Science.gov

Sample records for host-plant araucaria araucana

  1. Saccharomyces eubayanus and Saccharomyces uvarum associated with the fermentation of Araucaria araucana seeds in Patagonia.

    PubMed

    Rodríguez, M Eugenia; Pérez-Través, Laura; Sangorrín, Marcela P; Barrio, Eladio; Lopes, Christian A

    2014-09-01

    Mudai is a traditional fermented beverage, made from the seeds of the Araucaria araucana tree by Mapuche communities. The main goal of the present study was to identify and characterize the yeast microbiota responsible of Mudai fermentation as well as from A. araucana seeds and bark from different locations in Northern Patagonia. Only Hanseniaspora uvarum and a commercial bakery strain of Saccharomyces cerevisiae were isolated from Mudai and all Saccharomyces isolates recovered from A. araucana seed and bark samples belonged to the cryotolerant species Saccharomyces eubayanus and Saccharomyces uvarum. These two species were already reported in Nothofagus trees from Patagonia; however, this is the first time that they were isolated from A. araucana, which extends their ecological distribution. The presence of these species in A. araucana seeds and bark samples, led us to postulate a potential role for them as the original yeasts responsible for the elaboration of Mudai before the introduction of commercial S. cerevisiae cultures. The molecular and genetic characterization of the S. uvarum and S. eubayanus isolates and their comparison with European S. uvarum strains and S. eubayanus hybrids (S. bayanus and S. pastorianus), allowed their ecology and evolution us to be examined.

  2. On the Evolutionary History of Uleiella chilensis, a Smut Fungus Parasite of Araucaria araucana in South America: Uleiellales ord. nov. in Ustilaginomycetes.

    PubMed

    Riess, Kai; Schön, Max E; Lutz, Matthias; Butin, Heinz; Oberwinkler, Franz; Garnica, Sigisfredo

    2016-01-01

    The evolutionary history, divergence times and phylogenetic relationships of Uleiella chilensis (Ustilaginomycotina, smut fungi) associated with Araucaria araucana were analysed. DNA sequences from multiple gene regions and morphology were analysed and compared to other members of the Basidiomycota to determine the phylogenetic placement of smut fungi on gymnosperms. Divergence time estimates indicate that the majority of smut fungal orders diversified during the Triassic-Jurassic period. However, the origin and relationships of several orders remain uncertain. The most recent common ancestor between Uleiella chilensis and Violaceomyces palustris has been dated to the Lower Cretaceous. Comparisons of divergence time estimates between smut fungi and host plants lead to the hypothesis that the early Ustilaginomycotina had a saprobic lifestyle. As there are only two extant species of Araucaria in South America, each hosting a unique Uleiella species, we suggest that either coevolution or a host shift followed by allopatric speciation are the most likely explanations for the current geographic restriction of Uleiella and its low diversity. Phylogenetic and age estimation analyses, ecology, the unusual life-cycle and the peculiar combination of septal and haustorial characteristics support Uleiella chilensis as a distinct lineage among the Ustilaginomycotina. Here, we describe a new ustilaginomycetous order, the Uleiellales to accommodate Uleiella. Within the Ustilaginomycetes, Uleiellales are sister taxon to the Violaceomycetales.

  3. On the Evolutionary History of Uleiella chilensis, a Smut Fungus Parasite of Araucaria araucana in South America: Uleiellales ord. nov. in Ustilaginomycetes

    PubMed Central

    Riess, Kai; Schön, Max E.; Lutz, Matthias; Butin, Heinz; Oberwinkler, Franz; Garnica, Sigisfredo

    2016-01-01

    The evolutionary history, divergence times and phylogenetic relationships of Uleiella chilensis (Ustilaginomycotina, smut fungi) associated with Araucaria araucana were analysed. DNA sequences from multiple gene regions and morphology were analysed and compared to other members of the Basidiomycota to determine the phylogenetic placement of smut fungi on gymnosperms. Divergence time estimates indicate that the majority of smut fungal orders diversified during the Triassic–Jurassic period. However, the origin and relationships of several orders remain uncertain. The most recent common ancestor between Uleiella chilensis and Violaceomyces palustris has been dated to the Lower Cretaceous. Comparisons of divergence time estimates between smut fungi and host plants lead to the hypothesis that the early Ustilaginomycotina had a saprobic lifestyle. As there are only two extant species of Araucaria in South America, each hosting a unique Uleiella species, we suggest that either coevolution or a host shift followed by allopatric speciation are the most likely explanations for the current geographic restriction of Uleiella and its low diversity. Phylogenetic and age estimation analyses, ecology, the unusual life-cycle and the peculiar combination of septal and haustorial characteristics support Uleiella chilensis as a distinct lineage among the Ustilaginomycotina. Here, we describe a new ustilaginomycetous order, the Uleiellales to accommodate Uleiella. Within the Ustilaginomycetes, Uleiellales are sister taxon to the Violaceomycetales. PMID:26790149

  4. The Multiple Forms of α-Amylase Enzyme of the Araucaria Species of South America: A. araucana (Mol.) Koch and A. angustifolia (Bert.) O. Kutz 1

    PubMed Central

    Salas, Elizabeth; Cardemil, Liliana

    1986-01-01

    α-Amylase is one of the major enzymes present in the seeds of both Araucaria species of South America and it initiates starch hydrolysis during germination and early seedling growth. The pattern of the multiple forms of α-amylase of the two Araucaria species was investigated by electrophoresis and isoelectrofocusing of the native enzyme in polyacrylamide gels. The enzyme forms were compared in the embryo and megagametophyte of quiescent seeds and of seeds imbibed for 18, 48, and 90 hours. Specific α-amylase enzyme forms appear and disappear during these imbibition periods showing both similarities and differences between tissues and species. Before imbibition, there are five α-amylase forms identical in both tissues, but different between species. After 18 hours of imbibition, there are two enzyme forms in both tissues of Araucaria araucana seeds, only one form in the embryo of Araucaria angustifolia but two forms in the megagametophyte of this specie. After 48 hours of seed imbibition, most of the enzyme forms present in quiescent seeds reappear. At 90 hours of imbibition different enzyme forms are detected in the embryo with respect to the gametophyte. The changes in form patterns of α-amylase are discussed according to a possible regulation of gene expression by endogenous gibberellins. Images Fig. 1 Fig. 2 Fig. 3 PMID:16664944

  5. Evidence of solar activity and El Niño signals in tree rings of Araucaria araucana and A. angustifolia in South America

    NASA Astrophysics Data System (ADS)

    Perone, A.; Lombardi, F.; Marchetti, M.; Tognetti, R.; Lasserre, B.

    2016-10-01

    Tree rings reveal climatic variations through years, but also the effect of solar activity in influencing the climate on a large scale. In order to investigate the role of solar cycles on climatic variability and to analyse their influences on tree growth, we focused on tree-ring chronologies of Araucaria angustifolia and Araucaria araucana in four study areas: Irati and Curitiba in Brazil, Caviahue in Chile, and Tolhuaca in Argentina. We obtained an average tree-ring chronology of 218, 117, 439, and 849 years for these areas, respectively. Particularly, the older chronologies also included the period of the Maunder and Dalton minima. To identify periodicities and trends observable in tree growth, the time series were analysed using spectral, wavelet and cross-wavelet techniques. Analysis based on the Multitaper method of annual growth rates identified 2 cycles with periodicities of 11 (Schwebe cycle) and 5.5 years (second harmonic of Schwebe cycle). In the Chilean and Argentinian sites, significant agreement between the time series of tree rings and the 11-year solar cycle was found during the periods of maximum solar activity. Results also showed oscillation with periods of 2-7 years, probably induced by local environmental variations, and possibly also related to the El-Niño events. Moreover, the Morlet complex wavelet analysis was applied to study the most relevant variability factors affecting tree-ring time series. Finally, we applied the cross-wavelet spectral analysis to evaluate the time lags between tree-ring and sunspot-number time series, as well as for the interaction between tree rings, the Southern Oscillation Index (SOI) and temperature and precipitation. Trees sampled in Chile and Argentina showed more evident responses of fluctuations in tree-ring time series to the variations of short and long periodicities in comparison with the Brazilian ones. These results provided new evidence on the solar activity-climate pattern-tree ring connections over

  6. Redescription of an early-derivative mite, Pentasetacus araucariae (Eriophyoidea, Phytoptidae), and new hypotheses on the eriophyoid reproductive anatomy.

    PubMed

    Chetverikov, Philipp E; Beaulieu, Frédéric; Beliavskaia, Alexandra Y; Rautian, Maria S; Sukhareva, Sogdiana I

    2014-06-01

    A unique set of plesiomorphic characters, and its association with an ancient gymnosperm, Araucaria araucana, have made Pentasetacus araucariae a putative relict of a lineage of gymnosperm-associated mites, itself possibly basal to all extant eriophyoids. However, the suboptimal description of this species is impeding morphological comparisons with other species, which are fundamental to eriophyoid systematics. Herein, we designate a female lectotype from syntype specimens and use additional non-type material to redescribe P. araucariae based on external and internal anatomy using different microscopic and 3D reconstruction techniques. Contrarily to statements in the literature, P. araucariae has undivided empodia in all instars, short spermathecal tubes, and large, globose spermathecae in females, as well as rudimentary genital fovea in immatures. In addition, males of P. araucariae were shown to have genitalic attributes similar to a species of Trisetacus studied in parallel, including two reservoir-like structures, which may represent parts of the genital chamber and of the ductus ejaculatorius, respectively, as well as paired testes and ducti deferentes. This is contrary to previous, limited knowledge on eriophyoids indicating that they possess a single testis. Although their short spermathecal tubes weaken the cladistic relationship between P. araucariae (Pentasetacinae) and conifer-associated Nalepellinae (e.g. Trisetacus) having long tubes, the structural similarities in male genitalia may reinforce it.

  7. Evolutionary Diversification of New Caledonian Araucaria

    PubMed Central

    Kranitz, Mai Lan; Biffin, Edward; Clark, Alexandra; Hollingsworth, Michelle L.; Ruhsam, Markus; Gardner, Martin F.; Thomas, Philip; Mill, Robert R.; Ennos, Richard A.; Gaudeul, Myriam; Lowe, Andrew J.; Hollingsworth, Peter M.

    2014-01-01

    New Caledonia is a global biodiversity hotspot. Hypotheses for its biotic richness suggest either that the island is a ‘museum’ for an old Gondwana biota or alternatively it has developed following relatively recent long distance dispersal and in situ radiation. The conifer genus Araucaria (Araucariaceae) comprises 19 species globally with 13 endemic to this island. With a typically Gondwanan distribution, Araucaria is particularly well suited to testing alternative biogeographic hypotheses concerning the origins of New Caledonian biota. We derived phylogenetic estimates using 11 plastid and rDNA ITS2 sequence data for a complete sampling of Araucaria (including multiple accessions of each of the 13 New Caledonian Araucaria species). In addition, we developed a dataset comprising 4 plastid regions for a wider taxon sample to facilitate fossil based molecular dating. Following statistical analyses to identify a credible and internally consistent set of fossil constraints, divergence times estimated using a Bayesian relaxed clock approach were contrasted with geological scenarios to explore the biogeographic history of Araucaria. The phylogenetic data resolve relationships within Araucariaceae and among the main lineages in Araucaria, but provide limited resolution within the monophyletic New Caledonian species group. Divergence time estimates suggest a Late Cretaceous-Cenozoic radiation of extant Araucaria and a Neogene radiation of the New Caledonian lineage. A molecular timescale for the evolution of Araucariaceae supports a relatively recent radiation, and suggests that earlier (pre-Cenozoic) fossil types assigned to Araucaria may have affinities elsewhere in Araucariaceae. While additional data will be required to adequately resolve relationships among the New Caledonian species, their recent origin is consistent with overwater dispersal following Eocene emersion of New Caledonia but is too old to support a single dispersal from Australia to Norfolk Island

  8. Natal Host Plants Can Alter Herbivore Competition

    PubMed Central

    Pan, Huipeng; Preisser, Evan L.; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore’s natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems. PMID:28030636

  9. Response of host plants to periodical cicada oviposition damage.

    PubMed

    Flory, S Luke; Mattingly, W Brett

    2008-06-01

    Insect oviposition on plants is widespread across many systems, but studies on the response of host plants to oviposition damage are lacking. Although patterns of oviposition vary spatially and temporally, ovipositing insects that exhibit outbreak characteristics may have strong effects on host plants during peak abundance. Periodical cicadas (Magicicada spp.), in particular, may reduce the performance of host plants when they synchronously emerge in massive numbers to mate and oviposit on host plants. Here we provide the first experimental manipulation of host plant use by periodical cicadas to evaluate the impact of cicada oviposition on plant performance across a diversity of host species within an ecologically relevant setting. Using a randomized block design, we established a plantation of three native and three exotic host plant species common to the successional forests in which cicadas occur. During the emergence of Brood X in 2004, we employed a highly effective cicada exclusion treatment by netting half of the host plants within each block. We assessed multiple measures of host plant performance, including overall plant growth and the growth and reproduction of individual branches, across three growing seasons. Despite our thorough assessment of potential host plant responses to oviposition damage, cicada oviposition did not generally inhibit host plant performance. Oviposition densities on unnetted host plants were comparable to levels documented in other studies, reinforcing the ecological relevance of our results, which indicate that cicada oviposition damage did not generally reduce the performance of native or exotic host plants.

  10. Testing Two Methods that Relate Herbivorous Insects to Host Plants

    PubMed Central

    White, Peter J. T.

    2013-01-01

    Insect herbivores are integral to terrestrial ecosystems. They provide essential food for higher trophic levels and aid in nutrient cycling. In general, research tends to relate individual insect herbivore species to host plant identity, where a species will show preference for one host over another. In contrast, insect herbivore assemblages are often related to host plant richness where an area with a higher richness of hosts will also have a higher richness of herbivores. In this study, the ability of these two approaches (host plant identity/abundance vs. host plant richness) to describe the diversity, richness, and abundance of an herbivorous Lepidoptera assemblage in temperate forest fragments in southern Canada is tested. Analyses indicated that caterpillar diversity, richness, and abundance were better described by quadrat-scale host plant identity and abundance than by host plant richness. Most host plant-herbivore studies to date have only considered investigating host plant preferences at a species level; the type of assemblage level preference shown in this study has been rarely considered. In addition, host plant replacement simulations indicate that increasing the abundance of preferred host plants could increase Lepidoptera richness and abundance by as much as 30% and 40% respectively in disturbed remnant forest fragments. This differs from traditional thinking that suggests higher levels of insect richness can be best obtained by maximizing plant richness. Host plant species that are highly preferred by the forest-dwelling caterpillar assemblage should be given special management and conservation considerations to maximize biodiversity in forest communities. PMID:24205830

  11. Host plant adaptation in Drosophila mettleri populations.

    PubMed

    Castrezana, Sergio; Bono, Jeremy M

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  12. Host Plant Adaptation in Drosophila mettleri Populations

    PubMed Central

    Castrezana, Sergio; Bono, Jeremy M.

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  13. Transgenerational acclimatization in an herbivore-host plant relationship.

    PubMed

    Cahenzli, Fabian; Erhardt, Andreas

    2013-04-07

    Twenty years ago, scientists began to recognize that parental effects are one of the most important influences on progeny phenotype. Consequently, it was postulated that herbivorous insects could produce progeny that are acclimatized to the host plant experienced by the parents to improve progeny fitness, because host plants vary greatly in quality and quantity, and can thus provide important cues about the resources encountered by the next generation. However, despite the possible profound implications for our understanding of host-use evolution of herbivores, host-race formation and sympatric speciation, intense research has been unable to verify transgenerational acclimatization in herbivore-host plant relationships. We reared Coenonympha pamphilus larvae in the parental generation (P) on high- and low-quality host plants, and reared the offspring (F(1)) of both treatments again on high- and low-quality plants. We tested not only for maternal effects, as most previous studies, but also for paternal effects. Our results show that parents experiencing predictive cues on their host plant can indeed adjust progeny's phenotype to anticipated host plant quality. Maternal effects affected female and male offspring, whereas paternal effects affected only male progeny. We here verify, for the first time to our knowledge, the long postulated transgenerational acclimatization in an herbivore-host plant interaction.

  14. Transgenerational acclimatization in an herbivore–host plant relationship

    PubMed Central

    Cahenzli, Fabian; Erhardt, Andreas

    2013-01-01

    Twenty years ago, scientists began to recognize that parental effects are one of the most important influences on progeny phenotype. Consequently, it was postulated that herbivorous insects could produce progeny that are acclimatized to the host plant experienced by the parents to improve progeny fitness, because host plants vary greatly in quality and quantity, and can thus provide important cues about the resources encountered by the next generation. However, despite the possible profound implications for our understanding of host-use evolution of herbivores, host-race formation and sympatric speciation, intense research has been unable to verify transgenerational acclimatization in herbivore–host plant relationships. We reared Coenonympha pamphilus larvae in the parental generation (P) on high- and low-quality host plants, and reared the offspring (F1) of both treatments again on high- and low-quality plants. We tested not only for maternal effects, as most previous studies, but also for paternal effects. Our results show that parents experiencing predictive cues on their host plant can indeed adjust progeny's phenotype to anticipated host plant quality. Maternal effects affected female and male offspring, whereas paternal effects affected only male progeny. We here verify, for the first time to our knowledge, the long postulated transgenerational acclimatization in an herbivore–host plant interaction. PMID:23407834

  15. Host plant use in sympatric closely related flea beetles.

    PubMed

    Xue, Huai-Jun; Yang, Xing-Ke

    2007-04-01

    Studies on strategies of host plant use in sympatric-related species are significant to the theory of sympatric speciation. Altica fragariae Nakane and Altica koreana Ogloblin are sympatric closely related flea beetles found in Beijing, northern China. All their recorded host plants are in the subfamily Rosoideae of the Rosaceae, so we regard them as a model system to study interactions between herbivorous insects and plant-insect co-evolution. We conducted a set of experiments on the host preference and performance of these flea beetles to study whether these closely related species have the ability to use sympatric novel host plants and whether monophagous and oligophagous flea beetles use the same strategy in host plant use. Oviposition preference experiments showed that A. koreana, a monophagous flea beetle, displayed high host fidelity. However, A. fragariae, which is oligophagous, often made "oviposition mistakes," ovipositing on nonhost plants such as Potentilla chinensis, the host plant of A. koreana, although normal host plants were preferred over novel ones. Larval performance studies suggested that A. fragariae was able to develop successfully on P. chinensis. Feeding experiences of larvae had no effect on feeding preference, oviposition preference, and fecundity of adults. However, females were impaired in their reproductive ability when fed on nonhost plants. Therefore, A. fragariae finished their development of larval stages on P. chinensis and came back to their primary host plant, Duchesnea indica, for feeding and reproduction after eclosion.

  16. Fire creates host plant patches for monarch butterflies.

    PubMed

    Baum, Kristen A; Sharber, Wyatt V

    2012-12-23

    Monarch butterflies (Danaus plexippus) depend on the presence of host plants (Asclepias spp.) within their breeding range for reproduction. In the southern Great Plains, Asclepias viridis is a perennial that flowers in May and June, and starts to senesce by August. It is locally abundant and readily used by monarchs as a host plant. We evaluated the effects of summer prescribed fire on A. viridis and the use of A. viridis by monarch butterflies. Summer prescribed fire generated a newly emergent population of A. viridis that was absent in other areas. Pre-migrant monarch butterflies laid eggs on A. viridis in summer burned plots in late August and September, allowing adequate time for a new generation of adult monarchs to emerge and migrate south to their overwintering grounds. Thus, summer prescribed fire may provide host plant patches and/or corridors for pre-migrant monarchs during a time when host plant availability may be limited in other areas.

  17. Host plant preference in Colorado potato beetle (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field and laboratory-choice tests were conducted to better understand host plant preference by the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), in Virginia. In laboratory olfactometer studies, L. decemlineata preferred potato over both tomato and eggplant foli...

  18. Multifaceted effects of host plants on entomopathogenic nematodes.

    PubMed

    Hazir, Selcuk; Shapiro-Ilan, David I; Hazir, Canan; Leite, Luis G; Cakmak, Ibrahim; Olson, Dawn

    2016-03-01

    The success of parasites can be impacted by multi-trophic interactions. Tritrophic interactions have been observed in parasite-herbivore-host plant systems. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nematode foraging behavior, the ability of EPNs to overcome negative tritrophic effects through genetic selection, and interactions with a fourth trophic level (nematode predators). We tested infectivity of the nematode, Steinernema riobrave, to corn earworm larvae (Helicoverpa zea) in three host plants, tobacco, eggplant and tomato. Tobacco reduced nematode virulence and reproduction relative to tomato and eggplant. However, successive selection (5 passages) overcame the deficiency; selected nematodes no longer exhibited reductions in phenotypic traits. Despite the loss in virulence and reproduction nematodes, first passage S. riobrave was more attracted to frass from insects fed tobacco than insects fed on other host plants. Therefore, we hypothesized the reduced virulence and reproduction in S. riobrave infecting tobacco fed insects would be based on a self-medicating tradeoff, such as deterring predation. We tested this hypothesis by assessing predatory success of the mite Sancassania polyphyllae and the springtail Sinella curviseta on nematodes reared on tobacco-fed larvae versus those fed on greater wax moth, Galleria mellonella, tomato fed larvae, or eggplant fed larvae. No advantage was observed in nematodes derived from tobacco fed larvae. In conclusion, our results indicated that insect-host plant diet has an important effect on nematode foraging, infectivity and reproduction. However, negative host plant effects, might be overcome through directed selection. We propose that host plant species should be considered when designing biocontrol programs using EPNs.

  19. Host plant species affects virulence in monarch butterfly parasites.

    PubMed

    de Roode, Jacobus C; Pedersen, Amy B; Hunter, Mark D; Altizer, Sonia

    2008-01-01

    1. Studies have considered how intrinsic host and parasite properties determine parasite virulence, but have largely ignored the role of extrinsic ecological factors in its expression. 2. We studied how parasite genotype and host plant species interact to determine virulence of the protozoan parasite Ophryocystis elektroscirrha (McLaughlin & Myers 1970) in the monarch butterfly Danaus plexippus L. We infected monarch larvae with one of four parasite genotypes and reared them on two milkweed species that differed in their levels of cardenolides: toxic chemicals involved in predator defence. 3. Parasite infection, replication and virulence were affected strongly by host plant species. While uninfected monarchs lived equally long on both plant species, infected monarchs suffered a greater reduction in their life spans (55% vs. 30%) on the low-cardenolide vs. the high-cardenolide host plant. These life span differences resulted from different levels of parasite replication in monarchs reared on the two plant species. 4. The virulence rank order of parasite genotypes was unaffected by host plant species, suggesting that host plant species affected parasite genotypes similarly, rather than through complex plant species-parasite genotype interactions. 5. Our results demonstrate that host ecology importantly affects parasite virulence, with implications for host-parasite dynamics in natural populations.

  20. Climate change, phenology, and butterfly host plant utilization.

    PubMed

    Navarro-Cano, Jose A; Karlsson, Bengt; Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-01-01

    Knowledge of how species interactions are influenced by climate warming is paramount to understand current biodiversity changes. We review phenological changes of Swedish butterflies during the latest decades and explore potential climate effects on butterfly-host plant interactions using the Orange tip butterfly Anthocharis cardamines and its host plants as a model system. This butterfly has advanced its appearance dates substantially, and its mean flight date shows a positive correlation with latitude. We show that there is a large latitudinal variation in host use and that butterfly populations select plant individuals based on their flowering phenology. We conclude that A. cardamines is a phenological specialist but a host species generalist. This implies that thermal plasticity for spring development influences host utilization of the butterfly through effects on the phenological matching with its host plants. However, the host utilization strategy of A. cardamines appears to render it resilient to relatively large variation in climate.

  1. Increased temperature reduces herbivore host-plant quality.

    PubMed

    Bauerfeind, Stephanie S; Fischer, Klaus

    2013-11-01

    Globally increasing temperatures may strongly affect insect herbivore performance, as their growth and development is directly linked to ambient temperature as well as host-plant quality. In contrast to direct effects of temperature on herbivores, indirect effects mediated via thermal effects on host-plant quality are only poorly understood, despite having the potential to substantially impact performance and thereby to alter responses to the changing climatic conditions. We here use a full-factorial design to explore the direct (larvae were reared at 17 °C or 25 °C) and indirect effects (host plants were reared at 17 °C or 25 °C) of temperature on larval growth and life-history traits in the temperate-zone butterfly Pieris napi. Direct temperature effects reflected the common pattern of prolonged development and increased body mass at lower temperatures. At the higher temperature, efficiency of converting food into body matter was much reduced being accompanied by an increased food intake, suggesting compensatory feeding. Indirect temperature effects were apparent as reduced body mass, longer development time, an increased food intake, and a reduced efficiency of converting food into body matter in larvae feeding on plants grown at the higher temperature, thus indicating poor host-plant quality. The effects of host-plant quality were more pronounced at the higher temperature, at which compensatory feeding was much less efficient. Our results highlight that temperature-mediated changes in host-plant quality are a significant, but largely overlooked source of variation in herbivore performance. Such effects may exaggerate negative effects of global warming, which should be considered when trying to forecast species' responses to climate change.

  2. Data integration aids understanding of butterfly–host plant networks

    NASA Astrophysics Data System (ADS)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-03-01

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant–herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant–herbivore and plant–compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect–compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection.

  3. Data integration aids understanding of butterfly-host plant networks.

    PubMed

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-03-06

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant-herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant-herbivore and plant-compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect-compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection.

  4. Data integration aids understanding of butterfly–host plant networks

    PubMed Central

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-01-01

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant–herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant–herbivore and plant–compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect–compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection. PMID:28262809

  5. Multifaceted effects of host plants on entomopathogenic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The success of parasites can be impacted by multi-trophic interactions. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nema...

  6. Host Plant Induced Variation in Gut Bacteria of Helicoverpa armigera

    PubMed Central

    Gayatri Priya, Natarajan; Ojha, Abhishek; Kajla, Mayur K.; Raj, Anand; Rajagopal, Raman

    2012-01-01

    Helicoverpa are important polyphagous agricultural insect pests and they have a worldwide distribution. In this study, we report the bacterial community structure in the midgut of fifth instar larvae of Helicoverpa armigera, a species prevalent in the India, China, South Asia, South East Asia, Southern & Eastern Africa and Australia. Using culturable techniques, we isolated and identified members of Bacillus firmus, Bacillus niabense, Paenibacillus jamilae, Cellulomonas variformis, Acinetobacter schindleri, Micrococcus yunnanesis, Enterobacter sp., and Enterococcus cassiliflavus in insect samples collected from host plants grown in different parts of India. Besides these the presence of Sphingomonas, Ralstonia, Delftia, Paracoccus and Bacteriodetes was determined by culture independent molecular analysis. We found that Enterobacter and Enterococcus were universally present in all our Helicoverpa samples collected from different crops and in different parts of India. The bacterial diversity varied greatly among insects that were from different host plants than those from the same host plant of different locations. This result suggested that the type of host plant greatly influences the midgut bacterial diversity of H. armigera, more than the location of the host plant. On further analyzing the leaf from which the larva was collected, it was found that the H. armigera midgut bacterial community was similar to that of the leaf phyllosphere. This finding indicates that the bacterial flora of the larval midgut is influenced by the leaf surface bacterial community of the crop on which it feeds. Additionally, we found that laboratory made media or the artificial diet is a poor bacterial source for these insects compared to a natural diet of crop plant. PMID:22292034

  7. Genes for host-plant selection in Drosophila.

    PubMed

    Matsuo, Takashi

    2008-01-01

    Interactions between herbivorous insects and their host plants are rich in diversity. How such interactions evolved has been a central issue in ecology. A series of analyses on an example of host-plant adaptation in a Drosophila species suggest that neurogenetics can be a powerful tool for understanding how insects' ability to select a specific host plant has evolved. Drosophila sechellia is a specialist species that exclusively reproduces on the ripe fruit of Morinda citrifolia, which is toxic to other Drosophila species, including D. melanogaster and D. simulans, which are phylogenetically close to D. sechellia. Genetic analyses have revealed that multiple loci are involved in the physiological and behavioral adaptations of D. sechellia to the Morinda fruit. The behavioral adaptation includes the loss of avoidance of the host toxin and the enhanced sensitivity to the host odor. Two odorant-binding protein genes, Obp57d and Obp57e, are involved in the perception of the host toxin. D. sechellia has lost several putative bitter-taste receptor genes, which might also be involved in the loss of avoidance of the host toxin. The available genetic data support an evolutionary scenario, in which the shift in the host-plant selection was not achieved by the acquisition of novel abilities, but by the loss of already existing abilities. It is also suggested that the size of chemosensory gene families has a potential to be an index of complexity in insect-environment interaction, providing an opportunity to reexamine the longstanding "specialization as an evolutionary dead end" hypothesis.

  8. Host plant affects morphometric variation of Diaphorina citri (Hemiptera: Liviidae)

    PubMed Central

    Paris, Thomson M.; Hall, David G.; Hentz, Matthew G.; Hetesy, Gabriella; Stansly, Philip A.

    2016-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most serious citrus pests worldwide due to its role as vector of huanglongbing or citrus greening disease. While some optimal plant species for ACP oviposition and development have been identified, little is known of the influence of host plants on ACP size and shape. Our goal was to determine how size and shape of ACP wing and body size varies when development occurs on different host plants in a controlled rearing environment. ACP were reared on six different rutaceous species; Bergera koenigii, Citrus aurantifolia, Citrus macrophylla, Citrus maxima, Citrus taiwanica and Murraya paniculata. Adults were examined for morphometric variation using traditional and geometric analysis based on 12 traits or landmarks. ACP reared on C. taiwanica were consistently smaller than those reared on the other plant species. Wing aspect ratio also differed between C. maxima and C. taiwanica. Significant differences in shape were detected with those reared on M. paniculata having narrower wings than those reared on C. macrophylla. This study provides evidence of wing size and shape differences of ACP based on host plant species which potentially may impact dispersal. Further study is needed to determine if behavioral and physiological differences are associated with the observed phenotypic differences. PMID:27833820

  9. Host plant affects morphometric variation of Diaphorina citri (Hemiptera: Liviidae).

    PubMed

    Paris, Thomson M; Allan, Sandra A; Hall, David G; Hentz, Matthew G; Hetesy, Gabriella; Stansly, Philip A

    2016-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most serious citrus pests worldwide due to its role as vector of huanglongbing or citrus greening disease. While some optimal plant species for ACP oviposition and development have been identified, little is known of the influence of host plants on ACP size and shape. Our goal was to determine how size and shape of ACP wing and body size varies when development occurs on different host plants in a controlled rearing environment. ACP were reared on six different rutaceous species; Bergera koenigii, Citrus aurantifolia, Citrus macrophylla, Citrus maxima, Citrus taiwanica and Murraya paniculata. Adults were examined for morphometric variation using traditional and geometric analysis based on 12 traits or landmarks. ACP reared on C. taiwanica were consistently smaller than those reared on the other plant species. Wing aspect ratio also differed between C. maxima and C. taiwanica. Significant differences in shape were detected with those reared on M. paniculata having narrower wings than those reared on C. macrophylla. This study provides evidence of wing size and shape differences of ACP based on host plant species which potentially may impact dispersal. Further study is needed to determine if behavioral and physiological differences are associated with the observed phenotypic differences.

  10. The influence of learning on host plant preference in a significant phytopathogen vector, Diaphorina citri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri, vector ...

  11. Delicious poison: genetics of Drosophila host plant preference.

    PubMed

    Whiteman, Noah K; Pierce, Naomi E

    2008-09-01

    Insects use chemical cues to identify host plants, which suggests that chemosensory perception could be a target of natural selection during host specialization. Five papers using data from the 12 recently sequenced Drosophila genomes examined chemosensory gene function and evolution across specialist and generalist species. A functional study identifies odorant binding proteins that mediate loss of toxin avoidance in a specialist, and targeted genomic studies indicate specialists and island endemics lose chemosensory genes more rapidly than generalist and mainland relatives. Together, these studies suggest a mode of chemoreceptor evolution dominated by birth/death dynamics, coupled with a low level of potential positive selection.

  12. Electroantennographic Bioassay as a Screening Tool for Host Plant Volatiles

    PubMed Central

    Beck, John J.; Light, Douglas M.; Gee, Wai S.

    2012-01-01

    Plant volatiles play an important role in plant-insect interactions. Herbivorous insects use plant volatiles, known as kairomones, to locate their host plant.1,2 When a host plant is an important agronomic commodity feeding damage by insect pests can inflict serious economic losses to growers. Accordingly, kairomones can be used as attractants to lure or confuse these insects and, thus, offer an environmentally friendly alternative to pesticides for insect control.3 Unfortunately, plants can emit a vast number volatiles with varying compositions and ratios of emissions dependent upon the phenology of the commodity or the time of day. This makes identification of biologically active components or blends of volatile components an arduous process. To help identify the bioactive components of host plant volatile emissions we employ the laboratory-based screening bioassay electroantennography (EAG). EAG is an effective tool to evaluate and record electrophysiologically the olfactory responses of an insect via their antennal receptors. The EAG screening process can help reduce the number of volatiles tested to identify promising bioactive components. However, EAG bioassays only provide information about activation of receptors. It does not provide information about the type of insect behavior the compound elicits; which could be as an attractant, repellent or other type of behavioral response. Volatiles eliciting a significant response by EAG, relative to an appropriate positive control, are typically taken on to further testing of behavioral responses of the insect pest. The experimental design presented will detail the methodology employed to screen almond-based host plant volatiles4,5 by measurement of the electrophysiological antennal responses of an adult insect pest navel orangeworm (Amyelois transitella) to single components and simple blends of components via EAG bioassay. The method utilizes two excised antennae placed across a "fork" electrode holder. The

  13. Life history of Spodoptera exigua (Lepidoptera: Noctuidae) on various host plants.

    PubMed

    Azidah, A A; Sofian-Azirun, M

    2006-12-01

    The incubation period of Spodoptera exigua (Hübner) was not influenced by the host plant, whereas larval development time and pupal period were affected. Larval development time was longest on shallot and lady's finger, followed by cabbage and long bean. Larvae did not develop beyond the first instar when fed on chilli. The pupal period was longer on lady's finger than on cabbage, shallot and long bean. Overall, adult longevity was not influenced by the host plant but there was a difference between female and male longevity among the host plants. Survival of S. exigua was affected by the host plant at the larval stage. The number of larval instars varied between 5 and 8 within and between the studied host plants. Long bean was found to be the most suitable host plant and provide the best food quality for S. exigua compared to the other host plants, as it allowed faster development, fewer larval instars and a higher survival rate.

  14. Bromeliad-living spiders improve host plant nutrition and growth.

    PubMed

    Romero, Gustavo Q; Mazzafera, Paulo; Vasconcellos-Neto, Joao; Trivelin, Paulo C O

    2006-04-01

    Although bromeliads are believed to obtain nutrients from debris deposited by animals in their rosettes, there is little evidence to support this assumption. Using stable isotope methods, we found that the Neotropical jumping spider Psecas chapoda (Salticidae), which lives strictly associated with the terrestrial bromeliad Bromelia balansae, contributed 18% of the total nitrogen of its host plant in a greenhouse experiment. In a one-year field experiment, plants with spiders produced leaves 15% longer than plants from which the spiders were excluded. This is the first study to show nutrient provisioning in a spider-plant system. Because several animal species live strictly associated with bromeliad rosettes, this type of facultative mutualism involving the Bromeliaceae may be more common than previously thought.

  15. Aphids alter host-plant nitrogen isotope fractionation

    PubMed Central

    Wilson, Alex C. C.; Sternberg, Leonel da S. L.; Hurley, Katherine B.

    2011-01-01

    Plant sap-feeding insects and blood-feeding parasites are frequently depleted in 15N relative to their diet. Unfortunately, most fluid-feeder/host nitrogen stable-isotope studies simply report stable-isotope signatures, but few attempt to elucidate the mechanism of isotopic trophic depletion. Here we address this deficit by investigating the nitrogen stable-isotope dynamics of a fluid-feeding herbivore-host plant system: the green peach aphid, Myzus persicae, feeding on multiple brassicaceous host plants. M. persicae was consistently more than 6‰ depleted in 15N relative to their hosts, although aphid colonized plants were 1.5‰ to 2.0‰ enriched in 15N relative to uncolonized control plants. Isotopic depletion of aphids relative to hosts was strongly related to host nitrogen content. We tested whether the concomitant aphid 15N depletion and host 15N enrichment was coupled by isotopic mass balance and determined that aphid 15N depletion and host 15N enrichment are uncoupled processes. We hypothesized that colonized plants would have higher nitrate reductase activity than uncolonized plants because previous studies had demonstrated that high nitrate reductase activity under substrate-limiting conditions can result in increased plant δ15N values. Consistent with our hypothesis, nitrate reductase activity in colonized plants was twice that of uncolonized plants. This study offers two important insights that are likely applicable to understanding nitrogen dynamics in fluid-feeder/host systems. First, isotopic separation of aphid and host depends on nitrogen availability. Second, aphid colonization alters host nitrogen metabolism and subsequently host nitrogen stable-isotope signature. Notably, this work establishes a metabolic framework for future hypothesis-driven studies focused on aphid manipulation of host nitrogen metabolism. PMID:21646532

  16. Host Plant Cultivar Effects on Hydrogen Evolution by Rhizobium leguminosarum.

    PubMed

    Bedmar, E J; Edie, S A; Phillips, D A

    1983-08-01

    The effect of host plant cultivar on H(2) evolution by root nodules was examined in symbioses between Pisum sativum L. and selected strains of Rhizobium leguminosarum. Hydrogen evolution from root nodules containing Rhizobium represents the sum of H(2) produced by the nitrogenase enzyme complex and H(2) oxidized by any uptake hydrogenase present in those bacterial cells. Relative efficiency (RE) calculated as RE = 1 - (H(2) evolved in air/C(2) H(2) reduced) did not vary significantly among ;Feltham First,' ;Alaska,' and ;JI1205' peas inoculated with R. leguminosarum strain 300, which lacks uptake hydrogenase activity (Hup(-)). That observation suggests that the three host cultivars had no effect on H(2) production by nitrogenase. However, RE of strain 128C53 was significantly (P host plant effects on rhizobial uptake hydrogenase in a single plant species.

  17. Biology of Diaphorina citri (Homoptera: Psyllidae) on four host plants.

    PubMed

    Tsai, J H; Liu, Y H

    2000-12-01

    The biology of the citrus psyllid Diaphorina citri Kuwayama was studied at 25 degrees C on four commonly grown citrus and related plants [rough lemon, Citrus jambhiri Lush; sour orange, C aurantium L.; grapefruit, C. paradisi Macfadyen; and orange jessamine, Murraya paniculata (L.) Jack] in the laboratory. The biological characteristics of each life stage are described. The average egg incubation periods on orange jessamine, grapefruit, rough lemon, and sour orange varied very little (4.1-4.2 d). The average nymphal developmental periods on these four host plants were essentially the same except the fifth stadium. Survival of immatures on orange jessamine, grapefruit, rough lemon, and sour orange was 75.4, 84.6, 78.3, and 68.6%, respectively. Female adults lived an average of 39.7, 39.7, 47.6, and 43.7 d on these respective host plants. The average number of eggs laid per female on grapefruit (858 eggs) was significantly more than those on other hosts (P < 0.05). The intrinsic rate of natural increase (r(m)) for D. citri on grapefruit was highest. Jackknife estimates of r(m) varied from 0.188 on grapefruit to 0.162 on orange jessamine and rough lemon. The mean population generation time on these hosts ranged from 31.6 to 34.1 d. The continuous flushes produced by orange jessamine could play an important role in maintaining high populations of this vector when the new flushes are not available in the commercial citrus groves.

  18. The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri

    PubMed Central

    Stockton, Dara G.; Martini, Xavier; Patt, Joseph M.; Stelinski, Lukasz L.

    2016-01-01

    Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24–48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area

  19. Dynamics of host plant use and species diversity in Polygonia butterflies (Nymphalidae).

    PubMed

    Weingartner, E; Wahlberg, N; Nylin, S

    2006-03-01

    The ability of insects to utilize different host plants has been suggested to be a dynamic and transient phase. During or after this phase, species can shift to novel host plants or respecialize on ancestral ones. Expanding the range of host plants might also be a factor leading to higher levels of net speciation rates. In this paper, we have studied the possible importance of host plant range for diversification in the genus Polygonia (Nymphalidae, Nymphalini). We have compared species richness between sistergroups in order to find out if there are any differences in number of species between clades including species that utilize only the ancestral host plants ('urticalean rosids') and their sisterclades with a broader (or in some cases potentially broader) host plant repertoire. Four comparisons could be made, and although these are not all phylogenetically or statistically independent, all showed clades including butterfly species using other or additional host plants than the urticalean rosids to be more species-rich than their sisterclade restricted to the ancestral host plants. These results are consistent with the theory that expansions in host plant range are involved in the process of diversification in butterflies and other phytophagous insects, in line with the general theory that plasticity may drive speciation.

  20. Both host-plant phylogeny and chemistry have shaped the African seed-beetle radiation.

    PubMed

    Kergoat, Gaël J; Delobel, Alex; Fédière, Gilles; Rü, Bruno Le; Silvain, Jean-François

    2005-06-01

    For the last 40 years, many authors have attempted to characterize the main patterns of plant-insect evolutionary interactions and understand their causes. In the present work on African seed-beetles (Coleoptera: Bruchidae), we have performed a 10-year field work to sample seeds of more than 300 species of potential host-plants (from the family Fabaceae), to obtain bruchids by rearing. This seed sampling in the field was followed by the monitoring of adult emergences which gave us the opportunity to identify host-plant use accurately. Then, by using molecular phylogenetics (on a combined data set of four genes), we have investigated the relationships between host-plant preferences and insect phylogeny. Our objectives were to investigate the level of taxonomic conservatism in host-plant fidelity and host-plant chemistry. Our results indicate that phylogenetically related insects are associated with phylogenetically related host-plants but the phylogeny of the latter cannot alone explain the observed patterns. Major host shifts from Papilionoideae to Mimosoideae subfamilies have happened twice independently suggesting that feeding specialization on a given host-plant group is not always a dead end in seed-beetles. If host-plant taxonomy and chemistry in legumes generally provide consistent data, it appears that the nature of the seed secondary compounds may be the major factor driving the diversification of a large clade specializing on the subfamily Mimosoideae in which host-plant taxonomy is not consistent with chemical similarity.

  1. Soil properties discriminating Araucaria forests with different disturbance levels.

    PubMed

    Bertini, Simone Cristina Braga; Azevedo, Lucas Carvalho Basilio; Stromberger, Mary E; Cardoso, Elke Jurandy Bran Nogueira

    2015-04-01

    Soil biological, chemical, and physical properties can be important for monitoring soil quality under one of the most spectacular vegetation formation on Atlantic Forest Biome, the Araucaria Forest. Our aim was to identify a set of soil variables capable of discriminating between disturbed, reforested, and native Araucaria forest soils such that these variables could be used to monitor forest recovery and maintenance. Soil samples were collected at dry and rainy season under the three forest types in two state parks at São Paulo State, Brazil. Soil biological, chemical, and physical properties were evaluated to verify their potential to differentiate the forest types, and discriminant analysis was performed to identify the variables that most contribute to the differentiation. Most of physical and chemical variables were sensitive to forest disturbance level, but few biological variables were significantly different when comparing native, reforested, and disturbed forests. Despite more than 20 years following reforestation, the reforested soils were chemically and biologically distinct from native and disturbed forest soils, mainly because of the greater acidity and Al3+ content of reforested soil. Disturbed soils, in contrast, were coarser in texture and contained greater concentrations of extractable P. Although biological properties are generally highly sensitive to disturbance and amelioration efforts, the most important soil variables to discriminate forest types in both seasons included Al3+, Mg2+, P, and sand, and only one microbial attribute: the NO2- oxidizers. Therefore, these five variables were the best candidates, of the variables we employed, for monitoring Araucaria forest disturbance and recovery.

  2. Gravisensitivity of various host plant -virus systems in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Mishchenko, Lidiya; Taran, Oksana; Gordejchyk, Olga

    In spite of considerable achievements in the study of gravity effects on plant development, some issues of gravitropism, like species-specificity and gravitation response remain unclear. The so-lution of such problems is connected with the aspects of life supply, in piloted space expeditions. The role of microgravity remains practically unstudied in the development of relations in the system host plant-virus, which are important for biotechnologies in crop production. It is ev-ident that the conditions of space flight can act as stressors, and the stress inducted by them favors the reactivation of latest herpes viruses in humans (satish et al., 2009) Viral infections of plants, which also can be in a latest state at certain stages of plant organism development, cause great damage to the growth and development of a host plant. Space flight conditions may cause both reactivation of latent viral infection in plants and its elimination, as it has been found by us for the system WSMW -wheat (Mishchenko et al., 2004). Our further research activities were concentrated on the identification of gravisensitivity in the system virus -potato plant to find out whether there was any species -related specificity of the reaction. In our research we used potato plants of Krymska Rosa, Zhuravushka, Agave, Belarosa, Kupalinka, and Zdubytok varieties. Simulated microgravity was ensured by clinostats KG-8 and Cycle -2. Gravisensitiv-ity has been studied the systems including PVX, PVM and PVY. Virus concentrations have been determined by ELISA using LOEWE reagents (placecountry-regionGermany). Virus iden-tification by morphological features were done by electron microscopy. For the system PVX -potato plant, we found the reduction in virus antigens content with prolonged clinostating. On the 18th day of cultivation, the plants showed a high level of X-virus antigen content on both stationary (control) and clinostated variants. On 36th and 47th day, depending plant variety, clinostated

  3. Genomics of adaptation to host-plants in herbivorous insects.

    PubMed

    Simon, Jean-Christophe; d'Alençon, Emmanuelle; Guy, Endrick; Jacquin-Joly, Emmanuelle; Jaquiéry, Julie; Nouhaud, Pierre; Peccoud, Jean; Sugio, Akiko; Streiff, Réjane

    2015-11-01

    Herbivorous insects represent the most species-rich lineages of metazoans. The high rate of diversification in herbivorous insects is thought to result from their specialization to distinct host-plants, which creates conditions favorable for the build-up of reproductive isolation and speciation. These conditions rely on constraints against the optimal use of a wide range of plant species, as each must constitute a viable food resource, oviposition site and mating site for an insect. Utilization of plants involves many essential traits of herbivorous insects, as they locate and select their hosts, overcome their defenses and acquire nutrients while avoiding intoxication. Although advances in understanding insect-plant molecular interactions have been limited by the complexity of insect traits involved in host use and the lack of genomic resources and functional tools, recent studies at the molecular level, combined with large-scale genomics studies at population and species levels, are revealing the genetic underpinning of plant specialization and adaptive divergence in non-model insect herbivores. Here, we review the recent advances in the genomics of plant adaptation in hemipterans and lepidopterans, two major insect orders, each of which includes a large number of crop pests. We focus on how genomics and post-genomics have improved our understanding of the mechanisms involved in insect-plant interactions by reviewing recent molecular discoveries in sensing, feeding, digesting and detoxifying strategies. We also present the outcomes of large-scale genomics approaches aimed at identifying loci potentially involved in plant adaptation in these insects.

  4. Essential host plant cues in the grapevine moth.

    PubMed

    Tasin, Marco; Bäckman, Anna-Carin; Bengtsson, Marie; Ioriatti, Claudio; Witzgall, Peter

    2006-03-01

    Host plant odours attract gravid insect females for oviposition. The identification of these plant volatile compounds is essential for our understanding of plant-insect relationships and contributes to plant breeding for improved resistance against insects. Chemical analysis of grape headspace and subsequent behavioural studies in the wind tunnel show that host finding in grapevine moth Lobesia botrana is encoded by a ratio-specific blend of three ubiquitous plant volatiles. The odour signal that attracts mated females to grape consists of the terpenoids (E)-beta-caryophyllene, (E)-beta-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene. These compounds represent only a fraction of the volatiles released by grapes, and they are widespread compounds known throughout the plant kingdom. Specificity may be achieved by the blend ratio, which was 100:78:9 in grape headspace. This blend elicited anemotactic behaviour in moths at remarkably small amounts. Females were attracted at release rates of only a few nanograms per minute, at levels nearly as low as those known for the attraction of male moths to the female sex pheromones.

  5. Essential host plant cues in the grapevine moth

    NASA Astrophysics Data System (ADS)

    Tasin, Marco; Bäckman, Anna-Carin; Bengtsson, Marie; Ioriatti, Claudio; Witzgall, Peter

    2006-03-01

    Host plant odours attract gravid insect females for oviposition. The identification of these plant volatile compounds is essential for our understanding of plant insect relationships and contributes to plant breeding for improved resistance against insects. Chemical analysis of grape headspace and subsequent behavioural studies in the wind tunnel show that host finding in grapevine moth Lobesia botrana is encoded by a ratio-specific blend of three ubiquitous plant volatiles. The odour signal that attracts mated females to grape consists of the terpenoids ( E)-β-caryophyllene, ( E)-β-farnesene and ( E)-4,8-dimethyl-1,3,7-nonatriene. These compounds represent only a fraction of the volatiles released by grapes, and they are widespread compounds known throughout the plant kingdom. Specificity may be achieved by the blend ratio, which was 100:78:9 in grape headspace. This blend elicited anemotactic behaviour in moths at remarkably small amounts. Females were attracted at release rates of only a few nanograms per minute, at levels nearly as low as those known for the attraction of male moths to the female sex pheromones.

  6. Host plant resistance to parasitic weeds; recent progress and bottlenecks.

    PubMed

    Yoder, John I; Scholes, Julie D

    2010-08-01

    Parasitic witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) directly invade the roots of crop plants connecting to the vascular system and abstracting nutrients and water. As a consequence they cause devastating losses in crop yield. Genetic resistance to parasitic weeds is a highly desirable component of any control strategy. Resistance to parasitic plants can occur at different stages of the parasite lifecycle: before attachment to the host, during penetration of the root or after establishment of vascular connections. New studies are beginning to shed light on the molecular mechanisms and signaling pathways involved in plant-plant resistance. The first resistance gene to Striga, encoding a CC-NBS-LRR Resistance protein (R) has been identified and cloned suggesting that host plants resist attack from parasitic plants using similar surveillance mechanisms as those used against fungal and bacterial pathogens. It is becoming clear that the salicylic acid (SA) signaling pathway plays an important role in resistance to parasitic plants and genes encoding pathogenesis-related (PR) proteins are upregulated in a number of the resistant interactions. New strategies for engineering resistance to parasitic plants are also being explored, including the expression of parasite-specific toxins in host roots and RNAi to silence parasite genes crucial for development.

  7. Phosphorus source alters host plant response to ectomycorrhizal diversity.

    PubMed

    Baxter, James W; Dighton, John

    2005-11-01

    We examined the influence of phosphorus source and availability on host plant (Pinus rigida) response to ectomycorrhizal diversity under contrasting P conditions. An ectomycorrhizal richness gradient was established with equimolar P supplied as either inorganic phosphate or organic inositol hexaphosphate. We measured growth and N and P uptake of individual P. rigida seedlings inoculated with one, two, or four species of ectomycorrhizal fungi simultaneously and without mycorrhizas in axenic culture. Whereas colonization of P. rigida by individual species of ectomycorrhizal fungi decreased with increasing fungal richness, colonization of all species combined increased. Plant biomass and N content increased across the ectomycorrhizal richness gradient in the organic but not the inorganic P treatment. Plants grown under organic P conditions had higher N concentration than those grown under inorganic P conditions, but there was no effect of richness. Phosphorus content of plants grown in the organic P treatment increased with increasing ectomycorrhizal richness, but there was no response in the inorganic P treatment. Phosphorus concentration was higher in plants grown at the four-species richness level in the organic P treatment, but there was no effect of diversity under inorganic P conditions. Overall, few ectomycorrhizal composition effects were found on plant growth or nutrient status. Phosphatase activities of individual ectomycorrhizal fungi differed under organic P conditions, but there was no difference in total root system phosphatase expression between the inorganic or organic P treatments or across richness levels. Our results provide evidence that plant response to ectomycorrhizal diversity is dependent on the source and availability of P.

  8. Impact of host plant connectivity, crop border and patch size on adult Colorado potato beetle retention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tagged Colorado potato beetles (CPB), Leptinotarsa decemlineata (Say), were released on potato plants, Solanum tuberosum L., and tracked using a portable harmonic radar system to determine the impact of host plant spatial distribution on the tendency of the pest to remain on the colonized host plant...

  9. Correlations between adult mimicry and larval host plants in ithomiine butterflies.

    PubMed

    Willmott, Keith R; Mallet, James

    2004-08-07

    The apparent paradox of multiple coexisting wing pattern mimicry 'rings' in tropical butterflies has been explained as a result of microhabitat partitioning in adults. However, very few studies have tested this hypothesis. In neotropical forests, ithomiine butterflies dominate and display the richest diversity of mimicry rings. We show that co-mimetic species occupy the same larval host-plant species significantly more often than expected in two out of five communities that we surveyed; in one of these, the effect remains significant after phylogenetic correction. This relationship is most probably a result of a third correlated variable, such as microhabitat. Host-plant microhabitat may constrain adult movement, or host-plant choice may depend on butterfly microhabitat preferences and mimicry associations. This link between mimicry and host plant could help explain some host-plant and mimicry shifts, which have been important in the radiation of this speciose tropical group.

  10. Effects of host plant on life-history traits in the polyphagous spider mite Tetranychus urticae

    PubMed Central

    Marinosci, Cassandra; Magalhães, Sara; Macke, Emilie; Navajas, Maria; Carbonell, David; Devaux, Céline; Olivieri, Isabelle

    2015-01-01

    Studying antagonistic coevolution between host plants and herbivores is particularly relevant for polyphagous species that can experience a great diversity of host plants with a large range of defenses. Here, we performed experimental evolution with the polyphagous spider mite Tetranychus urticae to detect how mites can exploit host plants. We thus compared on a same host the performance of replicated populations from an ancestral one reared for hundreds of generations on cucumber plants that were shifted to either tomato or cucumber plants. We controlled for maternal effects by rearing females from all replicated populations on either tomato or cucumber leaves, crossing this factor with the host plant in a factorial design. About 24 generations after the host shift and for all individual mites, we measured the following fitness components on tomato leaf fragments: survival at all stages, acceptance of the host plant by juvenile and adult mites, longevity, and female fecundity. The host plant on which mite populations had evolved did not affect the performance of the mites, but only affected their sex ratio. Females that lived on tomato plants for circa 24 generations produced a higher proportion of daughters than did females that lived on cucumber plants. In contrast, maternal effects influenced juvenile survival, acceptance of the host plant by adult mites and female fecundity. Independently of the host plant species on which their population had evolved, females reared on the tomato maternal environment produced offspring that survived better on tomato as juveniles, but accepted less this host plant as adults and had a lower fecundity than did females reared on the cucumber maternal environment. We also found that temporal blocks affected mite dispersal and both female longevity and fecundity. Taken together, our results show that the host plant species can affect critical parameters of population dynamics, and most importantly that maternal and environmental

  11. Effects of host plant on life-history traits in the polyphagous spider mite Tetranychus urticae.

    PubMed

    Marinosci, Cassandra; Magalhães, Sara; Macke, Emilie; Navajas, Maria; Carbonell, David; Devaux, Céline; Olivieri, Isabelle

    2015-08-01

    Studying antagonistic coevolution between host plants and herbivores is particularly relevant for polyphagous species that can experience a great diversity of host plants with a large range of defenses. Here, we performed experimental evolution with the polyphagous spider mite Tetranychus urticae to detect how mites can exploit host plants. We thus compared on a same host the performance of replicated populations from an ancestral one reared for hundreds of generations on cucumber plants that were shifted to either tomato or cucumber plants. We controlled for maternal effects by rearing females from all replicated populations on either tomato or cucumber leaves, crossing this factor with the host plant in a factorial design. About 24 generations after the host shift and for all individual mites, we measured the following fitness components on tomato leaf fragments: survival at all stages, acceptance of the host plant by juvenile and adult mites, longevity, and female fecundity. The host plant on which mite populations had evolved did not affect the performance of the mites, but only affected their sex ratio. Females that lived on tomato plants for circa 24 generations produced a higher proportion of daughters than did females that lived on cucumber plants. In contrast, maternal effects influenced juvenile survival, acceptance of the host plant by adult mites and female fecundity. Independently of the host plant species on which their population had evolved, females reared on the tomato maternal environment produced offspring that survived better on tomato as juveniles, but accepted less this host plant as adults and had a lower fecundity than did females reared on the cucumber maternal environment. We also found that temporal blocks affected mite dispersal and both female longevity and fecundity. Taken together, our results show that the host plant species can affect critical parameters of population dynamics, and most importantly that maternal and environmental

  12. Distance and Sex Determine Host Plant Choice by Herbivorous Beetles

    PubMed Central

    Ballhorn, Daniel J.; Kautz, Stefanie; Heil, Martin

    2013-01-01

    Background Plants respond to herbivore damage with the release of volatile organic compounds (VOCs). This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores? Methodology We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis) when facing lima bean plants (Fabaceae: Phaseolus lunatus) with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials. Conclusion Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a

  13. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    PubMed

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  14. Somatic Embryogenesis in Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae).

    PubMed

    Guerra, Miguel P; Steiner, Neusa; Farias-Soares, Francine L; Vieira, Leila do N; Fraga, Hugo P F; Rogge-Renner, Gladys D; Maldonado, Sara B

    2016-01-01

    This chapter deals with the features of somatic embryogenesis (SE) in Araucaria angustifolia, an endangered and native conifer from south Brazil. In this species SE includes the induction and proliferation of embryogenic cultures composed of pro-embryogenic masses (PEMs), which precede somatic embryos development. A. angustifolia SE model encompasses induction, proliferation, pre-maturation, and maturation steps. Double-staining with acetocarmine and Evan's blue is useful to evaluate the embryonic somatic structures. In this chapter we describe A. angustifolia SE protocols and analyzes morphological features in the different SE developmental stages.

  15. Host Plant Record for the Fruit Flies, Anastrepha fumipennis and A. nascimentoi (Diptera, Tephritidae)

    PubMed Central

    Uramoto, Keiko; Martins, David S.; Lima, Rita C. A.; Zucchi, Roberto A.

    2008-01-01

    The first host plant record for Anastrepha fumipennis Lima (Diptera: Tephritidae) in Geissospermum laeve (Vell.) Baill (Apocynaceae) and for A. nascimentoi Zucchi found in Cathedra bahiensis Sleumer (Olacaceae) was determined in a host plant survey of fruit flies undertaken at the “Reserva Natural da Companhia Vale do Rio Doce”. This reserve is located in an Atlantic Rain Forest remnant area, in Linhares county, state of Espírito Santo, Brazil. The phylogenetic relationships of Anastrepha species and their hosts are discussed. The occurrence of these fruit fly species in relation to the distribution range of their host plants is also discussed. PMID:20302458

  16. Influence of leaf color in a dry bean mapping population on Empoasca sp. populations and host plant resistance.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visual cues may be the first line of host plant recognition and an important determining factor when selecting host plants for feeding and oviposition, especially for highly polyphagous insects, such as leafhoppers, which have a broad range of potential host plants. Temperate Empoasca fabae and trop...

  17. New host plant and distribution records for Peruvian Tephritinae (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Distribution and host plant records (all Asteraceae) are reported for 17 species of Tephritinae: Acinia reticulata (stem galls on Tessaria integrifolia); Dracontomyia footei (Baccharis salicifolia); Ensina hyalipennis (Argentina; flowerheads of Sonchus asper); E. longiceps (flowerheads of Hypochaeri...

  18. Genome-wide association mapping and identification of candidate genes for the rumpless and ear-tufted traits of the Araucana chicken.

    PubMed

    Noorai, Rooksana E; Freese, Nowlan H; Wright, Lindsay M; Chapman, Susan C; Clark, Leigh Anne

    2012-01-01

    Araucana chickens are known for their rounded, tailless rumps and tufted ears. Inheritance studies have shown that the rumpless (Rp) and ear-tufted (Et) loci each act in an autosomal dominant fashion, segregate independently, and are associated with an increased rate of embryonic mortality. To find genomic regions associated with Rp and Et, we generated genome-wide SNP profiles for a diverse population of 60 Araucana chickens using the 60 K chicken SNP BeadChip. Genome-wide association studies using 40 rumpless and 11 tailed birds showed a strong association with rumpless on Gga 2 (P(raw) = 2.45×10(-10), P(genome) = 0.00575), and analysis of genotypes revealed a 2.14 Mb haplotype shared by all rumpless birds. Within this haplotype, a 0.74 Mb critical interval containing two Iroquois homeobox genes, Irx1 and Irx2, was unique to rumpless Araucana chickens. Irx1 and Irx2 are central for developmental prepatterning, but neither gene is known to have a role in mechanisms leading to caudal development. A second genome-wide association analysis using 30 ear-tufted and 28 non-tufted birds revealed an association with tufted on Gga 15 (P(raw) = 6.61×10(-7), P(genome) = 0.0981). We identified a 0.58 Mb haplotype common to tufted birds and harboring 7 genes. Because homozygosity for Et is nearly 100% lethal, we employed a heterozygosity mapping approach to prioritize candidate gene selection. A 60 kb region heterozygous in all Araucana chickens contains the complete coding sequence for TBX1 and partial sequence for GNB1L. TBX1 is an important transcriptional regulator of embryonic development and a key genetic determinant of human DiGeorge syndrome. Herein, we describe localization of Rp and Et and identification of positional candidate genes.

  19. Effect on non-host plants on movements of Colorado potato beetle, Leptinotarsa decemlineata (Say)

    SciTech Connect

    Cort, R.P.

    1982-01-01

    Movements of Colorado potato beetles, Leptinotarsa decemlineata, (Say) (Coleoptera: Chrysomelidae) were studied in experimental plots of potatoes planted in monocultures and in polycultures with beans and/or marigolds. Rates of movement into and out of plots of varying plant composition were measured by mark-recapture of adult beetles. The amount of emigration was not affected by the presence of non-host plants. However, there were significantly more beetles moving into the pure stands of potatoes than into the plots containing non-host plants. This pattern is consistent with the idea that non-host plants act to mask host plants from potential herbivores, but do not affect the insect once it has located a host plant. It is thus unlikely that marigolds or beans repel Colorado potato beetles, since an increase in emigration would be expected if this were true. Beans are more effective than marigolds at deterring immigration, and both non-host plants together have an additive effect greater than one alone.

  20. Host Plant Associations of Anagrus spp. (Hymenoptera: Mymaridae) and Erythroneura elegantula (Hemiptera: Cicadellidae) in Northern California.

    PubMed

    Wilson, Houston; Miles, Albie F; Daane, Kent M; Altieri, Miguel A

    2016-04-22

    Anagrus erythroneurae S. Trjapitzin & Chiappini and Anagrus daanei Triapitsyn are the key parasitoids of the western grape leafhopper (Erythroneura elegantula Osborn) in northern California vineyards. Erythroneura elegantula overwinters as an adult in reproductive diapause. To successfully overwinter, Anagrus spp. must locate an alternate leafhopper host that overwinters in an egg stage that they can parasitize. These alternate leafhopper hosts are thought to be primarily located in the natural habitats surrounding vineyards. This study identifies the noncrop host plants utilized by Anagrus spp. not only during the overwintering period but throughout the entire year, as well as the leafhopper species associated with these host plants. Over a 2-yr period, Anagrus spp. and leafhoppers were sampled from numerous plants in natural and cultivated habitats surrounding vineyards. Results from this study confirm previously known Anagrus spp. host plants, but also identify new host plant species. Some of the host plants harbored Anagrus spp. year-round while others were utilized only during certain periods of the year. Leafhoppers associated with Anagrus spp. host plants may potentially serve as the alternate host utilized by Anagrus spp. on these plants, but this was not confirmed in the current study. Records of E. elegantula demonstrate their cyclical movement between the vineyard floor (winter), temporary noncrop hosts (spring/fall), and the grape vine canopy (summer).

  1. Detection of exonic variants within the melanocortin 1 receptor (MC1R) gene in Black Silky, White Leghorn and Golden duckwing Araucana chicken.

    PubMed

    Yeo, Jungsou; Lee, Yoonseok; Hyeong, KiEun; Ha, Jaejung; Yi, JunKoo; Kim, Byungki; Oh, Dongyep

    2014-08-01

    The melanocortin 1 receptor (MC1R) gene can be considered a candidate functional gene for the pigmentation of plumage color. The aim of this study was to investigate the association between the genotype frequencies of g.69 T>C, g.376 G>A and g.427 A>G SNPs within the MC1R gene in Black silky (O), Golden duckwing Araucana (GA) and White Leghorn (W). The CC and AA genotype frequencies of g.69 T>C and g.427 A>G SNPs in White Leghorn (W) were both 1.000, and the TT genotype frequency of the g.69 T>C SNP in Golden duckwing Araucana (GA) was also 1.000. The GG and AA genotype frequencies of g.376 G>A and g.427 A>G SNPs in Black silky (O) were both 0.100. When a haplotype is observed using a combination of markers, a Golden duckwing Araucana (GA) can especially be distinguished when it is a TAG, TGG and TAA type in the SNP combination of the MC1R gene. In case of the CAA types, only White Leghorn (W) could specifically be distinguished. Therefore, three SNPs in MC1R may provide identification in chicken breeds.

  2. Whole genome sequencing of Gyeongbuk Araucana, a newly developed blue-egg laying chicken breed, reveals its origin and genetic characteristics

    PubMed Central

    Jeong, Hyeonsoo; Kim, Kwondo; Caetano-Anollés, Kelsey; Kim, Heebal; Kim, Byung-ki; Yi, Jun-Koo; Ha, Jae-Jung; Cho, Seoae; Oh, Dong Yep

    2016-01-01

    Chicken, Gallus gallus, is a valuable species both as a food source and as a model organism for scientific research. Here, we sequenced the genome of Gyeongbuk Araucana, a rare chicken breed with unique phenotypic characteristics including flight ability, large body size, and laying blue-shelled eggs, to identify its genomic features. We generated genomes of Gyeongbuk Araucana, Leghorn, and Korean Native Chicken at a total of 33.5, 35.82, and 33.23 coverage depth, respectively. Along with the genomes of 12 Chinese breeds, we identified genomic variants of 16.3 million SNVs and 2.3 million InDels in mapped regions. Additionally, through assembly of unmapped reads and selective sweep, we identified candidate genes that fall into heart, vasculature and muscle development and body growth categories, which provided insight into Gyeongbuk Araucana’s phenotypic traits. Finally, genetic variation based on the transposable element insertion pattern was investigated to elucidate the features of transposable elements related to blue egg shell formation. This study presents results of the first genomic study on the Gyeongbuk Araucana breed; it has potential to serve as an invaluable resource for future research on the genomic characteristics of this chicken breed as well as others. PMID:27215397

  3. Host plant volatiles induce oriented flight behaviour in male European grapevine moths, Lobesia botrana.

    PubMed

    von Arx, Martin; Schmidt-Büsser, Daniela; Guerin, Patrick M

    2011-10-01

    The European grapevine moth Lobesia botrana relies on a female produced sex pheromone for long-distance mate finding. Grapevine moth males compete heavily during limited time windows for females. The aim of this study was to investigate the perception of host plant volatiles by grapevine moth males and whether such compounds elicit upwind oriented flights. We compared five host plant headspace extracts by means of gas chromatography linked electroantennogram (EAG) recording. We identified 12 common host plant volatiles (aliphatic esters, aldehydes, and alcohols, aromatic compounds and terpenes) that elicit EAG responses from grapevine moth males and that occur in at least three of the host plant volatile headspace extracts tested. Subsequently the behavioural response of grapevine moth males to four these compounds presented singly and in mixtures (1-hexanol, 1-octen-3-ol, (Z)-3-hexenyl acetate and (E)-β-caryophyllene) was recorded in a wind tunnel. Grapevine moth males engaged in upwind flights to all of four compounds when released singly at 10,000 pg/min and to all, except 1-octen-3-ol, when released at 100 pg/min. A blend of the four host plant volatiles released at 10,000 pg/min and mixed at a ratio based on the analysis of Vitis vinifera cv. Solaris volatile emissions attracted significantly more males than any single compound. Grapevine moth males perceive and respond to host plant volatiles at biologically relevant levels indicating that host plant volatiles figure as olfactory cues and that L. botrana males can discern places where the likelihood of encountering females is higher.

  4. Host Plant Determines the Population Size of an Obligate Symbiont (Buchnera aphidicola) in Aphids

    PubMed Central

    Zhang, Yuan-Chen; Cao, Wen-Jie; Zhong, Le-Rong; Godfray, H. Charles J.

    2016-01-01

    Buchnera aphidicola is an obligate endosymbiont that provides aphids with several essential nutrients. Though much is known about aphid-Buchnera interactions, the effect of the host plant on Buchnera population size remains unclear. Here we used quantitative PCR (qPCR) techniques to explore the effects of the host plant on Buchnera densities in the cotton-melon aphid, Aphis gossypii. Buchnera titers were significantly higher in populations that had been reared on cucumber for over 10 years than in populations maintained on cotton for a similar length of time. Aphids collected in the wild from hibiscus and zucchini harbored more Buchnera symbionts than those collected from cucumber and cotton. The effect of aphid genotype on the population size of Buchnera depended on the host plant upon which they fed. When aphids from populations maintained on cucumber or cotton were transferred to novel host plants, host survival and Buchnera population size fluctuated markedly for the first two generations before becoming relatively stable in the third and later generations. Host plant extracts from cucumber, pumpkin, zucchini, and cowpea added to artificial diets led to a significant increase in Buchnera titers in the aphids from the population reared on cotton, while plant extracts from cotton and zucchini led to a decrease in Buchnera titers in the aphids reared on cucumber. Gossypol, a secondary metabolite from cotton, suppressed Buchnera populations in populations from both cotton and cucumber, while cucurbitacin from cucurbit plants led to higher densities. Together, the results suggest that host plants influence Buchnera population processes and that this may provide phenotypic plasticity in host plant use for clonal aphids. PMID:26850304

  5. Host Plant Determines the Population Size of an Obligate Symbiont (Buchnera aphidicola) in Aphids.

    PubMed

    Zhang, Yuan-Chen; Cao, Wen-Jie; Zhong, Le-Rong; Godfray, H Charles J; Liu, Xiang-Dong

    2016-04-01

    Buchnera aphidicolais an obligate endosymbiont that provides aphids with several essential nutrients. Though much is known about aphid-Buchnera interactions, the effect of the host plant on Buchnera population size remains unclear. Here we used quantitative PCR (qPCR) techniques to explore the effects of the host plant on Buchnera densities in the cotton-melon aphid, Aphis gossypii Buchneratiters were significantly higher in populations that had been reared on cucumber for over 10 years than in populations maintained on cotton for a similar length of time. Aphids collected in the wild from hibiscus and zucchini harbored more Buchnera symbionts than those collected from cucumber and cotton. The effect of aphid genotype on the population size of Buchnera depended on the host plant upon which they fed. When aphids from populations maintained on cucumber or cotton were transferred to novel host plants, host survival and Buchnera population size fluctuated markedly for the first two generations before becoming relatively stable in the third and later generations. Host plant extracts from cucumber, pumpkin, zucchini, and cowpea added to artificial diets led to a significant increase in Buchnera titers in the aphids from the population reared on cotton, while plant extracts from cotton and zucchini led to a decrease in Buchnera titers in the aphids reared on cucumber. Gossypol, a secondary metabolite from cotton, suppressed Buchnera populations in populations from both cotton and cucumber, while cucurbitacin from cucurbit plants led to higher densities. Together, the results suggest that host plants influence Buchnera population processes and that this may provide phenotypic plasticity in host plant use for clonal aphids.

  6. Purification and biological effects of Araucaria angustifolia (Araucariaceae) seed lectin

    SciTech Connect

    Santi-Gadelha, Tatiane; Almeida Gadelha, Carlos Alberto de; Aragao, Karoline Saboia; Gomes, Raphaela Cardoso; Freitas Pires, Alana de; Toyama, Marcos Hikari; Oliveira Toyama, Daniela de; Nunes de Alencar, Nylane Maria; Criddle, David Neil; Assreuy, Ana Maria Sampaio . E-mail: assreuy@uece.br; Cavada, Benildo Sousa . E-mail: bscavada@ufc.br

    2006-12-01

    This paper describes the purification and characterization of a new N-acetyl-D-glucosamine-specific lectin from Araucaria angustifolia (AaL) seeds (Araucariaceae) and its anti-inflammatory and antibacterial activities. AaL was purified using a combination of affinity chromatography on a chitin column and ion exchange chromatography on Sephacel-DEAE. The pure protein has 8.0 kDa (SDS-PAGE) and specifically agglutinates rabbit erythrocytes, effect that was independent of the presence of divalent cations and was inhibited after incubation with glucose and N-acetyl-D-glucosamine. AaL showed antibacterial activity against Gram-negative and Gram-positive strains, shown by scanning electron microscopy. AaL, intravenously injected into rats, showed anti-inflammatory effect, via carbohydrate site interaction, in the models of paw edema and peritonitis. This lectin can be used as a tool for studying bacterial infections and inflammatory processes.

  7. Differential Host Plant-Associated Genetic Variation Between Sympatric Mite Species of the Genus Oligonychus (Acari: Tetranychidae).

    PubMed

    Guzman-Valencia, Stephanie; Santillán-Galicia, Ma Teresa; Guzmán-Franco, Ariel W; Vega-Muñoz, Ricardo

    2017-01-12

    Adaptation to different host plants can lead to host-associated differentiation (HAD). The mites Oligonychus perseae and Oligonychus punicae have a broad range of host plants, but, to date, records of them coexisting sympatrically had only been reported on avocado. However, our field observations showed both species coexisting on host plants other than avocado. The lack of previous records of these mites on the host plants studied here suggests only recent divergence to new host plant species. Previous studies showed that O. punicae had a limited migration capacity compared with O. perseae, suggesting that O. punicae is more likely to develop a close host plant relationship leading to HAD. Adults of both species were collected from trees hosting both mite species. Three genera of host plants considered were Persea, Salix, and Alnus; two species within one genus were Alnus jorullensis and Alnus acuminata; and three varieties within one species were Persea americana var. Fuerte, var. Hass, and var. Criollo, a noncommercial variety. Using sequence data from a segment of the mitochondrial cytochrome oxidase subunit I, the phylogenetic relationships and genetic population structure of both mite species in relation to the host plant were determined. Oligonychus perseae populations showed a significant population structure in relation to host plant at the species and genus level, but there was no effect of variety. In contrast, host plant explained none of the genetic variation among O. punicae populations. The potential role of coexistence mechanisms in the contrasting genetic population structure of both mite species is discussed.

  8. Implications of a temperature increase for host plant range: predictions for a butterfly

    PubMed Central

    Audusseau, Hélène; Nylin, Sören; Janz, Niklas

    2013-01-01

    Although changes in phenology and species associations are relatively well-documented responses to global warming, the potential interactions between these phenomena are less well understood. In this study, we investigate the interactions between temperature, phenology (in terms of seasonal timing of larval growth) and host plant use in the polyphagous butterfly Polygonia c-album. We found that the hierarchy of larval performance on three natural host plants was not modified by a temperature increase as such. However, larval performance on each host plant and temperature treatment was affected by rearing season. Even though larvae performed better at the higher temperature regardless of the time of the rearing, relative differences between host plants changed with the season. For larvae reared late in the season, performance was always better on the herbaceous plant than on the woody plants. In this species, it is likely that a prolonged warming will lead to a shift from univoltinism to bivoltinism. The demonstrated interaction between host plant suitability and season means that such a shift is likely to lead to a shift in selective regime, favoring specialization on the herbaceous host. Based on our result, we suggest that host range evolution in response to temperature increase would in this species be highly contingent on whether the population undergoes a predicted shift from one to two generations. We discuss the effect of global warming on species associations and the outcome of asynchrony in rates of phenological change. PMID:24101991

  9. Resource dependence in a new ecosystem: A host plant and its colonizing community

    NASA Astrophysics Data System (ADS)

    Lakatos, K. Tímea; László, Zoltán; Tóthmérész, Béla

    2016-05-01

    The introduced black locust (Robinia pseudoacacia) has become an invasive plant species in Europe. The introduction of alien plants such as the black locust may modify ecosystem composition and functioning. In response to the presence of a potential host plant, herbivores can adapt and shift to the consumption of the new host plant. In Eastern-Central Europe, the seed predator Bruchophagus robiniae (Hymenoptera: Eurytomidae) is an important consumer of black locust seeds which presumably shifted from its formerly host species to black locust. We tested the influence of host plant abundance on a seed predator - parasitoid community. We found that the seed predator B. robiniae was present in higher numbers in woodlots than in small patches of black locust. The density of the specialist parasitoid Mesopolobus sp. was lower in woodlots than in small patches, while the generalist parasitoid Eupelmus urozonos was evenly distributed between woodlots and small patches of black locust. We found that parasitoid species are influenced by the patch size of host plants, thus characteristics of introduced host plants can also manifest in higher trophic levels.

  10. [Effects of host plants on the life table parameters of experimental populations of Aphis gossypii].

    PubMed

    Li, Yan-Yan; Zhou, Xiao-Rong; Pang, Bao-Ping; Chang, Jing

    2013-05-01

    A comparative study was conducted on the life table parameters of Aphis gossypii reared on five host plant species at (25 +/- 1) degrees C in laboratory. There existed significant differences in the durations of various developmental stages, adult longevity, mean offspring number per day, net reproductive rate, intrinsic rate of increase, finite rate of increase, mean generation time, and population doubling time for the A. gossypii populations reared on the host plants. For the aphids on Lagenaria siceraria var. turbinate, they needed the longest time (5.84 days) to complete one generation, but for those on the other four plants, no significant differences were observed, with the time needed ranged from 5.24 to 5.45 days. The adult longevity was the longest (20.04 days) on Cucumis sativus, but had no significant differences on the other four host plants, being from 14.76 to 16.03 days. The populations' survival curves on all test host plants were of Deevey I, i. e., the death mainly occurred during late period. The survival rate on C. sativus was higher than those on the other four host plants. Based on the intrinsic rates of increase of A. gossypii, its host suitability was in the order of Cucumis melo var. saccharinus > Lagenaria siceraria var. turbinate > Cucurbita moschata var. melonaeformis > Cucumis sativus > Cucurbita pepo var. medullosa.

  11. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses.

    PubMed

    Chung, Seung Ho; Scully, Erin D; Peiffer, Michelle; Geib, Scott M; Rosa, Cristina; Hoover, Kelli; Felton, Gary W

    2017-01-03

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore's ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.

  12. Implications of a temperature increase for host plant range: predictions for a butterfly.

    PubMed

    Audusseau, Hélène; Nylin, Sören; Janz, Niklas

    2013-09-01

    Although changes in phenology and species associations are relatively well-documented responses to global warming, the potential interactions between these phenomena are less well understood. In this study, we investigate the interactions between temperature, phenology (in terms of seasonal timing of larval growth) and host plant use in the polyphagous butterfly Polygonia c-album. We found that the hierarchy of larval performance on three natural host plants was not modified by a temperature increase as such. However, larval performance on each host plant and temperature treatment was affected by rearing season. Even though larvae performed better at the higher temperature regardless of the time of the rearing, relative differences between host plants changed with the season. For larvae reared late in the season, performance was always better on the herbaceous plant than on the woody plants. In this species, it is likely that a prolonged warming will lead to a shift from univoltinism to bivoltinism. The demonstrated interaction between host plant suitability and season means that such a shift is likely to lead to a shift in selective regime, favoring specialization on the herbaceous host. Based on our result, we suggest that host range evolution in response to temperature increase would in this species be highly contingent on whether the population undergoes a predicted shift from one to two generations. We discuss the effect of global warming on species associations and the outcome of asynchrony in rates of phenological change.

  13. Effects of herbicide-treated host plants on the development of Mamestra brassicae L. caterpillars.

    PubMed

    Hahn, Melanie; Geisthardt, Martin; Brühl, Carsten A

    2014-11-01

    Herbicides are widely used pesticides that affect plants by changing their chemistry. In doing so, herbicides might also influence the quality of plants as food for herbivores. To study the effects of herbicides on host plant quality, 3 plant species (Plantago lanceolata L., P. major L., and Ranunculus acris L.) were treated with sublethal rates of either a sulfonylurea (Atlantis WG, Bayer CropScience) or a glyphosate (Roundup LB Plus, Monsanto) herbicide, and the development of caterpillars of the cabbage moth Mamestra brassicae L. that fed on these plants was observed. Of the 6 tested plant-herbicide combinations, 1 combination (R. acris + sulfonylurea herbicide) resulted in significantly lower caterpillar weight, increased time to pupation, and increased overall development time compared with larvae that were fed unsprayed plants. These results might be caused by a lower nutritional value of these host plants or increased concentrations of secondary metabolites that are involved in plant defense. The results of the present and other studies suggest potential risks to herbivores that feed on host plants treated with sublethal rates of herbicides. However, as the effects of herbicides on host plant quality appear to be species-specific and as there are numerous plant-herbicide-herbivore relationships in agricultural landscapes, a general reduction in herbicide contamination of nontarget habitats (e.g., field margins) might mitigate the negative effects of herbicides on host plant quality.

  14. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    PubMed Central

    Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.

    2017-01-01

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052

  15. Host plant range of Raoiella indica (Acari: Tenuipalpidae) in areas of invasion of the New World.

    PubMed

    Carrillo, Daniel; Amalin, Divina; Hosein, Farzan; Roda, Amy; Duncan, Rita E; Peña, Jorge E

    2012-08-01

    Raoiella indica has spread rapidly through the Neotropical region where the mite damages economically and ecologically important plants. Three studies were conducted to determine the host plant range of R. indica, using the presence of colonies containing all life stages as an indicator of reproductive suitability. Periodic surveys at the Fairchild Tropical Botanic Garden (Miami Dade County, FL, USA) and the Royal Botanical Gardens (Port of Spain, Trinidad and Tobago) identified 27 new reproductive host plants. The reproductive suitability of two dicotyledonous species and three native Florida palm species was examined. An updated list of reproductive host plants of R. indica is presented. All reported reproductive hosts (91 plant species) of R. indica are monocots from the orders Arecales (Arecaceae), Zingiberales (Heliconiaceae, Musaceae, Strelitziaceae, Zingiberaceae) and Pandanales (Pandanaceae). Most are palms of the family Arecaceae that originated in areas of the Eastern Hemisphere; about one fourth of the reported hosts are native to the New World and could be considered new host associations of R. indica. Six years after the initial detection in the Caribbean, R. indica has expanded its host plant range. Here we report 27 new reproductive host of R. indica that represent 30% of increase on previous host plant records. As this mite continues spreading in the Neotropical region a great diversity of plants is potentially affected.

  16. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore.

    PubMed

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-09-02

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.

  17. Divergence in Olfactory Host Plant Preference in D. mojavensis in Response to Cactus Host Use

    PubMed Central

    Stensmyr, Marcus C.; Shann, Jodi; Hansson, Bill S.; Rollmann, Stephanie M.

    2013-01-01

    Divergence in host adaptive traits has been well studied from an ecological and evolutionary perspective, but identification of the proximate mechanisms underlying such divergence is less well understood. Behavioral preferences for host plants are often mediated by olfaction and shifts in preference may be accompanied by changes in the olfactory system. In this study, we examine the evolution of host plant preferences in cactophilic Drosophila mojavensis that feeds and breeds on different cacti throughout its range. We show divergence in electrophysiological responses and olfactory behavior among populations with host plant shifts. Specifically, significant divergence was observed in the Mojave Desert population that specializes on barrel cactus. Differences were observed in electrophysiological responses of the olfactory organs and in behavioral responses to barrel cactus volatiles. Together our results suggest that the peripheral nervous system has changed in response to different ecological environments and that these changes likely contribute to divergence among D. mojavensis populations. PMID:23936137

  18. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    PubMed Central

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy. PMID:27585907

  19. Genetic differentiation among Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) populations living on different host plants.

    PubMed

    Rosas-García, Ninfa M; Sarmiento-Benavides, Sandra L; Villegas-Mendoza, Jesús M; Hernández-Delgado, Sanjuana; Mayek-Pérez, Netzahualcoyotl

    2010-06-01

    The pink hibiscus mealybug Maconellicoccus hirsutus (Green) is a dangerous pest that damages a wide variety of agricultural, horticultural, and forestry crops. Amplified fragment length polymorphism (AFLP) fingerprints were used to characterize the genetic variation of 11 M. hirsutus populations infesting three plant species in Nayarit, Mexico. Analysis was carried out using four primers combinations, producing 590 polymorphic bands. Cluster analysis, as well as bootstrap dendrogram and nonmetric multidimensional scaling analysis, grouped M. hirsutus populations according to their host plant. The estimated F(ST) values indicated a high differentiation in M. hirsutus populations among the three host plant species. These results were also supported by a Bayesian analysis, which indicated a population clustering robustness according to their host plant. Genetic variation among populations is not caused by geographic distances, as shown by a Mantel test.

  20. Divergence in olfactory host plant preference in D. mojavensis in response to cactus host use.

    PubMed

    Date, Priya; Dweck, Hany K M; Stensmyr, Marcus C; Shann, Jodi; Hansson, Bill S; Rollmann, Stephanie M

    2013-01-01

    Divergence in host adaptive traits has been well studied from an ecological and evolutionary perspective, but identification of the proximate mechanisms underlying such divergence is less well understood. Behavioral preferences for host plants are often mediated by olfaction and shifts in preference may be accompanied by changes in the olfactory system. In this study, we examine the evolution of host plant preferences in cactophilic Drosophila mojavensis that feeds and breeds on different cacti throughout its range. We show divergence in electrophysiological responses and olfactory behavior among populations with host plant shifts. Specifically, significant divergence was observed in the Mojave Desert population that specializes on barrel cactus. Differences were observed in electrophysiological responses of the olfactory organs and in behavioral responses to barrel cactus volatiles. Together our results suggest that the peripheral nervous system has changed in response to different ecological environments and that these changes likely contribute to divergence among D. mojavensis populations.

  1. Congruence and diversity of butterfly-host plant associations at higher taxonomic levels.

    PubMed

    Ferrer-Paris, José R; Sánchez-Mercado, Ada; Viloria, Ángel L; Donaldson, John

    2013-01-01

    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.

  2. Effect of reproductive mode on host plant utilization of melon aphid (Hemiptera: Aphididae).

    PubMed

    Liu, Xiangdong; Gao, Xue

    2010-12-01

    Variation in the reproductive mode of melon aphid Aphis gossypii Glover occurred on the large geographic scale, but the performance of different reproductive modes to use host plant is poorly understood. Life tables of melon aphid population that undergo the anholocyclic, androcyclic, and intermediate reproductive mode were conducted on different host plants. The results showed that the anholocyclic and androcyclic strains could become adults and produce offspring on cotton Gossypium hirsutum L., whereas the intermediate strain could not. The survival rate, net reproductive rate (R(0)), and intrinsic rate of natural increase (r(m)) of the androcyclic strain on cotton were significantly greater than that of the anholocyclic strain. The three strains could aptly use cucurbits host plants including cucumber Cucumis sativa L., pumpkin Cucurbita moschata (Duchesne ex Lam.), and zucchini Cucurbita pepo L.; survival rate and R(0) were not significantly different on these two host plants. Moreover, the r(m) of the anholocyclic strain on cucumber and the androcyclic strain on pumpkin and zucchini were significantly greater than that of the other two strains. The abilities of the three strains to use a host plant were flexible, because their r(m) on pumpkin or zucchini became equal after rearing for four successive generations; furthermore, the intermediate strain attained the ability to use cotton, and the performance of anholocyclic and intermediate strains to use cotton also significantly increased after feeding on pumpkin or zucchini for one or three generations. It was concluded that the reproductive mode and feeding experience affected the performance of melon aphid to use a host plant.

  3. Decoupling of female host plant preference and offspring performance in relative specialist and generalist butterflies.

    PubMed

    Friberg, M; Posledovich, D; Wiklund, C

    2015-08-01

    The preference-performance hypothesis posits that the host plant range of plant-feeding insects is ultimately limited by larval costs associated with feeding on multiple resources, and that female egg-laying preferences evolve in response to these costs. The trade-off of either using few host plant species and being a strong competitor on them due to effective utilization or using a wide host plant range but being a poor competitor is further predicted to result in host plant specialization. This follows under the hypothesis that both females and offspring are ultimately favoured by utilizing only the most suitable host(s). We develop an experimental approach to identify such trade-offs, i.e. larval costs associated with being a host generalist, and apply a suite of experiments to two sympatric and syntopic populations of the closely related butterflies Pieris napi and Pieris rapae. These butterflies show variation in their level of host specialization, which allowed comparisons between more and less specialized species and between families within species. Our results show that, first, the link between female host preference and offspring performance was not significantly stronger in the specialist compared to the generalist species. Second, the offspring of the host plant specialist did not outperform the offspring of the generalist on the former's most preferred host plant species. Finally, the more generalized species, or families within species, did not show higher survival or consistently higher growth rates than the specialists on the less preferred plants. Thus, the preference and performance traits appear to evolve as largely separated units.

  4. Host-plant-associated genetic differentiation in Northern French populations of the European corn borer.

    PubMed

    Martel, C; Réjasse, A; Rousset, F; Bethenod, M-T; Bourguet, D

    2003-02-01

    The phytophagous insects that damage crops are often polyphagous, feeding on several types of crop and on weeds. The refuges constituted by noncrop host plants may be useful in managing the evolution in pest species of resistance to the Bacillus thuringiensis toxins produced by transgenic crops. However, the benefits of these refuges may be limited because host-plant diversity may drive genetic divergence and possibly even host-plant-mediated sympatric speciation. The European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Crambidae), is the main pest of maize in Europe and North America, where it was introduced early in the 20th century. It has a wide host range but feeds principally on mugwort (Artemisia vulgaris L.) and maize (Zea mays L.). O. nubilalis is found on mugwort only in the northern part of France, whereas it is found on maize throughout France. The extent of genetic variation at allozyme markers was investigated in populations collected from the two host plants over the entire geographical distribution of the European corn borer on mugwort in France. Allelic differentiation between pairs of populations and hierarchical analyses of pools of samples from each host plant indicate that the group of populations feeding on maize differed from the group of populations feeding on mugwort. Our results suggest (1) host-plant-related divergent selection at the genomic region surrounding the Mpi locus and (2) limited gene flow between the populations feeding on mugwort and those infesting maize fields. These data indicate that adults emerging from mugwort would not be useful for managing the evolution of resistance to the B. thuringiensis toxins in European corn borer populations.

  5. Integration of Visual and Olfactory Cues in Host Plant Identification by the Asian Longhorned Beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae)

    PubMed Central

    L.Yv, Fei; Hai, Xiaoxia; Wang, Zhigang; Yan, Aihua; Liu, Bingxiang; Bi, Yongguo

    2015-01-01

    Some insects use host and mate cues, including odor, color, and shape, to locate and recognize their preferred hosts and mates. Previous research has shown that the Asian longicorn beetle, Anoplophora glabripennis (Motschulsky), uses olfactory cues to locate host plants and differentiate them from non-host plants. However, whether A. glabripennis adults use visual cues or a combination of visual and olfactory cues remains unclear. In this study, we tested the host location and recognition behavior in A. glabripennis, which infests a number of hardwood species and causes considerable economic losses in North America, Europe and Asia. We determined the relative importance of visual and olfactory cues from Acer negundo in host plant location and recognition, as well as in the discrimination of non-host plants (Sabina chinensis and Pinus bungeana), by female and male A. glabripennis. Visual and olfactory cues from the host plants (A. negundo), alone and combined, attracted significantly more females and males than equivalent cues from non-host plants (S. chinensis and P. bungeana). Furthermore, the combination of visual and olfactory cues of host plants attracted more adults than either cue alone, and visual cues alone attracted significantly more adults than olfactory cues alone. This finding suggests that adult A. glabripennis has an innate preference for the visual and/or olfactory cues of its host plants (A. negundo) over those of the non-host plant and visual cues are initially more important than olfactory cues for orientation; furthermore, this finding also suggests that adults integrate visual and olfactory cues to find their host plants. Our results indicate that different modalities of host plant cues should be considered together to understand fully the communication between host plants and Asian longhorned beetles. PMID:26556100

  6. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We prev...

  7. Host plant resistance in melon to sweetpotato whitefly in California and Arizona

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweetpotato whitefly biotype B (MEAM1 cryptic species of Bemisia tabaci; SPWF) feeding severely impacts fall season melon (Cucumis melo L.) yield and quality in the lower deserts of California and Arizona. Melon accessions PI 313970 and TGR 1551 (PI 482420) have been reported to exhibit host plant r...

  8. Host plant resistance in melon (Cucumis melo L.) to sweetpotato whitefly in California and Arizona

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweetpotato whitefly (MEAM1 cryptic species of Bemisia tabaci; SPWF) feeding severely impacts fall season melon yield and quality in the lower deserts of California and Arizona. Melon accessions PI 313970 and TGR 1551 (PI 482420) have been reported to exhibit host plant resistance (HPR) to SPWF. Pot...

  9. Host plant associated genetic divergence of two Diatraea spp. (Lepidoptera: Crambidae) stemborers on novel crop plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diatraea lineolata and Diatraea saccharalis (Lepidoptera: Crambidae) are moths with stemboring larvae that feed and develop on economically important grasses. This study investigated whether these moths have diverged from a native host plant, corn, onto introduced crop plants including sorghum, suga...

  10. Remote identification of potential boll weevil host plants: Airborne multispectral detection of regrowth cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regrowth cotton plants can serve as potential hosts for boll weevils during and beyond the production season. Effective methods for timely areawide detection of these host plants are critically needed to expedite eradication in south Texas. We acquired airborne multispectral images of experimental...

  11. Evaluations of melon germplasm reported to exhibit host plant resistance to sweetpotato whitefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweetpotato whitefly (MEAM1 cryptic species of Bemisia tabaci; SPWF) displaced B. tabaci biotype A in 1991 in the lower desert area of southern California and the adjoining areas of Arizona and western Mexico. The search for high-level host plant resistance to this devastating insect has been ongoin...

  12. Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography

    PubMed Central

    Normand, Philippe; Lapierre, Pascal; Tisa, Louis S.; Gogarten, Johann Peter; Alloisio, Nicole; Bagnarol, Emilie; Bassi, Carla A.; Berry, Alison M.; Bickhart, Derek M.; Choisne, Nathalie; Couloux, Arnaud; Cournoyer, Benoit; Cruveiller, Stephane; Daubin, Vincent; Demange, Nadia; Francino, Maria Pilar; Goltsman, Eugene; Huang, Ying; Kopp, Olga R.; Labarre, Laurent; Lapidus, Alla; Lavire, Celine; Marechal, Joelle; Martinez, Michele; Mastronunzio, Juliana E.; Mullin, Beth C.; Niemann, James; Pujic, Pierre; Rawnsley, Tania; Rouy, Zoe; Schenowitz, Chantal; Sellstedt, Anita; Tavares, Fernando; Tomkins, Jeffrey P.; Vallenet, David; Valverde, Claudio; Wall, Luis G.; Wang, Ying; Medigue, Claudine; Benson, David R.

    2007-01-01

    Soil bacteria that also form mutualistic symbioses in plants encounter two major levels of selection. One occurs during adaptation to and survival in soil, and the other occurs in concert with host plant speciation and adaptation. Actinobacteria from the genus Frankia are facultative symbionts that form N2-fixing root nodules on diverse and globally distributed angiosperms in the “actinorhizal” symbioses. Three closely related clades of Frankia sp. strains are recognized; members of each clade infect a subset of plants from among eight angiosperm families. We sequenced the genomes from three strains; their sizes varied from 5.43 Mbp for a narrow host range strain (Frankia sp. strain HFPCcI3) to 7.50 Mbp for a medium host range strain (Frankia alni strain ACN14a) to 9.04 Mbp for a broad host range strain (Frankia sp. strain EAN1pec.) This size divergence is the largest yet reported for such closely related soil bacteria (97.8%–98.9% identity of 16S rRNA genes). The extent of gene deletion, duplication, and acquisition is in concert with the biogeographic history of the symbioses and host plant speciation. Host plant isolation favored genome contraction, whereas host plant diversification favored genome expansion. The results support the idea that major genome expansions as well as reductions can occur in facultative symbiotic soil bacteria as they respond to new environments in the context of their symbioses. PMID:17151343

  13. Ecological and Genetic Differences between Cacopsylla melanoneura (Hemiptera, Psyllidae) Populations Reveal Species Host Plant Preference

    PubMed Central

    Malagnini, Valeria; Pedrazzoli, Federico; Papetti, Chiara; Cainelli, Christian; Zasso, Rosaly; Gualandri, Valeria; Pozzebon, Alberto; Ioriatti, Claudio

    2013-01-01

    The psyllid Cacopsylla melanoneura is considered one of the vectors of ‘Candidatus Phytoplasma mali’, the causal agent of apple proliferation disease. In Northern Italy, overwintered C. melanoneura adults reach apple and hawthorn around the end of January. Nymph development takes place between March and the end of April. The new generation adults migrate onto conifers around mid-June and come back to the host plant species after overwintering. In this study we investigated behavioural differences, genetic differentiation and gene flow between samples of C. melanoneura collected from the two different host plants. Further analyses were performed on some samples collected from conifers. To assess the ecological differences, host-switching experiments were conducted on C. melanoneura samples collected from apple and hawthorn. Furthermore, the genetic structure of the samples was studied by genotyping microsatellite markers. The examined C. melanoneura samples performed better on their native host plant species. This was verified in terms of oviposition and development of the offspring. Data resulting from microsatellite analysis indicated a low, but statistically significant difference between collected-from-apple and hawthorn samples. In conclusion, both ecological and genetic results indicate a differentiation between C. melanoneura samples associated with the two host plants. PMID:23874980

  14. Annotated world bibliography of host plants of the melon fly, Bactrocera cucurbitae(Cocquillett)(Diptera:Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The melon fly, Bactrocera cucurbitae(Coquillett), is a widespread, economically important tephritid fruit fly (Diptera: Tephritidae) species. Bactrocera cucurbitae infests fruits and vegetables of a number of different plant species, with many host plants in the plant family Cucurbitaceae, but with ...

  15. Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations.

    PubMed

    Hoang, Kim; Matzkin, Luciano M; Bono, Jeremy M

    2015-10-01

    Although the importance of host plant chemistry in plant-insect interactions is widely accepted, the genetic basis of adaptation to host plants is not well understood. Here, we investigate transcriptional changes associated with a host plant shift in Drosophila mettleri. While D. mettleri is distributed mainly throughout the Sonoran Desert where it specializes on columnar cacti (Carnegiea gigantea and Pachycereus pringleii), a population on Santa Catalina Island has shifted to chemically divergent coastal prickly pear cactus (Opuntia littoralis). We compared gene expression of larvae from the Sonoran Desert and Santa Catalina Island when reared on saguaro (C. gigantea), coastal prickly pear and laboratory food. Consistent with expectations based on the complexity and toxicity of cactus relative to laboratory food, within-population comparisons between larvae reared on these food sources revealed transcriptional differences in detoxification and other metabolic pathways. The majority of transcriptional differences between populations on the cactus hosts were independent of the rearing environment and included a disproportionate number of genes involved in processes relevant to host plant adaptation (e.g. detoxification, central metabolism and chemosensory pathways). Comparisons of transcriptional reaction norms between the two populations revealed extensive shared plasticity that likely allowed colonization of coastal prickly pear on Santa Catalina Island. We also found that while plasticity may have facilitated subsequent adaptive divergence in gene expression between populations, the majority of genes that differed in expression on the novel host were not transcriptionally plastic in the presumed ancestral state.

  16. New and simple methods for studying Hemipteran stylets, bacteriomes and salivary sheaths in host plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many hemipteran insects are important agricultural pests because they cause direct feeding damage to their host plants and/or because they transmit plant disease agents including viruses and bacteria. Microscopic and behavioral studies on five hemipteran species from four families (Psyllidae, Aphidi...

  17. Volatile fragrances associated with flowers mediate the host plant alternation of a polyphagous mirid bug

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is an important insect pest of cotton, fruit trees and other crops in China, and exhibits a particularly broad host range. Adult A. lucorum greatly prefers host plants at the flowering stage, and their populations track flowering plants both spatiall...

  18. Expression of proteins involved in host plant defense against greenbug infestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), has been recognized as a major pest of small grains, including sorghum and wheat. To understand the molecular mechanisms involved in host plant defense against greenbug aphids, a proteomic analysis of greenbug-induced proteins in the seedlings of sorghum...

  19. A review of the endemic Hawaiian Drosophilidae and their host plants

    USGS Publications Warehouse

    Magnacca, K.N.; Foote, D.; O'Grady, P. M.

    2008-01-01

    The Hawaiian Drosophilidae is one of the best examples of rapid speciation in nature. Nearly 1,000 species of endemic drosophilids have evolved in situ in Hawaii since a single colonist arrived over 25 million years ago. A number of mechanisms, including ecological adaptation, sexual selection, and geographic isolation, have been proposed to explain the evolution of this hyperdiverse group of species. Here, we examine the known ecological associations of 326 species of endemic Hawaiian Drosophilidae in light of the phylogenetic relationships of these species. Our analysis suggests that the long-accepted belief of strict ecological specialization in this group does not hold for all taxa. While many species have a primary host plant family, females will also oviposit on non-preferred host plant taxa. Host shifting is fairly common in some groups, especially the grimshawi and modified mouthparts species groups of Drosophila, and the Scaptomyza subgenus Elmomyza. Associations with types of substrates (bark, leaves, flowers) are more evolutionarily conserved than associations with host plant families. These data not only give us insight into the role ecology has played in the evolution of this large group, but can help in making decisions about the management of rare and endangered host plants and the insects that rely upon them for survival. Copyright ?? 2008 Magnolia Press.

  20. Current status of phytoparasitic nematodes and their host plants in Egypt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Egypt many phytoparasitic nematodes constitute a major constraint to agricultural production, especially in sandy soil and reclaimed desert lands. Nematological surveys were conducted to determine the genera and species of phytoparasitic nematodes on associated host plants in Egypt. The results i...

  1. Host plant defense signaling in response to a coevolved herbivore combats introduced herbivore attack

    PubMed Central

    Woodard, Anastasia M; Ervin, Gary N; Marsico, Travis D

    2012-01-01

    Defense-free space resulting from coevolutionarily naïve host plants recently has been implicated as a factor facilitating invasion success of some insect species. Host plants, however, may not be entirely defenseless against novel herbivore threats. Volatile chemical-mediated defense signaling, which allows plants to mount specific, rapid, and intense responses, may play a role in systems experiencing novel threats. Here we investigate defense responses of host plants to a native and exotic herbivore and show that (1) host plants defend more effectively against the coevolved herbivore, (2) plants can be induced to defend against a newly-associated herbivore when in proximity to plants actively defending against the coevolved species, and (3) these defenses affect larval performance. These findings highlight the importance of coevolved herbivore-specific defenses and suggest that naïveté or defense limitations can be overcome via defense signaling. Determining how these findings apply across various host–herbivore systems is critical to understand mechanisms of successful herbivore invasion. PMID:22837849

  2. Low incidence of Candidatus Liberibacter asiaticus in Diaphorina citri and its host plant Murraya paniculata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. Candidatus Liberibacter asiaticus is the prevalent species of three HLB-associated Liberibacter species, which is vectored by the psyllid Diaphorina citri. The vector and the bacteria have host plants outside Citrus, ...

  3. Update on Host Plant Resistance Studies of Banded Sunflower Moth and Sunflower Moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding pest-resistance crop cultivars to insects and diseases is one of the primary goals of integrated pest management programs worldwide. Host plant resistance is a tactic that uses the plant's own defenses to reduce injury from pest attack. Among the sunflower (Helianthus annuus L.) insect pest...

  4. Odour maps in the brain of butterflies with divergent host-plant preferences.

    PubMed

    Carlsson, Mikael A; Bisch-Knaden, Sonja; Schäpers, Alexander; Mozuraitis, Raimondas; Hansson, Bill S; Janz, Niklas

    2011-01-01

    Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca(2+) activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants.

  5. Evolution of larval host plant associations and adaptive radiation in pierid butterflies.

    PubMed

    Braby, M F; Trueman, J W H

    2006-09-01

    Butterflies in the family Pieridae (Lepidoptera: Papilionoidea) feed as larvae on plants belonging primarily to three distantly related angiosperm orders: Fabales (legumes and allied plants), Brassicales (crucifers and related plants containing mustard oil glucosides), and Santalales ('mistletoes'). However, some utilize plants from 13 other families in a further eight orders. We investigated the evolutionary history of host plant use of the Pieridae in the context of a recent phylogenetic hypothesis of the family, using simple character optimization. Although there is a close association between host plant and butterfly higher classification, we find no evidence for cospeciation but a pattern of repeated colonization and specialization. The ancestral host of the family appears to be Fabaceae or Fabales, with multiple independent shifts to other orders, including three to Santalales. The shift to Brassicales, which contain secondary compounds (glucosinolates), promoted diversification and adaptive radiation within the subfamily Pierinae. Subsequent shifts from crucifers to mistletoes (aerial-stem hemiparasites) facilitated further diversification, and more recent shifts from mistletoes to mistletoe host trees led to exploitation of novel host plants outside the conventional three orders. Possible mechanisms underlying these host shifts are briefly discussed. In the Pierinae, a striking association between host plant, larval and adult behaviour, adult phenotype, and mimicry calls for further research into possible relationships between host specialization, plant chemistry and butterfly palatability.

  6. Effects of elicitors of host plant defenses on pear psylla (Cacopsylla pyricola: Psyllidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pear psylla, Cacopsylla pyricola (Foerster) (Hemiptera: Psyllidae), is a key pest of cultivated pear (Pyrus communis L.) in North America and Europe. We examined the effects of foliar applications of three commercially available chemical elicitors of host-plant defenses, Actigard, Employ, and ODC, ...

  7. Host-plant specialization in pheromone strains of the European corn borer Ostrinia nubilalis in France.

    PubMed

    Pelozuelo, L; Malosse, C; Genestier, G; Guenego, H; Frerot, B

    2004-02-01

    European corn borer (ECB) feeding on maize (Zea mais), mugwort (Artemisia vulgaris), and hop (Humulus lupulus) are genetically different in France and referred to as host-plant races. Here, we investigated sex pheromone composition as a possible trait linked to the host plant. ECB host races were sampled from 13 different sites in France. GC-MS analysis of female pheromone showed that 175 out of 176 maize females belonged to the Z type with one hybrid. In contrast, mugwort and hop females belonged almost exclusively to the E type. No Z females were found on these plants and only 2 females out of 169 were hybrids. In the three sites of sympatry, the hybrid proportion was far from Hardy-Weinberg expectations. Wind tunnel experiments showed that 76-79% of maize males from three populations were attracted by Z females, whereas neither mugwort nor hop males were. Mugwort males from Toussus-le-Noble were attracted by E females originating from an American maize strain. These data showed that maize, mugwort, and hop host races of O. nubilalis differ not only in their host plant but also in the sex pheromone they use. Because mugwort and hop are putative ancestral host plants, these results are discussed from the point of view of evolutionary scenarios for the emergence of Z and E strains.

  8. Effects of foliar surfactants on host plant selection behavior of Liriomyza huidobrensis (Diptera: Agromyzidae).

    PubMed

    McKee, Fraser R; Levac, Joshua; Hallett, Rebecca H

    2009-10-01

    The pea leafminer, Liriomyza huidobrensis (Diptera: Agromyzidae), is a highly polyphagous insect pest of global distribution. L. huidobrensis feeds and lays its eggs on leaf tissue and reduces crop marketability because of stippling and mining damage. In field insecticide trials, it was observed that stippling was reduced on plants treated with surfactant alone. The objectives of this study were to determine the effect of surfactants on host selection behaviors of female L. huidobrensis and to assess the phytotoxicity of two common surfactants to test plants. The application of the surfactant Sylgard 309 to celery (Apium graveolens) caused a significant reduction in stippling rates. The application of Agral 90 to cucumber leaves (Cucumis sativus) resulted in changes to the amount of effort invested by females in specific host plant selection behaviors, as well as causing a significant reduction in the amount of stippling damage. The recommended dose of Sylgard 309 does not induce phytotoxicity on celery over a range of age classes nor does Agral 90 cause a phytotoxic effect in 35-d-old cucumber. Thus, reductions in observed stippling and changes to host selection behaviors were caused by an antixenotic effect of the surfactant on L. huidobrensis rather than a toxic effect of the surfactant on the plant. The presence of surfactant on an otherwise acceptable host plant seems to have masked host plant cues and prevented host plant recognition. Results indicate that surfactants may be used to reduce leafminer damage to vegetable crops, potentially reducing the use of insecticides.

  9. Behavioral model for Homalodisca vitripennis (Hemiptera: Cicadellidae): Optimization of host plant utilization and management implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We produced a behavioral model which integrates leafhopper behavior and life history strategies with nutritional requirements, as a useful, heuristic tool to understand the patterns of leafhopper host plant utilization, vector behavior and ecology, which also aids the development of better biologica...

  10. The relative importance of host-plant genetic diversity in structuring the associated herbivore community.

    PubMed

    Tack, Ayco J M; Roslin, Tomas

    2011-08-01

    Recent studies suggest that intraspecific genetic diversity in one species may leave a substantial imprint on the surrounding community and ecosystem. Here, we test the hypothesis that genetic diversity within host-plant patches translates into consistent and ecologically important changes in the associated herbivore community. More specifically, we use potted, grafted oak saplings to construct 41 patches of four saplings each, with one, two, or four tree genotypes represented among the host plants. These patches were divided among two common gardens. Focusing first at the level of individual trees, we assess how tree-specific genotypic identity, patch-level genetic diversity, garden-level environmental variation, and their interactions affect the structure of the herbivore community. At the level of host-plant patches, we analyze whether the joint responses of herbivore species to environmental variation and genetic diversity result in differences in species diversity among tree quartets. Strikingly, both species-specific abundances and species diversity varied substantially among host-tree genotypes, among common gardens, and among specific locations within individual gardens. In contrast, the genetic diversity of the patch left a detectable imprint on local abundances of only two herbivore taxa. In both cases, the effect of genetic diversity was inconsistent among gardens and among host-plant genotypes. While the insect community differed significantly among individual host-plant genotypes, there were no interactive effects of the number of different genotypes within the patch. Overall, additive effects of intraspecific genetic diversity of the host plant explained a similar or lower proportion (7-10%) of variation in herbivore species diversity than did variation among common gardens. Combined with the few previous studies published to date, our study suggests that the impact of host-plant genetic diversity on the herbivore community can range from none to

  11. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels.

    PubMed

    He, Lei; Yang, Haishui; Yu, Zhenxing; Tang, Jianjun; Xu, Ligen; Chen, Xin

    2014-10-01

    Arbuscular mycorrhizal fungi (AMF) are important components of soil microbial communities, and play important role in plant growth. However, the effects of AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) and host plant functional groups (herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size (ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels. Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment.

  12. Analysis of the Phialocephala subalpina Transcriptome during Colonization of Its Host Plant Picea abies

    PubMed Central

    Reininger, Vanessa; Schlegel, Markus

    2016-01-01

    Background Phialocephala subalpina belongs to the Phialocephala fortinii s.l.–Acepphala applanata species complex (PAC) forming one of the major groups belonging to the dark septate endophytes (DSE). Depending on the strain, PAC was shown to form neutral to pathogenic associations with its host plant Picea abies. To understand PACs lifestyle we investigated the effect of presence/absence of Picea abies on the transcriptome of strain 6_70_1. Materials and Methods PAC strain 6_70_1 was grown in liquid Pachlewski media either induced by its host plant Picea abies or without host plant as a control. Mycelia were harvested in a time course (1, 2, 3, 4, 7, 11, 18 days) with and without induction by the host plant and the fungal transcriptome revealed by Illumina sequencing. Differential gene expression analysis over the time course comparing control and treatment at each time point using the ‘edgeR glm approach’ and a gene enrichment analysis using GO categories were performed. Results The three main functional groups within differentially expressed genes were ‘metabolism’, ‘transport’ and ‘cell rescue, defense and virulence’. Additionally, genes especially involved in iron metabolism could be detected by gene set enrichment analysis. Conclusion In conclusion, we found PAC strain 6_70_1 to be metabolically very active during colonization of its host plant Picea abies. A major shift in functional groups over the time course of this experiment could not be observed but GO categories which were found to be enriched showed different emphasis depending in the day post induction. PMID:26954682

  13. Peptidases and peptidase inhibitors in gut of caterpillars and in the latex of their host plants.

    PubMed

    Ramos, Márcio V; Pereira, Danielle A; Souza, Diego P; Silva, Maria-Lídia S; Alencar, Luciana M R; Sousa, Jeanlex S; Queiroz, Juliany-Fátima N; Freitas, Cleverson D T

    2015-01-01

    Studies investigating the resistance-susceptibility of crop insects to proteins found in latex fluids have been reported. However, latex-bearing plants also host insects. In this study, the gut proteolytic system of Pseudosphinx tetrio, which feeds on Plumeria rubra leaves, was characterized and further challenged against the latex proteolytic system of its own host plant and those of other latex-bearing plants. The gut proteolytic system of Danaus plexippus (monarch) and the latex proteolytic system of its host plant (Calotropis procera) were also studied. The latex proteins underwent extensive hydrolysis when mixed with the corresponding gut homogenates of the hosted insects. The gut homogenates partially digested the latex proteins of foreign plants. The fifth instar of D. plexippus that were fed diets containing foreign latex developed as well as those individuals who were fed diets containing latex proteins from their host plant. In vitro assays detected serine and cysteine peptidase inhibitors in both the gut homogenates and the latex fluids. Curiously, the peptidase inhibitors of caterpillars did not inhibit the latex peptidases of their host plants. However, the peptidase inhibitors of laticifer origin inhibited the proteolysis of gut homogenates. In vivo analyses of the peritrophic membrane proteins of D. plexippus demonstrate resistance against latex peptidases. Only discrete changes were observed when the peritrophic membrane was directly treated with purified latex peptidases in vitro. This study concludes that peptidase inhibitors are involved in the defensive systems of both caterpillars and their host plants. Although latex peptidase inhibitors inhibit gut peptidases (in vitro), the ability of gut peptidases to digest latex proteins (in vivo) regardless of their origin seems to be important in governing the resistance-susceptibility of caterpillars.

  14. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    • The common mycorrhizal networks (CMN) of arbuscular mycorrhizal (AM) fungi in the soil provide multiple host plants with nutrients, but the mechanisms by which the nutrient transport to individual host plants within one CMN is controlled, are currently unknown. • We followed by radioactive and st...

  15. The host plants of the Telamonini treehoppers (Hemiptera: Membracidae: Smiliinae) and the first diagnoses of nymphs for 14 species.

    PubMed

    Wallace, Matthew S

    2014-10-23

    Recent research on the treehopper tribe Telamonini has focused on their classification and Nearctic distribution but little has been published on their biology, including detailed information on their host plants as well as data on their nymphal stage. Any studies including host plant data have emphasized adult records (often unreliable due to their movements), largely ignoring the nymphs, which are the predominant feeding stage. This work provides the first comprehensive summary of Telamonini host plants, it documents the first positive identification of the nymphs for several telamonine species (and the genus Helonica), and it provides the first morphological diagnoses for 14 species, thus filling in major gaps in the life history of many species. Host plant records were determined based on accounts in the literature (adults and nymphs), from rearings of nymphs on host plants to the adult stage, and from label data on museum specimens. The Telamonini are known from 22 families, 41 genera, and 80 species of mostly woody, deciduous trees (of which, six species are new host plant records). Nearly half of all telamonines have been collected from more than one plant genus and only 12 species are known from a single host plant species. Telamonine nymphs were reared to the adult stage on 15 plant species. Of 68 telamonine species, 45 have been found on oak (Quercus), and white oak (Q. alba) is the most common telamonine host plant. Telamona monticola has the most recorded host plants with 29. The work includes 23 color illustrations showing both live and preserved nymphs, representing 15 species, all illustrated for the first time (eight are positively identified for the first time). Differences in nymphal morphology among species within Archasia, Glossonotus, Heliria, and Telamona suggest current generic definitions need revision. This study highlights the need for an increased emphasis on nymphal collections when determining treehopper host plants and inferring

  16. Cryopreservation of embryogenic cell lines of Araucaria angustifolia (Bert.) O. Kuntze

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brazilian pine (Araucaria angustifolia) is native to the Atlantic Rainforest of Brazil and is an endangered species. Mature embryos of this conifer are large (about 3 cm in length), contain more than 1 g H2O/ g dry mass, and are killed by drying. These morphological and physiological traits make i...

  17. Vision should not be overlooked as an important sensory modality for finding host plants.

    PubMed

    Reeves, Justin L

    2011-08-01

    In the last 50 yr, the role of vision in insect interactions with host plants has received relatively little attention. This lack of research is associated with a number of assumptions about chemical cues being the ultimate sensory determinants of host finding. This article presents arguments and detailed evidence to refute these assumptions. Insects from essentially all phytophagous orders use vision for locating host plants, and some recent examples have shown that vision can be even more important than olfaction. Moreover, a number of insects have the ability to visually differentiate host species. This ability means that the visual capabilities of phytophagous insects should not be underestimated. Visual cues always should be considered and integrated into studies of host finding.

  18. Pea Aphids (Hemiptera: Aphididae) Have Diurnal Rhythms When Raised Independently of a Host Plant.

    PubMed

    Joschinski, Jens; Beer, Katharina; Helfrich-Förster, Charlotte; Krauss, Jochen

    2016-01-01

    Seasonal timing is assumed to involve the circadian clock, an endogenous mechanism to track time and measure day length. Some debate persists, however, and aphids were among the first organisms for which circadian clock involvement was questioned. Inferences about links to phenology are problematic, as the clock itself is little investigated in aphids. For instance, it is unknown whether aphids possess diurnal rhythms at all. Possibly, the close interaction with host plants prevents independent measurements of rhythmicity. We reared the pea aphid Acyrthosiphon pisum(Harris) on an artificial diet, and recorded survival, moulting, and honeydew excretion. Despite their plant-dependent life style, aphids were independently rhythmic under light-dark conditions. This first demonstration of diurnal aphid rhythms shows that aphids do not simply track the host plant's rhythmicity.

  19. AN ODORANT-BINDING PROTEIN INVOLVED IN PERCEPTION OF HOST PLANT ODORANTS IN LOCUST Locusta migratoria.

    PubMed

    Li, Jia; Zhang, Long; Wang, Xiaoqi

    2016-04-01

    Locusts, Locusta migratoria (Orthoptera: Acrididae), are extremely destructive agricultural pests, but very little is known of their molecular aspects of perception to host plant odorants including related odorant-binding proteins (OBPs), though several OBPs have been identified in locust. To elucidate the function of LmigOBP1, the first OBP identified from locust, RNA interference was employed in this study to silence LmigOBP1, which was achieved by injection of dsRNA targeting LmigOBP1 into the hemolymph of male nymphs. Compared with LmigOBP1 normal nymphs, LmigOBP1 knockdown nymphs significantly decreased food (maize leaf, Zea mays) consumption and electro-antennography responses to five maize leaf volatiles, ((Z)-3-hexenol, linalool, nonanal, decanal, and (Z)-3-hexenyl acetate). These suggest that LmigOBP1 is involved in perception of host plant odorants.

  20. Genetic bottlenecks during systemic movement of Cucumber mosaic virus vary in different host plants

    SciTech Connect

    Ali, Akhtar; Roossinck, Marilyn J.

    2010-09-01

    Genetic bottlenecks are stochastic events that narrow variation in a population. We compared bottlenecks during the systemic infection of Cucumber mosaic virus (CMV) in four host plants. We mechanically inoculated an artificial population of twelve CMV mutants to young leaves of tomato, pepper, Nicotiana benthamiana, and squash. The inoculated leaves and primary and secondary systemically infected leaves were sampled at 2, 10, and 15 days post-inoculation. All twelve mutants were detected in all of the inoculated leaves. The number of mutants recovered from the systemically infected leaves of all host species was reduced significantly, indicating bottlenecks in systemic movement. The recovery frequencies of a few of the mutants were significantly different in each host probably due to host-specific selective forces. These results have implications for the differences in virus population variation that is seen in different host plants.

  1. Host plants of Empria sawflies (Hymenoptera, Tenthredinidae) in Japan include Rhododendron (Ericaceae).

    PubMed

    Shinohara, Akihiko; Hara, Hideho; Prous, Marko

    2015-08-26

    New host plant records are given for six Empria species from Japan. They are Rosa multiflora [Rosaceae] for E. honshuana Prous & Heidemaa, 2011, Rubus sp. [Rosaceae] for E. japonica Heidemaa & Prous, 2011, Geum japonicum and G. calthifolium var. nipponicum [Rosaceae] for E. loktini Ermolenko, 1971, Rosa multiflora, Potentilla indica and probably Rubus parvifolius [Rosaceae] for E. quadrimaculata Takeuchi, 1952, Rhododendron molle subsp. japonicum [Ericaceae] for E. takeuchii Prous & Heidemaa, 2011, and Geum japonicum and Filipendula camtschatica [Rosaceae] for E. tridentis Lee & Ryu, 1996. This is the first record of Ericaceae as a host plant of Empria. The mode of host shifts in the evolution of Empria is inferred by using a phylogenetic hypothesis proposed by Prous et al. (2011a).

  2. Does chemical aposematic (warning) signaling occur between host plants and their potential parasitic plants?

    PubMed

    Lev-Yadun, Simcha

    2013-07-01

    Aposematism (warning) signaling is a common defensive mechanism toward predatory or herbivorous animals, i.e., interactions between different trophic levels. I propose that it should be considered at least as a working hypothesis that chemical aposematism operates between certain host plants and their plant predators, parasitic plants, and that although they are also plants, they belong to a higher trophic level. Specific host plant genotypes emit known repelling chemical signals toward parasitic plants, which reduce the level of, slow the directional parasite growth (attack) toward the signaling hosts, or even cause parasitic plants to grow away from them in response to these chemicals. Chemical host aposematism toward parasitic plants may be a common but overlooked defense from parasitic plants.

  3. Long Frontal Projections Help Battus philenor (Lepidoptera: Papilionidae) Larvae Find Host Plants

    PubMed Central

    Kandori, Ikuo; Tsuchihara, Kazuko; Suzuki, Taichi A.; Yokoi, Tomoyuki; Papaj, Daniel R.

    2015-01-01

    Animals sometimes develop conspicuous projections on or near their heads as, e.g., weaponry, burrowing or digging tools, and probes to search for resources. The frontal projections that insects generally use to locate and assess resources are segmented appendages, including antennae, maxillary palps, and labial palps. There is no evidence to date that arthropods, including insects, use projections other than true segmental appendages to locate food. In this regard, it is noteworthy that some butterfly larvae possess a pair of long antenna-like projections on or near their heads. To date, the function of these projections has not been established. Larvae of pipevine swallowtail butterflies Battus philenor (Papilionidae) have a pair of long frontal fleshy projections that, like insect antennae generally, can be actively moved. In this study, we evaluated the possible function of this pair of long moveable frontal projections. In laboratory assays, both frontal projections and lateral ocelli were shown to increase the frequency with which search larvae found plants. The frontal projections increased finding of host and non-host plants equally, suggesting that frontal projections do not detect host-specific chemical cues. Detailed SEM study showed that putative mechanosensillae are distributed all around the frontal as well as other projections. Taken together, our findings suggest that the frontal projections and associated mechanosensillae act as vertical object detectors to obtain tactile information that, together with visual information from lateral ocelli and presumably chemical information from antennae and mouthparts, help larvae to find host plants. Field observations indicate that host plants are small and scattered in southern Arizona locations. Larvae must therefore find multiple host plants to complete development and face significant challenges in doing so. The frontal projections may thus be an adaptation for finding a scarce resource before starving to

  4. The Influence of Host Plant Volatiles on the Attraction of Longhorn Beetles to Pheromones.

    PubMed

    Collignon, R Maxwell; Swift, Ian P; Zou, Yunfan; McElfresh, J Steven; Hanks, Lawrence M; Millar, Jocelyn G

    2016-03-01

    Host plant volatiles have been shown to strongly synergize the attraction of some longhorn beetle species (Coleoptera: Cerambycidae) to their pheromones. This synergism is well documented among species that infest conifers, but less so for angiosperm-infesting species. To explore the extent of this phenomenon in the Cerambycidae, we first tested the responses of a cerambycid community to a generic pheromone blend in the presence or absence of chipped material from host plants as a source of host volatiles. In the second phase, blends of oak and conifer volatiles were reconstructed, and tested at low, medium, and high release rates with the pheromone blend. For conifer-infesting species in the subfamilies Spondylidinae and Lamiinae, conifer volatiles released at the high rate synergized attraction of some species to the pheromone blend. When comparing high-release rate conifer blend with high-release rate α-pinene as a single component, species responses varied, with Asemum nitidum LeConte being most attracted to pheromones plus α-pinene, whereas Neospondylis upiformis (Mannerheim) were most attracted to pheromones plus conifer blend and ethanol. For oak-infesting species in the subfamily Cerambycinae, with the exception of Phymatodes grandis Casey, which were most attracted to pheromones plus ethanol, neither synthetic oak blend nor ethanol increased attraction to pheromones. The results indicate that the responses to combinations of pheromones with host plant volatiles varied from synergistic to antagonistic, depending on beetle species. Release rates of host plant volatiles also were important, with some high release rates being antagonistic for oak-infesting species, but acting synergistically for conifer-infesting species.

  5. Variation within and between Frankliniella thrips species in host plant utilization.

    PubMed

    Baez, Ignacio; Reitz, Stuart R; Funderburk, Joseph E; Olson, Steve M

    2011-01-01

    Anthophilous flower thrips in the genus Frankliniella (Thysanoptera: Thripidae) exploit ephemeral plant resources and therefore must be capable of successfully locating appropriate hosts on a repeated basis, yet little is known of interspecific and intraspecific variation in responses to host plant type and nutritional quality. Field trials were conducted over two seasons to determine if the abundance of males and females of three common Frankliniella species, F. occidentalis (Pergande), F. tritici (Fitch) and F. bispinosa (Morgan), their larvae, and a key predator, Orius insidiosus (Say) (Hemiptera: Anthocoridae) were affected by host plant type and plant nutritional quality. Two host plants, pepper, Capsicum annuum L. (Solanales: Solanaceae) and tomato, Solanum lycopersicum L. that vary in suitability for these species were examined, and their nutritional quality was manipulated by applying three levels of nitrogen fertilization (101 kg/ha, 202 kg/ha, 404 kg/ha). F. occidentalis females were more abundant in pepper than in tomato, but males did not show a differential response. Both sexes of F. tritici and F. bispinosa were more abundant in tomato than in pepper. Larval thrips were more abundant in pepper than in tomato. Likewise, O. insidiosus females and nymphs were more abundant in pepper than in tomato. Only F. occidentalis females showed a distinct response to nitrogen fertilization, with abundance increasing with fertilization. These results show that host plant utilization patterns vary among Frankliniella spp. and should not be generalized from results of the intensively studied F. occidentalis. Given the different pest status of these species and their differential abundance in pepper and tomato, it is critical that scouting programs include species identifications for proper management.

  6. Biology and occurrence of Inga Busk species (Lepidoptera: Oecophoridae) on Cerrado host plants.

    PubMed

    Diniz, Ivone R; Bernardes, Carolina; Rodovalho, Sheila; Morais, Helena C

    2007-01-01

    We sampled Inga Busk species caterpillars weekly in the cerrado on 15 plants of Diospyros burchellii Hern. (Ebenaceae) from January 2002 to December 2003, on 30 plants of Caryocar brasiliense (Caryocaraceae) from July 2003 to June 2004, and since 1991 on several other plant species. In total we found 15 species of Inga on cerrado host plants. Nine species were very rare, with only one to five adults reared. The other six species occurred throughout the year, with higher abundance during the dry season, from May to July, coinciding with overall peaks of caterpillar abundance in the cerrado. Caterpillars of the genus Inga build shelters by tying and lining two mature or old leaves with silk and frass, where they rest and develop (a common habit found in Oecophorinae). The final instar builds a special envelope inside the leaf shelter, where it will complete the larval stage and pupate. The species are very difficult to distinguish in the immature stages. External features were useful in identifying only four species: I. haemataula (Meyrick), I. phaecrossa (Meyrick), I. ancorata (Walsingham), and I. corystes (Meyrick). These four species are polyphagous and have wide geographical distributions. In this paper we provide information on the natural history and host plants of six Inga species common on cerrado host plants, for which there are no reports in the literature.

  7. Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae?

    PubMed

    Duhamel, Marie; Pel, Roel; Ooms, Astra; Bücking, Heike; Jansa, Jan; Ellers, Jacintha; van Straalen, Nico M; Wouda, Tjalf; Vandenkoornhuyse, Philippe; Kiers, E Toby

    2013-09-01

    A key objective in ecology is to understand how cooperative strategies evolve and are maintained in species networks. Here, we focus on the tri-trophic relationship between arbuscular mycorrhizal (AM) fungi, host plants, and fungivores to ask if host plants are able to protect their mutualistic mycorrhizal partners from being grazed. Specifically, we test whether secondary metabolites are transferred from hosts to fungal partners to increase their defense against fungivores. We grew Plantago lanceolata hosts with and without mycorrhizal inoculum, and in the presence or absence of fungivorous springtails. We then measured fungivore effects on host biomass and mycorrhizal abundance (using quantitative PCR) in roots and soil. We used high-performance liquid chromatography to measure host metabolites in roots, shoots, and hyphae, focusing on catalpol, aucubin, and verbascoside. Our most striking result was that the metabolite catalpol was consistently found in AM fungal hyphae in host plants exposed to fungivores. When fungivores were absent, catalpol was undetectable in hyphae. Our results highlight the potential for plant-mediated protection of the mycorrhizal hyphal network.

  8. Inbreeding compromises host plant defense gene expression and improves herbivore survival

    PubMed Central

    Portman, Scott L; Kariyat, Rupesh R; Johnston, Michelle A; Stephenson, Andrew G; Marden, James H

    2015-01-01

    Inbreeding commonly occurs in flowering plants and often results in a decline in the plant's defense response. Insects prefer to feed and oviposit on inbred plants more than outbred plants – suggesting that selecting inbred host plants offers them fitness benefits. Until recently, no studies have examined the effects of host plant inbreeding on insect fitness traits such as growth and dispersal ability. In a recent article, we documented that tobacco hornworm (Manduca sexta L.) larvae that fed on inbred horsenettle (Solanum carolinense L.) plants exhibited accelerated larval growth and increased adult flight capacity compared to larvae that fed on outbred plants. Here we report that M. sexta mortality decreased by 38.2% when larvae were reared on inbred horsenettle plants compared to larvae reared on outbreds. Additionally, inbred plants showed a notable reduction in the average relative expression levels of LIPOXYGENEASE-D (LoxD) and 12-OXOPHYTODIENOATE REDUCTASE-3 (OPR3), two genes in the jasmonic acid signaling pathway that are upregulated in response to herbivore damage. Our study presents evidence that furthers our understanding of the biochemical mechanism responsible for differences in insect performance on inbred vs. outbred host plants. PMID:26039489

  9. Host Plant Associations and Parasitism of South Ecuadorian Eois Species (Lepidoptera: Geometridae) Feeding on Peperomia (Piperaceae).

    PubMed

    Seifert, Carlo L; Bodner, Florian; Brehm, Gunnar; Fiedler, Konrad

    2015-01-01

    The very species-rich tropical moth genus Eois Hübner (Lepidoptera: Geometridae) is a promising model group for studying host plant specialization and adaptive radiation. While most Eois species are assumed to be specialized herbivores on Piper L. species, records on other plant taxa such as Peperomia Ruiz & Pavón (Piperaceae) are still relatively scarce. Moreover, little is known about life history traits of most species, and only a few caterpillars have been described so far. We collected caterpillars associated with Peperomia (Piperaceae) host plants from June 2012 to January 2013 in three elevational bands of montane and elfin rainforests on the eastern slopes of the Andes in southern Ecuador. Caterpillars were systematically searched and reared to the adult stage. We were able to delimitate ten species of Eois on Peperomia by comparison of larval and adult morphology and by using 658 bp fragments of the mitochondrial COI gene (barcode sequences). Three of these species, Eois albosignata (Dognin), Eois bolana (Dognin), and Eois chasca (Dognin), are validly described whereas the other seven taxa represent interim morphospecies, recognized unequivocally by their DNA barcodes, and their larval and adult morphology. We provide information about their host plants, degree of parasitism, and describe the larval stages in their last instar. Additionally, caterpillars and moths are illustrated in color plates. This is the first comparative study dealing with Eois moths whose caterpillars feed on Peperomia hosts.

  10. Volatiles that encode host-plant quality in the grapevine moth.

    PubMed

    Tasin, Marco; Betta, Emanuela; Carlin, Silvia; Gasperi, Flavia; Mattivi, Fulvio; Pertot, Ilaria

    2011-11-01

    Plant volatiles are signals used by herbivorous insects to locate host plants and select oviposition sites. Whether such volatiles are used as indicators of plant quality by adult insects in search of host plants has been rarely tested. We tested whether volatiles indicate plant quality by studying the oviposition of the grapevine moth Lobesia botrana on the grapevine plant Vitis vinifera. Host plants were infected with a variety of microorganisms, and larval fitness was correlated to the infected state of the substrate. Our results show an oviposition preference for volatiles that is significantly correlated with the fitness of the substrate. The chemical profiles of the bouquets from each V. vinifera-microorganism system are clearly differentiated in a PCA analysis. Both the volatile signal and the quality of the plant as larval food were affected by the introduction of microorganisms. Our study represents a broad approach to the study of plant-insect interactions by considering not only the direct effect of the plant but also the effect of plant-microorganism interactions on insect population dynamics.

  11. Lack of physiological improvement in performance of Callosamia promethea larvae on local host plant favorites.

    PubMed

    Scriber, J Mark; Potter, Juliana; Johnson, Kelly

    1991-04-01

    As a species, the promethea silkmoth, Callosamia promethea (Saturniidae: Lepidoptera) exhibits a wide host range on 6-10 families of plants, although specific populations are known to have local foodplant favorites. We tested the hypothesis that larvae from a particular host plant lineage would show physiological adaptations to this host compared with larvae from other host plant lineages. We found no evidence that larval survival and growth was any better for larvae fed the natural plant of the parental population than for larvae from other host lineages. These natural host lineages include: black cherry (Prunus serotina Ehrh.), tuliptree (Liriodendron tulipifera L.), sassafras (Sassafras albidum (Nutt.) Nees) and spicebush (Lindera benzoin (L.) Blume). The only apparent manifestation of physiological specialization was the inability of tuliptree lineages of C. promethea to survive on paper birch (Betula papyrifera Marsh), although this may reflect the geographical pattern of adaptation to birch, rather than a negative correlation with adaptation to tuliptree. These results suggest that for C. promethea larvae, growth performance and survival is primarily influenced by plant nutritional quality, rather than physiological adaptations to the locally preferred host plant.

  12. Study on the role of olfaction in host plant detection of Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs.

    PubMed

    Mazzoni, V; Ioriatti, C; Trona, F; Lucchi, A; De Cristofaro, A; Anfora, G

    2009-06-01

    The American grapevine leafhopper, Scaphoideus titanus Ball (Hemiptera: Cicadellidae), is the vector of the phytoplasma that causes Flavescence dorée, one of the most threatening grapevine yellows disease. The role of olfaction in host plant detection of this species is still unknown. In this study, the attractiveness of a host plant, the grapevine rootstock Vitis riparia x rupestris 101/14, to nymphs was verified through behavioral bioassays in a vertical glass Y-olfactometer. Furthermore, the olfactory sensitivity to odors extracted from grapevine organs headspace and the external morphology of the antennae were studied by electroantennography (EAG) and scanning electron microscopy (SEM), respectively. Headspace collections were made from fresh apical shoots and leaves. Concentrated extracts were analyzed by coupled gas chromatography and mass spectrometry (GC-MS) to identify volatile compounds. In EAG experiments, weak responses to plant odors were recorded. SEM observations indicated the presence of few antennal sensilla, potentially associated with olfaction. Our results suggest that olfactory cues may play a role in the host plant detection of S. titanus nymphs.

  13. Modification of non-vector aphid feeding behavior on virus-infected host plant.

    PubMed

    Hu, Zuqing; Zhao, Huiyan; Thieme, Thomas

    2013-01-01

    Virus-infected host plants can have positive, neutral or negative effects on vector aphids. Even though the proportion of non-vector aphids associated with a plant far exceeds that of vector species, little is known about the effect of virus-infected plants on non-vector aphids. In the present study, the English grain aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae), a non-vector of Wheat dwarf virus (WDV) and Cereal yellow dwarf virus-RPV (CYDV-RPV), was monitored on, virus-infected, virus-free and leafhopper/aphid-infested, and virus- and insect-free (control) barley, Hordeum vulgare L. (Poales: Poaceae), plants. Electrical penetration graph recordings were performed. Compared with the control plants, S. avenae on infected plants exhibited reduced non-probing and pathway phase, and increased phloem sap ingestion phase, and more aphids reached sustained phloem ingestion. However, the electrical penetration graph parameters described above showed no significant differences in aphid feeding behavior on virus-free and vector pre-infested plants and the control barley plants during S. avenae feeding. The results suggest that WDV/CYDV-RPV-infected host plants positively affected the feeding behavior of the non-vector aphid S. avenae. Based on these results, the reasons and trends among the virus-infected host plants' effects on the feeding behavior of non-vector aphids are discussed.

  14. Genomes of three facultatively symbiotic Frankia sp. strainsreflect host plant biogeography

    SciTech Connect

    Normand, Philippe; Lapierre, Pascal; Tisa, Louis S.; Gogarten, J.Peter; Alloisio, Nicole; Bagnarol, Emilie; Bassi, Carla A.; Berry,Alison; Bickhart, Derek M.; Choisne, Nathalie; Couloux, Arnaud; Cournoyer, Benoit; Cruveiller, Stephane; Daubin, Vincent; Demange, Nadia; Francino, M. Pilar; Ggoltsman, Eugene; Huang, Ying; Kopp, Olga; Labarre,Laurent; Lapidus, Alla; Lavire, Celine; Marechal, Joelle; Martinez,Michele; Mastronunzio, Juliana E.; Mullin, Beth; Niemann, James; Pujic,Pierre; Rawnsley, Tania; Rouy, Zoe; Schenowitz, Chantal; Sellstedt,Anita; Tavares, Fernando; Tomkins, Jeffrey P.; Vallenet, David; Valverde,Claudio; Wall, Luis; Wang, Ying; Medigue, Claudine; Benson, David R.

    2006-02-01

    Filamentous actinobacteria from the genus Frankia anddiverse woody trees and shrubs together form N2-fixing actinorhizal rootnodule symbioses that are a major source of new soil nitrogen in widelydiverse biomes 1. Three major clades of Frankia sp. strains are defined;each clade is associated with a defined subset of plants from among theeight actinorhizal plant families 2,3. The evolution arytrajectoriesfollowed by the ancestors of both symbionts leading to current patternsof symbiont compatibility are unknown. Here we show that the competingprocesses of genome expansion and contraction have operated in differentgroups of Frankia strains in a manner that can be related to thespeciation of the plant hosts and their geographic distribution. Wesequenced and compared the genomes from three Frankia sp. strains havingdifferent host plant specificities. The sizes of their genomes variedfrom 5.38 Mbp for a narrow host range strain (HFPCcI3) to 7.50Mbp for amedium host range strain (ACN14a) to 9.08 Mbp for a broad host rangestrain (EAN1pec.) This size divergence is the largest yet reported forsuch closely related bacteria. Since the order of divergence of thestrains is known, the extent of gene deletion, duplication andacquisition could be estimated and was found to be inconcert with thebiogeographic history of the symbioses. Host plant isolation favoredgenome contraction, whereas host plant diversification favored genomeexpansion. The results support the idea that major genome reductions aswell as expansions can occur in facultatively symbiotic soil bacteria asthey respond to new environments in the context of theirsymbioses.

  15. Host Plant Associations and Parasitism of South Ecuadorian Eois Species (Lepidoptera: Geometridae) Feeding on Peperomia (Piperaceae)

    PubMed Central

    Seifert, Carlo L.; Bodner, Florian; Brehm, Gunnar; Fiedler, Konrad

    2015-01-01

    The very species-rich tropical moth genus Eois Hübner (Lepidoptera: Geometridae) is a promising model group for studying host plant specialization and adaptive radiation. While most Eois species are assumed to be specialized herbivores on Piper L. species, records on other plant taxa such as Peperomia Ruiz & Pavón (Piperaceae) are still relatively scarce. Moreover, little is known about life history traits of most species, and only a few caterpillars have been described so far. We collected caterpillars associated with Peperomia (Piperaceae) host plants from June 2012 to January 2013 in three elevational bands of montane and elfin rainforests on the eastern slopes of the Andes in southern Ecuador. Caterpillars were systematically searched and reared to the adult stage. We were able to delimitate ten species of Eois on Peperomia by comparison of larval and adult morphology and by using 658 bp fragments of the mitochondrial COI gene (barcode sequences). Three of these species, Eois albosignata (Dognin), Eois bolana (Dognin), and Eois chasca (Dognin), are validly described whereas the other seven taxa represent interim morphospecies, recognized unequivocally by their DNA barcodes, and their larval and adult morphology. We provide information about their host plants, degree of parasitism, and describe the larval stages in their last instar. Additionally, caterpillars and moths are illustrated in color plates. This is the first comparative study dealing with Eois moths whose caterpillars feed on Peperomia hosts. PMID:26286230

  16. The impact of microbial symbionts on host plant utilization by herbivorous insects.

    PubMed

    Hansen, Allison K; Moran, Nancy A

    2014-03-01

    Herbivory, defined as feeding on live plant tissues, is characteristic of highly successful and diverse groups of insects and represents an evolutionarily derived mode of feeding. Plants present various nutritional and defensive barriers against herbivory; nevertheless, insects have evolved a diverse array of mechanisms that enable them to feed and develop on live plant tissues. For decades, it has been suggested that insect-associated microbes may facilitate host plant use, and new molecular methodologies offer the possibility to elucidate such roles. Based on genomic data, specialized feeding on phloem and xylem sap is highly dependent on nutrient provisioning by intracellular symbionts, as exemplified by Buchnera in aphids, although it is unclear whether such symbionts play a substantive role in host plant specificity of their hosts. Microorganisms present in the gut or outside the insect body could provide more functions including digestion of plant polymers and detoxification of plant-produced toxins. However, the extent of such contributions to insect herbivory remains unclear. We propose that the potential functions of microbial symbionts in facilitating or restricting the use of host plants are constrained by their location (intracellular, gut or environmental), and by the fidelity of their associations with insect host lineages. Studies in the next decade, using molecular methods from environmental microbiology and genomics, will provide a more comprehensive picture of the role of microbial symbionts in insect herbivory.

  17. Colorado potato beetle toxins revisited: evidence the beetle does not sequester host plant glycoalkaloids.

    PubMed

    Armer, Christine A

    2004-04-01

    The Colorado potato beetle feeds only on glycoalkaloid-laden solanaceous plants, appears to be toxic to predators, and has aposematic coloration, suggesting the beetle may sequester alkaloids from its host plants. This study tested 4th instars and adults, as well as isolated hemolymph and excrement, to determine if the beetles sequester, metabolize, or excrete alkaloids ingested from their host plants. HPLC analysis showed: that neither the larvae nor the adults sequestered either solanine or chaconine from potato foliage; that any alkaloids in the beetles were at concentrations well below 1 ppm; and that alkaloids were found in the excrement of larvae at approximately the same concentrations as in foliage. Analysis of alkaloids in the remains of fed-upon leaflet halves plus excreta during 24 hr feeding by 4th instars, as compared to alkaloids in the uneaten halves of the leaflets, showed that equal amounts of alkaloids were excreted as were ingested. The aposematic coloration probably warns of a previously-identified toxic dipeptide instead of a plant-derived alkaloid, as the Colorado potato beetle appears to excrete, rather than sequester or metabolize, the alkaloids from its host plants.

  18. Species Differentiation of Chinese Mollitrichosiphum (Aphididae: Greenideinae) Driven by Geographical Isolation and Host Plant Acquirement

    PubMed Central

    Zhang, Ruiling; Huang, Xiaolei; Jiang, Liyun; Lei, Fumin; Qiao, Gexia

    2012-01-01

    The impact of both the uplift of the Qinghai-Tibetan Plateau (QTP) and the separation of the Taiwan and Hainan Islands on the evolution of the fauna and flora in adjacent regions has been a topic of considerable interest. Mollitrichosiphum is a polyphagous insect group with a wide range of host plants (14 families) and distributions restricted to Southeast Asia. Based on the mitochondrial Cytochrome C Oxidase Subunit I (COI) and Cytochrome b (Cytb) genes, the nuclear elongation factor-1α (EF-1α) gene, and the detailed distribution and host plant data, we investigated the species differentiation modes of the Chinese Mollitrichosiphum species. Phylogenetic analyses supported the monophyly of Mollitrichosiphum. The divergence time of Mollitrichosiphum tenuicorpus (c. 11.0 mya (million years ago)), Mollitrichosiphum nandii and Mollitrichosiphum montanum (c. 10.6 mya) was within the time frame of the uplift of the QTP. Additionally, basal species mainly fed on Fagaceae, while species that fed on multiple plants diverged considerably later. Ancestral state reconstruction suggests that Fagaceae may be the first acquired host, and the acquisition of new hosts and the expansion of host range may have promoted species differentiation within this genus. Overall, it can be concluded that geographical isolation and the expansion of the host plant range may be the main factors driving species differentiation of Mollitrichosiphum. PMID:22949873

  19. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  20. Butterfly larval host plant use in a tropical urban context: life history associations, herbivory, and landscape factors.

    PubMed

    Tiple, Ashish D; Khurad, Arun M; Dennis, Roger L H

    2011-01-01

    This study examines butterfly larval host plants, herbivory and related life history attributes within Nagpur City, India. The larval host plants of 120 butterfly species are identified and their host specificity, life form, biotope, abundance and perennation recorded; of the 126 larval host plants, most are trees (49), with fewer herbs (43), shrubs (22), climbers (7) and stem parasites (2). They include 89 wild, 23 cultivated, 11 wild/cultivated and 3 exotic plant species; 78 are perennials, 43 annuals and 5 biannuals. Plants belonging to Poaceae and Fabaceae are most widely used by butterfly larvae. In addition to distinctions in host plant family affiliation, a number of significant differences between butterfly families have been identified in host use patterns: for life forms, biotopes, landforms, perennation, host specificity, egg batch size and ant associations. These differences arising from the development of a butterfly resource database have important implications for conserving butterfly species within the city area. Differences in overall butterfly population sizes within the city relate mainly to the number of host plants used, but other influences, including egg batch size and host specificity are identified. Much of the variation in population size is unaccounted for and points to the need to investigate larval host plant life history and strategies as population size is not simply dependent on host plant abundance.

  1. Influence of Host-Plant Surface Chemicals on the Oviposition of the Cereal Stemborer Busseola Fusca.

    PubMed

    Juma, Gerald; Clément, Gilles; Ahuya, Peter; Hassanali, Ahmed; Derridj, Sylvie; Gaertner, Cyrile; Linard, Romain; Le Ru, Bruno; Frérot, Brigitte; Calatayud, Paul-André

    2016-05-01

    The chemical composition of plant surfaces plays a role in selection of host plants by herbivorous insects. Once the insect reaches the plant, these cues determine host acceptance. Laboratory studies have shown that the stem borer Busseola fusca (Lepidoptera: Noctuidae), an important pest of sorghum and maize in sub-Saharan Africa, is able to differentiate between host and non-host plant species. However, no information is available on the cues used by this insect to seek and accept the host plant. Thus, the role of surface phytochemical stimuli on host selection and oviposition by B. fusca was studied in the laboratory using two host plants, sorghum, Sorghum bicolor, and maize, Zea mays, and one non-host plant, Napier grass, Pennisetum purpureum. The numbers of eggs and egg masses deposited on the three plant species were compared first under no-choice and choice conditions. In both cases, more eggs and egg masses were laid on maize and sorghum than on the non-host. Artificial surrogate stems treated with a water or chloroform surface extract of each plant were then compared with surrogate stems treated with, respectively, water or chloroform as controls, under similar conditions. Surrogate stems treated with plant water extracts did not show an increase in oviposition when compared to controls, indicating that the major compounds in these extracts, i.e., simple sugars and free amino acids, are not significantly responsible for the oviposition preference. By contrast, a chloroform extract of sorghum enhanced oviposition on the surrogate stems compared to the control, while those of maize and Napier grass showed no significant effects. Analysis of the chloroform extract of sorghum showed higher amounts of α-amyrin, ß-amyrin, and n-nonacosane compared to those of maize and Napier grass. A blend of the three chemicals significantly increased oviposition compared to the chloroform-treated control, indicating that these compounds are part of the surface chemical

  2. Host plant effects on development and reproduction of the glassy-winged sharpshooter, Homalodisca vitripennis (Homoptera: Cicadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development, survivorship, longevity, reproduction and life table parameters of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar), were examined in the laboratory using three host plants, sunflower (Helianthus annuus L.), Chrysanthemum morifolium L. and euonymus (Euonymus japonica Thu...

  3. Accomplishments of a 10-year initiative to develop host plant resistance to root-knot and reniform nematodes in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2003 Cotton Incorporated initiated a Beltwide research program to develop host plant resistance against root-knot (Meloidogyne incognita) and reniform (Rotylenchulus reniformis) nematodes. Objectives formulated at a coordinating meeting in 2003 that included participants from public institutions...

  4. Genetic and behavioral discrimination of host plant populations of the leafbeetle, Psylliodes chalcomera, for biological control of yellow starthistle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular genetic techniques clearly distinguish three separate populations within the flea beetle "species" Psylliodes chalcomera that are associated with three different host plants (yellow starthistle, Scotch thistle and musk thistle). Preliminary studies have not revealed any reliable morpholog...

  5. The developmental race between maturing host plants and their butterfly herbivore - the influence of phenological matching and temperature.

    PubMed

    Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-11-01

    Interactions between herbivorous insects and their host plants that are limited in time are widespread. Therefore, many insect-plant interactions result in a developmental race, where herbivores need to complete their development before plants become unsuitable, while plants strive to minimize damage from herbivores by outgrowing them. When spring phenologies of interacting species change asymmetrically in response to climate warming, there will be a change in the developmental state of host plants at the time of insect herbivore emergence. In combination with altered temperatures during the subsequent developmental period, this is likely to affect interaction strength as well as fitness of interacting species. Here, we experimentally explore whether the combined effect of phenological matching and thermal conditions influence the outcome of an insect-host interaction. We manipulated both developmental stages of the host plants at the start of the interaction and temperature during the subsequent developmental period in a model system of a herbivorous butterfly, Anthocharis cardamines, and five of its Brassicaceae host plant species. Larval performance characteristics were favoured by earlier stages of host plants at oviposition as well as by higher developmental temperatures on most of the host species. The probability of a larva needing a second host plant covered the full range from no influence of either phenological matching or temperature to strong effects of both factors, and complex interactions between them. The probability of a plant outgrowing a larva was dependent only on the species identity. This study demonstrates that climatic variation can influence the outcome of consumer-resource interactions in multiple ways and that its effects differ among host plant species. Therefore, climate warming is likely to change the temporal match between larval and plant development in some plant species, but not in the others. This is likely to have important

  6. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands.

    PubMed

    Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A; van der Linden, Giel T J; Schaminée, Joop H J; Siepel, Henk; Kleijn, David

    2014-12-09

    Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species.

  7. Host plants of the tarnished plant bug (Heteroptera: Miridae) in Central Texas.

    PubMed

    Esquivel, J F; Mowery, S V

    2007-08-01

    The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), has taken on added importance as a pest of cotton in the Cotton Belt after successful eradication efforts for the boll weevil (Anthonomus grandis grandis Boheman). Because the Southern Blacklands region of Central Texas is in advanced stages of boll weevil eradication, blooming weeds and selected row crops were sampled during a 3-yr study to determine lygus species composition and associated temporal host plants. L. lineolaris was the sole lygus species in the region. Thirteen previously unreported host plants were identified for L. lineolaris, of which 69% supported reproduction. Rapistrum rugosum L. Allioni and Ratibida columnifera (Nuttall) Wooton and Standley were primary weed hosts during the early season (17 March to 31 May). Conyza canadensis L. Cronquist variety canadensis and Ambrosia trifida L. were primary weed hosts during the midseason (1 June to 14 August) and late-season (15 August to 30 November), respectively. Sisymbrium irio L. and Lamium amplexicaule L. sustained L. lineolaris populations during the overwintering period (1 December to 16 March). The proportion of females and numbers of nymphs found in R. rugosum, C. canadensis, A. trifida, and S. irio suggests these weeds supported reproductive adults during the early, mid-, and late season and overwintering period, respectively. Medicago sativa L. was the leading crop host for L. lineolaris; Glycine max L. Merrill did not yield L. lineolaris. Few L. lineolaris were collected in Gossypium hirsutum L. These results provide a more comprehensive assessment of host plants contributing to L. lineolaris populations in central Texas.

  8. Worldwide host plants of the highly polyphagous, invasive Epiphyas postvittana (Lepidoptera: Tortricidae).

    PubMed

    Brockerhoff, E G; Suckling, D M; Ecroyd, C E; Wagstaff, S J; Raabe, M C; Dowell, R V; Wearings, C H

    2011-10-01

    The light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), is a highly successful biological invader. It was accidentally introduced to several countries including New Zealand, Hawaii, England, and California. Light brown apple moth attacks a wide range of crop plants and other woody and herbaceous plants, but a more comprehensive analysis of its host range is needed for risk assessments, to evaluate the likely economic and environmental impacts, and to enable targeting of particular plant species for detection surveys and treatments. We reviewed and synthesized the host range and host selection behavior of light brown apple moth by using information from Australia and invaded countries. The host range of light brown apple moth is determined by the behavior of both adult females and larvae. Females use visual, chemical and physical cues to choose host plants. Larvae are capable of limited active dispersal by walking and longer range dispersal by ballooning on silken strands; therefore, larvae also may need to select host plants. We review larval performance indicators across a range of plants. Based on our review, there are at least 545 plant species in 363 genera from 121 families that have been reported as hosts of light brown apple moth. Some plants were reported only once and need verification. Nevertheless, many host plant species and their wide phylogenetic range (from ferns to higher dicotyledons) indicates that light brown apple moth is one of the most polyphagous insects known. This information and our categorization of frequency of host use are valuable for incursion response and pest management activities.

  9. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends

    PubMed Central

    2012-01-01

    Background Sugar feeding is critical for survival of malaria vectors and, although discriminative plant feeding previously has been shown to occur in Anopheles gambiae s.s., little is known about the cues mediating attraction to these plants. In this study, we investigated the role of olfaction in An. gambiae discriminative feeding behaviour. Methods Dual choice olfactometer assays were used to study odour discrimination by An. gambiae to three suspected host plants: Parthenium hysterophorus (Asteraceae), Bidens pilosa (Asteraceae) and Ricinus communis (Euphorbiaceae). Sugar content of the three plant species was determined by analysis of their trimethylsilyl derivatives by coupled gas chromatography–mass spectrometry (GC-MS) and confirmed with authentic standards. Volatiles from intact plants of the three species were collected on Super Q and analyzed by coupled GC-electroantennographic detection (GC-EAD) and GC-MS to identify electrophysiologically-active components whose identities were also confirmed with authentic standards. Active compounds and blends were formulated using dose–response olfactory bioassays. Responses of females were converted into preference indices and analyzed by chi-square tests. The amounts of common behaviourally-active components released by the three host plants were compared with one-way ANOVA. Results Overall, the sugar contents were similar in the two Asteraceae plants, P. hysterophorus and B. pilosa, but richer in R. communis. Odours released by P. hysterophorus were the most attractive, with those from B. pilosa being the least attractive to females in the olfactometer assays. Six EAD-active components identified were consistently detected by the antennae of adult females. The amounts of common antennally-active components released varied with the host plant, with the highest amounts released by P. hysterophorus. In dose–response assays, single compounds and blends of these components were attractive to females but to

  10. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    PubMed

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-02-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper

  11. Genetic isolation between two sympatric host plant races of the European corn borer, Ostrinia nubilalis Hubner. II: assortative mating and host-plant preferences for oviposition.

    PubMed

    Bethenod, M-T; Thomas, Y; Rousset, F; Frérot, B; Pélozuelo, L; Genestier, G; Bourguet, D

    2005-02-01

    The European corn borer, Ostrinia nubilalis Hubner, colonized maize (Zea mays L.) after its introduction into Europe about 500 years ago and is now considered one of the main pests of this crop. In northern France, two sympatric host races have been described: one feeding on maize and the other on mugwort (Artemisia vulgaris L.) and hop (Humulus lupulus L.). In a previous study, we showed that mating between the two races may be impeded by differences in the timing of moth emergence and in the composition of the sex pheromone produced by the females. In this study, we further investigated the genetic isolation of these two races using strains from the maize (Z strain) and mugwort (E strain) races selected for diagnostic alleles at two allozyme loci. In a cage containing maize and mugwort plants and located in natural conditions, mating between individuals of the same strain occurred more often than mating between males and females of the E and Z strains. In particular, we obtained no evidence for crosses between Z females and E males. We also found that females of the Z strain laid their eggs almost exclusively on maize, whereas females of the E strain laid their eggs preferentially, but not exclusively, on mugwort. These results suggest that the genetic differentiation between the two host races may also be favored by host-plant preference, one of the first steps toward sympatric speciation.

  12. Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph-host plant interactions.

    PubMed

    Sarkar, Tuhin Subhra; Biswas, Pranjal; Ghosh, Subrata Kumar; Ghosh, Sanjay

    2014-01-01

    M. phaseolina, a global devastating necrotrophic fungal pathogen causes charcoal rot disease in more than 500 host plants. With the aim of understanding the plant-necrotrophic pathogen interaction associated with charcoal rot disease of jute, biochemical approach was attempted to study cellular nitric oxide production under diseased condition. This is the first report on M. phaseolina infection in Corchorus capsularis (jute) plants which resulted in elevated nitric oxide, reactive nitrogen species and S nitrosothiols production in infected tissues. Time dependent nitric oxide production was also assessed with 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate using single leaf experiment both in presence of M. phaseolina and xylanases obtained from fungal secretome. Cellular redox status and redox active enzymes were also assessed during plant fungal interaction. Interestingly, M. phaseolina was found to produce nitric oxide which was detected in vitro inside the mycelium and in the surrounding medium. Addition of mammalian nitric oxide synthase inhibitor could block the nitric oxide production in M. phaseolina. Bioinformatics analysis revealed nitric oxide synthase like sequence with conserved amino acid sequences in M. phaseolina genome sequence. In conclusion, the production of nitric oxide and reactive nitrogen species may have important physiological significance in necrotrophic host pathogen interaction.

  13. Growth inhibition of an Araucaria angustifolia (Coniferopsida) fungal seed pathogen, Neofusicoccum parvum, by soil streptomycetes

    PubMed Central

    2013-01-01

    Background Araucariaceae are important forest trees of the southern hemisphere. Life expectancy of their seedlings can largely be reduced by fungal infections. In this study we have isolated and characterized such a fungus and investigated the potential of Streptomyces Actinobacteria from the respective rhizosphere to act as antagonists. Results The pathogenic fungus from Araucaria angustifolia seeds was identified by morphological markers (pore-associated Woronin-bodies) as belonging to the Pezizomycotina. Molecular data identified the fungus as Neofusicoccum parvum (Botryosphaeriaceae). Co-cultures on agar of this fungus with certain streptomycete isolates from the rhizosphere, and from the surface of Araucaria roots significantly reduced the growth of the fungus. HPLC analysis of the agar yielded streptomycete-specific exudate compounds which were partly identified. There were differences in compounds between single (bacteria, fungus) and dual cultures (bacteria + fungus). Conclusion Streptomycetes from the rhizosphere of Araucariaceae produce exudates which can suppress the development of pathogenic fungi in their seeds. PMID:23866024

  14. Basidiome formation of an edible wild, putatively ectomycorrhizal fungus, Phlebopus portentosus without host plant.

    PubMed

    Kumla, Jaturong; Bussaban, Boonsom; Suwannarach, Nakarin; Lumyong, Saisamorn; Danell, Eric

    2012-01-01

    Phlebopus portentosus is a popular wild edible ectomycorrhizal fungus in northern Thailand. In general ectomycorrhizal fungi produce basidiomes when associated with a host plant. In this paper mycelium growth and basidiome production of P. portentosus were examined in pure culture both in vitro and in pot-culture experiments. Five mycelial strains of P. portentosus were isolated from basidiomes and used in the experiments. The mycelia grew fastest on sorghum grains supplemented with fungal-host solution. The mycelia produced sclerotia-like structures after 3 wk incubation in darkness at 30 C. All strains of P. portentosus had the ability to form primordia. The primordia were formed under lowered temperature, high humidity and a 12 h photo-period. They developed to mature basidiomes after 8-12 d in in vitro. In the pot-culture primordia were found after 28-35 d incubation in the greenhouse and mature basidiomes released basidiospores within 6-8 d. Basidiospores were germinated on fungal-host medium and formed mycelial colonies. This fungus showed an ability to produce basidiomes even 2 y after the original isolation from tissues. This research provides valuable information concerning the techniques and protocols for the large scale commercial production of P. portentosus basidiomes in the absence of a host plant.

  15. Host plant use drives genetic differentiation in syntopic populations of Maculinea alcon

    PubMed Central

    Fürst, Matthias A.

    2016-01-01

    The rare socially parasitic butterfly Maculinea alcon occurs in two forms, which are characteristic of hygric or xeric habitats and which exploit different host plants and host ants. The status of these two forms has been the subject of considerable controversy. Populations of the two forms are usually spatially distinct, but at Răscruci in Romania both forms occur on the same site (syntopically). We examined the genetic differentiation between the two forms using eight microsatellite markers, and compared with a nearby hygric site, Şardu. Our results showed that while the two forms are strongly differentiated at Răscruci, it is the xeric form there that is most similar to the hygric form at Şardu, and Bayesian clustering algorithms suggest that these two populations have exchanged genes relatively recently. We found strong evidence for population substructuring, caused by high within host ant nest relatedness, indicating very limited dispersal of most ovipositing females, but not association with particular host ant species. Our results are consistent with the results of larger scale phylogeographic studies that suggest that the two forms represent local ecotypes specialising on different host plants, each with a distinct flowering phenology, providing a temporal rather than spatial barrier to gene flow. PMID:27069804

  16. Involvement of cytochrome P450 in host-plant utilization by Sonoran Desert Drosophila.

    PubMed Central

    Frank, M R; Fogleman, J C

    1992-01-01

    The four Drosophila species endemic to the Sonoran Desert (Drosophila mettleri, Drosophila mojavensis, Drosophila nigrospiracula, and Drosophila pachea) utilize necrotic cactus tissue or soil soaked by rot exudate as breeding substrates. Each Drosophila species uses a different cactus species as its primary host. D. pachea is limited to senita cactus by a biochemical dependency on unusual sterols available only in that cactus. For the other Drosophila species, no such chemical dependencies exist to explain the relationships with their primary host plants. Each cactus species has a different array of allelochemicals that have detrimental effects on non-resident fly species. We have hypothesized that the desert fly-cactus associations are due, in part, to differences between the fly species in their allelochemical detoxication enzymes, the cytochrome P450 system. To test whether P450s are involved in the detoxication of cactus allelochemicals, several experiments were done. (i) The effect of a specific P450 inhibitor, piperonyl butoxide, on larval survival through eclosion on each cactus substrate was investigated. (ii) In vitro metabolism of cactus alkaloids was determined for each Drosophila species. The effects of specific inducers and inhibitors were included in these experiments. (iii) The basal and induced content of cytochrome P450 in each species was determined. The results support the hypothesis that P450 enzymes are involved in host-plant utilization by these Sonoran Desert Drosophila species. Images PMID:1465429

  17. Host-plant finding by the asparagus fly, Plioreocepta poeciloptera (Diptera: Tephritidae), a monophagous, monovoltine tephritid.

    PubMed

    Thibout, E; Pierre, D; Mondy, N; Lecomte, C; Biémont, J C; Auger, J

    2005-10-01

    The role of various olfactory and visual stimuli was studied in host-plant finding by the asparagus fly Plioreocepta poeciloptera (Schrank), a monophagous monovoltine tephritid causing serious damage to asparagus spears. Volatiles released by asparagus plants were extracted by diethyl ether after cryotrapping concentration, and identified by gas chromatography-mass spectrometry. Twelve of the 13 compounds identified were tested using electroantennography to measure the response of the fly. Behavioural response was analysed using two different flight tunnels according to circadian rhythm, age and sex of adults, presence of the plant and of different coloured lures, presence of a male congener, or exposure to four pure asparagus odour compounds that elicited responses in electroantennography, i.e. hexanal, (E)-2-hexenal, (Z)-2-hexen-1-ol and decanal. Data showed that males locate the host plant more quickly than females. Females are attracted mainly by the blend of plant odour and male pheromone. Both sexes respond to a complex of stimuli only during the afternoon. These findings will be helpful in developing new and effective approaches to control this pest insect.

  18. Host-Plant Species Conservatism and Ecology of a Parasitoid Fig Wasp Genus (Chalcidoidea; Sycoryctinae; Arachonia)

    PubMed Central

    McLeish, Michael J.; Beukman, Gary; van Noort, Simon; Wossler, Theresa C.

    2012-01-01

    Parasitoid diversity in terrestrial ecosystems is enormous. However, ecological processes underpinning their evolutionary diversification in association with other trophic groups are still unclear. Specialisation and interdependencies among chalcid wasps that reproduce on Ficus presents an opportunity to investigate the ecology of a multi-trophic system that includes parasitoids. Here we estimate the host-plant species specificity of a parasitoid fig wasp genus that attacks the galls of non-pollinating pteromalid and pollinating agaonid fig wasps. We discuss the interactions between parasitoids and the Ficus species present in a forest patch of Uganda in context with populations in Southern Africa. Haplotype networks are inferred to examine intraspecific mitochondrial DNA divergences and phylogenetic approaches used to infer putative species relationships. Taxonomic appraisal and putative species delimitation by molecular and morphological techniques are compared. Results demonstrate that a parasitoid fig wasp population is able to reproduce on at least four Ficus species present in a patch. This suggests that parasitoid fig wasps have relatively broad host-Ficus species ranges compared to fig wasps that oviposit internally. Parasitoid fig wasps did not recruit on all available host plants present in the forest census area and suggests an important ecological consequence in mitigating fitness trade-offs between pollinator and Ficus reproduction. The extent to which parasitoid fig wasps exert influence on the pollination mutualism must consider the fitness consequences imposed by the ability to interact with phenotypes of multiple Ficus and fig wasps species, but not equally across space and time. PMID:22970309

  19. The effects of natural enemies, competition, and host plant water availability on an aphid population.

    PubMed

    Morris, William F

    1992-06-01

    I used a factorial experiment repeated in two years to assess the relative effects of natural enemy attack, interspecific competition, and water availability to the host plant, and of interactions among these factors, on the population dynamics of the aphid Aphis varians feeding on fireweed (Epilobium angustifolium). The impact of a suite of coccinellid and syrphid predators emerged as the predominant factor affecting the success of aphid colonies: colonies protected from natural enemies grew in size at a rate of ten percent per day, were only one tenth as likely to go extinct, and produced over ten times more dispersing alates. In contrast, I found only minor effects of removing flea beetles, the most abundant herbivore with which A. varians colonies cohabit fireweed stems, and of supplementing water availability to fireweed host plants, in spite of a significant effect of watering frequency on aphid growth in the green-house. There was no evidence of significant two- or three-way interactions among factors. Hence, despite the potential complexity of the food web in which it is embedded, the dynamics of A. varians appears to be driven predominantly by a single factor, i.e. interactions with natural enemies.

  20. Behavioral model for Homalodisca vitripennis (Hemiptera: Cicadellidae): optimization of host plant utilization and management implications.

    PubMed

    Mizell, R F; Tipping, C; Andersen, P C; Brodbeck, B V; Hunter, W B; Northfield, T

    2008-10-01

    The glassy-winged sharpshooter, Homalodisca vitripennis (Germar), (Hemiptera: Cicadellidae), is a xylophagous leafhopper native to the southeastern United States and northern Mexico, with recent introductions into California, Arizona, French Polynesia, and Hawaii. It is a primary vector of the xylem-limited bacterium, Xylella fastidiosa Wells et al., the causative agent of Pierce's disease of grape, citrus variegated chlorosis, phony peach, and numerous leaf scorch diseases. H. vitripennis uses several hundred species of host plants for feeding, development, and reproduction. Variation in host utilization allows H. vitripennis to respond to diurnal and seasonal changes in its nutrient-poor food source, xylem fluid, as well as changing nutritional requirements of each leafhopper developmental stage. Here we provide a conceptual model that integrates behavior, life history strategies, and their associated risks with the nutritional requirements of adult and nymphal stages of H. vitripennis. The model is a useful heuristic tool that explains patterns of host plant use, describes insect behavior and ecology, suggests new associations among the ecological components, and most importantly, identifies and supports the development of suppression strategies for X. fastidiosa aimed at reducing vector populations through habitat manipulation.

  1. Sexual dimorphism dominates divergent host plant use in stick insect trophic morphology

    PubMed Central

    2013-01-01

    Background Clear examples of ecological speciation exist, often involving divergence in trophic morphology. However, substantial variation also exists in how far the ecological speciation process proceeds, potentially linked to the number of ecological axes, traits, or genes subject to divergent selection. In addition, recent studies highlight how differentiation might occur between the sexes, rather than between populations. We examine variation in trophic morphology in two host-plant ecotypes of walking-stick insects (Timema cristinae), known to have diverged in morphological traits related to crypsis and predator avoidance, and to have reached an intermediate point in the ecological speciation process. Here we test how host plant use, sex, and rearing environment affect variation in trophic morphology in this species using traditional multivariate, novel kernel density based and Bayesian morphometric analyses. Results Contrary to expectations, we find limited host-associated divergence in mandible shape. Instead, the main predictor of shape variation is sex, with secondary roles of population of origin and rearing environment. Conclusion Our results show that trophic morphology does not strongly contribute to host-adapted ecotype divergence in T. cristinae and that traits can respond to complex selection regimes by diverging along different intraspecific lines, thereby impeding progress toward speciation. PMID:23819550

  2. Volatile fragrances associated with flowers mediate host plant alternation of a polyphagous mirid bug

    PubMed Central

    Pan, Hongsheng; Lu, Yanhui; Xiu, Chunli; Geng, Huihui; Cai, Xiaoming; Sun, Xiaoling; Zhang, Yongjun; Williams III, Livy; Wyckhuys, Kris A. G.; Wu, Kongming

    2015-01-01

    Apolygus lucorum (Hemiptera: Miridae) is an important insect pest of cotton and fruit trees in China. The adults prefer host plants at the flowering stage, and their populations track flowering plants both spatially and temporally. In this study, we examine whether flower preference of its adults is mediated by plant volatiles, and which volatile compositions play an important role in attracting them. In olfactometer tests with 18 key host species, the adults preferred flowering plants over non-flowering plants of each species. Coupled gas chromatography-electroantennography revealed the presence of seven electrophysiologically active compounds from flowering plants. Although the adults responded to all seven synthetic plant volatiles in electroantennography tests, only four (m-xylene, butyl acrylate, butyl propionate and butyl butyrate) elicited positive behavioral responses in Y-tube olfactometer bioassays. The adults were strongly attracted to these four active volatiles in multi-year laboratory and field trials. Our results suggest that these four fragrant volatiles, which are emitted in greater amounts once plants begin to flower, mediate A. lucorum’s preference to flowering host plants. We proved that the use of commonly occurring plant volatiles to recognize a large range of plant species can facilitate host selection and preference of polyphagous insect herbivore. PMID:26423224

  3. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    PubMed Central

    Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira

    2016-01-01

    Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC. PMID:27727362

  4. The neural bases of host plant selection in a Neuroecology framework.

    PubMed

    Reisenman, Carolina E; Riffell, Jeffrey A

    2015-01-01

    Understanding how animals make use of environmental information to guide behavior is a fundamental problem in the field of neuroscience. Similarly, the field of ecology seeks to understand the role of behavior in shaping interactions between organisms at various levels of organization, including population-, community- and even ecosystem-level scales. Together, the newly emerged field of "Neuroecology" seeks to unravel this fundamental question by studying both the function of neurons at many levels of the sensory pathway and the interactions between organisms and their natural environment. The interactions between herbivorous insects and their host plants are ideal examples of Neuroecology given the strong ecological and evolutionary forces and the underlying physiological and behavioral mechanisms that shaped these interactions. In this review we focus on an exemplary herbivorous insect within the Lepidoptera, the giant sphinx moth Manduca sexta, as much is known about the natural behaviors related to host plant selection and the involved neurons at several level of the sensory pathway. We also discuss how herbivore-induced plant odorants and secondary metabolites in floral nectar in turn can affect moth behavior, and the underlying neural mechanisms.

  5. Tritrophic interactions among Macrosiphum euphorbiae aphids, their host plants and endosymbionts: investigation by a proteomic approach.

    PubMed

    Francis, F; Guillonneau, F; Leprince, P; De Pauw, E; Haubruge, E; Jia, L; Goggin, F L

    2010-06-01

    The Mi-1.2 gene in tomato confers resistance against certain clones of the potato aphid (Macrosiphum euphorbiae). This study used 2D-DIGE coupled with protein identification by MALDI-TOF-MS to compare the proteome patterns of avirulent and semivirulent potato aphids and their bacterial endosymbionts on resistant (Mi-1.2+) and susceptible (Mi-1.2-) tomato lines. Avirulent aphids had low survival on resistant plants, whereas the semivirulent clone could colonize these plants. Eighty-two protein spots showed significant quantitative differences among the four treatment groups, and of these, 48 could be assigned putative identities. Numerous structural proteins and enzymes associated with primary metabolism were more abundant in the semivirulent than in the avirulent aphid clone. Several proteins were also up-regulated in semivirulent aphids when they were transferred from susceptible to resistant plants. Nearly 25% of the differentially regulated proteins originated from aphid endosymbionts and not the aphid itself. Six were assigned to the primary endosymbiont Buchnera aphidicola, and 5 appeared to be derived from a Rickettsia-like secondary symbiont. These results indicate that symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance.

  6. Host Plants Identification for Adult Agrotis ipsilon, a Long-Distance Migratory Insect

    PubMed Central

    Liu, Yongqiang; Fu, Xiaowei; Mao, Limi; Xing, Zhenlong; Wu, Kongming

    2016-01-01

    In this study, we determined the host relationship of Agrotis ipsilon moths by identifying pollen species adhering them during their long-distance migration. Pollen carried by A. ipsilon moths was collected from 2012 to 2014 on a small island in the center of the Bohai Strait, which is a seasonal migration pathway of this pest species. Genomic DNA of single pollen grains was amplified by using whole genome amplification technology, and a portion of the chloroplast rbcL sequence was then amplified from this material. Pollen species were identified by a combination of DNA barcoding and pollen morphology. We found 28 species of pollen from 18 families on the tested moths, mainly from Angiosperm, Dicotyledoneae. From this, we were able to determine that these moths visit woody plants more than herbaceous plants that they carry more pollen in the early and late stages of the migration season, and that the amounts of pollen transportation were related to moth sex, moth body part, and plant species. In general, 31% of female and 26% of male moths were found to be carrying pollen. Amounts of pollen on the proboscis was higher for female than male moths, while the reverse was true for pollen loads on the antennae. This work provides a new approach to study the interactions between noctuid moth and their host plants. Identification of plant hosts for adult moths furthers understanding of the coevolution processes between moths and their host plants. PMID:27271592

  7. Differential gene expression according to race and host plant in the pea aphid.

    PubMed

    Eyres, Isobel; Jaquiéry, Julie; Sugio, Akiko; Duvaux, Ludovic; Gharbi, Karim; Zhou, Jing-Jiang; Legeai, Fabrice; Nelson, Michaela; Simon, Jean-Christophe; Smadja, Carole M; Butlin, Roger; Ferrari, Julia

    2016-09-01

    Host-race formation in phytophagous insects is thought to provide the opportunity for local adaptation and subsequent ecological speciation. Studying gene expression differences amongst host races may help to identify phenotypes under (or resulting from) divergent selection and their genetic, molecular and physiological bases. The pea aphid (Acyrthosiphon pisum) comprises host races specializing on numerous plants in the Fabaceae and provides a unique system for examining the early stages of diversification along a gradient of genetic and associated adaptive divergence. In this study, we examine transcriptome-wide gene expression both in response to environment and across pea aphid races selected to cover the range of genetic divergence reported in this species complex. We identify changes in expression in response to host plant, indicating the importance of gene expression in aphid-plant interactions. Races can be distinguished on the basis of gene expression, and higher numbers of differentially expressed genes are apparent between more divergent races; these expression differences between host races may result from genetic drift and reproductive isolation and possibly divergent selection. Expression differences related to plant adaptation include a subset of chemosensory and salivary genes. Genes showing expression changes in response to host plant do not make up a large portion of between-race expression differences, providing confirmation of previous studies' findings that genes involved in expression differences between diverging populations or species are not necessarily those showing initial plasticity in the face of environmental change.

  8. The neural bases of host plant selection in a Neuroecology framework

    PubMed Central

    Reisenman, Carolina E.; Riffell, Jeffrey A.

    2015-01-01

    Understanding how animals make use of environmental information to guide behavior is a fundamental problem in the field of neuroscience. Similarly, the field of ecology seeks to understand the role of behavior in shaping interactions between organisms at various levels of organization, including population-, community- and even ecosystem-level scales. Together, the newly emerged field of “Neuroecology” seeks to unravel this fundamental question by studying both the function of neurons at many levels of the sensory pathway and the interactions between organisms and their natural environment. The interactions between herbivorous insects and their host plants are ideal examples of Neuroecology given the strong ecological and evolutionary forces and the underlying physiological and behavioral mechanisms that shaped these interactions. In this review we focus on an exemplary herbivorous insect within the Lepidoptera, the giant sphinx moth Manduca sexta, as much is known about the natural behaviors related to host plant selection and the involved neurons at several level of the sensory pathway. We also discuss how herbivore-induced plant odorants and secondary metabolites in floral nectar in turn can affect moth behavior, and the underlying neural mechanisms. PMID:26321961

  9. Host-plant species conservatism and ecology of a parasitoid fig wasp genus (Chalcidoidea; Sycoryctinae; Arachonia).

    PubMed

    McLeish, Michael J; Beukman, Gary; van Noort, Simon; Wossler, Theresa C

    2012-01-01

    Parasitoid diversity in terrestrial ecosystems is enormous. However, ecological processes underpinning their evolutionary diversification in association with other trophic groups are still unclear. Specialisation and interdependencies among chalcid wasps that reproduce on Ficus presents an opportunity to investigate the ecology of a multi-trophic system that includes parasitoids. Here we estimate the host-plant species specificity of a parasitoid fig wasp genus that attacks the galls of non-pollinating pteromalid and pollinating agaonid fig wasps. We discuss the interactions between parasitoids and the Ficus species present in a forest patch of Uganda in context with populations in Southern Africa. Haplotype networks are inferred to examine intraspecific mitochondrial DNA divergences and phylogenetic approaches used to infer putative species relationships. Taxonomic appraisal and putative species delimitation by molecular and morphological techniques are compared. Results demonstrate that a parasitoid fig wasp population is able to reproduce on at least four Ficus species present in a patch. This suggests that parasitoid fig wasps have relatively broad host-Ficus species ranges compared to fig wasps that oviposit internally. Parasitoid fig wasps did not recruit on all available host plants present in the forest census area and suggests an important ecological consequence in mitigating fitness trade-offs between pollinator and Ficus reproduction. The extent to which parasitoid fig wasps exert influence on the pollination mutualism must consider the fitness consequences imposed by the ability to interact with phenotypes of multiple Ficus and fig wasps species, but not equally across space and time.

  10. Host plant resistance among tomato accessions to the spider mite Tetranychus evansi in Kenya.

    PubMed

    Onyambus, G K; Maranga, R O; Gitonga, L M; Knapp, M

    2011-08-01

    The spider mite Tetranychus evansi has a broad range of host plants. Control of T. evansi has been a big challenge to tomato farmers due to its fast rate of reproduction, development of resistance to chemical pesticides and its ability to use weeds as alternative hosts when the tomato plants are not available. The aim of the current study was to determine the host plant acceptance and the relative contributions of trichomes in the control of the red spider mite by comparing the survival, development and oviposition rates of the red spider mite on eight tomato accessions. Leaflets from eight tomato varieties were assayed with the spider mites to determine the egg laying capacity and developmental time of the spider mites on the tomato accessions as well as the trichome densities. Densities of trichome types I, IV, V and VI varied among the tomato accessions. Variation in types I, IV and VI accounted for most of the variation in mite responses. The varieties with high densities of types IV and VI had the highest fecundity and mite development did not go beyond the larval stage. The developmental time varied significantly among the tomato accessions. The results indicated that the higher the density of trichome type I the lower the adult survival. The findings indicated possible resistance of some of the tested tomato accessions against T. evansi which is partially associated with trichomes types and density.

  11. The importance of host plant limitation for caterpillars of an arctiid moth (Platyprepia virginalis) varies spatially.

    PubMed

    Karban, Richard; Grof-Tisza, Patrick; Maron, John L; Holyoak, Marcel

    2012-10-01

    Spatial dynamic theories such as source-sink models frequently describe habitat-specific demographies, yet there are surprisingly few field studies that have examined how and why interacting species vary in their dynamics across multiple habitat types. We studied the spatial pattern of interaction between a chewing herbivore and its primary larval host plant in two habitat types. We found that the interaction between an arctiid caterpillar (Platyprepia virginalis) and its host (Lupinus arboreus) differed in wet vs. upland dry habitats, as did yearly population dynamics for the caterpillar. In upland sites, there was a strong positive relationship between lupine cover and the abundance of caterpillars although this relationship was not apparent in wet sites. Additionally, in wet sites, caterpillar populations were larger and less variable across years. Caterpillars appeared to exhibit source-sink dynamics, with the time-averaged finite growth rate lamda > 1 in wet sites (sources), lamda < 1 in upland dry sites (sinks), and predominant source-to-sink movement of late-instar caterpillars. Populations in upland dry sites also went locally extinct in years of low regional abundance. Emigration from wet sites could potentially explain the lack of coupling of herbivore and host plant dynamics in these sites. These results indicate that movement and other factors affecting demography are habitat-specific and have important implications for trophic control. Acknowledging such complexity makes simple models of trophic control seem overly general but may allow us to formulate more broadly applicable ecological models.

  12. Intraplant movement of generalist slug caterpillars (Limacodidae: Lepidoptera): effects of host plant and light environment.

    PubMed

    Stoepler, Teresa M; Lill, John T; Murphy, Shannon M

    2014-12-01

    Insect herbivores frequently move about on their host plants to obtain food, avoid enemies and competitors, and cope with changing environmental conditions. Although numerous plant traits influence the movement of specialist herbivores, few studies have examined movement responses of generalist herbivores to the variable ecological conditions associated with feeding and living on an array of host plants. We tested whether the movement patterns of two generalist caterpillars (Euclea delphinii Boisduval and Acharia stimulea Clemens, Limacodidae) differed on six different host tree species over 10 d. Because these tree species vary in the range of light environments in which they commonly grow, we also compared the movement responses of E. delphinii caterpillars to two contrasting light environments, sun and shade. For both caterpillar species, multiple measures of movement varied significantly among host tree species. In early censuses, movement rates and distances were highest on red oak and black cherry and lowest on white oak. Site fidelity was greatest on white oak and lowest on black cherry. Movement of both caterpillar species varied inversely with mean predator density on five of the six host trees. Other ecological predictors (e.g., leaf size and the density of other herbivores) were unrelated to movement. Light environment altered behavior such that caterpillars in the shade moved and fed more often, and moved greater distances, than caterpillars in the sun. Although the mechanism(s) promoting or inhibiting movement under these different conditions requires further study, the consequences of increased movement for caterpillar development and mortality from natural enemies are discussed.

  13. Messages from the Other Side: Parasites Receive Damage Cues from their Host Plants.

    PubMed

    Tjiurutue, Muvari Connie; Stevenson, Philip C; Adler, Lynn S

    2016-08-01

    As sessile organisms, plants rely on their environment for cues indicating imminent herbivory. These cues can originate from tissues on the same plant or from different individuals. Since parasitic plants form vascular connections with their host, parasites have the potential to receive cues from hosts that allow them to adjust defenses against future herbivory. However, the role of plant communication between hosts and parasites for herbivore defense remains poorly investigated. Here, we examined the effects of damage to lupine hosts (Lupinus texensis) on responses of the attached hemiparasite (Castilleja indivisa), and indirectly, on a specialist herbivore of the parasite, buckeyes (Junonia coenia). Lupines produce alkaloids that act as defenses against herbivores that can be taken up by the parasite. We found that damage to lupine host plants by beet armyworm (Spodoptera exigua) significantly increased jasmonic acid (JA) levels in both the lupine host and parasite, suggesting uptake of phytohormones or priming of parasite defenses by using host cues. However, lupine host damage did not induce changes in alkaloid levels in the hosts or parasites. Interestingly, the parasite had substantially higher concentrations of JA and alkaloids compared to lupine host plants. Buckeye herbivores consumed more parasite tissue when attached to damaged compared to undamaged hosts. We hypothesize that increased JA due to lupine host damage induced higher iridoid glycosides in the parasite, which are feeding stimulants for this specialist herbivore. Our results demonstrate that damage to hosts may affect both parasites and associated herbivores, indicating cascading effects of host damage on multiple trophic levels.

  14. The First Structure of a Mycobacteriophage, the Mycobacterium abscessus subsp. bolletii Phage Araucaria

    PubMed Central

    Sassi, Mohamed; Bebeacua, Cecilia; Drancourt, Michel

    2013-01-01

    The unique characteristics of the waxy mycobacterial cell wall raise questions about specific structural features of their bacteriophages. No structure of any mycobacteriophage is available, although ∼3,500 have been described to date. To fill this gap, we embarked in a genomic and structural study of a bacteriophage from Mycobacterium abscessus subsp. bolletii, a member of the Mycobacterium abscessus group. This opportunistic pathogen is responsible for respiratory tract infections in patients with lung disorders, particularly cystic fibrosis. M. abscessus subsp. bolletii was isolated from respiratory tract specimens, and bacteriophages were observed in the cultures. We report here the genome annotation and characterization of the M. abscessus subsp. bolletii prophage Araucaria, as well as the first single-particle electron microscopy reconstruction of the whole virion. Araucaria belongs to Siphoviridae and possesses a 64-kb genome containing 89 open reading frames (ORFs), among which 27 could be annotated with certainty. Although its capsid and connector share close similarity with those of several phages from Gram-negative (Gram−) or Gram+ bacteria, its most distinctive characteristic is the helical tail decorated by radial spikes, possibly host adhesion devices, according to which the phage name was chosen. Its host adsorption device, at the tail tip, assembles features observed in phages binding to protein receptors, such as phage SPP1. All together, these results suggest that Araucaria may infect its mycobacterial host using a mechanism involving adhesion to cell wall saccharides and protein, a feature that remains to be further explored. PMID:23678183

  15. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species.

    PubMed

    Nakadai, Ryosuke; Murakami, Masashi; Hirao, Toshihide

    2014-08-01

    Historical, niche-based, and stochastic processes have been proposed as the mechanisms that drive community assembly. In plant-herbivore systems, these processes can correspond to phylogeny, leaf traits, and the distribution of host plants, respectively. Although patterns of herbivore assemblages among plant species have been repeatedly examined, the effects of these factors among co-occurring congeneric host plant species have rarely been studied. Our aim was to reveal the process of community assembly for herbivores by investigating the effects of phylogeny, leaf traits, and the altitudinal distribution of closely related host plants of the genus Acer. We sampled leaf functional traits for 30 Acer species in Japan. Using a newly constructed phylogeny, we determined that three of the six measured leaf traits (leaf thickness, C/N ratio, and condensed tannin content) showed a phylogenetic signal. In a field study, we sampled herbivore communities on 14 Acer species within an elevation gradient and examined relationships between herbivore assemblages and host plants. We found that herbivore assemblages were significantly correlated with phylogeny, leaf traits, phylogenetic signals, and the altitudinal distribution of host plants. Our results indicate that the interaction between historical and current ecological processes shapes herbivore community assemblages.

  16. Female butterflies adapt and allocate their progeny to the host-plant quality of their own larval experience.

    PubMed

    Cahenzli, Fabian; Wenk, Barbara A; Erhardt, Andreas

    2015-07-01

    Recent studies with diverse taxa have shown that parents can utilize their experience of the environment to adapt their offspring's phenotype to the same environmental conditions. Thus, offspring would then perform best under environmental conditions experienced by their parents due to transgenerational phenotypic plasticity. Such an effect has been dubbed transgenerational acclimatization. However, evidence that parents can subsequently ensure the appropriate environmental conditions in order that offspring benefit from transgenerational acclimatization has never been demonstrated. We reared Pieris rapae larvae in the parental generation on high-nitrogen and low-nitrogen host plants, and reared the offspring (F1) of both treatments again on high- and low-nitrogen plants. Furthermore, we tested if females prefer to oviposit on high- or low-nitrogen host plants in two-way choice tests. We here show not only that females adapt their offspring's phenotype to the host-plant quality that they themselves experienced, but that females also mainly oviposit on the host quality to which they adapt their offspring. Moreover, effects of larval host plant on oviposition preference of females increased across two generations in F1-females acclimatized to low-nitrogen host plants, showing an adaptive host shift from one generation to the next. These findings may have profound implications for host-race formation and sympatric speciation.

  17. Similarity of cuticular lipids between a caterpillar and its host plant: a way to make prey undetectable for predatory ants?

    PubMed

    Portugal, Augusto Henrique Arantes; Trigo, José Roberto

    2005-11-01

    Ithomiine butterflies (Nymphalidae) have long-lived, aposematic, chemically protected adults. However, little is known about the defense mechanisms in larvae and other juvenile stages. We showed that larvae Mechanitis polymnia are defended from ants by a chemical similarity between their cuticular lipids and those of the host plant, Solanum tabacifolium (Solanaceae). This is a novel defense mechanism in phytophagous insects. A field survey during one season showed that larval survivorship was up to 80%, which is high when compared with other juvenile stages. In a laboratory bioassay, live larvae on their host plant were not attacked by the predatory ant Camponotus crassus (Formicidae). Two experiments showed that the similarity between the cuticular lipids of M. polymnia and S. tabacifolium protected the larvae from C. crassus: (a) when the caterpillar was switched from a host plant to a non-host plant, the predation rate increased, and (b) when a palatable larva (Spodoptera frugiperda, Noctuidae) was coated with the cuticular lipids of M. polymnia and placed on S. tabacifolium leaves, it no longer experienced a high predation rate. This defensive mechanism can be defined as chemical camouflage, and may have a double adaptive advantage, namely, protection against predation and a reduction in the cost of sequestering toxic compounds from the host plant.

  18. Virus versus Host Plant MicroRNAs: Who Determines the Outcome of the Interaction?

    PubMed Central

    Maghuly, Fatemeh; Ramkat, Rose C.; Laimer, Margit

    2014-01-01

    Considering the importance of microRNAs (miRNAs) in the regulation of essential processes in plant pathogen interactions, it is not surprising that, while plant miRNA sequences counteract viral attack via antiviral RNA silencing, viruses in turn have developed antihost defense mechanisms blocking these RNA silencing pathways and establish a counter-defense. In the current study, computational and stem-loop Reverse Transcription – Polymerase Chain Reaction (RT-PCR) approaches were employed to a) predict and validate virus encoded mature miRNAs (miRs) in 39 DNA-A sequences of the bipartite genomes of African cassava mosaic virus (ACMV) and East African cassava mosaic virus-Uganda (EACMV-UG) isolates, b) determine whether virus encoded miRs/miRs* generated from the 5′/3′ harpin arms have the capacity to bind to genomic sequences of the host plants Jatropha or cassava and c) investigate whether plant encoded miR/miR* sequences have the potential to bind to the viral genomes. Different viral pre-miRNA hairpin sequences and viral miR/miR* length variants occurring as isomiRs were predicted in both viruses. These miRNAs were located in three Open Reading Frames (ORFs) and in the Intergenic Region (IR). Moreover, various target genes for miRNAs from both viruses were predicted and annotated in the host plant genomes indicating that they are involved in biotic response, metabolic pathways and transcription factors. Plant miRs/miRs* from conserved and highly expressed families were identified, which were shown to have potential targets in the genome of both begomoviruses, representing potential plant miRNAs mediating antiviral defense. This is the first assessment of predicted viral miRs/miRs* of ACMV and EACMV-UG and host plant miRNAs, providing a reference point for miRNA identification in pathogens and their hosts. These findings will improve the understanding of host- pathogen interaction pathways and the function of viral miRNAs in Euphorbiaceous crop plants. PMID

  19. A study of the early detection of insect infestations and density/distribution of host plants

    NASA Technical Reports Server (NTRS)

    Hart, W. G.; Ingle, S. J.; Davis, M. R. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Significant results have been obtained in the identification of citrus, sugarcane, winter vegetables, irrigated pastures, and unimproved pastures which contain brush. Land without vegetation, lakes, roads, and waterways can also be determined. Different densities of vegetation covering some cultivated areas are apparent. The practical applications of these results are many. The abundance of host plants of pests can be determined. Avenues of entry of pests can be plotted, facilitating control or preventing entry of pest species. The boundaries of areas to be quarantined can be accurately established after viewing the S-190B data. Better cultural methods can be employed such as planning where to plant certain crops that indirectly are detrimental to those already growing. This would relate to such factors as pesticide drift or alternate hosts of major pests.

  20. New species and host plants of Anastrepha (Diptera: Tephritidae) primarily from Peru and Bolivia.

    PubMed

    Norrbom, Allen L; Rodriguez, Erick J; Steck, Gary J; Sutton, Bruce A; Nolazco, Norma

    2015-11-16

    Twenty-eight new species of Anastrepha are described and illustrated: A. acca (Bolivia, Peru), A. adami (Peru), A. amplidentata (Bolivia, Peru), A. annonae (Peru), A. breviapex (Peru), A. caballeroi (Peru), A. camba (Bolivia, Peru), A. cicra (Bolivia, Peru), A. disjuncta (Peru), A. durantae (Peru), A. echaratiensis (Peru), A. eminens (Peru), A. ericki (Peru), A. gonzalezi (Bolivia, Peru), A. guevarai (Peru), A. gusi (Peru), A. kimi (Colombia, Peru), A. korytkowskii (Bolivia, Peru), A. latilanceola (Bolivia, Peru), A. melanoptera (Peru), A. mollyae (Bolivia, Peru), A. perezi (Peru), A. psidivora (Peru), A. robynae (Peru), A. rondoniensis (Brazil, Peru), A. tunariensis (Bolivia, Peru), A. villosa (Bolivia), and A. zacharyi (Peru). The following host plant records are reported: A. amplidentata from Spondias mombin L. (Anacardiaceae); A. caballeroi from Quararibea malacocalyx A. Robyns & S. Nilsson (Malvaceae); A. annonae from Annona mucosa Jacq. and Annona sp. (Annonaceae); A. durantae from Duranta peruviana Moldenke (Verbenaceae); and A. psidivora from Psidium guajava L. (Myrtaceae).

  1. [Repellent and antifeedant effect of secondary metabolites of non-host plants on Plutella xylostella].

    PubMed

    Wei, Hui; Hou, Youming; Yang, Guang; You, Minsheng

    2004-03-01

    Based on the theory of co-evolution between plants and phytophagous insects, the repellent and antifeedant effect of secondary metabolites of non-host plants on diamondback moth(DBM) Plutella xylostella was studied, aimed at finding out the oviposition repellents and antifeedants of insect pests. When the ethanol extracts(Etho Exts) of Bauhinia variegata, Eucalyptus tereticornis, Euphorbia hirta, Duranta repens, Zanthoxylum bungeanum, Magnolia grandiflora, and Nicotiana tabacum were applied respectively, the oviposition repellent rates were all over 80.00%; while after forty-eight hours treatment with the Etho Exts of Euphorbia pulcherrima, Broussonetia papyrifera, Artemisia argyi, Camellia oleifera, Salix babylonica, Euphorbia hirta, Bauhinia variegata, and Setaria viridisa, the antifeedant rates of DBM larvae were all more than 80.00%.

  2. The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants.

    PubMed

    Crespi, M; Vereecke, D; Temmerman, W; Van Montagu, M; Desomer, J

    1994-05-01

    Three virulence loci (fas, att, and hyp) of Rhodococcus fascians D188 have been identified on a 200-kb conjugative linear plasmid (pFiD188). The fas locus was delimited to a 6.5-kb DNA fragment by insertion mutagenesis, single homologous disruptive recombination, and in trans complementation of different avirulent insertion mutants. The locus is arranged as a large operon containing six open reading frames whose expression is specifically induced during the interaction with host plants. One predicted protein is homologous to P-450 cytochromes from actinomycetes. The putative ferredoxin component is of a novel type containing additional domains homologous to transketolases from chemoautotrophic, photosynthetic, and methylotrophic microorganisms. Genetic analysis revealed that fas encodes, in addition to the previously identified ipt, at least two new genes that are involved in fasciation development, one of which is only required on older tobacco plants.

  3. Taxonomy, phylogeny and host plants of some Abia sawflies (Hymenoptera, Cimbicidae).

    PubMed

    Liston, Andrew D; Savina, Henri; Nagy, Zoltán Tamás; Sonet, Gontran; Boevé, Jean-Luc

    2014-06-19

    We briefly review the taxonomy of Abia, and attempt to clarify their systematics by phylogenetic tree reconstructions inferred from three (nuclear and mitochondrial) genes of some West Palaearctic and Nearctic species. The main question which we asked is whether the distinction, made by several authors, of two genera within this group is justified. Based on the species here sampled, our results strongly support a clade recognised widely in earlier literature as Abia or Abia (Abia), but do not always support another clade, Zaraea or Abia (Zaraea), as monophyletic. In the interests of nomenclatural stability and for other practical reasons, the two nominal genera should be treated as synonyms. Host plant associations may be useful in the systematics of Abia species, but this topic requires further investigation and inclusion of more species in phylogenetic analyses.

  4. Proconiini Sharpshooters of Argentina, with Notes on Its Distribution, Host Plants, and Natural Enemies

    PubMed Central

    Paradell, Susana L.; Virla, Eduardo G.; Logarzo, Guillermo A.; Dellapé, Gimena

    2012-01-01

    The American tribe Proconiini (Hemiptera: Cicadellidae: Cicadellinae) is one of the largest groups of xylem-feeding insects and includes the majority of the known vectors of xylem-born phytopathogenic organisms. The significance of the pathogens that this group transmits gives them an important role as pests, mostly for citrus fruit, grapes, and almonds. Knowledge of these Hemiptera in Argentina is insufficient and fragmentary. Thus one of the aims of this paper is to summarize the available information of the Proconiini sharpshooters in Argentina. In addition, 14 species are mentioned for the first time in the country, and new distributional data are given for 18 species. Thirty-four new associations between sharpshooters and host plants are recorded. New records of egg parasitoids are given for Dechacona missionum, Molomea consolida, M. lineiceps, and Tapajosa similis. PMID:23445207

  5. The integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in Schizaphis graminum.

    PubMed

    An, Chunju; Fei, Xiaodong; Chen, Wenfeng; Zhao, Zhangwu

    2012-04-01

    The wheat aphid Schizaphis graminum (Rondani) displays wing dimorphism with both winged and wingless adult morphs. The winged morph is an adaptive microevolutionary response to undesirable environmental conditions, including undesirable population density, photoperiod, temperature, and host plant. Here we studied the integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in S. graminum. The present results show that these four factors all play roles in inducing alate aphids in S. graminum but population density is the most important under almost all circumstances. In importance, population density is followed by photoperiod, host plant, and temperature, in that order. These results indicate that ambient environmental factors are highly important to stimulation of alate aphids in S. graminum, especially when population density reaches 64 individuals per leaf.

  6. An olfactory receptor from Apolygus lucorum (Meyer-Dur) mainly tuned to volatiles from flowering host plants.

    PubMed

    Yan, Shu-Wei; Zhang, Jin; Liu, Yang; Li, Guo-Qing; Wang, Gui-Rong

    2015-08-01

    Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most serious agricultural pests, feeding on a wide range of cultivated plants, including cotton, cereals and vegetables in the north of China. This insect can frequently switch between habitats and host plants over seasons and prefer plants in bloom. A. lucorum relies heavily on olfaction to locate its host plants finely discriminating different plant volatiles in the environment. Despite its economical importance, research on the olfactory system of this species has been so far very limited. In this study, we have identified and characterized an olfactory receptor which is sensitively tuned to (Z)-3-Hexenyl acetate and several flowering compounds. Besides being present in the bouquet of some flowers, these compounds are produced by plants that have suffered attacks and are supposed to act as chemical messengers between plants. This OR may play an important role in the selection of host plants.

  7. Lipid and fatty acid composition of muga silkworm, Antheraea assama, host plants in relation to silkworm growth.

    PubMed

    Unni, B G; Kakoty, A C; Khanikor, D; Bhattacharya, P R; Pathak, M G; Pillai, K; Pillai, R; Choudhury, A; Saikia, P C; Ghosh, A C

    1996-05-01

    The lipid and fatty acid composition of the leaves (tender, medium and mature) of muga host plants, Machilus bombycina, Litsaea monopetala (primary food plants) and L. cubeba and L. salicifolia (family: Lauraceae) (secondary food plants) was investigated by standard procedures, gas chromatography after saponification and esterification. The total lipid content of M. bombycina and L. monopetala leaves was recorded to be higher (16 and 18 g%), respectively, than that of L. cubeba (10 g%) and L. salicifolia (12 g%). GC analysis identified the presence of eight fatty acids (C14 to C22) and the concentration varied from 0.0297 to 8.1572 g% dry leaf powder. Among the fatty acids, (C14 to C22), polyunsaturated fatty acids were recorded to be highest in concentration in mature leaves of the primary host plants. The concentrations of saturated and polyunsatuated fatty acids were found to be at a minimum level in all the types of leaves of secondary muga host plants.

  8. Host Plant Cultivar Effects on Hydrogen Evolution by Rhizobium leguminosarum1

    PubMed Central

    Bedmar, Eulogio J.; Edie, Scott A.; Phillips, Donald A.

    1983-01-01

    The effect of host plant cultivar on H2 evolution by root nodules was examined in symbioses between Pisum sativum L. and selected strains of Rhizobium leguminosarum. Hydrogen evolution from root nodules containing Rhizobium represents the sum of H2 produced by the nitrogenase enzyme complex and H2 oxidized by any uptake hydrogenase present in those bacterial cells. Relative efficiency (RE) calculated as RE = 1 − (H2 evolved in air/C2 H2 reduced) did not vary significantly among `Feltham First,' `Alaska,' and `JI1205' peas inoculated with R. leguminosarum strain 300, which lacks uptake hydrogenase activity (Hup−). That observation suggests that the three host cultivars had no effect on H2 production by nitrogenase. However, RE of strain 128C53 was significantly (P ≤ 0.05) greater in symbiosis with cultivar JI1205 than in root nodules of Feltham First. At a similar rate of C2H2 reduction on a whole-plant basis, nearly 24 times more H2 was evolved from the Feltham First/128C53 symbiosis than from the JI1205/128C53 association. Root nodules from the Alaska/128C53 symbiosis had an intermediate RE over the entire study period, which extended from 21 to 36 days after planting. Direct assays of uptake hydrogenase by two methods showed significant (P ≤ 0.05) host cultivar effects on H2 uptake capacity of both strain 128C53 and the genetically related strain 3960. The 3H2 incorporation assay showed that strains 128C53 and 3960 in symbiosis with Feltham First had about 10% of the uptake hydrogenase activity measured in root nodules of Alaska or JI1205. These data are the first demonstration of significant host plant effects on rhizobial uptake hydrogenase in a single plant species. PMID:16663112

  9. An energetic analysis of host plant selection by the large milkweed bug, Oncopeltus fasciatus.

    PubMed

    Chaplin, Stephen J

    1980-01-01

    The large milkweed bug, Oncopeltus fasciatus, is a specialized seed feeder that has been observed completing nymphal development in the field on only a small proportion of its potential host species within the genus Asclepias. In central Missouri only two of the six milkweed species studied, A. syriaca and A. verticillata, commonly supported nymphal O. fasciatus growth in the field. The seed of all six species, however, was equally suitable food for bugs reared in the laboratory. In laboratory preference tests, adult bugs chose to feed on the largest seeds, A. hirtella, but such a preference could not explain the observed field feeding patterns.One explanation to account for the observed host plant selection is based upon an energetic analysis. Only A. syriaca provided enough seed biomass for a clutch of O. fasciatus nymphs to develop on a single plant, and only A. verticillata grew in high enough density that a clutch could find sufficient food within the limited range of nymphal movement. These results illustrate a corollary of the resource concentration hypothesis: within a plant group whose members share similar secondary plant chemistries, the only species that will be viable hosts for a specialized herbivore are those that provide the minimal resource density necessary for the completion of nymphal development.In central Missouri, O. fasciatus has specialized on a critical resource density, not traits of individual Asclepias species. The appearance of host selection within the potential host plant spectrum is the result of a characteristic growth form, seed output, and dispersion pattern for each milkweed species that makes some species much more likely than others to produce sufficient seed resources.

  10. Dictyophara europaea (Hemiptera: Fulgoromorpha: Dictyopharidae): description of immatures, biology and host plant associations.

    PubMed

    Krstić, O; Cvrković, T; Mitrović, M; Toševski, I; Jović, J

    2016-06-01

    The European lantern fly Dictyophara europaea (Linnaeus, 1767), is a polyphagous dictyopharid planthopper of Auchenorrhyncha commonly found throughout the Palaearctic. Despite abundant data on its distribution range and reports on its role in the epidemiology of plant-pathogenic phytoplasmas (Flavescence dorée, FD-C), literature regarding the biology and host plants of this species is scarce. Therefore, the aims of our study were to investigate the seasonal occurrence, host plant associations, oviposition behaviour and immature stages of this widespread planthopper of economic importance. We performed a 3-year field study to observe the spatio-temporal distribution and feeding sources of D. europaea. The insects's reproductive strategy, nymphal molting and behaviour were observed under semi-field cage conditions. Measurement of the nymphal vertex length was used to determine the number of instars, and the combination of these data with body length, number of pronotal rows of sensory pits and body colour pattern enabled the discrimination of each instar. We provide data showing that D. europaea has five instars with one generation per year and that it overwinters in the egg stage. Furthermore, our study confirmed highly polyphagous feeding nature of D. europaea, for all instars and adults, as well as adult horizontal movement during the vegetation growing season to the temporarily preferred feeding plants where they aggregate during dry season. We found D. europaea adult aggregation in late summer on Clematis vitalba L. (Ranunculaceae), a reservoir plant of FD-C phytoplasma strain; however, this appears to be a consequence of forced migration due to drying of herbaceous vegetation rather than to a high preference of C. vitalba as a feeding plant. Detailed oviposition behaviour and a summary of the key discriminatory characteristics of the five instars are provided. Emphasis is placed on the economic importance of D. europaea because of its involvement in

  11. Host plant choice in the comma butterfly-larval choosiness may ameliorate effects of indiscriminate oviposition.

    PubMed

    Gamberale-Stille, Gabriella; Söderlind, Lina; Janz, Niklas; Nylin, Sören

    2014-08-01

    In most phytophagous insects, the larval diet strongly affects future fitness and in species that do not feed on plant parts as adults, larval diet is the main source of nitrogen. In many of these insect-host plant systems, the immature larvae are considered to be fully dependent on the choice of the mothers, who, in turn, possess a highly developed host recognition system. This circumstance allows for a potential mother-offspring conflict, resulting in the female maximizing her fecundity at the expense of larval performance on suboptimal hosts. In two experiments, we aimed to investigate this relationship in the polyphagous comma butterfly, Polygonia c-album, by comparing the relative acceptance of low- and medium-ranked hosts between females and neonate larvae both within individuals between life stages, and between mothers and their offspring. The study shows a variation between females in oviposition acceptance of low-ranked hosts, and that the degree of acceptance in the mothers correlates with the probability of acceptance of the same host in the larvae. We also found a negative relationship between stages within individuals as there was a higher acceptance of lower ranked hosts in females who had abandoned said host as a larva. Notably, however, neonate larvae of the comma butterfly did not unconditionally accept to feed from the least favorable host species even when it was the only food source. Our results suggest the possibility that the disadvantages associated with a generalist oviposition strategy can be decreased by larval participation in host plant choice.

  12. Preference of a polyphagous mirid bug, Apolygus lucorum (Meyer-Dür) for flowering host plants.

    PubMed

    Pan, Hongsheng; Lu, Yanhui; Wyckhuys, Kris A G; Wu, Kongming

    2013-01-01

    Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most important herbivores in a broad range of cultivated plants, including cotton, cereals, vegetables, and fruit crops in China. In this manuscript, we report on a 6-year long study in which (adult) A. lucorum abundance was recorded on 174 plant species from 39 families from early July to mid-September. Through the study period per year, the proportion of flowering plants exploited by adult A. lucorum was significantly greater than that of non-flowering plants. For a given plant species, A. lucorum adults reached peak abundance at the flowering stage, when the plant had the greatest attraction to the adults. More specifically, mean adult abundance on 26 species of major host plants and their relative standard attraction were 10.3-28.9 times and 9.3-19.5 times higher at flowering stage than during non-flowering periods, respectively. Among all the tested species, A. lucorum adults switched food plants according to the succession of flowering plant species. In early July, A. lucorum adults preferred some plant species in bloom, such as Vigna radiata, Gossypium hirsutum, Helianthus annuus and Chrysanthemum coronarium; since late July, adults dispersed into other flowering hosts (e.g. Ricinus communis, Impatiens balsamina, Humulus scandens, Ocimum basilicum, Agastache rugosus and Coriandrum sativum); in early September, they largely migrated to flowering Artemisia spp. (e.g. A. argyi, A. lavandulaefolia, A. annua and A. scoparia). Our findings underscore the important role of flowering plays in the population dynamics and inter-plant migration of this mirid bug. Also, our work helps understand evolutionary aspects of host plant use in polyphagous insects such as A. lucorum, and provides baseline information for the development of sustainable management strategies of this key agricultural pest.

  13. Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing.

    PubMed

    Webb, Benjamin A; Hildreth, Sherry; Helm, Richard F; Scharf, Birgit E

    2014-06-01

    Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing.

  14. Native and introduced host plants of Anastrepha fraterculus and Ceratitis capitata (Diptera: Tephritidae) in northwestern Argentina.

    PubMed

    Ovruski, Sergio; Schliserman, Pablo; Aluja, Martín

    2003-08-01

    Wild or commercially grown, native and exotic fruit were collected in 30 localities in the Tucumán province (NW Argentina) from January 1990 to December 1995 to determine their status as hosts of Anastrepha fraterculus (Wiedemann) and/or Ceratitis capitata (Wiedemann), the only two fruit fly species of economic and quarantine importance in Argentina. A total of 84,094 fruit (3,466.1 kg) representing 33 species (7 native and 26 exotic) in 15 plant families were sampled. We determined the following 17 host plant associations: Annona cherimola Miller (Annonaceae), Citrus paradisi Macfadyn (Rutaceae), Diospyros kaki L. (Ebenaceae), Eugenia uniflora L., Psidium guajava L., Myrcianthes pungens (Berg) Legrand (Myrtaceae), Ficus carica L. (Moraceae), Juglans australis Grisebach (Juglandaceae), Mangifera indica L. (Anacardiaceae), Eriobotrya japonica (Thunb.) Lindl., Prunus armeniaca L., P. domestica L., and P. persica (L.) Batsch (Rosaceae) were infested by both A. fraterculus and C. capitata. Citrus aurantium L., Citrus reticulata Blanco, Citrus sinensis (L.) Osbeck (Rutaceae), and Passiflora caerulea L. (Passifloraceae) were only infested by Ceratitis capitata. Out of a total of 99,627 adults that emerged from pupae, 69,180 (approximately 69.5%) were Anastrepha fraterculus, 30,138 (approximately 30.2%) were C. capitata, and 309 (approximately 0.3%) were an unidentified Anastrepha species. Anastrepha fraterculus predominated in native plant species while C. capitata did so in introduced species. Infestation rates (number of larvae/kg of fruit) varied sharply from year to year and between host plant species (overall there was a significant negative correlation between fruit size and infestation level). We provide information on fruiting phenology of all the reported hosts and discuss our findings in light of their practical (e.g., management of A. fraterculus and C. capitata in citrus groves) implications.

  15. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment.

    PubMed

    Chen, Xin; Wu, Chunhua; Tang, Jianjun; Hu, Shuijin

    2005-07-01

    A sand culture experiment was conducted to investigate whether mycorrhizal colonization and mycorrhizal fungal vesicular numbers were influenced by metal lead, and whether mycorrhizae enhance host plants tolerance to metal lead. Metal lead was applied as Pb(NO3)2 in solution at three levels (0, 300 and 600 mg kg(-1) sand). Five mycorrhizal host plant species, Kummerowia striata (Thunb.) Schindl, Ixeris denticulate L., Lolium perenne L., Trifolium repens L. and Echinochloa crusgalli var. mitis were used to examine Pb-mycorrhizal interactions. The arbuscular mycorrhizal inoculum consisted of mixed spores of mycorrhizal fungal species directly isolated from orchard soil. Compared to the untreated control, both Pb concentrations reduced mycorrhizal colonization by 3.8-70.4%. Numbers of AM fungal vesicles increased by 13.2-51.5% in 300 mg Pb kg(-1) sand but decreased by 9.4-50.9% in 600 mg Pb kg(-1) sand. Mycorrhizae significantly enhanced Pb accumulation both in shoot by 10.2-85.5% and in root by 9.3-118.4%. Mycorrhizae also enhanced shoot biomass and shoot P concentration under both Pb concentrations. Root/shoot ratios of Pb concentration were higher in highly mycorrhizal plant species (K.striata, I. denticulate, and E. crusgalli var. mitis) than that in poorly mycorrhizal ones (L. perenne and T. repens,). Mycorrhizal inoculation increased the root/shoot ratio of Pb concentration of highly mycorrhizal plant species by 7.6-57.2% but did not affect the poorly mycorrhizal ones. In the treatments with 300 Pb mg kg(-1) sand, plant species with higher vesicular numbers tended to show higher root/shoot ratios of the Pb concentration. We suggest that under an elevated Pb condition, mycorrhizae could promote plant growth by increasing P uptake and mitigate Pb toxicity by sequestrating more Pb in roots.

  16. Inoculation of Transgenic Resistant Potato by Phytophthora infestans Affects Host Plant Choice of a Generalist Moth.

    PubMed

    Abreha, Kibrom B; Alexandersson, Erik; Vossen, Jack H; Anderson, Peter; Andreasson, Erik

    2015-01-01

    Pathogen attack and the plant's response to this attack affect herbivore oviposition preference and larval performance. Introduction of major resistance genes against Phytophthora infestans (Rpi-genes), the cause of the devastating late blight disease, from wild Solanum species into potato changes the plant-pathogen interaction dynamics completely, but little is known about the effects on non-target organisms. Thus, we examined the effect of P. infestans itself and introduction of an Rpi-gene into the crop on host plant preference of the generalist insect herbivore, Spodoptera littoralis (Lepidoptera: Noctuidae). In two choice bioassays, S. littoralis preferred to oviposit on P. infestans-inoculated plants of both the susceptible potato (cv. Desiree) and an isogenic resistant clone (A01-22: cv. Desiree transformed with Rpi-blb1), when compared to uninoculated plants of the same genotype. Both cv. Desiree and clone A01-22 were equally preferred for oviposition by S. littoralis when uninoculated plants were used, while cv. Desiree received more eggs compared to the resistant clone when both were inoculated with the pathogen. No significant difference in larval and pupal weight was found between S. littoralis larvae reared on leaves of the susceptible potato plants inoculated or uninoculated with P. infestans. Thus, the herbivore's host plant preference in this system was not directly associated with larval performance. The results indicate that the Rpi-blb1 based resistance in itself does not influence insect behavior, but that herbivore oviposition preference is affected by a change in the plant-microbe interaction.

  17. Preference of a Polyphagous Mirid Bug, Apolygus lucorum (Meyer-Dür) for Flowering Host Plants

    PubMed Central

    Pan, Hongsheng; Lu, Yanhui; Wyckhuys, Kris A. G.; Wu, Kongming

    2013-01-01

    Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most important herbivores in a broad range of cultivated plants, including cotton, cereals, vegetables, and fruit crops in China. In this manuscript, we report on a 6-year long study in which (adult) A. lucorum abundance was recorded on 174 plant species from 39 families from early July to mid-September. Through the study period per year, the proportion of flowering plants exploited by adult A. lucorum was significantly greater than that of non-flowering plants. For a given plant species, A. lucorum adults reached peak abundance at the flowering stage, when the plant had the greatest attraction to the adults. More specifically, mean adult abundance on 26 species of major host plants and their relative standard attraction were 10.3–28.9 times and 9.3–19.5 times higher at flowering stage than during non-flowering periods, respectively. Among all the tested species, A. lucorum adults switched food plants according to the succession of flowering plant species. In early July, A. lucorum adults preferred some plant species in bloom, such as Vigna radiata, Gossypium hirsutum, Helianthus annuus and Chrysanthemum coronarium; since late July, adults dispersed into other flowering hosts (e.g. Ricinus communis, Impatiens balsamina, Humulus scandens, Ocimum basilicum, Agastache rugosus and Coriandrum sativum); in early September, they largely migrated to flowering Artemisia spp. (e.g. A. argyi, A. lavandulaefolia, A. annua and A. scoparia). Our findings underscore the important role of flowering plays in the population dynamics and inter-plant migration of this mirid bug. Also, our work helps understand evolutionary aspects of host plant use in polyphagous insects such as A. lucorum, and provides baseline information for the development of sustainable management strategies of this key agricultural pest. PMID:23874835

  18. Sinorhizobium meliloti Chemoreceptor McpU Mediates Chemotaxis toward Host Plant Exudates through Direct Proline Sensing

    PubMed Central

    Webb, Benjamin A.; Hildreth, Sherry; Helm, Richard F.

    2014-01-01

    Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing. PMID:24657863

  19. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata).

    PubMed

    Berzitis, Emily A; Minigan, Jordan N; Hallett, Rebecca H; Newman, Jonathan A

    2014-09-01

    The bean leaf beetle, Cerotoma trifurcata, has become a major pest of soybean throughout its North American range. With a changing climate, there is the potential for this pest to further expand its distribution and become an increasingly severe pest in certain regions. To examine this possibility, we developed bioclimatic envelope models for both the bean leaf beetle, and its most important agronomic host plant, soybean (Glycine max). These two models were combined to examine the potential future pest status of the beetle using climate change projections from multiple general circulation models (GCMs) and climate change scenarios. Despite the broad tolerances of soybean, incorporation of host plant availability substantially decreased the suitable and favourable areas for the bean leaf beetle as compared to an evaluation based solely on the climate envelope of the beetle, demonstrating the importance of incorporating biotic interactions in these predictions. The use of multiple GCM-scenario combinations also revealed differences in predictions depending on the choice of GCM, with scenario choice having less of an impact. While the Norwegian model predicted little northward expansion of the beetle from its current northern range limit of southern Ontario and overall decreases in suitable and favourable areas over time, the Canadian and Russian models predict that much of Ontario and Quebec will become suitable for the beetle in the future, as well as Manitoba under the Russian model. The Russian model also predicts expansion of the suitable and favourable areas for the beetle over time. Two predictions that do not depend on our choice of GCM include a decrease in suitability of the Mississippi Delta region and continued favourability of the southeastern United States.

  20. Host plant use by competing acacia-ants: mutualists monopolize while parasites share hosts.

    PubMed

    Kautz, Stefanie; Ballhorn, Daniel J; Kroiss, Johannes; Pauls, Steffen U; Moreau, Corrie S; Eilmus, Sascha; Strohm, Erhard; Heil, Martin

    2012-01-01

    Protective ant-plant mutualisms that are exploited by non-defending parasitic ants represent prominent model systems for ecology and evolutionary biology. The mutualist Pseudomyrmex ferrugineus is an obligate plant-ant and fully depends on acacias for nesting space and food. The parasite Pseudomyrmex gracilis facultatively nests on acacias and uses host-derived food rewards but also external food sources. Integrative analyses of genetic microsatellite data, cuticular hydrocarbons and behavioral assays showed that an individual acacia might be inhabited by the workers of several P. gracilis queens, whereas one P. ferrugineus colony monopolizes one or more host trees. Despite these differences in social organization, neither of the species exhibited aggressive behavior among conspecific workers sharing a tree regardless of their relatedness. This lack of aggression corresponds to the high similarity of cuticular hydrocarbon profiles among ants living on the same tree. Host sharing by unrelated colonies, or the presence of several queens in a single colony are discussed as strategies by which parasite colonies could achieve the observed social organization. We argue that in ecological terms, the non-aggressive behavior of non-sibling P. gracilis workers--regardless of the route to achieve this social structure--enables this species to efficiently occupy and exploit a host plant. By contrast, single large and long-lived colonies of the mutualist P. ferrugineus monopolize individual host plants and defend them aggressively against invaders from other trees. Our findings highlight the necessity for using several methods in combination to fully understand how differing life history strategies affect social organization in ants.

  1. Host-Plant Specialization Mediates the Influence of Plant Abundance on Host Use by Flower Head-Feeding Insects.

    PubMed

    Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário

    2016-02-01

    Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.

  2. Testing local host adaptation and phenotypic plasticity in a herbivore when alternative related host plants occur sympatrically.

    PubMed

    Ruiz-Montoya, Lorena; Núñez-Farfán, Juan

    2013-01-01

    Host race formation in phytophagous insects can be an early stage of adaptive speciation. However, the evolution of phenotypic plasticity in host use is another possible outcome. Using a reciprocal transplant experiment we tested the hypothesis of local adaptation in the aphid Brevicoryne brassicae. Aphid genotypes derived from two sympatric host plants, Brassica oleracea and B. campestris, were assessed in order to measure the extent of phenotypic plasticity in morphological and life history traits in relation to the host plants. We obtained an index of phenotypic plasticity for each genotype. Morphological variation of aphids was summarized by principal components analysis. Significant effects of recipient host on morphological variation and life history traits (establishment, age at first reproduction, number of nymphs, and intrinsic growth rate) were detected. We did not detected genotype × host plant interaction; in general the genotypes developed better on B. campestris, independent of the host plant species from which they were collected. Therefore, there was no evidence to suggest local adaptation. Regarding plasticity, significant differences among genotypes in the index of plasticity were detected. Furthermore, significant selection on PC1 (general aphid body size) on B. campestris, and on PC1 and PC2 (body length relative to body size) on B. oleracea was detected. The elevation of the reaction norm of PC1 and the slope of the reaction norm for PC2 (i.e., plasticity) were under directional selection. Thus, host plant species constitute distinct selective environments for B. brassicae. Aphid genotypes expressed different phenotypes in response to the host plant with low or nil fitness costs. Phenotypic plasticity and gene flow limits natural selection for host specialization promoting the maintenance of genetic variation in host exploitation.

  3. Testing Local Host Adaptation and Phenotypic Plasticity in a Herbivore When Alternative Related Host Plants Occur Sympatrically

    PubMed Central

    Ruiz-Montoya, Lorena; Núñez-Farfán, Juan

    2013-01-01

    Host race formation in phytophagous insects can be an early stage of adaptive speciation. However, the evolution of phenotypic plasticity in host use is another possible outcome. Using a reciprocal transplant experiment we tested the hypothesis of local adaptation in the aphid Brevicoryne brassicae. Aphid genotypes derived from two sympatric host plants, Brassica oleracea and B. campestris, were assessed in order to measure the extent of phenotypic plasticity in morphological and life history traits in relation to the host plants. We obtained an index of phenotypic plasticity for each genotype. Morphological variation of aphids was summarized by principal components analysis. Significant effects of recipient host on morphological variation and life history traits (establishment, age at first reproduction, number of nymphs, and intrinsic growth rate) were detected. We did not detected genotype × host plant interaction; in general the genotypes developed better on B. campestris, independent of the host plant species from which they were collected. Therefore, there was no evidence to suggest local adaptation. Regarding plasticity, significant differences among genotypes in the index of plasticity were detected. Furthermore, significant selection on PC1 (general aphid body size) on B. campestris, and on PC1 and PC2 (body length relative to body size) on B. oleracea was detected. The elevation of the reaction norm of PC1 and the slope of the reaction norm for PC2 (i.e., plasticity) were under directional selection. Thus, host plant species constitute distinct selective environments for B. brassicae. Aphid genotypes expressed different phenotypes in response to the host plant with low or nil fitness costs. Phenotypic plasticity and gene flow limits natural selection for host specialization promoting the maintenance of genetic variation in host exploitation. PMID:24265743

  4. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.

    PubMed

    Braschler, Brigitte; Hill, Jane K

    2007-05-01

    1. Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2. We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18-28.5 degrees C) in populations from core and range margin sites. 3. In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra > or = U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4. Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5. Current range expansion of P. c-album is associated with the

  5. A new cryptic Sympistis from eastern North America revealed by novel larval phenotype and host plant association (Lepidoptera, Noctuidae, Oncocnemidinae)

    PubMed Central

    Zacharczenko, Brigette; Wagner, David L.; Hatfield, Mary Jane

    2014-01-01

    Abstract A Triosteum-feeding species of Sympistis is described from eastern North America: Sympistis forbesi sp. n. Identity of the new species is most reliably determined from larval morphology and host plant association—both adult scaling and genitalic characters overlap with those of Sympisitis chionanthi, a Chionanthus and Fraxinus feeder. PMID:24574858

  6. Host plant resistance to megacopta cribraria (Hemiptera: Plataspidae) in diverse soybean germplasm maturity groups V through VIII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initially discovered in Georgia in 2009, the exotic invasive plataspid, Megacopta cribraria Fabricius has become a serious pest of soybean. Managing M. cribraria in soybean typically involves the application of broad-spectrum insecticides. Soybean host plant resistance is an attractive alternative...

  7. Genetic differentiation associated with host plants and geography among six widespread species of South American Blepharoneura fruit flies (Tephritidae).

    PubMed

    Ottens, K; Winkler, I S; Lewis, M L; Scheffer, S J; Gomes-Costa, G A; Condon, M A; Forbes, A A

    2017-04-01

    Tropical herbivorous insects are astonishingly diverse, and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host-specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent-wide analyses reveal - in all but one instance - that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use.

  8. Host plants impact courtship vibration transmission and mating success of a parasitoid wasp, Cotesia flavipes (Hymenoptera: Braconidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host plants provide food, shelter and mating habitats for herbivorous and parasitoid insects. Yet each plant species is a distinct microhabitat and insects must adapt to its chemical and physical attributes in order to survive, mate and reproduce. Behavioral and genetic divergence between insect pop...

  9. The 12th I. E. Melhus Graduate Student Symposium: host plant resistance and disease management, current status and future outlook

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 12th I. E. Melhus Graduate Student Symposium was held on 6 August 2012 during the Annual meeting of the American Phytopathological Society (APS) in Providence, RI. The theme for this symposium was “Host Plant Resistance and Disease Management: Current Status and Future Outlook”. The APS Host R...

  10. The genetic architecture of a complex ecological trait: host plant use in the specialist moth, HELIOTHIS SUBFLEXA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of the genetic basis of ecological adaptation remains in its infancy, and most studies have focused on phenotypically simple traits. Host plant use by herbivorous insects is phenotypically complex. While research has illuminated the evolutionary determinants of host use, knowledge of its...

  11. Identification of maize genes associated with host plant resistance and susceptibility to Aspergillus flavus infection and aflatoxin accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus infection and aflatoxin contamination of maize pose negative impacts in agriculture and health. Commercial maize hybrids are generally susceptible to this fungus. Significant levels of host plant resistance have been observed in certain maize inbred lines. This study was conducted...

  12. Effect of Host Plant on the Chemical Composition of Tetranychus urticae (Prostigmata: Tetranychidae): Variability in Soluble Protein, Anions, and Carbohydrates.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical analyses of two-spotted spider mite, Tetranychus urticae (Koch), and 3 of their host plants, Phaseolus vulgaris L., Phaseolus lunatus L., and Vigna unguiculata L. show that the content of total soluble protein, carbohydrates, and anions in the mites varies independently from the concentrat...

  13. A New Method for in Situ Measurement of Bt-Maize Pollen Deposition on Host-Plant Leaves.

    PubMed

    Hofmann, Frieder; Otto, Mathias; Kuhn, Ulrike; Ober, Steffi; Schlechtriemen, Ulrich; Vögel, Rudolph

    2011-02-21

    Maize is wind pollinated and produces huge amounts of pollen. In consequence, the Cry toxins expressed in the pollen of Bt maize will be dispersed by wind in the surrounding vegetation leading to exposure of non-target organisms (NTO). NTO like lepidopteran larvae may be affected by the uptake of Bt-pollen deposited on their host plants. Although some information is available to estimate pollen deposition on host plants, recorded data are based on indirect measurements such as shaking or washing off pollen, or removing pollen with adhesive tapes. These methods often lack precision and they do not include the necessary information such as the spatial and temporal variation of pollen deposition on the leaves. Here, we present a new method for recording in situ the amount and the distribution of Bt-maize pollen deposited on host plant leaves. The method is based on the use of a mobile digital microscope (Dino-Lite Pro, including DinoCapture software), which can be used in combination with a notebook in the field. The method was evaluated during experiments in 2008 to 2010. Maize pollen could be correctly identified and pollen deposition as well as the spatial heterogeneity of maize pollen deposition was recorded on maize and different lepidopteran host plants (Centaurea scabiosa, Chenopodium album, Rumex spp., Succina pratensis and Urtica dioica) growing adjacent to maize fields.

  14. Feeding Behaviour on Host Plants May Influence Potential Exposure to Bt Maize Pollen of Aglais Urticae Larvae (Lepidoptera, Nymphalidae).

    PubMed

    Lang, Andreas; Otto, Mathias

    2015-08-31

    Non-target butterfly larvae may be harmed by feeding on host plants dusted with Bt maize pollen. Feeding patterns of larvae and their utilization of host plants can affect the adverse Bt impact because the maize pollen is distributed unequally on the plant. In a field study, we investigated the feeding of larvae of the Small Tortoiseshell, Aglais urticae, on nettles, Urtica dioica. Young larvae used smaller host plants than older larvae. In general, the position of the larvae was in the top part of the host plant, but older larvae showed a broader vertical distribution on the nettles. Leaf blades and leaf tips were the plant parts most often consumed. Leaf veins were consumed but midribs were fed on to a lesser extent than other plant veins, particularly by young larvae. The feeding behavior of the larvae may increase possible exposure to Bt maize pollen because pollen densities are expected to be higher on the top parts and along leaf veins of nettles.

  15. Hoverfly preference for high honeydew amounts creates enemy-free space for aphids colonizing novel host plants.

    PubMed

    Vosteen, Ilka; Gershenzon, Jonathan; Kunert, Grit

    2016-09-01

    The existence of an enemy-free space can play an important role in aphid host race formation processes, but little is known about the mechanisms that create an area of low predation pressure on particular host plants. In this paper, we identify a mechanism generating lower predation pressure that promotes the maintenance of the different host races of the pea aphid (Acyrthosiphon pisum) complex, a well-studied model for ecological speciation. The pea aphid consists of at least 15 genetically distinct host races which are native to specific host plants of the legume family, but can all develop on the universal host plant Vicia faba. Previous work showed that hoverfly (Episyrphus balteatus) oviposition preferences contribute to the enemy-free space that helps to maintain the different pea aphid host races, and that higher amounts of honeydew are more attractive to ovipositing hoverflies. Here we demonstrated that aphid honeydew is produced in large amounts when aphid reproduction rate was highest, and is an important oviposition cue for hoverflies under field conditions. However, on less suitable host plants, where honeydew production is reduced, pea aphids enjoy lower predation rates. A reduction in enemy pressure can mitigate the performance disadvantages of aphids colonizing a novel host and probably plays an important role in pea aphid host race formation.

  16. New records of Rhagoletis species (Diptera: Tephritidae) and their host plants in western Montana, U.S.A.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information exists concerning the distribution of Rhagoletis fruit flies (Diptera: Tephritidae) in the state of Montana in the western U.S.A. In this study, the presence of and host plant use by Rhagoletis species are documented in northwestern Montana. The western cherry fruit fly, Rhagolet...

  17. Haplotypes of the potato psyllid, Bactericera cockerelli, on the wild host plant, Solanum dulcamara, in the Pacific Northwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Candidatus Liberibacter solanacearum’ (Lso) is a bacterium that infects solanaceous crops and causes plant decline and yield losses, especially in potato and tomato. Lso is transmitted to these hosts by the potato psyllid (Bactericera cockerelli Sulc.) vector. B. cockerelli host plants are not li...

  18. First report of Tequus schrottkyi (Konow) (Hymenoptera: Pergidae) in Uruguay, and information about its host plant and biology

    PubMed Central

    González, Andrés; Schmidt, Stefan

    2016-01-01

    Abstract Background The sawfly family Pergidae is best represented in South America, and it is the third largest family in the suborder Symphyta. Tequus is a Neotropical genus that has been reported in association with host plants of the genus Solanum (Solanaceae), with little information about the life history of its members. Tequus schrottkyi (Konow, 1906) was described from Paraguay, without any information about its biology and host plant. New information We report the first record of T. schrottkyi from Uruguay, with information on its host plant and details of its biology. The identification was based on morphology, DNA barcode is provided to allow identification using molecular characters. This sawfly species is associated with Solanum commersonii, a native plant common in Uruguay. Tequus schrottkyi presents several generations between March and July. The larvae feed on leaves and spin a silk cocoon in the soil in which they pupate. The adults exhibit sexual dimorphism, the female being larger than the male and with a different color pattern. The eggs are laid individually in the leaf margins into the leaf tissue. The larvae are unpalatable to a generalist predator, possibly due to defensive compounds sequestered from their host plant, known to contain toxic compounds. PMID:26929717

  19. Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone.

    PubMed

    Schmidt-Büsser, Daniela; von Arx, Martin; Guerin, Patrick M

    2009-09-01

    The European grape berry moth is an important pest in vineyards. Males respond to the female-produced sex pheromone released from a piezo nebulizer in a dose-dependent manner in a wind tunnel: <50% arrive at the source at 5-50 pg/min (underdosed), 80% arrive at 100 pg/min to 10 ng/min (optimal) and <20% arrive at 100 ng/min (overdosed). Males responding to overdosed pheromone show in flight arrestment at 80 cm from the source. Host plant chemostimuli for Eupoecilia ambiguella increase the responses of males to underdosed and overdosed pheromone. (Z)-3-hexen-1-ol, (+)-terpinen-4-ol, (E)-beta-caryophyllene and methyl salicylate released with the underdosed pheromone cause a significant increase in male E. ambiguella flying to the source. Time-event analysis indicates a positive correlation between faster activation and probability of source contact by the responding males. The four host plant compounds added to the overdosed pheromone permitted males to take off faster and with a higher probability of flying to the source. This suggests that perception of host plant products with the sex pheromone facilitates male E. ambiguella to locate females on host plants, lending credence to the hypothesis that plant products can signal rendezvous sites suitable for mating.

  20. Host plant preference and performance of the sibling species of butterflies Leptidea sinapis and Leptidea reali: a test of the trade-off hypothesis for food specialisation.

    PubMed

    Friberg, Magne; Wiklund, Christer

    2009-02-01

    A large proportion of phytophagous insect species are specialised on one or a few host plants, and female host plant preference is predicted to be tightly linked to high larval survival and performance on the preferred plant(s). Specialisation is likely favoured by selection under stable circumstances, since different host plant species are likely to differ in suitability-a pattern usually explained by the "trade-off hypothesis", which posits that increased performance on a given plant comes at a cost of decreased performance on other plants. Host plant specialisation is also ascribed an important role in host shift speciation, where different incipient species specialise on different host plants. Hence, it is important to determine the role of host plants when studying species divergence and niche partitioning between closely related species, such as the butterfly species pair Leptidea sinapis and Leptidea reali. In Sweden, Leptidea sinapis is a habitat generalist, appearing in both forests and meadows, whereas Leptidea reali is specialised on meadows. Here, we study the female preference and larval survival and performance in terms of growth rate, pupal weight and development time on the seven most-utilised host plants. Both species showed similar host plant rank orders, and larvae survived and performed equally well on most plants with the exceptions of two rarely utilised forest plants. We therefore conclude that differences in preference or performance on plants from the two habitats do not drive, or maintain, niche separation, and we argue that the results of this study do not support the trade-off hypothesis for host plant specialisation, since the host plant generalist Leptidea sinapis survived and performed as well on the most preferred meadow host plant Lathyrus pratensis as did Leptidea reali although the generalist species also includes other plants in its host range.

  1. Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus plexippus) via Range Expansion of Asclepias Host Plants

    PubMed Central

    Lemoine, Nathan P.

    2015-01-01

    Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  2. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.

    PubMed

    Lemoine, Nathan P

    2015-01-01

    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  3. Disruption of Phthorimaea operculella (Lepidoptera: Gelechiidae) oviposition by the application of host plant volatiles

    PubMed Central

    Anfora, Gianfranco; Vitagliano, Silvia; Larsson, Mattias C; Witzgall, Peter; Tasin, Marco; Germinara, Giacinto S; De Cristofaro, Antonio

    2014-01-01

    BACKGROUND Phthorimaea operculella is a key pest of potato. The authors characterised the P. operculella olfactory system, selected the most bioactive host plant volatiles and evaluated their potential application in pest management. The electrophysiological responses of olfactory receptor neurons (ORNs) housed in long sensilla trichodea of P. operculella to plant volatiles and the two main sex pheromone components were evaluated by the single-cell recording (SCR) technique. The four most SCR-active volatiles were tested in a laboratory oviposition bioassay and under storage warehouse conditions. RESULTS The sensitivity of sensilla trichodea to short-chained aldehydes and alcohols and the existence of ORNs tuned to pheromones in females were characterised. Male recordings revealed at least two types of ORN, each of which typically responded to one of the two pheromone components. Hexanal, octanal, nonanal and 1-octen-3-ol significantly disrupted the egg-laying behaviour in a dose-dependent manner. Octanal reduced the P. operculella infestation rate when used under storage conditions. CONCLUSIONS This work provides new information on the perception of plant volatiles and sex pheromones by P. operculella. Laboratory and warehouse experiments show that the use of hexanal, octanal, nonanal and 1-octen-3-ol as host recognition disruptants and/or oviposition deterrents for P. operculella control appears to be a promising strategy. © 2013 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:23794160

  4. Does host plant quality affect the oviposition decisions of an omnivore?

    PubMed

    Vankosky, Meghan A; VanLaerhoven, Sherah L

    2016-01-22

    Optimal oviposition theory predicts a positive relationship between female preference for oviposition hosts and offspring performance. Interspecies effects on oviposition preference have been widely investigated, especially for herbivores. However, intraspecies variation, such as nitrogen content, might also influence female preference for oviposition hosts and subsequent offspring performance. To evaluate this possibility, we investigated the oviposition preference of a zoophytophagous omnivore and the development and survival of its nymphs on a single species of host plant that varied in nitrogen content. In choice and no-choice experiments without prey, female omnivores were allowed to oviposit on plants that had been fertilized using four rates of nitrogen fertilizer (39, 78, 156 and 311 mg/L nitrogen) for 72 h. After 72 h, the most females were found on tomato plants receiving high concentrations of nitrogen fertilizer and more eggs were laid on those plants. First instar nymphs developed more rapidly on high nitrogen plants and third instar nymphs developed faster on low nitrogen plans. Plant nitrogen did not affect nymph survival to the adult stage, or the probability of survival over time. Although female omnivores did discriminate between potential oviposition hosts based on plant nitrogen, their choices did not significantly impact nymph development or survival. This is the first study to show that intraspecies variation in nitrogen content between plants affects the oviposition preference of female omnivores, but not offspring performance. This article is protected by copyright. All rights reserved.

  5. Demonstration Using Field Collections that Argentina Fall Armyworm Populations Exhibit Strain-specific Host Plant Preferences.

    PubMed

    Murúa, M Gabriela; Nagoshi, Rodney N; Dos Santos, Daniel A; Hay-Roe, Mirian M; Meagher, Robert L; Vilardi, J C

    2015-10-01

    Spodoptera frugiperda, the fall armyworm, is a major economic pest throughout the Western Hemisphere of corn (maize), cotton, sorghum, and a variety of agricultural grasses and vegetable crops. Studies in the United States, the Caribbean, and Brazil demonstrated the existence of two subpopulations (previously designated "host strains") that differ in their choice of plant host. Specifically, the corn strain is preferentially found in corn and sorghum, while the rice strain is dominant in rice, turf grass, and alfalfa. However, inconsistent results were reported in surveys of fall armyworm in Argentina, with some indicating that the host plant preferences of the two strains might be compromised or even nonexistent. If correct, this would complicate efforts to control this pest by considerably expanding the range of habitats that would have to be considered as potential sources for fall armyworm infestations in specific crops. A reexamination of Argentine fall armyworm, this time with field collections rather than the laboratory colonies used in previous studies, confirmed the existence of the two strains and their host preferences. Specifically, the corn strain was consistently the majority population infesting corn and was usually so in sorghum, while the rice strain was predominant in pasture/turf grasses and alfalfa. The one outlier was a collection from rice, which had a corn strain majority. Overall, the data were generally consistent with strain behaviors observed in other areas of the Western Hemisphere.

  6. Functional analysis of Ralstonia solanacearum PrhG regulating the hrp regulon in host plants.

    PubMed

    Zhang, Yong; Chen, Li; Yoshimochi, Takeshi; Kiba, Akinori; Hikichi, Yasufumi; Ohnishi, Kouhei

    2013-08-01

    Genes in the hrp regulon encode component proteins of the type III secretion system and are essential for the pathogenicity of Ralstonia solanacearum. The hrp regulon is controlled by HrpB. We isolated several genes regulating hrpB expression from the Japanese strain OE1-1 using minitransposon mutagenesis. Among them, we mainly focused on two genes, hrpG and prhG, which are the positive regulators of hrpB. Although the global virulence regulator PhcA negatively regulated hrpG expression via prhIR, it positively regulated prhG expression. We further investigated the contrasting regulation of hrpG and prhG by PhcA and speculated that R. solanacearum may switch from HrpG to PrhG for hrpB activation in a cell density-dependent manner. Although the prhG mutant proliferated similarly to the wild-type in leaf intercellular spaces and in xylem vessels of the host plants, it was less virulent than the wild-type. The expression of the popA operon, which belongs to the hrp regulon, was significantly reduced in the prhG mutant by more than half in the leaf intercellular spaces and more than two-thirds in the xylem vessels when compared with the wild-type.

  7. Proteome Changes in Penicillium expansum Grown in a Medium Derived from Host Plant.

    PubMed

    Xia, Xiaoshuang; Li, Huan; Liu, Fei; Zhang, Ye; Zhang, Qi; Wang, Yun; Li, Peiwu

    2017-03-28

    Penicillium expansum causes blue mold rot, a prevalent postharvest disease of pome fruit, and is also the main producer of the patulin. However, knowledge on the molecular mechanisms involved in this pathogen-host interaction remains largely unknown. In this work, a two-dimensional gel electrophoresis-based proteomic approach was applied to probe changes in P. expansum 3.3703 cultivated in apple juice medium, which was used to mimic the in planta condition. The results showed that the pH value and reducing sugar content in the apple juice medium decreased whereas the patulin content increased with the growing of P. expansum. A total of 28 protein spots that were up-regulated in P. expansum when grown in apple juice medium were identified. Functional categorization revealed that the identified proteins were mainly related to carbohydrate metabolism, secondary metabolism, protein biosynthesis or degradation, and redox homeostasis. Remarkably, several induced proteins, including glucose dehydrogenase, galactose oxidase, and FAD-binding monooxygenase, which might be responsible for the observed medium acidification and patulin production, were also detected. Overall, the experimental results provide a comprehensive interpretation of the physiological and proteomic responses of P. expansum to the host plant environment, and future functional characterization of the identified proteins will deepen our understanding of fungi-host interactions.

  8. Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants.

    PubMed

    Tasin, Marco; Bäckman, Anna-Carin; Anfora, Gianfranco; Carlin, Silvia; Ioriatti, Claudio; Witzgall, Peter

    2010-01-01

    In herbivorous insects with more than 1 host plant, attraction to host odor could conceptually be mediated by common compounds, by specific compounds released by each plant or by combinations of common and specific compounds. We have compared the attraction of female grapevine moth, Lobesia botrana, with specific and common (shared) odors from 2 different plants: a wild host (Daphne gnidium) and a recently colonized host (Vitis vinifera). Odor blends eliciting female attraction to V. vinifera have previously been identified. In this study, olfactory cues from D. gnidium were identified by electroantennographic detection and chemical analysis. The attraction of mated females to synthetic odor blends was then tested in a wind tunnel bioassay. Female attraction was elicited by a blend of compounds released by both from D. gnidium and V. vinifera and by 2 blends with the compounds released specifically from each host. However, more complete odor blends of the 2 plants elicited stronger attraction. The common compounds in combination with the specific compounds of D. gnidium were the most attractive blend. This blend was tested with the common compounds presented both in the ratio emitted by D. gnidium and by V. vinifera, but there was no difference in female attraction. Our findings suggest that specific as well as common plant odor cues play a role in L. botrana host recognition and that there is plasticity in attraction to partial blends. The results are discussed in relation to mechanisms behind host odor recognition and the evolution of insect-plant associations.

  9. Immune benefits from alternative host plants could maintain polyphagy in a phytophagous insect.

    PubMed

    Muller, Karen; Vogelweith, Fanny; Thiéry, Denis; Moret, Yannick; Moreau, Jérôme

    2015-02-01

    The tritrophic interactions hypothesis, integrating bottom-up (plant-herbivore) and top-down (herbivore-natural enemies) effects, predicts that specialist herbivores should outcompete generalists. However, some phytophagous insects have generalist diets, suggesting that maintenance of a diverse diet may confer certain fitness advantages that outweigh diet specialization. In field conditions, the European grapevine moth, Lobesia botrana, feeds on diverse locally rare alternative host plants (AHPs) although grapevines are a highly abundant and predictable food source. The laboratory studies presented here show that survival, growth, and constitutive levels of immune defences (concentration of haemocytes and phenoloxidase activity) of L. botrana larvae were significantly enhanced when they were fed AHPs rather than grape. These results indicated a strong positive effect of AHPs on life history traits and immune defences of L. botrana. Such positive effects of AHPs should be advantageous to the moth under heavy selective pressure by natural enemies and, as a consequence, favour the maintenance of a broad diet preference in this species. We therefore believe that our results account for the role of immunity in the maintenance of polyphagy in phytophagous insects.

  10. Field Biology of the Beetle Aegopsis bolboceridus in Brazil, with a List of Host Plants

    PubMed Central

    Oliveira, Charles M.; Frizzas, Marina R.

    2013-01-01

    The white grub, Aegopsis bolboceridus (Thomson) (Coleoptera: Melolonthidae), is an important vegetable and corn pest in central Brazil. The objective of this study was to examine the biology of A. bolboceridus in the field and to update the list of its host plants. The study was conducted in an area with vegetable crops and corn located in the Federal District of Brazil. Samplings were taken to observe the biological stages of A. bolboceridus, preferred oviposition sites, and the adult swarming period. A. bolboceridus exhibited a univoltine cycle that lasted approximately 12 months from egg to active adults. Its eggs were found from October to November. The larval stage lasted approximately eight months, occurring between October and May. Pre-pupae were observed between April and June, and pupae were found between May and July. Inactive adults were observed in July and August, and the swarming period was between September and October. The females preferred to oviposit in sites with taller plants. Four new plant species were identified as hosts for this pest, and two new locations were recorded for its occurrence. This study is the first to describe the biology of a representative of the tribe Agaocephalini in Brazil. PMID:23909396

  11. Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants.

    PubMed

    Carletto, J; Lombaert, E; Chavigny, P; Brévault, T; Lapchin, L; Vanlerberghe-Masutti, F

    2009-05-01

    Many plant-feeding insect species considered to be polyphagous are in fact composed of genetically differentiated sympatric populations that use different hosts and between which gene flow still exists. We studied the population genetic structure of the cotton-melon aphid Aphis gossypii that is considered as one of the most polyphagous aphid species. We used eight microsatellites to analyse the genetic diversity of numerous samples of A. gossypii collected over several years at a large geographical scale on annual crops from different plant families. The number of multilocus genotypes detected was extremely low and the genotypes were found to be associated with host plants. Five host races were unambiguously identified (Cucurbitaceae, cotton, eggplant, potato and chili- or sweet pepper). These host races were dominated by asexual clones. Plant transfer experiments using several specialized clones further confirmed the existence of host-associated trade-offs. Finally, both genetic and experimental data suggested that plants of the genus Hibiscus may be used as refuge for the specialized clones. Resource abundance is discussed as a key factor involved in the process of ecological specialization in A. gossypii.

  12. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela.

    PubMed

    Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio

    2016-01-01

    Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem.

  13. The potato pest Russelliana solanicola Tuthill (Hemiptera: Psylloidea): taxonomy and host-plant patterns.

    PubMed

    Serbina, Liliya; Burckhardt, Daniel; Birkhofer, Klaus; Syfert, Mindy M; Halbert, Susan E

    2015-09-24

    The Neotropical jumping plant-louse Russelliana solanicola Tuthill is a potato pest and a probable vector of plant pathogens. Populations morphologically similar to those found on potatoes have been collected on plants of at least ten different families, four of which have been confirmed as hosts by the presence of immatures. This suggests that R. solanicola is either a single polyphagous species or a complex of closely related, monophagous species (host races/cryptic species). Results of our analyses of multiple morphometric characters show for both sexes a grouping of the populations of R. solanicola and a clear separation of the latter from other Russelliana species. On the other hand, within R. solanicola, there is an overlap of populations from different host-plants as well as from different geographical regions. The results of the present study strongly suggest that R. solanicola is a single, polyphagous species and the known distribution indicates that it is native to the Andes. It is likely that R. solanicola has been introduced into eastern Argentina, Brazil and Uruguay. The polyphagy together with the ability to disperse and transmit plant pathogens potentially make this species an economically important pest of potato and other crop species.

  14. Host plant flowering increases both adult oviposition preference and larval performance of a generalist herbivore.

    PubMed

    Liu, Zhudong; Scheirs, Jan; Heckel, David G

    2010-04-01

    Most adult Lepidoptera feed on nectar, whereas caterpillars consume mainly structural tissue such as leaves, stems, flowers, and/or fruits. This may result in behavioral trade-offs in which search time for high-quality oviposition sites suitable for larval food is restricted by adult foraging needs. Here we report on the preference for and performance on flowering and nonflowering host plants of the generalist herbivore Helicoverpa armigera to explore whether there are such behavioral trade-offs between moth and their caterpillars offpsring. We found that the adult moths have a strong oviposition preference for flowering tobacco and sunflower plants. Young caterpillars preferred to feed on the inflorescences. Adult-realized fecundity was almost 10 times higher when ovipositing on flowering plants. Weight at pupation, which is correlated with potential future fecundity of the caterpillars, was also higher when feeding on flowers. We found no evidence for a behavioral trade-off and conclude that a general preference for flowers by Helicoverpa armigera is highly beneficial from a nutritional perspective for both adults and larvae. The results suggest that the manipulation of flowering plants for the attraction of oviposition is relevant to pest control of this polyphagous species.

  15. Effects of orchard host plants on the oviposition preference of the oriental fruit moth (Lepidoptera: Tortricidae).

    PubMed

    Myers, Clayton T; Hull, Larry A; Krawczyk, Grzegorz

    2006-08-01

    Recently, the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), has emerged as a major problem on apples (Malus spp.) grown in the mid-Atlantic and midwestern United States, despite its historically important and frequent occurrence as a peach (Prunus spp.) pest. It is possible that host-driven biological phenomena may be contributing to changes in G. molesta population dynamics resulting in outbreaks in apple. Studies were designed to examine the effects of host plants on oviposition behavior, in an effort to clarify the host association status of eastern U.S. populations and also to gain insight into how pest modeling and management efforts may be altered to take into account various host-associated effects. G. molesta adults exhibited ovipositional preference for nonbearing peach trees over nonbearing apple trees in close-range choice tests conducted in the field, regardless of the larval host origin. A significant preference for peach shoots over apple shoots was observed on six of 12 sampling dates with a wild G. molesta population at the interface of adjacent peach and apple blocks. Numbers of eggs found on apple fruit were higher after peach fruit were harvested and apple fruit began to approach maturity (during the flight period for third and fourth brood adults). Possible implications for population modeling and integrated management of G. molesta are discussed.

  16. Host nutritive quality and host plant choice in two grass miners: primary roles for primary compounds?

    PubMed

    Scheirs, Jan; De Bruyn, Luc; Verhagen, Ron

    2003-06-01

    The relationship between host plant choice and plant nutritional quality was investigated in two oligophagous grass miners Chromatomyia milii and C. nigra (Diptera, Agromyzidae). We tested whether host choice is determined by chemically mediated host suitability for offspring performance and/or adult performance. A second goal was to relate the observed variation among the different fitness parameters to quantitative and qualitative variation in foliar food quality. Choice experiments illustrated that both miners discriminated among grass species, and that C. milii has a smaller host range than C. nigra, as observed under natural conditions. Oviposition preference was correlated with adult feeding preference and related adult performance (longevity and fecundity) for both miners. Offspring performance measures (survival and pupal size) of at least C. nigra were more weakly related to host preference. Nearly all variation in adult performance of both miners was explained by foliar protein content, which had a positive effect on adult longevity and fecundity. Pupal size of both miners was positively related to foliar water and amino acid content and negatively related to lignin content. No clear relationship between host chemistry and offspring survival was observed. These observations show that fitness parameters are differentially related to host chemistry. Secondly, they suggest that chemically mediated host suitability for adult performance is an important determinant of host choice in this species. Finally, the results suggest a primary role for foliar protein content in host choice of the study species in general and in shaping the host range of C. milii in particular.

  17. Conventional and PCR Detection of Aphelenchoides fragariae in Diverse Ornamental Host Plant Species

    PubMed Central

    McCuiston, Jamie L.; Hudson, Laura C.; Subbotin, Sergei A.; Davis, Eric L.; Warfield, Colleen Y.

    2007-01-01

    A PCR-based diagnostic assay was developed for early detection and identification of Aphelenchoides fragariae directly in host plant tissues using the species-specific primers AFragFl and AFragRl that amplify a 169-bp fragment in the internal transcribed spacer (ITS1) region of ribosomal DNA. These species-specific primers did not amplify DNA from Aphelenchoides besseyi or Aphelenchoides ritzemabosi. The PCR assay was sensitive, detecting a single nematode in a background of plant tissue extract. The assay accurately detected A. fragariae in more than 100 naturally infected, ornamental plant samples collected in North Carolina nurseries, garden centers and landscapes, including 50 plant species not previously reported as hosts of Aphelenchoides spp. The detection sensitivity of the PCR-based assay was higher for infected yet asymptomatic plants when compared to the traditional, water extraction method for Aphelenchoides spp. detection. The utility of using NaOH extraction for rapid preparation of total DNA from plant samples infected with A. fragariae was demonstrated. PMID:19259510

  18. Establishment of a genetically marked insect-derived symbiont in multiple host plants.

    PubMed

    Bextine, Blake; Lampe, David; Lauzon, Carol; Jackson, Brian; Miller, Thomas A

    2005-01-01

    Alcaligenes xylosoxidans subsp. denitrificans, originally isolated from the cibarial region of the foregut of the glassy-winged sharpshooter (Homalodisca coagulata), was transformed using the Himar1 transposition system to express EGFP. Seedlings of six potential host plants were inoculated with transformed bacteria and 2 weeks later samples were taken 5 cm away and analyzed by quantitative real-time PCR using primers designed to amplify the gene insert. The largest colony of 3,591,427 cells/2 cm of A. xylosoxidans subsp. denitrificans was found in Citrus limon, with almost all plants testing positive in both trials. The amount of colonization decreased in the other plants tested in the following order: orange (Citrus sinensis "sweet orange") > chrysanthemum (Chrysanthemum grandiflora cv. "White Diamond") > periwinkle (Vinca rosea) > crepe myrtle (Lagerstroemia indica) > grapevine (Vitis vinifera cv. Chardonnay). The bacterium's preference for citrus paralleled the host insect's preference for this same plant. Additional tests determined that A. xylosoxidans subsp. denitrificans thrives as a nonpathogenic, xylem-associated endophyte.

  19. Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque.

    PubMed

    Hayward, Jeremy; Horton, Thomas R; Nuñez, Martin A

    2015-10-01

    Coinvasive ectomycorrhizal (ECM) fungi allow Pinaceae species to invade regions otherwise lacking compatible symbionts, but ECM fungal communities permitting Pinaceae invasions are poorly understood. In the context of Pinaceae invasions on Isla Victoria, Nahuel Huapi National Park, Argentina, we asked: what ECM fungi are coinvading with Pinaceae hosts on Isla Victoria; are some ECM fungal species or genera more prone to invade than others; and are all ECM fungal species that associate with Northern Hemisphere hosts also nonnative, or are some native fungi compatible with nonnative plants? We sampled ECMs from 226 Pinaceae host plant individuals, both planted individuals and recruits, growing inside and invading from plantations. We used molecular techniques to examine ECM fungal communities associating with these trees. A distinctive subset of the ECM fungal community predominated far from plantations, indicating differences between highly invasive and less invasive ECM fungi. Some fungal invaders reported here have been detected in other locations around the world, suggesting strong invasion potential. Fungi that were frequently detected far from plantations are often found in early-successional sites in the native range, while fungi identified as late-successional species in the native range are rarely found far from plantations, suggesting a means for predicting potential fungal coinvaders.

  20. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants.

    PubMed

    Kotkar, Hemlata M; Sarate, Priya J; Tamhane, Vaijayanti A; Gupta, Vidya S; Giri, Ashok P

    2009-08-01

    Midgut digestive amylases and proteinases of Helicoverpa armigera, a polyphagous and devastating insect pest of economic importance have been studied. We also identified the potential of a sorghum amylase inhibitor against H. armigera midgut amylase. Amylase activities were detected in all the larval instars, pupae, moths and eggs; early instars had lower amylase levels which steadily increased up to the sixth larval instar. Qualitative and quantitative differences in midgut amylases of H. armigera upon feeding on natural and artificial diets were evident. Natural diets were categorized as one or more members of legumes, vegetables, flowers and cereals belonging to different plant families. Amylase activity and isoform patterns varied depending on host plant and/or artificial diet. Artificial diet-fed H. armigera larvae had comparatively high amylase activity and several unique amylase isoforms. Correlation of amylase and proteinase activities of H. armigera with the protein and carbohydrate content of various diets suggested that H. armigera regulates the levels of these digestive enzymes in response to macromolecular composition of the diet. These adjustments in the digestive enzymes of H. armigera may be to obtain better nourishment from the diet and avoid toxicity due to nutritional imbalance. H. armigera, a generalist feeder experiences a great degree of nutritional heterogeneity in its diet. An investigation of the differences in enzyme levels in response to macronutrient balance and imbalance highlight their importance in insect nutrition.

  1. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis

    PubMed Central

    Feder, Jeffrey L.; Berlocher, Stewart H.; Roethele, Joseph B.; Dambroski, Hattie; Smith, James J.; Perry, William L.; Gavrilovic, Vesna; Filchak, Kenneth E.; Rull, Juan; Aluja, Martin

    2003-01-01

    Tephritid fruit flies belonging to the Rhagoletis pomonella sibling species complex are controversial because they have been proposed to diverge in sympatry (in the absence of geographic isolation) by shifting and adapting to new host plants. Here, we report evidence suggesting a surprising source of genetic variation contributing to sympatric host shifts for these flies. From DNA sequence data for three nuclear loci and mtDNA, we infer that an ancestral, hawthorn-infesting R. pomonella population became geographically subdivided into Mexican and North American isolates ≈1.57 million years ago. Episodes of gene flow from Mexico subsequently infused the North American population with inversion polymorphism affecting key diapause traits, forming adaptive clines. Sometime later (perhaps ±1 million years), diapause variation in the latitudinal clines appears to have aided North American flies in adapting to a variety of plants with differing fruiting times, helping to spawn several new taxa. Thus, important raw genetic material facilitating the adaptive radiation of R. pomonella originated in a different time and place than the proximate ecological host shifts triggering sympatric divergence. PMID:12928500

  2. Mealybugs with distinct endosymbiotic systems living on the same host plant.

    PubMed

    Koga, Ryuichi; Nikoh, Naruo; Matsuura, Yu; Meng, Xian-Ying; Fukatsu, Takema

    2013-01-01

    Mealybugs (Homoptera: Coccoidea: Pseudococcidae) possess a large bacteriome consisting of a number of bacteriocytes whose cytoplasm is populated by endosymbiotic bacteria. In many mealybugs of the subfamily Pseudococcinae, a peculiar endosymbiotic configuration has been identified: within the bacteriocytes, the primary betaproteobacterial endosymbiont Tremblaya princeps endocellularly harbor secondary gammaproteobacterial endosymbionts in a nested manner. Meanwhile, some mealybugs of the subfamily Phenacoccinae are associated only with a betaproteobacterial endosymbiont, designated as Tremblaya phenacola, which constitutes a distinct sister clade of T. princeps. However, cytological configuration of the endosymbiotic system in the phenacoccine mealybugs has not been established. Here, we investigated the endosymbiotic systems of the azalea mealybugs Crisicoccus azaleae (Pseudococcinae) and Phenacoccus azaleae (Phenacoccinae) living on the same host plants. Crisicoccus azaleae possessed a nested endosymbiotic system with T. princeps within the bacteriocyte cytoplasm and itself endocellularly harboring gammaproteobacterial cells, whereas P. azaleae exhibited a simple endosymbiotic system in which T. phenacola cells are localized within the bacteriocytes without additional gammaproteobacterial associates. Considering that these mealybugs live on the identical plant phloem sap, these different endosymbiotic consortia likely play similar biological roles for their host insects. The findings presented here should be helpful for future functional and comparative genomics toward elucidating evolutionary pathways of mealybugs and their endosymbionts.

  3. Influence of the pathogen Candidatus Liberibacter solanacearum on tomato host plant volatiles and psyllid vector settlement.

    PubMed

    Mas, Flore; Vereijssen, Jessica; Suckling, David M

    2014-12-01

    Candidatus Liberibacter solanacearum (CLso) is an unculturable bacterium vectored by the tomato potato psyllid (TPP) Bactericera cockerelli and has been associated with Zebra chip disease in potato and with other economically relevant symptoms observed in solanaceous crops. By altering their host and vector's biological system, pathogens are able to induce changes that benefit them by increasing their transmission rate. Understanding these changes can enable better targeting of mechanisms to control pathogen outbreaks. Here, we explored how the CLso infectious status affects the volatile organic compounds (VOCs) of the tomato plant, and whether the CLso infectious status of TPP influences host plant settlement. These chemical and behavioral changes can ultimately affect the rate of encounter between the host and the vector. Results from headspace volatile collection of tomato plants showed that CLso infected tomato plants emitted a qualitatively and quantitatively different blend of VOCs compared to sham-infected plants. By a factorial experiment, we showed that CLso negative (CLso-) TPP preferred to settle 70 % more often on infected tomato plants, while CLso positive (CLso+) TPP were found 68 % more often on sham-infected tomato plants. These results provide new evidence in favor of both host and vector manipulation by CLso.

  4. Current status of the availability, development, and use of host plant resistance to nematodes.

    PubMed

    Roberts, P A

    1992-06-01

    Host plant resistance (HPR) to nematodes has been identified in many major crops and related wild germplasm. Most HPR is to the more specialized, sedentary endoparasitic genera and species, e.g., Globodera, Heterodera, Meloidogyne, Nacobbus, Rotylenchulus, and Tylenchulus. Some HPR has been developed or identified also to certain migratory endoparasites (Aphelenchoides, Ditylenchus, Pratylenchus, Radopholus) in a few hosts. Commercial use of HPR remains limited, despite its benefits to crop production when deployed appropriately. Restricted use and availability of HPR result from problems associated with transfer of resistance into acceptable cultivars. Difficulties occur in gene transfer to acceptable cultivars because of incompatibility barriers to hybridization or linkage to undesirable traits, for example in cucurbitaceous and solanaceous crops and sugarbeet. Specificity of HPR to only one species, or one or few pathotypes, as it relates to resistance durability and nematode virulence, and HPR response to abiotic factors such as high soil temperature, also limit availability and utility. A scheme for HPR development is presented to emphasize nematology research and information requirements for expanding HPR use in nematode control programs, for example in common bean, sugarbeet, and tomato. Nonbiological factors that influence HPR usage are discussed, including heavy reliance on nematicide programs, low priority of nematode HPR in many breeding programs, and insufficient breeder-nematologist collaboration.

  5. Predation and aggressiveness in host plant protection: a generalization using ants from the genus Azteca

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Grangier, Julien; Leroy, Céline; Orivel, Jerôme

    2009-01-01

    In studying the ant genus Azteca, a Neotropical group of arboreal species, we aimed to determine the extent to which the ants use predation and/or aggressiveness to protect their host plants from defoliating insects. We compared a territorially dominant, carton-nester, Azteca chartifex, and three plant-ant species. Azteca alfari and Azteca ovaticeps are associated with the myrmecophyte Cecropia (Cecropiaceae) and their colonies shelter in its hollow branches; whereas Azteca bequaerti is associated with Tococa guianensis (Melastomataceae) and its colonies shelter in leaf pouches situated at the base of the laminas. Whereas A. bequaerti workers react to the vibrations transmitted by the lamina when an alien insect lands on a leaf making it unnecessary for them to patrol their plant, the workers of the three other species rather discover prey by contact. The workers of all four species use a predatory behaviour involving spread-eagling alien insects after recruiting nestmates at short range, and, in some cases, at long range. Because A. alfari and A. ovaticeps discard part of the insects they kill, we deduced that the workers’ predatory behaviour and territorial aggressiveness combine in the biotic defence of their host tree.

  6. Predation and aggressiveness in host plant protection: a generalization using ants from the genus Azteca.

    PubMed

    Dejean, Alain; Grangier, Julien; Leroy, Céline; Orivel, Jerôme

    2009-01-01

    In studying the ant genus Azteca, a Neotropical group of arboreal species, we aimed to determine the extent to which the ants use predation and/or aggressiveness to protect their host plants from defoliating insects. We compared a territorially dominant, carton-nester, Azteca chartifex, and three plant-ant species. Azteca alfari and Azteca ovaticeps are associated with the myrmecophyte Cecropia (Cecropiaceae) and their colonies shelter in its hollow branches; whereas Azteca bequaerti is associated with Tococa guianensis (Melastomataceae) and its colonies shelter in leaf pouches situated at the base of the laminas. Whereas A. bequaerti workers react to the vibrations transmitted by the lamina when an alien insect lands on a leaf making it unnecessary for them to patrol their plant, the workers of the three other species rather discover prey by contact. The workers of all four species use a predatory behaviour involving spread-eagling alien insects after recruiting nestmates at short range, and, in some cases, at long range. Because A. alfari and A. ovaticeps discard part of the insects they kill, we deduced that the workers' predatory behaviour and territorial aggressiveness combine in the biotic defence of their host tree.

  7. The potential of host plants for biological control of Tuta absoluta by the predator Dicyphus errans.

    PubMed

    Ingegno, B L; Candian, V; Psomadelis, I; Bodino, N; Tavella, L

    2017-01-30

    Dicyphus errans (Wolff) has been shown to be a suitable biocontrol agent for Tuta absoluta (Meyrick). This generalist predator shares various host plants with the exotic pest, and these interactions could be exploited to enhance pest control. Therefore, host preference, survival rate and development times of the predator and prey were investigated on crop and non-crop plant species. Among the tested plants, the favourite hosts were Solanum species for T. absoluta, and herb Robert, European black nightshade, courgette and tomato for D. errans. Tuta absoluta accepted the same plant species as hosts for oviposition, but it never developed on herb Robert and courgette in all the experiments. Based on our results, we would suggest the use of courgette and herb Robert in consociation with tomato and as a companion plant, respectively, which may keep pest densities below the economic threshold. Moreover, the omnivorous and widespread D. errans could be a key predator of this exotic pest, allowing a high encounter probability on several cultivated and non-cultivated plant species.

  8. Ozone-induced changes in host-plant suitability: interactions of Keiferia lycopersicella and Lycopersicon esculentum

    SciTech Connect

    Trumble, J.T.; Hare, J.D.; Musselman, R.C.; McCool, P.M.

    1987-01-01

    Tomato pinworms, Keiferia lycopersicella (Walsingham), survived better and developed faster on tomato plants, Lycopersicon esculentum Mill., damaged by ozone than on plants not subjected to ozone fumigation. Other measures of fitness, including survival during pupation, sex ratio of adults, female longevity, and fecundity, were not affected. Analyses of ozonated foliage at zero, two and seven days following fumigation demonstrated a transient but significant increase (18-24%) in soluble protein concentration. Although the concentration of the total free amino acids in ozonated foliage did not increase significantly, significant changes were observed in at least 10 specific amino acids, some of which are critical for either insect development or the production of plant defensive chemicals. A reduction in total nitrogen in ozonated foliage at seven days postfumigation indicated that nitrogen was being translocated to other portions of the plant. The implications of increases in assimilable forms of nitrogen in ozonated foliage, which lead to improved host-plant suitability for insect herbivores, are discussed both in relation to some current ecological theories and in regard to pest-management strategies. 59 references, 1 figure, 4 tables.

  9. Biology of rice bug Leptocorisa oratorius (Fabricius) (Hemiptera: Alydidae), population change and alternative host plants.

    PubMed

    Rattanapun, W

    2013-01-01

    Leptocorisa oratorius (Fabricius) (Hemiptera: Alydidae) is a major rice pest which feeds on the sap of stems and rice seeds. Some graminaceous weed species serve as an alternative host of L. oratorius causing outbreaks throughout the rice growing season. Population changes of L. oratorius during both rice growing seasons - wet-season rice and dry-season rice - including the influence of alternative host, barnyard grass Echinochloa crus-galli (Graminaceae) on the development of L. oratorius was studied. Results presented that L. oratorius was the dominant pest species during the late phase of rice growth. Adults of L. oratorius started their migrations to wet-season rice at the vegetative stage of rice growth, while they migrated to dry-season rice at the repropuctive stage of rice growth. Leptocorisa oratorius breds rapidly in rice fields. Meanwhile, other adults migrated to the rice field. The population of adults and nymphs significantly increased from the reproductive stage to grain formation and ripening stage in both rice growing seasons. The population of nymphs was greater than adults but not significantly different in their number of individuals. Leptocorisa oratorius had one generation in each rice growing season. The results of the host plant study indicated that L oratorius developed completely in barnyard grass E. crus-galli as well as rice Oriza sativa (Graminaceae). However, L. oratorius preferred rice to barnyard grass for feeding and oviposition.

  10. Subsocial Neotropical Doryphorini (Chrysomelidae, Chrysomelinae): new observations on behavior, host plants and systematics.

    PubMed

    Windsor, Donald M; Dury, Guillaume J; Frieiro-Costa, Fernando A; Susanne Lanckowsky; Pasteels, Jacques M

    2013-01-01

    A summary of literature, documented observations and field studies finds evidence that mothers actively defend offspring in at least eight species and three genera of Neotropical Chrysomelinae associated with two host plant families. Reports on three Doryphora species reveal that all are oviparous and feed on vines in the Apocyanaceae. Mothers in the two subsocial species defend eggs and larvae by straddling, blocking access at the petiole and greeting potential predators with leaf-shaking and jerky advances. A less aggressive form of maternal care is found in two Platyphora and four Proseicela species associated with Solanaceae, shrubs and small trees. For these and other morphologically similar taxa associated with Solanaceae, genetic distances support morphology-based taxonomy at the species level, reveal one new species, but raise questions regarding boundaries separating genera. We urge continued study of these magnificent insects, their enemies and their defenses, both behavioral and chemical, especially in forests along the eastern versant of the Central and South American cordillera.

  11. Oviposition of diamondback moth in the presence and absence of a novel host plant.

    PubMed

    Henniges-Janssen, K; Schöfl, G; Reineke, A; Heckel, D G; Groot, A T

    2011-02-01

    The diamondback moth (DBM, Plutella xylostella L. (Lepidoptera: Plutellidae)) consumes a wide variety of brassicaceous host plants and is a common pest of crucifer crops worldwide. A highly unusual infestation of a sugar pea crop was recorded in Kenya in 1999, which persisted for two consecutive years. A strain (DBM-P) from this population was established in the laboratory and is the only one of several strains tested that can complete larval development on sugar peas. The oviposition acceptance and preference of the DBM-P strain was assessed in the presence of cabbage plants, sugar pea plants or both, in comparison to another strain (DBM-Cj) that was collected from cabbage and is unable to grow on pea plants. As expected, DBM-Cj females preferred to oviposit on cabbage plants. Surprisingly, DBM-P females also laid most eggs on cabbage and very few on peas. However, they laid significantly more eggs on the cabbage plant when pea plants were present. Our findings suggest that DBM-P manifested the initial stages of an evolutionary host range expansion, which is incomplete due to lack of oviposition fidelity on pea plants.

  12. The cost of resistance to Bacillus thuringiensis varies with the host plant of Trichoplusia ni

    PubMed Central

    Janmaat, Alida F; Myers, Judith H

    2005-01-01

    Selection for resistance to insecticides, diseases and parasitoids is assumed to be costly and often requires tradeoffs with reproductive fitness. The costs of resistance, however, are often difficult to measure. Cabbage looper, Trichoplusia ni, a generalist Lepidopteran herbivore, has become highly resistant following the extensive use of the microbial insecticide, Bacillus thuringiensis kurstaki (Bt) in vegetable greenhouses. We compared the growth rate, pupal size and survival of resistant, susceptible and hybrid T. ni larvae fed on tomato, bell pepper and cucumber. Performance was best on cucumber and worst on pepper, and the magnitude of fitness costs associated with Bt resistance increased with declining host plant suitability. This supports the hypothesis that in this system, resistance costs are condition dependent and are greatest in the most stressful environment. Management strategies that rely on the presence of fitness costs to reduce the frequency of resistance genes must consider this variation and should be more successful on crops that are less suitable food plants. In general, condition dependence should be considered in studies designed to measure the costs of resistance. PMID:16024361

  13. Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies.

    PubMed

    Hernández-Roldán, Juan L; Dapporto, Leonardo; Dincă, Vlad; Vicente, Juan C; Hornett, Emily A; Šíchová, Jindra; Lukhtanov, Vladimir A; Talavera, Gerard; Vila, Roger

    2016-09-01

    Discovering cryptic species in well-studied areas and taxonomic groups can have profound implications in understanding eco-evolutionary processes and in nature conservation because such groups often involve research models and act as flagship taxa for nature management. In this study, we use an array of techniques to study the butterflies in the Spialia sertorius species group (Lepidoptera, Hesperiidae). The integration of genetic, chemical, cytogenetic, morphological, ecological and microbiological data indicates that the sertorius species complex includes at least five species that differentiated during the last three million years. As a result, we propose the restitution of the species status for two taxa often treated as subspecies, Spialia ali (Oberthür, 1881) stat. rest. and Spialia therapne (Rambur, 1832) stat. rest., and describe a new cryptic species Spialia rosae Hernández-Roldán, Dapporto, Dincă, Vicente & Vila sp. nov. Spialia sertorius (Hoffmannsegg, 1804) and S. rosae are sympatric and synmorphic, but show constant differences in mitochondrial DNA, chemical profiles and ecology, suggesting that S. rosae represents a case of ecological speciation involving larval host plant and altitudinal shift, and apparently associated with Wolbachia infection. This study exemplifies how a multidisciplinary approach can reveal elusive cases of hidden diversity.

  14. Behavioral responses of Schistocerca americana (Orthoptera: Acrididae) to Azadirex (neem)-treated host plants.

    PubMed

    Capinera, John L; Froeba, Jason G

    2007-02-01

    Azadirex (azadirachtin and other biologically active extracts from neem trees) has been shown to have considerable potential to be used in integrated pest management systems based on its growth regulator/insecticide properties. Less well known are the antifeedant properties. The feeding-deterrent properties of a commercial azadirex formulation (Azatrol EC) were evaluated using both no-choice and choice tests, the American grasshopper, Schistocerca americana (Drury), and four host plants [savoy cabbage, Brassica oleracea variety capitata L.; cos (romaine) lettuce, Lactuca sativa variety longifolia Lam.; sweet orange, Citrus sinensis variety Hamlin L.; and peregrina, Jatropha integerrima Jacq.]. These studies demonstrated that azadirex application can significantly affect the feeding behavior of grasshoppers. Some degree of protection can be afforded to plants that differ markedly in their innate attractiveness to the insect, although the level of protection varies among hosts. The tendency of grasshoppers to sometimes feed on azadirex-treated foliage suggests that it will be difficult to prevent damage from occurring at all times, on all hosts. No evidence of rapid habituation to azadirex was detected. Rapid loss of efficacy was observed under field conditions, suggesting that daily retreatment might be necessary to maintain protection of plants from feeding.

  15. Patterns of host plant utilization and diversification in the brush-footed butterflies.

    PubMed

    Hamm, Christopher A; Fordyce, James A

    2015-03-01

    Herbivorous insects represent one of the most successful animal radiations known. They occupy a wide range of niches, feed on a great variety of plants, and are species rich; yet the factors that influence their diversification are poorly understood. Host breadth is often cited as a major factor influencing diversification, and, according to the Oscillation Hypothesis, shifts from generalist to specialist feeding states increase the diversification rate for a clade. We explored the relationship between host breadth and diversification within the Nymphalidae (Lepidoptera) and explicitly tested predictions of the Oscillation Hypothesis. We found strong evidence of diversification rate heterogeneity, but no difference in host breadth between clades with a higher diversification rate compared to their sisters. We also found some clades exhibited phylogenetic nonindependence in host breadth and these clades had lower host plant turnover than expected by chance, suggesting host breadth is evolutionarily constrained. Finally, we found that transitions among host breadth categories varied, but the likelihood of reductions in host breadth was greater than that of increases. Our results indicate host breadth is decoupled from diversification rate within the Nymphalidae, and that constraints on diet breadth might play an important role in the evolution of herbivorous insects.

  16. Insect herbivores selectively suppress the HPL branch of the oxylipin pathway in host plants.

    PubMed

    Savchenko, Tatyana; Pearse, Ian S; Ignatia, Laura; Karban, Richard; Dehesh, Katayoon

    2013-02-01

    Insect herbivores have developed a myriad of strategies to manipulate the defense responses of their host plants. Here we provide evidence that chewing insects differentially alter the oxylipin profiles produced by the two main and competing branches of the plant defensive response pathway, the allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches, which are responsible for wound-inducible production of jasmonates (JAs), and green leafy volatiles (GLVs) respectively. Specifically, we used three Arabidopsis genotypes that were damaged by mechanical wounding or by insects of various feeding guilds (piercing aphids, generalist chewing caterpillars and specialist chewing caterpillars). We established that emission of GLVs is stimulated by wounding incurred mechanically or by aphids, but release of these volatiles is constitutively impaired by both generalist and specialist chewing insects. Simultaneously, however, these chewing herbivores stimulated JA production, demonstrating targeted insect suppression of the HPL branch of the oxylipin pathway. Use of lines engineered to express HPL constitutively, in conjunction with quantitative RT-PCR-based expression analyses, established a combination of transcriptional and post-transcriptional reprogramming of the HPL pathway genes as the mechanistic basis of insect-mediated suppression of the corresponding metabolites. Feeding studies suggested a potential evolutionary advantage of suppressing GLV production, as caterpillars preferably consumed leaf tissue from plants that had not been primed by these volatile cues.

  17. Spatial dynamics of specialist seed predators on synchronized and intermittent seed production of host plants.

    PubMed

    Satake, Akiko; Bjørnstad, Ottar N

    2004-04-01

    Masting, the synchronized and intermittent seed production by plant populations, provides highly variable food resources for specialist seed predators. Such a reproductive mode helps minimize seed losses through predator satiation and extinction of seed predator populations. The seed predators can buffer the resource variation through dispersal or extended diapause. We developed a spatially explicit resource-consumer model to understand the effect of masting on specialist seed predators. The masting dynamics were assumed to follow a resource-based model for plant reproduction, and the population dynamics of the predator were represented by a spatially extended Nicholson-Bailey model. The resultant model demonstrated that when host plants reproduce intermittently, seed predator populations go locally extinct, but global persistence of the predator is facilitated by dispersal or extended diapause. Global extinction of the predator resulted when the intermittent reproduction is highly synchronized among plants. An approximate invasion criterion for the predators showed that negative lag-1 autocorrelation in seeding reduces invasibility, and positive lag-1 cross-correlation enhances invasibility. Spatial synchronization in seeding at local scale caused by pollen coupling (or climate forcing) further prevented invasion of the predators. If the predators employed extended diapause, extremely high temporal variability in reproduction was required for plants to evade the predators.

  18. Interaction between an isolate of dark-septate fungi and its host plant Saussurea involucrata.

    PubMed

    Wu, Liqin; Guo, Shunxing

    2008-02-01

    A dark-septate endophytic (DSE) fungus EF-M was isolated from the roots of an alpine plant Saussurea involucrata Kar. et Kir. ex Maxim. The fungus was identified by sequencing the PCR-amplified rDNA 5.8S gene and ITS regions. The sequence was compared with similar sequences in the GenBank, and results showed that EF-M was congeneric to Leptodontidium. Resynthesis study was conducted to clarify the relationship between the root endophyte EF-M and the host plant S. involucrata using the material grown in sterile culture bottle. In roots recovered 6 weeks after inoculation, epidermal cells were colonized by intercellular and intracellular hyphae and "microsclerotia" formed within individual cells in the epidermis layers. However, hyphae did not invade the cortex and the stele. There were no profound effects of endophyte EF-M on plant root development, but significant differences were detected in plant height and shoot dry weight between the treatments. The present study is the first report hitherto on DSE fungi in S. involucrata.

  19. Subsocial Neotropical Doryphorini (Chrysomelidae, Chrysomelinae): new observations on behavior, host plants and systematics1

    PubMed Central

    Windsor, Donald M.; Dury, Guillaume J.; Frieiro-Costa, Fernando A.; Susanne Lanckowsky; Pasteels, Jacques M.

    2013-01-01

    Abstract A summary of literature, documented observations and field studies finds evidence that mothers actively defend offspring in at least eight species and three genera of Neotropical Chrysomelinae associated with two host plant families. Reports on three Doryphora species reveal that all are oviparous and feed on vines in the Apocyanaceae. Mothers in the two subsocial species defend eggs and larvae by straddling, blocking access at the petiole and greeting potential predators with leaf-shaking and jerky advances. A less aggressive form of maternal care is found in two Platyphora and four Proseicela species associated with Solanaceae, shrubs and small trees. For these and other morphologically similar taxa associated with Solanaceae, genetic distances support morphology-based taxonomy at the species level, reveal one new species, but raise questions regarding boundaries separating genera. We urge continued study of these magnificent insects, their enemies and their defenses, both behavioral and chemical, especially in forests along the eastern versant of the Central and South American cordillera. PMID:24163582

  20. Host plant invests in growth rather than chemical defense when attacked by a specialist herbivore.

    PubMed

    Arab, Alberto; Trigo, José Roberto

    2011-05-01

    Plant defensive compounds may be a cost rather than a benefit when plants are attacked by specialist insects that may overcome chemical barriers by strategies such as sequestering plant compounds. Plants may respond to specialist herbivores by compensatory growth rather than chemical defense. To explore the use of defensive chemistry vs. compensatory growth we studied Brugmansia suaveolens (Solanaceae) and the specialist larvae of the ithomiine butterfly Placidina euryanassa, which sequester defensive tropane alkaloids (TAs) from this host plant. We investigated whether the concentration of TAs in B. suaveolens was changed by P. euryanassa damage, and whether plants invest in growth, when damaged by the specialist. Larvae feeding during 24 hr significantly decreased TAs in damaged plants, but they returned to control levels after 15 days without damage. Damaged and undamaged plants did not differ significantly in leaf area after 15 days, indicating compensatory growth. Our results suggest that B. suaveolens responds to herbivory by the specialist P. euryanassa by investing in growth rather than chemical defense.

  1. Control of resin production in Araucaria angustifolia, an ancient South American conifer.

    PubMed

    Perotti, J C; da Silva Rodrigues-Corrêa, K C; Fett-Neto, A G

    2015-07-01

    Araucaria angustifolia is an ancient slow-growing conifer that characterises parts of the Southern Atlantic Forest biome, currently listed as a critically endangered species. The species also produces bark resin, although the factors controlling its resinosis are largely unknown. To better understand this defence-related process, we examined the resin exudation response of A. angustifolia upon treatment with well-known chemical stimulators used in fast-growing conifers producing both bark and wood resin, such as Pinus elliottii. The initial hypothesis was that A. angustifolia would display significant differences in the regulation of resinosis. The effect of Ethrel(®) (ET - ethylene precursor), salicylic acid (SA), jasmonic acid (JA), sulphuric acid (SuA) and sodium nitroprusside (SNP - nitric oxide donor) on resin yield and composition in young plants of A. angustifolia was examined. In at least one of the concentrations tested, and frequently in more than one, an aqueous glycerol solution applied on fresh wound sites of the stem with one or more of the adjuvants examined promoted an increase in resin yield, as well as monoterpene concentration (α-pinene, β-pinene, camphene and limonene). Higher yields and longer exudation periods were observed with JA and ET, another feature shared with Pinus resinosis. The results suggest that resinosis control is similar in Araucaria and Pinus. In addition, A. angustifolia resin may be a relevant source of valuable terpene chemicals, whose production may be increased by using stimulating pastes containing the identified adjuvants.

  2. A mutualistic endophyte alters the niche dimensions of its host plant

    PubMed Central

    Kazenel, Melanie R.; Debban, Catherine L.; Ranelli, Luciana; Hendricks, Will Q.; Chung, Y. Anny; Pendergast, Thomas H.; Charlton, Nikki D.; Young, Carolyn A.; Rudgers, Jennifer A.

    2015-01-01

    Mutualisms can play important roles in influencing species coexistence and determining community composition. However, few studies have tested whether such interactions can affect species distributions by altering the niches of partner species. In subalpine meadows of the Rocky Mountains, USA, we explored whether the presence of a fungal endophyte (genus Epichloë) may shift the niche of its partner plant, marsh bluegrass (Poa leptocoma) relative to a closely related but endophyte-free grass species, nodding bluegrass (Poa reflexa). Using observations and a 3-year field experiment, we tested two questions: (i) Do P. leptocoma and P. reflexa occupy different ecological niches? and (ii) Does endophyte presence affect the relative fitness of P. leptocoma versus P. reflexa in the putative niches of these grass species? The two species were less likely to co-occur than expected by chance. Specifically, P. leptocoma grew closer to water sources and in wetter soils than P. reflexa, and also had higher root colonization by mycorrhizal fungi. Endophyte-symbiotic P. leptocoma seeds germinated with greater frequency in P. leptocoma niches relative to P. reflexa niches, whereas neither endophyte-free (experimentally removed) P. leptocoma seeds nor P. reflexa seeds showed differential germination between the two niche types. Thus, endophyte presence constrained the germination and early survival of host plants to microsites occupied by P. leptocoma. However, endophyte-symbiotic P. leptocoma ultimately showed greater growth than endophyte-free plants across all microsites, indicating a net benefit of the symbiosis at this life history stage. Differential effects of endophyte symbiosis on different host life history stages may thus contribute to niche partitioning between the two congeneric plant species. Our study therefore identifies a symbiotic relationship as a potential mechanism facilitating the coexistence of two species, suggesting that symbiont effects on host niche may

  3. A mutualistic endophyte alters the niche dimensions of its host plant.

    PubMed

    Kazenel, Melanie R; Debban, Catherine L; Ranelli, Luciana; Hendricks, Will Q; Chung, Y Anny; Pendergast, Thomas H; Charlton, Nikki D; Young, Carolyn A; Rudgers, Jennifer A

    2015-01-19

    Mutualisms can play important roles in influencing species coexistence and determining community composition. However, few studies have tested whether such interactions can affect species distributions by altering the niches of partner species. In subalpine meadows of the Rocky Mountains, USA, we explored whether the presence of a fungal endophyte (genus Epichloë) may shift the niche of its partner plant, marsh bluegrass (Poa leptocoma) relative to a closely related but endophyte-free grass species, nodding bluegrass (Poa reflexa). Using observations and a 3-year field experiment, we tested two questions: (i) Do P. leptocoma and P. reflexa occupy different ecological niches? and (ii) Does endophyte presence affect the relative fitness of P. leptocoma versus P. reflexa in the putative niches of these grass species? The two species were less likely to co-occur than expected by chance. Specifically, P. leptocoma grew closer to water sources and in wetter soils than P. reflexa, and also had higher root colonization by mycorrhizal fungi. Endophyte-symbiotic P. leptocoma seeds germinated with greater frequency in P. leptocoma niches relative to P. reflexa niches, whereas neither endophyte-free (experimentally removed) P. leptocoma seeds nor P. reflexa seeds showed differential germination between the two niche types. Thus, endophyte presence constrained the germination and early survival of host plants to microsites occupied by P. leptocoma. However, endophyte-symbiotic P. leptocoma ultimately showed greater growth than endophyte-free plants across all microsites, indicating a net benefit of the symbiosis at this life history stage. Differential effects of endophyte symbiosis on different host life history stages may thus contribute to niche partitioning between the two congeneric plant species. Our study therefore identifies a symbiotic relationship as a potential mechanism facilitating the coexistence of two species, suggesting that symbiont effects on host niche may

  4. Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi.

    PubMed

    Khan, Abdur Rahim; Ullah, Ihsan; Waqas, Muhammad; Park, Gun-Seok; Khan, Abdul Latif; Hong, Sung-Jun; Ullah, Rehman; Jung, Byung Kwon; Park, Chang Eon; Ur-Rehman, Shafiq; Lee, In-Jung; Shin, Jae-Ho

    2017-02-01

    Current investigation conducted to evaluate the associated fungal endophyte interactions of a Cd hyper-accumulator Solanum nigrum Korean ecotype under varying concentrations of Cd. Two indole-3-acetic acid (IAA) producing fungal strains, RSF-4L and RSF-6L, isolated from the leaves of S. nigrum, were initially screened for Cd tolerance and accumulation potential. In terms of dry biomass production, the strain RSF-6L showed higher tolerance and accumulation capacity for Cd toxicity in comparison to RSF-4L. Therefore, RSF-6L was applied in vivo to S. nigrum and grown for six weeks under Cd concentrations of 0, 10, and 30mgKg(-1) of dry sand. The effect of fungal inoculation assessed by plant physiological responses, endogenous biochemical regulations, and Cd profile in different tissues. Significant increase were observed in plant growth attributes such as shoot length, root length, dry biomass, leaf area, and chlorophyll contents in inoculated RSF-6L plants in comparison to non-inoculated plants with or without Cd contamination. RSF-6L inoculation decreased uptake of Cd in roots and above ground parts, as evidenced by a low bio-concentration factor (BCF) and improved tolerance index (TI). However, Cd concentration in the leaves remained the same for inoculated and non-inoculated plants under Cd spiking. Fungal inoculation protected the host plants, as evidenced by low peroxidase (POD) and polyphenol peroxidase (PPO) activities and high catalase (CAT) activity. Application of appropriate fungal inoculation that can improve tolerance mechanisms of hyper-accumulators and reduce Cd uptake can be recommended for phyto-stabilisation/immobilisation of heavy metals in crop fields.

  5. A Locus in Drosophila sechellia Affecting Tolerance of a Host Plant Toxin

    PubMed Central

    Hungate, Eric A.; Earley, Eric J.; Boussy, Ian A.; Turissini, David A.; Ting, Chau-Ti; Moran, Jennifer R.; Wu, Mao-Lien; Wu, Chung-I; Jones, Corbin D.

    2013-01-01

    Many insects feed on only one or a few types of host. These host specialists often evolve a preference for chemical cues emanating from their host and develop mechanisms for circumventing their host’s defenses. Adaptations like these are central to evolutionary biology, yet our understanding of their genetics remains incomplete. Drosophila sechellia, an emerging model for the genetics of host specialization, is an island endemic that has adapted to chemical toxins present in the fruit of its host plant, Morinda citrifolia. Its sibling species, D. simulans, and many other Drosophila species do not tolerate these toxins and avoid the fruit. Earlier work found a region with a strong effect on tolerance to the major toxin, octanoic acid, on chromosome arm 3R. Using a novel assay, we narrowed this region to a small span near the centromere containing 18 genes, including three odorant binding proteins. It has been hypothesized that the evolution of host specialization is facilitated by genetic linkage between alleles contributing to host preference and alleles contributing to host usage, such as tolerance to secondary compounds. We tested this hypothesis by measuring the effect of this tolerance locus on host preference behavior. Our data were inconsistent with the linkage hypothesis, as flies bearing this tolerance region showed no increase in preference for media containing M. citrifolia toxins, which D. sechellia prefers. Thus, in contrast to some models for host preference, preference and tolerance are not tightly linked at this locus nor is increased tolerance per se sufficient to change preference. Our data are consistent with the previously proposed model that the evolution of D. sechellia as a M. citrifolia specialist occurred through a stepwise loss of aversion and gain of tolerance to M. citrifolia’s toxins. PMID:24037270

  6. Effect of different host plants on nutritional indices of the pod borer, Helicoverpa armigera.

    PubMed

    Hemati, S A; Naseri, B; Ganbalani, G Nouri; Dastjerdi, H Rafiee; Golizadeh, A

    2012-01-01

    Nutritional indices of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on different host plants including chickpea (cultivars Arman, Hashem, Azad, and Binivich), common bean (cultivar Khomein), white kidney bean (cultivar Dehghan), red kidney bean (cultivar Goli), cowpea (cultivar Mashhad), tomato (cultivar Meshkin) and potato (cultivars Agria and Satina) were studied under laboratory conditions (25 ± 1 °C, 65 ± 5% RH, 16:8 L:D). Third instar larvae reared on potato Agria showed the highest efficiency of conversion of digested food (ECD) and efficiency of conversion of ingested food (ECI) (50.800 ± 0.104% and 13.630 ± 0.016%, respectively). Approximate digestibility (AD) values of the fourth instar larvae were highest (92.651 ± 0.004%) and lowest (57.140 - 0.049%) on chickpea Azad and potato Agria, respectively. The fifth instar larvae fed on tomato Meshkin and white kidney bean Dehghan had the highest consumption index (CI) (3.717 ± 0.091) and relative consumption rate (RCR) (1.620 ± 0.074), respectively. Whole larval instars showed the highest ECI and ECD values on potatoes Satina (14.640 ± 0.014%) and Agria (21.380 ± 0.015%), respectively, and the lowest of both values on tomato Meshkin (ECI: 5.748 ± 0.002% and ECD: 7.341 ± 0.002%). The results of nutritional indices and the cluster analysis indicated that tomato Meshkin was an unsuitable host for feeding of H. armigera.

  7. Identification of Aphis gossypii Glover (Hemiptera: Aphididae) Biotypes from Different Host Plants in North China

    PubMed Central

    Wang, Li; Zhang, Shuai; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Zhu, Xiang-Zhen; Li, Chun-Hua; Cui, Jin-Jie

    2016-01-01

    Background The cotton-melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae), is a polyphagous species with a worldwide distribution and a variety of biotypes. North China is a traditional agricultural area with abundant winter and summer hosts of A. gossypii. While the life cycles of A. gossypii on different plants have been well studied, those of the biotypes of North China are still unclear. Results Host transfer experiments showed that A. gossypii from North China has two host-specialized biotypes: cotton and cucumber. Based on complete mitochondrial sequences, we identified a molecular marker with five single-nucleotide polymorphisms to distinguish the biotypes. Using this marker, a large-scale study of biotypes on primary winter and summer hosts was conducted. All A. gossypii collected from three primary hosts—hibiscus, pomegranate, and Chinese prickly ash—were cotton biotypes, with more cotton-melon aphids found on hibiscus than the other two species. In May, alate cotton and cucumber biotypes coexisted on cotton and cucumber seedlings, but each preferred its natal host. Both biotypes existed on zucchini, although the cucumber biotype was more numerous. Aphids on muskmelon were all cucumber biotypes, whereas most aphids on kidney bean were cotton biotypes. Aphids on seedlings of potato and cowpea belong to other species. In August, aphids on cotton and cucumber were the respective biotypes, with zucchini still hosting both biotypes as before. Thus, the biotypes had different fitnesses on different host plants. Conclusions Two host-specialized biotypes (cotton and cucumber) are present in North China. Hibiscus, pomegranate, and Chinese prickly ash can serve as winter hosts for the cotton biotype but not the cucumber biotype in North China. The fitnesses of the two host-specialized biotypes differ on various summer hosts. When alate aphids migrate to summer hosts, they cannot accurately land on the corresponding plant. PMID:26735973

  8. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes

    PubMed Central

    Orlovskis, Zigmunds; Hogenhout, Saskia A.

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  9. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae.

    PubMed

    Dermauw, Wannes; Wybouw, Nicky; Rombauts, Stephane; Menten, Björn; Vontas, John; Grbic, Miodrag; Clark, Richard M; Feyereisen, René; Van Leeuwen, Thomas

    2013-01-08

    Plants produce a wide range of allelochemicals to defend against herbivore attack, and generalist herbivores have evolved mechanisms to avoid, sequester, or detoxify a broad spectrum of natural defense compounds. Successful arthropod pests have also developed resistance to diverse classes of pesticides and this adaptation is of critical importance to agriculture. To test whether mechanisms to overcome plant defenses predispose the development of pesticide resistance, we examined adaptation of the generalist two-spotted spider mite, Tetranychus urticae, to host plant transfer and pesticides. T. urticae is an extreme polyphagous pest with more than 1,100 documented hosts and has an extraordinary ability to develop pesticide resistance. When mites from a pesticide-susceptible strain propagated on bean were adapted to a challenging host (tomato), transcriptional responses increased over time with ~7.5% of genes differentially expressed after five generations. Whereas many genes with altered expression belonged to known detoxification families (like P450 monooxygenases), new gene families not previously associated with detoxification in other herbivores showed a striking response, including ring-splitting dioxygenase genes acquired by horizontal gene transfer. Strikingly, transcriptional profiles of tomato-adapted mites resembled those of multipesticide-resistant strains, and adaptation to tomato decreased the susceptibility to unrelated pesticide classes. Our findings suggest key roles for both an expanded environmental response gene repertoire and transcriptional regulation in the life history of generalist herbivores. They also support a model whereby selection for the ability to mount a broad response to the diverse defense chemistry of plants predisposes the evolution of pesticide resistance in generalists.

  10. [Evaluation of non-host plant ethanol extracts against Plutella xylostella population].

    PubMed

    Wei, Hui; Hou, Youming; Yang, Guang; Fu, Jianwei; You, Minsheng

    2005-06-01

    Through establishing experimental and natural population life tables, and by using the index of population trend (1) and interference index of population control (IIPC), this paper evaluated 8 kinds of non-host plant ethanol extracts against experimental population of Plutella xylostella, and 3 kinds of these extracts and their mixture against Plutella xylostella natural population. The experimental population life table of DBM showed that the index of population trend (I) was 69. 8964 in control, and decreased dramatically to 5.3702, 4.4842, 8.0945, 11.1382, 6.8937, 6.1609, 5.5199 and 9.8052, respectively in treatments of Zanthoxylum bungeanum, Eucalyptus tereticornis, Nicotiana tabacum, Broussonetia papyrifera, Bauhinia variegata, Duranta repens, Euphorbia hirta and Camellia oleifera ethanol extracts, while the corresponding IIPC was 0.0768, 0.0642, 0.1158, 0.1594, 0.0986, 0.0881, 0.0790 and 0. 1403, respectively. The natural population life tables of DBM showed that the index of population trend (I) was 21.6232 in control, and decreased dramatically to 5.1997, 7.4160, 7. 3644 and 3.1399, respectively in treatments of the ethanol extracts of E. tereticornis, N. tabacum, C. oleifera and their mixture, while the corresponding IIPC was 0.2405, 0.3695, 0.3549 and 0.1608, respectively. All of these indicated that the test plant extracts could interfere the development of P. xylostella population significantly, and had the potential as an effective measure for controlling insect pest.

  11. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance

    PubMed Central

    Trapero, Carlos; Wilson, Iain W.; Stiller, Warwick N.; Wilson, Lewis J.

    2016-01-01

    Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton cultivars has greatly reduced the amount of pesticides used in many cotton systems. However, pests not controlled by the GM traits have usually emerged as problems, especially the sucking bug complex. Control of this complex with pesticides often causes a reduction in beneficial invertebrate populations, allowing other secondary pests to increase rapidly and require control. Control of both sucking bug complex and secondary pests is problematic due to the cost of pesticides and/or high risk of selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides an opportunity to manage these issues in GM cotton systems. Cotton cultivars resistant to the sucking bug complex and/or secondary pests would require fewer pesticide applications, reducing costs and risks to beneficial invertebrate populations and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high yield and fiber quality offers the potential to further reduce pesticide use and increase the durability of pest management in GM cotton systems. We review the challenges that the identification and use of HPR against invertebrate pests brings to cotton breeding. We explore sources of resistance to the sucking bug complex and secondary pests, the mechanisms that control them and the approaches to incorporate these defense traits to commercial cultivars. PMID:27148323

  12. Foraging in the dark - chemically mediated host plant location by belowground insect herbivores.

    PubMed

    Johnson, Scott N; Nielsen, Uffe N

    2012-06-01

    Root-feeding insects are key components in many terrestrial ecosystems. Like shoot-feeding insect herbivores, they exploit a range of chemical cues to locate host plants. Respiratory emissions of carbon dioxide (CO(2)) from the roots is widely reported as the main attractant, however, there is conflicting evidence about its exact role. CO(2) may act as a 'search trigger' causing insects to search more intensively for more host specific signals, or the plant may 'mask' CO(2) emissions with other root volatiles thus avoiding detection. At least 74 other compounds elicit behavioral responses in root-feeding insects, with the majority (>80 %) causing attraction. Low molecular weight compounds (e.g., alcohols, esters, and aldehydes) underpin attraction, whereas hydrocarbons tend to have repellent properties. A range of compounds act as phagostimulants (e.g., sugars) once insects feed on roots, whereas secondary metabolites often deter feeding. In contrast, some secondary metabolites usually regarded as plant defenses (e.g., dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)), can be exploited by some root-feeding insects for host location. Insects share several host location cues with plant parasitic nematodes (CO(2), DIMBOA, glutamic acid), but some compounds (e.g., cucurbitacin A) repel nematodes while acting as phagostimulants to insects. Moreover, insect and nematode herbivory can induce exudation of compounds that may be mutually beneficial, suggesting potentially significant interactions between the two groups of herbivores. While a range of plant-derived chemicals can affect the behavior of root-feeding insects, little attempt has been made to exploit these in pest management, though this may become a more viable option with diminishing control options.

  13. Multimodal cues drive host-plant assessment in Asian citrus psyllid (Diaphorina citri).

    PubMed

    Patt, Joseph M; Meikle, William G; Mafra-Neto, Agenor; Sétamou, Mamoudou; Mangan, Robert; Yang, Chenghai; Malik, Nasir; Adamczyk, John J

    2011-12-01

    Asian citrus psyllid (Diaphorina citri) transmits the causal agent of Huanglongbing, a devastating disease of citrus trees. In this study we measured behavioral responses of D. citri to combinations of visual, olfactory, and gustatory stimuli in test arenas. Stimuli were presented to the psyllids in droplets or lines of an emulsified wax formulation in two different arena types in no-choice tests. First, when placed on a colored ring situated halfway between the center and perimeter of a petri dish, D. citri spent more time on yellow versus gray rings; however, this response disappeared when either gray or yellow wax droplets were applied. When the psyllids were presented with droplets scented with terpenes, the response to both scent and color was increased. The addition of a dilute (≍0.1 M) sucrose solution to the wax droplets increased the magnitude of D. citri responses. Next, groups of D. citri were placed on plastic laboratory film covering a sucrose solution, to mimic a leaf surface. Test stimuli were presented via two 'midribs' made from lines of emulsified wax formulation. Probing levels were measured as a function of color saturation and scent composition, and concentration. The test scents were based on qualitatively major volatiles emitted by Murraya paniculata (L.) Jack, Citrus aurantifolia (Christm.) Swingle, and C. sinensis (L.) Osbeck. The highest probing response was observed on the middle concentration (20-μl scent/10 ml wax formulation) of the C. aurantifolia-scented wax lines. Results indicate that there are interactive effects between the different sensory modalities in directing host-plant assessment behavior.

  14. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance.

    PubMed

    Trapero, Carlos; Wilson, Iain W; Stiller, Warwick N; Wilson, Lewis J

    2016-01-01

    Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton cultivars has greatly reduced the amount of pesticides used in many cotton systems. However, pests not controlled by the GM traits have usually emerged as problems, especially the sucking bug complex. Control of this complex with pesticides often causes a reduction in beneficial invertebrate populations, allowing other secondary pests to increase rapidly and require control. Control of both sucking bug complex and secondary pests is problematic due to the cost of pesticides and/or high risk of selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides an opportunity to manage these issues in GM cotton systems. Cotton cultivars resistant to the sucking bug complex and/or secondary pests would require fewer pesticide applications, reducing costs and risks to beneficial invertebrate populations and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high yield and fiber quality offers the potential to further reduce pesticide use and increase the durability of pest management in GM cotton systems. We review the challenges that the identification and use of HPR against invertebrate pests brings to cotton breeding. We explore sources of resistance to the sucking bug complex and secondary pests, the mechanisms that control them and the approaches to incorporate these defense traits to commercial cultivars.

  15. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants.

    PubMed

    Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W

    2016-06-01

    Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.

  16. Radiation, diversity, and host-plant interactions among island and continental legume-feeding psyllids.

    PubMed

    Percy, Diana M

    2003-11-01

    Island archipelagos and insect-plant associations have both independently provided many useful systems for evolutionary study. The arytainine psyllid (Sternorrhyncha: Hemiptera) radiation on broom (Fabaceae: Genisteae) in the Canary Island archipelago provides a discrete system for examining the speciation of highly host-specific phytophagous insects in an island context. Phylogenetic reconstructions based on three datasets (adult and nymph morphological characters, and two mitochondrial DNA regions: part of the small subunit rRNA, and part of cytochrome oxidase I, cytochrome oxidase II and the intervening tRNA leucine) are generally consistent. The combined molecular tree provides a well-supported estimate of psyllid relationships and shows that there have been several colonizations of the Macaronesian islands but that only one has resulted in a significant radiation. Psyllid diversification has apparently been constrained by the presence of suitable host groups within the genistoid legumes, and the diversity, distribution, and abundance of those groups. The phylogeny, by indicating pairs of sister species, allows putative mechanisms of speciation to be assessed. The most common conditions associated with psyllid speciation are geographical allopatry with a host switch to closely related hosts (six examples), or geographical allopatry on the same host (four examples). Where allopatric speciation involves a host switch, these have all been to related hosts. There is some evidence that switches between unrelated host plants may be more likely in sympatry. Only one sister pair (Aryrtainilla cytisi and A. telonicola) and the putative host races of Arytinnis modica are sympatric but on unrelated hosts, which may be a necessary condition for sympatric speciation in these insects. Where several psyllids share the same host, resources appear to be partitioned by ecological specialization and differing psyllid phenology.

  17. Bumble bee nest abundance, foraging distance, and host-plant reproduction: implications for management and conservation.

    PubMed

    Geib, Jennifer C; Strange, James P; Galenj, Candace

    2015-04-01

    Recent reports of global declines in pollinator species imply an urgent need to assess the abundance of native pollinators and density-dependent benefits for linked plants. In this study, we investigated (1) pollinator nest distributions and estimated colony abundances, (2) the relationship between abundances of foraging workers and the number of nests they represent, (3) pollinator foraging ranges, and (4) the relationship between pollinator abundance and plant reproduction. We examined these questions in an alpine ecosystem in the Colorado Rocky Mountains, focusing on four alpine bumble bee species (Bombus balteatus, B. flavifrons, B. bifarius, and B. sylvicola), and two host plants that differ in their degrees of pollinator specialization (Trifolium dasyphyllum and T. parryi). Using microsatellites, we found that estimated colony abundances among Bombus species ranged from ~18 to 78 colonies/0.01 km2. The long-tongued species B. balteatus was most common, especially high above treeline, but the subalpine species B. bifarius was unexpectedly abundant for this elevation range. Nests detected among sampled foragers of each species were correlated with the number of foragers caught. Foraging ranges were smaller than expected for all Bombus species, ranging from 25 to 110 m. Fruit set for the specialized plant, Trifolium parryi, was positively related to the abundance of its Bombus pollinator. In contrast, fruit set for the generalized plant, T. dasyphyllum, was related to abundance of all Bombus species. Because forager abundance was related to nest abundance of each Bombus species and was an equally effective predictor of plant fecundity, forager inventories are probably suitable for assessing the health of outcrossing plant populations. However, nest abundance, rather than forager abundance, better reflects demographic and genetic health in populations of eusocial pollinators such as bumble bees. Development of models incorporating the parameters we have measured

  18. [Host plants of Aphis gossypii (Aphididae), vector of virus of Cucumis melo melon (Cucurbitaceae) in Costa Rica].

    PubMed

    Sánchez, M V; Agüero, R; Rivera, C

    2001-03-01

    Plant species associated with commercial melon crops and surrounding areas were examined to identity the natural host plants of Aphis gossypii Glover. The study was conducted in two farms located in different melon production areas and plant life zones of Costa Rica. Plant species diversity, percent coverage and distribution over time were recorded during one year. Differences between locations were observed. A total of 86 plant species (49 families) and 72 plant species (40 families) were identified associated to the crop in farms A and B, respectively. In both farms a total of 24 species plants (16 families) were colonized by A. gossypii and 16 (10 families) are new reports of host plant species for this aphid. The new reports are: Justicia comata, Tetramerium nervosum, Alternanthera pubiflora, Cassia massoni, C. reticulata, Cleome viscosa, C. spinosa, Croton argenteus, Caperonia palustris, Chamaesyce gyssopilopia, Phyllantus amarus, Sida decumbens, Ludwigia erecta, Passiflora foetida, Guazuma ulmifolia and Corchorus orinocensis.

  19. Diapause initiation and incidence in the millet stem borer, Coniesta ignefusalis (Lepidoptera: Pyralidae): the role of the host plant.

    PubMed

    Tanzubil, P B; Mensah, G W; McCaffery, A R

    2000-08-01

    The role of the host plant in the development of larval diapause in the millet stem borer, Coniesta ignefusalis (Hampson) was investigated in northern Ghana in 1996 and 1997. Surveys conducted in farmers' fields in the Guinea and Sudan savannah revealed that of all the upland cereals grown, the insect survived the dry season only in stalks and stubble of pearl millet, Pennisetum glaucum and late sorghum, Sorghum bicolor. This observation was confirmed by results from field trials conducted at the Manga Research Station. In these studies, C. ignefusalis larvae entered diapause only in late millet and late sorghum, with a higher incidence in the former. The insect neither attacked nor entered diapause in maize planted during the same period as the other crops. Results from controlled experiments showed that diapause incidence in the preferred host, millet, was higher in older than in younger plants, suggesting that host plant maturation is a key factor influencing the development of larval diapause in C. ignefusalis.

  20. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules

    PubMed Central

    2012-01-01

    Background We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. Results Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like) protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon) identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. Conclusions Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process. PMID:22587634

  1. Interactions between a pollinating seed predator and its host plant: the role of environmental context within a population

    PubMed Central

    Kula, Abigail A R; Castillo, Dean M; Dudash, Michele R; Fenster, Charles B

    2014-01-01

    Plant–insect interactions often are important for plant reproduction, but the outcome of these interactions may vary with environmental context. Pollinating seed predators have positive and negative effects on host plant reproduction, and the interaction outcome is predicted to vary with density or abundance of the partners. We studied the interaction between Silene stellata, an herbaceous perennial, and Hadena ectypa, its specialized pollinating seed predator. Silene stellata is only facultatively dependent upon H. ectypa for pollination because other nocturnal moth co-pollinators are equally effective at pollen transfer. We hypothesized that for plants without conspecific neighbors, H. ectypa would have higher visitation rates compared to co-pollinators, and the plants would experience lower levels of H. ectypa pollen deposition. We predicted similar oviposition throughout the study site but greater H. ectypa predation in the area without conspecific neighbors compared to plants embedded in a naturally high density area. We found that H. ectypa had consistently higher visitation than moth co-pollinators in all host plant contexts. However, H. ectypa pollinator importance declined in areas with low conspecific density because of reduced pollen deposition, resulting in lower seed set. Conversely, oviposition was similar across the study site independent of host plant density. Greater likelihood of very high fruit predation combined with lower pollination by H. ectypa resulted in reduced S. stellata female reproductive success in areas with low conspecific density. Our results demonstrate local context dependency of the outcomes of pollinating seed predator interactions with conspecific host plant density within a population. PMID:25165527

  2. Choosing between good and better: optimal oviposition drives host plant selection when parents and offspring agree on best resources.

    PubMed

    Videla, Martín; Valladares, Graciela R; Salvo, Adriana

    2012-07-01

    Insect preferences for particular plant species might be subjected to trade-offs among several selective forces. Here, we evaluated, through laboratory and field experiments, the feeding and ovipositing preferences of the polyphagous leafminer Liriomyza huidobrensis (Diptera: Agromyzidae) in relation to adult and offspring performance and enemy-free space. Female leafminers preferred laying their eggs on Vicia faba (Fabaceae) over Beta vulgaris var. cicla (Chenopodiaceae), in both laboratory and field choice experiments, although no oviposition preference was observed in no-choice tests. Females fed more often on B. v. var. cicla (no-choice test) or showed no feeding preference (choice test), even when their realized fecundity was remarkably higher on V. faba. Offspring developed faster, tended to survive better, and attained bigger adult size on the preferred host plant. Also, a field experiment showed higher overall parasitism rates for leafminers developing on B. v. var. cicla, with a nonsignificant similar tendency in field surveys. According to these results, host plant selection by L. huidobrensis appears to be driven mainly by variation in host quality. Moreover, the consistent oviposition choices for the best host and the labile feeding preferences observed here, suggest that host plant selection might be driven by maximization of offspring fitness even without a conflict of interest between parents and offspring. Overall, these results highlight the complexity of decisions performed by phytophagous insects regarding their host plants, and the importance of simultaneous evaluation of the various driving forces involved, in order to unravel the adaptive significance of female choices.

  3. Caterpillars and host plant records for 59 species of Geometridae (Lepidoptera) from a montane rainforest in southern Ecuador.

    PubMed

    Bodner, Florian; Brehm, Gunnar; Homeier, Jürgen; Strutzenberger, Patrick; Fiedler, Konrad

    2010-01-01

    During four months of field surveys at the Reserva Biológica San Francisco in the south Ecuadorian Andes, caterpillars of 59 Geometridae species were collected in a montane rainforest between 1800 and 2800m altitude and reared to adults. The resulting data on host plant affiliations of these species was collated. The preimaginal stages of 58 and adult stages of all 59 species are depicted in colour plates. Observations on morphology and behaviour are briefly described. Five species, documented for the first time in the study area by means of larval collections, had not been previously collected by intensive light-trap surveys. Together with published literature records, life-history data covers 8.6% of the 1271 geometrid species observed so far in the study area. For 50 species these are the first records of their early stages, and for another 7 the data significantly extend known host plant ranges. Most larvae were collected on shrubs or trees, but more unusual host plant affiliations, such as ferns (6 geometrid species) and lichens (3 geometrid species), were also recorded. Thirty-four percent of the caterpillars were infested by wasp or tachinid parasitoids.

  4. The effect of host plant phenology on reproduction of the milkweed bug, Oncopeltus fasciatus, in tropical Florida.

    PubMed

    Miller, Elizabeth Ruth; Dingle, Hugh

    1982-01-01

    A field study of the relationship between host plant phenology and the reproductive pattern of the large milkweed bug, Oncopeltus fasciatus, was conducted in south Florida. Since O. fasciatus need seeds of either milkweed or Nerium oleander plants to reproduce, reproduction takes place on only those host plants that are producing seed pods.Two of four major host plants, Asclepias incarnata and Sarcostemma clausa fruit seasonally, producing pods in early autumn and early winter, respectively. The third milkweed host, Asclepias curassavica, produces almost no pods midsummer (although it flowers abundantly) and few pods midwinter. Nerium oleander (Apocynaceae) produces some pods all year but is only used by O. fasciatus in the summer when milkweeds are not producing pods. Correspondingly, reproduction of O. fasciatus has been observed year round, but relatively few females reproduce in midwinter, coinciding with decreased pod production and low temperatures. This pattern is consistent with the hypothesis that a photoperiodic cue of short day lengths under conditions of cool temperatures may cause adult females to enter diapause and delay reproduction in the field.A comparison of plant phenologies and rainfall between 1976, a very dry year, and 1978, a year with normal rainfall, showed that extreme dryness disrupted the seasonal fruiting of the milkweeds and consequently the reproduction of O. fasciatus.

  5. Mycorrhizal fungal growth responds to soil characteristics, but not host plant identity, during a primary lacustrine dune succession.

    PubMed

    Sikes, Benjamin A; Maherali, Hafiz; Klironomos, John N

    2014-04-01

    Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.

  6. A plant pathogen reduces the enemy-free space of an insect herbivore on a shared host plant.

    PubMed

    Biere, Arjen; Elzinga, Jelmer A; Honders, Sonja C; Harvey, Jeffrey A

    2002-11-07

    An important mechanism in stabilizing tightly linked host-parasitoid and prey-predator interactions is the presence of refuges that protect organisms from their natural enemies. However, the presence and quality of refuges can be strongly affected by the environment. We show that infection of the host plant Silene latifolia by its specialist fungal plant pathogen Microbotryum violaceum dramatically alters the enemy-free space of a herbivore, the specialist noctuid seed predator Hadena bicruris, on their shared host plant. The pathogen arrests the development of seed capsules that serve as refuges for the herbivore's offspring against the specialist parasitoid Microplitis tristis, a major source of mortality of H. bicruris in the field. Pathogen infection resulted both in lower host-plant food quality, causing reduced adult emergence, and in twofold higher rates of parasitism of the herbivore. We interpret the strong oviposition preference of H. bicruris for uninfected plants in the field as an adaptive response, positioning offspring on refuge-rich, high-quality hosts. To our knowledge, this is the first demonstration that plant-inhabiting micro-organisms can affect higher trophic interactions through alteration of host refuge quality. We speculate that such interference can potentially destabilize tightly linked multitrophic interactions.

  7. Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures

    PubMed Central

    Lardi, Martina; Murset, Valérie; Fischer, Hans-Martin; Mesa, Socorro; Ahrens, Christian H.; Zamboni, Nicola; Pessi, Gabriella

    2016-01-01

    Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection–time-of-flight mass spectrometry analysis the metabolome of (i) nodules and roots from four different B. diazoefficiens host plants; (ii) soybean nodules harvested at different time points during nodule development; and (iii) soybean nodules infected by two strains mutated in key genes for nitrogen fixation, respectively. Ribose (soybean), tartaric acid (mungbean), hydroxybutanoyloxybutanoate (siratro) and catechol (cowpea) were among the metabolites found to be specifically elevated in one of the respective host plants. While the level of C4-dicarboxylic acids decreased during soybean nodule development, we observed an accumulation of trehalose-phosphate at 21 days post infection (dpi). Moreover, nodules from non-nitrogen-fixing bacteroids (nifA and nifH mutants) showed specific metabolic alterations; these were also supported by independent transcriptomics data. The alterations included signs of nitrogen limitation in both mutants, and an increased level of a phytoalexin in nodules induced by the nifA mutant, suggesting that the tissue of these nodules exhibits defense and stress reactions. PMID:27240350

  8. A plant pathogen reduces the enemy-free space of an insect herbivore on a shared host plant.

    PubMed Central

    Biere, Arjen; Elzinga, Jelmer A; Honders, Sonja C; Harvey, Jeffrey A

    2002-01-01

    An important mechanism in stabilizing tightly linked host-parasitoid and prey-predator interactions is the presence of refuges that protect organisms from their natural enemies. However, the presence and quality of refuges can be strongly affected by the environment. We show that infection of the host plant Silene latifolia by its specialist fungal plant pathogen Microbotryum violaceum dramatically alters the enemy-free space of a herbivore, the specialist noctuid seed predator Hadena bicruris, on their shared host plant. The pathogen arrests the development of seed capsules that serve as refuges for the herbivore's offspring against the specialist parasitoid Microplitis tristis, a major source of mortality of H. bicruris in the field. Pathogen infection resulted both in lower host-plant food quality, causing reduced adult emergence, and in twofold higher rates of parasitism of the herbivore. We interpret the strong oviposition preference of H. bicruris for uninfected plants in the field as an adaptive response, positioning offspring on refuge-rich, high-quality hosts. To our knowledge, this is the first demonstration that plant-inhabiting micro-organisms can affect higher trophic interactions through alteration of host refuge quality. We speculate that such interference can potentially destabilize tightly linked multitrophic interactions. PMID:12427312

  9. Analysis of Genetic Variation in Brevipalpus yothersi (Acari: Tenuipalpidae) Populations from Four Species of Citrus Host Plants

    PubMed Central

    Salinas-Vargas, Delfina; Santillán-Galicia, Ma. Teresa; Guzmán-Franco, Ariel W.; Hernández-López, Antonio; Ortega-Arenas, Laura D.; Mora-Aguilera, Gustavo

    2016-01-01

    We studied species diversity and genetic variation among populations of Brevipalpus mites from four species of citrus host plants. We sampled mites on orange, lime, grapefruit and mandarin trees from orchards at six localities distributed in the five most important citrus producing states in Mexico. Genetic variation among citrus host plants and localities were assessed by analysis of nucleotide sequence data from fragments of the mitochondrial cytochrome oxidase subunit I (COI). Both Brevipalpus yothersi and B. californicus were found at these sites, and B. yothersi was the most abundant species found on all citrus species and in all localities sampled. B. californicus was found mainly on orange and mandarin and only in two of the states sampled. AMOVA and haplotype network analyses revealed no correlation between B. yothersi genetic population structure and geographical origin or citrus host plant species. Considering that a previous study reported greater genetic diversity in B. yothersi populations from Brazil than we observed in Mexico, we discuss the possibility that the Mexican populations may have originated in the southern region of America. PMID:27736923

  10. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants.

    PubMed

    Fellbaum, Carl R; Mensah, Jerry A; Cloos, Adam J; Strahan, Gary E; Pfeffer, Philip E; Kiers, E Toby; Bücking, Heike

    2014-07-01

    Common mycorrhizal networks (CMNs) of arbuscular mycorrhizal (AM) fungi in the soil simultaneously provide multiple host plants with nutrients, but the mechanisms by which the nutrient transport to individual host plants within one CMN is controlled are unknown. Using radioactive and stable isotopes, we followed the transport of phosphorus (P) and nitrogen (N) in the CMNs of two fungal species to plants that differed in their carbon (C) source strength, and correlated the transport to the expression of mycorrhiza-inducible plant P (MtPt4) and ammonium (1723.m00046) transporters in mycorrhizal roots. AM fungi discriminated between host plants that shared a CMN and preferentially allocated nutrients to high-quality (nonshaded) hosts. However, the fungus also supplied low-quality (shaded) hosts with nutrients and maintained a high colonization rate in these plants. Fungal P transport was correlated to the expression of MtPt4. The expression of the putative ammonium transporter 1723.m00046 was dependent on the fungal nutrient supply and was induced when the CMN had access to N. Biological market theory has emerged as a tool with which the strategic investment of competing partners in trading networks can be studied. Our work demonstrates how fungal partners are able to retain bargaining power, despite being obligately dependent on their hosts.

  11. Contrasting Plasticity in Ovariole Number Induced by A Dietary Effect of the Host Plants between Cactophilic Drosophila Species

    PubMed Central

    Peluso, Daniela; Soto, Eduardo M.; Kreiman, Lucas; Hasson, Esteban; Mensch, Julián

    2016-01-01

    Under the preference-performance hypothesis, natural selection will favor females that choose oviposition sites that optimize the fitness of their offspring. Such a preference-performance relationship may entail important consequences mainly on fitness-related traits. We used the well-characterized cactus-Drosophila system to investigate the reproductive capacity in the pair of sibling species D. buzzatii and D. koepferae reared in two alternative host plants. According to our hypothesis, ovariole number (as a proxy of reproductive capacity) depends on host plant selection. Our results indicate that the capacity of D. buzzatii showed to be mild, only increasing the number of ovarioles by as much as 10% when reared in its preferred host. In contrast, D. koepferae exhibited a similar reproductive capacity across host cacti, even though it showed a preference for its primary host cactus. Our study also revealed that D. buzzatii has a larger genetic variation for phenotypic plasticity than its sibling, although ovariole number did not show clear-cut differences between species. We will discuss the weak preference-performance pattern observed in these cactophilic species in the light of nutritional and toxicological differences found between the natural host plants. PMID:27213456

  12. Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants.

    PubMed

    Miller, Tom E X

    2007-07-01

    1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.

  13. Host plant mediates foraging behavior and mutual interference among adult Stethorus gilvifrons (Coleoptera: Coccinellidae) preying on Tetranychus urticae (Acari: Tetranychidae).

    PubMed

    Bayoumy, Mohamed H; Osman, Mohamed A; Michaud, J P

    2014-10-01

    Physical plant characteristics can influence predator foraging and their behavioral responses to each other. This study examined the searching efficiency and functional response of adult female Stethorus gilvifrons Mulsant foraging for Tetranychus urticae Koch (Acari: Tetranychidae) on castor bean, common bean, and cucumber leaves. Experiments conducted on leaf discs in arenas for 12 h revealed a type II functional response for S. gilvifrons on all host plants. Per capita searching efficiency and killing power decreased with increasing predator density on all plants, but most notably on common bean, the plant with the highest prey consumption rates, due to greater mutual interference. Attack rates were highest on common bean and lowest on castor bean, whereas handling times were shortest on common bean and longest on cucumber, such that the daily predation rate was maximal on common bean. Host plant interacted with predator and prey densities to affect searching efficiency and functional response, the differences in mite consumption among host plants increasing with predator and prey densities. The waxy layers of castor bean leaves and high trichome counts of cucumber leaves appeared to reduce predator foraging efficiency. Thus, the efficacy of S. gilvifrons against T. urticae is likely to be greatest on plants such as Phaeseolus vulgaris L. that have relatively smooth leaves.

  14. Development on drought-stressed host plants affects life history, flight morphology and reproductive output relative to landscape structure.

    PubMed

    Gibbs, Melanie; Van Dyck, Hans; Breuker, Casper J

    2012-01-01

    With global climate change, rainfall is becoming more variable. Predicting the responses of species to changing rainfall levels is difficult because, for example in herbivorous species, these effects may be mediated indirectly through changes in host plant quality. Furthermore, species responses may result from a simultaneous interaction between rainfall levels and other environmental variables such as anthropogenic land use or habitat quality. In this eco-evolutionary study, we examined how male and female Pararge aegeria (L.) from woodland and agricultural landscape populations were affected by the development on drought-stressed host plants. Compared with individuals from woodland landscapes, when reared on drought-stressed plants agricultural individuals had longer development times, reduced survival rates and lower adult body masses. Across both landscape types, growth on drought-stressed plants resulted in males and females with low forewing aspect ratios and in females with lower wing loading and reduced fecundity. Development on drought-stressed plants also had a landscape-specific effect on reproductive output; agricultural females laid eggs that had a significantly lower hatching success. Overall, our results highlight several potential mechanisms by which low water availability, via changes in host plant quality, may differentially influence P. aegeria populations relative to landscape structure.

  15. Apparent Acquired Resistance by a Weevil to Its Parasitoid Is Influenced by Host Plant

    PubMed Central

    Goldson, Stephen L.; Tomasetto, Federico

    2016-01-01

    Field parasitism rates of the Argentine stem weevil Listronotus bonariensis (Kuschel; Coleoptera: Curculionidae) by Microctonus hyperodae Loan (Hymenoptera: Braconidae) are known to vary according to different host Lolium species that also differ in ploidy. To further investigate this, a laboratory study was conducted to examine parasitism rates on tetraploid Italian Lolium multiflorum, diploid Lolium perenne and diploid hybrid L. perenne ×L. multiflorum; none of which were infected by Epichloë endophyte. At the same time, the opportunity was taken to compare the results of this study with observations made during extensive laboratory-based research and parasitoid-rearing in the 1990s using the same host plant species. This made it possible to determine whether there has been any change in weevil susceptibility to the parasitoid over a 20 year period when in the presence of the tetraploid Italian, diploid perennial and hybrid host grasses that were commonly in use in the 1990’s. The incidence of parasitism in cages, in the presence of these three grasses mirrored what has recently been observed in the field. When caged, weevil parasitism rates in the presence of a tetraploid Italian ryegrass host were significantly higher (75%) than rates that occurred in the presence of either the diploid perennial (46%) or the diploid hybrid (52%) grass, which were not significantly different from each other. This is very different to laboratory parasitism rates in the 1990s when in the presence of both of the latter grasses high rates of parasitism (c. 75%) were recorded. These high rates are typical of those still found in weevils in the presence of both field and caged tetraploid Italian grasses. In contrast, the abrupt decline in weevil parasitism rates points to the possibility of evolved resistance by the weevil to the parasitoid in the diploid and hybrid grasses, but not so in the tetraploid. The orientation of plants in the laboratory cages had no significant effect

  16. Chemical composition and glycemic index of Brazilian pine (Araucaria angustifolia) seeds.

    PubMed

    Cordenunsi, Beatriz Rosana; De Menezes Wenzel, Elizabete; Genovese, Maria Inés; Colli, Célia; De Souza Gonçalves, Alessandra; Lajolo, Franco Maria

    2004-06-02

    The seeds of Parana pine (Araucaria brasiliensis syn. Araucaria angustifolia), named pinhão, are consumed after cooking and posterior dehulling, or they are used to prepare a flour employed in regional dishes. Native people that live in the South of Brazil usually consume baked pinhão. As a result of cooking, the white seeds become brown on the surface due to the migration of some tinted compounds present in the seed coat. In this work, the proximate composition, minerals, flavonoids, and glycemic index (GI) of cooked and raw pinhão seeds were compared. No differences in moisture, lipids, soluble fiber, and total starch after boiling were found. However, the soluble sugars and P, Cu, and Mg contents decreased, probably as a consequence of leaching in the cooking water. Also, the boiling process modified the profile of the phenolic compounds in the seeds. No flavonols were detected in raw pinhão seeds. The internal seed coat had a quercetin content five times higher than that of the external seed coat; also, quercetin migrated into the seed during cooking. The internal seed coat had a high content of total phenolics, and seeds cooked in normal conditions (with the seed coat) showed a total phenolics content five times higher than that of seeds cooked without the seed coat. Cooking was then extremely favorable to pinhão seeds bioactive compounds content. The carbohydrate availability was evaluated in a short-term assay in humans by the GI. The GI of pinhão seeds cooked with the coat (67%) was similar to that of the seeds cooked without a coat (62%) and lower than bread, showing that cooking does not interfere with starch availability. The low glycemic response can be partly due to its high content of resistant starch (9% of the total starch).

  17. Checklist of host plants of insect galls in the state of Goiás in the Midwest Region of Brazil

    PubMed Central

    Porfírio Júnior, Eder Dasdoriano; Ribeiro, Bárbara Araújo; Silva, Taiza Moura; Silva, Elienai Cândida e; Guilherme, Frederico Augusto Guimarães; Scareli-Santos, Claudia; dos Santos, Benedito Baptista

    2015-01-01

    Abstract Background Surveys of host plants of insect galls have been performed in different regions of Brazil. The knowledge of species of host plants of insect galls is fundamental to further studies of plant-galling insect interactions. However, a list of host plant species of gall-inducing insects has not yet been compiled for the flora of the Midwest Region of Brazil. New information We provide a compilation of the plant species reported to host insect galls in the Cerrado of the state of Goiás in the Midwest Region of Brazil. Altogether we found records for 181 species of 47 families of host plants, which hosted 365 distinct gall morphotypes. PMID:26696767

  18. The Effect of Host-Plant Phylogenetic Isolation on Species Richness, Composition and Specialization of Insect Herbivores: A Comparison between Native and Exotic Hosts

    PubMed Central

    Grandez-Rios, Julio Miguel; Lima Bergamini, Leonardo; Santos de Araújo, Walter; Villalobos, Fabricio; Almeida-Neto, Mário

    2015-01-01

    Understanding the drivers of plant-insect interactions is still a key issue in terrestrial ecology. Here, we used 30 well-defined plant-herbivore assemblages to assess the effects of host plant phylogenetic isolation and origin (native vs. exotic) on the species richness, composition and specialization of the insect herbivore fauna on co-occurring plant species. We also tested for differences in such effects between assemblages composed exclusively of exophagous and endophagous herbivores. We found a consistent negative effect of the phylogenetic isolation of host plants on the richness, similarity and specialization of their insect herbivore faunas. Notably, except for Jaccard dissimilarity, the effect of phylogenetic isolation on the insect herbivore faunas did not vary between native and exotic plants. Our findings show that the phylogenetic isolation of host plants is a key factor that influences the richness, composition and specialization of their local herbivore faunas, regardless of the host plant origin. PMID:26379159

  19. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae)

    PubMed Central

    Feng, Yi; Wratten, Steve; Sandhu, Harpinder; Keller, Michael

    2015-01-01

    The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats. PMID

  20. Gene flow in the green mirid, Creontiades dilutus (Hemiptera: Miridae), across arid and agricultural environments with different host plant species

    PubMed Central

    Hereward, J P; Walter, G H; DeBarro, P J; Lowe, A J; Riginos, C

    2013-01-01

    Creontiades dilutus (Stål), the green mirid, is a polyphagous herbivorous insect endemic to Australia. Although common in the arid interior of Australia and found on several native host plants that are spatially and temporally ephemeral, green mirids also reach pest levels on several crops in eastern Australia. These host-associated dynamics, distributed across a large geographic area, raise questions as to whether (1) seasonal fluctuations in population size result in genetic bottlenecks and drift, (2) arid and agricultural populations are genetically isolated, and (3) the use of different host plants results in genetic differentiation. We sequenced a mitochondrial COI fragment from individuals collected over 24 years and screened microsatellite variation from 32 populations across two seasons. The predominance of a single COI haplotype and negative Tajima D in samples from 2006/2007 fit with a population expansion model. In the older collections (1983 and 1993), a different haplotype is most prevalent, consistent with successive population contractions and expansions. Microsatellite data indicates recent migration between inland sites and coastal crops and admixture in several populations. Altogether, the data suggest that long-distance dispersal occurs between arid and agricultural regions, and this, together with fluctuations in population size, leads to temporally dynamic patterns of genetic differentiation. Host-associated differentiation is evident between mirids sampled from plants in the genus Cullen (Fabaceae), the primary host, and alternative host plant species growing nearby in arid regions. Our results highlight the importance of jointly assessing natural and agricultural environments in understanding the ecology of pest insects. PMID:23610626

  1. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae).

    PubMed

    Feng, Yi; Wratten, Steve; Sandhu, Harpinder; Keller, Michael

    2015-01-01

    The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats.

  2. Insect Resistance Management in Bt Maize: Wild Host Plants of Stem Borers Do Not Serve as Refuges in Africa.

    PubMed

    Van den Berg, J

    2017-02-01

    Resistance evolution by target pests threatens the sustainability of Bt maize in Africa where insect resistance management (IRM) strategies are faced by unique challenges. The assumptions, on which current IRM strategies for stem borers are based, are not all valid for African maize stem borer species. The high dose-refuge strategy which is used to delay resistance evolution relies heavily on the presence of appropriate refuges (non-Bt plants) where pests are not under selection pressure and where sufficient numbers of Bt-susceptible individuals are produced to mate with possible survivors on the Bt maize crop. Misidentification of stem borer species and inaccurate reporting on wild host plant diversity over the past six decades created the perception that grasses will contribute to IRM strategies for these pests in Africa. Desired characteristics of refuge plants are that they should be good pest hosts, implying that larval survival is high and that it produces sufficient numbers of high-quality moths. Refuge plants should also have large cover abundance in areas where Bt maize is planted. While wild host plants may suffice in IRM strategies for polyphagous pests, this is not the case with stenophagous pests. This review discusses data of ecological studies and stem borer surveys conducted over the past decade and shows that wild host plants are unsuitable for development and survival of sufficient numbers of stem borer individuals. These grasses rather act as dead-end-trap plants and do not comply with refuge requirements of producing 500 susceptible individuals for every one resistant individual that survives on Bt maize.

  3. Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its rutaceous host plants.

    PubMed

    Patt, J M; Sétamou, M

    2010-04-01

    Diaphorina citri Kuwayama (Hemiptera: Psyllidae) carries Candidatus liberibacter spp., the putative causal agents of Huanglongbing. D. citri reproduces and develops only on the flushing shoots of its rutaceous host plants. Here we examined whether D. citri is attracted to host plant odors and a mixture of synthetic terpenes. Tests conducted in a vertically oriented Y-tube olfactometer showed that both males and females preferentially entered the Y-tube arm containing the odor from the young shoots of Murraya paniculata (L.) Jack and Citrus limon L. Burm. f. cultivar Eureka. Only males exhibited a preference for the odor of C. sinensis L., whereas the odor of C. x paradisi MacFadyen cultivar Rio Red was not attractive to both sexes. The volatiles emitted by young shoots of grapefruit cultivar Rio Red, Meyer lemon (Citrus x limon L. Burm.f.), and M. paniculata were analyzed by gas chromatograph-mass spectrometry. The samples were comprised of monoterpenes, monoterpene esters, and sesquiterpenes. The number of compounds present varied from 2 to 17, whereas the total amount of sample collected over 6 h ranged from 5.6 to 119.8 ng. The quantitatively dominant constituents were (E)-beta-ocimene, linalool, linalyl acetate, and beta-caryophyllene. The attractiveness of a mixture of synthetic terpenes, modeled on the volatiles collected from M. paniculata, was evaluated in screened cages in a no-choice test. At three observation intervals, significantly more individuals were trapped on white targets scented with the mixture than on unscented targets. These results indicate the feasibility of developing D. citri attractants patterned on actual host plant volatiles.

  4. Impact of Vector Dispersal and Host-Plant Fidelity on the Dissemination of an Emerging Plant Pathogen

    PubMed Central

    Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael

    2012-01-01

    Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector. PMID:23284774

  5. Relative Fitness of Helicoverpa armigera (Lepidoptera: Noctuidae) on Seven Host Plants: A Perspective for IPM in Brazil

    PubMed Central

    Reigada, C.; Guimarães, K. F.; Parra, J. R. P.

    2016-01-01

    The cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a widespread pest of many cultivated and wild plants in Europe, Africa, Asia, and Australia. In 2013, this species was reported in Brazil, attacking various host crops in the midwestern and northeastern regions of the country and is now found countrywide. Aiming to understand the effects of different host plants on the life cycle of H. armigera, we selected seven species of host plants that mature in different seasons and are commonly grown in these regions: cotton (Gossypium hirsutum, “FM993”), corn (Zea mays, “2B587”), soybean (Glycine max, “99R01”), rattlepods (Crotalaria spectabilis), millet (Pennisetum glaucum, “ADR300”), sorghum (Sorghum bicolor, “AGROMEN70G35”), and cowpea (Vigna unguiculata, “SEMPRE VERDE”). The development time of immatures, body weight, survivorship, and fecundity of H. armigera were evaluated on each host plant under laboratory conditions. The bollworms did not survive on corn, millet, or sorghum and showed very low survival rates on rattlepods. Survival rates were highest on soybean, followed by cotton and cowpea. The values for relative fitness found on soybean, cotton, cowpea, and rattlepods were 1, 0.5, 0.43, and 0.03, respectively. Survivorship, faster development time, and fecundity on soybean, cotton, and cowpea were positively correlated. Larger pupae and greater fecundity were found on soybean and cotton. The results indicated that soybean, cotton, and cowpea are the most suitable plants to support the reproduction of H. armigera in the field. PMID:26798139

  6. A Global Phylogeny of Leafmining Ectoedemia Moths (Lepidoptera: Nepticulidae): Exploring Host Plant Family Shifts and Allopatry as Drivers of Speciation

    PubMed Central

    Doorenweerd, Camiel; van Nieukerken, Erik J.; Menken, Steph B. J.

    2015-01-01

    Background Host association patterns in Ectoedemia (Lepidoptera: Nepticulidae) are also encountered in other insect groups with intimate plant relationships, including a high degree of monophagy, a preference for ecologically dominant plant families (e.g. Fagaceae, Rosaceae, Salicaceae, and Betulaceae) and a tendency for related insect species to feed on related host plant species. The evolutionary processes underlying these patterns are only partly understood, we therefore assessed the role of allopatry and host plant family shifts in speciation within Ectoedemia. Methodology Six nuclear and mitochondrial DNA markers with a total aligned length of 3692 base pairs were used to infer phylogenetic relationships among 92 species belonging to the subgenus Ectoedemia of the genus Ectoedemia, representing a thorough taxon sampling with a global coverage. The results support monophyletic species groups that are congruent with published findings based on morphology. We used the obtained phylogeny to explore host plant family association and geographical distribution to investigate if host shifts and allopatry have been instrumental in the speciation of these leafmining insects. Significance We found that, even though most species within species groups commonly feed on plants from one family, shifts to a distantly related host family have occasionally occurred throughout the phylogeny and such shifts are most commonly observed towards Betulaceae. The largest radiations have occurred within species groups that feed on Fagaceae, Rosaceae, and Salicaceae. Most species are restricted to one of the seven global biogeographic regions, but within species groups representatives are commonly found in different biogeographic regions. Although we find general patterns with regard to host use and biogeography, there are differences between clades that suggest that different drivers of speciation, and perhaps drivers that we did not examine, have shaped diversity patterns in different

  7. The host plant metabolite glucose is the precursor of diffusible signal factor (DSF) family signals in Xanthomonas campestris.

    PubMed

    Deng, Yinyue; Liu, Xiaoling; Wu, Ji'en; Lee, Jasmine; Chen, Shaohua; Cheng, Yingying; Zhang, Chunyan; Zhang, Lian-Hui

    2015-04-01

    Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium of X. campestris pv. campestris could significantly boost DSF family signal production. It was subsequently revealed that X. campestris pv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified in Burkholderia cenocepacia to be involved in regulation of motility, biofilm formation, and virulence in B. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production in X. campestris pv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis in X. campestris pv. campestris. (13)C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate that X. campestris pv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence.

  8. Interactions of Seedborne Bacterial Pathogens with Host and Non-Host Plants in Relation to Seed Infestation and Seedling Transmission

    PubMed Central

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1×106 colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized

  9. The key role of peltate glandular trichomes in symbiota comprising clavicipitaceous fungi of the genus periglandula and their host plants.

    PubMed

    Steiner, Ulrike; Kucht, Sabine Hellwig neé; Ahimsa-Müller, Mahalia A; Grundmann, Nicola; Li, Shu-Ming; Drewke, Christel; Leistner, Eckhard

    2015-04-16

    Clavicipitaceous fungi producing ergot alkaloids were recently discovered to be epibiotically associated with peltate glandular trichomes of Ipomoea asarifolia and Turbina corymbosa, dicotyledonous plants of the family Convolvulaceae. Mediators of the close association between fungi and trichomes may be sesquiterpenes, main components in the volatile oil of different convolvulaceous plants. Molecular biological studies and microscopic investigations led to the observation that the trichomes do not only secrete sesquiterpenes and palmitic acid but also seem to absorb ergot alkaloids from the epibiotic fungal species of the genus Periglandula. Thus, the trichomes are likely to have a dual and key function in a metabolic dialogue between fungus and host plant.

  10. Aspects of adaptive answering formation in virus-host plant pathosystem for different wheat cultivars under simulating microgravity condition.

    PubMed

    Mishchenko, L T

    2007-07-01

    Investigations of prolonged clinorotation effect on some morphological and physiological parameters under Wheat streak mosaic virus WSMW-infection of Apogee and Lada wheat cultivars were carried out. Experiments were held on universal clinostat CYCLE-2. Clinorotation caused changing of WSMV virions shape and reducing of the virus reproduction. Apogee wheat plants grown under two stress factors (infection and clinorotation) produced more kernels than stationary (motionless) plants, but the average weight of kernel was lower. Under clinorotation changes in host plant-virus system take place and adaptive reactions for simulated microgravity conditions form. These lead to reduction of potyvirus replication.

  11. The Key Role of Peltate Glandular Trichomes in Symbiota Comprising Clavicipitaceous Fungi of the Genus Periglandula and Their Host Plants

    PubMed Central

    Steiner, Ulrike; Hellwig, Sabine; Ahimsa-Müller, Mahalia A.; Grundmann, Nicola; Li, Shu-Ming; Drewke, Christel; Leistner, Eckhard

    2015-01-01

    Clavicipitaceous fungi producing ergot alkaloids were recently discovered to be epibiotically associated with peltate glandular trichomes of Ipomoea asarifolia and Turbina corymbosa, dicotyledonous plants of the family Convolvulaceae. Mediators of the close association between fungi and trichomes may be sesquiterpenes, main components in the volatile oil of different convolvulaceous plants. Molecular biological studies and microscopic investigations led to the observation that the trichomes do not only secrete sesquiterpenes and palmitic acid but also seem to absorb ergot alkaloids from the epibiotic fungal species of the genus Periglandula. Thus, the trichomes are likely to have a dual and key function in a metabolic dialogue between fungus and host plant. PMID:25894995

  12. Host plant pubescence: Effect on silverleaf whitefly, Bemisia argentifolii, fourth instar and pharate adult dimensions and ecdysteroid titer fluctuations

    PubMed Central

    Gelman, Dale B.; Gerling, Dan

    2003-01-01

    The ability to generate physiologically synchronous groups of insects is vital to the performance of investigations designed to test insect responses to intrinsic and extrinsic stimuli. During a given instar, the silverleaf whitefly, Bemisia argentifolii, increase in depth but not in length or width. A staging system to identify physiologically synchronous 4th instar and pharate adult silverleaf whiteflies based on increasing body depth and the development of the adult eye has been described previously. This study determined the effect of host plant identity on ecdysteroid fluctuations during the 4th instar and pharate adult stages, and on the depth, length and width dimensions of 4th instar/pharate adult whiteflies. When grown on the pubescent-leafed green bean, tomato and poinsettia plants, these stages were significantly shorter and narrower, but attained greater depth than when grown on the glabrous-leafed cotton, collard and sweet potato plants. Thus, leaf pubescence is associated with reduced length and width dimensions, but increased depth dimensions in 4th instars and pharate adults. For all host plants, nymphal ecdysteroid titers peaked just prior to the initiation of adult development. However, when reared on pubescent-leafed plants, the initiation of adult development typically occurred in nymphs that had attained a depth of 0.2 to 0.25 mm (Stage 3 – 4). When reared on glabrous-leafed plants, the initiation of adult development typically occurred earlier, in nymphs that had attained a depth of only 0.15–0.18 mm (Stage 2 Old - early 3). Therefore, based on ecdysteroid concentration, it appears that Stage-2, -3 and -4/5 nymphs reared on pubescent-leafed plants are physiologically equivalent to Stage-1, -2 Young and -2 Old/3, respectively, nymphs reared on glabrous-leafed plants. The host plant affected the width but not the height of the nymphal-adult premolt ecdysteroid peak. However, leaf pubescence was not the determining factor. Thus, host plant

  13. When History Repeats Itself: Exploring the Genetic Architecture of Host-Plant Adaptation in Two Closely Related Lepidopteran Species

    PubMed Central

    Alexandre, Hermine; Ponsard, Sergine; Bourguet, Denis; Vitalis, Renaud; Audiot, Philippe; Cros-Arteil, Sandrine; Streiff, Réjane

    2013-01-01

    The genus Ostrinia includes two allopatric maize pests across Eurasia, namely the European corn borer (ECB, O. nubilalis) and the Asian corn borer (ACB, O. furnacalis). A third species, the Adzuki bean borer (ABB, O. scapulalis), occurs in sympatry with both the ECB and the ACB. The ABB mostly feeds on native dicots, which probably correspond to the ancestral host plant type for the genus Ostrinia. This situation offers the opportunity to characterize the two presumably independent adaptations or preadaptations to maize that occurred in the ECB and ACB. In the present study, we aimed at deciphering the genetic architecture of these two adaptations to maize, a monocot host plant recently introduced into Eurasia. To this end, we performed a genome scan analysis based on 684 AFLP markers in 12 populations of ECB, ACB and ABB. We detected 2 outlier AFLP loci when comparing French populations of the ECB and ABB, and 9 outliers when comparing Chinese populations of the ACB and ABB. These outliers were different in both countries, and we found no evidence of linkage disequilibrium between any two of them. These results suggest that adaptation or preadaptation to maize relies on a different genetic architecture in the ECB and ACB. However, this conclusion must be considered in light of the constraints inherent to genome scan approaches and of the intricate evolution of adaptation and reproductive isolation in the Ostrinia spp. complex. PMID:23874914

  14. Concurrent modulation of neuronal and behavioural olfactory responses to sex and host plant cues in a male moth

    PubMed Central

    Kromann, Sophie H.; Saveer, Ahmed M.; Binyameen, Muhammad; Bengtsson, Marie; Birgersson, Göran; Hansson, Bill S.; Schlyter, Fredrik; Witzgall, Peter; Ignell, Rickard; Becher, Paul G.

    2015-01-01

    Mating has profound effects on animal physiology and behaviour, not only in females but also in males, which we show here for olfactory responses. In cotton leafworm moths, Spodoptera littoralis, odour-mediated attraction to sex pheromone and plant volatiles are modulated after mating, producing a behavioural response that matches the physiological condition of the male insect. Unmated males are attracted by upwind flight to sex pheromone released by calling females, as well as to volatiles of lilac flowers and green leaves of the host plant cotton, signalling adult food and mating sites, respectively. Mating temporarily abolishes male attraction to females and host plant odour, but does not diminish attraction to flowers. This behavioural modulation is correlated with a response modulation in the olfactory system, as shown by electro-physiological recordings from antennae and by functional imaging of the antennal lobe, using natural odours and synthetic compounds. An effect of mating on the olfactory responses to pheromone and cotton plant volatiles but not to lilac flowers indicates the presence of functionally independent neural circuits within the olfactory system. Our results indicate that these circuits interconnect and weigh perception of social and habitat odour signals to generate appropriate behavioural responses according to mating state. PMID:25621329

  15. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants.

    PubMed

    Vályi, Kriszta; Rillig, Matthias C; Hempel, Stefan

    2015-03-01

    We studied the effect of host plant identity and land-use intensity (LUI) on arbuscular mycorrhizal fungi (AMF, Glomeromycota) communities in roots of grassland plants. These are relevant factors for intraradical AMF communities in temperate grasslands, which are habitats where AMF are present in high abundance and diversity. In order to focus on fungi that directly interact with the plant at the time, we investigated root-colonizing communities. Our study sites represent an LUI gradient with different combinations of grazing, mowing, and fertilization. We used massively parallel multitag pyrosequencing to investigate AMF communities in a large number of root samples, while being able to track the identity of the host. We showed that host plants significantly differed in AMF community composition, while land use modified this effect in a plant species-specific manner. Communities in medium and low land-use sites were subsets of high land-use communities, suggesting a differential effect of land use on the dispersal of AMF species with different abundances and competitive abilities. We demonstrate that in these grasslands, there is a small group of highly abundant, generalist fungi which represent the dominating species in the AMF community.

  16. Effects of host plant environment and Ustilago maydis infection on the fungal endophyte community of maize (Zea mays).

    PubMed

    Pan, Jean J; Baumgarten, Andrew M; May, Georgiana

    2008-01-01

    The focus of many fungal endophyte studies has been how plants benefit from endophyte infection. Few studies have investigated the role of the host plant as an environment in shaping endophyte community diversity and composition. The effects that different attributes of the host plant, that is, host genetic variation, host variation in resistance to the fungal pathogen Ustilago maydis and U. maydis infection, have on the fungal endophyte communities in maize (Zea mays) was examined. The internal transcribed spacer (ITS) region of the rDNA was sequenced to identify fungi and the endophyte communities were compared in six maize lines that varied in their resistance to U. maydis. It was found that host genetic variation, as determined by maize line, had significant effects on species richness, while the interactions between line and U. maydis infection and line and field plot had significant effects on endophyte community composition. However, the effects of maize line were not dependent on whether lines were resistant or susceptible to U. maydis. Almost 3000 clones obtained from 58 plants were sequenced to characterize the maize endophyte community. These results suggest that the endophyte community is shaped by complex interactions and factors, such as inoculum pool and microclimate, may be important.

  17. Strong selection on mandible and nest features in a carpenter bee that nests in two sympatric host plants.

    PubMed

    Flores-Prado, Luis; Pinto, Carlos F; Rojas, Alejandra; Fontúrbel, Francisco E

    2014-05-01

    Host plants are used by herbivorous insects as feeding or nesting resources. In wood-boring insects, host plants features may impose selective forces leading to phenotypic differentiation on traits related to nest construction. Carpenter bees build their nests in dead stems or dry twigs of shrubs and trees; thus, mandibles are essential for the nesting process, and the nest is required for egg laying and offspring survival. We explored the shape and intensity of natural selection on phenotypic variation on three size measures of the bees (intertegular width, wing length, and mandible area) and two nest architecture measures (tunnel length and diameter) on bees using the native species Chusquea quila (Poaceae), and the alloctonous species Rubus ulmifolius (Rosaceae), in central Chile. Our results showed significant and positive linear selection gradients for tunnel length on both hosts, indicating that bees building long nests have more offspring. Bees with broader mandibles show greater fitness on C. quila but not on R. ulmifolius. Considering that C. quila represents a selective force on mandible area, we hypothesized a high adaptive value of this trait, resulting in higher fitness values when nesting on this host, despite its wood is denser and hence more difficult to be bored.

  18. In vivo proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the host plant Brassica oleracea.

    PubMed

    Andrade, Aretusa E; Silva, Luciano P; Pereira, Jackeline L; Noronha, Eliane F; Reis, Fabio B; Bloch, Carlos; dos Santos, Marise F; Domont, Gilberto B; Franco, Octávio L; Mehta, Angela

    2008-04-01

    The genus Xanthomonas is composed of several species that cause severe crop losses around the world. In Latin America, one of the most relevant species is Xanthomonas campestris pv. campestris, which is responsible for black rot in cruciferous plants. This pathogen causes yield losses in several cultures, including cabbage, cauliflower and broccoli. Although the complete structural genome of X. campestris pv. campestris has been elucidated, little is known about the protein expression of this pathogen in close interaction with the host plant. Recently, a method for in vivo analysis of Xanthomonas axonopodis pv. citri was developed. In the present study, this technique was employed for the characterization of the protein expression of X. campestris pv. campestris in close interaction with the host plant Brassica oleracea. The bacterium was infiltrated into leaves of the susceptible cultivar and later recovered for proteome analysis. Recovered cells were used for protein extraction and separated by two-dimensional electrophoresis. Proteins were analysed by peptide mass fingerprinting or de novo sequencing and identified by searches in public databases. The approach used in this study may be extremely useful in further analyses in order to develop novel strategies to control this important plant pathogen.

  19. A competitive index assay identifies several Ralstonia solanacearum type III effector mutant strains with reduced fitness in host plants.

    PubMed

    Macho, Alberto P; Guidot, Alice; Barberis, Patrick; Beuzón, Carmen R; Genin, Stéphane

    2010-09-01

    Ralstonia solanacearum, the causal agent of bacterial wilt, is a soil bacterium which can naturally infect a wide range of host plants through the root system. Pathogenicity relies on a type III secretion system which delivers a large set of approximately 75 type III effectors (T3E) into plant cells. On several plants, pathogenicity assays based on quantification of wilting symptoms failed to detect a significant contribution of R. solanacearum T3E in this process, thus revealing the collective effect of T3E in pathogenesis. We developed a mixed infection-based method with R. solanacearum to monitor bacterial fitness in plant leaf tissues as a virulence assay. This accurate and sensitive assay provides evidence that growth defects can be detected for T3E mutants: we identified 12 genes contributing to bacterial fitness in eggplant leaves and 3 of them were also implicated in bacterial fitness on two other hosts, tomato and bean. Contribution to fitness of several T3E appears to be host specific, and we show that some known avirulence determinants such as popP2 or avrA do provide competitive advantages on some susceptible host plants. In addition, this assay revealed that the efe gene, which directs the production of ethylene by bacteria in plant tissues, and hdfB, involved in the biosynthesis of the secondary metabolite 3-hydroxy-oxindole, are also required for optimal growth in plant leaf tissues.

  20. Asynchrony between Host Plant and Insects-Defoliator within a Tritrophic System: The Role of Herbivore Innate Immunity

    PubMed Central

    Martemyanov, Vyacheslav V.; Pavlushin, Sergey V.; Dubovskiy, Ivan M.; Yushkova, Yuliya V.; Morosov, Sergey V.; Chernyak, Elena I.; Efimov, Vadim M.; Ruuhola, Teija; Glupov, Victor V.

    2015-01-01

    The effects of asynchrony in the phenology of spring-feeding insect-defoliators and their host plants on insects’ fitness, as well as the importance of this effect for the population dynamics of outbreaking species of insects, is a widespread and well-documented phenomenon. However, the spreading of this phenomenon through the food chain, and especially those mechanisms operating this spreading, are still unclear. In this paper, we study the effect of seasonally declined leafquality (estimated in terms of phenolics and nitrogen content) on herbivore fitness, immune parameters and resistance against pathogen by using the silver birch Betula pendula—gypsy moth Lymantria dispar—nucleopolyhedrovirus as the tritrophic system. We show that a phenological mismatch induced by the delay in the emergence of gypsy moth larvae and following feeding on mature leaves has negative effects on the female pupal weight, on the rate of larval development and on the activity of phenoloxidase in the plasma of haemolymph. In addition, the larval susceptibility to exogenous nucleopolyhydrovirus infection as well as covert virus activation were both enhanced due to the phenological mismatch. The observed effects of phenological mismatch on insect-baculovirus interaction may partially explain the strong and fast fluctuations in the population dynamics of the gypsy moth that is often observed in the studied part of the defoliator area. This study also reveals some indirect mechanisms of effect related to host plant quality, which operate through the insect innate immune status and affect resistance to both exogenous and endogenous virus. PMID:26115118

  1. Infection of host plants by Cucumber mosaic virus increases the susceptibility of Myzus persicae aphids to the parasitoid Aphidius colemani.

    PubMed

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2015-06-04

    Plant viruses can profoundly alter the phenotypes of their host plants, with potentially far-reaching implications for ecology. Yet few studies have explored the indirect, host-mediated, effects of plant viruses on non-vector insects. We examined how infection of Cucurbita pepo plants by Cucumber mosaic virus (CMV) impacted the susceptibility of aphids (Myzus persicae) to attack by the parasitoid wasp Aphidius colemani. In semi-natural foraging assays, we observed higher rates of aphid parasitism on infected plants compared to healthy plants. Subsequent experiments revealed that this difference is not explained by different attack rates on plants differing in infection status, but rather by the fact that parasitoid larvae successfully complete their development more often when aphid hosts feed on infected plants. This suggests that the reduced nutritional quality of infected plants as host for aphids--documented in previous studies--compromises their ability to mount effective defenses against parasitism. Furthermore, our current findings indicate that the aphid diet during parasitoid development (rather than prior to wasp oviposition) is a key factor influencing resistance. These findings complement our previous work showing that CMV-induced changes in host plant chemistry alter patterns of aphid recruitment and dispersal in ways conducive to virus transmission.

  2. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant.

    PubMed

    Mutti, Navdeep S; Louis, Joe; Pappan, Loretta K; Pappan, Kirk; Begum, Khurshida; Chen, Ming-Shun; Park, Yoonseong; Dittmer, Neal; Marshall, Jeremy; Reese, John C; Reeck, Gerald R

    2008-07-22

    In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid-plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Here, we focus on a salivary protein we have arbitrarily designated Protein C002. We have shown, by using RNAi-based transcript knockdown, that this protein is important in the survival of the pea aphid (Acyrthosiphon pisum) on fava bean, a host plant. Here, we further characterize the protein, its transcript, and its gene, and we study the feeding process of knockdown aphids. The encoded protein fails to match any protein outside of the family Aphididae. By using in situ hybridization and immunohistochemistry, the transcript and the protein were localized to a subset of secretory cells in principal salivary glands. Protein C002, whose sequence contains an N-terminal secretion signal, is injected into the host plant during aphid feeding. By using the electrical penetration graph method on c002-knockdown aphids, we find that the knockdown affects several aspects of foraging and feeding, with the result that the c002-knockdown aphids spend very little time in contact with phloem sap in sieve elements. Thus, we infer that Protein C002 is crucial in the feeding of the pea aphid on fava bean.

  3. A phloem-limited fijivirus induces the formation of neoplastic phloem tissues that house virus multiplication in the host plant

    PubMed Central

    Shen, Jiangfeng; Chen, Xian; Chen, Jianping; Sun, Liying

    2016-01-01

    A number of phloem-limited viruses induce the development of tumours (enations) in the veins of host plants, but the relevance of tumour induction to the life cycle of those viruses is unclear. In this study, we performed molecular and structural analyses of tumours induced by rice black-streaked dwarf virus (RBSDV, genus Fijivirus) infection in maize plants. The transcript level of the maize cdc2 gene, which regulates the cell cycle, was highly elevated in tumour tissues. Two-dimensional electrophoresis identified 25 cellular proteins with altered accumulation in the tumour tissues. These proteins are involved in various metabolic pathways, including photosynthesis, redox, energy pathways and amino acid synthesis. Histological analysis indicated that the tumours predominantly originated from hyperplastic growth of phloem, but those neoplastic tissues have irregular structures and cell arrangements. Immunodetection assays and electron microscopy observations indicated that in the shoots, RBSDV is confined to phloem and tumour regions and that virus multiplication actively occurs in the tumour tissue, as indicated by the high accumulation of non-structural proteins and formation of viroplasms in the tumour cells. Thus, the induction of tumours by RBSDV infection provides a larger environment that is favourable for virus propagation in the host plant. PMID:27432466

  4. Molecular evolution and population genetics of two Drosophila mettleri cytochrome P450 genes involved in host plant utilization

    PubMed Central

    Bono, Jeremy M.; Matzkin, Luciano M.; Castrezana, Sergio; Markow, Therese A.

    2009-01-01

    Understanding the genetic basis of adaptation is one of the primary goals of evolutionary biology. The evolution of xenobiotic resistance in insects has proven to be an especially suitable arena for studying the genetics of adaptation, and resistant phenotypes are known to result from both coding and regulatory changes. In this study, we examine the evolutionary history and population genetics of two Drosophila mettleri cytochrome P450 genes that are putatively involved in the detoxification of alkaloids present in two of its cactus hosts: saguaro (Carnegiea gigantea) and senita (Lophocereus schottii). Previous studies demonstrated that Cyp28A1 was highly upregulated following exposure to rotting senita tissue while Cyp4D10 was highly upregulated following exposure to rotting saguaro tissue. Here, we show that a subset of sites in Cyp28A1 experienced adaptive evolution specifically in the D. mettleri lineage. Moreover, neutrality tests in several populations were also consistent with a history of selection on Cyp28A1. In contrast, we did not find evidence for positive selection on Cyp4D10, though this certainly does not preclude its involvement in host plant use. A surprising result that emerged from our population genetic analyses was the presence of significant genetic differentiation between flies collected from different host plant species (saguaro and senita) at Organ Pipe National Monument, Arizona, USA. This preliminary evidence suggests that D. mettleri may have evolved into distinctive host races that specialize on different hosts, a possibility that warrants further investigation. PMID:18510584

  5. Structure and development of 'witches' broom' galls in reproductive organs of Byrsonima sericea (Malpighiaceae) and their effects on host plants.

    PubMed

    Guimarães, A L A; Neufeld, P M; Santiago-Fernandes, L D R; Vieira, A C M

    2015-03-01

    Galls are anomalies in plant development of parasitic origin that affect the cellular differentiation or growth and represent a remarkable plant-parasite interaction. Byrsonima sericea DC. (Malpighiaceae) is a super host of several different types of gall in both vegetative and reproductive organs. The existence of galls in reproductive organs and their effects on the host plant are seldom described in the literature. In this paper, we present a novel study of galls in plants of the Neotropical region: the 'witches' broom' galls developed in floral structures of B. sericea. The unaffected inflorescences are characterised by a single indeterminate main axis with spirally arranged flower buds. The flower buds developed five unaffected brownish hairy sepals and five pairs of elliptical yellow elaiophores, five yellow fringed petals, 10 stamens and a pistil with superior tricarpellar and trilocular ovary. The affected inflorescences showed changes in architecture, with branches arising from the main axis and flower buds. The flower buds exhibited several morphological and anatomical changes. The sepals, petals and carpels converted into leaf-like structures after differentiation. Stamens exhibited degeneration of the sporogenous tissue and structures containing hyphae and spores. The gynoecium did not develop, forming a central meristematic region, from which emerges the new inflorescence. In this work, we discuss the several changes in development of reproductive structures caused by witches' broom galls and their effects on reproductive success of the host plants.

  6. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection.

    PubMed

    Kamber, Tim; Buchmann, Jan P; Pothier, Joël F; Smits, Theo H M; Wicker, Thomas; Duffy, Brion

    2016-02-17

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora.

  7. De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies.

    PubMed

    Engler-Chaouat, Helene S; Gilbert, Lawrence E

    2007-01-01

    Larvae of Heliconius butterflies (Nymphalidae: Heliconiinae) feed exclusively on cyanogenic leaves of Passiflora (passion vine). Most Heliconius manufacture cyanogenic glycosides (cyanogens) and some species sequester cyanogens from host plants. We compare ability to sequester simple monoglycoside cyclopentenyl (SMC) cyanogens and manufacture aliphatic cyanogens in 12 Heliconius species, including larvae that are specialized (single host species) and generalized (many host species). All butterflies tested higher for cyanide concentrations when reared on plants that larvae can sequester from (SMC plants) than when reared on plants that larvae do not sequester from (non-SMC plants). Specialists in the sara-sapho clade sequestered SMC cyanogens from specific host plants at seven times that of Passiflora generalists fed the same hosts. In contrast, sara-sapho clade species reared on non-SMC plants had significantly lower cyanide concentrations from de novo synthesis than generalists fed the same plants. Furthermore, cyanogen analyses indicated that Heliconius sara butterflies reared on an SMC host had a greater proportion of sequestered SMC cyanogens (95.0%) than de novo-synthesized aliphatic cyanogens (5.0%). Thus, sequestration and de novo synthesis are negatively correlated traits. Results suggest that losing the ability to synthesize cyanogens has restricted sara-sapho clade species to specific hosts containing SMC cyanogens and explains dietary restriction in this clade.

  8. [Responses of Caragana seed pests to host plant patch quality and patch pattern in desert regions of Ningxia, Northwest China].

    PubMed

    Zhang, Da-zhi; He, Da-han

    2011-07-01

    Taking the desert landscape in mid-eastern Ningxia of Northeast China as the background, eighteen patches of Caragana shrub lands (natural or manned) with the habitat types of manually-fixed sandy land, mobile sandy land, and silty-loam downland were selected as study sites to investigate the responses of three Caragana seed pest species (Kytorhinus immixtus, Etiella zinckenella, and Bruchophagus neocaraganae) to the host plant patch quality, patch area, and patch spatial pattern. The damaged rate of host plant by the pests had close relations to the patch quality, patch pattern, and the transferring capability of the pests. The responses of the pests to patch quality were affected by patch scale, and among the three habitat types, manually-fixed sandy land had the highest damaged rate, followed by mobile sandy land, and silty-loam downland, with significant differences among them (P<0.05). In small scale patch pattern, there existed definite correlations between the pest number and the patch area and its fragmentation degree. The decrease of patch area and the increase of the fragmentation degree reduced the damage rate of high transferring capability Etiella zinckenella (r = 0.365), but had less effects on low transferring capability K. immixtus (r = 0.160) and B. neocaraganae (r = 0.193). The strength of patch edge effect and the mutual complement of the resources around patches had positive effects on the population density of the pests.

  9. Dissecting the contributions of plasticity and local adaptation to the phenology of a butterfly and its host plants.

    PubMed

    Phillimore, Albert B; Stålhandske, Sandra; Smithers, Richard J; Bernard, Rodolphe

    2012-11-01

    Phenology affects the abiotic and biotic conditions that an organism encounters and, consequently, its fitness. For populations of high-latitude species, spring phenology often occurs earlier in warmer years and regions. Here we apply a novel approach, a comparison of slope of phenology on temperature over space versus over time, to identify the relative roles of plasticity and local adaptation in generating spatial phenological variation in three interacting species, a butterfly, Anthocharis cardamines, and its two host plants, Cardamine pratensis and Alliaria petiolata. All three species overlap in the time window over which mean temperatures best predict variation in phenology, and we find little evidence that a day length requirement causes the sensitive time window to be delayed as latitude increases. The focal species all show pronounced temperature-mediated phenological plasticity of similar magnitude. While we find no evidence for local adaptation in the flowering times of the plants, geographic variation in the phenology of the butterfly is consistent with countergradient local adaptation. The butterfly's phenology appears to be better predicted by temperature than it is by the flowering times of either host plant, and we find no evidence that coevolution has generated geographic variation in adaptive phenological plasticity.

  10. Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: 15N is the key signal.

    PubMed

    Hobbie, John E; Hobbie, Erik A; Drossman, Howard; Conte, Maureen; Weber, J C; Shamhart, Julee; Weinrobe, Melissa

    2009-01-01

    Symbiotic fungi's role in providing nitrogen to host plants is well-studied in tundra at Toolik Lake, Alaska, but little-studied in the adjoining boreal forest ecosystem. Along a 570 km north-south transect from the Yukon River to the North Slope of Alaska, the 15N content was strongly reduced in ectomycorrhizal and ericoid mycorrhizal plants including Betula, Salix, Picea mariana (P. Mill.) B.S.P., Picea glauca Moench (Voss), and ericaceous plants. Compared with the 15N content of soil, the foliage of nonmycorrhizal plants (Carex and Eriophorum) was unchanged, whereas content of the ectomycorrhizal fungi was very much higher (e.g., Boletaceae, Leccinum and Cortinarius). It is hypothesized that similar processes operate in tundra and boreal forest, both nitrogen-limited ecosystems: (i) mycorrhizal fungi break down soil polymers and take up amino acids or other nitrogen compounds; (ii) mycorrhizal fungi fractionate against 15N during production of transfer compounds; (iii) host plants are accordingly depleted in 15N; and (iv) mycorrhizal fungi are enriched in 15N. Increased N availability for plant roots or decreased light availability to understory plants may have decreased N allocation to mycorrhizal partners and increased delta15N by 3-4 parts per million for southern populations of Vaccinium vitis-idaea L. and Salix. Fungal biomass, measured as ergosterol, correlated strongly with soil organic matter and attained amounts similar to those in temperate forest soils.

  11. Diamondback Moth (Lepidoptera: Plutellidae) Exhibits Oviposition and Larval Feeding Preferences Among Crops, Wild plants, and Ornamentals as Host Plants.

    PubMed

    Newman, K; You, M; Vasseur, L

    2016-04-01

    Diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is an agricultural pest with high reproductive potential, widespread distribution, and high resistance to different types of insecticides. Although diamondback moth is a common research subject, questions remain regarding its spatial and temporal host plant usage patterns and preferences within agroecosystems. We examined the adult oviposition and larval feeding preferences of the diamondback moth to assess the potential of alternate host plants as either reservoirs or trap crops. Adult females and third and fourth instars were offered multiple plant species within the plant family Brassicaceae to examine contact preferences and larval ingestion rates. Adult oviposition and larval feeding preferences were identical, with garden cress (Lepidium sativum) (L.) highly preferred, followed by wintercress (Barbarea vulgaris) (L.) and black mustard (Brassica nigra) (L.). Ingestion rates varied among tested plants, with the lowest rate on black mustard and highest on aubretia (Aubretia deltoidea) (L.). Highly preferred plant species were determined to be unfavorable for larval growth and potentially lethal to neonates, suggesting their possible use as trap crops. Understanding ovipositional and larval feeding preferences of diamondback moth can also aid in the development of more accurate monitoring and control strategies for this pest.

  12. Host plant phenology affects performance of an invasive weevil, Phyllobius oblongus (Coleoptera: Curculionidae), in a northern hardwood forest.

    PubMed

    Coyle, David R; Jordan, Michelle S; Raffa, Kenneth F

    2010-10-01

    We investigated how host plant phenology and plant species affected longevity, reproduction, and feeding behavior of an invasive weevil. Phyllobius oblongus L. (Coleoptera: Curculionidae) is common in northern hardwood forests of the Great Lakes Region. Adults emerge in spring, feed on foliage of woody understory plants, and oviposit in the soil. Preliminary data indicate that adults often feed on sugar maple, Acer saccharum Marshall, foliage early in the season, then feed on other species such as raspberry, Rubus spp. Whether this behavior reflects temporal changes in the quality of A. saccharum tissue or merely subsequent availability of later-season plants is unknown. We tested adult P. oblongus in laboratory assays using young (newly flushed) sugar maple foliage, old (2-3 wk postflush) sugar maple foliage, and raspberry foliage. Raspberry has indeterminate growth, thus always has young foliage available for herbivores. Survival, oviposition, and leaf consumption were recorded. In performance assays under no-choice conditions, mated pairs were provided one type of host foliage for the duration of their lives. In behavioral choice tests, all three host plants were provided simultaneously and leaf area consumption was compared. Adults survived longer on and consumed greater amounts of young maple and raspberry foliage than old maple foliage. P. oblongus preferred young maple foliage to old maple foliage early in the season, however, later in the growing season weevils showed less pronounced feeding preferences. These results suggest how leaf phenology, plant species composition, and feeding plasticity in host utilization may interact to affect P. oblongus population dynamics.

  13. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore

    PubMed Central

    Cunha, Beatriz P.; Solferini, Vera N.

    2015-01-01

    Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense. PMID:26517873

  14. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore.

    PubMed

    Martins, Carlos H Z; Cunha, Beatriz P; Solferini, Vera N; Trigo, José R

    2015-01-01

    Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense.

  15. Forest biomass variation in Southernmost Brazil: the impact of Araucaria trees.

    PubMed

    Rosenfield, Milena Fermina; Souza, Alexandre F

    2014-03-01

    A variety of environmental and biotic factors determine vegetation growth and affect plant biomass accumulation. From temperature to species composition, aboveground biomass storage in forest ecosystems is influenced by a number of variables and usually presents a high spatial variability. With this focus, the aim of the study was to evaluate the variables affecting live aboveground forest biomass (AGB) in Subtropical Moist Forests of Southern Brazil, and to analyze the spatial distribution of biomass estimates. Data from a forest inventory performed in the State of Rio Grande do Sul, Southern Brazil, was used in the present study. Thirty-eight 1-ha plots were sampled and all trees with DBH > or = 9.5cm were included for biomass estimation. Values for aboveground biomass were obtained using published allometric equations. Environmental and biotic variables (elevation, rainfall, temperature, soils, stem density and species diversity) were obtained from the literature or calculated from the dataset. For the total dataset, mean AGB was 195.2 Mg/ha. Estimates differed between Broadleaf and Mixed Coniferous-Broadleaf forests: mean AGB was lower in Broadleaf Forests (AGB(BF)=118.9 Mg/ha) when compared to Mixed Forests (AGB(MF)=250.3 Mg/ha). There was a high spatial and local variability in our dataset, even within forest types. This condition is normal in tropical forests and is usually attributed to the presence of large trees. The explanatory multiple regressions were influenced mainly by elevation and explained 50.7% of the variation in AGB. Stem density, diversity and organic matter also influenced biomass variation. The results from our study showed a positive relationship between aboveground biomass and elevation. Therefore, higher values of AGB are located at higher elevations and subjected to cooler temperatures and wetter climate. There seems to be an important contribution of the coniferous species Araucaria angustifolia in Mixed Forest plots, as it presented

  16. Roles of olfactory cues, visual cues, and mating status in orientation of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) to four different host plants.

    PubMed

    Wenninger, Erik J; Stelinski, Lukasz L; Hall, David G

    2009-02-01

    Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is an important worldwide pest of citrus that vectors bacteria (Candidatus Liberibacter spp.) responsible for huanglongbing (citrus greening disease). We examined the behavioral responses of mated and unmated D. citri of both sexes to odors from host plants in a Y-tube olfactometer, with and without visual cues. The host plants tested were 'Duncan' grapefruit (Citrus paradisi Macfayden), sour orange (Citrus aurantium L.), navel orange (C. sinensis L.), and Murraya paniculata L. Jack. Responses varied by plant species, psyllid sex and mating status, and the presence of a visual cue. Evidence of attraction generally was stronger in females and in mated individuals of both sexes relative to virgins. The presence of a visual cue typically enhanced attractiveness of olfactory cues; in no case did unmated individuals show evidence of attraction to host plant odors in the absence of avisual cue. In the absence of visual cues, mated females and males showed evidence of attraction only to odors from sour orange and navel orange, respectively. Psyllids exhibited anemotactic responses when assayed with plant odors alone but showed strong evidence of attraction only when olfactory and visual cues were combined, suggesting that olfactory cues facilitate orientation to host plants but may be insufficient alone. Antennal responses to citrus volatiles were confirmed by electroantennogram. The results reported here provide evidence that D. citri uses olfactory and visual cues in orientation to host plants and suggest the possibility of using plant volatiles in monitoring and management of this pest.

  17. Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators.

    PubMed

    Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A

    2016-01-01

    Host plant defenses are known to cascade up food chains to influence herbivores and their natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic dynamics is largely unknown. We assessed the influence of plant defense on aphid and coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persicae) aphid, and five species of aphidophagous coccinellids. The performance of the specialist and generalist aphids was similar and unaffected by variation in plant defense. Aphid glucosinolate concentration and resistance to predators differed by aphid species and host plant defense, and these effects acted independently. With respect to aphid species, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentration and coccinellid predators ate three-fold more aphids. With respect to host plant variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration by 21%, but had relatively weak effects on predation by coccinellids and these effects varied among coccinellid species. In turn, coccinellid performance was influenced by the interactive effects of plant defense and aphid species, as the cascading, indirect effect of plant defense was greater when feeding upon the specialist than generalist aphid. When feeding upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by 78% and accelerated development by 14%. In contrast, when feeding upon generalist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detectable effect on development time. These interactive effects of plant defense and aphid diet breadth on predator performance also varied among coccinellid species; the indirect negative effects of plant defenses on predator performance was consistent among the five predators when

  18. Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators

    PubMed Central

    Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A.

    2016-01-01

    Host plant defenses are known to cascade up food chains to influence herbivores and their natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic dynamics is largely unknown. We assessed the influence of plant defense on aphid and coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persicae) aphid, and five species of aphidophagous coccinellids. The performance of the specialist and generalist aphids was similar and unaffected by variation in plant defense. Aphid glucosinolate concentration and resistance to predators differed by aphid species and host plant defense, and these effects acted independently. With respect to aphid species, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentration and coccinellid predators ate three-fold more aphids. With respect to host plant variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration by 21%, but had relatively weak effects on predation by coccinellids and these effects varied among coccinellid species. In turn, coccinellid performance was influenced by the interactive effects of plant defense and aphid species, as the cascading, indirect effect of plant defense was greater when feeding upon the specialist than generalist aphid. When feeding upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by 78% and accelerated development by 14%. In contrast, when feeding upon generalist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detectable effect on development time. These interactive effects of plant defense and aphid diet breadth on predator performance also varied among coccinellid species; the indirect negative effects of plant defenses on predator performance was consistent among the five predators when

  19. Changes in the 2-DE protein profile during zygotic embryogenesis in the Brazilian Pine (Araucaria angustifolia).

    PubMed

    Balbuena, Tiago S; Silveira, Vanildo; Junqueira, Magno; Dias, Leonardo L C; Santa-Catarina, Claudete; Shevchenko, Andrej; Floh, Eny I S

    2009-04-13

    Araucaria angustifolia is the only native conifer of economic importance in the Brazilian Atlantic Rainforest. Due to a clear-cutting form of exploitation this species has received the status of vulnerable. The aim of this work was to investigate and characterize changes in protein expression profile during seed development of this endangered species. For this, the proteome of developing seeds was characterized by 2-DE and LC-MS/MS. Ninety six proteins were confidently identified and classified according to their biological function and expression profile. Overaccumulated proteins in early seed development indicated a higher control on oxidative stress metabolism during this phase. In contrast, highly expressed proteins in late stages revealed an active metabolism, leading to carbon assimilation and storage compounds accumulation. Comprehensive protein expression profiles and identification of overaccumulated proteins provide new insights into the process of embryogenesis in this recalcitrant species. Considerations on the improvement and control of somatic embryogenesis through medium manipulation and protein markers screening using data generated are also discussed.

  20. Differential proteome analysis of mature and germinated embryos of Araucaria angustifolia.

    PubMed

    Balbuena, Tiago S; Jo, Leonardo; Pieruzzi, Fernanda P; Dias, Leonardo L C; Silveira, Vanildo; Santa-Catarina, Claudete; Junqueira, Magno; Thelen, Jay J; Shevchenko, Andrej; Floh, Eny I S

    2011-04-01

    Araucaria angustifolia is an endangered Brazilian native conifer tree. The aim of the present work was to identify differentially expressed proteins between mature and germinated embryos of A. angustifolia, using one and two dimensional gel electrophoresis approaches followed by protein identification by tandem mass spectrometry. The identities of 32 differentially expressed protein spots from two dimensional gel maps were successfully determined, including proteins and enzymes involved in storage mobilization such as the vicilin-like storage protein and proteases. A label free approach, based on spectral counts, resulted in detection of 10 and 14 mature and germinated enriched proteins, respectively. Identified proteins were mainly related to energetic metabolism pathways, translational processes, oxidative stress regulation and cellular signaling. The integrated use of both strategies permitted a comprehensive protein expression overview of changes in germinated embryos in relation to matures, providing insights into the this process in a recalcitrant seed species. Applications of the data generated on the monitoring and control of in vitro somatic embryos were discussed.

  1. Identification and characterisation of serine protease inhibitors from Araucaria angustifolia seeds.

    PubMed

    Alves, Flávio Lopes; Sallai, Roberto C; Salu, Bruno R; Miranda, Antonio; Oliva, Maria Luiza V

    2016-02-12

    Araucaria angustifolia seeds are characterised by a relatively high content of starch and protein. This study aimed to verify the presence of α-amylase inhibitors in the seeds and to characterise a trypsin inhibitor found in the embryo tissues. Inhibitor purification was carried out by the saline extraction of proteins, acetone precipitation and affinity chromatography. Two protein bands of molecular weight estimated by SDS-PAGE at about 35 kDa were further examined by high-performance liquid chromatography coupled to a mass spectrometer and were shown to be 36.955 Da (AaTI-1) and 35.450 Da (AaTI-2). The sequence of the N-terminal region shows that AaTI-1 and AaTI-2 are structurally similar to plant inhibitors of the serpin family. A mixture of AaTI-1 and AaTI-2, identified as AaTI, shows selectivity for the inhibition of trypsin (Kiapp 85 nM) and plasmin (Kiapp 7.0 μM), but it does not interfere with the chymotrypsin, human plasma kallikrein, porcine kallikrein or other coagulation enzymes activity.

  2. Patterns of genetic diversity in southern and southeastern Araucaria angustifolia (Bert.) O. Kuntze relict populations

    PubMed Central

    2009-01-01

    Habitat fragmentation and a decrease in population size may lead to a loss in population genetic diversity. For the first time, the reduction in genetic diversity in the northernmost limit of natural occurence (southeastern Brazil) of Araucaria angustifolia in comparison with populations in the main area of the species continuous natural distribution (southern Brazil), was tested. The 673 AFLPs markers revealed a high level of genetic diversity for the species (Ht = 0.27), despite anthropogenic influence throughout the last century, and a decrease of H in isolated populations of southeastern Brazil (H = 0.16), thereby indicating the tendency for higher genetic diversity in remnant populations of continuous forests in southern Brazil, when compared to natural isolated populations in the southeastern region. A strong differentiation among southern and southeastern populations was detected (AMOVA variance ranged from 10%-15%). From Bayesian analysis, it is suggested that the nine populations tested form five “genetic clusters” (K = 5). Five of these populations, located in the northernmost limit of distribution of the species, represent three “genetic clusters”. These results are in agreement with the pattern of geographic distribution of the studied populations. PMID:21637518

  3. Antioxidant and Antigenotoxic Activities of the Brazilian Pine Araucaria angustifolia (Bert.) O. Kuntze

    PubMed Central

    Souza, Márcia O.; Branco, Cátia S.; Sene, Juliane; DallAgnol, Rafaela; Agostini, Fabiana; Moura, Sidnei; Salvador, Mirian

    2014-01-01

    Polyphenols are natural products with recognized potential in drug discovery and development. We aimed to evaluate the polyphenolic profile of Araucaria angustifolia bracts, and their ability to scavenge reactive species. The antioxidant and antigenotoxic effects of A. angustifolia polyphenols in MRC5 human lung fibroblast cells were also explored. The total polyphenol extract of A. angustifolia was determined by the Folin–Ciocalteu reagent and the chemical composition was confirmed by HPLC. Reactive oxygen species’ scavenging ability was investigated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and superoxide dismutase- and catalase-like activities. The protective effect of the extract in MRC5 cells was carried out by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and the determination of oxidative lipids, protein, and DNA (alkaline and enzymatic comet assay) damage. Total phenolic content of the A. angustifolia extract was 1586 ± 14.53 mg gallic acid equivalents/100 g of bracts. Catechin, epicatechin, quercetin, and apigenin were the major polyphenols. The extract was able to scavenge DPPH radicals and exhibited potent superoxide dismutase and catalase-like activities. Moreover, A. angustifolia extract significantly protected MRC5 cells against H2O2-induced mortality and oxidative damage to lipids, proteins, and DNA. Therefore, A. angustifolia has potential as a source of bioactive chemical compounds. PMID:26784661

  4. The use of Skylab data to study the early detection of insect infestations and density and distribution of host plants

    NASA Technical Reports Server (NTRS)

    Hart, W. G.; Ingle, S. J.; Davis, M. R.

    1975-01-01

    The detection of insect infestations and the density and distribution of host plants were studied using Skylab data, aerial photography and ground truth simultaneously. Additional ground truth and aerial photography were acquired between Skylab passes. Three test areas were selected: area 1, of high density citrus, was located northwest of Mission, Texas; area 2, 20 miles north of Weslaco, Texas, irrigated pastures and brush-covered land; area 3 covered the entire Lower Rio Grande Valley and adjacent areas of Mexico. A color composite picture of S-190A data showed patterns of vegetation on both sides of the Rio Grande River clearly delineating the possible avenues of entry of pest insects from Mexico into the United States or from the United States into Mexico. Vegetation that could be identified with conventional color and color IR film included: citrus, brush, sugarcane, alfalfa, irrigated and unimproved pastures.

  5. Lead residues in eastern tent caterpillars (Malacosoma americanum) and their host plant (Prunus serotina) close to a major highway

    USGS Publications Warehouse

    Beyer, W.N.; Moore, J.

    1980-01-01

    Eastern tent caterpillars, Malacosoma americanum (F.) (Lepidoptera: Lasiocampidae and leaves of their host plant, black cherry, Prunus serotina Ehrh., were collected in May, 1978, at various distances from the Baltimore-Washington Parkway, Prince George's Co., MD, and were analyzed for lead by atomic absorption spectrophotometry. Caterpillars collected within 10 m of the parkway contained 7.1-7.4 ppm lead (dry weight). Caterpillars collected at greater distances from the parkway and from a control area had lead concentrations ca. half as high (2.6-5.3 ppm). Lead concentrations in caterpillars averaged 76% as high as those in leaves and were much lower than concentrations that have been reported in some roadside soil and litter invertebrates

  6. Lead residues in eastern tent caterpillars (Malacosoma americanum) and their host plant (Prunus serotina) close to a major highway

    SciTech Connect

    Beyer, W.N.; Moore, J.

    1980-02-01

    Eastern tent caterpillars, Malacosoma americanum (F.) (Lepidoptera: Lasiocampidae), and leaves of their host plant, black cherry, Prunus serotina Ehrh., were collected in May, 1978, at various distances from the Baltimore-Washington Parkway, Prince George's Co., MD, and were analyzed for lead by atomic absorption spectrophotometry. Caterpillars collected within 10 m of the parkway contained 7.1 to 7.4 ppM lead (dry weight). Caterpillars collected at greater distances from the parkway and from a control area had lead concentrations ca. half as high (2.6 to 5.3 ppM). Lead concentrations in caterpillars averaged 76% as high as those in leaves and were much lower than concentrations that have been reported in some roadside soil and litter invertebrates.

  7. Olfactory Response and Host Plant Feeding of the Central American Locust Schistocerca piceifrons piceifrons Walker to Common Plants in a Gregarious Zone.

    PubMed

    Poot-Pech, M A; Ruiz-Sánchez, E; Ballina-Gómez, H S; Gamboa-Angulo, M M; Reyes-Ramírez, A

    2016-08-01

    The Central American locust (CAL) Schistocerca piceifrons piceifrons Walker is one of the most harmful plant pests in the Yucatan Peninsula, where an important gregarious zone is located. The olfactory response and host plant acceptance by the CAL have not been studied in detail thus far. In this work, the olfactory response of the CAL to odor of various plant species was evaluated using an olfactometer test system. In addition, the host plant acceptance was assessed by the consumption of leaf area. Results showed that the CAL was highly attracted to odor of Pisonia aculeata. Evaluation of host plant acceptance showed that the CAL fed on Leucaena glauca and Waltheria americana, but not on P. aculeata or Guazuma ulmifolia. Analysis of leaf thickness, and leaf content of nitrogen (N) and carbon (C) showed that the CAL was attracted to plant species with low leaf C content.

  8. Critical rearing parameters of Tetrastichus planipennisi (Hymenoptera: Eulophidae) as affected by host plant substrate and host-parasitoid group structure.

    PubMed

    Duan, Jian J; Oppel, Craig

    2012-06-01

    In laboratory assays, we evaluated the potential impact of host plant substrate types, host-parasitoid group sizes (densities), and parasitoid-to-host ratios on select fitness parameters of the larval endoparasitoid Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae), newly introduced for biological control of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in the United States. Results from our study showed that offspring production and critical fitness parameters (body size and sex ratio) of T. planipennisi from parasitized emerald ash borer larvae are significantly influenced by host plant substrate type, host-parasitoid group size, parasitoid-to-host ratio, or a combination in the primary exposure assay. The number of both female and male T. planipennisi progeny was significantly greater when emerald ash borer larvae were inserted into tropical ash [Fraxinus uhdei (Wenz.) Lingelsh.] logs rather than green ash (Fraxinus pensylvanica Marshall). When maintained at a constant 1:1 parasitoid-to-host ratio, assays with larger host-parasitoid group sizes (3:3-12:12) produced significantly greater numbers of both male and female offspring per parental wasp compared with those with the single host-parasitoid (1:1) group treatment. As the parasitoid-to-host ratio increased from 1:1 to 8:1 in the assay, the average brood size (number of offspring per parasitized emerald ash borer larva) increased significantly, whereas the average brood sex ratio (female to male) changed from being female-biased (6:1) to male-biased (1:2); body size of female offspring as measured by the length of ovipositor and left hind tibia also was reduced significantly. Based on these findings, we suggest that the current method of rearing T. planipennisi with artificially infested-emerald ash borer larvae use the tropical ash logs for emerald ash borer insertion, a larger (> or = 3:3) host-parasitoid group size and 1:1 parasitoid-to-host ratio in the primary

  9. Genetic Variability of Stolbur Phytoplasma in Hyalesthes obsoletus (Hemiptera: Cixiidae) and its Main Host Plants in Vineyard Agroecosystems.

    PubMed

    Landi, Lucia; Riolo, Paola; Murolo, Sergio; Romanazzi, Gianfranco; Nardi, Sandro; Isidoro, Nunzio

    2015-08-01

    Bois noir is an economically important grapevine yellows that is induced by 'Candidatus Phytoplasma solani' and principally vectored by the planthopper Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae). This study explores the 'Ca. P. solani' genetic variability associated to the nettle-H. obsoletus and bindweed-H. obsoletus systems in vineyard agroecosystems of the central-eastern Italy. Molecular characterization of 'Ca. P. solani' isolates was carried out using polymerase chain reaction/restriction fragment length polymorphism to investigate the nonribosomal vmp1 gene. Seven phytoplasma vmp-types were detected among the host plants- and insect-associated field-collected samples. The vmp1 gene showed the highest polymorphism in the bindweed-H. obsoletus system, according to restriction fragment length polymorphism analysis, which is in agreement with nucleotide sequence analysis. Five vmp-types were associated with H. obsoletus from bindweed, of which one was solely restricted to planthoppers, with one genotype also in planthoppers from nettle. Type V12 was the most prevalent in both planthoppers and bindweed. H. obsoletus from nettle harbored three vmp-types, of which V3 was predominant. V3 was the only type detected for nettle. Our data demonstrate that planthoppers might have acquired some 'Ca. P. solani' profiles from other plant hosts before landing on nettle or bindweed. Overall, the different vmp1 gene rearrangements observed in these two plant hosts-H. obsoletus systems might represent different adaptations of the pathogen to the two host plants. Molecular information about the complex of vmp-types provides useful data for better understanding of Bois noir epidemiology in vineyard agroecosystem.

  10. Intraspecific variation in zucchini yellow mosaic virus transmission by Myzus persicae and the impact of aphid host plant.

    PubMed

    Symmes, Emily J; Perring, Thomas M

    2007-12-01

    Three isofemale lines of Myzus persicae (Sulzer), two lines collected from and reared on a brassicaceous host, and one line collected from and reared on a malvaceous host, were evaluated for their efficiency of transmitting Zucchini yellow mosaic virus (family Potyviridae, genus Potyvirus, ZYMV). In the first experiment, the transmission efficiencies of two clones from Brassicaceae (B1 and B2) were 52.0 and 60.8%, respectively, and these transmissions were not significantly different. In a second experiment, the transmission efficiencies of the clone on Malvaceae (M1) and clone B2 were significantly different at 35.6 and 55.7%, respectively. Further experiments evaluated host-related mechanisms that may have contributed to the differential transmissions observed between clones M1 and B2. Studies on short-term feeding showed that aphids continuously reared on okra, Abelmoschus esculentus (L.) Moench (malvaceous host), and those that were reared on okra and allowed a 24-h preacquisition feeding period on mustard, Brassica juncea (L.) Czern (brassicaceous host), had significantly lower transmission than aphids continuously maintained on mustard. Aphids reared on mustard and allowed a 24-h preacquisition feeding period on okra had intermediate transmission efficiency. In long-term host association studies, we found that aphids reared on mustard had significantly higher transmission efficiency than those reared on okra, and aphids reared first on okra and then switched to mustard had a transmission efficiency that was intermediate and not significantly different from the other two treatments. Our study reveals the existence of intraspecific variation in the transmission of ZYMV by M. persicae, and it suggests that to accurately assess the transmission capability of ZYMV by this species, multiple clones should be examined. Furthermore, the host plant on which the aphid is reared as well as the host plant on which it feeds just before virus acquisition contribute to ZYMV

  11. A QTL analysis of host plant effects on fungal endophyte biomass and alkaloid expression in perennial ryegrass.

    PubMed

    Faville, Marty J; Briggs, Lyn; Cao, Mingshu; Koulman, Albert; Jahufer, M Z Zulfi; Koolaard, John; Hume, David E

    The association between perennial ryegrass (Loliumperenne L.) and its Epichloë fungal endophyte symbiont, Epichloëfestucae var. lolii, supports the persistence of ryegrass-based pastures principally by producing bioactive alkaloid compounds that deter invertebrate herbivory. The host plant genotype affects endophyte trait expression, and elucidation of the underlying genetic mechanisms would enhance understanding of the symbiosis and support improvement of inplanta endophyte performance through plant breeding. Rapid metabolite profiling and enzyme-linked immunosorbent assay were used to quantify endophyte alkaloids and mycelial mass (MM) in leaves harvested, in consecutive autumns, from an F1 mapping population hosting standard toxic endophyte. Co-aligned quantitative trait loci (QTL) on linkage groups (LG)2, LG4 and LG7 for MM and concentrations of alkaloids peramine and ergovaline confirmed host plant effects on both MM and alkaloid level and inferred the effect on alkaloids was modulated through the quantity of endophyte present in the leaf tissue. For ergovaline, host regulation independent of endophyte concentration was also indicated, by the presence of MM-independent ergovaline QTL on LG4 and LG7. Partitioning of host genetic influence between MM-dependent and MM-independent mechanisms was also observed for the alkaloid N-formylloline (NFL), in a second mapping population harbouring a tall fescue-sourced endophyte. Single-marker analysis on repeated MM and NFL measures identified marker-trait associations at nine genome locations, four affecting both NFL and MM but five influencing NFL concentration alone. Co-occurrence of QTL on LG3, LG4 and LG7 in both mapping populations is evidence for host regulatory loci effective across genetic backgrounds and independent of endophyte variant. Variation at these loci may be exploited using marker-assisted breeding to improve endophyte trait expression in different host population × endophyte combinations.

  12. The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil.

    PubMed

    Battenberg, Kai; Wren, Jannah A; Hillman, Janell; Edwards, Joseph; Huang, Liujing; Berry, Alison M

    2017-01-01

    The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host. To investigate the degree of host influence, we characterized the cluster II Frankia strain distribution in rhizosphere soil in three locations in northern California. The presence/absence of cluster II Frankia strains at a given site correlated significantly with the presence/absence of host plants on the site, as determined by glutamine synthetase (glnA) gene sequence analysis, and by microbiome analysis (16S rRNA gene) of a subset of host/nonhost rhizosphere soils. However, the distribution of cluster II Frankia strains was not significantly affected by other potential determinants such as host-plant species, geographical location, climate, soil pH, or soil type. Rhizosphere soil microbiome analysis showed that cluster II Frankia strains occupied only a minute fraction of the microbiome even in the host-plant-present site and further revealed no statistically significant difference in the α-diversity or in the microbiome composition between the host-plant-present or -absent sites. Taken together, these data suggest that host plants provide a factor that is specific for cluster II Frankia strains, not a general growth-promoting factor. Further, the factor accumulates or is transported at the site level, i.e., beyond the host rhizosphere.

  13. Descriptions of the immature stages and new host plant records of Notozulia entreriana (Berg) (Hemiptera: Cercopidae) pests of grasses in subtropical areas of the Americas.

    PubMed

    Foieri, Alvaro; Lenicov, Ana M Marino De Remes; Virla, Eduardo G

    2016-04-11

    Notozulia entreriana (Berg) (Hemiptera: Cercopidae) is one of the most common spittlebugs inhabiting the subtropical region of the America, inflicting important economic damage to grass crops. The immature stages are described and illustrated; the main characteristics that distinguish instars are the body size, color, number of flagellomeres, and number of tibial and metatarsomere spines. A key for identification of nymphs is provided as a tool to develop field studies.  Nine host plants, all belonging to Poaceae, are recorded as breeding and feeding host plants from different localities in northern Argentina.

  14. Egg morphology, laying behavior and record of the host plants of Ricania speculum (Walker, 1851), a new alien species for Europe (Hemiptera: Ricaniidae).

    PubMed

    Rossi, Elisabetta; Stroiński, Adam; Lucchi, Andrea

    2015-11-17

    The exotic planthopper, Ricania speculum (Ricaniidae) was recently detected in Liguria, in northern Italy, and recorded as a first alert for Europe. The first morphological description of eggs and laying behavior are given. Eggs are inserted into the woody tissue of a wide range of different host plants in such a unique manner among native and alien planthoppers of Italy that it can be used to describe the prevalence and diffusion of the species in new environments, though in the absence of juveniles and/or adults. In addition, the paper lists the host plants utilized for egg laying and describes the eggs.

  15. The Araucaria Project: The Distances to the NGC 247 and WLM Galaxies From Cepheid Variables Discovered in a Wide-Field Imaging Survey

    NASA Astrophysics Data System (ADS)

    García, A.; Gieren, W.; Pietrzynski, G.

    2009-05-01

    Two different and extensive wide-field imaging surveys for Cepheid variables have been made in the Sculptor Group galaxy NGC 247 and in the Local Group Irregular galaxy WLM. We present the principal results obtained in this surveys in the context of the Araucaria project. We have discovered 60 Cepheids in WLM and 24 Cepheids in NGC 247. Our data define tight period-luminosity relations in V, I and the reddening-free Wesenheit magnitude W_I which are all extremely well fit by the corresponding slopes of the LMC Cepheid PL relation, suggesting no change of the PL relation slope down to a Cepheid metal abundance of about -1.0 dex, in agreement with other recent studies. We derive a true distance modulus to NGC 247 of 27.80+/-0.09 (r) +/-0.06 (s) mag from our data, in good agreement with the earlier 27.9+/-0.1 mag determination of Davidge (2006, ApJ, 641, 822) from TRGB I band magnitude. The true distance modulus to WLM derived from our data was 25.144+/-0.03 (r) +/-0.07 (s), in good agreement with the earlier 24.92+/-0.21determination of Lee, Freedman, & Madore (1993, ApJ, 417, 553) from Cepheid variables. Aditional information is available in The Araucaria Project homepage (http://ezzelino.ifa.hawaii.edu/ bresolin/Araucaria/index.html) and in the series of papers entitled: The Araucaria Project.

  16. Studies on the Influence of Host Plants and Effect of Chemical Stimulants on the Feeding Behavior in the Muga Silkworm, Antheraea assamensis

    PubMed Central

    Neog, Kartik; Unni, Balagopalan; Ahmed, Giasuddin

    2011-01-01

    The feeding habits of Antheraea assamensis, Helfer (Lepidoptera: Saturniidae) larvae towards the leaves of its four different host plants, Persea bombycina King ex. Hook (Laurales: Lauraceae), Litsea polhantha Jussieu, L. salicifolia Roxburgh ex. Nees and L. citrata Blume, and the chemical basis of feeding preference were investigated. Nutritional superiority of young and medium leaves with respect to soluble protein, total phenol and phenylalanine ammonia lyase activity was observed in the leaves of P. bombycina compared to other host plants. Attraction and feeding tests with detached leaves and artificial diet with different chemical stimulants revealed that a mixture of the flavonoids, myrcetin, and 7, 2', 4' trimethoxy dihydroxy flavone with sterol compound β-sitosterol elicited the most biting behavior by A. assamensis larvae. While linalyl acetate alone attracted larvae towards the leaves of the host plants, a mixture of caryophyllene, decyl aldehyde and dodecyl aldehyde was found to both attract them to the host leaves and cause biting behavior. Azaindole was found to deter them from the host plants. PMID:22243364

  17. Critical rearing parameters of Tetrastichus planipennisi (Hymenoptera: Eulophidae) as affected by host-plant substrate and host-parasitoid group structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory studies were conducted to evaluate the potential impact of host-plant substrate types, host-parasitoid group size and host to parasitoid ratios on select fitness parameters of the larval parasitoid Tetrastichus planipennisi Yang, newly introduced for biological control of the invasive eme...

  18. The effects of island forest restoration on open habitat specialists: the endangered weevil Hadramphus spinipennis Broun and its host-plant Aciphylla dieffenbachii Kirk.

    PubMed

    Fountain, Emily D; Malumbres-Olarte, Jagoba; Cruickshank, Robert H; Paterson, Adrian M

    2015-01-01

    Human alteration of islands has made restoration a key part of conservation management. As islands are restored to their original state, species interactions change and some populations may be impacted. In this study we examine the coxella weevil, (Hadramphus spinipennis Broun) and its host-plant Dieffenbach's speargrass (Aciphylla dieffenbachii Kirk), which are both open habitat specialists with populations on Mangere and Rangatira Islands, Chathams, New Zealand. Both of these islands were heavily impacted by the introduction of livestock; the majority of the forest was removed and the weevil populations declined due to the palatability of their host-plant to livestock. An intensive reforestation program was established on both islands over 50 years ago but the potential impacts of this restoration project on the already endangered H. spinipennis are poorly understood. We combined genetic and population data from 1995 and 2010-2011 to determine the health and status of these species on both islands. There was some genetic variation between the weevil populations on each island but little variation within the species as a whole. The interactions between the weevil and its host-plant populations appear to remain intact on Mangere, despite forest regeneration. A decline in weevils and host-plant on Rangatira does not appear to be caused by canopy regrowth. We recommend that (1) these populations be monitored for ongoing effects of long-term reforestation, (2) the cause of the decline on Rangatira be investigated, and (3) the two populations of weevils be conserved as separate evolutionarily significant units.

  19. Medhost: An encyclopedic bibliography of the host plants of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann),Version 2.0

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MEDHOST,Version 2.0 is the second revision of:"MEDHOST: An encyclopedic bibliography of the host plants of the Mediterranean fruit fly,Ceratitis capitata(Wiedemann),Version 1.0," which was released in 1998 as a Windows-based executable database and listed all plant species reported as hosts of Medit...

  20. Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds, which is necessary for avoiding possible damage to nontarget plants. Volatile organic compounds (VOC) emitted by plants likely play an important role in determining which plant...

  1. Response of a gall wasp community to genetic variation in the host plant Quercus crispula: a test using half-sib families

    NASA Astrophysics Data System (ADS)

    Ito, Masato; Ozaki, Kenichi

    2005-02-01

    The structure of a herbivore community may change consistently along the genetic cline of a host plant, change at particular points along the cline, or respond independently of the cline. To reveal such relationships between a gall wasp community and genetic variation in the host plant Quercus crispula, we examined patterns in the species richness and abundance of gall wasps along a genetic cline of the host plant, using 12 half-sib families from six different regions. The genetic relationships among the half-sib families of Q. crispula were quantified on the basis of leaf morphology, which represented a morphological cline from leaves typical of Q. crispula to leaves resembling another oak species, Q. dentata. The morphological cline could be regarded as a genetic cline caused by a history of hybridization with Q. dentata. The mean numbers of gall types varied among the half-sib families, but did not show a consistent increase or decrease along the genetic cline. This pattern could be explained by the fact that responses to host plant variation differed among the gall wasp species. The half-sib families were classified into three groups based on an ordination analysis of the species composition of the gall wasp community that to some extent also reflected the genetic cline of Q. crispula. This suggests that the species composition of gall wasps changed intermittently along the genetic cline, rather than gradually and consistently along the cline.

  2. Influence of host plant nitrogen fertilization on haemolymph protein profiles of herbivore Spodoptera exigua and development of its endoparasitoid Cotesia marginiventris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen has complex effects on plant-herbivore-parasitoid tri-trophic interactions. The negative effects of host plant with low nitrogen fertilization on insect herbivores in many cases can be amplified to the higher trophic levels. In the present study, we examined the impact of varying ni...

  3. Divergent Host Plant Adaptation Drives the Evolution of Sexual Isolation in the Grasshopper Hesperotettix viridis (Orthoptera: Acrididae) in the Absence of Reinforcement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The beginning stages of lineage divergence can be difficult to detect, as correlations between altered genotypic and phenotypic attributes are often weak early in the process. Shifts in host plant use and divergence in mating signals can lead to sexual isolation and ultimately speciation. To underst...

  4. Influence of host plants and soil diluents on arbuscular mycorrhizal fungus propagation for on-farm inoculum production using leaf litter compost and agrowastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arbuscular mycorrhizal (AM) fungi (Claroideoglomus etunicatum NNT10, C. etunicatum PBT03 and Funneliformis mosseae RYA08) were propagated using different culture materials (sterile sandy soil by itself or mixed 1:1 (v/v) with clay-brick granules, rice husk charcoal, or vermiculite) and host plants (...

  5. The influence of aphids (Myzus persicae) and pink lady beetle larvae (Coleomegilla maculata) on host plant preference of imported cabbageworm (Pieris rapae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oviposition decisions by herbivorous insects hinge on multiple factors; host plant quality, enemy free space, plant density, offspring performance, and competition for resources all which influence decisions by an ovipositing female. Here, we evaluate whether the presence of aphids (a competitor) or...

  6. Ecology of Meimuna mongolica (Hemiptera: Cicadidae) Nymphs: Instars, Morphological Variation, Vertical Distribution and Population Density, Host-Plant Selection, and Emergence Phenology

    PubMed Central

    Li, Qinglong; Yang, Mingsheng; Liu, Yunxiang; Wei, Cong

    2015-01-01

    The cicada Meimuna mongolica (Distant) (Hemiptera: Cicadidae) is one of the most important pests of economic forest in Guanzhong Plain of Shaanxi Province, China. Information about ecological characteristics and some sustainable control measures of this species is urgently required for its control. In this study, nymphal instars, morphological variation, vertical distribution, and population density in soil, and emergence phenology of nymphs of M. mongolica on three main host plants (Pinus tabuliformis Carr., Populus tomentosa Carr., and Pyrus xerophila Yü) were studied, based on combined morphological and molecular identification, investigation of the first-instar nymphs hatched from eggs and others excavated from soil, and investigation of exuviae in the adult emergence period. Five nymphal instars of M. mongolica were redetermined according to the distribution plots of the head capsule widths of the nymphs. Nymphs of third and fourth instars showed morphological variation, which is closely related to host-plant association. The mean densities of nymphs in soil under the three host plants were significantly different, indicating a distinct host preference. The nymphs could extend their distribution from the 0–10 cm soil layer to the 51–60 cm soil layer underground but not beyond 60 cm soil layer under all the three host plants. The 21–30 cm soil layer under all the three host plants has the highest nymphal population density. The sex ratio of the entire population was nearly 50:50, but males dominated in the early half of the duration of the emergence. These ecological characteristics of M. mongolica could provide important information for sustainable control measures.

  7. Jumping-ship can have its costs: implications of predation and host plant species for the maintenance of pea aphid (Acyrthosiphon pisum Harris) colour polymorphism.

    PubMed

    Balog, Adalbert

    2013-10-01

    The interplay between the host plant of an insect herbivore and an insect predator (here two-spot ladybird beetles; Adalia bipunctata (L).; Coleoptera: Coccinellidae), feeding upon such a herbivore was examined in the laboratory as factors possibly determining the differential abundance and success of green and red host races of pea aphid, Acyrthosiphon pisum Harris. The experiment comprised three treatments: two host plants (bean and clover), two treatment levels (control and predation) and three colour morph levels (green alone, red alone and green and red in mixture). Green morphs had higher fitness on the general host plant, bean Vicia faba, than on the derived host, clover (Trifolium pratense), in the absence of predation. Although green morph fitness was reduced by predation when infesting bean together with reds, there was no observable net fitness loss due to predation on clover in mixed colonies with red morphs. Red morphs exhibited fitness loss alone on both bean and clover, while clover plants seemingly prevented fitness loss in the presence of predation when red morphs were mixed with green ones. According to this scenario, when colour morphs existed as a mixed colony, the net fitness of either pea aphid morph was not influenced by predation on clover. Predators had significant effects only on red morphs on broad bean either when alone or were mixed together with green morphs. Thus, only red morphs experienced the benefits of switching from the general to the derived host red clover in the presence of predation. For green morphs, there was no apparent cost of switching host plants when they faced predation. Hence, the co-existence of green-red colour polymorphism of pea aphids on single host plants appears to be maintained by the morph gaining fitness on the derived host due to a host plant– and predation–reduction effect. These findings have important implications for understanding the ecology and evolution of host switching by different colour

  8. Food assimilated by two sympatric populations of the brown planthopper Nilaparvata lugens (Delphacidae) feeding on different host plants contaminates insect DNA detected by RAPD-PCR analysis.

    PubMed

    Latif, M A; Omar, M Y; Tan, S G; Siraj, S S; Ali, M E; Rafii, M Y

    2012-01-09

    Contamination of insect DNA for RAPD-PCR analysis can be a problem because many primers are non-specific and DNA from parasites or gut contents may be simultaneously extracted along with that of the insect. We measured the quantity of food ingested and assimilated by two sympatric populations of brown planthopper (BPH), Nilaparvata lugens, one from rice and the other from Leersia hexandra (Poaceae), a wetland forage grass, and we also investigated whether host plant DNA contaminates that of herbivore insects in extractions of whole insects. Ingestion and assimilation of food were reduced significantly when individuals derived from one host plant were caged on the other species. The bands, OPA3 (1.25), OPD3 (1.10), OPD3 (0.80), OPD3 (0.60), pUC/M13F (0.35), pUC/M13F (0.20), BOXAIR (0.50), peh#3 (0.50), and peh#3 (0.17) were found in both rice-infesting populations of brown planthopper and its host plant (rice). Similarly, the bands, OPA4 (1.00), OPB10 (0.70), OPD3 (0.90), OPD3 (0.80), OPD3 (0.60), pUC/ M13F (0.35), pUC/M13F (0.20), and BOXAIR (0.50) were found in both Leersia-infesting populations of brown planthopper and the host plant. So, it is clear that the DNA bands amplified in the host plants were also found in the extracts from the insects feeding on them.

  9. BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance in host plants.

    PubMed

    Zhang, Yi; Zhang, Yunhua; Qiu, Dewen; Zeng, Hongmei; Guo, Lihua; Yang, Xiufen

    2015-02-20

    In this study, a necrosis-inducing protein was purified from the culture filtrate of the necrotrophic fungus Botrytis cinerea BC-98 strain. Secreted proteins were collected and fractionated by liquid chromatography. The fraction with the highest necrosis-inducing activity was further purified. A glycoprotein named BcGs1 was identified by 2D electrophoresis and mass spectrometry. The BcGs1 protein consisted of 672 amino acids with a theoretical molecular weight of 70.487 kDa. Functional domain analysis indicated that BcGs1 was a glucan 1,4-alpha-glucosidase, a cell wall-degrading enzyme, with a Glyco_hydro_15 domain and a CBM20_glucoamylase domain. The BcGs1 protein caused necrotic lesions that mimicked a typical hypersensitive response and H2O2 production in tomato and tobacco leaves. BcGs1-treated plants exhibited resistance to B. cinerea, Pseudomonas syringae pv. tomato DC3000 and tobacco mosaic virus in systemic leaves. In addition, BcGs1 triggered elevation of the transcript levels of the defence-related genes PR-1a, TPK1b and Prosystemin. This is the first report of a Botrytis glucan 1,4-alpha-glucosidase triggering host plant immunity as an elicitor. These results lay a foundation for further study of the comprehensive interaction between plants and necrotrophic fungi.

  10. The Genetic Architecture of a Complex Ecological Trait: Host Plant Use in the Specialist Moth, Heliothis subflexa

    PubMed Central

    Oppenheim, Sara J.; Gould, Fred; Hopper, Keith R.

    2012-01-01

    We used genetic mapping to examine the genetic architecture of differences in host plant use between two species of noctuid moths, Heliothis subflexa, a specialist on Physalis spp., and its close relative, the broad generalist H. virescens. We introgressed H. subflexa chromosomes into the H. virescens background and analyzed 1,462 backcross insects. The effects of H. subflexa-origin chromosomes were small when measured as the percent variation explained in backcross populations (0.2 to 5%), but were larger when considered in relation to the interspecific difference explained (1.5 to 165%). Most significant chromosomes had effects on more than one trait, and their effects varied between years, sexes, and genetic backgrounds. Different chromosomes could produce similar phenotypes, suggesting that the same trait might be controlled by different chromosomes in different backcross populations. It appears that many loci of small effect contribute to the use of Physalis by H. subflexa. We hypothesize that behavioral changes may have paved the way for physiological adaptation to Physalis by the generalist ancestor of H. subflexa and H. virescens. PMID:23106701

  11. The transfer of titanium dioxide nanoparticles from the host plant to butterfly larvae through a food chain

    NASA Astrophysics Data System (ADS)

    Kubo-Irie, Miyoko; Yokoyama, Masaaki; Shinkai, Yusuke; Niki, Rikio; Takeda, Ken; Irie, Masaru

    2016-03-01

    This study aimed to examine the transfer of nanoparticles within a terrestrial food chain. Oviposited eggs of the swallowtail butterfly (Atrophaneura alcinous) were hatched on the leaves of the host plant (Aristolochia debilis), and the root stock and root hairs were submerged in a suspension of 10 μg/ml titanium dioxide nanoparticles (TiO2-NPs) in a 100 ml bottle. The presence of TiO2-NPs in the veins of the leaves was confirmed by X-ray analytical microscopy (X-ray AM). The hatched 1st instar larvae fed on the leaves to moult into 2nd instar larvae. Small agglomerates of TiO2-NPs less than 150 nm in diameter were identified in the vascular tissue of the exposed plant, the midgut and the excreta of the larvae by transmission electron microscopy. The image of Ti elemental mapping by X-ray AM was analysed with the quantitative spatial information mapping (QSIM) technique. The results demonstrated that TiO2-NPs were transferred from the plant to the larvae and they were disseminated throughout the environment via larval excreta.

  12. Digestive proteolytic and amylolytic activities and feeding responses of Helicoverpa armigera (Lepidoptera: Noctuidae) on different host plants.

    PubMed

    Hemati, S A; Naseri, B; Ganbalani, G Nouri; Dastjerdi, H Rafiee; Golizadeh, A

    2012-08-01

    Digestive proteolytic and amylolytic activities and feeding responses of fifth instar larvae of Helicoverpa armigera (Hübner) on different host plants including chickpea (cultivars Arman, Hashem, Azad, and Binivich), common bean (cultivar Khomein), white kidney bean (cultivar Dehghan), red kidney bean (cultivar Goli), cowpea (cultivar Mashhad), tomato (cultivar Meshkin), and potato (cultivars Agria and Satina) were studied under laboratory conditions (25 +/- 1 degrees C, 65 +/- 5% RH and a photoperiod of 16:8 [L:D] h). Our results showed that the highest protease activity in optimal pH was on cultivar Dehghan (8.717 U/mg) and lowest one was on Meshkin (3.338 U/mg). In addition, the highest amylase activity in optimal pH was on cultivar Dehghan (0.340 mU/mg) and lowest was on Meshkin (0.088 mU/mg). The larval weight of fifth instar H. armigera showed significant difference, being heaviest on Binivich (125.290 +/- 5.050 mg) and lightest on Meshkin (22.773 +/- 0.575 mg). Furthermore, the highest and lowest values of food consumed were on Goli (362.800 +/- 27.500 mg) and Satina (51.280 +/- 4.500 mg), respectively. In addition, the lowest values of prepupal and pupal weight were on Meshkin (32.413 +/- 0.980 and 41.820 +/- 1.270 mg, respectively). The results indicated that tomato (Meshkin) was unsuitable host for feeding fifth instar larvae of H. armigera.

  13. Larval host plant origin modifies the adult oviposition preference of the female European grapevine moth Lobesia botrana.

    PubMed

    Moreau, J; Rahme, J; Benrey, B; Thiery, D

    2008-04-01

    According to the 'natal habitat preference induction' (NHPI) hypothesis, phytophagous insect females should prefer to lay their eggs on the host species on which they developed as larvae. We tested whether this hypothesis applies to the breeding behaviour of polyphagous European grapevine moth, Lobesia botrana, an important pest in European vineyards. We previously found that different grape cultivars affect several life history traits of the moth. Because the different cultivars of grapes are suspected to provide different plant quality, we tested the NHPI hypothesis by examining oviposition choice of L. botrana among three Vitis vinifera cultivars (Pinot, Chasselas and Chardonnay). In a choice situation, females of L. botrana that had never experienced grapes were able to discriminate between different grape cultivars and preferentially selected Pinot as an oviposition substrate. This 'naive' preference of oviposition could be modified by larval environment: Females raised on grapes as larvae preferred to lay eggs on the cultivar that they had experienced. Furthermore, experience of the host plant during adult emergence could be excluded because when pupae originating from our synthetic diet were exposed to grapes, the emerging adults did not show preference for the cultivar from which they emerged. The NHPI hypothesis that includes the two sub-hypothesis "Hopkins host selection principle" and "chemical legacy" may thus be relevant in this system.

  14. Larval host plant origin modifies the adult oviposition preference of the female European grapevine moth Lobesia botrana

    NASA Astrophysics Data System (ADS)

    Moreau, J.; Rahme, J.; Benrey, B.; Thiery, D.

    2008-04-01

    According to the ‘natal habitat preference induction’ (NHPI) hypothesis, phytophagous insect females should prefer to lay their eggs on the host species on which they developed as larvae. We tested whether this hypothesis applies to the breeding behaviour of polyphagous European grapevine moth, Lobesia botrana, an important pest in European vineyards. We previously found that different grape cultivars affect several life history traits of the moth. Because the different cultivars of grapes are suspected to provide different plant quality, we tested the NHPI hypothesis by examining oviposition choice of L. botrana among three Vitis vinifera cultivars (Pinot, Chasselas and Chardonnay). In a choice situation, females of L. botrana that had never experienced grapes were able to discriminate between different grape cultivars and preferentially selected Pinot as an oviposition substrate. This ‘naive’ preference of oviposition could be modified by larval environment: Females raised on grapes as larvae preferred to lay eggs on the cultivar that they had experienced. Furthermore, experience of the host plant during adult emergence could be excluded because when pupae originating from our synthetic diet were exposed to grapes, the emerging adults did not show preference for the cultivar from which they emerged. The NHPI hypothesis that includes the two sub-hypothesis “Hopkins host selection principle” and “chemical legacy” may thus be relevant in this system.

  15. Tea green leafhopper, Empoasca vitis, chooses suitable host plants by detecting the emission level of (3Z)-hexenyl acetate.

    PubMed

    Xin, Z-J; Li, X-W; Bian, L; Sun, X-L

    2017-02-01

    Green leaf volatiles (GLVs) have been reported to play an important role in the host-locating behavior of several folivores that feed on angiosperms. However, next to nothing is known about how the green leafhopper, Empoasca vitis, chooses suitable host plants and whether it detects differing emission levels of GLV components among genetically different tea varieties. Here we found that the constitutive transcript level of the tea hydroperoxide lyase (HPL) gene CsiHPL1, and the amounts of (Z)-3-hexenyl acetate and of total GLV components are significantly higher in tea varieties that are susceptible to E. vitis (Enbiao (EB) and Banzhuyuan (BZY)) than in varieties that are resistant to E. vitis (Changxingzisun (CX) and Juyan (JY)). Moreover, the results of a Y-tube olfactometer bioassay and an oviposition preference assay suggest that (Z)-3-hexenyl acetate and (Z)-3-hexenol offer host and oviposition cues for E. vitis female adults. Taken together, the two GLV components, (Z)-3-hexenol and especially (Z)-3-hexenyl acetate, provide a plausible mechanism by which tea green leafhoppers distinguish among resistant and susceptible varieties. Future research should be carried out to obtain the threshold of the above indices and then assess their reasonableness. The development of practical detection indices would greatly improve our ability to screen and develop tea varieties that are resistant to E. vitis.

  16. The transfer of titanium dioxide nanoparticles from the host plant to butterfly larvae through a food chain

    PubMed Central

    Kubo-Irie, Miyoko; Yokoyama, Masaaki; Shinkai, Yusuke; Niki, Rikio; Takeda, Ken; Irie, Masaru

    2016-01-01

    This study aimed to examine the transfer of nanoparticles within a terrestrial food chain. Oviposited eggs of the swallowtail butterfly (Atrophaneura alcinous) were hatched on the leaves of the host plant (Aristolochia debilis), and the root stock and root hairs were submerged in a suspension of 10 μg/ml titanium dioxide nanoparticles (TiO2-NPs) in a 100 ml bottle. The presence of TiO2-NPs in the veins of the leaves was confirmed by X-ray analytical microscopy (X-ray AM). The hatched 1st instar larvae fed on the leaves to moult into 2nd instar larvae. Small agglomerates of TiO2-NPs less than 150 nm in diameter were identified in the vascular tissue of the exposed plant, the midgut and the excreta of the larvae by transmission electron microscopy. The image of Ti elemental mapping by X-ray AM was analysed with the quantitative spatial information mapping (QSIM) technique. The results demonstrated that TiO2-NPs were transferred from the plant to the larvae and they were disseminated throughout the environment via larval excreta. PMID:27030539

  17. The transfer of titanium dioxide nanoparticles from the host plant to butterfly larvae through a food chain.

    PubMed

    Kubo-Irie, Miyoko; Yokoyama, Masaaki; Shinkai, Yusuke; Niki, Rikio; Takeda, Ken; Irie, Masaru

    2016-03-31

    This study aimed to examine the transfer of nanoparticles within a terrestrial food chain. Oviposited eggs of the swallowtail butterfly (Atrophaneura alcinous) were hatched on the leaves of the host plant (Aristolochia debilis), and the root stock and root hairs were submerged in a suspension of 10 μg/ml titanium dioxide nanoparticles (TiO2-NPs) in a 100 ml bottle. The presence of TiO2-NPs in the veins of the leaves was confirmed by X-ray analytical microscopy (X-ray AM). The hatched 1st instar larvae fed on the leaves to moult into 2nd instar larvae. Small agglomerates of TiO2-NPs less than 150 nm in diameter were identified in the vascular tissue of the exposed plant, the midgut and the excreta of the larvae by transmission electron microscopy. The image of Ti elemental mapping by X-ray AM was analysed with the quantitative spatial information mapping (QSIM) technique. The results demonstrated that TiO2-NPs were transferred from the plant to the larvae and they were disseminated throughout the environment via larval excreta.

  18. Differentially expressed proteins in the interaction of Xanthomonas axonopodis pv. citri with leaf extract of the host plant.

    PubMed

    Mehta, A; Rosato, Y B

    2001-09-01

    The present study reports the expression of proteins of Xanthomonas axonopodis pv. citri in response to different growth conditions. The bacterium was cultured in the basal medium MM1 and in the presence of leaf extracts from a susceptible host plant (sweet orange) as well as a resistant (ponkan) and a nonhost plant (passion fruit). The protein profiles were analyzed by two-dimensional gel electrophoresis (2-DE). Twelve differential spots (induced, up- and down-regulated and repressed) were observed in the protein profiles of the bacterium cultivated in citrus extract (susceptible host) when compared to that of MM1. The 2-DE profile of the bacterium cultured in the complex medium nutrient yeast glycerol was also obtained and the comparison with that of MM1 revealed 36 differential spots. Five proteins from the different treatments were successfully N-terminally sequenced and the putative functions were assigned by homology searches in databases. Two constitutively expressed proteins, B4 and B5, were identified as pseudouridine synthase and elongation factor P, respectively. The large subunit of ribulose 1,5-biphosphate carboxylase/oxygenase and a sulfate binding protein were found as specifically up-regulated in the presence of citrus extracts. Finally, the heat shock protein G was found exclusively in the complex medium and repressed in all other media.

  19. Analysis of three Xanthomonas axonopodis pv. citri effector proteins in pathogenicity and their interactions with host plant proteins.

    PubMed

    Dunger, Germán; Garofalo, Cecilia G; Gottig, Natalia; Garavaglia, Betiana S; Rosa, María C Pereda; Farah, Chuck S; Orellano, Elena G; Ottado, Jorgelina

    2012-10-01

    Xanthomonas axonopodis pv. citri, the bacterium responsible for citrus canker, uses effector proteins secreted by a type III protein secretion system to colonize its hosts. Among the putative effector proteins identified for this bacterium, we focused on the analysis of the roles of AvrXacE1, AvrXacE2 and Xac3090 in pathogenicity and their interactions with host plant proteins. Bacterial deletion mutants in avrXacE1, avrXacE2 and xac3090 were constructed and evaluated in pathogenicity assays. The avrXacE1 and avrXacE2 mutants presented lesions with larger necrotic areas relative to the wild-type strain when infiltrated in citrus leaves. Yeast two-hybrid studies were used to identify several plant proteins likely to interact with AvrXacE1, AvrXacE2 and Xac3090. We also assessed the localization of these effector proteins fused to green fluorescent protein in the plant cell, and observed that they co-localized to the subcellular spaces in which the plant proteins with which they interacted were predicted to be confined. Our results suggest that, although AvrXacE1 localizes to the plant cell nucleus, where it interacts with transcription factors and DNA-binding proteins, AvrXacE2 appears to be involved in lesion-stimulating disease 1-mediated cell death, and Xac3090 is directed to the chloroplast where its function remains to be clarified.

  20. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    PubMed

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.

  1. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants

    PubMed Central

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271

  2. Aphids Pick Their Poison: Selective Sequestration of Plant Chemicals Affects Host Plant Use in a Specialist Herbivore.

    PubMed

    Goodey, Nicole A; Florance, Hannah V; Smirnoff, Nicholas; Hodgson, Dave J

    2015-10-01

    In some plant-insect interactions, specialist herbivores exploit the chemical defenses of their food plant to their own advantage. Brassica plants produce glucosinolates that are broken down into defensive toxins when tissue is damaged, but the specialist aphid, Brevicoryne brassicae, uses these chemicals against its own natural enemies by becoming a "walking mustard-oil bomb". Analysis of glucosinolate concentrations in plant tissue and associated aphid colonies reveals that not only do aphids sequester glucosinolates, but they do so selectively. Aphids specifically accumulate sinigrin to high concentrations while preferentially excreting a structurally similar glucosinolate, progoitrin. Surveys of aphid infestation in wild populations of Brassica oleracea show that this pattern of sequestration and excretion maps onto host plant use. The probability of aphid infestation decreases with increasing concentrations of progoitrin in plants. Brassica brassicae, therefore, appear to select among food plants according to plant secondary metabolite profiles, and selectively store only some compounds that are used against their own enemies. The results demonstrate chemical and behavioral mechanisms that help to explain evidence of geographic patterns and evolutionary dynamics in Brassica-aphid interactions.

  3. The effects of atmospheric CO/sub 2/ on insect herbivores and their hosts plants: Progress report

    SciTech Connect

    Lincoln, D.E.

    1989-04-01

    The overall goal of the research program is to determine how plant/herbivore interactions change with increasing atmospheric CO/sub 2/ concentration and how these changes affect community structure and functioning. Five specific objectives have been developed to approach these goals over the grant period. These objectives are to determine: (1) if specialist feeding herbivores respond to host plant CO/sub 2/ enrichment in the same manner as generalist feeders, (2) if the impact of defoliation is lessened under enriched CO/sub 2/conditions, (3) the biochemical basis for the altered nutritional value of leaves resulting from elevated CO/sub 2/, (4) the demographic and consumption responses of an herbivore to CO/sub 2/ regimes, and (5) whether plants with the C/sub 4/ photosynthetic pathway will also have altered relationships with herbivores. Significant progress has been made on three of these goals. Manuscripts are appended. A revised study plan to complete the remaining objectives is appended.

  4. Functional characterization of a pheromone-binding protein from rice leaffolder Cnaphalocrocis medinalis in detecting pheromones and host plant volatiles.

    PubMed

    Sun, X; Zhao, Z-F; Zeng, F-F; Zhang, A; Lu, Z-X; Wang, M-Q

    2016-12-01

    Pheromone-binding proteins (PBPs) are believed to be involved in the recognition of semiochemicals. In the present study, western blot analysis, fluorescence-binding characteristics and immunolocalization of CmedPBP4 from the rice leaffolder, Cnaphalocrocis medinalis, were investigated. Western blot analysis revealed that CmedPBP4 showed obvious antenna-specific expression patterns in female and male antenna, and made a clearly different sex-biased expression. Immunocytochemical labeling revealed that CmedPBP4 showed specific expression in the trichoid sensilla. Competitive fluorescence binding assays indicated that CmedPBP4 could selectively recognize three sex pheromone components (Z13-18:Ac, Z11-16:Al and Z13-18:OH) and eleven rice plant volatiles, including cyclohexanol, nerolidol, cedrol, dodecanal, ionone, (-)-α-cedrene, (Z)-farnesene, β-myrcene, R-(+)-limonene, (-)-limonene, and (+)-3-carene. Meanwhile the CmedPBP4 detection of sex pheromones and host odorants was pH-dependent. Our results, for the first time, provide further evidence that trichoid sensilla might be play an important role in detecting sex pheromones and host plant volatiles in the C. medinalis moth. Our systematic studies provided further detailed evidence for the function of trichoid sensilla in insect semiochemical perception.

  5. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism and photosynthesis

    SciTech Connect

    Pelletier, Dale A; Morrell-Falvey, Jennifer L; Karve, Abhijit A; Lu, Tse-Yuan S; Tschaplinski, Timothy J; Tuskan, Gerald A; Chen, Jay; Martin, Madhavi Z; Jawdy, Sara; Weston, David; Doktycz, Mitchel John; Schadt, Christopher Warren

    2012-01-01

    Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.

  6. Is host plant choice by a clytrine leaf beetle mediated through interactions with the ant Crematogaster lineolata?

    PubMed

    Stiefel, Vernon L; Margolies, David C

    1998-07-01

    In the grasslands of northeastern Kansas, adult populations of Anomoea flavokansiensis, an oligophagous leaf beetle (subfamily Clytrinae), specialize on Illinois bundleflower (Desmanthus illinoensis) even though other reported host species commonly occur and are simultaneously available. We performed choice feeding tests to examine whether A. flavokansiensis adults have a fixed feeding preference for bundleflower. In choice tests, beetles ate similar amounts of bundleflower and honey locust (Gleditsia triacanthos). In addition, we measured fecundity and longevity of adults in no-choice tests to determine if adults were adapted solely to bundleflower. In no-choice tests, fecundity and longevity were no different for adults feeding on bundleflower and honey locust. We next examined the influence of host plant on the attractiveness of beetle eggs to ants. In northeastern Kansas, Crematogaster lineolata ants are attracted to A. flavokansiensis eggs and carry them into their nests where the larvae hatch and apparently reside as inquilines. C. lineolata exhibited a strong preference for eggs from female A. flavokansiensis that fed exclusively on bundleflower compared to eggs from females that fed exclusively on honey locust. Local populations of A. flavokansiensis in northeastern Kansas may specialize on bundleflower to increase the chances of their eggs being transported by C. lineolata ants into their nests. C. lineolata nests may serve as a predator-free and sheltered environment in which A. flavokansiensis eggs undergo embryogenesis.

  7. Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity

    SciTech Connect

    Yuan, Zhilin; Druzhinina, Irina S.; Labbé, Jessy; Redman, Regina; Qin, Yuan; Rodriguez, Russell; Zhang, Chulong; Tuskan, Gerald A.; Lin, Fucheng

    2016-08-30

    Root microbiota is a crucial determinant of plant productivity and stress tolerance. Here, we hypothesize that the superior halo-tolerance of seepweed Suaeda salsa is tightly linked to a specialized belowground microbiome. To test this hypothesis, we performed a phylogenetic trait-based framework analysis based on bacterial 16S rRNA gene and fungal nuclear rRNA internal transcribed spacer profiling. Data showed that the dominant α-proteobacteria and γ-proteobacteria communities in bulk soil and root endosphere tend to be phylogenetically clustered and at the same time exhibit phylogenetic over-dispersion in rhizosphere. Likewise, the dominant fungal genera occurred at high phylogenetic redundancy. Interestingly, we found the genomes of rhizospheric and endophytic bacteria associated with S. salsa to be enriched in genes contributing to salt stress acclimatization, nutrient solubilization and competitive root colonization. A wide diversity of rhizobacteria with similarity to known halotolerant taxa further supported this interpretation. These findings suggest that an ecological patterned root-microbial interaction strategy has been adopted in S. salsa system to confront soil salinity. We also demonstrated that the potential core microbiome members improve non-host plants growth and salt tolerance. As a result, this work provides a platform to improve plant fitness with halophytes-microbial associates and novel insights into the functions of plant microbiome under salinity.

  8. A correlation between macronutrient balancing and insect host-plant range: evidence from the specialist caterpillar Spodoptera exempta (Walker).

    PubMed

    Lee, Kwang Pum; Raubenheimer, David; Behmer, Spencer T; Simpson, Stephen J

    2003-12-01

    In an earlier study, we showed that the ingestive responses of the generalist caterpillar Spodoptera littoralis to foods imbalanced in their protein:carbohydrate content is similar to generalist locusts, but differs from that of specialist-feeding locusts. Here we further pursued the comparison by repeating the experiments using a closely related specialist caterpillar, Spodoptera exempta. First, caterpillars were allowed to self-compose a diet of preferred protein:carbohydrate balance by mixing between nutritionally complementary foods. Then, they were confined to one of five imbalanced foods, in which we measured the trade-off between over- and under-ingesting the two nutrients. On complementary foods, the caterpillars actively regulated their protein and carbohydrate intake. In the no-choice experiment, those fed excess-protein foods ingested small surpluses of protein compared with generalist feeders, thus showing a pattern of nutrient balancing similar to that observed in specialist locusts. Utilisation data indicated that ingested excesses and deficits were to some extent offset by differential utilisation. Evidence also showed that post-ingestive responses of the specialist S. exempta were less flexible than those observed in the generalist S. littoralis, a pattern which is again in accordance with comparisons of acridids differing in their host-plant range.

  9. Phylogenetic relationships of butterflies of the tribe Acraeini (Lepidoptera, Nymphalidae, Heliconiinae) and the evolution of host plant use.

    PubMed

    Silva-Brandão, Karina Lucas; Wahlberg, Niklas; Francini, Ronaldo Bastos; Azeredo-Espin, Ana Maria L; Brown, Keith S; Paluch, Márlon; Lees, David C; Freitas, André V L

    2008-02-01

    The tribe Acraeini (Nymphalidae, Heliconiinae) is believed to comprise between one and seven genera, with the greatest diversity in Africa. The genera Abananote, Altinote, and Actinote (s. str.) are distributed in the Neotropics, while the genera Acraea, Bematistes, Miyana, and Pardopsis have a Palaeotropical distribution. The monotypic Pardopsis use herbaceous plants of the family Violaceae, Acraea and Bematistes feed selectively on plants with cyanoglycosides belonging to many plant families, but preferentially to Passifloraceae, and all Neotropical species with a known life cycle feed on Asteraceae only. Here, a molecular phylogeny is proposed for the butterflies of the tribe Acraeini based on sequences of COI, EF-1alpha and wgl. Both Maximum Parsimony and Bayesian analyses showed that the tribe is monophyletic, once the genus Pardopsis is excluded, since it appears to be related to Argynnini. The existing genus Acraea is a paraphyletic group with regard to the South American genera, and the species of Acraea belonging to the group of "Old World Actinote" is the sister group of the Neotropical genera. The monophyly of South American clade is strongly supported, suggesting a single colonization event of South America. The New World Actinote (s. str.) is monophyletic, and sister to Abananote+Altinote (polyphyletic). Based on the present results it was possible to propose a scenario for the evolution in host plant use within Acraeini, mainly concerning the use of Asteraceae by the South American genera.

  10. Specialized Microbiome of a Halophyte and its Role in Helping Non-Host Plants to Withstand Salinity

    PubMed Central

    Yuan, Zhilin; Druzhinina, Irina S.; Labbé, Jessy; Redman, Regina; Qin, Yuan; Rodriguez, Russell; Zhang, Chulong; Tuskan, Gerald A.; Lin, Fucheng

    2016-01-01

    Root microbiota is a crucial determinant of plant productivity and stress tolerance. Here, we hypothesize that the superior halo-tolerance of seepweed Suaeda salsa is tightly linked to a specialized belowground microbiome. To test this hypothesis, we performed a phylogenetic trait-based framework analysis based on bacterial 16S rRNA gene and fungal nuclear rRNA internal transcribed spacer profiling. Data showed that the dominant α-proteobacteria and γ-proteobacteria communities in bulk soil and root endosphere tend to be phylogenetically clustered and at the same time exhibit phylogenetic over-dispersion in rhizosphere. Likewise, the dominant fungal genera occurred at high phylogenetic redundancy. Interestingly, we found the genomes of rhizospheric and endophytic bacteria associated with S. salsa to be enriched in genes contributing to salt stress acclimatization, nutrient solubilization and competitive root colonization. A wide diversity of rhizobacteria with similarity to known halotolerant taxa further supported this interpretation. These findings suggest that an ecological patterned root-microbial interaction strategy has been adopted in S. salsa system to confront soil salinity. We also demonstrated that the potential core microbiome members improve non-host plants growth and salt tolerance. This work provides a platform to improve plant fitness with halophytes-microbial associates and novel insights into the functions of plant microbiome under salinity. PMID:27572178

  11. Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity

    DOE PAGES

    Yuan, Zhilin; Druzhinina, Irina S.; Labbé, Jessy; ...

    2016-08-30

    Root microbiota is a crucial determinant of plant productivity and stress tolerance. Here, we hypothesize that the superior halo-tolerance of seepweed Suaeda salsa is tightly linked to a specialized belowground microbiome. To test this hypothesis, we performed a phylogenetic trait-based framework analysis based on bacterial 16S rRNA gene and fungal nuclear rRNA internal transcribed spacer profiling. Data showed that the dominant α-proteobacteria and γ-proteobacteria communities in bulk soil and root endosphere tend to be phylogenetically clustered and at the same time exhibit phylogenetic over-dispersion in rhizosphere. Likewise, the dominant fungal genera occurred at high phylogenetic redundancy. Interestingly, we found themore » genomes of rhizospheric and endophytic bacteria associated with S. salsa to be enriched in genes contributing to salt stress acclimatization, nutrient solubilization and competitive root colonization. A wide diversity of rhizobacteria with similarity to known halotolerant taxa further supported this interpretation. These findings suggest that an ecological patterned root-microbial interaction strategy has been adopted in S. salsa system to confront soil salinity. We also demonstrated that the potential core microbiome members improve non-host plants growth and salt tolerance. As a result, this work provides a platform to improve plant fitness with halophytes-microbial associates and novel insights into the functions of plant microbiome under salinity.« less

  12. Exopolysaccharide structure is not a determinant of host-plant specificity in nodulation of Vicia sativa roots.

    PubMed

    Laus, Marc C; van Brussel, Anton A N; Kijne, Jan W

    2005-11-01

    Exopolysaccharide (EPS)-deficient strains of the root nodule symbiote Rhizobium leguminosarum induce formation of abortive infection threads in Vicia sativa subsp. nigra roots. As a result, the nodule tissue remains uninfected. Formation of an infection thread can be restored by coinoculation of the EPS-deficient mutant with a Nod factor-deficient strain, which produces a similar EPS structure. This suggests that EPS contributes to host-plant specificity of nodulation. Here, a comparison was made of i) coinoculation with heterologous strains with different EPS structures, and ii) introduction of the pRL1JI Sym plasmid or a nod gene-encoding fragment in the same heterologous strains. Most strains not complementing in coinoculation experiments were able to nodulate V. sativa roots as transconjugants. Apparently, coinoculation is a delicate approach in which differences in root colonization ability or bacterial growth rate easily affect successful infection-thread formation. Obviously, lack of infection-thread formation in coinoculation studies is not solely determined by EPS structure. Transconjugation data show that different EPS structures can allow infection-thread formation and subsequent nodulation of V. sativa roots.

  13. A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells.

    PubMed

    Navazio, Lorella; Moscatiello, Roberto; Genre, Andrea; Novero, Mara; Baldan, Barbara; Bonfante, Paola; Mariani, Paola

    2007-06-01

    The implication of calcium as intracellular messenger in the arbuscular mycorrhizal (AM) symbiosis has not yet been directly demonstrated, although often envisaged. We used soybean (Glycine max) cell cultures stably expressing the bioluminescent Ca(2+) indicator aequorin to detect intracellular Ca(2+) changes in response to the culture medium of spores of Gigaspora margarita germinating in the absence of the plant partner. Rapid and transient elevations in cytosolic free Ca(2+) were recorded, indicating that diffusible molecules released by the mycorrhizal fungus are perceived by host plant cells through a Ca(2+)-mediated signaling. Similar responses were also triggered by two Glomus isolates. The fungal molecules active in generating the Ca(2+) transient were constitutively released in the medium, and the induced Ca(2+) signature was not modified by the coculture of germinating spores with plant cells. Even ungerminated spores were able to generate the signaling molecules, as proven when the germination was blocked by a low temperature. The fungal molecules were found to be stable to heat treatment, of small molecular mass (<3 kD), and, on the basis of extraction with an organic solvent, partially lipophilic. Evidence for the specificity of such an early fungal signal to the AM symbiosis is suggested by the lack of a Ca(2+) response in cultured cells of the nonhost plant Arabidopsis (Arabidopsis thaliana) and by the up-regulation in soybean cells of genes related to Medicago truncatula DMI1, DMI2, and DMI3 and considered essential for the establishment of the AM symbiosis.

  14. Evolution of Spermophagus seed beetles (Coleoptera, Bruchinae, Amblycerini) indicates both synchronous and delayed colonizations of host plants.

    PubMed

    Kergoat, Gael J; Le Ru, Bruno P; Sadeghi, Seyed E; Tuda, Midori; Reid, Chris A M; György, Zoltán; Genson, Gwenaëlle; Ribeiro-Costa, Cibele S; Delobel, Alex

    2015-08-01

    Seed beetles are a group of specialized chrysomelid beetles, which are mostly associated with plants of the legume family (Fabaceae). In the legume-feeding species, a marked trend of phylogenetic conservatism of host use has been highlighted by several molecular phylogenetics studies. Yet, little is known about the evolutionary patterns of association of species feeding outside the legume family. Here, we investigate the evolution of host use in Spermophagus, a species-rich seed beetle genus that is specialized on two non-legume host-plant groups: morning glories (Convolvulaceae) and mallows (Malvaceae: Malvoideae). Spermophagus species are widespread in the Old World, especially in the Afrotropical, Indomalaya and Palearctic regions. In this study we rely on eight gene regions to provide the first phylogenetic framework for the genus, along with reconstructions of host use evolution, estimates of divergence times and historical biogeography analyses. Like the legume-feeding species, a marked trend toward conservatism of host use is revealed, with one clade specializing on Convolvulaceae and the other on Malvoideae. Comparisons of plants' and insects' estimates of divergence times yield a contrasted pattern: on one hand a quite congruent temporal framework was recovered for morning-glories and their seed-predators; on the other hand the diversification of Spermophagus species associated with mallows apparently lagged far behind the diversification of their hosts. We hypothesize that this delayed colonization of Malvoideae can be accounted for by the respective biogeographic histories of the two groups.

  15. The promoting role of an isolate of dark-septate fungus on its host plant Saussurea involucrata Kar. et Kir.

    PubMed

    Wu, Li-qin; Lv, Ya-li; Meng, Zhi-xia; Chen, Juan; Guo, Shun-Xing

    2010-02-01

    A dark-septate endophytic (DSE) fungus EF-37 was isolated from the roots of Saussurea involucrata Kar. et Kir., an endangered Chinese medicinal plant. The molecular identification of the fungus was based on internal transcribed spacer regions and the result showed that EF-37 was congeneric to Mycocentrospora. This study was conducted to clarify the influence of the root endophyte EF-37 on the host plant S. involucrata using material grown in a sterile culture bottle. After cultivation for 40 days, fungal hyphae were found to be branching repeatedly and forming "hyphae nets" in the epidermal layers. Significant differences were detected between the study groups in plant dry weight, plant height, root dry weight, shoot dry weight, and the number of hair root tips. There was a positive effect of endophyte EF-37 on plant root development, with results showing that cortical cells dissolved and formed aerate structures. There was a positive effect of endophyte EF-37 on plant growth, but chlorophyll fluorescence analysis showed that there were no significant differences between the study groups. In addition, analysis of the chemical composition of seedlings showed that the level of rutin was higher in plants cultivated with the EF-37 fungus compared to the controls. This study helps to establish a basis for germplasm conservation and for further investigation of the interaction between dark-septate fungi and this alpine plant.

  16. Native leaf-tying caterpillars influence host plant use by the invasive Asiatic oak weevil through ecosystem engineering.

    PubMed

    Baer, Christina S; Marquis, Robert J

    2014-06-01

    We tested the effect of leaf-tying caterpillars, native ecosystem engineers, on the abundance and host feeding of an invasive insect, the Asiatic oak weevil, Cyrtepistomus castaneus (Roelofs). Leaf quality was previously thought to be the sole factor determining host use by C. castaneus, but adult weevils congregate in leaf ties made by lepidopteran larvae (caterpillars). Adult weevil abundance was naturally higher on Quercus alba and Q. velutina compared to four other tree species tested (Acer rubrum, Carya ovata, Cornus florida, and Sassafras albidum). These differences were associated with more natural leaf ties on the two Quercus species. In the laboratory, weevils fed on all six species but again preferred Q. alba and Q. velutina. When artificial ties were added to all six tree species, controlling for differences in leaf-tie density, adult weevil density increased on all six tree species, damage increased on all species but A. rubrum, and host ranking changed based on both abundance and damage. We conclude that leaf ties increase the local abundance of C. castaneus adults and their feeding. Thus, these native leaf-tying caterpillars engender the success of an invasive species via structural modification of potential host plants, the first described example of this phenomenon.

  17. Reproductive isolation between two populations of Diatraea saccharalis (F.) (Lepidoptera: Crambidae) from different host plant species and regions in Argentina.

    PubMed

    Fogliata, S V; Vera, A; Gastaminza, G; Cuenya, M I; Zucchi, M I; Willink, E; Castagnaro, A P; Murúa, M G

    2016-10-01

    The sugarcane borer, Diatraea saccharalis (F.), has a widespread distribution throughout the Western Hemisphere and is a pest of many crop plants including sugarcane, corn, sorghum and rice. The use of Bacillus thuringiensis (Bt) corn has been the primary tool for managing this species in corn fields. Sugarcane borer control has been recently threatened by observations of susceptibility and/or resistance to certain varieties of Bt corn and the protein used in many newer varieties. This has led to increased interest in understanding sugarcane borer genetic diversity and gene flow within and among its populations and the consequent exchange of alleles between geographically distant populations. The objective of this study was to examine reproductive compatibility between host-associated geographic populations of D. saccharalis in Argentina and to determine whether this pest represents a complex of host-associated cryptic species rather than a wide ranging generalist species. Intra and inter-population crosses revealed that D. saccharalis populations from the northwestern and Pampas regions presented evidence of prezygotic and postzygotic incompatibility. Such a result is likely to be the product of an interruption of gene flow produced by either geographic or host plant associated isolation, suggesting that Tucumán (northwestern) and Buenos Aires (Pampas) populations of D. saccharalis are a distinct genotype and possibly an incipient species.

  18. Host Plant Use by the Invasive Halyomorpha halys (Stål) on Woody Ornamental Trees and Shrubs

    PubMed Central

    Bergmann, Erik J.; Venugopal, P. Dilip; Martinson, Holly M.; Raupp, Michael J.; Shrewsbury, Paula M.

    2016-01-01

    The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an invasive plant-feeding insect native to eastern Asia. This herbivore is highly polyphagous, feeding on and damaging diverse plants, including field crops, vegetables, tree fruits, and ornamentals. Woody ornamental plants provide early- and late-season resources for adults emerging from and returning to overwintering sites, as well as feeding and breeding sites for H. halys throughout the growing season. In this study, we quantify the use of diverse plants by H. halys in two commercial nurseries in Maryland, recording data on the abundance of egg masses, early and late instar nymphs, and adults over a three-year study period. Our specific goals were to provide a quantitative comparison of the use of diverse plant species and cultivated varieties, identify non-hosts that could be used to create landscapes refractory to H. halys, and determine whether the use of plants varied across life stages of H. halys or the taxonomic status of plants. We found broad use of diverse plants in this study, identifying 88 host plants used by all life stages of H. halys. We also highlight the 43 plant taxa that did not support any life stage of H. halys and are thus classified as non-hosts. Interestingly, some of these plants were congeners of highly-used plants, underscoring high intrageneric and intraspecific variation in the use of plants by this polyphagous herbivore. We discuss how the selective planting of non-hosts, especially gymnosperms, may aid in reducing the agricultural and nuisance pest status of this invasive insect. PMID:26906399

  19. Spatial correlations of Diceroprocta apache and its host plants: Evidence for a negative impact from Tamarix invasion

    USGS Publications Warehouse

    Ellingson, A.R.; Andersen, D.C.

    2002-01-01

    1. The hypothesis that the habitat-scale spatial distribution of the, Apache cicada Diceroprocta apache Davis is unaffected by the presence of the invasive exotic saltcedar Tamarix ramosissima was tested using data from 205 1-m2 quadrats placed within the flood-plain of the Bill Williams River, Arizona, U.S.A. Spatial dependencies within and between cicada density and habitat variables were estimated using Moran's I and its bivariate analogue to discern patterns and associations at spatial scales from 1 to 30 m. 2. Apache cicadas were spatially aggregated in high-density clusters averaging 3m in diameter. A positive association between cicada density, estimated by exuvial density, and the per cent canopy cover of a native tree, Goodding's willow Salix gooddingii, was detected in a non-spatial correlation analysis. No non-spatial association between cicada density and saltcedar canopy cover was detected. 3. Tests for spatial cross-correlation using the bivariate IYZ indicated the presence of a broad-scale negative association between cicada density and saltcedar canopy cover. This result suggests that large continuous stands of saltcedar are associated with reduced cicada density. In contrast, positive associations detected at spatial scales larger than individual quadrats suggested a spill-over of high cicada density from areas featuring Goodding's willow canopy into surrounding saltcedar monoculture. 4. Taken together and considered in light of the Apache cicada's polyphagous habits, the observed spatial patterns suggest that broad-scale factors such as canopy heterogeneity affect cicada habitat use more than host plant selection. This has implications for management of lower Colorado River riparian woodlands to promote cicada presence and density through maintenance or creation of stands of native trees as well as manipulation of the characteristically dense and homogeneous saltcedar canopies.

  20. Growth but Not Photosynthesis Response of a Host Plant to Infection by a Holoparasitic Plant Depends on Nitrogen Supply

    PubMed Central

    Shen, Hao; Xu, Shu-Jun; Hong, Lan; Wang, Zhang-Ming; Ye, Wan-Hui

    2013-01-01

    Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources transferred to the parasite at

  1. The Tri-Trophic Interactions Hypothesis: Interactive Effects of Host Plant Quality, Diet Breadth and Natural Enemies on Herbivores

    PubMed Central

    Mooney, Kailen A.; Pratt, Riley T.; Singer, Michael S.

    2012-01-01

    Several influential hypotheses in plant-herbivore and herbivore-predator interactions consider the interactive effects of plant quality, herbivore diet breadth, and predation on herbivore performance. Yet individually and collectively, these hypotheses fail to address the simultaneous influence of all three factors. Here we review existing hypotheses, and propose the tri-trophic interactions (TTI) hypothesis to consolidate and integrate their predictions. The TTI hypothesis predicts that dietary specialist herbivores (as compared to generalists) should escape predators and be competitively dominant due to faster growth rates, and that such differences should be greater on low quality (as compared to high quality) host plants. To provide a preliminary test of these predictions, we conducted an empirical study comparing the effects of plant (Baccharis salicifolia) quality and predators between a specialist (Uroleucon macolai) and a generalist (Aphis gossypii) aphid herbivore. Consistent with predictions, these three factors interactively determine herbivore performance in ways not addressed by existing hypotheses. Compared to the specialist, the generalist was less fecund, competitively inferior, and more sensitive to low plant quality. Correspondingly, predator effects were contingent upon plant quality only for the generalist. Contrary to predictions, predator effects were weaker for the generalist and on low-quality plants, likely due to density-dependent benefits provided to the generalist by mutualist ants. Because the TTI hypothesis predicts the superior performance of specialists, mutualist ants may be critical to A. gossypii persistence under competition from U. macolai. In summary, the integrative nature of the TTI hypothesis offers novel insight into the determinants of plant-herbivore and herbivore-predator interactions and the coexistence of specialist and generalist herbivores. PMID:22509298

  2. Differential Communications between Fungi and Host Plants Revealed by Secretome Analysis of Phylogenetically Related Endophytic and Pathogenic Fungi

    PubMed Central

    Xu, Xihui; He, Qin; Zhang, Chulong

    2016-01-01

    During infection, both phytopathogenic and endophytic fungi form intimate contact with living plant cells, and need to resist or disable host defences and modify host metabolism to adapt to their host. Fungi can achieve these changes by secreting proteins and enzymes. A comprehensive comparison of the secretomes of both endophytic and pathogenic fungi can improve our understanding of the interactions between plants and fungi. Although Magnaporthe oryzae, Gaeumannomyces graminis, and M. poae are economically important fungal pathogens, and the related species Harpophora oryzae is an endophyte, they evolved from a common pathogenic ancestor. We used a pipeline analysis to predict the H. oryzae, M. oryzae, G. graminis, and M. poae secretomes and identified 1142, 1370, 1001, and 974 proteins, respectively. Orthologue gene analyses demonstrated that the M. oryzae secretome evolved more rapidly than those of the other three related species, resulting in many species-specific secreted protein-encoding genes, such as avirulence genes. Functional analyses highlighted the abundance of proteins involved in the breakdown of host plant cell walls and oxidation-reduction processes. We identified three novel motifs in the H. and M. oryzae secretomes, which may play key roles in the interaction between rice and H. oryzae. Furthermore, we found that expression of the H. oryzae secretome involved in plant cell wall degradation was downregulated, but the M. oryzae secretome was upregulated with many more upregulated genes involved in oxidation-reduction processes. The divergent in planta expression patterns of the H. and M. oryzae secretomes reveal differences that are associated with mutualistic and pathogenic interactions, respectively. PMID:27658302

  3. Host Plant Use by the Invasive Halyomorpha halys (Stål) on Woody Ornamental Trees and Shrubs.

    PubMed

    Bergmann, Erik J; Venugopal, P Dilip; Martinson, Holly M; Raupp, Michael J; Shrewsbury, Paula M

    2016-01-01

    The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an invasive plant-feeding insect native to eastern Asia. This herbivore is highly polyphagous, feeding on and damaging diverse plants, including field crops, vegetables, tree fruits, and ornamentals. Woody ornamental plants provide early- and late-season resources for adults emerging from and returning to overwintering sites, as well as feeding and breeding sites for H. halys throughout the growing season. In this study, we quantify the use of diverse plants by H. halys in two commercial nurseries in Maryland, recording data on the abundance of egg masses, early and late instar nymphs, and adults over a three-year study period. Our specific goals were to provide a quantitative comparison of the use of diverse plant species and cultivated varieties, identify non-hosts that could be used to create landscapes refractory to H. halys, and determine whether the use of plants varied across life stages of H. halys or the taxonomic status of plants. We found broad use of diverse plants in this study, identifying 88 host plants used by all life stages of H. halys. We also highlight the 43 plant taxa that did not support any life stage of H. halys and are thus classified as non-hosts. Interestingly, some of these plants were congeners of highly-used plants, underscoring high intrageneric and intraspecific variation in the use of plants by this polyphagous herbivore. We discuss how the selective planting of non-hosts, especially gymnosperms, may aid in reducing the agricultural and nuisance pest status of this invasive insect.

  4. Insect responses to host plant provision beyond natural boundaries: latitudinal and altitudinal variation in a Chinese fig wasp community

    PubMed Central

    Wang, Rong; Compton, Stephen G; Quinnell, Rupert J; Peng, Yan-Qiong; Barwell, Louise; Chen, Yan

    2015-01-01

    Many plants are grown outside their natural ranges. Plantings adjacent to native ranges provide an opportunity to monitor community assembly among associated insects and their parasitoids in novel environments, to determine whether gradients in species richness emerge and to examine their consequences for host plant reproductive success. We recorded the fig wasps (Chalcidoidea) associated with a single plant resource (ovules of Ficus microcarpa) along a 1200 km transect in southwest China that extended for 1000 km beyond the tree's natural northern range margin. The fig wasps included the tree's agaonid pollinator and other species that feed on the ovules or are their parasitoids. Phytophagous fig wasps (12 species) were more numerous than parasitoids (nine species). The proportion of figs occupied by fig wasps declined with increasing latitude, as did the proportion of utilized ovules in occupied figs. Species richness, diversity, and abundance of fig wasps also significantly changed along both latitudinal and altitudinal gradients. Parasitoids declined more steeply with latitude than phytophages. Seed production declined beyond the natural northern range margin, and at high elevation, because pollinator fig wasps became rare or absent. This suggests that pollinator climatic tolerances helped limit the tree's natural distribution, although competition with another species may have excluded pollinators at the highest altitude site. Isolation by distance may prevent colonization of northern sites by some fig wasps and act in combination with direct and host-mediated climatic effects to generate gradients in community composition, with parasitoids inherently more sensitive because of declines in the abundance of potential hosts. PMID:26380693

  5. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding1[OPEN

    PubMed Central

    2016-01-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  6. Identification of cotton fleahopper (Hemiptera: Miridae) host plants in central Texas and compendium of reported hosts in the United States.

    PubMed

    Esquivel, J F; Esquivel, S V

    2009-06-01

    The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an early-season pest of developing cotton in Central Texas and other regions of the Cotton Belt. Cotton fleahopper populations develop on spring weed hosts and move to cotton as weed hosts senesce or if other weed hosts are not readily available. To identify weed hosts that were seasonably available for the cotton fleahopper in Central Texas, blooming weed species were sampled during early-season (17 March-31 May), mid-season (1 June-14 August), late-season (15 August-30 November), and overwintering (1 December-16 March) periods. The leading hosts for cotton fleahopper adults and nymphs were evening primrose (Oenothera speciosa T. Nuttall) and Mexican hat [Ratibida columnifera (T. Nuttall) E. Wooton and P. Standley], respectively, during the early season. During the mid-season, silver-leaf nightshade (Solanum elaeagnifolium A. Cavanilles) was consistently a host for fleahopper nymphs and adults. Woolly croton (Croton capitatus A. Michaux) was a leading host during the late season. Cotton fleahoppers were not collected during the overwintering period. Other suitable hosts were available before previously reported leading hosts became available. Eight previously unreported weed species were documented as temporary hosts. A compendium of reported hosts, which includes >160 plant species representing 35 families, for the cotton fleahopper is provided for future research addressing insect-host plant associations. Leading plant families were Asteraceae, Lamiaceae, and Onagraceae. Results presented here indicate a strong argument for assessing weed species diversity and abundance for the control of the cotton fleahopper in the Cotton Belt.

  7. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    DOE PAGES

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    2015-01-06

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GAmore » down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.« less

  8. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    SciTech Connect

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    2015-01-06

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GA down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.

  9. Lipo-chitooligosaccharide Nodulation Signals from Rhizobium meliloti Induce Their Rapid Degradation by the Host Plant Alfalfa.

    PubMed Central

    Staehelin, C.; Schultze, M.; Kondorosi, E.; Kondorosi, A.

    1995-01-01

    Extracellular enzymes from alfalfa (Medicago sativa L.) involved in the degradation of nodulation (Nod) factors could be distinguished by their different cleavage specificities and were separated by lectin affinity chromatography. A particular glycoprotein was able to release an acylated lipo-disaccharide from all tested Nod factors having an oligosaccharide chain length of four or five residues. Structural modifications of the basic lipo-chitooligosaccharide did not affect the cleavage site and had only weak influence on the cleavage efficiency of Nod factors tested. The acylated lipo-trisaccharide was resistant to degradation. When alfalfa roots were preincubated with Nod factors at nanomolar concentrations, the activity of the dimer-forming enzyme was stimulated up to 6-fold within a few hours. The inducing activity of Nod factors decreased in the order NodRm-IV(C16:2,Ac,S) > NodRm-IV(C16:2,S) and NodRm-V(C16:2,Ac,S) > NodRm-V(C16:2,S) > NodRm-IV(C16:0,S) > NodRm-IV(C16:2). Pretreatment with NodRm-III(C16:2) as well as unmodified chitooligosaccharides did not stimulate the dimer-forming enzyme. Roots preincubated with Rhizobium meliloti showed similar stimulation of the dimer-forming activity. Mutant strains unable to produce Nod factors did not enhance the hydrolytic activity. These results indicate a rapid feedback inactivation of Nod signals after their perception by the host plant alfalfa. PMID:12228566

  10. Laboratory and field experimental evaluation of host plant specificity of Aceria solstitialis, a prospective biological control agent of yellow starthistle.

    PubMed

    Stoeva, Atanaska; Harizanova, Vili; de Lillo, Enrico; Cristofaro, Massimo; Smith, Lincoln

    2012-01-01

    Centaurea solstitialis (yellow starthistle, Asteraceae) is an invasive annual weed in the western USA that is native to the Mediterranean Region and is a target for classical biological control. Aceria solstitialis is an eriophyid mite that has been found exclusively in association with Ce. solstitialis in Italy, Greece, Turkey and Bulgaria. The mite feeds on leaf tissue and damages bolting plants, causing stunting, witch's broom and incomplete flower development. Field experiments and laboratory no-choice and two-way choice experiments were conducted to assess host plant specificity of the mite in Bulgaria. Mites showed the highest degree of host specificity in the field and lowest in the no-choice experiments. In the field, highest densities of mites occurred on Ce. solstitialis and Ce. cyanus (bachelor's button), and either no mites or trace numbers occurred on the other test plants: Ce. diffusa (diffuse knapweed), Carthamus tinctorius (safflower) and Cynara scolymus (artichoke). In no-choice experiments, mites persisted for 60 days on Ce. diffusa, Ce. cyanus, Ce. solstitialis, Ca. tinctorius and Cy. scolymus, whereas in two-way choice experiments mites persisted on 25% of Cy. scolymus plants for 60 days and did not persist on Ca. tinctorius beyond 40 days. The eight other species of plants that were tested in the laboratory were less suitable for the mite. These results suggest that although A. solstitialis can persist on some nontarget plants for as long as 60 days in the laboratory, it appears to be much more specific under natural conditions, and warrants further evaluation as a prospective biological control agent.

  11. Impacts of thiamethoxam seed treatment and host plant resistance on the soybean aphid fungal pathogen, Pandora neoaphidis.

    PubMed

    Koch, Karrie A; Ragsdale, David W

    2011-12-01

    Since the introduction of soybean aphid, Aphis glycines Matsumura, from Asia, insecticide use in soybean has increased substantially in the north central United States. Insecticide seed treatments and aphid resistant soybean varieties are management tactics that may reduce reliance on foliar applications of broad-spectrum insecticides. Exploring potential nontarget impacts of these technologies will be an important step in incorporating them into aphid management programs. We investigated impacts of thiamethoxam seed treatment and Rag1 aphid resistant soybean on a fungal pathogen of soybean aphid, Pandora neoaphidis (Remaudière & Hennebert) Humber, via open plot and cage studies. We found that although thiamethoxam seed treatment did significantly lower aphid pressure in open plots compared with an untreated control, this reduction in aphid density translated into nonsignificant decreases in fungal disease prevalence in aphids. Furthermore, when aphid densities were approximately equal in seed treated and untreated soybean, no impact on aphid fungal disease was observed. In open plots, Rag1 resistant soybean experienced lower aphid pressure and aphid disease prevalence compared with a nonresistant isoline. However, in cages when aphid densities were equivalent in both resistant and susceptible soybean, resistance had no impact on aphid disease prevalence. The addition of thiamethoxam seed treatment to resistant soybean yielded aphid densities and aphid disease prevalence similar to untreated, resistant soybean. These studies provide evidence that thiamethoxam seed treatments and Rag1 resistance can impact P. neoaphidis via decreased aphid densities; however, this impact is minimal, implying use of seed treatments and host plant resistance are compatible with P. neoaphidis.

  12. Seed specific expression and analysis of recombinant human adenosine deaminase (hADA) in three host plant species.

    PubMed

    Doshi, Ketan M; Loukanina, Natalia N; Polowick, Patricia L; Holbrook, Larry A

    2016-10-01

    The plant seed is a leading platform amongst plant-based storage systems for the production of recombinant proteins. In this study, we compared the activity of human adenosine deaminase (hADA) expressed in transgenic seeds of three different plant species: pea (Pisum sativum L.), Nicotiana benthamiana L. and tarwi (Lupinus mutabilis Sweet). All three species were transformed with the same expression vector containing the hADA gene driven by the seed-specific promoter LegA2 with an apoplast targeting pinII signal peptide. During the study, several independent transgenic lines were generated and screened from each plant species and only lines with a single copy of the gene of interest were used for hADA expression analysis. A stable transgenic canola line expressing the ADA protein, under the control of 35S constitutive promoter was used as both as a positive control and for comparative study with the seed specific promoter. Significant differences were detected in the expression of hADA. The highest activity of the hADA enzyme (Units/g seed) was reported in tarwi (4.26 U/g) followed by pea (3.23 U/g) and Nicotiana benthamiana (1.69 U/g). The expression of mouse ADA in canola was very low in both seed and leaf tissue compared to other host plants, confirming higher activity of seed specific promoter. Altogether, these results suggest that tarwi could be an excellent candidate for the production of valuable recombinant proteins.

  13. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants.

    PubMed

    Siddique, Shahid; Radakovic, Zoran S; De La Torre, Carola M; Chronis, Demosthenis; Novák, Ondřej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G; Grundler, Florian M W

    2015-10-13

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.

  14. Herbivore Damage and Prior Egg Deposition on Host Plants Influence the Oviposition of the Generalist Moth Trichoplusia ni (Lepidoptera: Noctuidae).

    PubMed

    Coapio, Guadalupe G; Cruz-López, Leopoldo; Guerenstein, Pablo; Malo, Edi A; Rojas, Julio C

    2016-09-02

    Female insects have the difficult task of locating host plants that maximize the survival and success of their offspring. In this study, the oviposition preferences of the cabbage looper moth, Trichoplusia ni (Hübner), for soybean plants, Glycine max (L.), under various treatments-undamaged, mechanically damaged, damaged by T. ni or Spodoptera frugiperda (Smith) larvae or by Bemisia tabaci (Gennadius) adults, egg-free plants, and plants previously oviposited by conspecific or heterospecific females (S. frugiperda)-were investigated using two-choice tests. Additionally, the volatile compounds emitted by the plants under the different treatments were identified by gas chromatography-mass spectrometry. Our results showed that females showed no preferences for undamaged or mechanically damaged plants. However, they oviposited more often on undamaged plants than on those previously damaged by T. ni, S. frugiperda, or B. tabaci. In contrast, females preferred to oviposit on plants previously oviposited by conspecific and heterospecific females than on egg-free plants. Plants damaged by conspecific or heterospecific larvae emitted methyl salicylate, indole, and octyl butyrate, compounds not released by undamaged or mechanically damaged plants. Whitefly damage induced the release of higher quantities of Z(3)-hexenyl acetate, (R)-(+)-limonene, and (E)-β-ocimene compared to plants damaged by larvae and suppressed the emission of linalool. Egg deposition by conspecific and heterospecific moths induced the emission of (R)-(+)-limonene, octyl butyrate, and geranyl acetone but suppressed the release of linalool. This study showed that a generalist moth species can discriminate between plants of different quality, and suggests that females use volatile compounds as cues during this process.

  15. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    PubMed

    Shen, Hao; Xu, Shu-Jun; Hong, Lan; Wang, Zhang-Ming; Ye, Wan-Hui

    2013-01-01

    Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources transferred to the parasite at

  16. Combined roles of contact stimulant and deterrents in assessment of host-plant quality by ovipositing zebra swallowtail butterflies.

    PubMed

    Haribal, Meena; Feeny, Paul

    2003-03-01

    Zebra swallowtail (Eurytides marcellus) butterflies are stimulated to oviposit by a single compound, 3-caffeoyl-muco-quinic acid (1). Analysis of the aqueous extracts of the leaves of the host. Asimina triloba, showed that they contained stimulant 1, its isomer (2), and the flavonoids rutin (3) and nicotiflorine (4) as major components. We compared the concentrations of compounds 1-4 in terminal leaves (TL) and expanded leaves (EL) of the host plants at four different times throughout the growing season. In spring, the concentration of 1 was highest in TLs, and flavonoids were not detectable or present at low levels. As the season progressed, however, the concentrations of flavonoids increased, reached maxima by late summer, and then decreased as the plants started senescing. There were also significant differences in the concentrations of these compounds between TLs and ELs. In a choice assay with model leaves, we tested equivalent amounts of post-dichloromethane aqueous extracts made in spring (May) and in fall (September). September extracts received significantly fewer approaches and eggs. In greenhouse experiments with potted A. triloba plants, the butterflies chose some leaves to lay eggs, while others were rejected or ignored. Analyses showed that the concentrations of compound 1 were not significantly different in the three kinds of leaves. The flavonoids (3 and 4), however, were significantly higher in the leaves that were ignored. Multiple-choice tests using model plants suggested that concentrations of both flavonoids and stimulant were important in assessing host suitability. There was a gradual decrease in approaches as the concentration of 1 decreased. Higher amounts of flavonoids deterred egg laying even in the presence of high concentrations of stimulant 1. At lower concentrations of 1, the addition of low doses of flavonoids deterred egg laying. Thus, the results suggest that the butterflies use both qualitative and quantitative information about

  17. The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies.

    PubMed

    Bächtold, Alexandra; Alves-Silva, Estevão; Kaminski, Lucas A; Del-Claro, Kleber

    2014-11-01

    Ovipositing adult females of myrmecophilous lycaenids are expected to select plants based on ant presence in order to maximize the survivorship of immature stages. Usually, larvae feed ants with honey-like solutions and, in turn, ants ward off parasitoids. Nonetheless, a rarely investigated approach is whether ant partners can also extend their protective behavior towards lycaenids eggs. Here, we investigated the ant-related oviposition pattern of Allosmaitia strophius and Rekoa marius; then, we compared egg parasitism according to the presence of ants. Lycaenid oviposition and egg parasitism (in percent) were experimentally compared in ant-present and ant-excluded treatments. The study plant, Heteropterys byrsonimifolia, is an extrafloral nectaried shrub which supports several ant species. We sampled 280 eggs, of which 39.65 % belonged to A. strophius and 60.35 % to R. marius. Both lycaenids eggs were significantly more abundant on branches with ants, especially those with Camponotus crassus and Camponotus blandus, two ant species known to attend to lycaenids. A. strophius and R. marius parasitism was 4.5- and 2.4-fold higher, respectively, in ant-present treatments, but the results were not statistically significant. Our study shows that ant-mediated host plant selection in lycaenids might be much more widespread than previously thought, and not restricted to obligate myrmecophilous species. Tending ants may be inefficient bodyguards of lycaenid eggs, because unlike larvae which release sugared liquids, eggs do not offer obvious rewards to ants. Ants can ward off parasitoids of larvae, as observed elsewhere, but our findings show that positive ant-lycaenid interactions are conditional and depend on immature ontogeny.

  18. Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner.

    PubMed

    Heinemeyer, A; Fitter, A H

    2004-02-01

    The growth response of the hyphae of mycorrhizal fungi has been determined, both when plant and fungus together and when only the fungus was exposed to a temperature change. Two host plant species, Plantago lanceolata and Holcus lanatus, were grown separately in pots inoculated with the mycorrhizal fungus Glomus mosseae at 20/18 degrees C (day/night); half of the pots were then transferred to 12/10 degrees C. Plant and fungal growth were determined at six sequential destructive harvests. A second experiment investigated the direct effect of temperature on the length of the extra-radical mycelium (ERM) of three mycorrhizal fungal species. Growth boxes were divided in two equal compartments by a 20 micro m mesh, allowing only the ERM and not roots to grow into a fungal compartment, which was either heated (+8 degrees C) or kept at ambient temperature. ERM length (LERM) was determined on five sampling dates. Growth of H. lanatus was little affected by temperature, whereas growth of P. lanceolata increased with temperature, and both specific leaf area (SLA) and specific root length (SRL) increased independently of plant size. Percentage of colonized root (LRC) and LERM were positively correlated with temperature when in symbiosis with P. lanceolata, but differences in LRC were a function of plant biomass. Colonization was very low in H. lanatus roots and there was no significant temperature effect. In the fungal compartment LERM increased over time and was greatest for Glomus mosseae. Heating the fungal compartment significantly increased LERM in two of the three species but did not affect LRC. However, it significantly increased SRL of roots in the plant compartment, suggesting that the fungus plays a regulatory role in the growth dynamics of the symbiosis. These temperature responses have implications for modelling carbon dynamics under global climate change.

  19. Hemiparasite--host plant interactions in a fragmented landscape assessed via imaging spectroscopy and LiDAR.

    PubMed

    Barbosa, Jomar M; Sebástian-González, Esther; Asner, Gregory P; Knapp, David E; Anderson, Christopher; Martin, Roberta E; Dirzo, Rodolfo

    2016-01-01

    Species interactions are susceptible to anthropogenic changes in ecosystems, but this has been poorly investigated in a spatially explicit manner in the case of plant parasitism, such as the omnipresent hemiparasitic mistletoe-host plant interactions. Analyzing such interactions at a large spatial scale may advance our understanding of parasitism patterns over complex landscapes. Combining high-resolution airborne imaging spectroscopy and LiDAR, we studied hemiparasite incidence within and among tree host stands to examine the prevalence and spatial distribution of hemiparasite load in ecosystems. Specifically, we aimed to assess: (1) detection accuracy of mistletoes on their oak hosts; (2) hemiparasitism prevalence within host tree canopies depending on tree height, and (3) spatial variation in hemiparasitism across fragmented woodlands, in a low-diversity mediterranean oak woodland in California, USA. We identified mistletoe infestations with 55-96% accuracy, and detected significant differences in remote-sensed spectra between oak trees with and without mistletoe infestation. We also found that host canopy height had little influence on infestation degree, whereas landscape-level variation showed consistent; non-random patterns: isolated host trees had twice the infestation load than did trees located at the core of forest fragments. Overall, we found that canopy exposure (i.e., lower canopy density or proximity to forest edge) is more important than canopy height for mistletoe infestation, and that by changing landscape structure, parasitic prevalence increased with woodland fragmentation. We conclude that reducing fragmentation in oak woodlands will minimize anthropogenic impact on mistletoe infestation at the landscape level. We argue that advanced remote sensing technology can provide baselines to quantitatively analyze and monitor parasite-host trajectories in light of global environmental change, and that this is a promising approach to be further tested

  20. Insect responses to host plant provision beyond natural boundaries: latitudinal and altitudinal variation in a Chinese fig wasp community.

    PubMed

    Wang, Rong; Compton, Stephen G; Quinnell, Rupert J; Peng, Yan-Qiong; Barwell, Louise; Chen, Yan

    2015-09-01

    Many plants are grown outside their natural ranges. Plantings adjacent to native ranges provide an opportunity to monitor community assembly among associated insects and their parasitoids in novel environments, to determine whether gradients in species richness emerge and to examine their consequences for host plant reproductive success. We recorded the fig wasps (Chalcidoidea) associated with a single plant resource (ovules of Ficus microcarpa) along a 1200 km transect in southwest China that extended for 1000 km beyond the tree's natural northern range margin. The fig wasps included the tree's agaonid pollinator and other species that feed on the ovules or are their parasitoids. Phytophagous fig wasps (12 species) were more numerous than parasitoids (nine species). The proportion of figs occupied by fig wasps declined with increasing latitude, as did the proportion of utilized ovules in occupied figs. Species richness, diversity, and abundance of fig wasps also significantly changed along both latitudinal and altitudinal gradients. Parasitoids declined more steeply with latitude than phytophages. Seed production declined beyond the natural northern range margin, and at high elevation, because pollinator fig wasps became rare or absent. This suggests that pollinator climatic tolerances helped limit the tree's natural distribution, although competition with another species may have excluded pollinators at the highest altitude site. Isolation by distance may prevent colonization of northern sites by some fig wasps and act in combination with direct and host-mediated climatic effects to generate gradients in community composition, with parasitoids inherently more sensitive because of declines in the abundance of potential hosts.

  1. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants.

    PubMed

    Toju, Hirokazu; Fukatsu, Takema

    2011-02-01

    Many insects are ubiquitously associated with multiple endosymbionts, whose infection patterns often exhibit spatial and temporal variations. How such endosymbiont variations are relevant to local adaptation of the host organisms is of ecological interest. Here, we report a comprehensive survey of endosymbionts in natural populations of the chestnut weevil Curculio sikkimensis, whose larvae are notorious pests of cultivated chestnuts and also infest acorns of various wild oaks. From 968 insects representing 55 localities across the Japanese Archipelago and originating from 10 host plant species, we identified six distinct endosymbiont lineages, namely Curculioniphilus, Sodalis, Serratia, Wolbachia, Rickettsia and Spiroplasma, at different infection frequencies (96.7%, 12.8%, 82.3%, 82.5%, 28.2% and 6.8%, respectively) and with different geographical distribution patterns. Multiple endosymbiont infections were very common; 3.18±0.61 (ranging from 1.74 to 5.50) endosymbionts per insect on average in each of the local populations. Five pairs of endosymbionts (Curculioniphilus-Serratia, Curculioniphilus-Wolbachia, Sodalis-Rickettsia, Wolbachia-Rickettsia and Rickettsia-Spiroplasma) co-infected the same host individuals more frequently than expected, while infections with Serratia and Wolbachia were negatively correlated to each other. Infection frequencies of the endosymbionts were significantly correlated with climatic and ecological factors: for example, higher Sodalis, Wolbachia and Rickettsia infections at localities of higher temperature; lower Wolbachia and Rickettsia infections at localities of greater snowfall; and higher Curculioniphilus, Sodalis, Serratia, Wolbachia and Rickettsia infections on acorns than on chestnuts. These patterns are discussed in relation to potential host-endosymbiont co-evolution via local adaptation across geographical populations.

  2. Both host plant and ecosystem engineer identity influence leaf-tie impacts on the arthropod community of Quercus.

    PubMed

    Wang, H George; Marquis, Robert J; Baer, Christina S

    2012-10-01

    Many insect herbivores build shelters on plants, which are then colonized by other arthropod species. To understand the impacts of such ecosystem engineering on associated species, the contributions of ecosystem engineer and host-plant identities must be understood. We investigated these contingencies at the patch scale using two species of leaf-tying caterpillars, which vary in size and tie construction mode, on eight species of oak (Quercus) trees, which vary in leaf size and leaf chemistry. We created three types of artificial leaf ties by clipping together pairs of adjacent leaves using metal hair clips. We left the first type of leaf tie empty while adding individuals of the leaf-tying caterpillars of either Pseudotelphusa quercinigracella or Psilocorsis cryptolechiella to the other two. We also created a control treatment of untied leaves by affixing clips to single leaves. Leaf ties increased occupancy in the early season and arthropod alpha diversity throughout the experiment, on average fourfold. Furthermore, the presence of leaf ties increased arthropod species density on average three times and abundance 10-35 times, depending on the plant species. The mean phenolic content of the leaves of each oak species was positively correlated with the leaf-tie effect on abundance and negatively correlated with the leaf-tie effect on species diversity. Species diversity, but not abundance, was affected by the identity of the tie-maker. Arthropod species composition differed between untied leaves and artificial leaf ties, and between ties made by the two leaf-tier species. Our results demonstrate that the presence of leaf ties adds to habitat diversity within the oak-herbivore system, not only by creating a new kind of microhabitat (the leaf tie) within trees, but also by exacerbating differences among the eight oak species in apparent habitat quality. The identity of the leaf-tying caterpillar adds to this heterogeneity by creating leaf ties of different size, thus

  3. Molecular phylogenetics and evolution of host plant use in the Neotropical rolled leaf 'hispine' beetle genus Cephaloleia (Chevrolat) (Chrysomelidae: Cassidinae).

    PubMed

    McKenna, Duane D; Farrell, Brian D

    2005-10-01

    Here, we report the results of a species level phylogenetic study of Cephaloleia beetles designed to clarify relationships and patterns of host plant taxon and tissue use among species. Our study is based on up to 2088bp of mtDNA sequence data. Maximum parsimony, maximum likelihood, and Bayesian methods of phylogenetic inference consistently recover a monophyletic Cephaloleia outside of a basal clade of primarily palm feeding species (the 'Arecaceae-feeding clade'), and C. irregularis. In all three analyses, the 'Arecaceae-feeding clade' includes Cephaloleia spp. with unusual morphological features, and a few species currently placed in other cassidine genera and tribes. All three analyses also recover a clade that includes all Zingiberales feeding Cephaloleia and most Cephaloleia species (the 'Zingiberales-feeding clade'). Two notable clades are found within the 'Zingiberales-feeding clade.' One is comprised of beetles that normally feed only on the young rolled leaves of plants in the families Heliconiaceae and Marantaceae (the 'Heliconiaceae & Marantaceae-feeding clade'). The other is comprised of relative host tissue generalist, primarily Zingiberales feeding species (the 'generalist-feeding clade'). A few species in the 'generalist-feeding clade' utilize Cyperaceae or Poaceae as hosts. Overall, relatively basal Cephaloleia (e.g., the 'Arecaceae clade') feed on relatively basal monocots (e.g., Cyclanthaceae and Arecaceae), and relatively derived Cephaloleia (e.g., the 'Zingiberales-feeding clade') feed on relatively derived monocots (mostly in the order Zingiberales). Zingiberales feeding and specialization on young rolled Zingiberales leaves have each apparently evolved just once in Cephaloleia.

  4. Effect of temperature and host plant leaf morphology on the efficacy of two entomopathogenic biocontrol agents of Thrips palmi (Thysanoptera: Thripidae).

    PubMed

    Cuthbertson, A G S; North, J P; Walters, K F A

    2005-08-01

    The efficacy of two entomopathogenic biocontrol agents, Steinernema feltiae (Filipjev) and Verticillium lecanii (Zimmerman) Viégas (reclassified now as Lecanicillium muscarium (Petch) Zare & Gams), against Thrips palmi Karny was investigated. Assessments of the effect of temperature on the efficacy of S. feltiae indicated that higher mortality of T. palmi was recorded at 20 degrees C compared to either 15 or 25 degrees C, whereas significantly higher T. palmi mortality followed application of L. muscarium at 25 degrees C. Testing the control agents efficacy on three host plants; chrysanthemum, sweet pepper and cucumber, under constant temperature and high humidity conditions produced no significant difference in the level of T. palmi larval mortality on each host plant. Incorporating the chemical insecticide imidacloprid with both biological agents in a combined control strategy increased T. palmi juvenile mortality. The potential role of S. feltiae and L. muscarium within integrated pest management programmes for the control of T. palmi is discussed.

  5. 'Do you remember the first time?' Host plant preference in a moth is modulated by experiences during larval feeding and adult mating.

    PubMed

    Proffit, Magali; Khallaf, Mohammed A; Carrasco, David; Larsson, Mattias C; Anderson, Peter

    2015-04-01

    In insects, like in other animals, experience-based modulation of preference, a form of phenotypic plasticity, is common in heterogeneous environments. However, the role of multiple fitness-relevant experiences on insect preference remains largely unexplored. For the multivoltine polyphagous moth Spodoptera littoralis we investigated effects of larval and adult experiences on subsequent reproductive behaviours. We demonstrate, for the first time in male and female insects, that mating experience on a plant modulates plant preference in subsequent reproductive behaviours, whereas exposure to the plant alone or plant together with sex pheromone does not affect this preference. When including larval feeding experiences, we found that both larval rearing and adult mating experiences modulate host plant preference. These findings represent the first evidence that host plant preferences in polyphagous insects are determined by a combination of innate preferences modulated by sensory feedback triggered by multiple rewarding experiences throughout their lifetime.

  6. The succinoglycan endoglycanase encoded by exoK is required for efficient symbiosis of Sinorhizobium meliloti 1021 with the host plants Medicago truncatula and Medicago sativa (Alfalfa).

    PubMed

    Mendis, Hajeewaka C; Queiroux, Clothilde; Brewer, Tess E; Davis, Olivia M; Washburn, Brian K; Jones, Kathryn M

    2013-09-01

    The acidic polysaccharide succinoglycan produced by the nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and to efficiently invade the host plant M. sativa (alfalfa). The β-glucanase enzyme encoded by exoK has previously been demonstrated to cleave succinoglycan and participate in producing the low molecular weight form of this polysaccharide. Here, we show that exoK is required for efficient S. meliloti invasion of both M. truncatula and alfalfa. Deletion mutants of exoK have a substantial reduction in symbiotic productivity on both of these plant hosts. Insertion mutants of exoK have an even less productive symbiosis than the deletion mutants with the host M. truncatula that is caused by a secondary effect of the insertion itself, and may be due to a polar effect on the expression of the downstream exoLAMON genes.

  7. Last instar larvae and pupae of Ourocnemis archytas and Anteros formosus (Lepidoptera: Riodinidae), with a summary of known host plants for the tribe Helicopini.

    PubMed

    Mota, Luísa L; Kaminski, Lucas A; Freitas, André V L

    2014-07-21

    Last instar larvae and pupae of Ourocnemis archytas (Lepidoptera: Riodinidae) are described for the first time and compared with those of Anteros formosus, which are also described in detail. Last instars of both species present body covered with long white plumose setae, a row of orange balloon setae on the prothoracic shield, and clusters of perforated cupola organs (PCOs) near the spiracles; differences are the black cephalic capsule, the placement and format of balloon setae cluster, and the presence of enlarged black tips on some plumose setae. Pupae of O. archytas resemble that of Anteros, covered with the last instar setae and with no balloon setae. Characteristics of the immature stages of these two genera could be useful to establish the still unresolved relationship between them. A summary of the host plants of Helicopini is presented, showing a polyphagous pattern for Anteros, recorded in 21 host plant families, which contrasts with the specialized diet observed in Helicopis and Sarota. 

  8. Glutathione improves early somatic embryogenesis in Araucaria angustifolia (Bert) O. Kuntze by alteration in nitric oxide emission.

    PubMed

    Vieira, Leila do Nascimento; Santa-Catarina, Claudete; de Freitas Fraga, Hugo Pacheco; Dos Santos, André Luis Wendt; Steinmacher, Douglas André; Schlogl, Paulo Sérgio; Silveira, Vanildo; Steiner, Neusa; Floh, Eny Iochevet Segal; Guerra, Miguel Pedro

    2012-10-01

    In this work, it was observed a straight relationship between the manipulation of the reduced glutathione (GSH)/glutathione disulfide (GSSG) ratio, nitric oxide emission and quality and number of early somatic embryos in Araucaria angustifolia, a Brazilian endangered native conifer. In low concentrations GSH (0.01 and 0.1mM) is a potential NO scavenger in the culture medium. Furthermore, it can increase the number of early SE formed in cell suspension culture media in a few days. However, the maintenance in this low redox state lead to a loss of early somatic embryos polarization. In gelled culture medium, high levels of GSH (5mM) allows the development of globular embryos presenting a high NO emission on embryo apex, stressing its importance in the differentiation and cell division. Taken together these results indicate that the modification of the embryogenic cultures redox state might be an effective strategy to develop more efficient embryogenic systems in A. angustifolia.

  9. The effects of island forest restoration on open habitat specialists: the endangered weevil Hadramphus spinipennis Broun and its host-plant Aciphylla dieffenbachii Kirk

    PubMed Central

    Malumbres-Olarte, Jagoba; Cruickshank, Robert H.; Paterson, Adrian M.

    2015-01-01

    Human alteration of islands has made restoration a key part of conservation management. As islands are restored to their original state, species interactions change and some populations may be impacted. In this study we examine the coxella weevil, (Hadramphus spinipennis Broun) and its host-plant Dieffenbach’s speargrass (Aciphylla dieffenbachii Kirk), which are both open habitat specialists with populations on Mangere and Rangatira Islands, Chathams, New Zealand. Both of these islands were heavily impacted by the introduction of livestock; the majority of the forest was removed and the weevil populations declined due to the palatability of their host-plant to livestock. An intensive reforestation program was established on both islands over 50 years ago but the potential impacts of this restoration project on the already endangered H. spinipennis are poorly understood. We combined genetic and population data from 1995 and 2010–2011 to determine the health and status of these species on both islands. There was some genetic variation between the weevil populations on each island but little variation within the species as a whole. The interactions between the weevil and its host-plant populations appear to remain intact on Mangere, despite forest regeneration. A decline in weevils and host-plant on Rangatira does not appear to be caused by canopy regrowth. We recommend that (1) these populations be monitored for ongoing effects of long-term reforestation, (2) the cause of the decline on Rangatira be investigated, and (3) the two populations of weevils be conserved as separate evolutionarily significant units. PMID:25699201

  10. Molecular cloning and expression of the vitellogenin gene and its correlation with ovarian development in an invasive pest Octodonta nipae on two host plants.

    PubMed

    Li, Jin-Lei; Tang, Bao-Zhen; Hou, You-Ming; Xie, Yi-Xing

    2016-10-01

    There is an ongoing relationship between host plants and herbivores. The nutrient substances and secondary compounds found in the host plant can not only impact the growth and development process of herbivores, but, more importantly, may also affect their survival and reproductive fitness. Vitellogenesis is the core process of reproductive regulation and is generally considered as a reliable indicator for evaluating the degree of ovarian development in females. Vitellogenin (Vg) plays a critical role in the synthesis and secretion of yolk protein. In this study, the full-length cDNA of the Vg gene in an alien invasive species, the nipa palm hispid beetle Octodonta nipae Maulik (Coleoptera: Chrysomelidae) (OnVg) was cloned and, the effect of host plant on the OnVg expression level and ovarian development was investigated. The results revealed that the OnVg was highly and exclusively expressed in adult females, but barely detectable in larvae, pupae and adult males. The relative expression level of OnVg and egg hatchability were much higher in females fed on Phoenix canariensis (their preferred host) than those fed on Phoenix roebelenii. A positive correlation relationship between OnVg expression and egg hatchability was also detected. Additionally, the anatomy of the female reproductive system showed that the ovaries of individuals fed on P. canariensis were considerably more developed than in females fed on P. roebelenii. The results may be applicable to many pest management situations through reproductive disturbance by alternating host plant species or varieties or by reproductive regulation through vitellogenesis mediated by specific endocrine hormones.

  11. Land-use intensity and host plant simultaneously shape the composition of arbuscular mycorrhizal fungal communities in a Mediterranean drained peatland.

    PubMed

    Ciccolini, Valentina; Ercoli, Laura; Davison, John; Vasar, Martti; Öpik, Maarja; Pellegrino, Elisa

    2016-12-01

    Land-use change is known to be a major threat to biodiversity and ecosystem services in Mediterranean areas. However, the potential for different host plants to modulate the effect of land-use intensification on community composition of arbuscular mycorrhizal fungi (AMF) is still poorly understood. To test the hypothesis that low land-use intensity promotes AMF diversity at different taxonomic scales and to determine whether any response is dependent upon host plant species identity, we characterised AMF communities in the roots of 10 plant species across four land use types of differing intensity in a Mediterranean peatland system. AMF were identified using 454 pyrosequencing. This revealed an overall low level of AMF richness in the peaty soils; lowest AMF richness in the intense cropping system at both virtual taxa and family level; strong modulation by the host plant of the impact of land-use intensification on AMF communities at the virtual taxa level; and a significant effect of land-use intensification on AMF communities at the family level. These findings have implications for understanding ecosystem stability and productivity and should be considered when developing soil-improvement strategies in fragile ecosystems, such as Mediterranean peatlands.

  12. Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific.

    PubMed

    Nissinen, Riitta M; Männistö, Minna K; van Elsas, Jan Dirk

    2012-11-01

    Endophytic bacteria inhabit internal plant tissues, and have been isolated from a large diversity of plants, where they form nonpathogenic relationships with their hosts. This study combines molecular and culture-dependent approaches to characterize endophytic bacterial communities of three arcto-alpine plant species (Oxyria digyna, Diapensia lapponica and Juncus trifidus) sampled in the low Arctic (69°03'N). Analyses of a 325 bacterial endophyte isolates, as well as seven clone libraries, revealed a high diversity. In particular, members of the Actinobacteria, Bacteroidetes, Firmicutes, Acidobacteria, and Proteobacteria were found. The compositions of the endophytic bacterial communities were dependent on host-plant species as well as on snow cover at sampling sites. Several bacterial genera were found to be associated tightly with specific host-plant species. In particular, Sphingomonas spp. were characteristic for D. lapponica and O. digyna, and their phylogenetic grouping corresponded to the host plant. Most of the endophyte isolates grew well and retained activity at +4 °C, and isolate as well as clone library sequences were often highly similar to sequences from bacteria from cold environments. Taken together, this study shows that arctic plants harbour a diverse community of bacterial endophytes, a portion of which seems to be tightly associated with specific plant species.

  13. Male genital and wing morphology in the cactophilic sibling species Drosophila gouveai and Drosophila antonietae and their hybrids reared in different host plants.

    PubMed

    Soto, I M; Soto, E M; Corio, C; Carreira, V P; Manfrin, M; Hasson, E

    2010-06-01

    Cactophilic Drosophila flies are excellent models to study adaptation to a relatively narrow spectrum of potential host plants and host-driven evolutionary diversification. Previous studies suggested a complex genetic architecture of wing and male genital morphology in phylogenetically basal species of the D. buzzatii cluster. In this work, we investigate the effect of experimental hybridization and host plant shifts on male genital and wing morphology in D. gouveai Tidon-Sklorz and Sene and D. antonietae Tidon-Sklorz and Sene, a pair of more recently derived species. We explicitly tested the hypotheses that wing and male genital morphology in interspecific hybrids depend on the host plant in which flies were grown. Our study shows that cactus hosts exert a strong effect on genital and wing morphology and that hybrids can be clearly differentiated on the basis of wing and genital morphology from both parental species. However, the extent of morphological differentiation between hybrids and pure species as well as plasticity patterns varied across organs, suggesting a complex genetic architecture for the studied traits.

  14. Differential modulation of host plant delta13C and delta18O by native and nonnative arbuscular mycorrhizal fungi in a semiarid environment.

    PubMed

    Querejeta, J I; Allen, M F; Caravaca, F; Roldán, A

    2006-01-01

    Native, drought-adapted arbuscular mycorrhizal fungi (AMF) often improve host-plant performance to a greater extent than nonnative AMF in dry environments. However, little is known about the physiological basis for this differential plant response. Seedlings of Olea europaea and Rhamnus lycioides were inoculated with either a mixture of eight native Glomus species or with the nonnative Glomus claroideum before field transplanting in a semiarid area. Inoculation with native AMF produced the greatest improvement in nutrient and water status as well as in long-term growth for both Olea and Rhamnus. Foliar delta18O measurements indicated that native AMF enhanced stomatal conductance to a greater extent than nonnative AMF in Olea and Rhamnus.delta13C data showed that intrinsic water-use efficiency in Olea was differentially stimulated by native AMF compared with nonnative AMF. Our results suggest that modulation of leaf gas exchange by native, drought-adapted AMF is critical to the long-term performance of host plants in semiarid environments. delta18O can provide a time-integrated measure of the effect of mycorrhizal infection on host-plant water relations.

  15. Macaria mirthae Vargas et al (Lepidoptera: Geometridae): Confirmation of the Use of an Invasive Host Plant in the Northern Atacama Desert of Chile Based on DNA Barcodes.

    PubMed

    Rivera-Cabello, D; Huanca-Mamani, W; Vargas, H A

    2015-08-01

    Macaria mirthae Vargas et al (Lepidoptera: Geometridae) is a geometrid moth native to the northern Atacama Desert of Chile. Its oligophagous larvae are associated with native hosts of the plant family Fabaceae, the most important of which is Acacia macracantha. The invasive tree Leucaena leucocephala (Fabaceae) was recently recorded as a host plant for M. mirthae based on morphology. The taxonomic status of larvae collected on A. macracantha and L. leucocephala was assessed using sequences of the DNA barcode fragment of the cytochrome c oxidase subunit I (COI) gene. Genetic divergence between samples from the host plants was found to be 0%-0.8% (Kimura 2-parameter model). Neighbor-joining and maximum likelihood analyses were also performed, including additional barcode sequences of Neotropical geometrid moths from GenBank and BOLD databases. Sequences of the larvae from both host plants clustered in a single clade with high statistical support in both analyses. Based on these results, it is concluded that M. mirthae has effectively expanded its host range and its larvae are currently feeding on the exotic tree L. leucocephala. Additionally, the importance of this new host association in a highly disturbed habitat is briefly discussed in terms of the field biology of this native geometrid moth.

  16. How detrimental are seed galls to their hosts? Plant performance, germination, developmental instability and tolerance to herbivory in Inga laurina, a leguminous tree.

    PubMed

    Santos, J C; de Araujo, N A V; Venâncio, H; Andrade, J F; Alves-Silva, E; Almeida, W R; Carmo-Oliveira, R

    2016-11-01

    Gall inducers use these structures as shelters and sources of nutrition. Consequently, they cause multiple physiological changes in host plants. We studied the impact caused by seed coat galls of a braconid wasp on the performance of fruits, seeds and seedlings of tree Inga laurina. We tested whether these seed galls are 'nutrient sinks' with respect to the fruit/seed of host plant, and so constrain the reproductive ability and reduce seedling longevity. We measured the influence of such galls on the secondary compounds, fruit and seed parameters, seed viability and germination and seedling performance. Inga laurina has indehiscent legumes with polyembryonic seeds surrounded by a fleshy sarcotesta rich in sugars. The galls formed inside the seed coat and galled tissues presented higher phenol concentrations, around 7-fold that of ungalled tissues. Galls caused a significant reduction in parameters such as fruit and seed size, seed weight and the number of embryos. Fluctuating asymmetry (a stress indicator) was 31% higher in leaves of galled seed plants in comparison to ungalled seed plants. However, the negative effects on fruit and seed parameters were not sufficient to reduce seed germination (except the synchronization index) or seedling performance (except leaf area and chlorophyll content). We attributed these results to the ability of I. laurina to tolerate gall attack on seeds without a marked influence on seedling performance. Moreover, because of the intensity of seed galling on host plant, we suggest that polyembryony may play a role in I. laurina reproduction increasing tolerance to seed damage.

  17. Developmental responses of the diamondback moth parasitoid Diadegma semiclausum (Hellén) (Hymenoptera: Ichneumonidae) to temperature and host plant species.

    PubMed

    Dosdall, L M; Zalucki, M P; Tansey, J A; Furlong, M J

    2012-08-01

    Effects of constant rearing temperature and the plant species fed upon by its hosts were investigated for several developmental parameters of Diadegma semiclausum (Hellén), an important parasitoid of the diamondback moth, Plutella xylostella (L.). Temperature had highly significant effects on all developmental parameters measured, and effects were usually both linear and quadratic with increasing temperature. Host plant species, comprising Brassica napus L., Brassica rapa L. ssp. pekinensis and Brassica oleracea L. var. capitata, also affected development of the parasitoid, and significant interactions were observed between plant species and rearing temperature for all developmental parameters measured. Development of D. semiclausum occurred successfully on all host plant species tested for the temperature range of 10 to 25°C. However, when its P. xylostella hosts consumed leaf tissue of B. napus, no specimens survived to pupate at 30°C, whilst pupation and adult eclosion occurred at 30°C on B. rapa ssp. pekinensis and B. oleracea var. capitata. At high ambient temperatures, such as those characteristic of tropical or subtropical regions (especially at low elevations) or regions that undergo temperature increases due to climate change, P. xylostella is predicted to occur at a higher range of temperatures than its biocontrol agent, D. semiclausum. Effects of high temperatures are expected to be more profound on the parasitoid for some host plants than others, with greater developmental limitations for the parasitoid on B. napus than on B. rapa or B. oleracea.

  18. Phylogeny and host-plant relationships of the Australian Myrtaceae leafmining moth genus Pectinivalva (Lepidoptera, Nepticulidae), with new subgenera and species

    PubMed Central

    Hoare, Robert J.B.; van Nieukerken, Erik J.

    2013-01-01

    Abstract The phylogeny of the mainly Australian nepticulid genus Pectinivalva Scoble, 1983 is investigated on the basis of morphology, and a division into three monophyletic subgenera is proposed on the basis of these results. These subgenera (Pectinivalva, Casanovula Hoare, subgen. n. and Menurella Hoare, subgen. n. ) are described and diagnosed, the described species of Pectinivalva are assigned to them, and representative new species are described in each: Pectinivalva (Pectinivalva) mystaconota Hoare, sp. n., Pectinivalva (Casanovula) brevipalpa Hoare, sp. n., Pectinivalva (Casanovula) minotaurus Hoare, sp. n., Pectinivalva (Menurella) scotodes Hoare, sp. n., Pectinivalva (Menurella) acmenae Hoare, sp. n., Pectinivalva (Menurella) xenadelpha Van Nieukerken & Hoare, sp. n., Pectinivalva (Menurella) quintiniae Hoare & Van Nieukerken, sp. n., and Pectinivalva (Menurella) tribulatrix Van Nieukerken & Hoare, sp. n. Pectinivalva (Menurella) quintiniae (from Quintinia verdonii, Paracryphiaceae) is the first known member of the genus with a host-plant not belonging to Myrtaceae. Pectinivalva (Menurella) xenadelpha from Mt Gunung Lumut, Kalimantan, Borneo, is the first pectinivalvine reported from outside Australia. Keys to the subgenera of Nepticulidae known from Australia, based on adults, male and female genitalia, and larvae, are presented. Host-plant relationships of Pectinivalva are discussed with relation to the phylogeny, and a list of known host-plants of Pectinivalva, including hosts of undescribed species, is presented. DNA barcodes are provided for most of the new and several unnamed species. PMID:23794827

  19. Inhibition of Predator Attraction to Kairomones by Non-Host Plant Volatiles for Herbivores: A Bypass-Trophic Signal

    PubMed Central

    Zhang, Qing-He; Schlyter, Fredrik

    2010-01-01

    -trophic signals could be of general importance for third trophic level players in avoiding unsuitable habitats with non-host plants of their prey. PMID:20548795

  20. Secondary Effects of Glyphosate Action in Phelipanche aegyptiaca: Inhibition of Solute Transport from the Host Plant to the Parasite.

    PubMed

    Shilo, Tal; Rubin, Baruch; Plakhine, Dina; Gal, Shira; Amir, Rachel; Hacham, Yael; Wolf, Shmuel; Eizenberg, Hanan

    2017-01-01

    It is currently held that glyphosate efficiently controls the obligate holoparasite Phelipanche aegyptiaca (Egyptian broomrape) by inhibiting its endogenous shikimate pathway, thereby causing a deficiency in aromatic amino acids (AAA). While there is no argument regarding the shikimate pathway being the primary site of the herbicide's action, the fact that the parasite receives a constant supply of nutrients, including proteins and amino acids, from the host does not fit with an AAA deficiency. This apparent contradiction implies that glyphosate mechanism of action in P. aegyptiaca is probably more complex and does not end with the inhibition of the AAA biosynthetic pathway alone. A possible explanation would lie in a limitation of the translocation of solutes from the host as a secondary effect. We examined the following hypotheses: (a) glyphosate does not affects P. aegyptiaca during its independent phase and (b) glyphosate has a secondary effect on the ability of P. aegyptiaca to attract nutrients, limiting the translocation to the parasite. By using a glyphosate-resistant host plant expressing the "phloem-mobile" green fluorescent protein (GFP), it was shown that glyphosate interacts specifically with P. aegyptiaca, initiating a deceleration of GFP translocation to the parasite within 24 h of treatment. Additionally, changes in the entire sugars profile (together with that of other metabolites) of P. aegyptiaca were induced by glyphosate. In addition, glyphosate did not impair germination or seedling development of P. aegyptiaca but begun to exert its action only after the parasite has established a connection to the host vascular system and became exposed to the herbicide. Our findings thus indicate that glyphosate does indeed have a secondary effect in P. aegyptiaca, probably as a consequence of its primary target inhibition-via inhibition of the translocation of phloem-mobile solutes to the parasite, as was simulated by the mobile GFP. The observed

  1. Secondary Effects of Glyphosate Action in Phelipanche aegyptiaca: Inhibition of Solute Transport from the Host Plant to the Parasite

    PubMed Central

    Shilo, Tal; Rubin, Baruch; Plakhine, Dina; Gal, Shira; Amir, Rachel; Hacham, Yael; Wolf, Shmuel; Eizenberg, Hanan

    2017-01-01

    It is currently held that glyphosate efficiently controls the obligate holoparasite Phelipanche aegyptiaca (Egyptian broomrape) by inhibiting its endogenous shikimate pathway, thereby causing a deficiency in aromatic amino acids (AAA). While there is no argument regarding the shikimate pathway being the primary site of the herbicide's action, the fact that the parasite receives a constant supply of nutrients, including proteins and amino acids, from the host does not fit with an AAA deficiency. This apparent contradiction implies that glyphosate mechanism of action in P. aegyptiaca is probably more complex and does not end with the inhibition of the AAA biosynthetic pathway alone. A possible explanation would lie in a limitation of the translocation of solutes from the host as a secondary effect. We examined the following hypotheses: (a) glyphosate does not affects P. aegyptiaca during its independent phase and (b) glyphosate has a secondary effect on the ability of P. aegyptiaca to attract nutrients, limiting the translocation to the parasite. By using a glyphosate-resistant host plant expressing the “phloem-mobile” green fluorescent protein (GFP), it was shown that glyphosate interacts specifically with P. aegyptiaca, initiating a deceleration of GFP translocation to the parasite within 24 h of treatment. Additionally, changes in the entire sugars profile (together with that of other metabolites) of P. aegyptiaca were induced by glyphosate. In addition, glyphosate did not impair germination or seedling development of P. aegyptiaca but begun to exert its action only after the parasite has established a connection to the host vascular system and became exposed to the herbicide. Our findings thus indicate that glyphosate does indeed have a secondary effect in P. aegyptiaca, probably as a consequence of its primary target inhibition—via inhibition of the translocation of phloem-mobile solutes to the parasite, as was simulated by the mobile GFP. The observed

  2. Determining larval host plant use by a polyphagous lepidopteran through analysis of adult moths for plant secondary metabolites.

    PubMed

    Orth, Robert G; Head, Graham; Mierkowski, Mary

    2007-06-01

    lengths of time after death determined that a significant gossypol signal was detectable in all moths reared on cotton. TBW moths collected from the vicinity of cotton fields in July and August in North Carolina also were analyzed. A much larger portion of the moths were derived from tobacco (6.7-46.4%) than from cotton (0-3.6%) in both months. Thus, these methods can be reliably used to estimate the proportion of TBW derived from noncotton host plants in populations trapped around Bt cotton fields, thereby providing insight into the risk of TBW evolving resistance to Bt cotton.

  3. The diamondback moth, Plutella xylostella, specifically inactivates Mustard Trypsin Inhibitor 2 (MTI2) to overcome host plant defence.

    PubMed

    Yang, Limei; Fang, Zhiyuan; Dicke, Marcel; van Loon, Joop J A; Jongsma, Maarten A

    2009-01-01

    The mustard trypsin inhibitor family has so far only been described among cruciferous species which represent the host plants for the specialist diamondback moth (DBM), Plutella xylostella. The performance of a Dutch and Chinese strain of DBM was assessed on transgenic Arabidopsis expressing Mustard Trypsin Inhibitor 2 (MTI2) at a level of 84 microg/g fresh weight equivalent to 12 microM. No significant differences in larval mortality or development were found relative to the control. Trypsin activity in gut extracts from larvae feeding on either control or transgenic plants were titrated with MTI2 and SKTI (Soybean Kunitz Trypsin Inhibitor) to assess the basis of the insensitivity to MTI2. The specific trypsin activity per gut of larvae reared on MTI2 plants was not significantly higher compared to the control, and ca. 80% of trypsin activity could be inhibited by both inhibitors in both treatments, suggesting no specific induction of PI-insensitive activity in response to MTI2 in the diet. On the basis of the apparent equilibrium dissociation constant of Plutella trypsins for MTI2 (80 nM), the gut trypsin concentration (4.8 microM), and the MTI2 concentration in the leaves (12 microM) it was calculated that 99% of the gut trypsin activity sensitive to MTI2 should be inhibited in vivo, unless MTI2 was degraded. Indeed, we found that a pre-incubation of MTI2 and SKTI with gut proteases for 3 h resulted in complete loss of inhibitory activity of MTI2, but not of SKTI, at the concentration ratios found in planta. This process was enzymatic as it was inactivated by heat. Gut extracts of larvae reared on control or MTI2 leaves were equally well capable of this degradation indicating that the inactivating enzymes are constitutively expressed. In conclusion, it appears that the insensitivity of the diamondback moth to MTI2 can be sufficiently explained by the specific degradation of MTI2, thereby protecting itself against this protease inhibitor which is part of the

  4. Interhaplotype Fertility and Effects of Host Plant on Reproductive Traits of Three Haplotypes of Bactericera cockerelli (Hemiptera: Triozidae).

    PubMed

    Mustafa, T; Horton, D R; Cooper, W R; Swisher, K D; Zack, R S; Munyaneza, J E

    2015-04-01

    Potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a serious pest of solanaceous crops in North and Central America and New Zealand. This insect vectors the bacterium that causes zebra chip disease of potato (Solanum tuberosum L.). Four distinct genetic populations, or haplotypes, of B. cockerelli have been identified. Three of the haplotypes may co-occur in potato fields in the Pacific Northwest of United States. Solanaceous weeds, including the perennial Solanum dulcamara (bittersweet nightshade), may provide refuge for psyllid populations which then migrate to potato crops. This study tested whether fecundity, fertility (% egg hatch), and adult longevity of potato psyllid were affected by host plant (S. dulcamara or potato) and whether these reproductive traits were similar among the three haplotypes that are most common in the Pacfic Northwest: Northwestern, Central, and Western. We hypothesized that the locally resident haplotype (Northwestern), which is known to overwinter extensively on S. dulcamara, would show relatively higher fitness on nightshade than the other two haplotypes. Fecundity differed significantly among haplotypes, with an average lifetime fecundity of 1050, 877, and 629 eggs for Northwestern, Western, and Central females, respectively. Egg hatch was significantly reduced in psyllids reared on bittersweet nightshade (61.9%) versus potato (81.3%). Adult psyllids lived longer on nightshade than on potato, averaging 113.9 and 108.4 d on nightshade and 79.0 and 85.5 d on potato for males and females, respectively. However, the longer life span of psyllids on nightshade than potato failed to lead to higher fecundity, because females on nightshade often ended egglaying well before death, unlike those on potato. There was no evidence for any of the fitness traits to suggest that the locally resident haplotype (Northwestern) performed relatively better on nightshade than the other two haplotypes. Lastly, we examined whether

  5. Indole-3-acetic acid producing root-associated bacteria on growth of Brazil Pine (Araucaria angustifolia) and Slash Pine (Pinus elliottii).

    PubMed

    Gumiere, Thiago; Ribeiro, Carlos Marcelo; Vasconcellos, Rafael Leandro Figueiredo; Cardoso, Elke Jurandy Bran Nogueira

    2014-04-01

    Araucaria forests in Brazil today correspond to only 0.7 % of the original 200 km(2) of natural forest that covered a great part of the southern and southeastern area of the Atlantic Forest and, although Araucaria angustifolia is an endangered species, illegal exploitation is still going on. As an alternative to the use of hardwoods, Pinus elliottii presents rapid growth and high tolerance to climatic stress and low soil fertility or degraded areas. Thus, the objective of this study was to evaluate the effect of IAA-producing bacteria on the development of A. angustifolia and P. elliottii. We used five bacterial strains previously isolated from the rhizosphere of A. angustifolia, which produce quantities of IAA ranging from 3 to 126 μg mL(-1). Microbiolized seeds were sown in a new gnotobiotic system developed for this work, that allowed the quantification of the plant hormone IAA produced by bacteria, and the evaluation of its effect on seedling development. Also, it was shown that P. elliottii roots were almost as satisfactory as hosts for these IAA producers as A. angustifolia, while different magnitudes of mass increases were found for each species. Thus, we suggest that these microbial groups can be helpful for the development and reestablishment of already degraded forests and that PGPR isolated from Araucaria rhizosphere have the potential to be beneficial in seedling production of P. elliottii. Another finding is that our newly developed gnotobiotic system is highly satisfactory for the evaluation of this effect.

  6. The host plant Pinus pinaster exerts specific effects on phosphate efflux and polyphosphate metabolism of the ectomycorrhizal fungus Hebeloma cylindrosporum: a radiotracer, cytological staining and (31) P NMR spectroscopy study.

    PubMed

    Torres-Aquino, Margarita; Becquer, Adeline; Le Guernevé, Christine; Louche, Julien; Amenc, Laurie K; Staunton, Siobhan; Quiquampoix, Hervé; Plassard, Claude

    2017-02-01

    Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used (32) P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced (32) P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots.

  7. Evaluating the non-rice host plant species of Sesamia inferens (Lepidoptera: Noctuidae) as natural refuges: resistance management of Bt rice.

    PubMed

    Liu, Zhuorong; Gao, Yulin; Luo, Ju; Lai, Fengxiang; Li, Yunhe; Fu, Qiang; Peng, Yufa

    2011-06-01

    Although rice (Oryza sativa L.) lines that express Bacillus thuringiensis (Bt) toxins have shown great potential for managing the major Lepidoptera pests of rice in southern China, including Sesamia inferens, their long-term use is dependent on managing resistance development to Bt toxins in pest populations. The maintenance of "natural" refuges, non-Bt expressing plants that are hosts for a target pest, has been proposed as a means to minimize the evolution of resistance to Bt toxins in transgenic plants. In the current study, field surveys and greenhouse experiments were conducted to identify host plants of S. inferens that could serve as "natural" refuges in rice growing areas of southern China. A field survey showed that 34 plant species in four families can be alternative host plants of S. inferens. Based on injury level under field conditions, rice (Oryza sativa L.); water oat (Zizania latifolia Griseb.); corn (Zea may