Luis G C
2016-07-01
Infection with helminthic parasites, including the soil-transmitted helminth Trichuris trichiura (human whipworm), has been shown to modulate host immune responses and, consequently, to have an impact on the development and manifestation of chronic human inflammatory diseases. De novo derivation of helminth proteomes from sequencing of transcriptomes will provide valuable data to aid identification of parasite proteins that could be evaluated as potential immunotherapeutic molecules in near future. Herein, we characterized the transcriptome of the adult stage of the human whipworm T. trichiura, using next-generation sequencing technology and a de novo assembly strategy. Nearly 17.6 million high-quality clean reads were assembled into 6414 contiguous sequences, with an N50 of 1606bp. In total, 5673 protein-encoding sequences were confidentially identified in the T. trichiura adult worm transcriptome; of these, 1013 sequences represent potential newly discovered proteins for the species, most of which presenting orthologs already annotated in the related species T. suis. A number of transcripts representing probable novel non-coding transcripts for the species T. trichiura were also identified. Among the most abundant transcripts, we found sequences that code for proteins involved in lipid transport, such as vitellogenins, and several chitin-binding proteins. Through a cross-species expression analysis of gene orthologs shared by T. trichiura and the closely related parasites T. suis and T. muris it was possible to find twenty-six protein-encoding genes that are consistently highly expressed in the adult stages of the three helminth species. Additionally, twenty transcripts could be identified that code for proteins previously detected by mass spectrometry analysis of protein fractions of the whipworm somatic extract that present immunomodulatory activities. Five of these transcripts were amongst the most highly expressed protein-encoding sequences in the T. trichiura adult worm. Besides, orthologs of proteins demonstrated to have potent immunomodulatory properties in related parasitic helminths were also predicted from the T. trichiura de novo assembled transcriptome. Copyright © 2016. Published by Elsevier B.V.
Verrier, Eloi R; Genet, Carine; Laloë, Denis; Jaffrezic, Florence; Rau, Andrea; Esquerre, Diane; Dechamp, Nicolas; Ciobotaru, Céline; Hervet, Caroline; Krieg, Francine; Jouneau, Luc; Klopp, Christophe; Quillet, Edwige; Boudinot, Pierre
2018-06-19
The viral hemorrhagic septicemia virus (VHSV) is a major threat for salmonid farming and for wild fish populations worldwide. Previous studies have highlighted the importance of innate factors regulated by a major quantitative trait locus (QTL) for the natural resistance to waterborne VHSV infection in rainbow trout. The aim of this study was to analyze the early transcriptomic response to VHSV inoculation in cell lines derived from previously described resistant and susceptible homozygous isogenic lines of rainbow trout to obtain insights into the molecular mechanisms responsible for the resistance to the viral infection. We first confirmed the presence of the major QTL in a backcross involving a highly resistant fish isogenic line (B57) and a highly susceptible one (A22), and were able to define the confidence interval of the QTL and to identify its precise position. We extended the definition of the QTL since it controls not only resistance to waterborne infection but also the kinetics of mortality after intra-peritoneal injection. Deep sequencing of the transcriptome of B57 and A22 derived cell lines exposed to inactivated VHSV showed a stronger response to virus inoculation in the resistant background. In line with our previous observations, an early and strong induction of interferon and interferon-stimulated genes was correlated with the resistance to VHSV, highlighting the major role of innate immune factors in natural trout resistance to the virus. Interestingly, major factors of the antiviral innate immunity were much more expressed in naive B57 cells compared to naive A22 cells, which likely contributes to the ability of B57 to mount a fast antiviral response after viral infection. These observations were further extended by the identification of several innate immune-related genes localized close to the QTL area on the rainbow trout genome. Taken together, our results improve our knowledge in virus-host interactions in vertebrates and provide novel insights in the molecular mechanisms explaining the resistance to VHSV in rainbow trout. Our data also provide a collection of potential markers for resistance and susceptibility of rainbow trout to VHSV infection.
The innate immune response to RSV: Advances in our understanding of critical viral and host factors.
Sun, Yan; López, Carolina B
2017-01-11
Respiratory syncytial virus (RSV) causes mild to severe respiratory illness in humans and is a major cause of hospitalizations of infants and the elderly. Both the innate and the adaptive immune responses contribute to the control of RSV infection, but despite successful viral clearance, protective immunity against RSV re-infection is usually suboptimal and infections recur. Poor understanding of the mechanisms limiting the induction of long-lasting immunity has delayed the development of an effective vaccine. The innate immune response plays a critical role in driving the development of adaptive immunity and is thus a crucial determinant of the infection outcome. Advances in recent years have improved our understanding of cellular and viral factors that influence the onset and quality of the innate immune response to RSV. These advances include the identification of a complex system of cellular sensors that mediate RSV detection and stimulate transcriptome changes that lead to virus control and the discovery that cell stress and apoptosis participate in the control of RSV infection. In addition, it was recently demonstrated that defective viral genomes (DVGs) generated during RSV replication are the primary inducers of the innate immune response. Newly discovered host pathways involved in the innate response to RSV, together with the potential generation of DVG-derived oligonucleotides, present various novel opportunities for the design of vaccine adjuvants able to induce a protective response against RSV and similar viruses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Puławska, Joanna; Kałużna, Monika; Warabieda, Wojciech; Mikiciński, Artur
2017-11-13
Erwinia amylovora is generally considered to be a homogeneous species in terms of phenotypic and genetic features. However, strains show variation in their virulence, particularly on hosts with different susceptibility to fire blight. We applied the RNA-seq technique to elucidate transcriptome-level changes of the lowly virulent E. amylovora 650 strain during infection of shoots of susceptible (Idared) and resistant (Free Redstar) apple cultivars. The highest number of differentially expressed E. amylovora genes between the two apple genotypes was observed at 24 h after inoculation. Six days after inoculation, only a few bacterial genes were differentially expressed in the susceptible and resistant apple cultivars. The analysis of differentially expressed gene functions showed that generally, higher expression of genes related to stress response and defence against toxic compounds was observed in Free Redstar. Also in this cultivar, higher expression of flagellar genes (FlaI), which are recognized as PAMP (pathogen-associated molecular pattern) by the innate immune systems of plants, was noted. Additionally, several genes that have not yet been proven to play a role in the pathogenic abilities of E. amylovora were found to be differentially expressed in the two apple cultivars. This RNA-seq analysis generated a novel dataset describing the transcriptional response of the lowly virulent strain of E. amylovora in susceptible and resistant apple cultivar. Most genes were regulated in the same way in both apple cultivars, but there were also some cultivar-specific responses suggesting that the environment in Free Redstar is more stressful for bacteria what can be the reason of their inability to infect of this cultivar. Among genes with the highest fold change in expression between experimental combinations or with the highest transcript abundance, there are many genes without ascribed functions, which have never been tested for their role in pathogenicity. Overall, this study provides the first transcriptional profile by RNA-seq of E. amylovora during infection of a host plant and insights into the transcriptional response of this pathogen in the environments of susceptible and resistant apple plants.
Miozzi, Laura; Napoli, Chiara; Sardo, Luca; Accotto, Gian Paolo
2014-01-01
Tomato yellow leaf curl Sardinia virus (TYLCSV), a DNA virus belonging to the genus Begomovirus, causes severe losses in tomato crops. It infects only a limited number of cells in the vascular tissues, making difficult to detect changes in host gene expression linked to its presence. Here we present the first microarray study of transcriptional changes induced by the phloem-limited geminivirus TYLCSV infecting tomato, its natural host. The analysis was performed on the midrib of mature leaves, a material naturally enriched in vascular tissues. A total of 2206 genes were up-regulated and 1398 were down-regulated in infected plants, with an overrepresentation of genes involved in hormone metabolism and responses, nucleic acid metabolism, regulation of transcription, ubiquitin-proteasome pathway and autophagy among those up-regulated, and in primary and secondary metabolism, phosphorylation, transcription and methylation-dependent chromatin silencing among those down-regulated. Our analysis showed a series of responses, such as the induction of GA- and ABA-responsive genes, the activation of the autophagic process and the fine tuning of the plant immune system, observed only in TYLCSV-tomato compatible interaction so far. On the other hand, comparisons with transcriptional changes observed in other geminivirus-plant interactions highlighted common host responses consisting in the deregulation of biotic stress responsive genes, key enzymes in the ethylene biosynthesis and methylation cycle, components of the ubiquitin proteasome system and DNA polymerases II. The involvement of conserved miRNAs and of solanaceous- and tomato-specific miRNAs in geminivirus infection, investigated by integrating differential gene expression data with miRNA targeting data, is discussed.
van Veen, Hans; Vashisht, Divya; Akman, Melis; Girke, Thomas; Mustroph, Angelika; Reinen, Emilie; Kooiker, Maarten; van Tienderen, Peter; Voesenek, Laurentius A.C.J.
2016-01-01
Climate change has increased the frequency and severity of flooding events, with significant negative impact on agricultural productivity. These events often submerge plant aerial organs and roots, limiting growth and survival due to a severe reduction in light reactions and gas exchange necessary for photosynthesis and respiration, respectively. To distinguish molecular responses to the compound stress imposed by submergence, we investigated transcriptomic adjustments to darkness in air and under submerged conditions using eight Arabidopsis (Arabidopsis thaliana) accessions differing significantly in sensitivity to submergence. Evaluation of root and rosette transcriptomes revealed an early transcriptional and posttranscriptional response signature that was conserved primarily across genotypes, although flooding susceptibility-associated and genotype-specific responses also were uncovered. Posttranscriptional regulation encompassed darkness- and submergence-induced alternative splicing of transcripts from pathways involved in the alternative mobilization of energy reserves. The organ-specific transcriptome adjustments reflected the distinct physiological status of roots and shoots. Root-specific transcriptome changes included marked up-regulation of chloroplast-encoded photosynthesis and redox-related genes, whereas those of the rosette were related to the regulation of development and growth processes. We identified a novel set of tolerance genes, recognized mainly by quantitative differences. These included a transcriptome signature of more pronounced gluconeogenesis in tolerant accessions, a response that included stress-induced alternative splicing. This study provides organ-specific molecular resolution of genetic variation in submergence responses involving interactions between darkness and low-oxygen constraints of flooding stress and demonstrates that early transcriptome plasticity, including alternative splicing, is associated with the ability to cope with a compound environmental stress. PMID:27208254
Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates.
Burki, Fabien; Imanian, Behzad; Hehenberger, Elisabeth; Hirakawa, Yoshihisa; Maruyama, Shinichiro; Keeling, Patrick J
2014-02-01
Plastid establishment involves the transfer of endosymbiotic genes to the host nucleus, a process known as endosymbiotic gene transfer (EGT). Large amounts of EGT have been shown in several photosynthetic lineages but also in present-day plastid-lacking organisms, supporting the notion that endosymbiotic genes leave a substantial genetic footprint in the host nucleus. Yet the extent of this genetic relocation remains debated, largely because the long period that has passed since most plastids originated has erased many of the clues to how this process unfolded. Among the dinoflagellates, however, the ancestral peridinin-containing plastid has been replaced by tertiary plastids on several more recent occasions, giving us a less ancient window to examine plastid origins. In this study, we evaluated the endosymbiotic contribution to the host genome in two dinoflagellate lineages with tertiary plastids. We generated the first nuclear transcriptome data sets for the "dinotoms," which harbor diatom-derived plastids, and analyzed these data in combination with the available transcriptomes for kareniaceans, which harbor haptophyte-derived plastids. We found low level of detectable EGT in both dinoflagellate lineages, with only 9 genes and 90 genes of possible tertiary endosymbiotic origin in dinotoms and kareniaceans, respectively, suggesting that tertiary endosymbioses did not heavily impact the host dinoflagellate genomes.
Reid, David W; Campos, Rafael K; Child, Jessica R; Zheng, Tianli; Chan, Kitti Wing Ki; Bradrick, Shelton S; Vasudevan, Subhash G; Garcia-Blanco, Mariano A; Nicchitta, Christopher V
2018-04-01
A primary question in dengue virus (DENV) biology is the molecular strategy for recruitment of host cell protein synthesis machinery. Here, we combined cell fractionation, ribosome profiling, and transcriptome sequencing (RNA-seq) to investigate the subcellular organization of viral genome translation and replication as well as host cell translation and its response to DENV infection. We report that throughout the viral life cycle, DENV plus- and minus-strand RNAs were highly partitioned to the endoplasmic reticulum (ER), identifying the ER as the primary site of DENV translation. DENV infection was accompanied by an ER compartment-specific remodeling of translation, where ER translation capacity was subverted from host transcripts to DENV plus-strand RNA, particularly at late stages of infection. Remarkably, translation levels and patterns in the cytosol compartment were only modestly affected throughout the experimental time course of infection. Comparisons of ribosome footprinting densities of the DENV plus-strand RNA and host mRNAs indicated that DENV plus-strand RNA was only sparsely loaded with ribosomes. Combined, these observations suggest a mechanism where ER-localized translation and translational control mechanisms, likely cis encoded, are used to repurpose the ER for DENV virion production. Consistent with this view, we found ER-linked cellular stress response pathways commonly associated with viral infection, namely, the interferon response and unfolded protein response, to be only modestly activated during DENV infection. These data support a model where DENV reprograms the ER protein synthesis and processing environment to promote viral survival and replication while minimizing the activation of antiviral and proteostatic stress response pathways. IMPORTANCE DENV, a prominent human health threat with no broadly effective or specific treatment, depends on host cell translation machinery for viral replication, immune evasion, and virion biogenesis. The molecular mechanism by which DENV commandeers the host cell protein synthesis machinery and the subcellular organization of DENV replication and viral protein synthesis is poorly understood. Here, we report that DENV has an almost exclusively ER-localized life cycle, with viral replication and translation largely restricted to the ER. Surprisingly, DENV infection largely affects only ER-associated translation, with relatively modest effects on host cell translation in the cytosol. DENV RNA translation is very inefficient, likely representing a strategy to minimize disruption of ER proteostasis. Overall these findings demonstrate that DENV has evolved an ER-compartmentalized life cycle; thus, targeting the molecular signatures and regulation of the DENV-ER interaction landscape may reveal strategies for therapeutic intervention. Copyright © 2018 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
House, Samantha
2014-09-01
This summer I worked on projects that involved RNA sequencing of pathogens after an infection of host cells. The goal of these projects was to continue developing pathogen enrichment strategies for transcriptomic analysis, and also to perform hostpathogen interaction studies.
Lee, Chil-Woo; Efetova, Marina; Engelmann, Julia C; Kramell, Robert; Wasternack, Claus; Ludwig-Müller, Jutta; Hedrich, Rainer; Deeken, Rosalia
2009-01-01
Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana transcriptome. Our data indicate that host responses were much stronger toward the oncogenic strain C58 than to the disarmed strain GV3101 and that auxin acts as a key modulator of the Arabidopsis–Agrobacterium interaction. At initiation of infection, elevated levels of IAA and ET were associated with the induction of host genes involved in IAA, but not ET signaling. After T-DNA integration, SA as well as IAA and ET accumulated, but JA did not. This did not correlate with SA-controlled pathogenesis-related gene expression in the host, although high SA levels in mutant plants prevented tumor development, while low levels promoted it. Our data are consistent with a scenario in which ET and later on SA control virulence of agrobacteria, whereas ET and auxin stimulate neovascularization during tumor formation. We suggest that crosstalk among IAA, ET, and SA balances pathogen defense launched by the host and tumor growth initiated by agrobacteria. PMID:19794116
Cross, Karissa L.; Chirania, Payal; Xiong, Weili; Elkins, James G.; Giannone, Richard J.; Griffen, Ann L.; Hettich, Robert L.; Joshi, Snehal S.; Mokrzan, Elaine M.; Martin, Roman K.; Leys, Eugene J.
2018-01-01
ABSTRACT The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis, the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis, a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease. PMID:29535201
Blood meal induced regulation of the chemosensory gene repertoire in the southern house mosquito.
Taparia, Tanvi; Ignell, Rickard; Hill, Sharon Rose
2017-05-19
The southern house mosquito, Culex quinquefasciatus, is one of the most prevalent vectors of lymphatic filariasis and flavivirus-induced encephalitis. Its vectorial capacity is directly affected by its reproductive feeding behaviors, such as host seeking, blood feeding, resting, and egg laying. In mosquitoes, these gonotrophic behaviors are odor-mediated and regulated following blood feeding. Immediately after a blood meal, female mosquitoes show reduced olfactory responsiveness and flight activity, as they enter a resting state. Insights into antennal chemosensory gene regulation at this time period can provide a foundation to identify targets involved in the state switch between host seeking and resting. This study used quantitative gene expression analyses to explore blood meal induced regulation of chemosensory gene families in the antennae of 6 days post-emergence C. quinquefasciatus females. Improved annotations for multiple chemosensory gene families, and a quantitative differential gene expression analysis between host seeking and 24 h post- blood fed females of the same age, allowed for the detection of transcripts that potentially play a role in the switch from host seeking to resting, in C. quinquefasciatus. The expression profiles of chemosensory genes varied significantly between the two treatments. Annotations for chemosensory gene repertoires in C. quinquefasciatus have been manually curated and corrected for 3' exon choice and transcript length, through sequence and transcriptome analyses. The gene expression analyses identified various molecular components of the peripheral olfactory system in C. quinquefasciatus, including odorant receptors, ionotropic receptors, odorant binding proteins and chemosensory proteins, that are regulated in response to blood feeding, and could be critical for the behavioral switch from host seeking to resting. Functional characterization of these proteins in the future can identify targets essential for the females' gonotrophic behaviors, and can be used to design novel vector control strategies.
Ishida, Juliane K; Wakatake, Takanori; Yoshida, Satoko; Takebayashi, Yumiko; Kasahara, Hiroyuki; Wafula, Eric; dePamphilis, Claude W; Namba, Shigetou; Shirasu, Ken
2016-08-01
Parasitic plants in the Orobanchaceae cause serious agricultural problems worldwide. Parasitic plants develop a multicellular infectious organ called a haustorium after recognition of host-released signals. To understand the molecular events associated with host signal perception and haustorium development, we identified differentially regulated genes expressed during early haustorium development in the facultative parasite Phtheirospermum japonicum using a de novo assembled transcriptome and a customized microarray. Among the genes that were upregulated during early haustorium development, we identified YUC3, which encodes a functional YUCCA (YUC) flavin monooxygenase involved in auxin biosynthesis. YUC3 was specifically expressed in the epidermal cells around the host contact site at an early time point in haustorium formation. The spatio-temporal expression patterns of YUC3 coincided with those of the auxin response marker DR5, suggesting generation of auxin response maxima at the haustorium apex. Roots transformed with YUC3 knockdown constructs formed haustoria less frequently than nontransgenic roots. Moreover, ectopic expression of YUC3 at the root epidermal cells induced the formation of haustorium-like structures in transgenic P. japonicum roots. Our results suggest that expression of the auxin biosynthesis gene YUC3 at the epidermal cells near the contact site plays a pivotal role in haustorium formation in the root parasitic plant P. japonicum. © 2016 American Society of Plant Biologists. All rights reserved.
Jaing, Crystal; Rowland, Raymond R. R.; Allen, Jonathan E.; ...
2017-08-31
African swine fever virus (ASFV) is a macrophage-tropic virus responsible for ASF, a transboundary disease that threatens swine production world-wide. Since there are no vaccines available to control ASF after an outbreak, obtaining an understanding of the virus-host interaction is important for developing new intervention strategies. In this study, a whole transcriptomic RNA-Seq method was used to characterize differentially expressed genes in pigs infected with a low pathogenic ASFV isolate, OUR T88/3 (OURT), or the highly pathogenic Georgia 2007/1 (GRG). After infection, pigs infected with OURT showed no or few clinical signs; whereas, GRG produced clinical signs consistent with acutemore » ASF. RNA-Seq detected the expression of ASFV genes from the whole blood of the GRG, but not the OURT pigs, consistent with the pathotypes of these strains and the replication of GRG in circulating monocytes. Even though GRG and OURT possess different pathogenic properties, there was significant overlap in the most upregulated host genes. A small number of differentially expressed microRNAs were also detected in GRG and OURT pigs. These data confirm previous studies describing the response of macrophages and lymphocytes to ASFV infection, as well as reveal unique gene pathways upregulated in response to infection with GRG.« less
New Approaches to Sepsis: Molecular Diagnostics and Biomarkers
Bauer, Michael; Riedemann, Niels C.; Hartog, Christiane S.
2012-01-01
Summary: Sepsis is among the most common causes of death in hospitals. It arises from the host response to infection. Currently, diagnosis relies on nonspecific physiological criteria and culture-based pathogen detection. This results in diagnostic uncertainty, therapeutic delays, the mis- and overuse of antibiotics, and the failure to identify patients who might benefit from immunomodulatory therapies. There is a need for new sepsis biomarkers that can aid in therapeutic decision making and add information about screening, diagnosis, risk stratification, and monitoring of the response to therapy. The host response involves hundreds of mediators and single molecules, many of which have been proposed as biomarkers. It is, however, unlikely that one single biomarker is able to satisfy all the needs and expectations for sepsis research and management. Among biomarkers that are measurable by assays approved for clinical use, procalcitonin (PCT) has shown some usefulness as an infection marker and for antibiotic stewardship. Other possible new approaches consist of molecular strategies to improve pathogen detection and molecular diagnostics and prognostics based on transcriptomic, proteomic, or metabolic profiling. Novel approaches to sepsis promise to transform sepsis from a physiologic syndrome into a group of distinct biochemical disorders and help in the development of better diagnostic tools and effective adjunctive sepsis therapies. PMID:23034322
Singh, Kunal; Nizam, Shadab; Sinha, Manisha; Verma, Praveen K.
2012-01-01
Localized cell death, known as the hypersensitive response (HR), is an important defense mechanism for neutralizing phytopathogens. The hallmark of the HR is an oxidative burst produced by the host plant. We aimed to identify genes of the necrotrophic chickpea blight fungus Ascochyta rabiei that are involved in counteracting oxidative stress. A subtractive cDNA library was constructed after menadione treatment, which resulted in the isolation of 128 unigenes. A reverse northern blot was used to compare transcript profiles after H2O2, menadione and sodium nitroprusside treatments. A total of 70 unigenes were found to be upregulated by more than two-fold following menadione treatment at different time intervals. A large number of genes not previously associated with oxidative stress were identified, along with many stress-responsive genes. Differential expression patterns of several genes were validated by quantitative real-time PCR (qRT-PCR) and northern blotting. In planta qRT-PCR of several selected genes also showed differential expression patterns during infection and disease progression. These data shed light on the molecular responses of the phytopathogen A. rabiei to overcome oxidative and nitrosative stresses and advance the understanding of necrotrophic fungal pathogen survival mechanisms. PMID:22427966
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaing, Crystal; Rowland, Raymond R. R.; Allen, Jonathan E.
African swine fever virus (ASFV) is a macrophage-tropic virus responsible for ASF, a transboundary disease that threatens swine production world-wide. Since there are no vaccines available to control ASF after an outbreak, obtaining an understanding of the virus-host interaction is important for developing new intervention strategies. In this study, a whole transcriptomic RNA-Seq method was used to characterize differentially expressed genes in pigs infected with a low pathogenic ASFV isolate, OUR T88/3 (OURT), or the highly pathogenic Georgia 2007/1 (GRG). After infection, pigs infected with OURT showed no or few clinical signs; whereas, GRG produced clinical signs consistent with acutemore » ASF. RNA-Seq detected the expression of ASFV genes from the whole blood of the GRG, but not the OURT pigs, consistent with the pathotypes of these strains and the replication of GRG in circulating monocytes. Even though GRG and OURT possess different pathogenic properties, there was significant overlap in the most upregulated host genes. A small number of differentially expressed microRNAs were also detected in GRG and OURT pigs. These data confirm previous studies describing the response of macrophages and lymphocytes to ASFV infection, as well as reveal unique gene pathways upregulated in response to infection with GRG.« less
Liu, Yan-Xia; Li, Fen-Xiang; Liu, Zhuan-Zhuan; Jia, Zhi-Rong; Zhou, Yan-He; Zhang, Hao; Yan, Hui; Zhou, Xian-Qiang; Chen, Xiao-Guang
2016-06-01
Mosquito microRNAs (miRNAs) are involved in host-virus interaction, and have been reported to be altered by dengue virus (DENV) infection in Aedes albopictus (Diptera: Culicidae). However, little is known about the molecular mechanisms of Aedes albopictus midgut-the first organ to interact with DENV-involved in its resistance to DENV. Here we used high-throughput sequencing to characterize miRNA and messenger RNA (mRNA) expression patterns in Aedes albopictus midgut in response to dengue virus serotype 2. A total of three miRNAs and 777 mRNAs were identified to be differentially expressed upon DENV infection. For the mRNAs, we identified 198 immune-related genes and 31 of them were differentially expressed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses also showed that the differentially expressed immune-related genes were involved in immune response. Then the differential expression patterns of six immune-related genes and three miRNAs were confirmed by real-time reverse transcription polymerase chain reaction. Furthermore, seven known miRNA-mRNA interaction pairs were identified by aligning our two datasets. These analyses of miRNA and mRNA transcriptomes provide valuable information for uncovering the DENV response genes and provide a basis for future study of the resistance mechanisms in Aedes albopictus midgut. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Transcriptional Profiling of the Immune Response to Marburg Virus Infection.
Connor, John H; Yen, Judy; Caballero, Ignacio S; Garamszegi, Sara; Malhotra, Shikha; Lin, Kenny; Hensley, Lisa; Goff, Arthur J
2015-10-01
Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the immune cells circulating in the blood of infected primates respond following exposure to Marburg virus. Our results show that there are three discernible stages of response to infection that correlate with presymptomatic, early, and late symptomatic stages of infection, a response format similar to that seen following challenge with other hemorrhagic fever viruses. In contrast to the ability of the virus to block innate immune signaling in vitro, the earliest and most sustained response is an interferon-like response. Our analysis also identifies a number of cytokines that are transcriptionally upregulated during late stages of infection and suggest that there is a Th2-skewed response to infection. When correlated with companion data describing the animal model from which our samples were collected, our results suggest that the innate immune response may contribute to overall pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Biologic Phenotyping of the Human Small Airway Epithelial Response to Cigarette Smoking
Tilley, Ann E.; O'Connor, Timothy P.; Hackett, Neil R.; Strulovici-Barel, Yael; Salit, Jacqueline; Amoroso, Nancy; Zhou, Xi Kathy; Raman, Tina; Omberg, Larsson; Clark, Andrew; Mezey, Jason; Crystal, Ronald G.
2011-01-01
Background The first changes associated with smoking are in the small airway epithelium (SAE). Given that smoking alters SAE gene expression, but only a fraction of smokers develop chronic obstructive pulmonary disease (COPD), we hypothesized that assessment of SAE genome-wide gene expression would permit biologic phenotyping of the smoking response, and that a subset of healthy smokers would have a “COPD-like” SAE transcriptome. Methodology/Principal Findings SAE (10th–12th generation) was obtained via bronchoscopy of healthy nonsmokers, healthy smokers and COPD smokers and microarray analysis was used to identify differentially expressed genes. Individual responsiveness to smoking was quantified with an index representing the % of smoking-responsive genes abnormally expressed (ISAE), with healthy smokers grouped into “high” and “low” responders based on the proportion of smoking-responsive genes up- or down-regulated in each smoker. Smokers demonstrated significant variability in SAE transcriptome with ISAE ranging from 2.9 to 51.5%. While the SAE transcriptome of “low” responder healthy smokers differed from both “high” responders and smokers with COPD, the transcriptome of the “high” responder healthy smokers was indistinguishable from COPD smokers. Conclusion/Significance The SAE transcriptome can be used to classify clinically healthy smokers into subgroups with lesser and greater responses to cigarette smoking, even though these subgroups are indistinguishable by clinical criteria. This identifies a group of smokers with a “COPD-like” SAE transcriptome. PMID:21829517
Perlin, Michael H; Amselem, Joelle; Fontanillas, Eric; Toh, Su San; Chen, Zehua; Goldberg, Jonathan; Duplessis, Sebastien; Henrissat, Bernard; Young, Sarah; Zeng, Qiandong; Aguileta, Gabriela; Petit, Elsa; Badouin, Helene; Andrews, Jared; Razeeq, Dominique; Gabaldón, Toni; Quesneville, Hadi; Giraud, Tatiana; Hood, Michael E; Schultz, David J; Cuomo, Christina A
2015-06-16
The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development. We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14% of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions. The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation.
Yadav, Mukesh K.; Chae, Sung-Won; Go, Yoon Young; Im, Gi Jung; Song, Jae-Jun
2017-01-01
Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are known to cause biofilm-related infections. MRSA and PA have been frequently isolated from chronically infected wounds, cystic fibrosis, chronic suppurative otitis media (CSOM), and from indwelling medical devices, and these bacteria co-exist; however, their interaction with each-other or with the host is not well known. In this study, we investigated MRSA and PA multi-species biofilm communities in vitro and their interaction with the host during in vivo colonization using an OM rat-model. In-vitro biofilm formation and in-vivo colonization were studied using CV-microtiter plate assay and OM rat-model respectively. The biofilms were viewed under scanning electron microscope and bacteria were enumerated using cfu counts. The differential gene expressions of rat mucosa colonized with single or multi-species of MRSA or PA were studied using RNA-sequencing of total transcriptome. In multi-species in-vitro biofilms PA partially inhibited SA growth. However, no significant inhibition of MRSA was detected during in-vivo colonization of multi-species in rat bullae. A total of 1,797 genes were significantly (p < 0.05) differentially expressed in MRSA or PA or MRSA + PA colonized rat middle ear mucosa with respect to the control. The poly-microbial colonization of MRSA and PA induced the differential expression of a significant number of genes that are involved in immune response, inflammation, signaling, development, and defense; these were not expressed with single species colonization by either MRSA or PA. Genes involved in defense, immune response, inflammatory response, and developmental process were exclusively up-regulated, and genes that are involved in nervous system signaling, development and transmission, regulation of cell growth and development, anatomical and system development, and cell differentiation were down-regulated after multi-species inoculation. These results indicate that poly-microbial colonization induces a host response that is different from that induced by single species infection. PMID:28459043
Lai, Yiling; Liu, Keke; Zhang, Xinyu; Zhang, Xiaoling; Li, Kuan; Wang, Niuniu; Shu, Chi; Wu, Yunpeng; Wang, Chengshu; Bushley, Kathryn E.; Xiang, Meichun; Liu, Xingzhong
2014-01-01
Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism. PMID:25359922
RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks
Perner, Jan; Provazník, Jan; Schrenková, Jana; Urbanová, Veronika; Ribeiro, José M. C.; Kopáček, Petr
2016-01-01
Adult females of the genus Ixodes imbibe blood meals exceeding about 100 times their own weight within 7‒9 days. During this period, ticks internalise components of host blood by endocytic digest cells that line the tick midgut epithelium. Using RNA-seq, we aimed to characterise the midgut transcriptome composition in adult Ixodes ricinus females during early and late phase of engorgement. To address specific adaptations to the haemoglobin-rich diet, we compared the midgut transcriptomes of genetically homogenous female siblings fed either bovine blood or haemoglobin-depleted serum. We noted that tick gut transcriptomes are subject to substantial temporal-dependent expression changes between day 3 and day 8 of feeding. In contrast, the number of transcripts significantly affected by the presence or absence of host red blood cells was low. Transcripts relevant to the processes associated with blood-meal digestion were analysed and involvement of selected encoded proteins in the tick midgut physiology discussed. A total of 7215 novel sequences from I. ricinus were deposited in public databases as an additional outcome of this study. Our results broaden the current knowledge of tick digestive system and may lead to the discovery of potential molecular targets for efficient tick control. PMID:27824139
Young, Neil D.; Jex, Aaron R.; Cantacessi, Cinzia; Hall, Ross S.; Campbell, Bronwyn E.; Spithill, Terence W.; Tangkawattana, Sirikachorn; Tangkawattana, Prasarn; Laha, Thewarach; Gasser, Robin B.
2011-01-01
Fasciola gigantica (Digenea) is an important foodborne trematode that causes liver fluke disease (fascioliasis) in mammals, including ungulates and humans, mainly in tropical climatic zones of the world. Despite its socioeconomic impact, almost nothing is known about the molecular biology of this parasite, its interplay with its hosts, and the pathogenesis of fascioliasis. Modern genomic technologies now provide unique opportunities to rapidly tackle these exciting areas. The present study reports the first transcriptome representing the adult stage of F. gigantica (of bovid origin), defined using a massively parallel sequencing-coupled bioinformatic approach. From >20 million raw sequence reads, >30,000 contiguous sequences were assembled, of which most were novel. Relative levels of transcription were determined for individual molecules, which were also characterized (at the inferred amino acid level) based on homology, gene ontology, and/or pathway mapping. Comparisons of the transcriptome of F. gigantica with those of other trematodes, including F. hepatica, revealed similarities in transcription for molecules inferred to have key roles in parasite-host interactions. Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic, and metabolomic explorations of F. gigantica, as well as a basis for applied outcomes such as the development of novel methods of intervention against this neglected parasite. PMID:21408104
Li, Danlei; Wang, Zhiying; Dong, Airong; Chen, Qiaoli; Liu, Xiaohan
2014-01-01
Background The rice white tip nematode Aphelenchoides besseyi, a devastating nematode whose genome has not been sequenced, is distributed widely throughout almost all the rice-growing regions of the world. The aims of the present study were to define the transcriptome of A. besseyi and to identify parasite-related, mortality-related or host resistance-overcoming genes in this nematode. Methodology and Principal Findings Using Solexa/Illumina sequencing, we profiled the transcriptome of mixed-stage populations of A. besseyi. A total of 51,270 transcripts without gaps were produced based on high-quality clean reads. Of all the A. besseyi transcripts, 9,132 KEGG Orthology assignments were annotated. Carbohydrate-active enzymes of glycoside hydrolases (GHs), glycosyltransferases (GTs), carbohydrate esterases (CEs) and carbohydrate-binding modules (CBMs) were identified. The presence of the A. besseyi GH45 cellulase gene was verified by in situ hybridization. Given that 13 unique A. besseyi potential effector genes were identified from 41 candidate effector homologs, further studies of these homologs are merited. Finally, comparative analyses were conducted between A. besseyi contigs and Caenorhabditis elegans genes to look for orthologs of RNAi phenotypes, neuropeptides and peptidases. Conclusions and Significance The present results provide comprehensive insight into the genetic makeup of A. besseyi. Many of this species' genes are parasite related, nematode mortality-related or necessary to overcome host resistance. The generated transcriptome dataset of A. besseyi reported here lays the foundation for further studies of the molecular mechanisms related to parasitism and facilitates the development of new control strategies for this species. PMID:24637831
Yang, Yingchao; Zhao, Jinping; Yang, Yutao; Cao, Yongguo; Hong, Cailing; Liu, Yuan; Sun, Lan; Huang, Minjun; Gu, Junchao
2013-01-01
Leptospirosis is a re-emerging tropical infectious disease caused by pathogenic Leptospira spp. The different host innate immune responses are partially related to the different severities of leptospirosis. In this study, we employed transcriptomics and cytokine arrays to comparatively calculate the responses of murine peritoneal macrophages (MPMs) and human peripheral blood monocytes (HBMs) to leptospiral infection. We uncovered a series of different expression profiles of these two immune cells. The percentages of regulated genes in several biological processes of MPMs, such as antigen processing and presentation, membrane potential regulation, and the innate immune response, etc., were much greater than those of HBMs (>2-fold). In MPMs and HBMs, the caspase-8 and Fas-associated protein with death domain (FADD)-like apoptosis regulator genes were significantly up-regulated, which supported previous results that the caspase-8 and caspase-3 pathways play an important role in macrophage apoptosis during leptospiral infection. In addition, the key component of the complement pathway, C3, was only up-regulated in MPMs. Furthermore, several cytokines, e.g. interleukin 10 (IL-10) and tumor necrosis factor alpha (TNF-alpha), were differentially expressed at both mRNA and protein levels in MPMs and HBMs. Some of the differential expressions were proved to be pathogenic Leptospira-specific regulations at mRNA level or protein level. Though it is still unclear why some animals are resistant and others are susceptible to leptospiral infection, this comparative study based on transcriptomics and cytokine arrays partially uncovered the differences of murine resistance and human susceptibility to leptospirosis. Taken together, these findings will facilitate further molecular studies on the innate immune response to leptospiral infection. PMID:24130911
2013-01-01
This study exploited Blackface lambs that varied in their resistance to the abomasal nematode parasite, Teladorsagia circumcincta. Infection of these lambs over 3 months identified susceptible (high adult worm count, high faecal egg count and low IgA antibody) and resistant animals that had excluded all parasites. Previous work had shown that susceptibility and resistance is dependent on the differential immune response to the parasite, which occurs within the abomasal (gastric) lymph node (ALN) that drains the site of infection. The Affymetrix ovine gene array was used to interrogate the transcriptome of the ALN to identify genes and physiological pathways associated with resistance. We used a bovine RT-qPCR array of 84 genes to validate the gene array, and also report digital gene expression analysis on the same tissues, reanalysed using the Oar v3.1 sheep genome assembly. These analyses identified Humoral Immune Response, Protein Synthesis, Inflammatory Response and Hematological System Development and Function as the two top-ranked networks associated with resistance. Central genes within these networks were IL4, IL5, IL13RA2 and in particular IL13, which confirmed that differential activation of Th2 polarized responses is critical to the resistance phenotype. Furthermore, in resistant sheep there was up-regulation of genes linked to control and suppression of inflammation. The identity of differentially-expressed chemokines and receptors in the resistant and susceptible sheep also begins to explain the cellular nature of the host response to infection. This work will greatly help in the identification of candidate genes as potential selectable markers of genetic resistance. PMID:23927007
Klein, Marlise I.; DeBaz, Lena; Agidi, Senyo; Lee, Herbert; Xie, Gary; Lin, Amy H.-M.; Hamaker, Bruce R.; Lemos, José A.; Koo, Hyun
2010-01-01
The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates and intracellular polysaccharide storage. Our data show complex remodeling of S. mutans-transcriptome in response to changing environmental conditions in situ, which could modulate the dynamics of biofilm development and pathogenicity. PMID:20976057
Espada, Margarida; Silva, Ana Cláudia; Eves van den Akker, Sebastian; Cock, Peter J A; Mota, Manuel; Jones, John T
2016-02-01
The migratory endoparasitic nematode Bursaphelenchus xylophilus, which is the causal agent of pine wilt disease, has phytophagous and mycetophagous phases during its life cycle. This highly unusual feature distinguishes it from other plant-parasitic nematodes and requires profound changes in biology between modes. During the phytophagous stage, the nematode migrates within pine trees, feeding on the contents of parenchymal cells. Like other plant pathogens, B. xylophilus secretes effectors from pharyngeal gland cells into the host during infection. We provide the first description of changes in the morphology of these gland cells between juvenile and adult life stages. Using a comparative transcriptomics approach and an effector identification pipeline, we identify numerous novel parasitism genes which may be important for the mediation of interactions of B. xylophilus with its host. In-depth characterization of all parasitism genes using in situ hybridization reveals two major categories of detoxification proteins, those specifically expressed in either the pharyngeal gland cells or the digestive system. These data suggest that B. xylophilus incorporates effectors in a multilayer detoxification strategy in order to protect itself from host defence responses during phytophagy. © 2015 BSPP AND JOHN WILEY & SONS LTD.
Li, Juan; Hettenhausen, Christian; Sun, Guiling; Zhuang, Huifu; Li, Jian-Hong; Wu, Jianqiang
2015-01-01
Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardation and in some cases, death of the hosts. The genus Cuscuta (dodder) comprises about 200 holoparasitic species occurring on all continents. Their seedlings have no roots and cotyledons but are only string-like hypocotyls. When they contact suitable host plants, haustoria are formed and thereafter seedlings rapidly develop into vigorously growing branches without roots and leaves. This highly specialized lifestyle suggests that Cuscuta plants likely have unique physiology in development and stress responses. Using germination and seedling growth assays, we show that C. australis seeds and seedlings are highly insensitive to abscisic acid (ABA). Transcriptome analysis and protein sequence alignment with Arabidopsis, tomato, and rice homologs revealed that C. australis most likely consists of only four functional ABA receptors. Given that Cuscuta plants are no longer severely challenged by drought stress, we hypothesize that the ABA-mediated drought resistance pathway in Cuscuta spp. might have had degenerated over time during evolution.
Mannala, Gopala K.; Izar, Benjamin; Rupp, Oliver; Schultze, Tilman; Goesmann, Alexander; Chakraborty, Trinad; Hain, Torsten
2017-01-01
microRNAs (miRNAs) coordinate several physiological and pathological processes by regulating the fate of mRNAs. Studies conducted in vitro indicate a role of microRNAs in the control of host-microbe interactions. However, there is limited understanding of miRNA functions in in vivo models of bacterial infections. In this study, we systematically explored changes in miRNA expression levels of Galleria mellonella larvae (greater-wax moth), a model system that recapitulates the vertebrate innate immunity, following infection with L. monocytogenes. Using an insect-specific miRNA microarray with more than 2000 probes, we found differential expression of 90 miRNAs (39 upregulated and 51 downregulated) in response to infection with L. monocytogenes. We validated the expression of a subset of miRNAs which have mammalian homologs of known or predicted function. In contrast, non-pathogenic L. innocua failed to induce these miRNAs, indicating a virulence-dependent miRNA deregulation. To predict miRNA targets using established algorithms, we generated a publically available G. mellonella transcriptome database. We identified miRNA targets involved in innate immunity, signal transduction and autophagy, including spätzle, MAP kinase, and optineurin, respectively, which exhibited a virulence-specific differential expression. Finally, in silico estimation of minimum free energy of miRNA-mRNA duplexes of validated microRNAs and target transcripts revealed a regulatory network of the host immune response to L. monocytogenes. In conclusion, this study provides evidence for a role of miRNAs in the regulation of the innate immune response following bacterial infection in a simple, rapid and scalable in vivo model that may predict host-microbe interactions in higher vertebrates. PMID:29312175
Sim, Shuzhen; Ramirez, José L.; Dimopoulos, George
2012-01-01
The female Aedes aegypti salivary gland plays a pivotal role in bloodmeal acquisition and reproduction, and thereby dengue virus (DENV) transmission. It produces numerous immune factors, as well as immune-modulatory, vasodilatory, and anti-coagulant molecules that facilitate blood-feeding. To assess the impact of DENV infection on salivary gland physiology and function, we performed a comparative genome-wide microarray analysis of the naïve and DENV infection-responsive A. aegypti salivary gland transcriptomes. DENV infection resulted in the regulation of 147 transcripts that represented a variety of functional classes, including several that are essential for virus transmission, such as immunity, blood-feeding, and host-seeking. RNAi-mediated gene silencing of three DENV infection-responsive genes - a cathepsin B, a putative cystatin, and a hypothetical ankyrin repeat-containing protein - significantly modulated DENV replication in the salivary gland. Furthermore, silencing of two DENV infection-responsive odorant-binding protein genes (OBPs) resulted in an overall compromise in blood acquisition from a single host by increasing the time for initiation of probing and the probing time before a successful bloodmeal. We also show that DENV established an extensive infection in the mosquito's main olfactory organs, the antennae, which resulted in changes of the transcript abundance of key host-seeking genes. DENV infection, however, did not significantly impact probing initiation or probing times in our laboratory infection system. Here we show for the first time that the mosquito salivary gland mounts responses to suppress DENV which, in turn, modulates the expression of chemosensory-related genes that regulate feeding behavior. These reciprocal interactions may have the potential to affect DENV transmission between humans. PMID:22479185
Petitot, Anne-Sophie; Kyndt, Tina; Haidar, Rana; Dereeper, Alexis; Collin, Myriam; de Almeida Engler, Janice; Gheysen, Godelieve; Fernandez, Diana
2017-03-01
The root-knot nematode Meloidogyne graminicola is responsible for production losses in rice ( Oryza sativa ) in Asia and Latin America. The accession TOG5681 of African rice, O. glaberrima , presents improved resistance to several biotic and abiotic factors, including nematodes. The aim of this study was to assess the cytological and molecular mechanisms underlying nematode resistance in this accession. Penetration and development in M. graminicola in TOG5681 and the susceptible O. sativa genotype 'Nipponbare' were compared by microscopic observation of infected roots and histological analysis of galls. In parallel, host molecular responses to M. graminicola were assessed by root transcriptome profiling at 2, 4 and 8 d post-infection (dpi). Specific treatments with hormone inhibitors were conducted in TOG5681 to assess the impact of the jasmonic acid and salicylic acid pathways on nematode penetration and reproduction. Penetration and development of M. graminicola juveniles were reduced in the resistant TOG5681 in comparison with the susceptible accession, with degeneration of giant cells observed in the resistant genotype from 15 dpi onwards. Transcriptome changes were observed as early as 2 dpi, with genes predicted to be involved in defence responses, phenylpropanoid and hormone pathways strongly induced in TOG5681, in contrast to 'Nipponbare'. No specific hormonal pathway could be identified as the major determinant of resistance in the rice-nematode incompatible interaction. Candidate genes proposed as involved in resistance to M. graminicola in TOG5681 were identified based on their expression pattern and quantitative trait locus (QTL) position, including chalcone synthase, isoflavone reductase, phenylalanine ammonia lyase, WRKY62 transcription factor, thionin, stripe rust resistance protein, thaumatins and ATPase3. This study provides a novel set of candidate genes for O. glaberrima resistance to nematodes and highlights the rice- M. graminicola pathosystem as a model to study plant-nematode incompatible interactions. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
2011-01-01
Background The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Results Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Conclusions Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions. PMID:21880152
Goldová, Jana; Ulrych, Aleš; Hercík, Kamil; Branny, Pavel
2011-08-31
The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudenda, Lwiindi; Aguilar Pierle, Sebastian; Turse, Joshua E.
2014-08-07
Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunitymore » to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5 days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5 day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.« less
Dhanyalakshmi, K H; Naika, Mahantesha B N; Sajeevan, R S; Mathew, Oommen K; Shafi, K Mohamed; Sowdhamini, Ramanathan; N Nataraja, Karaba
2016-01-01
The modern sequencing technologies are generating large volumes of information at the transcriptome and genome level. Translation of this information into a biological meaning is far behind the race due to which a significant portion of proteins discovered remain as proteins of unknown function (PUFs). Attempts to uncover the functional significance of PUFs are limited due to lack of easy and high throughput functional annotation tools. Here, we report an approach to assign putative functions to PUFs, identified in the transcriptome of mulberry, a perennial tree commonly cultivated as host of silkworm. We utilized the mulberry PUFs generated from leaf tissues exposed to drought stress at whole plant level. A sequence and structure based computational analysis predicted the probable function of the PUFs. For rapid and easy annotation of PUFs, we developed an automated pipeline by integrating diverse bioinformatics tools, designated as PUFs Annotation Server (PUFAS), which also provides a web service API (Application Programming Interface) for a large-scale analysis up to a genome. The expression analysis of three selected PUFs annotated by the pipeline revealed abiotic stress responsiveness of the genes, and hence their potential role in stress acclimation pathways. The automated pipeline developed here could be extended to assign functions to PUFs from any organism in general. PUFAS web server is available at http://caps.ncbs.res.in/pufas/ and the web service is accessible at http://capservices.ncbs.res.in/help/pufas.
García-Montoya, Gisela M; Mesa-Arango, Jairo A; Isaza-Agudelo, Juan P; Agudelo-Lopez, Sonia P; Cabarcas, Felipe; Barrera, Luis F; Alzate, Juan F
2016-02-01
Neurocysticercosis (NC) is a serious public health problem mainly in developing countries. NC caused by the cysticercus stage from cestode Taenia solium is considered by the WHO and ITFDE as a potentially eradicable disease. Definitive diagnosis of NC is challenging because of the unspecific clinical manifestations such as the non-definitive evidence presented by neuroimaging (in most cases) and the lack of definitive serological test. Taenia crassiceps (ORF strain) is a cestode closely related to T. solium and it has frequently been used as a source of antigens for immunodiagnostics. A murine model to study host immune response to infection has also been established by using T. crassiceps. Despite the extensive use of T. crassiceps for research, molecular information for this cestode is scarce in public databases. With the aim of providing more extensive information on T. crassiceps biology, an RNA-seq experiment and subsequent bioinformatic transcriptome processing of this cestode parasite mRNA in its cysticercus stage were carried out. A total of 227,082 read/ESTs were sequenced using the 454-GS FLX Titanium technology and assembled into 10,787 contigs. This transcriptome dataset represents new and valuable molecular information of the cestode T. crassiceps (ORF). This information will substantially improve public information and will help to achieve a better understanding of the biology of T. crassiceps and to identify target proteins for serodiagnosis and vaccination. Copyright © 2015 Elsevier B.V. All rights reserved.
Epigenetics and Proteomics Join Transcriptomics in the Quest for Tuberculosis Biomarkers
Esterhuyse, Maria M.; Weiner, January; Caron, Etienne; Loxton, Andre G.; Iannaccone, Marco; Wagman, Chandre; Saikali, Philippe; Stanley, Kim; Wolski, Witold E.; Mollenkopf, Hans-Joachim; Schick, Matthias; Aebersold, Ruedi; Linhart, Heinz; Walzl, Gerhard
2015-01-01
ABSTRACT An estimated one-third of the world’s population is currently latently infected with Mycobacterium tuberculosis. Latent M. tuberculosis infection (LTBI) progresses into active tuberculosis (TB) disease in ~5 to 10% of infected individuals. Diagnostic and prognostic biomarkers to monitor disease progression are urgently needed to ensure better care for TB patients and to decrease the spread of TB. Biomarker development is primarily based on transcriptomics. Our understanding of biology combined with evolving technical advances in high-throughput techniques led us to investigate the possibility of additional platforms (epigenetics and proteomics) in the quest to (i) understand the biology of the TB host response and (ii) search for multiplatform biosignatures in TB. We engaged in a pilot study to interrogate the DNA methylome, transcriptome, and proteome in selected monocytes and granulocytes from TB patients and healthy LTBI participants. Our study provides first insights into the levels and sources of diversity in the epigenome and proteome among TB patients and LTBI controls, despite limitations due to small sample size. Functionally the differences between the infection phenotypes (LTBI versus active TB) observed in the different platforms were congruent, thereby suggesting regulation of function not only at the transcriptional level but also by DNA methylation and microRNA. Thus, our data argue for the development of a large-scale study of the DNA methylome, with particular attention to study design in accounting for variation based on gender, age, and cell type. PMID:26374119
Lithio, Andrew
2016-01-01
The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190
Transcriptome of the Caribbean stony coral Porites astreoides from three developmental stages.
Mansour, Tamer A; Rosenthal, Joshua J C; Brown, C Titus; Roberson, Loretta M
2016-08-02
Porites astreoides is a ubiquitous species of coral on modern Caribbean reefs that is resistant to increasing temperatures, overfishing, and other anthropogenic impacts that have threatened most other coral species. We assembled and annotated a transcriptome from this coral using Illumina sequences from three different developmental stages collected over several years: free-swimming larvae, newly settled larvae, and adults (>10 cm in diameter). This resource will aid understanding of coral calcification, larval settlement, and host-symbiont interactions. A de novo transcriptome for the P. astreoides holobiont (coral plus algal symbiont) was assembled using 594 Mbp of raw Illumina sequencing data generated from five age-specific cDNA libraries. The new transcriptome consists of 867 255 transcript elements with an average length of 685 bases. The isolated P. astreoides assembly consists of 129 718 transcript elements with an average length of 811 bases, and the isolated Symbiodinium sp. assembly had 186 177 transcript elements with an average length of 1105 bases. This contribution to coral transcriptome data provides a valuable resource for researchers studying the ontogeny of gene expression patterns within both the coral and its dinoflagellate symbiont.
Integrated genomics of Mucorales reveals novel therapeutic targets
USDA-ARS?s Scientific Manuscript database
Mucormycosis is a life-threatening infection caused by Mucorales fungi. We sequenced 30 fungal genomes and performed transcriptomics with three representative Rhizopus and Mucor strains with human airway epithelial cells during fungal invasion to reveal key host and fungal determinants contributing ...
Spaepen, Stijn; Bossuyt, Stijn; Engelen, Kristof; Marchal, Kathleen; Vanderleyden, Jos
2014-02-01
The auxin-producing bacterium Azospirillum brasilense Sp245 can promote the growth of several plant species. The model plant Arabidopsis thaliana was chosen as host plant to gain an insight into the molecular mechanisms that govern this interaction. The determination of differential gene expression in Arabidopsis roots after inoculation with either A. brasilense wild-type or an auxin biosynthesis mutant was achieved by microarray analysis. Arabidopsis thaliana inoculation with A. brasilense wild-type increases the number of lateral roots and root hairs, and elevates the internal auxin concentration in the plant. The A. thaliana root transcriptome undergoes extensive changes on A. brasilense inoculation, and the effects are more pronounced at later time points. The wild-type bacterial strain induces changes in hormone- and defense-related genes, as well as in plant cell wall-related genes. The A. brasilense mutant, however, does not elicit these transcriptional changes to the same extent. There are qualitative and quantitative differences between A. thaliana responses to the wild-type A. brasilense strain and the auxin biosynthesis mutant strain, based on both phenotypic and transcriptomic data. This illustrates the major role played by auxin in the Azospirillum-Arabidopsis interaction, and possibly also in other bacterium-plant interactions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Teixeira, Paulo José Pereira Lima; Thomazella, Daniela Paula de Toledo; Reis, Osvaldo; do Prado, Paula Favoretti Vital; do Rio, Maria Carolina Scatolin; Fiorin, Gabriel Lorencini; José, Juliana; Costa, Gustavo Gilson Lacerda; Negri, Victor Augusti; Mondego, Jorge Maurício Costa; Mieczkowski, Piotr; Pereira, Gonçalo Amarante Guimarães
2014-01-01
Witches’ broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen’s transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions. PMID:25371547
Teixeira, Paulo José Pereira Lima; Thomazella, Daniela Paula de Toledo; Reis, Osvaldo; do Prado, Paula Favoretti Vital; do Rio, Maria Carolina Scatolin; Fiorin, Gabriel Lorencini; José, Juliana; Costa, Gustavo Gilson Lacerda; Negri, Victor Augusti; Mondego, Jorge Maurício Costa; Mieczkowski, Piotr; Pereira, Gonçalo Amarante Guimarães
2014-11-01
Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions. © 2014 American Society of Plant Biologists. All rights reserved.
Transcriptomic profiles of human foreskin fibroblast cells in response to orf virus.
Chen, Daxiang; Long, Mingjian; Xiao, Bin; Xiong, Yufeng; Chen, Huiqin; Chen, Yu; Kuang, Zhenzhan; Li, Ming; Wu, Yingsong; Rock, Daniel L; Gong, Daoyuan; Wang, Yong; He, Haijian; Liu, Fang; Luo, Shuhong; Hao, Wenbo
2017-08-29
Orf virus has been utilized as a safe and efficient viral vector against not only diverse infectious diseases, but also against tumors. However, the nature of the genes triggered by the vector in human cells is poorly characterized. Using RNA sequencing technology, we compared specific changes in the transcriptomic profiles in human foreskin fibroblast cells following infection by the orf virus. The results indicated that orf virus upregulates or downregulates expression of a variety of genes, including genes involved in antiviral immune response, apoptosis, cell cycle and a series of signaling pathways, such as the IFN and p53-signaling pathways. The orf virus stimulates or inhibits immune gene expression such as chemokines, chemokine receptors, cytokines, cytokine receptors, and molecules involved in antigen uptake and processing after infection. Expression of pro-apoptotic genes increased at 8 hours post-infection. The p53 signaling pathway was activated to induce apoptosis at the same time. However, the cell cycle program was promoted after infection, which may be due to the immunomodulatory genes of the orf virus. This presents the first description of transcription profile changes in human foreskin fibroblast cells after orf virus infection and provides an in-depth analysis of the interaction between the host and orf virus. These data offer new insights into the understanding of the mechanisms of infection by orf virus and identify potential targets for future studies.
2011-01-01
Background Avian pathogenic Escherichia coli (APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level. Results There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast. Conclusions More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of pathology associated with that infection. This study will allow for greater discovery into host mechanisms for disease resistance, providing targets for marker assisted selection and advanced drug development. PMID:21951686
Sandford, Erin E; Orr, Megan; Balfanz, Emma; Bowerman, Nate; Li, Xianyao; Zhou, Huaijun; Johnson, Timothy J; Kariyawasam, Subhashinie; Liu, Peng; Nolan, Lisa K; Lamont, Susan J
2011-09-27
Avian pathogenic Escherichia coli (APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level. There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast. More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of pathology associated with that infection. This study will allow for greater discovery into host mechanisms for disease resistance, providing targets for marker assisted selection and advanced drug development.
Khare, Sangeeta; Drake, Kenneth L.; Lawhon, Sara D.; Nunes, Jairo E. S.; Figueiredo, Josely F.; Rossetti, Carlos A.; Gull, Tamara; Everts, Robin E.; Lewin, Harris. A.; Adams, Leslie Garry
2016-01-01
It has long been a quest in ruminants to understand how two very similar mycobacterial species, Mycobacterium avium ssp. paratuberculosis (MAP) and Mycobacterium avium ssp. avium (MAA) lead to either a chronic persistent infection or a rapid-transient infection, respectively. Here, we hypothesized that when the host immune response is activated by MAP or MAA, the outcome of the infection depends on the early activation of signaling molecules and host temporal gene expression. To test our hypothesis, ligated jejuno-ileal loops including Peyer’s patches in neonatal calves were inoculated with PBS, MAP, or MAA. A temporal analysis of the host transcriptome profile was conducted at several times post-infection (0.5, 1, 2, 4, 8 and 12 hours). When comparing the transcriptional responses of calves infected with the MAA versus MAP, discordant patterns of mucosal expression were clearly evident, and the numbers of unique transcripts altered were moderately less for MAA-infected tissue than were mucosal tissues infected with the MAP. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis. Bayesian network modeling identified mechanistic genes, gene-to-gene relationships, pathways and Gene Ontologies (GO) biological processes that are involved in specific cell activation during infection. MAP and MAA had significant different pathway perturbation at 0.5 and 12 hours post inoculation. Inverse processes were observed between MAP and MAA response for epithelial cell proliferation, negative regulation of chemotaxis, cell-cell adhesion mediated by integrin and regulation of cytokine-mediated signaling. MAP inoculated tissue had significantly lower expression of phagocytosis receptors such as mannose receptor and complement receptors. This study reveals that perturbation of genes and cellular pathways during MAP infection resulted in host evasion by mucosal membrane barrier weakening to access entry in the ileum, inhibition of Ca signaling associated with decreased phagosome-lysosome fusion as well as phagocytosis inhibition, bias toward Th2 cell immune response accompanied by cell recruitment, cell proliferation and cell differentiation; leading to persistent infection. Contrarily, MAA infection was related to cellular responses associated with activation of molecular pathways that release chemicals and cytokines involved with containment of infection and a strong bias toward Th1 immune response, resulting in a transient infection. PMID:27653506
Khare, Sangeeta; Drake, Kenneth L; Lawhon, Sara D; Nunes, Jairo E S; Figueiredo, Josely F; Rossetti, Carlos A; Gull, Tamara; Everts, Robin E; Lewin, Harris A; Adams, Leslie Garry
It has long been a quest in ruminants to understand how two very similar mycobacterial species, Mycobacterium avium ssp. paratuberculosis (MAP) and Mycobacterium avium ssp. avium (MAA) lead to either a chronic persistent infection or a rapid-transient infection, respectively. Here, we hypothesized that when the host immune response is activated by MAP or MAA, the outcome of the infection depends on the early activation of signaling molecules and host temporal gene expression. To test our hypothesis, ligated jejuno-ileal loops including Peyer's patches in neonatal calves were inoculated with PBS, MAP, or MAA. A temporal analysis of the host transcriptome profile was conducted at several times post-infection (0.5, 1, 2, 4, 8 and 12 hours). When comparing the transcriptional responses of calves infected with the MAA versus MAP, discordant patterns of mucosal expression were clearly evident, and the numbers of unique transcripts altered were moderately less for MAA-infected tissue than were mucosal tissues infected with the MAP. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis. Bayesian network modeling identified mechanistic genes, gene-to-gene relationships, pathways and Gene Ontologies (GO) biological processes that are involved in specific cell activation during infection. MAP and MAA had significant different pathway perturbation at 0.5 and 12 hours post inoculation. Inverse processes were observed between MAP and MAA response for epithelial cell proliferation, negative regulation of chemotaxis, cell-cell adhesion mediated by integrin and regulation of cytokine-mediated signaling. MAP inoculated tissue had significantly lower expression of phagocytosis receptors such as mannose receptor and complement receptors. This study reveals that perturbation of genes and cellular pathways during MAP infection resulted in host evasion by mucosal membrane barrier weakening to access entry in the ileum, inhibition of Ca signaling associated with decreased phagosome-lysosome fusion as well as phagocytosis inhibition, bias toward Th2 cell immune response accompanied by cell recruitment, cell proliferation and cell differentiation; leading to persistent infection. Contrarily, MAA infection was related to cellular responses associated with activation of molecular pathways that release chemicals and cytokines involved with containment of infection and a strong bias toward Th1 immune response, resulting in a transient infection.
Detailed Transcriptome Description of the Neglected Cestode Taenia multiceps
Wu, Xuhang; Fu, Yan; Yang, Deying; Zhang, Runhui; Zheng, Wanpeng; Nie, Huaming; Xie, Yue; Yan, Ning; Hao, Guiying; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou
2012-01-01
Background The larval stage of Taenia multiceps, a global cestode, encysts in the central nervous system (CNS) of sheep and other livestock. This frequently leads to their death and huge socioeconomic losses, especially in developing countries. This parasite can also cause zoonotic infections in humans, but has been largely neglected due to a lack of diagnostic techniques and studies. Recent developments in next-generation sequencing provide an opportunity to explore the transcriptome of T. multiceps. Methodology/Principal Findings We obtained a total of 31,282 unigenes (mean length 920 bp) using Illumina paired-end sequencing technology and a new Trinity de novo assembler without a referenced genome. Individual transcription molecules were determined by sequence-based annotations and/or domain-based annotations against public databases (Nr, UniprotKB/Swiss-Prot, COG, KEGG, UniProtKB/TrEMBL, InterPro and Pfam). We identified 26,110 (83.47%) unigenes and inferred 20,896 (66.8%) coding sequences (CDS). Further comparative transcripts analysis with other cestodes (Taenia pisiformis, Taenia solium, Echincoccus granulosus and Echincoccus multilocularis) and intestinal parasites (Trichinella spiralis, Ancylostoma caninum and Ascaris suum) showed that 5,100 common genes were shared among three Taenia tapeworms, 261 conserved genes were detected among five Taeniidae cestodes, and 109 common genes were found in four zoonotic intestinal parasites. Some of the common genes were genes required for parasite survival, involved in parasite-host interactions. In addition, we amplified two full-length CDS of unigenes from the common genes using RT-PCR. Conclusions/Significance This study provides an extensive transcriptome of the adult stage of T. multiceps, and demonstrates that comparative transcriptomic investigations deserve to be further studied. This transcriptome dataset forms a substantial public information platform to achieve a fundamental understanding of the biology of T. multiceps, and helps in the identification of drug targets and parasite-host interaction studies. PMID:23049872
Núñez-Acuña, Gustavo; Valenzuela-Muñoz, Valentina; Marambio, Jorge Pino; Wadsworth, Simon; Gallardo-Escárate, Cristian
2014-10-01
Although various elements of the olfactory system have been elucidated in insects, it remains practically unstudied in crustaceans at a molecular level. Among crustaceans, some species are classified as ectoparasites that impact the finfish aquaculture industry. Thus, there is an urgent need to identify and comprehend the signaling pathways used by these in host recognition. The present study, through RNA-seq and qPCR analyses, found novel transcripts involved in the olfactory system of Caligus rogercresseyi, in addition to the transcriptomic patterns expressed during different stages of salmon lice development. From a transcriptomic library generated by Illumina sequencing, contigs that annotated for ionotropic receptors and other genes implicated in the olfactory system were identified and extracted. Full length mRNA was obtained for the ionotropic glutamate receptor 25, which had 3923 bp, and for the glutamate receptor ionotropic kainate 2, which had 2737 bp. Furthermore, two other transcripts identified as glutamate receptor, ionotropic kainate 2-like were found. In silico analysis was performed for the transcription expression from different stages of development in C. rogercresseyi, and clusters according to RPKM values were constructed. Gene transcription data were validated through qPCR assays in ionotropic receptors, and showed an expression of glutamate receptor 25 associated with the copepodid stage whereas adults, especially male adults, were associated with the kainate 2 and kainate 2-like transcripts. Additionally, gene transcription analysis of the ionotropic receptors showed an overexpression in response to the presence of masking compounds and immunostimulant in salmon diets. This response correlated to a reduction in sea lice infection following in vivo challenge. Diets with masking compounds showed a decrease of lice infestation of up to 25%. This work contributes to the available knowledge on chemosensory systems in this ectoparasite, providing novel elements towards understanding the host-finding process of the salmon louse C. rogercresseyi. Copyright © 2014 Elsevier Inc. All rights reserved.
Transcriptomic changes of Legionella pneumophila in water.
Li, Laam; Mendis, Nilmini; Trigui, Hana; Faucher, Sébastien P
2015-08-26
Legionella pneumophila (Lp) is a water-borne opportunistic pathogen. In water, Lp can survive for an extended period of time until it encounters a permissive host. Therefore, identifying genes that are required for survival in water may help develop strategies to prevent Legionella outbreaks. We compared the global transcriptomic response of Lp grown in a rich medium to that of Lp exposed to an artificial freshwater medium (Fraquil) for 2, 6 and 24 hours. We uncovered successive changes in gene expression required for the successful adaptation to a nutrient-limited water environment. The repression of major pathways involved in cell division, transcription and translation, suggests that Lp enters a quiescent state in water. The induction of flagella associated genes (flg, fli and mot), enhanced-entry genes (enh) and some Icm/Dot effector genes suggests that Lp is primed to invade a suitable host in response to water exposure. Moreover, many genes involved in resistance to antibiotic and oxidative stress were induced, suggesting that Lp may be more tolerant to these stresses in water. Indeed, Lp exposed to water is more resistant to erythromycin, gentamycin and kanamycin than Lp cultured in rich medium. In addition, the bdhA gene, involved in the degradation pathway of the intracellular energy storage compound polyhydroxybutyrate, is also highly expressed in water. Further characterization show that expression of bdhA during short-term water exposure is dependent upon RpoS, which is required for the survival of Lp in water. Deletion of bdhA reduces the survival of Lp in water at 37 °C. The increase of antibiotic resistance and the importance of bdhA to the survival of Lp in water seem consistent with the observed induction of these genes when Lp is exposed to water. Other genes that are highly induced upon exposure to water could also be necessary for Lp to maintain viability in the water environment.
Celedon, Jose M; Yuen, Macaire M S; Chiang, Angela; Henderson, Hannah; Reid, Karen E; Bohlmann, Jörg
2017-11-01
Plant defenses often involve specialized cells and tissues. In conifers, specialized cells of the bark are important for defense against insects and pathogens. Using laser microdissection, we characterized the transcriptomes of cortical resin duct cells, phenolic cells and phloem of white spruce (Picea glauca) bark under constitutive and methyl jasmonate (MeJa)-induced conditions, and we compared these transcriptomes with the transcriptome of the bark tissue complex. Overall, ~3700 bark transcripts were differentially expressed in response to MeJa. Approximately 25% of transcripts were expressed in only one cell type, revealing cell specialization at the transcriptome level. MeJa caused cell-type-specific transcriptome responses and changed the overall patterns of cell-type-specific transcript accumulation. Comparison of transcriptomes of the conifer bark tissue complex and specialized cells resolved a masking effect inherent to transcriptome analysis of complex tissues, and showed the actual cell-type-specific transcriptome signatures. Characterization of cell-type-specific transcriptomes is critical to reveal the dynamic patterns of spatial and temporal display of constitutive and induced defense systems in a complex plant tissue or organ. This was demonstrated with the improved resolution of spatially restricted expression of sets of genes of secondary metabolism in the specialized cell types. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Cross, Karissa L; Chirania, Payal; Xiong, Weili; Beall, Clifford J; Elkins, James G; Giannone, Richard J; Griffen, Ann L; Guss, Adam M; Hettich, Robert L; Joshi, Snehal S; Mokrzan, Elaine M; Martin, Roman K; Zhulin, Igor B; Leys, Eugene J; Podar, Mircea
2018-03-13
The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis , the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis , a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease. IMPORTANCE Animal-associated microbiota likely assembled as a result of numerous independent colonization events by free-living microbes followed by coevolution with their host and other microbes. Through specific adaptation to various body sites and physiological niches, microbes have a wide range of contributions, from beneficial to disease causing. Desulfobulbus oralis provides insights into genomic and physiological transformations associated with transition from an open environment to a host-dependent lifestyle and the emergence of pathogenicity. Through a multifaceted mechanism triggering a proinflammatory response, D. oralis is a novel periodontal pathobiont. Even though culture-independent approaches can provide insights into the potential role of the human microbiome "dark matter," cultivation and experimental characterization remain important to studying the roles of individual organisms in health and disease.
Toh, Su San; Treves, David S; Barati, Michelle T; Perlin, Michael H
2016-10-01
Microbotryum lychnidis-dioicae is a member of a species complex infecting host plants in the Caryophyllaceae. It is used as a model system in many areas of research, but attempts to make this organism tractable for reverse genetic approaches have not been fruitful. Here, we exploited the recently obtained genome sequence and transcriptome analysis to inform our design of constructs for use in Agrobacterium-mediated transformation techniques currently available for other fungi. Reproducible transformation was demonstrated at the genomic, transcriptional and functional levels. Moreover, these initial proof-of-principle experiments provide evidence that supports the findings from initial global transcriptome analysis regarding expression from the respective promoters under different growth conditions of the fungus. The technique thus provides for the first time the ability to stably introduce transgenes and over-express target M. lychnidis-dioicae genes.
de Bekker, Charissa; Ohm, Robin A; Loreto, Raquel G; Sebastian, Aswathy; Albert, Istvan; Merrow, Martha; Brachmann, Andreas; Hughes, David P
2015-08-19
Adaptive manipulation of animal behavior by parasites functions to increase parasite transmission through changes in host behavior. These changes can range from slight alterations in existing behaviors of the host to the establishment of wholly novel behaviors. The biting behavior observed in Carpenter ants infected by the specialized fungus Ophiocordyceps unilateralis s.l. is an example of the latter. Though parasitic manipulation of host behavior is generally assumed to be due to the parasite's gene expression, few studies have set out to test this. We experimentally infected Carpenter ants to collect tissue from both parasite and host during the time period when manipulated biting behavior is experienced. Upon observation of synchronized biting, samples were collected and subjected to mixed RNA-Seq analysis. We also sequenced and annotated the O. unilateralis s.l. genome as a reference for the fungal sequencing reads. Our mixed transcriptomics approach, together with a comparative genomics study, shows that the majority of the fungal genes that are up-regulated during manipulated biting behavior are unique to the O. unilateralis s.l. genome. This study furthermore reveals that the fungal parasite might be regulating immune- and neuronal stress responses in the host during manipulated biting, as well as impairing its chemosensory communication and causing apoptosis. Moreover, we found genes up-regulated during manipulation that putatively encode for proteins with reported effects on behavioral outputs, proteins involved in various neuropathologies and proteins involved in the biosynthesis of secondary metabolites such as alkaloids.
The Single-Nucleotide Resolution Transcriptome of Pseudomonas aeruginosa Grown in Body Temperature
Dandekar, Ajai A.; Edelheit, Sarit; Greenberg, E. Peter; Sorek, Rotem; Lory, Stephen
2012-01-01
One of the hallmarks of opportunistic pathogens is their ability to adjust and respond to a wide range of environmental and host-associated conditions. The human pathogen Pseudomonas aeruginosa has an ability to thrive in a variety of hosts and cause a range of acute and chronic infections in individuals with impaired host defenses or cystic fibrosis. Here we report an in-depth transcriptional profiling of this organism when grown at host-related temperatures. Using RNA-seq of samples from P. aeruginosa grown at 28°C and 37°C we detected genes preferentially expressed at the body temperature of mammalian hosts, suggesting that they play a role during infection. These temperature-induced genes included the type III secretion system (T3SS) genes and effectors, as well as the genes responsible for phenazines biosynthesis. Using genome-wide transcription start site (TSS) mapping by RNA-seq we were able to accurately define the promoters and cis-acting RNA elements of many genes, and uncovered new genes and previously unrecognized non-coding RNAs directly controlled by the LasR quorum sensing regulator. Overall we identified 165 small RNAs and over 380 cis-antisense RNAs, some of which predicted to perform regulatory functions, and found that non-coding RNAs are preferentially localized in pathogenicity islands and horizontally transferred regions. Our work identifies regulatory features of P. aeruginosa genes whose products play a role in environmental adaption during infection and provides a reference transcriptional landscape for this pathogen. PMID:23028334
Mondet, Fanny; Rau, Andrea; Klopp, Christophe; Rohmer, Marine; Severac, Dany; Le Conte, Yves; Alaux, Cedric
2018-05-04
The parasite Varroa destructor represents a significant threat to honeybee colonies. Indeed, development of Varroa infestation within colonies, if left untreated, often leads to the death of the colony. Although its impact on bees has been extensively studied, less is known about its biology and the functional processes governing its adult life cycle and adaptation to its host. We therefore developed a full life cycle transcriptomic catalogue in adult Varroa females and included pairwise comparisons with males, artificially-reared and non-reproducing females (10 life cycle stages and conditions in total). Extensive remodeling of the Varroa transcriptome was observed, with an upregulation of energetic and chitin metabolic processes during the initial and final phases of the life cycle (e.g. phoretic and post-oviposition stages), whereas during reproductive stages in brood cells genes showing functions related to transcriptional regulation were overexpressed. Several neurotransmitter and neuropeptide receptors involved in behavioural regulation, as well as active compounds of salivary glands, were also expressed at a higher level outside the reproductive stages. No difference was detected between artificially-reared phoretic females and their counterparts in colonies, or between females who failed to reproduce and females who successfully reproduced, indicating that phoretic individuals can be reared outside host colonies without impacting their physiology and that mechanisms underlying reproductive failure occur before oogenesis. We discuss how these new findings reveal the remarkable adaptation of Varroa to its host biology and notably to the switch from living on adults to reproducing in sealed brood cells. By spanning the entire adult life cycle, our work captures the dynamic changes in the parasite gene expression and serves as a unique resource for deciphering Varroa biology and identifying new targets for mite control.
Transcriptomic Analysis of Paulownia Infected by Paulownia Witches'-Broom Phytoplasma
Zhu, Shui-Fang; Lin, Cai-Li; Tian, Guo-Zhong; Xu, Xia; Zhao, Wen-Jun
2013-01-01
Phytoplasmas are plant pathogenic bacteria that have no cell wall and are responsible for major crop losses throughout the world. Phytoplasma-infected plants show a variety of symptoms and the mechanisms they use to physiologically alter the host plants are of considerable interest, but poorly understood. In this study we undertook a detailed analysis of Paulownia infected by Paulownia witches’-broom (PaWB) Phytoplasma using high-throughput mRNA sequencing (RNA-Seq) and digital gene expression (DGE). RNA-Seq analysis identified 74,831 unigenes, which were subsequently used as reference sequences for DGE analysis of diseased and healthy Paulownia in field grown and tissue cultured plants. Our study revealed that dramatic changes occurred in the gene expression profile of Paulownia after PaWB Phytoplasma infection. Genes encoding key enzymes in cytokinin biosynthesis, such as isopentenyl diphosphate isomerase and isopentenyltransferase, were significantly induced in the infected Paulownia. Genes involved in cell wall biosynthesis and degradation were largely up-regulated and genes related to photosynthesis were down-regulated after PaWB Phytoplasma infection. Our systematic analysis provides comprehensive transcriptomic data about plants infected by Phytoplasma. This information will help further our understanding of the detailed interaction mechanisms between plants and Phytoplasma. PMID:24130859
Wier, Andrew M; Nyholm, Spencer V; Mandel, Mark J; Massengo-Tiassé, R Prisca; Schaefer, Amy L; Koroleva, Irina; Splinter-Bondurant, Sandra; Brown, Bartley; Manzella, Liliana; Snir, Einat; Almabrazi, Hakeem; Scheetz, Todd E; Bonaldo, Maria de Fatima; Casavant, Thomas L; Soares, M Bento; Cronan, John E; Reed, Jennifer L; Ruby, Edward G; McFall-Ngai, Margaret J
2010-02-02
Mechanisms for controlling symbiont populations are critical for maintaining the associations that exist between a host and its microbial partners. We describe here the transcriptional, metabolic, and ultrastructural characteristics of a diel rhythm that occurs in the symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri. The rhythm is driven by the host's expulsion from its light-emitting organ of most of the symbiont population each day at dawn. The transcriptomes of both the host epithelium that supports the symbionts and the symbiont population itself were characterized and compared at four times over this daily cycle. The greatest fluctuation in gene expression of both partners occurred as the day began. Most notable was an up-regulation in the host of >50 cytoskeleton-related genes just before dawn and their subsequent down-regulation within 6 h. Examination of the epithelium by TEM revealed a corresponding restructuring, characterized by effacement and blebbing of its apical surface. After the dawn expulsion, the epithelium reestablished its polarity, and the residual symbionts began growing, repopulating the light organ. Analysis of the symbiont transcriptome suggested that the bacteria respond to the effacement by up-regulating genes associated with anaerobic respiration of glycerol; supporting this finding, lipid analysis of the symbionts' membranes indicated a direct incorporation of host-derived fatty acids. After 12 h, the metabolic signature of the symbiont population shifted to one characteristic of chitin fermentation, which continued until the following dawn. Thus, the persistent maintenance of the squid-vibrio symbiosis is tied to a dynamic diel rhythm that involves both partners.
Improving microbial biogasoline production in Escherichia coli using tolerance engineering.
Foo, Jee Loon; Jensen, Heather M; Dahl, Robert H; George, Kevin; Keasling, Jay D; Lee, Taek Soon; Leong, Susanna; Mukhopadhyay, Aindrila
2014-11-04
Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerance phenotypes belonged to diverse functional groups, such as oxidative stress response (soxS, fpr, and nrdH), general stress response (metR, yqhD, and gidB), heat shock-related response (ibpA), and transport (mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production. The use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically viable production levels, it is also necessary to engineer production strains with improved tolerance to these compounds. We demonstrate that microbial tolerance engineering using transcriptomics data can also identify targets that improve production. Our results include an exporter and a methionine biosynthesis regulator that improve isopentenol production, providing a starting point to further engineer the host for biogasoline production. Copyright © 2014 Foo et al.
Improving microbial biogasoline production in Escherichia coli using tolerance engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foo, Jee Loon; Jensen, Heather M.; Dahl, Robert H.
Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerancemore » phenotypes belonged to diverse functional groups, such as oxidative stress response ( soxS, fpr, and nrdH), general stress response ( metR, yqhD, and gidB), heat shock-related response ( ibpA), and transport ( mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production.The use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically viable production levels, it is also necessary to engineer production strains with improved tolerance to these compounds. We demonstrate that microbial tolerance engineering using transcriptomics data can also identify targets that improve production. Our results include an exporter and a methionine biosynthesis regulator that improve isopentenol production, providing a starting point to further engineer the host for biogasoline production.« less
Improving microbial biogasoline production in Escherichia coli using tolerance engineering
Foo, Jee Loon; Jensen, Heather M.; Dahl, Robert H.; ...
2014-11-04
Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerancemore » phenotypes belonged to diverse functional groups, such as oxidative stress response ( soxS, fpr, and nrdH), general stress response ( metR, yqhD, and gidB), heat shock-related response ( ibpA), and transport ( mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production.The use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically viable production levels, it is also necessary to engineer production strains with improved tolerance to these compounds. We demonstrate that microbial tolerance engineering using transcriptomics data can also identify targets that improve production. Our results include an exporter and a methionine biosynthesis regulator that improve isopentenol production, providing a starting point to further engineer the host for biogasoline production.« less
Vieira, Paulo; Eves-van den Akker, Sebastian; Verma, Ruchi; Wantoch, Sarah; Eisenback, Jonathan D.; Kamo, Kathryn
2015-01-01
The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic nematode, we used Illumina mRNA sequencing analysis of a mixed population, as well as nematode reads detected in infected soybean roots 3 and 7 days after nematode infection. Over 140 million paired end reads were obtained for this species, and de novo assembly resulted in a total of 23,715 transcripts. Homology searches showed significant hit matches to 58% of the total number of transcripts using different protein and EST databases. In general, the transcriptome of P. penetrans follows common features reported for other root lesion nematode species. We also explored the efficacy of RNAi, delivered from the host, as a strategy to control P. penetrans, by targeted knock-down of selected nematode genes. Different comparisons were performed to identify putative nematode genes with a role in parasitism, resulting in the identification of transcripts with similarities to other nematode parasitism genes. Focusing on the predicted nematode secreted proteins found in this transcriptome, we observed specific members to be up-regulated at the early time points of infection. In the present study, we observed an enrichment of predicted secreted proteins along the early time points of parasitism by this species, with a significant number being pioneer candidate genes. A representative set of genes examined using RT-PCR confirms their expression during the host infection. The expression patterns of the different candidate genes raise the possibility that they might be involved in critical steps of P. penetrans parasitism. This analysis sheds light on the transcriptional changes that accompany plant infection by P. penetrans, and will aid in identifying potential gene targets for selection and use to design effective control strategies against root lesion nematodes. PMID:26658731
The utility of transcriptomics in fish conservation.
Connon, Richard E; Jeffries, Ken M; Komoroske, Lisa M; Todgham, Anne E; Fangue, Nann A
2018-01-29
There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers. © 2018. Published by The Company of Biologists Ltd.
Comparative transcriptome response in swine tracheobronchial lymph nodes to viral infection
USDA-ARS?s Scientific Manuscript database
The tracheobronchial lymph node (TBLN) transcriptome response was evaluated following viral infection using Digital Gene Expression Tag Profiling (DGETP). Pigs were sham-treated or infected intranasally with porcine reproductive and respiratory syndrome virus, porcine circovirus type 2, pseudorabies...
Maruyama, Sandra R; Garcia, Gustavo R; Teixeira, Felipe R; Brandão, Lucinda G; Anderson, Jennifer M; Ribeiro, José M C; Valenzuela, Jesus G; Horackova, Jana; Veríssimo, Cecília J; Katiki, Luciana M; Banin, Tamy M; Zangirolamo, Amanda F; Gardinassi, Luiz G; Ferreira, Beatriz R; de Miranda-Santos, Isabel K F
2017-04-26
Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines. Different levels of host anti-tick immunity affected gene expression in tick salivary glands; we thus selected four proteins encoded by genes weakly expressed in ticks attempting to feed on resistant hosts or otherwise abundantly expressed in ticks fed on susceptible hosts; these sialoproteins mediate four functions of parasitism deployed by male ticks and that do not induce antibodies in naturally infected, susceptible bovines. We then evaluated in tick-susceptible heifers an alum-adjuvanted vaccine formulated with recombinant proteins. Parasite performance (i.e. weight and numbers of females finishing their parasitic cycle) and titres of antigen-specific antibodies were significantly reduced or increased, respectively, in vaccinated versus control heifers, conferring an efficacy of 73.2%; two of the antigens were strong immunogens, rich in predicted T-cell epitopes and challenge infestations boosted antibody responses against them. Mining sialotranscriptomes guided by the immunity of tick-resistant hosts selected important targets and infestations boosted immune memory against salivary antigens.
Heavner, Mary E.; Gueguen, Gwenaelle; Rajwani, Roma; Pagan, Pedro E.; Small, Chiyedza; Govind, Shubha
2013-01-01
Analysis of natural host-parasite relationships reveals the evolutionary forces that shape the delicate and unique specificity characteristic of such interactions. The accessory long gland-reservoir complex of the wasp Leptopilina heterotoma (Figitidae) produces venom with virus-like particles. Upon delivery, venom components delay host larval development and completely block host immune responses. The host range of this Drosophila endoparasitoid notably includes the highly-studied model organism, Drosophila melanogaster. Categorization of 827 unigenes, using similarity as an indicator of putative homology, reveals that approximately 25% are novel or classified as hypothetical proteins. Most of the remaining unigenes are related to processes involved in signaling, cell cycle, and cell physiology including detoxification, protein biogenesis, and hormone production. Analysis of L. heterotoma’s predicted venom gland proteins demonstrates conservation among endo- and ectoparasitoids within the Apocrita (e.g., this wasp and the jewel wasp Nasonia vitripennis) and stinging aculeates (e.g., the honey bee and ants). Enzyme and KEGG pathway profiling predicts that kinases, esterases, and hydrolases may contribute to venom activity in this unique wasp. To our knowledge, this investigation marks the first functional genomic study for a natural parasitic wasp of Drosophila. Our findings will help explain how L. heterotoma shuts down its hosts’ immunity and shed light on the molecular basis of a natural arms race between these insects. PMID:23688557
Chetouhi, Cherif; Bonhomme, Ludovic; Lasserre-Zuber, Pauline; Cambon, Florence; Pelletier, Sandra; Renou, Jean-Pierre; Langin, Thierry
2016-03-01
In many plant/pathogen interactions, host susceptibility factors are key determinants of disease development promoting pathogen growth and spreading in plant tissues. In the Fusarium head blight (FHB) disease, the molecular basis of wheat susceptibility is still poorly understood while it could provide new insights into the understanding of the wheat/Fusarium graminearum (Fg) interaction and guide future breeding programs to produce cultivars with sustainable resistance. To identify the wheat grain candidate genes, a genome-wide gene expression profiling was performed in the French susceptible wheat cultivar, Recital. Gene-specific two-way ANOVA of about 40 K transcripts at five grain developmental stages identified 1309 differentially expressed genes. Out of these, 536 were impacted by the Fg effect alone. Most of these Fg-responsive genes belonged to biological and molecular functions related to biotic and abiotic stresses indicating the activation of common stress pathways during susceptibility response of wheat grain to FHB. This analysis revealed also 773 other genes displaying either specific Fg-responsive profiles along with grain development stages or synergistic adjustments with the grain development effect. These genes were involved in various molecular pathways including primary metabolism, cell death, and gene expression reprogramming. An increasingly complex host response was revealed, as was the impact of both Fg infection and grain ontogeny on the transcription of wheat genes. This analysis provides a wealth of candidate genes and pathways involved in susceptibility responses to FHB and depicts new clues to the understanding of the susceptibility determinism in plant/pathogen interactions.
Georgii, Elisabeth; Jin, Ming; Zhao, Jin; Kanawati, Basem; Schmitt-Kopplin, Philippe; Albert, Andreas; Winkler, J Barbro; Schäffner, Anton R
2017-07-10
Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome may respond with different extent to individual stress components. Their contrasting behavior in response to temperature stress highlights that the protein folding machinery effectively shields the metabolism from stress. Disentangling the complex relationships between transcriptome and metabolome in response to stress is an enormous challenge. As demonstrated by case studies with supporting evidence from additional data, the large dataset provided in this study may assist in determining linked genetic and metabolic features as candidates for future mechanistic analyses.
Miyaji, Naomi; Shimizu, Motoki; Miyazaki, Junji; Osabe, Kenji; Sato, Maho; Ebe, Yusuke; Takada, Satoko; Kaji, Makoto; Dennis, Elizabeth S; Fujimoto, Ryo; Okazaki, Keiichi
2017-12-01
Resistant and susceptible lines in Brassica rapa have different immune responses against Fusarium oxysporum inoculation. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease of Brassicaceae; however, the mechanism of how host plants respond to Foc is still unknown. By comparing with and without Foc inoculation in both resistant and susceptible lines of Chinese cabbage (Brassica rapa var. pekinensis), we identified differentially expressed genes (DEGs) between the bulked inoculated (6, 12, 24, and 72 h after inoculation (HAI)) and non-inoculated samples. Most of the DEGs were up-regulated by Foc inoculation. Quantitative real-time RT-PCR showed that most up-regulated genes increased their expression levels from 24 HAI. An independent transcriptome analysis at 24 and 72 HAI was performed in resistant and susceptible lines. GO analysis using up-regulated genes at 24 HAI indicated that Foc inoculation activated systemic acquired resistance (SAR) in resistant lines and tryptophan biosynthetic process and responses to chitin and ethylene in susceptible lines. By contrast, GO analysis using up-regulated genes at 72 HAI showed the overrepresentation of some categories for the defense response in susceptible lines but not in the resistant lines. We also compared DEGs between B. rapa and Arabidopsis thaliana after F. oxysporum inoculation at the same time point, and identified genes related to defense response that were up-regulated in the resistant lines of Chinese cabbage and A. thaliana. Particular genes that changed expression levels overlapped between the two species, suggesting that they are candidates for genes involved in the resistance mechanisms against F. oxysporum.
Tsai, Alex Yi-Lin; Chan, Kin; Ho, Chi-Yip; Canam, Thomas; Capron, Resmi; Master, Emma R.; Bräutigam, Katharina
2017-01-01
The plant cell wall is an abundant and renewable resource for lignocellulosic applications such as the production of biofuel. Due to structural and compositional complexities, the plant cell wall is, however, recalcitrant to hydrolysis and extraction of platform sugars. A cell wall engineering strategy to reduce this recalcitrance makes use of microbial cell wall modifying enzymes that are expressed directly in plants themselves. Previously, we constructed transgenic Arabidopsis thaliana constitutively expressing the fungal hemicellulases: Phanerochaete carnosa glucurnoyl esterase (PcGCE) and Aspergillus nidulans α-arabinofuranosidase (AnAF54). While the PcGCE lines demonstrated improved xylan extractability, they also displayed chlorotic leaves leading to the hypothesis that expression of such enzymes in planta resulted in plant stress. The objective of this study is to investigate the impact of transgenic expression of the aforementioned microbial hemicellulases in planta on the host arabidopsis. More specifically, we investigated transcriptome profiles by short read high throughput sequencing (RNAseq) from developmentally distinct parts of the plant stem. When compared to non-transformed wild-type plants, a subset of genes was identified that showed differential transcript abundance in all transgenic lines and tissues investigated. Intriguingly, this core set of genes was significantly enriched for those involved in plant defense and biotic stress responses. While stress and defense-related genes showed increased transcript abundance in the transgenic plants regardless of tissue or genotype, genes involved in photosynthesis (light harvesting) were decreased in their transcript abundance potentially reflecting wide-spread effects of heterologous microbial transgene expression and the maintenance of plant homeostasis. Additionally, an increase in transcript abundance for genes involved in salicylic acid signaling further substantiates our finding that transgenic expression of microbial cell wall modifying enzymes induces transcriptome responses similar to those observed in defense responses. PMID:28253318
Adema, Coen M; Hanington, Patrick C.; Lun, Cheng-Man; Rosenberg, George H.; Aragon, Anthony D; Stout, Barbara A; Richard, Mara L. Lennard; Gross, Paul S.; Loker, Eric S
2009-01-01
A 70-mer oligonucleotide-based microarray (1152 features) that emphasizes stress and immune responses factors was constructed to study transcriptomic responses of the snail Biomphalaria glabrata to different immune challenges. In addition to sequences with relevant putative ID and Gene Ontology (GO) annotation, the array features non-immune factors and unknown B. glabrata ESTs for functional gene discovery. The transcription profiles of B. glabrata (3 biological replicates, each a pool of 5 snails) were recorded at 12 hours post wounding, exposure to Gram negative or Gram positive bacteria (Escherichia coli and Micrococcus luteus, respectively), or infection with compatible trematode parasites (S. mansoni or E. paraensei, 20 miracidia/snail), relative to controls, using universal reference RNA. The data were subjected to Significance Analysis for Microarrays (SAM), with a false positive rate (FPR) ≤10%. Wounding yielded a modest differential expression profile (27 up/21 down) with affected features mostly dissimilar from other treatments. Partially overlapping, yet distinct expression profiles were recorded from snails challenged with E. coli (83 up/20 down) or M. luteus (120 up/42 down), mostly showing up-regulation of defense and stress-related features. Significantly altered expression of selected immune features indicates that B. glabrata detects and responds differently to compatible trematodes. Echinostoma paraensei infection was associated mostly with down regulation of many (immune-) transcripts (42 up/68 down), whereas S. mansoni exposure yielded a preponderance of up-regulated features (140 up/23 down), with only few known immune genes affected. These observations may reflect the divergent strategies developed by trematodes during their evolution as specialized pathogens of snails to negate host defense responses. Clearly, the immune defenses of B. glabrata distinguish and respond differently to various immune challenges. PMID:19962194
Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection.
Bonizzoni, Mariangela; Dunn, W Augustine; Campbell, Corey L; Olson, Ken E; Marinotti, Osvaldo; James, Anthony A
2012-01-01
Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1-4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.
Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup
2016-01-01
Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation. PMID:26838068
Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup
2016-02-03
Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation.
Kolliopoulou, Anna; Van Nieuwerburgh, Filip; Stravopodis, Dimitrios J.; Deforce, Dieter; Swevers, Luc; Smagghe, Guy
2015-01-01
Many insects can be persistently infected with viruses but do not show any obvious adverse effects with respect to physiology, development or reproduction. Here, Bombyx mori strain Daizo, persistently infected with cytoplasmic polyhedrosis virus (BmCPV), was used to study the host’s transcriptional response after pathogenic infection with the same virus in midgut tissue of larvae persistently and pathogenically infected as 2nd and 4th instars. Next generation sequencing revealed that from 13,769 expressed genes, 167 were upregulated and 141 downregulated in both larval instars following pathogenic infection. Several genes that could possibly be involved in B. mori immune response against BmCPV or that may be induced by the virus in order to increase infectivity were identified, whereas classification of differentially expressed transcripts (confirmed by qRT-PCR) resulted in gene categories related to physical barriers, immune responses, proteolytic / metabolic enzymes, heat-shock proteins, hormonal signaling and uncharacterized proteins. Comparison of our data with the available literature (pathogenic infection of persistently vs. non-persistently infected larvae) unveiled various similarities of response in both cases, which suggests that pre-existing persistent infection does not affect in a major way the transcriptome response against pathogenic infection. To investigate the possible host’s RNAi response against BmCPV challenge, the differential expression of RNAi-related genes and the accumulation of viral small RNAs (vsRNAs) were studied. During pathogenic infection, siRNA-like traces like the 2-fold up-regulation of the core RNAi genes Ago-2 and Dcr-2 as well as a peak of 20 nt small RNAs were observed. Interestingly, vsRNAs of the same size were detected at lower rates in persistently infected larvae. Collectively, our data provide an initial assessment of the relative significance of persistent infection of silkworm larvae on the host response following pathogenic infection with CPV, while they also highlight the relative importance of RNAi as an antiviral mechanism. PMID:25816294
Marcilla, Antonio; Garg, Gagan; Bernal, Dolores; Ranganathan, Shoba; Forment, Javier; Ortiz, Javier; Muñoz-Antolí, Carla; Dominguez, M. Victoria; Pedrola, Laia; Martinez-Blanch, Juan; Sotillo, Javier; Trelis, Maria; Toledo, Rafael; Esteban, J. Guillermo
2012-01-01
Background Strongyloidiasis is one of the most neglected diseases distributed worldwide with endemic areas in developed countries, where chronic infections are life threatening. Despite its impact, very little is known about the molecular biology of the parasite involved and its interplay with its hosts. Next generation sequencing technologies now provide unique opportunities to rapidly address these questions. Principal Findings Here we present the first transcriptome of the third larval stage of S. stercoralis using 454 sequencing coupled with semi-automated bioinformatic analyses. 253,266 raw sequence reads were assembled into 11,250 contiguous sequences, most of which were novel. 8037 putative proteins were characterized based on homology, gene ontology and/or biochemical pathways. Comparison of the transcriptome of S. strongyloides with those of other nematodes, including S. ratti, revealed similarities in transcription of molecules inferred to have key roles in parasite-host interactions. Enzymatic proteins, like kinases and proteases, were abundant. 1213 putative excretory/secretory proteins were compiled using a new pipeline which included non-classical secretory proteins. Potential drug targets were also identified. Conclusions Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic and metabolomic explorations of S. stercoralis, as well as a basis for applied outcomes, such as the development of novel methods of intervention against this neglected parasite. PMID:22389732
Global Transcriptome Analysis of Staphylococcus aureus Response to Hydrogen Peroxide†
Chang, Wook; Small, David A.; Toghrol, Freshteh; Bentley, William E.
2006-01-01
Staphylococcus aureus responds with protective strategies against phagocyte-derived reactive oxidants to infect humans. Herein, we report the transcriptome analysis of the cellular response of S. aureus to hydrogen peroxide-induced oxidative stress. The data indicate that the oxidative response includes the induction of genes involved in virulence, DNA repair, and notably, anaerobic metabolism. PMID:16452450
Chelomina, G N
2017-01-01
The review summarizes the results of first genomic and transcriptomic investigations of the liver fluke Clonorchis sinensis (Opisthorchiidae, Trematoda). The studies mark the dawn of the genomic era for opisthorchiids, which cause severe hepatobiliary diseases in humans and animals. Their results aided in understanding the molecular mechanisms of adaptation to parasitism, parasite survival in mammalian biliary tracts, and genome dynamics in the individual development and the development of parasite-host relationships. Special attention is paid to the achievements in studying the codon usage bias and the roles of mobile genetic elements (MGEs) and small interfering RNAs (siRNAs). Interspecific comparisons at the genomic and transcriptomic levels revealed molecular differences, which may contribute to understanding the specialized niches and physiological needs of the respective species. The studies in C. sinensis provide a basis for further basic and applied research in liver flukes and, in particular, the development of efficient means to prevent, diagnose, and treat clonorchiasis.
Massively parallel digital transcriptional profiling of single cells
Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A.; Nishimura, Stefanie Y.; Schnall-Levin, Michael; Wyatt, Paul W.; Hindson, Christopher M.; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D.; Beppu, Lan W.; Deeg, H. Joachim; McFarland, Christopher; Loeb, Keith R.; Valente, William J.; Ericson, Nolan G.; Stevens, Emily A.; Radich, Jerald P.; Mikkelsen, Tarjei S.; Hindson, Benjamin J.; Bielas, Jason H.
2017-01-01
Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. PMID:28091601
Transcriptomic responses to wounding: meta-analysis of gene expression microarray data.
Sass, Piotr Andrzej; Dąbrowski, Michał; Charzyńska, Agata; Sachadyn, Paweł
2017-11-07
A vast amount of microarray data on transcriptomic response to injury has been collected so far. We designed the analysis in order to identify the genes displaying significant changes in expression after wounding in different organisms and tissues. This meta-analysis is the first study to compare gene expression profiles in response to wounding in as different tissues as heart, liver, skin, bones, and spinal cord, and species, including rat, mouse and human. We collected available microarray transcriptomic profiles obtained from different tissue injury experiments and selected the genes showing a minimum twofold change in expression in response to wounding in prevailing number of experiments for each of five wound healing stages we distinguished: haemostasis & early inflammation, inflammation, early repair, late repair and remodelling. During the initial phases after wounding, haemostasis & early inflammation and inflammation, the transcriptomic responses showed little consistency between different tissues and experiments. For the later phases, wound repair and remodelling, we identified a number of genes displaying similar transcriptional responses in all examined tissues. As revealed by ontological analyses, activation of certain pathways was rather specific for selected phases of wound healing, such as e.g. responses to vitamin D pronounced during inflammation. Conversely, we observed induction of genes encoding inflammatory agents and extracellular matrix proteins in all wound healing phases. Further, we selected several genes differentially upregulated throughout different stages of wound response, including established factors of wound healing in addition to those previously unreported in this context such as PTPRC and AQP4. We found that transcriptomic responses to wounding showed similar traits in a diverse selection of tissues including skin, muscles, internal organs and nervous system. Notably, we distinguished transcriptional induction of inflammatory genes not only in the initial response to wounding, but also later, during wound repair and tissue remodelling.
Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...
Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...
Vadnal, Jonathan; Ratnappan, Ramesh; Keaney, Melissa; Kenney, Eric; Eleftherianos, Ioannis; O'Halloran, Damien; Hawdon, John M
2017-01-03
Despite important progress in the field of innate immunity, our understanding of host immune responses to parasitic nematode infections lags behind that of responses to microbes. A limiting factor has been the obligate requirement for a vertebrate host which has hindered investigation of the parasitic nematode infective process. The nematode parasite Heterorhabditis bacteriophora offers great potential as a model to genetically dissect the process of infection. With its mutualistic Photorhabdus luminescens bacteria, H. bacteriophora invades multiple species of insects, which it kills and exploits as a food source for the development of several nematode generations. The ability to culture the life cycle of H. bacteriophora on plates growing the bacterial symbiont makes it a very exciting model of parasitic infection that can be used to unlock the molecular events occurring during infection of a host that are inaccessible using vertebrate hosts. To profile the transcriptional response of an infective nematode during the early stage of infection, we performed next generation RNA sequencing on H. bacteriophora IJs incubated in Manduca sexta hemolymph plasma for 9 h. A subset of up-regulated and down-regulated genes were validated using qRT-PCR. Comparative analysis of the transcriptome with untreated controls found a number of differentially expressed genes (DEGs) which cover a number of different functional categories. A subset of DEGs is conserved across Clade V parasitic nematodes revealing an array of candidate parasitic genes. Our analysis reveals transcriptional changes in the regulation of a large number of genes, most of which have not been shown previously to play a role in the process of infection. A significant proportion of these genes are unique to parasitic nematodes, suggesting the identification of a group of parasitism factors within nematodes. Future studies using these candidates may provide functional insight into the process of nematode parasitism and also the molecular evolution of parasitism within nematodes.
High Throughput Transcriptomics @ USEPA (Toxicology ...
The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest. Responses should ideally be translated into tissue-, organ-, and organism-level effects. It must be economical and scalable. Using a High Throughput Transcriptomics platform within US EPA provides broader coverage of biological activity space and toxicological MOAs and helps fill the toxicological data gap. Slide presentation at the 2016 ToxForum on using High Throughput Transcriptomics at US EPA for broader coverage biological activity space and toxicological MOAs.
Dettleff, Phillip; Moen, Thomas; Santi, Nina; Martinez, Victor
2017-02-01
The infectious salmon anemia virus (ISAv) produces a systemic infection in salmonids, causing large losses in salmon production. However, little is known regarding the mechanisms exerting disease resistance. In this paper, we perform an RNA-seq analysis in Atlantic salmon challenged with ISAv (using individuals coming from families that were highly susceptible or highly resistant to ISAv infection). We evaluated the differential expression of both host and ISAv genes in a target organ for the virus, i.e. the spleen. The results showed differential expression of host genes related to response to stress, immune response and protein folding (genes such as; atf3, mhc, mx1-3, cd276, cd2, cocs1, c7, il10, il10rb, il13ra2, ubl-1, ifng, ifngr1, hivep2, sigle14 and sigle5). An increased protein processing activity was found in susceptible fish, which generates a subsequent unfolded protein response. We observed extreme differences in the expression of viral segments between susceptible and resistant groups, demonstrating the capacity of resistant fish to overcome the virus replication, generating a very low viral load. This phenomenon and survival of this higher resistant fish seem to be related to differences in immune and translational process, as well as to the increase of HIV-EP2 (hivep2) transcript in resistant fish, although the causal mechanism is yet to be discovered. This study provides valuable information about disease resistance mechanisms in Atlantic salmon from a host-pathogen interaction point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cole, Steven W.; Capitanio, John P.; Chun, Katie; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cacioppo, John T.
2015-01-01
To define the cellular mechanisms of up-regulated inflammatory gene expression and down-regulated antiviral response in people experiencing perceived social isolation (loneliness), we conducted integrative analyses of leukocyte gene regulation in humans and rhesus macaques. Five longitudinal leukocyte transcriptome surveys in 141 older adults showed up-regulation of the sympathetic nervous system (SNS), monocyte population expansion, and up-regulation of the leukocyte conserved transcriptional response to adversity (CTRA). Mechanistic analyses in a macaque model of perceived social isolation confirmed CTRA activation and identified selective up-regulation of the CD14++/CD16− classical monocyte transcriptome, functional glucocorticoid desensitization, down-regulation of Type I and II interferons, and impaired response to infection by simian immunodeficiency virus (SIV). These analyses identify neuroendocrine-related alterations in myeloid cell population dynamics as a key mediator of CTRA transcriptome skewing, which may both propagate perceived social isolation and contribute to its associated health risks. PMID:26598672
He, Jiali; Li, Hong; Luo, Jie; Ma, Chaofeng; Li, Shaojun; Qu, Long; Gai, Ying; Jiang, Xiangning; Janz, Dennis; Polle, Andrea; Tyree, Melvin; Luo, Zhi-Bin
2013-01-01
Bark tissue of Populus × canescens can hyperaccumulate cadmium, but microstructural, transcriptomic, and physiological response mechanisms are poorly understood. Histochemical assays, transmission electron microscopic observations, energy-dispersive x-ray microanalysis, and transcriptomic and physiological analyses have been performed to enhance our understanding of cadmium accumulation and detoxification in P. × canescens. Cadmium was allocated to the phloem of the bark, and subcellular cadmium compartmentalization occurred mainly in vacuoles of phloem cells. Transcripts involved in microstructural alteration, changes in nutrition and primary metabolism, and stimulation of stress responses showed significantly differential expression in the bark of P. × canescens exposed to cadmium. About 48% of the differentially regulated transcripts formed a coregulation network in which 43 hub genes played a central role both in cross talk among distinct biological processes and in coordinating the transcriptomic regulation in the bark of P. × canescens in response to cadmium. The cadmium transcriptome in the bark of P. × canescens was mirrored by physiological readouts. Cadmium accumulation led to decreased total nitrogen, phosphorus, and calcium and increased sulfur in the bark. Cadmium inhibited photosynthesis, resulting in decreased carbohydrate levels. Cadmium induced oxidative stress and antioxidants, including free proline, soluble phenolics, ascorbate, and thiol compounds. These results suggest that orchestrated microstructural, transcriptomic, and physiological regulation may sustain cadmium hyperaccumulation in P. × canescens bark and provide new insights into engineering woody plants for phytoremediation. PMID:23530184
Transcriptome analysis of Vibrio parahaemolyticus in type III secretion system 1 inducing conditions
Nydam, Seth D.; Shah, Devendra H.; Call, Douglas R.
2014-01-01
Vibrio parahaemolyticus is an emerging bacterial pathogen capable of causing inflammatory gastroenteritis, wound infections, and septicemia. As a food-borne illness, infection is most frequently associated with the consumption of raw or undercooked seafood, particularly shellfish. It is the primary cause of Vibrio-associated food-borne illness in the United States and the leading cause of food-borne illness in Japan. The larger of its two chromosomes harbors a set of genes encoding type III section system 1 (T3SS1), a virulence factor present in all V. parahaemolyticus strains that is similar to the Yersinia ysc T3SS. T3SS1 translocates effector proteins into eukaryotic cells where they induce changes to cellular physiology and modulate host-pathogen interactions. T3SS1 is also responsible for cytotoxicity toward several different cultured cell lines as well as mortality in a mouse model. Herein we used RNA-seq to obtain global transcriptome patterns of V. parahaemolyticus under conditions that either induce [growth in Dulbecco's Modified Eagle Medium (DMEM) media, in trans expression of transcriptional regulator exsA] or repress T3SS1 expression (growth in LB-S media, in trans exsD expression) and during infection of HeLa cells over time. Comparative transcriptomic analysis demonstrated notable differences in the expression patterns under inducing conditions and was also used to generate an expression profile of V. parahaemolyticus during infection of HeLa cells. In addition, we identified several new genes that are associated with T3SS1 expression and may warrant further study. PMID:24478989
The Cryptococcus neoformans Transcriptome at the Site of Human Meningitis
Chen, Yuan; Toffaletti, Dena L.; Tenor, Jennifer L.; Litvintseva, Anastasia P.; Fang, Charles; Mitchell, Thomas G.; McDonald, Tami R.; Nielsen, Kirsten; Boulware, David R.; Bicanic, Tihana; Perfect, John R.
2014-01-01
ABSTRACT Cryptococcus neoformans is the leading cause of fungal meningitis worldwide. Previous studies have characterized the cryptococcal transcriptome under various stress conditions, but a comprehensive profile of the C. neoformans transcriptome in the human host has not been attempted. Here, we extracted RNA from yeast cells taken directly from the cerebrospinal fluid (CSF) of two AIDS patients with cryptococcal meningitis prior to antifungal therapy. The patients were infected with strains of C. neoformans var. grubii of molecular type VNI and VNII. Using RNA-seq, we compared the transcriptional profiles of these strains under three environmental conditions (in vivo CSF, ex vivo CSF, and yeast extract-peptone-dextrose [YPD]). Although we identified a number of differentially expressed genes, single nucleotide variants, and novel genes that were unique to each strain, the overall expression patterns of the two strains were similar under the same environmental conditions. Specifically, yeast cells obtained directly from each patient’s CSF were more metabolically active than cells that were incubated ex vivo in CSF. Compared with growth in YPD, some genes were identified as significantly upregulated in both in vivo and ex vivo CSF, and they were associated with genes previously recognized for contributing to pathogenicity. For example, genes with known stress response functions, such as RIM101, ENA1, and CFO1, were regulated similarly in the two clinical strains. Conversely, many genes that were differentially regulated between the two strains appeared to be transporters. These findings establish a platform for further studies of how this yeast survives and produces disease. PMID:24496797
Polymicrobial periodontal pathogens transcriptomes in calvarial bone and soft tissue
Bakthavatchalu, Vasudevan; Meka, Archana; Mans, Jeffrey J.; Sathishkumar, Sabapathi; Lopez, M. Cecilia; Bhattacharyya, Indraneel; Boyce, Brendan F.; Baker, Henry V.; Lamont, Richard J.; Ebersole, Jeffrey L.; Kesavalu, L.
2011-01-01
Summary Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia are consistently associated with adult periodontitis. This study sought to document the host transcriptome to a P. gingivalis, T. denticola, and T. forsythia challenge as a polymicrobial infection using a murine calvarial model of acute inflammation and bone resorption. Mice were infected with P. gingivalis, T. denticola, and T. forsythia over the calvaria, after which the soft tissues and calvarial bones were excised. A Murine GeneChip® array analysis of transcript profiles showed that 6997 genes were differentially expressed in calvarial bones (P < 0.05) and 1544 genes were differentially transcribed in the inflamed tissues after the polymicrobial infection. Of these genes, 4476 and 1035 genes in the infected bone and tissues were differentially expressed by upregulation. Biological pathways significantly impacted by the polymicrobial infection in calvarial bone included leukocyte transendothelial migration (LTM), cell adhesion molecules, adherens junction, major histocompatibility complex antigen, extracellular matrix-receptor interaction (ECM), and antigen processing and presentation resulting in inflammatory/cytokine/chemokine transcripts stimulation in bone and soft tissue. Intense inflammation and increased activated osteoclasts was observed in calvarias compared to sham-infected controls. Quantitative real-time RT-PCR analysis confirmed mRNA level of selected genes corresponded with the microarray expression. The polymicrobial infection regulated several LTM and extracellular membrane (ECM) pathway genes in a manner distinct from monoinfection with P. gingivalis, T. denticola, or T. forsythia. To our knowledge, this is the first definition of the polymicrobial induced transcriptome in calvarial bone and soft tissue in response to periodontal pathogens. PMID:21896157
Saulnier, Delphine M; Santos, Filipe; Roos, Stefan; Mistretta, Toni-Ann; Spinler, Jennifer K; Molenaar, Douwe; Teusink, Bas; Versalovic, James
2011-04-29
The genomes of four Lactobacillus reuteri strains isolated from human breast milk and the gastrointestinal tract have been recently sequenced as part of the Human Microbiome Project. Preliminary genome comparisons suggested that these strains belong to two different clades, previously shown to differ with respect to antimicrobial production, biofilm formation, and immunomodulation. To explain possible mechanisms of survival in the host and probiosis, we completed a detailed genomic comparison of two breast milk-derived isolates representative of each group: an established probiotic strain (L. reuteri ATCC 55730) and a strain with promising probiotic features (L. reuteri ATCC PTA 6475). Transcriptomes of L. reuteri strains in different growth phases were monitored using strain-specific microarrays, and compared using a pan-metabolic model representing all known metabolic reactions present in these strains. Both strains contained candidate genes involved in the survival and persistence in the gut such as mucus-binding proteins and enzymes scavenging reactive oxygen species. A large operon predicted to encode the synthesis of an exopolysaccharide was identified in strain 55730. Both strains were predicted to produce health-promoting factors, including antimicrobial agents and vitamins (folate, vitamin B(12)). Additionally, a complete pathway for thiamine biosynthesis was predicted in strain 55730 for the first time in this species. Candidate genes responsible for immunomodulatory properties of each strain were identified by transcriptomic comparisons. The production of bioactive metabolites by human-derived probiotics may be predicted using metabolic modeling and transcriptomics. Such strategies may facilitate selection and optimization of probiotics for health promotion, disease prevention and amelioration.
Whitfield, A E; Rotenberg, D; Aritua, V; Hogenhout, S A
2011-04-01
The corn planthopper, Peregrinus maidis, causes direct feeding damage to plants and transmits Maize mosaic rhabdovirus (MMV) in a persistent-propagative manner. MMV must cross several insect tissue layers for successful transmission to occur, and the gut serves as an important barrier for rhabdovirus transmission. In order to facilitate the identification of proteins that may interact with MMV either by facilitating acquisition or responding to virus infection, we generated and analysed the gut transcriptome of P. maidis. From two normalized cDNA libraries, we generated a P. maidis gut transcriptome composed of 20,771 expressed sequence tags (ESTs). Assembly of the sequences yielded 1860 contigs and 14,032 singletons, and biological roles were assigned to 5793 (36%). Comparison of P. maidis ESTs with other insect amino acid sequences revealed that P. maidis shares greatest sequence similarity with another hemipteran, the brown planthopper Nilaparvata lugens. We identified 202 P. maidis transcripts with putative homology to proteins associated with insect innate immunity, including those implicated in the Toll, Imd, JAK/STAT, Jnk and the small-interfering RNA-mediated pathways. Sequence comparisons between our P. maidis gut EST collection and the currently available National Center for Biotechnology Information EST database collection for Ni. lugens revealed that a pathogen recognition receptor in the Imd pathway, peptidoglycan recognition protein-long class (PGRP-LC), is present in these two members of the family Delphacidae; however, these recognition receptors are lacking in the model hemipteran Acyrthosiphon pisum. In addition, we identified sequences in the P. maidis gut transcriptome that share significant amino acid sequence similarities with the rhabdovirus receptor molecule, acetylcholine receptor (AChR), found in other hosts. This EST analysis sheds new light on immune response pathways in hemipteran guts that will be useful for further dissecting innate defence response pathways to rhabdovirus infection. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.
Zeng, Huicai; Fan, Dingding; Zhu, Yabin; Feng, Yue; Wang, Guofen; Peng, Chunfang; Jiang, Xuanting; Zhou, Dajie; Ni, Peixiang; Liang, Changcong; Liu, Lei; Wang, Jun; Mao, Chao
2014-01-01
Background The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. Methodology/Principal Findings Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’. Conclusions/Significance Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance us develop effective methods for managing the banana vascular wilt disease, including improvement of disease resistance in banana. PMID:24743270
Kim, Min Su; Ko, Young-Joon; Maeng, Shinae; Floyd, Anna; Heitman, Joseph; Bahn, Yong-Sun
2010-08-01
Carbon dioxide (CO(2)) sensing and metabolism via carbonic anhydrases (CAs) play pivotal roles in survival and proliferation of pathogenic fungi infecting human hosts from natural environments due to the drastic difference in CO(2) levels. In Cryptococcus neoformans, which causes fatal fungal meningoencephalitis, the Can2 CA plays essential roles during both cellular growth in air and sexual differentiation of the pathogen. However the signaling networks downstream of Can2 are largely unknown. To address this question, the present study employed comparative transcriptome DNA microarray analysis of a C. neoformans strain in which CAN2 expression is artificially controlled by the CTR4 (copper transporter) promoter. The P(CTR4)CAN2 strain showed growth defects in a CO(2)-dependent manner when CAN2 was repressed but resumed normal growth when CAN2 was overexpressed. The Can2-dependent genes identified by the transcriptome analysis include FAS1 (fatty acid synthase 1) and GPB1 (G-protein beta subunit), supporting the roles of Can2 in fatty acid biosynthesis and sexual differentiation. Cas3, a capsular structure designer protein, was also discovered to be Can2-dependent and yet was not involved in CO(2)-mediated capsule induction. Most notably, a majority of Can2-dependent genes were environmental stress-regulated (ESR) genes. Supporting this, the CAN2 overexpression strain was hypersensitive to oxidative and genotoxic stress as well as antifungal drugs, such as polyene and azole drugs, potentially due to defective membrane integrity. Finally, an oxidative stress-responsive Atf1 transcription factor was also found to be Can2-dependent. Atf1 not only plays an important role in diverse stress responses, including thermotolerance and antifungal drug resistance, but also represses melanin and capsule production in C. neoformans. In conclusion, this study provides insights into the comprehensive signaling networks orchestrated by CA/CO(2)-sensing pathways in pathogenic fungi.
James, Garth A; Ge Zhao, Alice; Usui, Marcia; Underwood, Robert A; Nguyen, Hung; Beyenal, Haluk; deLancey Pulcini, Elinor; Agostinho Hunt, Alessandra; Bernstein, Hans C; Fleckman, Philip; Olerud, John; Williamson, Kerry S; Franklin, Michael J; Stewart, Philip S
2016-03-01
Biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms and by the responding leukocytes, may impede wound healing by depleting the oxygen that is required for healing. In this study, oxygen microsensors to measure oxygen transects through in vitro cultured biofilms, biofilms formed in vivo within scabs from a diabetic (db/db) mouse wound model, and ex vivo human chronic wound specimens was used. The results showed that oxygen levels within mouse scabs had steep gradients that reached minima ranging from 17 to 72 mmHg on live mice and from 6.4 to 1.1 mmHg on euthanized mice. The oxygen gradients in the mouse scabs were similar to those observed for clinical isolates cultured in vitro and for human ex vivo specimens. To characterize the metabolic activities of the bacteria in the mouse scabs, transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds was performed. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results also indicated that the bacteria within the wounds experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results supported the hypothesis that bacterial biofilms in chronic wounds promote chronicity by contributing to the maintenance of localized low oxygen tensions, through their metabolic activities and through their recruitment of cells that consume oxygen for host defensive processes. © 2016 by the Wound Healing Society.
Yi, Xin; Qi, Jiangwei; Zhou, Xiaofan; Hu, Mei Ying; Zhong, Guo Hua
2017-03-22
While it has been well characterized that chemosensory receptors in guts of mammals have great influence on food preference, much remains elusive in insects. Insect chemosensory proteins (CSPs) are soluble proteins that could deliver chemicals to olfactory and gustatory receptors. Recent studies have identified a number of CSPs expressed in midgut in Lepidoptera insects, which started to reveal their roles in chemical recognition and stimulating appetite in midgut. In this study, we examined expression patterns in midgut of 21 Spodoptera litura CSPs (SlitCSPs) characterized from a previously reported transcriptome, and three CSPs were identified to be expressed highly in midgut. The orthologous relationships between midgut expressed CSPs in S. litura and those in Bombyx mori and Plutella xylostella also suggest a conserved pattern of CSP expression in midgut. We further demonstrated that the expression of midgut-CSPs may change in response to different host plants, and SlitCSPs could bind typical chemicals from host plant in vitro. Overall, our results suggested midgut expressed SlitCSPs may have functional roles, likely contributing to specialization and adaption to different ecosystems. Better knowledge of this critical component of the chemsensation signaling pathways in midguts may improve our understanding of food preference processes in a new perspective.
Uncovering the molecular networks in periodontitis
Trindade, Fábio; Oppenheim, Frank G.; Helmerhorst, Eva J.; Amado, Francisco; Gomes, Pedro S.; Vitorino, Rui
2015-01-01
Periodontitis is a complex immune-inflammatory disease that results from a preestablished infection in gingiva, mainly due to Gram-negative bacteria that colonize deeper in gingival sulcus and latter periodontal pocket. Host inflammatory and immune responses have both protective and destructive roles. Although cytokines, prostaglandins, and proteases struggle against microbial burden, these molecules promote connective tissue loss and alveolar bone resorption, leading to several histopathological changes, namely destruction of periodontal ligament, deepening of periodontal pocket, and bone loss, which can converge to attain tooth loss. Despite the efforts of genomics, transcriptomics, proteomics/peptidomics, and metabolomics, there is no available biomarker for periodontitis diagnosis, prognosis, and treatment evaluation, which could assist on the established clinical evaluation. Nevertheless, some genes, transcripts, proteins and metabolites have already shown a different expression in healthy subjects and in patients. Though, so far, ‘omics approaches only disclosed the host inflammatory response as a consequence of microbial invasion in periodontitis and the diagnosis in periodontitis still relies on clinical parameters, thus a molecular tool for assessing periodontitis lacks in current dental medicine paradigm. Saliva and gingival crevicular fluid have been attracting researchers due to their diagnostic potential, ease, and noninvasive nature of collection. Each one of these fluids has some advantages and disadvantages that are discussed in this review. PMID:24828325
Sela, David A; Mills, David A
2014-03-01
Broadly, nutrigenomics examines the association of exogenous nutrients and molecular responses to maintain homeostasis in an individual. Phenotypic expression profiling, often transcriptomics, has been applied to identify markers and metabolic consequences of suboptimal diet, lifestyle, or both. The decade after the Human Genome Project has been marked with advances in high-throughput analysis of biological polymers and metabolites, prompting a rapid increase in characterization of the profound nature by which our symbiotic microbiota influences human physiology. Although the technology is widely accessible to assess microbiome composition, genetic potential, and global function, nutrigenomics studies often exclude the microbial contribution to host responses to ingested nutritive molecules. Perhaps a hallmark of coevolution, milk provides a dramatic example of a diet that promotes a particular microbial community structure, because the lower infant gastrointestinal tract is often dominated by bifidobacteria that flourish on milk glycans. Systems-level approaches should continue to be applied to examine the microbial communities in the context of their host's dietary habits and metabolic status. In addition, studies of isolated microbiota species should be encouraged to inform clinical studies and interventions as well as community studies. Whereas nutrigenomics research is beginning to account for resident microbiota, the need remains to consistently consider our microscopic partners in the human holobiont.
Anstead, Clare A; Batterham, Philip; Korhonen, Pasi K; Young, Neil D; Hall, Ross S; Bowles, Vernon M; Richards, Stephen; Scott, Maxwell J; Gasser, Robin B
2016-01-01
The blow fly, Lucilia cuprina (Wiedemann, 1830) is a parasitic insect of major global economic importance. Maggots of this fly parasitize the skin of animal hosts, feed on excretions and tissues, and cause severe disease (flystrike or myiasis). Although there has been considerable research on L. cuprina over the years, little is understood about the molecular biology, biochemistry and genetics of this parasitic fly, as well as its relationship with its hosts and the disease that it causes. This situation might change with the recent report of the draft genome and transcriptome of this blow fly, which has given new and global insights into its biology, interactions with the host animal and aspects of insecticide resistance at the molecular level. This genomic resource will likely enable many fundamental and applied research areas in the future. The present article gives a background on L. cuprina and myiasis, a brief account of past and current treatment, prevention and control approaches, and provides a perspective on the impact that the L. cuprina genome should have on future research of this and related parasitic flies, and the design of new and improved interventions for myiasis. Copyright © 2016 Elsevier Inc. All rights reserved.
Zheng, Ping; Wang, Minxiao; Li, Chaolun; Sun, Xiaoqing; Wang, Xiaocheng; Sun, Yan; Sun, Song
2017-10-01
Mussels (Bivalve: Mytilidae) have adapted to various habitats, from fresh water to the deep sea. To understand their adaptive characteristics in different habitats, particularly in the bathymodiolin mussels in deep-sea chemosynthetic ecosystems, we conducted a comparative transcriptomic analysis between deep-sea bathymodiolin mussels and their shallow-water relatives. A number of gene families related to stress responses were shared across all mussels, without specific or significantly expanded families in deep-sea species, indicating that all mussels are capable of adapting to diverse harsh environments, but that different members of the same gene family may be preferentially utilized by different species. One of the most extraordinary trait of bathymodiolin mussels is their endosymbiosis. Lineage-specific and positively selected TLRs and highly expressed C1QDC proteins were identified in the gills of the bathymodiolins, suggesting their possible functions in symbiont recognition. However, pattern recognition receptors of the bathymodiolins were globally reduced, facilitating the invasion and maintenance of the symbionts obtained by either endocytosis or phagocytosis. Additionally, various transporters were positively selected or more highly expressed in the deep-sea mussels, indicating a means by which necessary materials could be provided for the symbionts. Key genes supporting lysosomal activity were also positively selected or more highly expressed in the deep-sea mussels, suggesting that nutrition fixed by the symbionts can be absorbed in a "farming" way wherein the symbionts are digested by lysosomes. Regulation of key physiological processes including lysosome activity, apoptosis and immune reactions is needed to maintain a stable host-symbiont relationship, but the mechanisms are still unclear. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
2013-01-01
Background Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infection in young children. The degree of disease severity is determined by the host response to infection. Lung macrophages play an important early role in the host response to infection and we have used a systems-based approach to examine the host response in RSV-infected lung-derived macrophage cells. Results Lung macrophage cells could be efficiently infected (>95%) with RSV in vitro, and the expression of several virus structural proteins could be detected. Although we failed to detect significant levels of virus particle production, virus antigen could be detected up until 96 hours post-infection (hpi). Microarray analysis indicated that 20,086 annotated genes were expressed in the macrophage cells, and RSV infection induced an 8.9% and 11.3% change in the global gene transcriptome at 4 hpi and 24 hpi respectively. Genes showing up-regulated expression were more numerous and exhibited higher changes in expression compared to genes showing down-regulated expression. Based on gene ontology, genes with cytokine, antiviral, cell death, and signal transduction functions showed the highest increases in expression, while signalling transduction, RNA binding and protein kinase genes showed the greatest reduction in expression levels. Analysis of the global gene expression profile using pathway enrichment analysis confirmed that up-regulated expression of pathways related to pathogen recognition, interferon signalling and antigen presentation occurred in the lung macrophage cells challenged with RSV. Conclusion Our data provided a comprehensive analysis of RSV-induced gene expression changes in lung macrophages. Although virus gene expression was detected, our data was consistent with an abortive infection and this correlated with the activation of several antivirus signalling pathways such as interferon type I signalling and cell death signalling. RSV infection induced a relatively large increase in pro-inflammatory cytokine expression, however the maintenance of this pro-inflammatory response was not dependent on the production of infectious virus particles. The sustained pro-inflammatory response even in the absence of a productive infection suggests that drugs that control the pro-inflammatory response may be useful in the treatment of patients with severe RSV infection. PMID:23506210
Molnár, István; Lopez, David; Wisecaver, Jennifer H; Devarenne, Timothy P; Weiss, Taylor L; Pellegrini, Matteo; Hackett, Jeremiah D
2012-10-30
Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy. A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated. The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome sequence for the Showa strain of B. braunii, race B. Further, the transcriptome database empowers future biosynthetic engineering approaches for strain improvement and the transfer of desirable traits to heterologous hosts.
2012-01-01
Background Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy. Results A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated. Conclusions The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome sequence for the Showa strain of B. braunii, race B. Further, the transcriptome database empowers future biosynthetic engineering approaches for strain improvement and the transfer of desirable traits to heterologous hosts. PMID:23110428
Remodeling of tick cytoskeleton in response to infection with Anaplasma phagocytophilum.
Cabezas-Cruz, Alejandro; Alberdi, Pilar; Valdes, James J; Villar, Margarita; de la Fuente, Jose
2017-06-01
The obligate intracellular pathogen Anaplasma phagocytophilum infects vertebrate and tick hosts. In this study, a genome-wide search for cytoskeleton components was performed in the tick vector, Ixodes scapularis . The available transcriptomics and proteomics data was then used to characterize the mRNA and protein levels of I. scapularis cytoskeleton components in response to A. phagocytophilum infection. The results showed that cytoskeleton components described in other model organisms were present in the I. scapularis genome. One type of intermediate filaments (lamin), a family of septins that was recently implicated in the cellular response to intracellular pathogens, and several members of motor proteins (kinesins and dyneins) that could be implicated in the cytoplasmic movements of A. phagocytophilum were found. The results showed that levels of tubulin, actin, septin, actin-related proteins and motor proteins were affected by A. phagocytophilum , probably to facilitate infection in I. scapularis . Functional studies demonstrated a role for selected cytoskeleton components in pathogen infection. These results provided a more comprehensive view of the cytoskeletal components involved in the response to A. phagocytophilum infection in ticks.
Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity.
Mortimer, Nathan T; Goecks, Jeremy; Kacsoh, Balint Z; Mobley, James A; Bowersock, Gregory J; Taylor, James; Schlenke, Todd A
2013-06-04
Because parasite virulence factors target host immune responses, identification and functional characterization of these factors can provide insight into poorly understood host immune mechanisms. The fruit fly Drosophila melanogaster is a model system for understanding humoral innate immunity, but Drosophila cellular innate immune responses remain incompletely characterized. Fruit flies are regularly infected by parasitoid wasps in nature and, following infection, flies mount a cellular immune response culminating in the cellular encapsulation of the wasp egg. The mechanistic basis of this response is largely unknown, but wasps use a mixture of virulence proteins derived from the venom gland to suppress cellular encapsulation. To gain insight into the mechanisms underlying wasp virulence and fly cellular immunity, we used a joint transcriptomic/proteomic approach to identify venom genes from Ganaspis sp.1 (G1), a previously uncharacterized Drosophila parasitoid species, and found that G1 venom contains a highly abundant sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. Accordingly, we found that fly immune cells termed plasmatocytes normally undergo a cytoplasmic calcium burst following infection, and that this calcium burst is required for activation of the cellular immune response. We further found that the plasmatocyte calcium burst is suppressed by G1 venom in a SERCA-dependent manner, leading to the failure of plasmatocytes to become activated and migrate toward G1 eggs. Finally, by genetically manipulating plasmatocyte calcium levels, we were able to alter fly immune success against G1 and other parasitoid species. Our characterization of parasitoid wasp venom proteins led us to identify plasmatocyte cytoplasmic calcium bursts as an important aspect of fly cellular immunity.
Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.
Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H
2017-01-01
Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (<300 amino acids), secreted proteins, with no predicted functions were selected for the HR suppression assay using Nicotiana benthamiana, in which each of the proteins were transiently expressed and evaluated for their ability to suppress HR caused by four cytotoxic effector-R gene combinations (Cp/Rx, ATR13/RPP13, Rpt2/RPS-2, and GPA/RBP-1) and one mutated R gene-Pto(Y207D). Nine out of twenty proteins, designated Shr1 to Shr9 (suppressors of hypersensitive response), were found to suppress HR in N. benthamiana. These effectors varied in the effector-R gene defenses they suppressed, indicating these pathogens can interfere with a variety of host defense pathways. In addition to HR suppression, effector Shr7 also suppressed PAMP-triggered immune response triggered by flg22. Finally, delivery of Shr7 through Pseudomonas fluorescens EtHAn suppressed nonspecific HR induced by Pseudomonas syringae DC3000 in wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.