Sample records for hot cell structure

  1. Monte Carlo Simulation of Plumes Spectral Emission

    DTIC Science & Technology

    2005-06-07

    ERIM experimental data for hot cell radiance has been performed. It has been shown that NASA standard infrared optical model [3] provides good...Influence of different optical models on predicted numerical data on hot cell radiance for ERIM experimental conditions has been studied. 7...prediction (solid line) of the Hot cell radiance. NASA Standard Infrared Radiation model ; averaged rotational line structure (JLBL=0); spectral

  2. Stress analysis for wall structure in mobile hot cell design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahrin, Muhammad Hannan, E-mail: hannan@nuclearmalaysia.gov.my; Rahman, Anwar Abdul, E-mail: anwar@nuclearmalaysia.gov.my; Hamzah, Mohd Arif, E-mail: arif@nuclearmalaysia.gov.my

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effectmore » from the sand to the MHC wall structure.« less

  3. Study of Improved Aluminum Materials for Vehicular Armor

    DTIC Science & Technology

    1977-04-07

    and along cell walls. Dislocations generated during deformation cf the 17 -------------- recrystallized structure interacted with the grain...unrecrystallized (HR) 7475 plate containing dislocations within subgrains and along cell walls. Hot rolling the recrystallized structure at 750OF produced...a structure after solution heat treatment that consisted of elongated recrystallized grains containing polygonized cells . This structure developed

  4. Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell

    NASA Technical Reports Server (NTRS)

    Alfano, R. R.; Wang, W. B.; Mohaidat, J. M.; Cavicchia, M. A.; Raisky, O. Y.

    1995-01-01

    The main purpose of this research program is to investigate potential semiconductor materials and their multi-band-gap MQW (multiple quantum wells) structures for high efficiency solar cells for aerospace and commercial applications. The absorption and PL (photoluminescence) spectra, the carrier dynamics, and band structures have been investigated for semiconductors of InP, GaP, GaInP, and InGaAsP/InP MQW structures, and for semiconductors of GaAs and AlGaAs by previous measurements. The barrier potential design criteria for achieving maximum energy conversion efficiency, and the resonant tunneling time as a function of barrier width in high efficiency MQW solar cell structures have also been investigated in the first two years. Based on previous carrier dynamics measurements and the time-dependent short circuit current density calculations, an InAs/InGaAs - InGaAs/GaAs - GaAs/AlGaAs MQW solar cell structure with 15 bandgaps has been designed. The absorption and PL spectra in InGaAsP/InP bulk and MQW structures were measured at room temperature and 77 K with different pump wavelength and intensity, to search for resonant states that may affect the solar cell activities. Time-resolved IR absorption for InGaAsP/InP bulk and MQW structures has been measured by femtosecond visible-pump and IR-probe absorption spectroscopy. This, with the absorption and PL measurements, will be helpful to understand the basic physics and device performance in multi-bandgap InAs/InGaAs - InGaAs/InP - InP/InGaP MQW solar cells. In particular, the lifetime of the photoexcited hot electrons is an important parameter for the device operation of InGaAsP/InP MQW solar cells working in the resonant tunneling conditions. Lastly, time evolution of the hot electron relaxation in GaAs has been measured in the temperature range of 4 K through 288 K using femtosecond pump-IR-probe absorption technique. The temperature dependence of the hot electron relaxation time in the X valley has been measured.

  5. Modeling and characterization of double resonant tunneling diodes for application as energy selective contacts in hot carrier solar cells

    NASA Astrophysics Data System (ADS)

    Jehl, Zacharie; Suchet, Daniel; Julian, Anatole; Bernard, Cyril; Miyashita, Naoya; Gibelli, Francois; Okada, Yoshitaka; Guillemolles, Jean-Francois

    2017-02-01

    Double resonant tunneling barriers are considered for an application as energy selective contacts in hot carrier solar cells. Experimental symmetric and asymmetric double resonant tunneling barriers are realized by molecular beam epitaxy and characterized by temperature dependent current-voltage measurements. The negative differential resistance signal is enhanced for asymmetric heterostructures, and remains unchanged between low- and room-temperatures. Within Tsu-Esaki description of the tunnel current, this observation can be explained by the voltage dependence of the tunnel transmission amplitude, which presents a resonance under finite bias for asymmetric structures. This effect is notably discussed with respect to series resistance. Different parameters related to the electronic transmission of the structure and the influence of these parameters on the current voltage characteristic are investigated, bringing insights on critical processes to optimize in double resonant tunneling barriers applied to hot carrier solar cells.

  6. Removal of an acid fume system contaminated with perchlorates located within hot cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, K.E.; Henslee, S.P.; Vroman, W.R.

    1992-09-01

    An add scrubbing system located within the confines of a highly radioactive hot cell at Argonne National Laboratory-West (ANL-W) was remotely removed. The acid scrubbing system was routinely used for the dissolution of irradiated reactor fuel samples and structural materials. Perchloric acid was one of the acids used in the dissolution process and remained in the system with its inherent risks. Personnel could not enter the hot cell to perform the dismantling of the acid scabbing system due to the high radiation field and the explosion potential associated with the perchlorates. A robot was designed and built at ANL-W andmore » used to dismantle the system without the need for personnel entry into the hot cell. The robot was also used for size reduction of removed components and loading of the removed components into waste containers.« less

  7. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.

    PubMed

    Wu, Kailang; Chen, Lang; Peng, Guiqing; Zhou, Wenbo; Pennell, Christopher A; Mansky, Louis M; Geraghty, Robert J; Li, Fang

    2011-06-01

    How viruses evolve to select their receptor proteins for host cell entry is puzzling. We recently determined the crystal structures of NL63 coronavirus (NL63-CoV) and SARS coronavirus (SARS-CoV) receptor-binding domains (RBDs), each complexed with their common receptor, human angiotensin-converting enzyme 2 (hACE2), and proposed the existence of a virus-binding hot spot on hACE2. Here we investigated the function of this hypothetical hot spot using structure-guided biochemical and functional assays. The hot spot consists of a salt bridge surrounded by hydrophobic tunnel walls. Mutations that disturb the hot spot structure have significant effects on virus/receptor interactions, revealing critical energy contributions from the hot spot structure. The tunnel structure at the NL63-CoV/hACE2 interface is more compact than that at the SARS-CoV/hACE2 interface, and hence RBD/hACE2 binding affinities are decreased either by NL63-CoV mutations decreasing the tunnel space or by SARS-CoV mutations increasing the tunnel space. Furthermore, NL63-CoV RBD inhibits hACE2-dependent transduction by SARS-CoV spike protein, a successful application of the hot spot theory that has the potential to become a new antiviral strategy against SARS-CoV infections. These results suggest that the structural features of the hot spot on hACE2 were among the driving forces for the convergent evolution of NL63-CoV and SARS-CoV.

  8. Analyses of Nb-1Zr/C-103, vapor anode, multi-tube AMTEC cells

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2000-01-01

    A high performance, Nb-1Zr/C-103, vapor anode, multi-tube AMTEC cell design is presented. The cell measures 41.27 mm in diameter, is 125.3 mm high, and has eight BASE tubes connected electrically in series. The hot structure of the cell (hot plate, BASE tubes support plate, hot plenum wall, evaporator standoff, evaporator wick, and side wall facing the BASE tubes) is made of Nb-1Zr. The cold structure of the cell (condenser, interior cylindrical thermal radiation shield, the casing and the wick of the liquid sodium return artery, and side wall above the BASE tubes) is made of the stronger, lower thermal conductivity niobium alloy C-103. This cell, which weighs 163.4 g, could deliver 7.0 We at 17% efficiency and load voltage of 3.3 V, when using TiN BASE electrodes characterized by B=75 A.K1/2/m2.Pa and G=50 and assuming BASE/electrode contact resistance of 0.06 Ω-cm2 and leakage resistance of the BASE braze structure of 3 Ω. For these performance parameters and when the interior cylindrical C-103 thermal radiation shield is covered with low emissivity rhodium, the projected specific mass of the cell is 23.4 g/We. The BASE brazes and the evaporator temperatures were below the recommended limits of 1123 K and 1023 K, respectively. In addition, the temperature margin in the cell was at least + 20 K. When electrodes characterized by B=120 A.K1/2/m2.Pa and G=10 were used, the cell power increased to 8.38 We at 3.5 V and efficiency of 18.8%, for a cell specific mass of 19.7 g/We. Issues related to structure strength of the cell and the performance degradation of the BASE and electrodes are not addressed in this paper. .

  9. The effect of liquid hot water pretreatment on the chemical–structural alteration and the reduced recalcitrance in poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mi; Cao, Shilin; Meng, Xianzhi

    Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood.

  10. The effect of liquid hot water pretreatment on the chemical–structural alteration and the reduced recalcitrance in poplar

    DOE PAGES

    Li, Mi; Cao, Shilin; Meng, Xianzhi; ...

    2017-11-30

    Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood.

  11. The Development of Expansion Plug Wedge Test for Clad Tubing Structure Mechanical Property Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Jiang, Hao

    2016-01-12

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at the Oak Ridge National Laboratory (ORNL) and is described fully in US Patent Application 20060070455, “Expanded plug method for developing circumferential mechanical properties of tubular materials.” This method is designed for testing fuel rod cladding ductility in a hot cell using an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are themore » simplicity of measuring the test component assembly in the hot cell and the direct measurement of the specimen’s strain. It was also found that cladding strength could be determined from the test results.« less

  12. Molecular interfaces for plasmonic hot electron photovoltaics

    NASA Astrophysics Data System (ADS)

    Pelayo García de Arquer, F.; Mihi, Agustín; Konstantatos, Gerasimos

    2015-01-01

    The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices.The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. Electronic supplementary information (ESI) available: Contact-potential differentiometry measurements, FTIR characterization, performance statistics and gold devices. See DOI: 10.1039/c4nr06356b

  13. Amorphous-silicon module hot-spot testing

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  14. A review of refractory materials for vapor-anode AMTEC cells

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, M. S.

    2000-01-01

    Recently, refractory alloys have been considered as structural materials for vapor-anode Alkali Metal Thermal-to-Electric Conversion (AMTEC) cells, for extended (7-15 years) space missions. This paper reviewed the existing database for refractory metals and alloys of potential use as structural materials for vapor-anode sodium AMTEC cells. In addition to requiring that the vapor pressure of the material be below 10-9 torr (133 nPa) at a typical hot side temperature of 1200 K, other screening considerations were: (a) low thermal conductivity, low thermal radiation emissivity, and low linear thermal expansion coefficient; (b) low ductile-to-brittle transition temperature, high yield and rupture strengths and high strength-to-density ratio; and (c) good compatibility with the sodium AMTEC operating environment, including high corrosion resistance to sodium in both the liquid and vapor phases. Nb-1Zr (niobium-1% zirconium) alloy is recommended for the hot end structures of the cell. The niobium alloy C-103, which contains the oxygen gettering elements zirconium and hafnium as well as titanium, is recommended for the colder cell structure. This alloy is stronger and less thermally conductive than Nb-1Zr, and its use in the cell wall reduces parasitic heat losses by conduction to the condenser. The molybdenum alloy Mo-44.5Re (molybdenum-44.5% rhenium) is also recommended as a possible alternative for both structures if known problems with oxygen pick up and embrittlement of the niobium alloys proves to be intractable. .

  15. Solid oxide fuel cell matrix and modules

    DOEpatents

    Riley, B.

    1988-04-22

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs. 11 figs.

  16. Structural characterization of the cell wall D-glucans isolated from the mycelium of Botryosphaeria rhodina MAMB-05.

    PubMed

    de Lourdes Corradi da Silva, Maria; Fukuda, Eliane K; Vasconcelos, Ana Flora D; Dekker, Robert F H; Matias, Andreza C; Monteiro, Nilson K; Cardoso, Marilsa S; Barbosa, Aneli M; Silveira, Joana L M; Sassaki, Guilherme L; Carbonero, Elaine R

    2008-03-17

    Three D-glucans were isolated from the mycelium of the fungus Botryosphaeria rhodina MAMB-05 by sequential extraction with hot-water and hot aqueous KOH (2% w/v) followed by ethanol precipitation. Following their purification by gel permeation chromatography on Sepharose CL-4B, the structural characteristics of the D-glucans were determined by FT-IR and 13C NMR spectroscopy and, after methylation, by GC-MS. The hot-water extract produced a fraction designated Q1A that was a beta-(1-->6)-D-glucan with the following structure: [Formula: see text] The alkaline extract, when subjected to repeated freeze-thawing, yielded two fractions: K1P (insoluble) that comprised a beta-(1-->3)-D-glucan with beta-D-glucose branches at C-6 with the structure: [Formula: see text] and K1SA (soluble) consisting of a backbone chain of alpha-(1-->4)-linked D-glucopyranosyl residues substituted at O-6 with alpha-D-glucopyranosyl residues: [Formula: see text

  17. Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell

    NASA Astrophysics Data System (ADS)

    Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei

    2017-07-01

    The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.

  18. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.

    PubMed

    Crowe, Jacob D; Zarger, Rachael A; Hodge, David B

    2017-10-04

    Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.

  19. DECOMMISSIONING OF HOT CELL FACILITIES AT THE BATTELLE COLUMBUS LABORATORIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Patrick; Henderson, Glenn; Erickson, Peter

    2003-02-27

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning activities for nuclear research buildings and grounds at its West Jefferson Facilities by 2006, as mandated by Congress. This effort includes decommissioning several hot cells located in the Hot Cell Laboratory (Building JN-1). JN-1 was originally constructed in 1955, and a hot cell/high bay addition was built in the mid 1970s. For over 30 years, BCL used these hot cell facilities to conduct research for the nuclear power industry and several government agencies, including the U.S. Navy, U.S. Army, U.S. Air Force, and the U.S. Department ofmore » Energy. As a result of this research, the JN-1 hot cells became highly contaminated with mixed fission and activation products, as well as fuel residues. In 1998, the Battelle Columbus Laboratories Decommissioning Project (BCLDP) began efforts to decommission JN-1 with the goal of remediating the site to levels of residual contamination allowing future use without radiological restrictions. This goal requires that each hot cell be decommissioned to a state where it can be safely demolished and transported to an off-site disposal facility. To achieve this, the BCLDP uses a four-step process for decommissioning each hot cell: (1) Source Term Removal; (2) Initial (i.e., remote) Decontamination; (3) Utility Removal; and (4) Final (i.e., manual) Decontamination/Stabilization. To date, this process has been successfully utilized on 13 hot cells within JN-1, with one hot cell remaining to be decommissioned. This paper will provide a case study of the hot cell decommissioning being conducted by the BCLDP. Discussed will be the methods used to achieve the goals of each of the hot cell decommissioning stages and the lessons learned that could be applied at other sites where hot cells need to be decommissioned.« less

  20. 48 CFR 952.225-70 - Subcontracting for nuclear hot cell services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hot cell services. 952.225-70 Section 952.225-70 Federal Acquisition Regulations System DEPARTMENT OF....225-70 Subcontracting for nuclear hot cell services. As prescribed in 925.7004, insert the following clause in solicitations and contracts: Subcontracting for Nuclear Hot Cell Services (MAR 1993) (a...

  1. Prevention of Autoimmune Diabetes and Induction of β-Cell Proliferation in NOD Mice by Hyperbaric Oxygen Therapy

    PubMed Central

    Faleo, Gaetano; Fotino, Carmen; Bocca, Nicola; Molano, R. Damaris; Zahr-Akrawi, Elsie; Molina, Judith; Villate, Susana; Umland, Oliver; Skyler, Jay S.; Bayer, Allison L.; Ricordi, Camillo; Pileggi, Antonello

    2012-01-01

    We evaluated the effects of hyperbaric oxygen therapy (HOT) on autoimmune diabetes development in nonobese diabetic (NOD) mice. Animals received no treatment or daily 60-min HOT 100% oxygen (HOT-100%) at 2.0 atmospheres absolute and were monitored for diabetes onset, insulitis, infiltrating cells, immune cell function, and β-cell apoptosis and proliferation. Cyclophosphamide-induced diabetes onset was reduced from 85.3% in controls to 48% after HOT-100% (P < 0.005) and paralleled by lower insulitis. Spontaneous diabetes incidence reduced from 85% in controls to 65% in HOT-100% (P = 0.01). Prediabetic mice receiving HOT-100% showed lower insulitis scores, reduced T-cell proliferation upon stimulation in vitro (P < 0.03), increased CD62L expression in T cells (P < 0.04), reduced costimulation markers (CD40, DC80, and CD86), and reduced major histocompatibility complex class II expression in dendritic cells (DCs) (P < 0.025), compared with controls. After autoimmunity was established, HOT was less effective. HOT-100% yielded reduced apoptosis (transferase-mediated dUTP nick-end labeling-positive insulin-positive cells; P < 0.01) and increased proliferation (bromodeoxyuridine incorporation; P < 0.001) of insulin-positive cells compared with controls. HOT reduces autoimmune diabetes incidence in NOD mice via increased resting T cells and reduced activation of DCs with preservation of β-cell mass resulting from decreased apoptosis and increased proliferation. The safety profile and noninvasiveness makes HOT an appealing adjuvant therapy for diabetes prevention and intervention trials. PMID:22566533

  2. Influence of heat treatment and hot extrusion on the microstructure and tensile properties of rare earth modified Mg-Zn based alloy

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Wang, B. J.; Du, B. N.; Lai, C.; Xi, T. F.

    2018-01-01

    In the present paper, the Mg-Zn-Y-Nd alloy was prepared by casting, heat treatment and hot extrusion. The microstructure and mechanical properties of the alloys were tested by OM, SEM, TEM and tensile test. The results showed that the Mg3Zn2Y3 phase is the main strengthening phase and forms the eutectic structure with α-Mg matrix in the as cast alloy. The strengthening phases semi-continuously connect and separate the α-Mg matrix into cell structure. The average grain size of the as cast alloy is about 60 μm. The heat treatment promotes the solid solution of the strengthening phase and precipitation of small particles inside grain.Compared with the as cast alloy, the heat treatment increases grain size a little and mechanical properties more than 30%. The hot extrusion refines the grain and strengthening phase, which increase the mechanical properties significantly. Moreover, the great deformation by the hot extrusion results in the ultrafine structure and abundant of crystal defects. The intersection of micro-twins lead to the special region with nanometer size.

  3. Plasmonically enhanced hot electron based photovoltaic device.

    PubMed

    Atar, Fatih B; Battal, Enes; Aygun, Levent E; Daglar, Bihter; Bayindir, Mehmet; Okyay, Ali K

    2013-03-25

    Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths.

  4. Hot-spot durability testing of amorphous cells and modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, Charles; Jetter, Elizabeth

    1985-01-01

    This paper discusses the results of a study to determine the hot-spot susceptibility of amorphous-silicon (a-Si) cells and modules, and to provide guidelines for reducing that susceptibility. Amorphous-Si cells are shown to have hot-spot susceptibility levels similar to crystalline-silicon (C-Si) cells. This premise leads to the fact that the same general guidelines must apply to protecting a-Si cells from hot-spot stressing that apply to C-Si cells. Recommendations are made on ways of reducing a-Si module hot-spot susceptibility including the traditional method of using bypass diodes and a new method unique to thin-film cells, limiting the string current by limiting cell area.

  5. Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho

    2018-03-01

    Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

  6. Concentrator hot-spot testing, phase 1

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator module hot-spot qualification test is the test developed for flat-plate modules, issues, such as providing cell illumination, introduce additional complexities into the testing procedure. The same general guidelines apply for protecting concentrator modules from hot-spot stressing as apply to flat-plate modules. Therefore, recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. In addition, a new method for determining the cell temperature in the laboratory or in the field is discussed.

  7. Reversible electron-hole separation in a hot carrier solar cell

    NASA Astrophysics Data System (ADS)

    Limpert, S.; Bremner, S.; Linke, H.

    2015-09-01

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron-hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron-hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We thus focus our analysis on the internal operation of the hot-carrier solar cell itself, and in this work do not consider the photon-mediated coupling to the Sun. After deriving an expression for the voltage of a hot-carrier solar cell valid under conditions of both reversible and irreversible electrical operation, we identify separate contributions to the voltage from the thermoelectric effect and the photovoltaic effect. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. Our results help explore the fundamental limitations of hot-carrier solar cells, and provide a first step towards providing experimentalists with a guide to the optimal configuration of devices.

  8. HOT CELL BUILDING, TRA632, INTERIOR. CONTEXTUAL VIEW OF HOT CELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. CONTEXTUAL VIEW OF HOT CELL NO. 2 FROM STAIRWAY ALONG NORTH WALL. OBSERVATION WINDOW ALONG WEST SIDE BENEATH "CELL 2" SIGN. DOORWAY IN LEFT OF VIEW LEADS TO CELL 1 WORK AREA OR TO EXIT OUTDOORS TO NORTH. RADIATION DETECTION MONITOR TO RIGHT OF DOOR. CAMERA FACING SOUTHWEST. INL NEGATIVE NO. HD46-28-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. HOT CELL BUILDING, TRA632, INTERIOR. HOT CELL NO. 1 (THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. HOT CELL NO. 1 (THE FIRST BUILT) IN LABORATORY 101. CAMERA FACES SOUTHEAST. SHIELDED OPERATING WINDOWS ARE ON LEFT (NORTH) SIDE. OBSERVATION WINDOW IS AT LEFT OF VIEW (ON WEST SIDE). PLASTIC COVERS SHROUD MASTER/SLAVE MANIPULATORS AT WINDOWS IN LEFT OF VIEW. NOTE MINERAL OIL RESERVOIR ABOVE "CELL 1" SIGN, INDICATING LEVEL OF THE FLUID INSIDE THE THICK WINDOWS. HOT CELL HAS BEVELED CORNER BECAUSE A SQUARED CORNER WOULD HAVE SUPPLIED UNNECESSARY SHIELDING. NOTE PUMICE BLOCK WALL AT LEFT OF VIEW. INL NEGATIVE NO. HD46-28-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Hot-spot qualification testing of concentrator modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current, forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator-module hot-spot qualification test is the test developed for flat-plate modules, issues such as providing cell illumination introduce additional complexities into the testing procedure. The results indicate that the same general guidelines apply to protecting concentrator modules from hot-spot stressing as apply to flat-plate modules, and recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. A method for determining the cell temperature in the laboratory or in the field is discussed.

  11. Investigation of theoretical efficiency limit of hot carriers solar cells with a bulk indium nitride absorber

    NASA Astrophysics Data System (ADS)

    Aliberti, P.; Feng, Y.; Takeda, Y.; Shrestha, S. K.; Green, M. A.; Conibeer, G.

    2010-11-01

    Theoretical efficiencies of a hot carrier solar cell considering indium nitride as the absorber material have been calculated in this work. In a hot carrier solar cell highly energetic carriers are extracted from the device before thermalisation, allowing higher efficiencies in comparison to conventional solar cells. Previous reports on efficiency calculations approached the problem using two different theoretical frameworks, the particle conservation (PC) model or the impact ionization model, which are only valid in particular extreme conditions. In addition an ideal absorber material with the approximation of parabolic bands has always been considered in the past. Such assumptions give an overestimation of the efficiency limits and results can only be considered indicative. In this report the real properties of wurtzite bulk InN absorber have been taken into account for the calculation, including the actual dispersion relation and absorbance. A new hybrid model that considers particle balance and energy balance at the same time has been implemented. Effects of actual impact ionization (II) and Auger recombination (AR) lifetimes have been included in the calculations for the first time, considering the real InN band structure and thermalisation rates. It has been observed that II-AR mechanisms are useful for cell operation in particular conditions, allowing energy redistribution of hot carriers. A maximum efficiency of 43.6% has been found for 1000 suns, assuming thermalisation constants of 100 ps and ideal blackbody absorption. This value of efficiency is considerably lower than values previously calculated adopting PC or II-AR models.

  12. HOT CELL BUILDING, TRA632. EAST END OF BUILDING. CAMERA FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. EAST END OF BUILDING. CAMERA FACING WEST. TRUCK ENCLOSURE (1986) TO THE LEFT, SMALL ADDITION IN ITS SHADOW IS ENCLOSURE OVER METAL PORT INTO HOT CELL NO. 1 (THE OLDEST HOT CELL). NOTE PERSONNEL LADDER AND PLATFORM AT LOFT LEVEL USED WHEN SERVICING AIR FILTERS AND VENTS OF CELL NO. 1. INL NEGATIVE NO. HD46-32-4. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Genome-wide identification and characterisation of HOT regions in the human genome.

    PubMed

    Li, Hao; Liu, Feng; Ren, Chao; Bo, Xiaochen; Shu, Wenjie

    2016-09-15

    HOT (high-occupancy target) regions, which are bound by a surprisingly large number of transcription factors, are considered to be among the most intriguing findings of recent years. An improved understanding of the roles that HOT regions play in biology would be afforded by knowing the constellation of factors that constitute these domains and by identifying HOT regions across the spectrum of human cell types. We characterised and validated HOT regions in embryonic stem cells (ESCs) and produced a catalogue of HOT regions in a broad range of human cell types. We found that HOT regions are associated with genes that control and define the developmental processes of the respective cell and tissue types. We also showed evidence of the developmental persistence of HOT regions at primitive enhancers and demonstrate unique signatures of HOT regions that distinguish them from typical enhancers and super-enhancers. Finally, we performed a dynamic analysis to reveal the dynamical regulation of HOT regions upon H1 differentiation. Taken together, our results provide a resource for the functional exploration of HOT regions and extend our understanding of the key roles of HOT regions in development and differentiation.

  14. Development of molten carbonate fuel cells for power generation

    NASA Astrophysics Data System (ADS)

    1980-04-01

    The broad and comprehensive program included elements of system definition, cell and system modeling, cell component development, cell testing in pure and contaminated environments, and the first stages of technology scale up. Single cells, with active areas of 45 sq cm and 582 sq cm, were operated at 650 C and improved to state of the art levels through the development of cell design concepts and improved electrolyte and electrode components. Performance was shown to degrade by the presence of fuel contaminants, such as sulfur and chlorine, and due to changes in electrode structure. Using conventional hot press fabrication techniques, electrolyte structures up to 20" x 20" were fabricated. Promising approaches were developed for nonhot pressed electrolyte structure fabrication and a promising electrolyte matrix material was identified. This program formed the basis for a long range effort to realize the benefits of molten carbonate fuel cell power plants.

  15. Thin film solar cells with Si nanocrystallites embedded in amorphous intrinsic layers by hot-wire chemical vapor deposition.

    PubMed

    Park, Seungil; Parida, Bhaskar; Kim, Keunjoo

    2013-05-01

    We investigated the thin film growths of hydrogenated silicon by hot-wire chemical vapor deposition with different flow rates of SiH4 and H2 mixture ambient and fabricated thin film solar cells by implementing the intrinsic layers to SiC/Si heterojunction p-i-n structures. The film samples showed the different infrared absorption spectra of 2,000 and 2,100 cm(-1), which are corresponding to the chemical bonds of SiH and SiH2, respectively. The a-Si:H sample with the relatively high silane concentration provides the absorption peak of SiH bond, but the microc-Si:H sample with the relatively low silane concentration provides the absorption peak of SiH2 bond as well as SiH bond. Furthermore, the microc-Si:H sample showed the Raman spectral shift of 520 cm(-1) for crystalline phase Si bonds as well as the 480 cm(-1) for the amorphous phase Si bonds. These bonding structures are very consistent with the further analysis of the long-wavelength photoconduction tail and the formation of nanocrystalline Si structures. The microc-Si:H thin film solar cell has the photovoltaic behavior of open circuit voltage similar to crystalline silicon thin film solar cell, indicating that microc-Si:H thin film with the mixed phase of amorphous and nanocrystalline structures show the carrier transportation through the channel of nanocrystallites.

  16. Thermal-Mechanical Testing of Hypersonic Vehicle Structures

    NASA Technical Reports Server (NTRS)

    Hudson, Larry; Stephens, Craig

    2007-01-01

    A viewgraph presentation describing thermal-mechanical tests on the structures of hypersonic vehicles is shown. The topics include: 1) U.S. Laboratories for Hot Structures Testing; 2) NASA Dryden Flight Loads Laboratory; 3) Hot Structures Test Programs; 4) Typical Sequence for Hot Structures Testing; 5) Current Hot Structures Testing; and 6) Concluding Remarks.

  17. Final Report: Hot Carrier Collection in Thin Film Silicon with Tailored Nanocrystalline/Amorphous Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Reuben T.

    This project developed, characterized, and perfected a new type of highly tunable nanocrystalline silicon (nc-Si:H) incorporating quantum confined silicon nanoparticles (SiNPs). A dual zone deposition process and system were developed and demonstrated. The depositions of SiNPs, the amorphous phase, and co-deposited material were characterized and optimized. Material design and interpretation of results were guided by new theoretical tools that examined both the electronic structure and carrier dynamics of this hybrid material. Heterojunction and p-i-n solar cells were demonstrated and characterized. Photo-thin-film-transistors allowed mobility to be studied as a function SiNP density in the films. Rapid (hot) transfer of carriers frommore » the amorphous matrix to the quantum confined SiNPs was observed and connected to reduced photo-degradation. The results carry quantum confined Si dots from a novelty to materials that can be harnessed for PV and optoelectronic applications. The growth process is broadly extendable with alternative amorphous matrices, novel layered structures, and alternative NPs easily accessible. The hot carrier effects hold the potential for third generation photovoltaics.« less

  18. Development of Cone Wedge Ring Expansion Test to Evaluate Mechanical Properties of Clad Tubing Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John

    To determine the hoop tensile properties of irradiated fuel cladding in a hot cell, a cone wedge ring expansion test method was developed. A four-piece wedge insert was designed with tapered angles matched to the cone shape of a loading piston. The ring specimen was expanded in the radial direction by the lateral expansion of the wedges under the downward movement of the piston. The advantages of the proposed method are that implementation of the test setup in a hot cell is simple and easy, and that it enables a direct strain measurement of the test specimen from the piston’smore » vertical displacement soon after the wedge-clad contact resistance is initiated.« less

  19. Techniques for hot structures testing

    NASA Technical Reports Server (NTRS)

    Deangelis, V. Michael; Fields, Roger A.

    1990-01-01

    Hot structures testing have been going on since the early 1960's beginning with the Mach 6, X-15 airplane. Early hot structures test programs at NASA-Ames-Dryden focused on operational testing required to support the X-15 flight test program, and early hot structures research projects focused on developing lab test techniques to simulate flight thermal profiles. More recent efforts involved numerous large and small hot structures test programs that served to develop test methods and measurement techniques to provide data that promoted the correlation of test data with results from analytical codes. In Nov. 1988 a workshop was sponsored that focused on the correlation of hot structures test data with analysis. Limited material is drawn from the workshop and a more formal documentation is provided of topics that focus on hot structures test techniques used at NASA-Ames-Dryden. Topics covered include the data acquisition and control of testing, the quartz lamp heater systems, current strain and temperature sensors, and hot structures test techniques used to simulate the flight thermal environment in the lab.

  20. A Versatile Rocket Engine Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1993-01-01

    The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.

  1. Hot-electron transfer in quantum-dot heterojunction films.

    PubMed

    Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J

    2018-06-13

    Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.

  2. 48 CFR 925.7004 - Contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7004 Contract clause. The contracting officer shall insert the clause at 952.225-70, Subcontracting for Nuclear Hot Cell Services, in solicitations and contracts involving nuclear hot cell services. This clause does not flow down to second-tier...

  3. 48 CFR 925.7004 - Contract clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7004 Contract clause. The contracting officer shall insert the clause at 952.225-70, Subcontracting for Nuclear Hot Cell Services, in solicitations and contracts involving nuclear hot cell services. This clause does not flow down to second-tier...

  4. 48 CFR 925.7004 - Contract clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7004 Contract clause. The contracting officer shall insert the clause at 952.225-70, Subcontracting for Nuclear Hot Cell Services, in solicitations and contracts involving nuclear hot cell services. This clause does not flow down to second-tier...

  5. 48 CFR 925.7004 - Contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7004 Contract clause. The contracting officer shall insert the clause at 952.225-70, Subcontracting for Nuclear Hot Cell Services, in solicitations and contracts involving nuclear hot cell services. This clause does not flow down to second-tier...

  6. 48 CFR 925.7004 - Contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7004 Contract clause. The contracting officer shall insert the clause at 952.225-70, Subcontracting for Nuclear Hot Cell Services, in solicitations and contracts involving nuclear hot cell services. This clause does not flow down to second-tier...

  7. Planform structure of turbulent Rayleigh-Benard convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theerthan, S.A.; Arakeri, J.H.

    The planform structure of turbulent Rayleigh-Benard convection is obtained from visualizing a liquid crystal sheet stuck to the bottom hot surface. The bottom plate of the convection cell is Plexiglas and the top plate is glass. Water is the test liquid and the Rayleigh number is 4 [times] 10[sup 7]. The planform pattern reveals randomly moving hot streaks surrounded by cold regions suggesting that turbulent Rayleigh-Benard convection is dominated by quasi-two-dimensional randomly moving plumes. Simultaneous temperature traces from two vertically separated thermocouples indicate that these plumes may be inclined forward in the direction of horizontal motion. The periodic eruption ofmore » thermals observed by Sparrow et al and which forms the basis of Howard's model is not observed.« less

  8. Biological shielding test of hot cells with high active source 60Co (300 TBq)

    NASA Astrophysics Data System (ADS)

    Švrčula, P.; Zoul, D.; Zimina, M.; Petříčková, A.; Adamíková, T.; Schulc, M.; Srba, O.

    2017-11-01

    This article describes a method for testing of the efficiency of the biological shielding of the hot cell facility, which were constructed as a part of the project SUSEN. Ten hot cells and one semi-hot cell are present in the facility Radiochemistry II. The shielding is made from steel plates. In order to demonstrate sufficient efficiency of the biological shielding of the hot cells and a correspondence between measured and contractual values at selected points. The test was done using sealed high activity 60Co sources. The results are also used as a proof of the optimization of radiation protection for the workplace of this type. The results confirm significant optimization of radiation protection at the workplace. The dose received by a staff do not exceed one tens of annual limit during active service. Obtained results fulfill general requirements of radiation protection and will be used for further active service of hot cells facility.

  9. 48 CFR 925.7001 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7001 Definitions. Costs related to the... company which offers to perform nuclear hot cell services at a facility which is not subject to the laws and regulations of the United States, its agencies, and its political subdivisions. Nuclear hot cell...

  10. 48 CFR 925.7001 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7001 Definitions. Costs related to the... company which offers to perform nuclear hot cell services at a facility which is not subject to the laws and regulations of the United States, its agencies, and its political subdivisions. Nuclear hot cell...

  11. 48 CFR 925.7001 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7001 Definitions. Costs related to the... company which offers to perform nuclear hot cell services at a facility which is not subject to the laws and regulations of the United States, its agencies, and its political subdivisions. Nuclear hot cell...

  12. 48 CFR 925.7001 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7001 Definitions. Costs related to the... company which offers to perform nuclear hot cell services at a facility which is not subject to the laws and regulations of the United States, its agencies, and its political subdivisions. Nuclear hot cell...

  13. 48 CFR 925.7001 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7001 Definitions. Costs related to the... company which offers to perform nuclear hot cell services at a facility which is not subject to the laws and regulations of the United States, its agencies, and its political subdivisions. Nuclear hot cell...

  14. Preparation and Characterization of Cellulose Gels from Corn Cobs

    USDA-ARS?s Scientific Manuscript database

    Aqueous cellulose gels were prepared by extraction of ground corn cobs with hot aqueous sodium hydroxide/sodium hypochlorite and shearing. Initial shearing in a blender broke up cob tissue structure into individual cells and resulted in a gel. Subsequent shearing in a high pressure homogenizer incre...

  15. Preparation and characterization of cellulose gels from corn cobs

    USDA-ARS?s Scientific Manuscript database

    Aqueous cellulose gels were prepared by extraction of ground corn cobs with hot aqueous sodium hydroxide/sodium hypochlorite and shearing. Initial shearing in a blender broke up cob tissue structure into individual cells and resulted in a gel. Subsequent shearing in a high pressure homogenizer incre...

  16. 48 CFR 925.7000 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7000 Scope of subpart. This subpart prescribes policies for selection for contract award of nuclear hot cell services when one of the competitors is a foreign company. This subpart does not apply to the acquisition and use of nuclear hot cell...

  17. 48 CFR 952.225-70 - Subcontracting for nuclear hot cell services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Subcontracting for nuclear....225-70 Subcontracting for nuclear hot cell services. As prescribed in 925.7004, insert the following clause in solicitations and contracts: Subcontracting for Nuclear Hot Cell Services (MAR 1993) (a...

  18. 48 CFR 952.225-70 - Subcontracting for nuclear hot cell services. >

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Subcontracting for nuclear... Clauses 952.225-70 Subcontracting for nuclear hot cell services.> As prescribed in 925.7004, insert the following clause in solicitations and contracts: Subcontracting for Nuclear Hot Cell Services (MAR 1993) (a...

  19. 48 CFR 952.225-70 - Subcontracting for nuclear hot cell services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Subcontracting for nuclear....225-70 Subcontracting for nuclear hot cell services. As prescribed in 925.7004, insert the following clause in solicitations and contracts: Subcontracting for Nuclear Hot Cell Services (MAR 1993) (a...

  20. 48 CFR 952.225-70 - Subcontracting for nuclear hot cell services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Subcontracting for nuclear....225-70 Subcontracting for nuclear hot cell services. As prescribed in 925.7004, insert the following clause in solicitations and contracts: Subcontracting for Nuclear Hot Cell Services (MAR 1993) (a...

  1. 48 CFR 925.7000 - Scope of subpart.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7000 Scope of subpart. This subpart prescribes policies for selection for contract award of nuclear hot cell services when one of the competitors is a foreign company. This subpart does not apply to the acquisition and use of nuclear hot cell...

  2. 48 CFR 925.7000 - Scope of subpart.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7000 Scope of subpart. This subpart prescribes policies for selection for contract award of nuclear hot cell services when one of the competitors is a foreign company. This subpart does not apply to the acquisition and use of nuclear hot cell...

  3. 48 CFR 925.7000 - Scope of subpart.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7000 Scope of subpart. This subpart prescribes policies for selection for contract award of nuclear hot cell services when one of the competitors is a foreign company. This subpart does not apply to the acquisition and use of nuclear hot cell...

  4. 48 CFR 925.7000 - Scope of subpart.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7000 Scope of subpart. This subpart prescribes policies for selection for contract award of nuclear hot cell services when one of the competitors is a foreign company. This subpart does not apply to the acquisition and use of nuclear hot cell...

  5. HOT CELL BUILDING, TRA632, INTERIOR. DETAIL OF HOT CELL NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. DETAIL OF HOT CELL NO. 2 SHOWS MANIPULATION INSTRUMENTS AND SHIELDED OPERATING WINDOWS. PENETRATIONS FOR OPERATING INSTRUMENTS GO THROUGH SHIELDING ABOVE WINDOWS. CONDUIT FOR UTILITIES AND CONTROLS IS BEHIND METAL CABINET BELOW WINDOWS NEAR FLOOR. CAMERA FACES WEST. WARNING SIGN LIMITS FISSILE MATERIAL TO SPECIFIED NUMBER OF GRAMS OF URANIUM AND PLUTONIUM. INL NEGATIVE NO. HD46-28-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Slow hot carrier cooling in cesium lead iodide perovskites

    NASA Astrophysics Data System (ADS)

    Shen, Qing; Ripolles, Teresa S.; Even, Jacky; Ogomi, Yuhei; Nishinaka, Koji; Izuishi, Takuya; Nakazawa, Naoki; Zhang, Yaohong; Ding, Chao; Liu, Feng; Toyoda, Taro; Yoshino, Kenji; Minemoto, Takashi; Katayama, Kenji; Hayase, Shuzi

    2017-10-01

    Lead halide perovskites are attracting a great deal of interest for optoelectronic applications such as solar cells, LEDs, and lasers because of their unique properties. In solar cells, heat dissipation by hot carriers results in a major energy loss channel responsible for the Shockley-Queisser efficiency limit. Hot carrier solar cells offer the possibility to overcome this limit and achieve energy conversion efficiency as high as 66% by extracting hot carriers. Therefore, fundamental studies on hot carrier relaxation dynamics in lead halide perovskites are important. Here, we elucidated the hot carrier cooling dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy. We observe that the hot carrier cooling rate in CsPbI3 decreases as the fluence of the pump light increases and the cooling is as slow as a few 10 ps when the photoexcited carrier density is 7 × 1018 cm-3, which is attributed to phonon bottleneck for high photoexcited carrier densities. Our findings suggest that CsPbI3 has a potential for hot carrier solar cell applications.

  7. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage

    NASA Astrophysics Data System (ADS)

    Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner

    2017-10-01

    Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.

  8. Casein Kinase II Regulation of the Hot1 Transcription Factor Promotes Stochastic Gene Expression*

    PubMed Central

    Burns, Laura T.; Wente, Susan R.

    2014-01-01

    In Saccharomyces cerevisiae, Hog1 MAPK is activated and induces a transcriptional program in response to hyperosmotic stress. Several Hog1-responsive genes exhibit stochastic transcription, resulting in cell-to-cell variability in mRNA and protein levels. However, the mechanisms governing stochastic gene activity are not fully defined. Here we uncover a novel role for casein kinase II (CK2) in the cellular response to hyperosmotic stress. CK2 interacts with and phosphorylates the Hot1 transcription factor; however, Hot1 phosphorylation is not sufficient for controlling the stochastic response. The CK2 protein itself is required to negatively regulate mRNA expression of Hot1-responsive genes and Hot1 enrichment at target promoters. Single-cell gene expression analysis reveals altered activation of Hot1-targeted STL1 in ck2 mutants, resulting in a bimodal to unimodal shift in expression. Together, this work reveals a novel CK2 function during the hyperosmotic stress response that promotes cell-to-cell variability in gene expression. PMID:24817120

  9. Metal-insulator-semiconductor heterostructures for plasmonic hot-carrier optoelectronics.

    PubMed

    García de Arquer, F Pelayo; Konstantatos, Gerasimos

    2015-06-01

    Plasmonic hot-electron devices are attractive candidates for light-energy harvesting and photodetection applications. For solid state devices, the most compact and straightforward architecture is the metal-semiconductor Schottky junction. However convenient, this structure introduces limitations such as the elevated dark current associated to thermionic emission, or constraints for device design due to the finite choice of materials. In this work we theoretically consider the metal-insulator-semiconductor heterojunction as a candidate for plasmonic hot-carrier photodetection and solar cells. The presence of the insulating layer can significantly reduce the dark current, resulting in increased device performance with predicted solar power conversion efficiencies up to 9%. For photodetection, the sensitivity can be extended well into the infrared by a judicious choice of the insulating layer, with up to 300-fold expected enhancement in detectivity.

  10. Proteins evolve on the edge of supramolecular self-assembly.

    PubMed

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D

    2017-08-10

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  11. Proteins evolve on the edge of supramolecular self-assembly

    NASA Astrophysics Data System (ADS)

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.

    2017-08-01

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  12. Nano-optical conveyor belt, part I: Theory.

    PubMed

    Hansen, Paul; Zheng, Yuxin; Ryan, Jason; Hesselink, Lambertus

    2014-06-11

    We propose a method for peristaltic transport of nanoparticles using the optical force field over a nanostructured surface. Nanostructures may be designed to produce strong near-field hot spots when illuminated. The hot spots function as optical traps, separately addressable by their resonant wavelengths and polarizations. By activating closely packed traps sequentially, nanoparticles may be handed off between adjacent traps in a peristaltic fashion. A linear repeating structure of three separately addressable traps forms a "nano-optical conveyor belt"; a unit cell with four separately addressable traps permits controlled peristaltic transport in the plane. Using specifically designed activation sequences allows particle sorting.

  13. Cell structures caused by settling particles in turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Lee, Changhoon; Park, Sangro

    2016-11-01

    Turbulent thermal convection is an important phenomenon frequently found in nature and industrial processes, often with laden particles. In the last several decades, the vast majority of studies have addressed single phase convective flow with focus on the scaling relation of flow parameters associated with heat transfer. Particle-laden Rayleigh-Bénard convection, however, has not been sufficiently studied. In this study, modulation of cell structures by settling particles in turbulent Rayleigh-Bénard convection in a doubly periodic square channel is investigated using direct numerical simulation with a point particle approach. Flow parameters are fixed at Rayleigh number=106, Prandtl number=0.7, the aspect ratio=6, and Froude number=0.19. We report from the simulations that settling heavy particles modulate irregular large-scale thermal plume structures into organized polygonal cell structures. Different shapes of flow structures are obtained for different particle diameters and mass loadings. We found that polygonal cell structures arise due to asymmetric feedback force exerted by particles onto hot and cold plumes. Increasing the number of particles augments the asymmetry and the polygonal cell structures become smaller, eventually going to the hexagonal structures.

  14. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys.

    PubMed

    Kubásek, J; Vojtěch, D; Jablonská, E; Pospíšilová, I; Lipov, J; Ruml, T

    2016-01-01

    Zn-(0-1.6)Mg (in wt.%) alloys were prepared by hot extrusion at 300 °C. The structure, mechanical properties and in vitro biocompatibility of the alloys were investigated. The hot-extruded magnesium-based WE43 alloy was used as a control. Mechanical properties were evaluated by hardness, compressive and tensile testing. The cytotoxicity, genotoxicity (comet assay) and mutagenicity (Ames test) of the alloy extracts and ZnCl2 solutions were evaluated with the use of murine fibroblasts L929 and human osteosarcoma cell line U-2 OS. The microstructure of the Zn alloys consisted of recrystallized Zn grains of 12 μm in size and fine Mg2Zn11 particles arranged parallel to the hot extrusion direction. Mechanical tests revealed that the hardness and strength increased with increasing Mg concentration. The Zn-0.8 Mg alloys showed the best combination of tensile mechanical properties (tensile yield strength of 203 MPa, ultimate tensile strength of 301 MPa and elongation of 15%). At higher Mg concentrations the plasticity of Zn-Mg alloys was deteriorated. Cytotoxicity tests with alloy extracts and ZnCl2 solutions proved the maximum safe Zn(2+) concentrations of 120 μM and 80 μM for the U-2 OS and L929 cell lines, respectively. Ames test with extracts of alloys indicated that the extracts were not mutagenic. The comet assay demonstrated that 1-day extracts of alloys were not genotoxic for U-2 OS and L929 cell lines after 1-day incubation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. 47. ARAI. Interior view of operating wall of hot cell ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. ARA-I. Interior view of operating wall of hot cell in ARA-626. Note stands for operators at viewing windows. Manipulators with hand grips extend cables and other controls into hot cell through ducts above windows. Ineel photo no. 81-27. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  16. Hot-spot heating in central-station arrays

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1983-01-01

    Hot spot tests performed on the Sacramento Municipal Utility District (SMUD) verificaton array show that current imbalance occurs, resulting in significant hot spot heating. One cause of current imbalance is differences in the average shunt resistances of parallel cell strings due to cell shunt resistance variations. In depth hot spot tests are performed on the verification array with bypass diodes. The tests had several objectives: (1) a comparison of hot spot temperatures achieved under field conditions with those obtained with the present laboratory hot spot test using similar modules; (2) an assessment of current imbalance versus cross tie frequency; and (3) an assessment of different shadow patterns and shadow densities. Instrumented modules are used to vary the number of cross ties and to measure the test-cell current and back-bias voltage. The widths, lengths, and densities of the shadows are varied to maximize the back bias voltage at maximum power current. An infrared camera is used to indicate the existence of hot spots and estimate temperature increases in conjunction with thermocouples. The results of these hot spot tests indicate a sensitivity of back bias heating to the shadow size (amount of cell coverage) and density.

  17. Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures.

    PubMed

    Mayer, Jan A; Offermans, Ton; Chrapa, Marek; Pfannmöller, Martin; Bals, Sara; Ferrini, Rolando; Nisato, Giovanni

    2018-03-19

    Solution processable organic tandem solar cells offer a promising approach to achieve cost-effective, lightweight and flexible photovoltaics. In order to further enhance the efficiency of optimized organic tandem cells, diffractive light-management nanostructures were designed for an optimal redistribution of the light as function of both wavelength and propagation angles in both sub-cells. As the fabrication of these optical structures is compatible with roll-to-roll production techniques such as hot-embossing or UV NIL imprinting, they present an optimal cost-effective solution for printed photovoltaics. Tandem cells with power conversion efficiencies of 8-10% were fabricated in the ambient atmosphere by doctor blade coating, selected to approximate the conditions during roll-to-roll manufacturing. Application of the light management structure onto an 8.7% efficient encapsulated tandem cell boosted the conversion efficiency of the cell to 9.5%.

  18. Discovery of multiple interacting partners of gankyrin, a proteasomal chaperone and an oncoprotein--evidence for a common hot spot site at the interface and its functional relevance.

    PubMed

    Nanaware, Padma P; Ramteke, Manoj P; Somavarapu, Arun K; Venkatraman, Prasanna

    2014-07-01

    Gankyrin, a non-ATPase component of the proteasome and a chaperone of proteasome assembly, is also an oncoprotein. Gankyrin regulates a variety of oncogenic signaling pathways in cancer cells and accelerates degradation of tumor suppressor proteins p53 and Rb. Therefore gankyrin may be a unique hub integrating signaling networks with the degradation pathway. To identify new interactions that may be crucial in consolidating its role as an oncogenic hub, crystal structure of gankyrin-proteasome ATPase complex was used to predict novel interacting partners. EEVD, a four amino acid linear sequence seems a hot spot site at this interface. By searching for EEVD in exposed regions of human proteins in PDB database, we predicted 34 novel interactions. Eight proteins were tested and seven of them were found to interact with gankyrin. Affinity of four interactions is high enough for endogenous detection. Others require gankyrin overexpression in HEK 293 cells or occur endogenously in breast cancer cell line- MDA-MB-435, reflecting lower affinity or presence of a deregulated network. Mutagenesis and peptide inhibition confirm that EEVD is the common hot spot site at these interfaces and therefore a potential polypharmacological drug target. In MDA-MB-231 cells in which the endogenous CLIC1 is silenced, trans-expression of Wt protein (CLIC1_EEVD) and not the hot spot site mutant (CLIC1_AAVA) resulted in significant rescue of the migratory potential. Our approach can be extended to identify novel functionally relevant protein-protein interactions, in expansion of oncogenic networks and in identifying potential therapeutic targets. © 2013 Wiley Periodicals, Inc.

  19. 116. ARAI Details of hot cell section of building ARA626. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. ARA-I Details of hot cell section of building ARA-626. Shows manipulator openings in operating face of hot cell, start/stop buttons, and other details. Norman Engineering Company 961/area/SF-626-E-6. Date: January 1959. Ineel index code no. 068-0626-10-613-102731. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  20. Post-irradiation-examination of irradiated fuel outside the hot cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawn E. Janney; Adam B. Robinson; Thomas P. O'Holleran

    Because of their high radioactivity, irradiated fuels are commonly examined in a hot cell. However, the Idaho National Laboratory (INL) has recently investigated irradiated U-Mo-Al metallic fuel from the Reduced Enrichment for Research and Test Reactors (RERTR) project using a conventional unshielded scanning electron microscope outside a hot cell. This examination was possible because of a two-step sample-preparation approach in which a small volume of fuel was isolated in a hot cell and shielding was introduced during later stages of sample preparation. The resulting sample contained numerous sample-preparation artifacts but allowed analysis of microstructures from selected areas.

  1. Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs

    PubMed Central

    Munson-McGee, Jacob H.; Field, Erin K.; Bateson, Mary; Rooney, Colleen; Stepanauskas, Ramunas

    2015-01-01

    Nanoarchaeota are obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence of Nanoarchaeota in high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposed Nanobsidianus stetteri from a more neutral YNP hot spring than to the marine Nanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNP Nanoarchaeota as a Sulfolobales species known to inhabit the hot springs. Furthermore, we demonstrate that Nanoarchaeota are widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within one Nanoarchaeota single-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNP Nanoarchaeota. PMID:26341207

  2. Structural Inventory of Great Basin Geothermal Systems and Definition of Favorable Structural Settings

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Over the course of the entire project, field visits were made to 117 geothermal systems in the Great Basin region. Major field excursions, incorporating visits to large groups of systems, were conducted in western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east‐central Nevada, eastern California, southern Oregon, and western Utah. For example, field excursions to the following areas included visits of multiple geothermal systems: - Northwestern Nevada: Baltazor Hot Spring, Blue Mountain, Bog Hot Spring, Dyke Hot Springs, Howard Hot Spring, MacFarlane Hot Spring, McGee Mountain, and Pinto Hot Springs in northwest Nevada. - North‐central to northeastern Nevada: Beowawe, Crescent Valley (Hot Springs Point), Dann Ranch (Hand‐me‐Down Hot Springs), Golconda, and Pumpernickel Valley (Tipton Hot Springs) in north‐central to northeast Nevada. - Eastern Nevada: Ash Springs, Chimney Hot Spring, Duckwater, Hiko Hot Spring, Hot Creek Butte, Iverson Spring, Moon River Hot Spring, Moorman Spring, Railroad Valley, and Williams Hot Spring in eastern Nevada. - Southwestern Nevada‐eastern California: Walley’s Hot Spring, Antelope Valley, Fales Hot Springs, Buckeye Hot Springs, Travertine Hot Springs, Teels Marsh, Rhodes Marsh, Columbus Marsh, Alum‐Silver Peak, Fish Lake Valley, Gabbs Valley, Wild Rose, Rawhide‐ Wedell Hot Springs, Alkali Hot Springs, and Baileys/Hicks/Burrell Hot Springs. - Southern Oregon: Alvord Hot Spring, Antelope Hot Spring‐Hart Mountain, Borax Lake, Crump Geyser, and Mickey Hot Spring in southern Oregon. - Western Utah: Newcastle, Veyo Hot Spring, Dixie Hot Spring, Thermo, Roosevelt, Cove Fort, Red Hill Hot Spring, Joseph Hot Spring, Hatton Hot Spring, and Abraham‐Baker Hot Springs. Structural controls of 426 geothermal systems were analyzed with literature research, air photos, google‐Earth imagery, and/or field reviews (Figures 1 and 2). Of the systems analyzed, we were able to determine the structural settings of more than 240 sites. However, we found that many “systems” consisted of little more than a warm or hot well in the central part of a basin. Such “systems” were difficult to evaluate in terms of structural setting in areas lacking in geophysical data. Developed database for structural catalogue in a master spreadsheet. Data components include structural setting, primary fault orientation, presence or absence of Quaternary faulting, reservoir lithology, geothermometry, presence or absence of recent magmatism, and distinguishing blind systems from those that have surface expressions. Reviewed site locations for all 426 geothermal systems– Confirmed and/or relocated spring and geothermal sites based on imagery, maps, and other information for master database. Many systems were mislocated in the original database. In addition, some systems that included several separate springs spread over large areas were divided into two or more distinct systems. Further, all hot wells were assigned names based on their location to facilitate subsequent analyses. We catalogued systems into the following eight major groups, based on the dominant pattern of faulting (Figure 1): - Major normal fault segments (i.e., near displacement maxima). - Fault bends. - Fault terminations or tips. - Step‐overs or relay ramps in normal faults. - Fault intersections. - Accommodation zones (i.e., belts of intermeshing oppositely dipping normal faults), - Displacement transfer zones whereby strike‐slip faults terminate in arrays of normal faults. - Transtensional pull‐aparts. These settings form a hierarchal pattern with respect to fault complexity. - Major normal faults and fault bends are the simplest. - Fault terminations are typically more complex than mid‐segments, as faults commonly break up into multiple strands or horsetail near their ends. - A fault intersection is generally more complex, as it generally contains both multiple fault strands and can include discrete di...

  3. Disturb-Free Three-Dimensional Vertical Floating Gate NAND with Separated-Sidewall Control Gate

    NASA Astrophysics Data System (ADS)

    Seo, Moon-Sik; Endoh, Tetsuo

    2012-02-01

    Recently, the three-dimensional (3D) vertical floating gate (FG) type NAND cell arrays with the sidewall control gate (SCG) structure are receiving attention to overcome the reliability issues of charge trap (CT) type 3D NAND. In order to achieve the multilevel cell (MLC) operation for lower bit cost in 3D NAND, it is important to eliminate reliability issues, such as the Vth distribution with interference and disturbance problems and Vth shift with retention issues. In this paper, we intensively investigated the disturbance problems of the 3D vertical FG type NAND cell with separated-sidewall control gate (S-SCG) structure for the reliable MLC operation. Above all, we successfully demonstrate the fully suppressed disturbance problems, such as indirect programming of the unselected cells, hot electron injection of the edge cells and direct influence to the neighboring passing cells, by using the S-SCG with 30 nm pillar size.

  4. Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites.

    PubMed

    Wu, Xiaoxi; Tan, Liang Z; Shen, Xiaozhe; Hu, Te; Miyata, Kiyoshi; Trinh, M Tuan; Li, Renkai; Coffee, Ryan; Liu, Shi; Egger, David A; Makasyuk, Igor; Zheng, Qiang; Fry, Alan; Robinson, Joseph S; Smith, Matthew D; Guzelturk, Burak; Karunadasa, Hemamala I; Wang, Xijie; Zhu, Xiaoyang; Kronik, Leeor; Rappe, Andrew M; Lindenberg, Aaron M

    2017-07-01

    Femtosecond resolution electron scattering techniques are applied to resolve the first atomic-scale steps following absorption of a photon in the prototypical hybrid perovskite methylammonium lead iodide. Following above-gap photoexcitation, we directly resolve the transfer of energy from hot carriers to the lattice by recording changes in the mean square atomic displacements on 10-ps time scales. Measurements of the time-dependent pair distribution function show an unexpected broadening of the iodine-iodine correlation function while preserving the Pb-I distance. This indicates the formation of a rotationally disordered halide octahedral structure developing on picosecond time scales. This work shows the important role of light-induced structural deformations within the inorganic sublattice in elucidating the unique optoelectronic functionality exhibited by hybrid perovskites and provides new understanding of hot carrier-lattice interactions, which fundamentally determine solar cell efficiencies.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaoxi; Tan, Liang Z.; Shen, Xiaozhe

    Femtosecond resolution electron scattering techniques are applied to resolve the first atomic-scale steps following absorption of a photon in the prototypical hybrid perovskite methylammonium lead iodide. Following above-gap photoexcitation, we directly resolve the transfer of energy from hot carriers to the lattice by recording changes in the mean square atomic displacements on 10-ps time scales. Measurements of the time-dependent pair distribution function show an unexpected broadening of the iodine-iodine correlation function while preserving the Pb-I distance. This indicates the formation of a rotationally disordered halide octahedral structure developing on picosecond time scales. Here, this work shows the important role ofmore » light-induced structural deformations within the inorganic sublattice in elucidating the unique optoelectronic functionality exhibited by hybrid perovskites and provides new understanding of hot carrier-lattice interactions, which fundamentally determine solar cell efficiencies.« less

  6. HOT CELL BUILDING, TRA632. CONTEXTUAL AERIAL VIEW OF HOT CELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. CONTEXTUAL AERIAL VIEW OF HOT CELL BUILDING, IN VIEW AT LEFT, AS YET WITHOUT ROOF. PLUG STORAGE BUILDING LIES BETWEEN IT AND THE SOUTH SIDE OF THE MTR BUILDING AND ITS WING. NOTE CONCRETE DRIVE BETWEEN ROLL-UP DOOR IN MTR BUILDING AND CHARGING FACE OF PLUG STORAGE. REACTOR SERVICES BUILDING (TRA-635) WILL COVER THIS DRIVE AND BUTT UP TO CHARGING FACE. DOTTED LINE IS ON ORIGINAL NEGATIVE. TRA PARKING LOT IN LEFT CORNER OF THE VIEW. CAMERA FACING NORTHWESTERLY. INL NEGATIVE NO. 8274. Unknown Photographer, 7/2/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. HOT CELL BUILDING, TRA632, INTERIOR. CELL 3, "HEAVY" CELL. CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. CELL 3, "HEAVY" CELL. CAMERA FACES WEST TOWARD BUILDING EXIT. OBSERVATION WINDOW AT LEFT EDGE OF VIEW. INL NEGATIVE NO. HD46-28-4. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. 113. ARAI Hot cell (ARA626) Building wall sections and details ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. ARA-I Hot cell (ARA-626) Building wall sections and details of radio chemistry lab. Shows high-bay roof over hot cells and isolation rooms below grade storage pit for fuel elements. Norman Engineering Company: 961-area/SF-626-A-4. Date: January 1959. Ineel index code no. 068-0626-00-613-102724. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  9. Chemical characteristics and anti-proliferation activities of Ganoderma tsugae polysaccharides.

    PubMed

    Chien, Rao-Chi; Yen, Ming-Tsung; Tseng, Yu-Hsiu; Mau, Jeng-Leun

    2015-09-05

    Polysaccharides were extracted by hot-water and hot-alkali from four forms of Ganoderma tsugae including mature and baby Ling chih, mycelium and filtrate. Different profiles of proximate composition and monosaccharide constituents, and element contents were found in the extracted polysaccharides from different extractions and different forms. The molecular weight distributions of polysaccharides were 2.8×10(4)-6.5×10(5)Da and their infrared spectra were comparable. The hot-alkali extracted polysaccharides exhibited better anti-proliferation on IMR32 cells than the hot-water extracted polysaccharides, which were in turn more effective than the hot-water extracts. Besides, most hot-water extracts and both extracted polysaccharides exhibited an anti-proliferation effect on Hep G2 cells. However, the hot-water extracts showed less effective in anti-proliferation of IMR32 and Hep G2 cells. Based on the anti-tumor effects, both polysaccharides could be prepared for use in the formulation of nutraceuticals and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Microstructure of Sinter Deposit Formed at Hot Springs in West Sumatera

    NASA Astrophysics Data System (ADS)

    Putra, A.; Inanda, D. Y.; Buspa, F.; Salim, A. F.

    2018-03-01

    Sinter deposit emerged and spread at several hot springs in West Sumatera is divided into three types, they are full silica, half silica-carbonate and full carbonate. This work intends to investigate the characteristic of each type by its crystalline structure and morphology and its correlation to surface temperature. The research is focused on Sapan Maluluang hot spring (full silica), Garara hot spring (half silica-carbonate) and Bawah Kubang hot spring (full carbonate). Crystalline structure is analyzed by X-Ray Diffraction (XRD) methods, it showed that deposit from Sapan Maluluang has opal-A structure, Garara has opal-CT structure and Bawah Kubang has crystalline structure. The Scanning Electron Microscopy (SEM) methods is applied to describe its morphology surface, in which spherical, almost rounded and irregular textured was formed at each deposit, respectively. Surface temperature of hot spring also has given impact on deposit texture.

  11. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.

    PubMed

    Dong, Yitong; Rossi, Daniel; Parobek, David; Son, Dong Hee

    2016-03-03

    We report the measurement of the hot-electron current in a photoelectrochemical cell constructed from a glass/ITO/Al2 O3 (ITO=indium tin oxide) electrode coated with Mn-doped quantum dots, where hot electrons with a large excess kinetic energy were produced through upconversion of the excitons into hot electron hole pairs under photoexcitation at 3 eV. In our recent study (J. Am. Chem. Soc. 2015, 137, 5549), we demonstrated the generation of hot electrons in Mn-doped II-VI semiconductor quantum dots and their usefulness in photocatalytic H2 production reaction, taking advantage of the more efficient charge transfer of hot electrons compared with band-edge electrons. Here, we show that hot electrons produced in Mn-doped CdS/ZnS quantum dots possess sufficient kinetic energy to overcome the energy barrier from a 5.4-7.5 nm thick Al2 O3 layer producing a hot-electron current in photoelectrochemical cell. This work demonstrates the possibility of harvesting hot electrons not only at the interface of the doped quantum dot surface, but also far away from it, thus taking advantage of the capability of hot electrons for long-range electron transfer across a thick energy barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Mulijani, S.

    2017-01-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  13. Leishmania cell wall as a potent target for antiparasitic drugs. A focus on the glycoconjugates.

    PubMed

    Cabezas, Yari; Legentil, Laurent; Robert-Gangneux, Florence; Daligault, Franck; Belaz, Sorya; Nugier-Chauvin, Caroline; Tranchimand, Sylvain; Tellier, Charles; Gangneux, Jean-Pierre; Ferrières, Vincent

    2015-08-21

    Although leishmaniasis has been studied for over a century, the fight against cutaneous, mucocutaneous and visceral forms of the disease remains a hot topic. This review refers to the parasitic cell wall and more particularly to the constitutive glycoconjugates. The structures of the main glycolipids and glycoproteins, which are species-dependent, are described. The focus is on the disturbance of the lipid membrane by existing drugs and possible new ones, in order to develop future therapeutic agents.

  14. Radioactive hot cell access hole decontamination machine

    DOEpatents

    Simpson, William E.

    1982-01-01

    Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  15. Analytical modeling of the temporal evolution of hot spot temperatures in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Wasmer, Sven; Rajsrima, Narong; Geisemeyer, Ino; Fertig, Fabian; Greulich, Johannes Michael; Rein, Stefan

    2018-03-01

    We present an approach to predict the equilibrium temperature of hot spots in crystalline silicon solar cells based on the analysis of their temporal evolution right after turning on a reverse bias. For this end, we derive an analytical expression for the time-dependent heat diffusion of a breakdown channel that is assumed to be cylindrical. We validate this by means of thermography imaging of hot spots right after turning on a reverse bias. The expression allows to be used to extract hot spot powers and radii from short-term measurements, targeting application in inline solar cell characterization. The extracted hot spot powers are validated at the hands of long-term dark lock-in thermography imaging. Using a look-up table of expected equilibrium temperatures determined by numerical and analytical simulations, we utilize the determined hot spot properties to predict the equilibrium temperatures of about 100 industrial aluminum back-surface field solar cells and achieve a high correlation coefficient of 0.86 and a mean absolute error of only 3.3 K.

  16. Age-related effects of heat stress on protective enzymes for peroxides and microsomal monooxygenase in rat liver.

    PubMed Central

    Ando, M; Katagiri, K; Yamamoto, S; Wakamatsu, K; Kawahara, I; Asanuma, S; Usuda, M; Sasaki, K

    1997-01-01

    To evaluate the age-related response of essential cell functions against peroxidative damage in hyperthermia, we studied the biochemical response to heat stress in both young and aged rats. Passive hyperthermia was immediately observed in rats after exposure to hot environments. In aged rats, the rectal temperature maintained thermal homeostasis and increased to the same degree as in young rats. In these aged animals, the damage from heat stress was more serious than in young animals. In aged rats under normal environmental conditions, hepatic cytosolic glutathione peroxidase (GSH peroxidase) activities were markedly higher than those activities in younger rats. Hepatic cytosolic GSH peroxidase activities were induced by heat stress in young rats but were decreased by hot environments in aged rats. Hepatic catalase activities in young rats were not affected by hot environments, whereas in aged rats, hepatic catalase activities were seriously decreased. Catalase activities in the kidney of aged rats were also reduced by hot environments. Lipid peroxidation in the liver was markedly induced in both young and aged rats. Because the protective enzymes for oxygen radicals in aged rats were decreased by hot environments, lipid peroxidation in the liver was highly induced. In aged rats, lipid peroxidation in intracellular structures such as mitochondria and microsomes was also markedly induced by hot environments. In both young and aged rats, hyperthermia greatly increased the development of hypertrophy and vacuolated degeneration in hepatic cells. In aged rats, both mitochondria and endoplasmic reticulum of the hepatic cells showed serious distortion in shape as a result of exposures to hot environments. Microsomal electron transport systems, such as cytochrome P450 monooxygenase activities, were seriously decreased by heat stress in aged rats but not in young rats. Although the mitochondrial electron transport systems were not affected by acute heat stress in young rats, their activities were simultaneously inhibited after long-lasting heat exposure. In isolated hepatic cells and polymorphonuclear leukocytes in animals, the 70-kDa heat shock-induced proteins were markedly increased by heat stress. In conclusion, the heat stress-inducible oxygen radical damage becomes more severe according to the age of rats. Because aging and hyperthermia have a synergistic effect on lipid peroxidation, protective enzyme activities for oxygen radicals may be essential for surviving and recovering from thermal injury in aged animals and also in humans. Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 3. Figure 4. Figure 5. Figure 6. A Figure 6. B Figure 7. A Figure 7. B PMID:9294719

  17. Highly ordered vertical structure of Synechococcus populations within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat

    NASA Technical Reports Server (NTRS)

    Ramsing, N. B.; Ferris, M. J.; Ward, D. M.

    2000-01-01

    A variety of contemporary techniques were used to investigate the vertical distribution of thermophilic unicellular cyanobacteria, Synechococcus spp., and their activity within the upper 1-mm-thick photic zone of the mat community found in an alkaline siliceous hot spring in Yellowstone National Park in Wyoming. Detailed measurements were made over a diel cycle at a 61 degrees C site. Net oxygenic photosynthesis measured with oxygen microelectrodes was highest within the uppermost 100- to 200-microm-thick layer until midmorning, but as the day progressed, the peak of net activity shifted to deeper layers, stabilizing at a depth of 300 microm from midday throughout the afternoon. Examination of vertical thin sections by bright-field and autofluorescence microscopy revealed the existence of different populations of Synechococcus which form discrete bands at different vertical positions. Denaturing gradient gel electrophoresis analysis of PCR-amplified 16S rRNA gene segments from horizontal cryosections obtained at 100-microm-thick vertical intervals also suggested vertical stratification of cyanobacterial, green sulfur bacterium-like, and green nonsulfur bacterium-like populations. There was no evidence of diel migration. However, image analysis of vertical thin sections revealed the presence of a narrow band of rod-shaped Synechococcus cells in which the cells assumed an upright position. These upright cells, located 400 to 800 microm below the surface, were observed only in mat samples obtained around noon. In mat samples obtained at other time points, the cells were randomly oriented throughout the mat. These combined observations reveal the existence of a highly ordered structure within the very thin photic zone of this hot spring microbial mat, consisting of morphologically similar Synechococcus populations that are likely to be differentially adapted, some co-occurring with green sulfur bacterium-like populations, and all overlying green nonsulfur bacterium-like populations.

  18. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals.

    PubMed

    Li, Mingjie; Bhaumik, Saikat; Goh, Teck Wee; Kumar, Muduli Subas; Yantara, Natalia; Grätzel, Michael; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2017-02-08

    Hot-carrier solar cells can overcome the Schottky-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger process and defects) that overwhelm their phonon bottlenecks. Here we show colloidal halide perovskite nanocrystals transcend these limitations and exhibit around two orders slower hot-carrier cooling times and around four times larger hot-carrier temperatures than their bulk-film counterparts. Under low pump excitation, hot-carrier cooling mediated by a phonon bottleneck is surprisingly slower in smaller nanocrystals (contrasting with conventional nanocrystals). At high pump fluence, Auger heating dominates hot-carrier cooling, which is slower in larger nanocrystals (hitherto unobserved in conventional nanocrystals). Importantly, we demonstrate efficient room temperature hot-electrons extraction (up to ∼83%) by an energy-selective electron acceptor layer within 1 ps from surface-treated perovskite NCs thin films. These insights enable fresh approaches for extremely thin absorber and concentrator-type hot-carrier solar cells.

  19. Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, M.; Amendt, P.A.; London, R.A.

    1997-03-04

    Objective is to study retinal injury by subnanosecond laser pulses absorbed in the retinal pigment epithelium (RPE) cells. The absorption centers in the RPE cell are melanosomes of order 1 {mu}m radius. Each melanosome includes many melanin particles of 10-15 nm radius, which are the local absorbers of the laser light and generate a discrete structure of hot spots. This work use the hydrodynamic code LATIS (LAser-TISsue interaction modeling) and a water equation of state to first simulate the small melanin particle of 15 nm responsible for initiating the hot spot and the pressure field. A average melanosome of 1more » {mu}m scale is next simulated. Supersonic shocks and fast vapor bubbles are generated in both cases: the melanin scale and the melanosome scale. The hot spot induces a shock wave pressure than with a uniform deposition of laser energy. It is found that an absorption coefficient of 6000 -8000 cm{sup -1} can explain the enhanced shock wave emitted by the melanosome. An experimental and theoretical effort should be considered to identify the mechanism for generating shock wave enhancement.« less

  20. Effects of Disinfection on Legionella spp., Eukarya, and Biofilms in a Hot Water System

    PubMed Central

    Moletta-Denat, Marina; Frère, Jacques; Onillon, Séverine; Trouilhé, Marie-Cécile; Robine, Enric

    2012-01-01

    Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms. PMID:22820326

  1. Photovoltaic module hot spot durability design and test methods

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Gonzalez, C. C.

    1981-01-01

    As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, the susceptibility of fat-plate modules to hot-spot problems is investigated. Hot-spot problems arise in modules when the cells become back-biased and operate in the negative-voltage quadrant, as a result of short-circuit current mismatch, cell cracking or shadowing. The details of a qualification test for determining the capability of modules of surviving field hot-spot problems and typical results of this test are presented. In addition, recommended circuit-design techniques for improving the module and array reliability with respect to hot-spot problems are presented.

  2. Hot spot and trench volcano separations

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Schubert, G.

    1974-01-01

    It is suggested that the distribution of separations between trench volcanos located along subduction zones reflects the depth of partial melting, and that the separation distribution for hot spot volcanoes near spreading centers provides a measure of the depth of mantle convection cells. It is further proposed that the lateral dimensions of mantle convection cells are also represented by the hot-spot separations (rather than by ridge-trench distances) and that a break in the distribution of hot spot separations at 3000 km is evidence for both whole mantle convection and a deep thermal plume origin of hot spots.

  3. ANTIGENIC STRUCTURE OF ACTINOMYCETALES VI.

    PubMed Central

    Kwapinski, J. B.

    1963-01-01

    Kwapinski, J. B. (University of New England, Armidale, N.S.W., Australia). Antigenic structure of Actinomycetales. VI. Serological relationships between antigenic fractions of Actinomyces and Nocardia. J. Bacteriol. 86:179–186. 1963.—A total of 52 chemical fractions were obtained by a comprehensive technique of preparation from three strains of Actinomyces and three strains of Nocardia. The chemical and serological structures and specificities of disintegrated cells, cell walls, cytoplasms, and individual fractions were thoroughly studied. Cytoplasmic materials were found to be serologically alike or identical. The polysaccharide fractions, extracted from cell walls with alkali, formamide, and phenol, proved to be serologically related. Fractions prepared from the Nocardia by extractions in hot and concentrated solutions of acetic acid and sodium hydroxide, as well as the second protein fraction and the acetate-extracted polysaccharides of both the Nocardia and Actinomyces, proved to be genus-specific. PMID:14058939

  4. A&M. Hot cell addition (TAN633). Floor plan, elevations. Arrangement of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot cell addition (TAN-633). Floor plan, elevations. Arrangement of monorail along corridor, four hot cells, plug access openings, viewing windows, photo darkroom. Ralph M. Parsons 1229-13-ANP/GE-3-633-A-1. Date: December 1956 as redrawn in August 1998. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0633-00-693-107315 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  5. Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites

    DOE PAGES

    Wu, Xiaoxi; Tan, Liang Z.; Shen, Xiaozhe; ...

    2017-07-26

    Femtosecond resolution electron scattering techniques are applied to resolve the first atomic-scale steps following absorption of a photon in the prototypical hybrid perovskite methylammonium lead iodide. Following above-gap photoexcitation, we directly resolve the transfer of energy from hot carriers to the lattice by recording changes in the mean square atomic displacements on 10-ps time scales. Measurements of the time-dependent pair distribution function show an unexpected broadening of the iodine-iodine correlation function while preserving the Pb-I distance. This indicates the formation of a rotationally disordered halide octahedral structure developing on picosecond time scales. Here, this work shows the important role ofmore » light-induced structural deformations within the inorganic sublattice in elucidating the unique optoelectronic functionality exhibited by hybrid perovskites and provides new understanding of hot carrier-lattice interactions, which fundamentally determine solar cell efficiencies.« less

  6. Hot-compress: A new postdeposition treatment for ZnO-based flexible dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque Choudhury, Mohammad Shamimul, E-mail: shamimul129@gmail.com; Department of Electrical and Electronic Engineering, International Islamic University Chittagong, b154/a, College Road, Chittagong 4203; Kishi, Naoki

    2016-08-15

    Highlights: • A new postdeposition treatment named hot-compress is introduced. • Hot-compression gives homogeneous compact layer ZnO photoanode. • I-V and EIS analysis data confirms the efficacy of this method. • Charge transport resistance was reduced by the application of hot-compression. - Abstract: This article introduces a new postdeposition treatment named hot-compress for flexible zinc oxide–base dye-sensitized solar cells. This postdeposition treatment includes the application of compression pressure at an elevated temperature. The optimum compression pressure of 130 Ma at an optimum compression temperature of 70 °C heating gives better photovoltaic performance compared to the conventional cells. The aptness ofmore » this method was confirmed by investigating scanning electron microscopy image, X-ray diffraction, current-voltage and electrochemical impedance spectroscopy analysis of the prepared cells. Proper heating during compression lowers the charge transport resistance, longer the electron lifetime of the device. As a result, the overall power conversion efficiency of the device was improved about 45% compared to the conventional room temperature compressed cell.« less

  7. 48 CFR 925.7003 - Requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7003 Requirements. (a) For the acquisition of nuclear hot cell services under the conditions in paragraph (b) of this section, the selection...

  8. 48 CFR 925.7003 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7003 Requirements. (a) For the acquisition of nuclear hot cell services under the conditions in paragraph (b) of this section, the selection...

  9. 48 CFR 925.7003 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7003 Requirements. (a) For the acquisition of nuclear hot cell services under the conditions in paragraph (b) of this section, the selection...

  10. 48 CFR 925.7003 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7003 Requirements. (a) For the acquisition of nuclear hot cell services under the conditions in paragraph (b) of this section, the selection...

  11. 48 CFR 925.7003 - Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOREIGN ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7003 Requirements. (a) For the acquisition of nuclear hot cell services under the conditions in paragraph (b) of this section, the selection...

  12. A recombination hot spot in HIV-1 contains guanosine runs that can form a G-quartet structure and promote strand transfer in vitro.

    PubMed

    Shen, Wen; Gao, Lu; Balakrishnan, Mini; Bambara, Robert A

    2009-12-04

    The co-packaged RNA genomes of human immunodeficiency virus-1 recombine at a high rate. Recombination can mix mutations to generate viruses that escape immune response. A cell-culture-based system was designed previously to map recombination events in a 459-bp region spanning the primer binding site through a portion of the gag protein coding region. Strikingly, a strong preferential site for recombination in vivo was identified within a 112-nucleotide-long region near the beginning of gag. Strand transfer assays in vitro revealed that three pause bands in the gag hot spot each corresponded to a run of guanosine (G) residues. Pausing of reverse transcriptase is known to promote recombination by strand transfer both in vivo and in vitro. To assess the significance of the G runs, we altered them by base substitutions. Disruption of the G runs eliminated both the associated pausing and strand transfer. Some G-rich sequences can develop G-quartet structures, which were first proposed to form in telomeric DNA. G-quartet structure formation is highly dependent on the presence of specific cations. Incubation in cations discouraging G-quartets altered gel mobility of the gag template consistent with breakdown of G-quartet structure. The same cations faded G-run pauses but did not affect pauses caused by hairpins, indicating that quartet structure causes pausing. Moreover, gel analysis with cations favoring G-quartet structure indicated no structure in mutated templates. Overall, results point to reverse transcriptase pausing at G runs that can form quartets as a unique feature of the gag recombination hot spot.

  13. 48 CFR 925.7002 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7002 Policy. In selecting offer(s) for award of contracts for nuclear hot cell services, costs related to the decommissioning of nuclear facilities and...

  14. 48 CFR 925.7002 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7002 Policy. In selecting offer(s) for award of contracts for nuclear hot cell services, costs related to the decommissioning of nuclear facilities and...

  15. 48 CFR 925.7002 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7002 Policy. In selecting offer(s) for award of contracts for nuclear hot cell services, costs related to the decommissioning of nuclear facilities and...

  16. 48 CFR 925.7002 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7002 Policy. In selecting offer(s) for award of contracts for nuclear hot cell services, costs related to the decommissioning of nuclear facilities and...

  17. 48 CFR 925.7002 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ACQUISITION Acquisition of Nuclear Hot Cell Services 925.7002 Policy. In selecting offer(s) for award of contracts for nuclear hot cell services, costs related to the decommissioning of nuclear facilities and...

  18. HOT CELL BUILDING, TRA632. WHILE STEEL BEAMS DEFINE FUTURE WALLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. WHILE STEEL BEAMS DEFINE FUTURE WALLS OF THE BUILDING, SHEET STEEL DEFINES THE HOT CELL "BOX" ITSELF. THREE OPERATING WINDOWS ON LEFT; ONE VIEWING WINDOW ON RIGHT. TUBES WILL CONTAIN SERVICE AND CONTROL LEADS. SPACE BETWEEN INNER AND OUTER BOX WALLS WILL BE FILLED WITH SHIELDED WINDOWS AND BARETES CONCRETE. CAMERA FACES SOUTHEAST. INL NEGATIVE NO. 7933. Unknown Photographer, ca. 5/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. HOT CELL BUILDING, TRA632. CONTEXTUAL VIEW ALONG WALLEYE AVENUE, CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. CONTEXTUAL VIEW ALONG WALLEYE AVENUE, CAMERA FACING EASTERLY. HOT CELL BUILDING IS AT CENTER LEFT OF VIEW; THE LOW-BAY PROJECTION WITH LADDER IS THE TEST TRAIN ASSEMBLY FACILITY, ADDED IN 1968. MTR BUILDING IS IN LEFT OF VIEW. HIGH-BAY BUILDING AT RIGHT IS THE ENGINEERING TEST REACTOR BUILDING, TRA-642. INL NEGATIVE NO. HD46-32-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. Novel target design for enhanced laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Kundu, M.; Tata, Sheroy; Lad, Amit D.; Jha, J.; Ray, Krishanu; Krishnamurthy, M.

    2017-09-01

    We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  1. Utilizing hot electrons

    DOE PAGES

    Nozik, Arthur J.

    2018-03-01

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  2. Utilizing hot electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozik, Arthur J.

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  3. Transcriptional specificity in various p53-mutant cells.

    PubMed

    Okaichi, Kumio; Izumi, Nanaka; Takamura, Yuma; Fukui, Shoichi; Kudo, Takashi

    2013-03-01

    Mutation of the tumor suppressor gene p53 is the most common genetic alteration observed in human tumors. However, the relationship between the mutation point of p53 and the transcriptional specificity is not so obvious. We prepared Saos-2 cells with various mutations of p53 that are found in human tumors, and examined the resulting transcriptional alterations in the cells. Loss of function and gain of function were observed in all p53 mutants. Hot-spot mutations of p53 are frequently found in tumor cells. We compared hot-spot mutations and other mutations of p53 and found that a more than 2-fold transcription of CADPS2, PIWIL4 and TRIM9 was induced by hot spot mutations, but not by other mutations. As PIWIL4 suppresses the p16(INK4A) and ARF pathway, restraining cell growth and genomic instability, induction of PIWIL4 expression may be one reason why hot-spot mutations are frequently found in tumor cells.

  4. Three-dimensional hot electron photovoltaic device with vertically aligned TiO2 nanotubes.

    PubMed

    Goddeti, Kalyan C; Lee, Changhwan; Lee, Young Keun; Park, Jeong Young

    2018-05-09

    Titanium dioxide (TiO 2 ) nanotubes with vertically aligned array structures show substantial advantages in solar cells as an electron transport material that offers a large surface area where charges travel linearly along the nanotubes. Integrating this one-dimensional semiconductor material with plasmonic metals to create a three-dimensional plasmonic nanodiode can influence solar energy conversion by utilizing the generated hot electrons. Here, we devised plasmonic Au/TiO 2 and Ag/TiO 2 nanodiode architectures composed of TiO 2 nanotube arrays for enhanced photon absorption, and for the subsequent generation and capture of hot carriers. The photocurrents and incident photon to current conversion efficiencies (IPCE) were obtained as a function of photon energy for hot electron detection. We observed enhanced photocurrents and IPCE using the Ag/TiO 2 nanodiode. The strong plasmonic peaks of the Au and Ag from the IPCE clearly indicate an enhancement of the hot electron flux resulting from the presence of surface plasmons. The calculated electric fields and the corresponding absorbances of the nanodiode using finite-difference time-domain simulation methods are also in good agreement with the experimental results. These results show a unique strategy of combining a hot electron photovoltaic device with a three-dimensional architecture, which has the clear advantages of maximizing light absorption and a metal-semiconductor interface area.

  5. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2012-11-06

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  6. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

    2013-12-24

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  7. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOEpatents

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2016-05-17

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  8. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals

    PubMed Central

    Li, Mingjie; Bhaumik, Saikat; Goh, Teck Wee; Kumar, Muduli Subas; Yantara, Natalia; Grätzel, Michael; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2017-01-01

    Hot-carrier solar cells can overcome the Shockley-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger process and defects) that overwhelm their phonon bottlenecks. Here we show colloidal halide perovskite nanocrystals transcend these limitations and exhibit around two orders slower hot-carrier cooling times and around four times larger hot-carrier temperatures than their bulk-film counterparts. Under low pump excitation, hot-carrier cooling mediated by a phonon bottleneck is surprisingly slower in smaller nanocrystals (contrasting with conventional nanocrystals). At high pump fluence, Auger heating dominates hot-carrier cooling, which is slower in larger nanocrystals (hitherto unobserved in conventional nanocrystals). Importantly, we demonstrate efficient room temperature hot-electrons extraction (up to ∼83%) by an energy-selective electron acceptor layer within 1 ps from surface-treated perovskite NCs thin films. These insights enable fresh approaches for extremely thin absorber and concentrator-type hot-carrier solar cells. PMID:28176882

  9. High humidity hot air impingement blanching (HHAIB) enhances drying rate and softens texture of apricot via cell wall pectin polysaccharides degradation and ultrastructure modification.

    PubMed

    Deng, Li-Zhen; Mujumdar, A S; Yang, Xu-Hai; Wang, Jun; Zhang, Qian; Zheng, Zhi-An; Gao, Zhen-Jiang; Xiao, Hong-Wei

    2018-09-30

    The effects of high humidity hot air impingement blanching (HHAIB) over a range of application times (30, 60, 90, and 120 s) on drying characteristics, hardness, cell wall pectin fractions contents and nanostructure, as well ultrastructure of apricot were investigated. Results showed that HHAIB reduced drying time and decreased the hardness of apricot by 20.7%-34.5% and 46.57%-71.89%, respectively. The water-soluble pectin (WSP) contents increased after blanching, while the contents of chelate-soluble pectin (CSP) and sodium-carbonate-soluble pectin (NSP) decreased significantly (P < 0.05). The hardness and drying time were found to correlate inversely with the WSP content, but positively with CSP and NSP contents. Atomic force microscopy (AFM) detection showed the decomposition and degradation of pectin fractions during blanching. Additionally, transmission electron microscopy (TEM) observation indicated that the cell wall structure was degraded and middle lamella integrity was destroyed by blanching. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. An assessment of the effects of cell size on AGNPS modeling of watershed runoff

    USGS Publications Warehouse

    Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.

    2008-01-01

    This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.

  11. Mitigation of Hot-Spots in Photovoltaic Systems Using Distributed Power Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olalla, Carlos; Hasan, Md. Nazmul; Deline, Chris

    In the presence of partial shading and other mismatch factors, bypass diodes may not offer complete elimination of excessive power dissipation due to cell reverse biasing, commonly referred to as hot-spotting in photovoltaic (PV) systems. As a result, PV systems may experience higher failure rates and accelerated ageing. In this paper, a cell-level simulation model is used to assess occurrence of hot-spotting events in a representative residential rooftop system scenario featuring a moderate shading environment. The approach is further used to examine how well distributed power electronics converters mitigate the effects of partial shading and other sources of mismatch bymore » preventing activation of bypass diodes and thereby reducing the chances of heavy power dissipation and hot-spotting in mismatched cells. The simulation results confirm that the occurrence of heavy power dissipation is reduced in all distributed power electronics architectures, and that submodule-level converters offer nearly 100% mitigation of hot-spotting. In addition, the paper further elaborates on the possibility of hot-spot-induced permanent damage, predicting a lifetime energy loss above 15%. In conclusion, this energy loss is fully recoverable with submodule-level power converters that mitigate hot-spotting and prevent the damage.« less

  12. Mitigation of Hot-Spots in Photovoltaic Systems Using Distributed Power Electronics

    DOE PAGES

    Olalla, Carlos; Hasan, Md. Nazmul; Deline, Chris; ...

    2018-03-23

    In the presence of partial shading and other mismatch factors, bypass diodes may not offer complete elimination of excessive power dissipation due to cell reverse biasing, commonly referred to as hot-spotting in photovoltaic (PV) systems. As a result, PV systems may experience higher failure rates and accelerated ageing. In this paper, a cell-level simulation model is used to assess occurrence of hot-spotting events in a representative residential rooftop system scenario featuring a moderate shading environment. The approach is further used to examine how well distributed power electronics converters mitigate the effects of partial shading and other sources of mismatch bymore » preventing activation of bypass diodes and thereby reducing the chances of heavy power dissipation and hot-spotting in mismatched cells. The simulation results confirm that the occurrence of heavy power dissipation is reduced in all distributed power electronics architectures, and that submodule-level converters offer nearly 100% mitigation of hot-spotting. In addition, the paper further elaborates on the possibility of hot-spot-induced permanent damage, predicting a lifetime energy loss above 15%. In conclusion, this energy loss is fully recoverable with submodule-level power converters that mitigate hot-spotting and prevent the damage.« less

  13. Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments

    NASA Technical Reports Server (NTRS)

    Jardine, Andrew Peter (Inventor)

    2015-01-01

    This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.

  14. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    NASA Astrophysics Data System (ADS)

    Crowe, Jacob Dillon

    Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study, alkaline hydrogen peroxide and liquid hot water pretreatments were shown to alter structural properties impacting nanoscale porosity in corn stover. Delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity, with subsequent cell wall swelling resulting in increased nanoscale porosity and improved enzymatic hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 A dextran probe within the cell wall was found to be positively correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields. In the third study, the effect of altered xylan content and structure was investigated in irregular xylem (irx) Arabidopsis thaliana mutants to understand the role xylan plays in secondary cell wall development and organization. Higher xylan extractability and lower cellulose crystallinity observed in irx9 and irx15 irx15-L mutants compared to wild type indicated altered xylan integration into the secondary cell wall. Nanoscale cell wall organization observed using multiple microscopy techniques was impacted to some extent in all irx mutants, with disorganized cellulose microfibril layers in sclerenchyma secondary cell walls likely resulting from irregular xylan structure and content. Irregular secondary cell wall microfibril layers showed heterogeneous nanomechanical properties compared to wild type, which translated to mechanical deficiencies observed in stem tensile tests. These results suggest nanoscale defects in cell wall strength can correspond to macroscale phenotypes.

  15. Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bench, T.R.

    1997-05-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less

  16. Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes.

    PubMed

    Zheng, Jing; Hu, Yaping; Bai, Junhui; Ma, Cheng; Li, Jishan; Li, Yinhui; Shi, Muling; Tan, Weihong; Yang, Ronghua

    2014-02-18

    Up to now, the successful fabrication of efficient hot-spot substrates for surface-enhanced Raman scattering (SERS) remains an unsolved problem. To address this issue, we describe herein a universal aptamer-based SERS biodetection approach that uses a single-stranded DNA as a universal trigger (UT) to induce SERS-active hot-spot formation, allowing, in turn, detection of a broad range of targets. More specifically, interaction between the aptamer probe and its target perturbs a triple-helix aptamer/UT structure in a manner that activates a hybridization chain reaction (HCR) among three short DNA building blocks that self-assemble into a long DNA polymer. The SERS-active hot-spots are formed by conjugating 4-aminobenzenethiol (4-ABT)-encoded gold nanoparticles with the DNA polymer through a specific Au-S bond. As proof-of-principle, we used this approach to quantify multiple target analytes, including thrombin, adenosine, and CEM cancer cells, achieving lowest limit of detection values of 18 pM, 1.5 nM, and 10 cells/mL, respectively. As a universal SERS detector, this prototype can be applied to many other target analytes through the use of suitable DNA-functional partners, thus inspiring new designs and applications of SERS for bioanalysis.

  17. Lack of in vitro constitutive activity for four previously reported TSH receptor mutations identified in patients with nonautoimmune hyperthyroidism and hot thyroid carcinomas.

    PubMed

    Jaeschke, Holger; Mueller, Sandra; Eszlinger, Markus; Paschke, Ralf

    2010-12-01

    Constitutively activating mutations (CAMs) of the TSHR are the major cause for nonautoimmune hyperthyroidism. Re-examination of constitutive activity previously determined in CHO cell lines recently demonstrated the caveats for the in vitro determination of constitutive TSHR activity, which leads to false positive conclusions regarding the molecular origin of hyperthyroidism or hot thyroid carcinomas. Mutations L677V and T620I identified in hot thyroid carcinomas were previously characterized in CHO and in 3T3-Vill cell lines, respectively, stably expressing the mutant without determination of TSHR expression. F666L identified in a patient with hot thyroid nodules, I691F in a family with nonautoimmune hyperthyroidism and F631I identified in a hot thyroid carcinoma were not characterized for their in vitro function. Therefore, we decided to (re)evaluate the in vitro function of these five TSHR variants by determination of cell surface expression, and intracellular cAMP and inositol phosphate levels and performed additionally linear regression analyses to determine basal activity independently from the mutant's cell surface expression in COS-7 and HEK(GT) cells. Only one (F631I) of the five investigated TSHR variants displayed constitutive activity for G(α) s signalling and showed correlation with the clinical phenotype. The previous false classification of T620I and L677V as CAMs is most likely related to the fact that both mutations were characterized in cell lines stably expressing the mutated receptor construct without assessing the respective receptor number per cell. Other molecular aetiologies for the nonautoimmune hyperthyroidism and/or hot thyroid carcinomas in these three patients and one family should be elucidated. © 2010 Blackwell Publishing Ltd.

  18. Hot-spot heating susceptibility due to reverse bias operating conditions

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1985-01-01

    Because of field experience (indicating that cell and module degradation could occur as a result of hot spot heating), a laboratory test was developed at JPL to determine hot spot susceptibility of modules. The initial hot spot testing work at JPL formed a foundation for the test development. Test parameters are selected as follows. For high shunt resistance cells, the applied back bias test current is set equal to the test cell current at maximum power. For low shunt resistance cells, the test current is set equal to the cell short circuit current. The shadow level is selected to conform to that which would lead to maximum back bias voltage under the appropriate test current level. The test voltage is determined by the bypass diode frequency. The test conditions are meant to simulate the thermal boundary conditions for 100 mW/sq cm, 40C ambient environment. The test lasts 100 hours. A key assumption made during the development of the test is that no current imbalance results from the connecting of multiparallel cell strings. Therefore, the test as originally developed was applicable for single string case only.

  19. Stable quasi-monoenergetic ion acceleration from the laser-driven shocks in a collisional plasma

    NASA Astrophysics Data System (ADS)

    Bhadoria, Shikha; Kumar, Naveen; Keitel, Christoph H.

    2017-10-01

    Effect of collisions on the shock formation and subsequent ion acceleration from the laser-plasma interaction is explored by the means of particle-in-cell simulations. In this setup, the incident laser pushes the laser-plasma interface inside the plasma target through the hole-boring effect and generates hot electrons. The propagation of these hot electrons inside the target excites a return plasma current, leading to filamentary structures caused by the Weibel/filamentation instability. Weakening of the space-charge effects due to collisions results in the shock formation with a higher density jump than in a collisionless plasma. This results in the formation of a stronger shock leading to a stable quasi-monoenergetic acceleration of ions.

  20. Recalcitrance and structural analysis by water-only flowthrough pretreatment of 13C enriched corn stover stem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foston, Marcus; Trajano, Heather L.; Samuel, Reichel

    This article presents high temperature water-only continuous flowthrough pretreatment coupled with nuclear magnetic resonance (NMR) as a promising analytical tool to examine the plant cell wall, to understand its recalcitrance (i.e., cell wall resistance to deconstruction), and to probe the chemistry occurring during batch pretreatment of biomass. 13C-enriched corn stover stems were pretreated at 170 °C for 60 minutes with a hot-water flow rate of 20 mL/min to control fractionation of the cell wall. This approach helped elucidate the nature of plant cell wall chemical recalcitrance and biomass pretreatment chemistry by tracking cell wall fragmentation as a function of time.more » Fractions of the reactor effluent were collected in a time-resolved fashion and characterized by various NMR techniques to determine the degree and sequence of fragments released, as well as, the chemical composition, molecular structure, and relative molecular weight of those released fragments.« less

  1. Recalcitrance and structural analysis by water-only flowthrough pretreatment of 13C enriched corn stover stem

    DOE PAGES

    Foston, Marcus; Trajano, Heather L.; Samuel, Reichel; ...

    2015-08-28

    This article presents high temperature water-only continuous flowthrough pretreatment coupled with nuclear magnetic resonance (NMR) as a promising analytical tool to examine the plant cell wall, to understand its recalcitrance (i.e., cell wall resistance to deconstruction), and to probe the chemistry occurring during batch pretreatment of biomass. 13C-enriched corn stover stems were pretreated at 170 °C for 60 minutes with a hot-water flow rate of 20 mL/min to control fractionation of the cell wall. This approach helped elucidate the nature of plant cell wall chemical recalcitrance and biomass pretreatment chemistry by tracking cell wall fragmentation as a function of time.more » Fractions of the reactor effluent were collected in a time-resolved fashion and characterized by various NMR techniques to determine the degree and sequence of fragments released, as well as, the chemical composition, molecular structure, and relative molecular weight of those released fragments.« less

  2. Three-dimensional simulations of void collapse in energetic materials

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  3. Ambient temperature influences the neural benefits of exercise.

    PubMed

    Maynard, Mark E; Chung, Chasity; Comer, Ashley; Nelson, Katharine; Tran, Jamie; Werries, Nadja; Barton, Emily A; Spinetta, Michael; Leasure, J Leigh

    2016-02-15

    Many of the neural benefits of exercise require weeks to manifest. It would be useful to accelerate onset of exercise-driven plastic changes, such as increased hippocampal neurogenesis. Exercise represents a significant challenge to the brain because it produces heat, but brain temperature does not rise during exercise in the cold. This study tested the hypothesis that exercise in cold ambient temperature would stimulate hippocampal neurogenesis more than exercise in room or hot conditions. Adult female rats had exercise access 2h per day for 5 days at either room (20 °C), cold (4.5 °C) or hot (37.5 °C) temperature. To label dividing hippocampal precursor cells, animals received daily injections of BrdU. Brains were immunohistochemically processed for dividing cells (Ki67+), surviving cells (BrdU+) and new neurons (doublecortin, DCX) in the hippocampal dentate gyrus. Animals exercising at room temperature ran significantly farther than animals exercising in cold or hot conditions (room 1490 ± 400 m; cold 440 ± 102 m; hot 291 ± 56 m). We therefore analyzed the number of Ki67+, BrdU+ and DCX+ cells normalized for shortest distance run. Contrary to our hypothesis, exercise in either cold or hot conditions generated significantly more Ki67+, BrdU+ and DCX+ cells compared to exercise at room temperature. Thus, a limited amount of running in either cold or hot ambient conditions generates more new cells than a much greater distance run at room temperature. Taken together, our results suggest a simple means by which to augment exercise effects, yet minimize exercise time. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Probabilistic simulation of uncertainties in thermal structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Shiao, Michael

    1990-01-01

    Development of probabilistic structural analysis methods for hot structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) blade temperature, pressure, and torque of the Space Shuttle Main Engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; (3) evaluation of the failure probability; (4) reliability and risk-cost assessment, and (5) an outline of an emerging approach for eventual hot structures certification. Collectively, the results demonstrate that the structural durability/reliability of hot structural components can be effectively evaluated in a formal probabilistic framework. In addition, the approach can be readily extended to computationally simulate certification of hot structures for aerospace environments.

  5. Annular recuperator design

    DOEpatents

    Kang, Yungmo

    2005-10-04

    An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.

  6. Preparation and evaluation of advanced catalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hockmuth, J.; Pagliaro, P.

    1984-01-01

    The platinum electrocatalysts were characterized for their crystallite sizes and the degree of dispersion on the carbon supports. One application of these electrocatalysts was for anodic oxidation of hydrogen in hot phosphoric acid fuel cells, coupled with the influence of low concentrations of carbon monoxide in the fuel gas stream. In a similar way, these platinum on carbon electrocatalysts were evaluated for oxygen reduction in hot phosphoric acid. Binary noble metal alloys were prepared for anodic oxidation of hydrogen and noble metal-refractory metal mixtures were prepared for oxygen reduction. An exemplar alloy of platinum and palladium (50/50 atom %) was discovered for anodic oxidation of hydrogen in the presence of carbon monoxide, and patent disclosures were submitted. For the cathode, platinum-vanadium alloys were prepared showing improved performance over pure platinum. Preliminary experiments on electrocatalyst utilization in electrode structures showed low utilization of the noble metal when the electrocatalyst loading exceeded one weight percent on the carbon.

  7. Volume reduction of hot cell plastic wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, F W; Henscheid, J P; Lewis, L C

    1989-09-19

    The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.

  8. A Multifunctional Hot Structure Heatshield Concept for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Wagner, Robert; Waters, Allen

    2015-01-01

    A multifunctional hot structure heatshield concept is being developed to provide technology enhancements with significant benefits compared to the current state-of-the-art heatshield technology. These benefits can potentially enable future planetary missions. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heatshield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation is sized for use underneath the hot structure to maintain required operational internal temperatures. The approach followed includes developing preliminary designs to demonstrate feasibility of the concept and benefits over a traditional, baseline design. Where prior work focused on a concept for an Earth entry vehicle, the current efforts presented here are focused on developing a generic heatshield model and performing a trade study for a Mars entry application. This trade study includes both structural and thermal evaluation. The results indicate that a hot structure concept is a feasible alternative to traditional heatshields and may offer advantages that can enable future entry missions.

  9. KFC Server: interactive forecasting of protein interaction hot spots.

    PubMed

    Darnell, Steven J; LeGault, Laura; Mitchell, Julie C

    2008-07-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org.

  10. KFC Server: interactive forecasting of protein interaction hot spots

    PubMed Central

    Darnell, Steven J.; LeGault, Laura; Mitchell, Julie C.

    2008-01-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model—a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein–protein or protein–DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org. PMID:18539611

  11. HOT CELL BUILDING, TRA632. FLOOR PLAN OF EXPANSION SHOWS LOCATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. FLOOR PLAN OF EXPANSION SHOWS LOCATION OF NEW CELLS, "HEAVY" CELL AT WEST END, "LIGHT" CELLS AT EAST. MOCK-UP AND STORAGE AREAS IN SOUTH HALF OF FLOOR. H.K. FERGUSON 895-MTR-ETR-632-A1, 12/1958. INL INDEX NO. 531-0632-00-279-101924, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. An improved out-cell to in-cell rapid transfer system at the HFEF-south

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacca, J.P.; Sherman, E.K.

    1990-01-01

    The Argonne National Laboratory (ANL) Hot Fuel Examination Facility-South (HFEF-S), located at the ANL-West site of the Idaho National Engineering Laboratory, is currently undergoing extensive refurbishment and modifications in preparation for its use, beginning in 1991, in demonstrating remote recycling of fast reactor, metal-alloy fuel as part of the US Department of Energy liquid-metal reactor, Integral Fast Reactor (IFR) program. Included in these improvements to HFEF-S is a new, small-item, rapid transfer system (RTS). When installed, this system will enable the rapid transfer of small items from the hot-cell exterior into the argon cell (argon-gas atmosphere) of the facility withoutmore » necessitating the use of time-consuming and laborious procedures. The new RTS will also provide another important function associated with HFEF-S hot-cell operation in the IFR Fuel Recycle Program; namely, the rapid insertion of clean, radioactive contamination-measuring smear paper specimens into the hot cells for area surveys, and the expedited removal of these contaminated (including alpha as well as beta/gamma contamination) smears from the argon cell for transfer to an adjacent health physics field laboratory in the facility for nuclear contamination/radiation counting.« less

  13. A novel Sulfolobus virus with an exceptional capsid architecture.

    PubMed

    Wang, Haina; Guo, Zhenqian; Feng, Hongli; Chen, Yufei; Chen, Xiuqiang; Li, Zhimeng; Hernández-Ascencio, Walter; Dai, Xin; Zhang, Zhenfeng; Zheng, Xiaowei; Mora-López, Marielos; Fu, Yu; Zhang, Chuanlun; Zhu, Ping; Huang, Li

    2017-12-06

    A novel archaeal virus, denoted Sulfolobus ellipsoid virus 1 (SEV1), was isolated from an acidic hot spring in Costa Rica. The morphologically unique virion of SEV1 contains a protein capsid with 16 regularly spaced striations and an 11-nm-thick envelope. The capsid exhibits an unusual architecture in which the viral DNA, probably in the form of a nucleoprotein filament, wraps around the longitudinal axis of the virion in a plane to form a multilayered disk-like structure with a central hole, and 16 of these structures are stacked to generate a spool-like capsid. SEV1 harbors a linear double-stranded DNA genome of ∼23 kb, which encodes 38 predicted open reading frames (ORFs). Among the few ORFs with a putative function is a gene encoding a protein-primed DNA polymerase. Six-fold symmetrical virus-associated pyramids (VAPs) appear on the surface of the SEV1-infected cells, which are ruptured to allow the formation of a hexagonal opening and subsequent release of the progeny virus particles. Notably, the SEV1 virions acquire the lipid membrane in the cytoplasm of the host cell. The lipid composition of the viral envelope correlates with that of the cell membrane. These results suggest the use of a unique mechanism by SEV1 in membrane biogenesis. IMPORTANCE Investigation of archaeal viruses has greatly expanded our knowledge of the virosphere and its role in the evolution of life. Here we show that Sulfolobus ellipsoid virus 1 (SEV1), an archaeal virus isolated from a hot spring in Costa Rica, exhibits a novel viral shape and an unusual capsid architecture. The SEV1 DNA wraps multiple times in a plane around the longitudinal axis of the virion to form a disk-like structure, and 16 of these structures are stacked to generate a spool-like capsid. The virus acquires its envelope intracellularly and exits the host cell by creating a hexagonal hole on the host cell surface. These results shed significant light on the diversity of viral morphogenesis. Copyright © 2017 American Society for Microbiology.

  14. Live-Cell Pyrophosphate Imaging by in Situ Hot-Spot Generation.

    PubMed

    Li, Mingmin; Li, Jin; Di, Huixia; Liu, Huiqiao; Liu, Dingbin

    2017-03-21

    Controlling the electromagnetic hot-spot generation is essential for surface-enhanced Raman scattering (SERS) assays. Current hot-spot-based SERS assays have been extensively studied in solutions or on substrates. However, probing biospecies by controlling the hot-spot assembly in living systems has not been demonstrated thus far. Herein, we report a background-free SERS probe for imaging pyrophosphate (PPi), a biochemically significant anion, in living cells. Intracellular PPi is able to induce the nanoparticle dimerization, thus creating an intense electromagnetic hot spot and dramatically enhancing the signal of the Raman reporters residing in the hot spot. More impressively, the reporter we used in this study provides a strong and sharp single peak in the cellular Raman-silent region (1800-2800 cm -1 ), thus eliminating the possible background interference. This strategy could be readily extended to detect other biomarkers by only replacing the recognition ligands.

  15. Probabilistic structural analysis methods of hot engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hopkins, D. A.

    1989-01-01

    Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework.

  16. Saturation spectroscopy of calcium atomic vapor in hot quartz cells with cold windows

    NASA Astrophysics Data System (ADS)

    Vilshanskaya, E. V.; Saakyan, S. A.; Sautenkov, V. A.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    Saturation spectroscopy of calcium atomic vapor was performed in hot quartz cells with cold windows. The Doppler-free absorption resonances with spectral width near 50 MHz were observed. For these experiments and future applications long-lived quartz cells with buffer gas were designed and made. A cooling laser for calcium magneto-optical trap will be frequency locked to the saturation resonances in the long-lived cells.

  17. Design philosophy and operating experience with the WNRE Hot Cell Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, R.G.; Seymour, C.G.; Ryz, M.A.

    1969-10-15

    The objective of radiation safety and operating efficiency often conflict. The key to preventing this conflict is proper design. In this paper we discuss how both objectives have been met in the Whiteshell Nuclear Research Establishment (WNRE) Hot Cell Facilities.

  18. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Isenberg, Arnold O.; Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  19. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Isenberg, Arnold O.; Ruka, Roswell J.; Zymboly, Gregory E.

    1985-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  20. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Isenberg, Arnold O.; Ruka, Roswell J.

    1987-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  1. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    NASA Technical Reports Server (NTRS)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  2. Advances in Hot-Structure Development

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin; Glass, David E.

    2006-01-01

    The National Aeronautics and Space Administration has actively participated in the development of hot structures technology for application to hypersonic flight systems. Hot structures have been developed for vehicles including the X-43A, X-37, and the Space Shuttle. These trans-atmospheric and atmospheric entry flight systems that incorporate hot-structures technology are lighter weight and require less maintenance than those that incorporate parasitic, thermal-protection materials that attach to warm or cool substructure. The development of hot structures requires a thorough understanding of material performance in an extreme environment, boundary conditions and load interactions, structural joint performance, and thermal and mechanical performance of integrated structural systems that operate at temperatures ranging from 1500 C to 3000 C, depending on the application. This paper will present recent advances in the development of hot structures, including development of environmentally durable, high temperature leading edges and control surfaces, integrated thermal protection systems, and repair technologies. The X-43A Mach-10 vehicle utilized carbon/carbon (C/C) leading edges on the nose, horizontal control surface, and vertical tail. The nose and vertical and horizontal tail leading edges were fabricated out of a 3:1 biased, high thermal conductivity C/C. The leading edges were coated with a three-layer coating comprised of a SiC conversion of the C/C, followed by a CVD layer of SiC, followed by a thin CVD layer of HfC. Work has also been performed on the development of an integrated structure and was focused on both hot and warm (insulated) structures and integrated fuselage/tank/TPS systems. The objective was to develop integrated multifunctional airframe structures that eliminate fragile external thermal-protection systems and incorporate the insulating function within the structure. The approach taken to achieve this goal was to develop candidate hypersonic airframe concepts, including structural arrangement, load paths, thermal-structural wall design, thermal accommodation features, and integration of major components, optimize thermalstructural configurations, and validate concepts through a building block test program and generate data to improve and validate analytical and design tools.

  3. Solid oxide fuel cell matrix and modules

    DOEpatents

    Riley, Brian

    1990-01-01

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.

  4. Microwave gallium-68 radiochemistry for kinetically stable bis(thiosemicarbazone) complexes: structural investigations and cellular uptake under hypoxia.

    PubMed

    Alam, Israt S; Arrowsmith, Rory L; Cortezon-Tamarit, Fernando; Twyman, Frazer; Kociok-Köhn, Gabriele; Botchway, Stanley W; Dilworth, Jonathan R; Carroll, Laurence; Aboagye, Eric O; Pascu, Sofia I

    2016-01-07

    We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under 'cold' and 'hot' biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. (68)Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration.

  5. Coherent structures shed by multiscale cut-in trailing edge serrations on lifting wings

    NASA Astrophysics Data System (ADS)

    Prigent, S. L.; Buxton, O. R. H.; Bruce, P. J. K.

    2017-07-01

    This experimental study presents the effect of multiscale cut-in trailing edge serrations on the coherent structures shed into the wake of a lifting wing. Two-probe span-wise hot-wire traverses are performed to study spectra, coherence, and phase shift. In addition, planar particle image velocimetry is used to study the spatio-temporal structure of the vortices shed by the airfoils. Compared with a single tone sinusoidal serration, the multiscale ones reduce the vortex shedding energy as well as the span-wise coherence. Results indicate that the vortex shedding is locked into an arch-shaped cell structure. This structure is weakened by the multiscale patterns, which explains the reduction in both shedding energy and coherence.

  6. New cubic structure compounds as actinide host phases

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S.

    2010-03-01

    Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds — stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd2Zr2O7) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 °C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn4+ substitution for Zr4+ reduces production temperature and the compounds REE2ZrSnO7 may be hot-pressed or cold pressed and sintered at ~1400 °C. Pyrochlore, A2B2O7-x (two-fold elementary fluorite unit cell), and murataite, A3B6C2O20-y (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C — murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO2 (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C → 8C → 3C phases with the highest actinide concentration in the core and the lowest — in the rim of the grains. Radiation resistance of the "murataite" is comparable to titanate pyrochlores. One more promising actinide hosts are ferrites with garnet structure. The matrices containing sometime complex fluorite structure oxide as an extra phase have leach and radiation resistance similar to the other well-known actinide waste forms.

  7. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Boo-Ja; Kwon, Sun Jae; Kim, Sung-Kyu

    Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P{sub 0} interaction, but not during compatible TMV-P{sub 1.2} interaction. When CaRPN7::GFP fusion protein was targeted in onionmore » cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant.« less

  8. Generation of subnatural-linewdith biphotons from a hot rubidium atomic vapor cell

    NASA Astrophysics Data System (ADS)

    Zhu, Lingbang; Shu, Chi; Guo, Xianxin; Chen, Peng; Xiao, Yanhong; Jeong, Heejeong; Du, Shengwang

    2017-04-01

    We report the generation of narrowband entangled photon pairs (biphotons) from a hot atomic vapor cell. Making use of backward spontaneous four-wave mixing with electromagnetically induced transparency (EIT), we produced subnatural-linewidth (1.9 MHz < 6 MHz) biphotons from a Doppler-broadened (0.5 GHz) hot (63 C) paraffin-coated rubidium 87 vapor cell. The biphoton coherence time is controable and can be tuned up to 100 ns by EIT. The uncorrelated photons from resonance Raman scattering are suppressed by a spatially separated and tailored optical pumping beam. The spectral brightness is as high as 14,000 s- 1 MHz- 1 . As compared with the cold-atom experiment , the hot atomic vapour cell configuration is much simpler for operation and maintenance, and it is a continuous biphoton source. Our demonstration may lead to miniature narrowband biphoton sources based on atomic vapour cells for practical quantum applications and engineering. The work was supported by Hong Kong Research Grants Council (Project No. 16301214), and in part by the CAS/SAFEA International Partnership Program for Creative Research Teams. L.Z. acknowledges support from the Undergraduate Research Opportunities Program.

  9. VIEW OF FECF HOT CELL OF FUEL STORAGE BUILDING (CPP603). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FECF HOT CELL OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORHTWEST. INL PHOTO NUMBER HD-54-18-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. Feel the Burn, Part II: Quantifying and mapping spectral, spatial, and temporal structures of the transition region under hot and cold coronal regions

    NASA Astrophysics Data System (ADS)

    Atwood, Shane; Kankelborg, Charles C.

    2017-08-01

    The coronal volume is filled with magnetic field, yet only part of that volume has sufficient volume to exhibit hot X-ray loops. Using XRT and AIA images, we identify footpoints of hot coronal loops. We then use IRIS rasters to compare the spatial, temporal, and spectral structure of these relatively "heated" and "unheated" regions. We seek a signature of upward-propagating energy that could be associated with hot active region loops.

  11. On-chip self-assembly of cell embedded microstructures to vascular-like microtubes.

    PubMed

    Yue, Tao; Nakajima, Masahiro; Takeuchi, Masaru; Hu, Chengzhi; Huang, Qiang; Fukuda, Toshio

    2014-03-21

    Currently, research on the construction of vascular-like tubular structures is a hot area of tissue engineering, since it has potential applications in the building of artificial blood vessels. In this paper, we report a fluidic self-assembly method using cell embedded microstructures to construct vascular-like microtubes. A novel 4-layer microfluidic device was fabricated using polydimethylsiloxane (PDMS), which contains fabrication, self-assembly and extraction areas inside one channel. Cell embedded microstructures were directly fabricated using poly(ethylene glycol) diacrylate (PEGDA) in the fabrication area, namely on-chip fabrication. Self-assembly of the fabricated microstructures was performed in the assembly area which has a micro well. Assembled tubular structures (microtubes) were extracted outside the channel into culture dishes using a normally closed (NC) micro valve in the extraction area. The self-assembly mechanism was experimentally demonstrated. The performance of the NC micro valve and embedded cell concentration were both evaluated. Fibroblast (NIH/3T3) embedded vascular-like microtubes were constructed inside this reusable microfluidic device.

  12. Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction.

    PubMed

    Liu, Degang; Xu, David; Liu, Min; Knabe, William Eric; Yuan, Cai; Zhou, Donghui; Huang, Mingdong; Meroueh, Samy O

    2017-03-28

    Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.

  13. Automated quantification of proliferation with automated hot-spot selection in phosphohistone H3/MART1 dual-stained stage I/II melanoma.

    PubMed

    Nielsen, Patricia Switten; Riber-Hansen, Rikke; Schmidt, Henrik; Steiniche, Torben

    2016-04-09

    Staging of melanoma includes quantification of a proliferation index, i.e., presumed melanocytic mitoses of H&E stains are counted manually in hot spots. Yet, its reproducibility and prognostic impact increases by immunohistochemical dual staining for phosphohistone H3 (PHH3) and MART1, which also may enable fully automated quantification by image analysis. To ensure manageable workloads and repeatable measurements in modern pathology, the study aimed to present an automated quantification of proliferation with automated hot-spot selection in PHH3/MART1-stained melanomas. Formalin-fixed, paraffin-embedded tissue from 153 consecutive stage I/II melanoma patients was immunohistochemically dual-stained for PHH3 and MART1. Whole slide images were captured, and the number of PHH3/MART1-positive cells was manually and automatically counted in the global tumor area and in a manually and automatically selected hot spot, i.e., a fixed 1-mm(2) square. Bland-Altman plots and hypothesis tests compared manual and automated procedures, and the Cox proportional hazards model established their prognostic impact. The mean difference between manual and automated global counts was 2.9 cells/mm(2) (P = 0.0071) and 0.23 cells per hot spot (P = 0.96) for automated counts in manually and automatically selected hot spots. In 77 % of cases, manual and automated hot spots overlapped. Fully manual hot-spot counts yielded the highest prognostic performance with an adjusted hazard ratio of 5.5 (95 % CI, 1.3-24, P = 0.024) as opposed to 1.3 (95 % CI, 0.61-2.9, P = 0.47) for automated counts with automated hot spots. The automated index and automated hot-spot selection were highly correlated to their manual counterpart, but altogether their prognostic impact was noticeably reduced. Because correct recognition of only one PHH3/MART1-positive cell seems important, extremely high sensitivity and specificity of the algorithm is required for prognostic purposes. Thus, automated analysis may still aid and improve the pathologists' detection of mitoses in melanoma and possibly other malignancies.

  14. Nonlinear simulations of Jupiter's 5-micron hot spots

    NASA Technical Reports Server (NTRS)

    Showman, A. P.; Dowling, T. E.

    2000-01-01

    Large-scale nonlinear simulations of Jupiter's 5-micron hot spots produce long-lived coherent structures that cause subsidence in local regions, explaining the low cloudiness and the dryness measured by the Galileo probe inside a hot spot. Like observed hot spots, the simulated coherent structures are equatorially confined, have periodic spacing, propagate west relative to the flow, are generally confined to one hemisphere, and have an anticyclonic gyre on their equatorward side. The southern edge of the simulated hot spots develops vertical shear of up to 70 meters per second in the eastward wind, which can explain the results of the Galileo probe Doppler wind experiment.

  15. Hot-embossing replication of self-centering optical fiber alignment structures prototyped by deep proton writing

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Wissmann, Markus; Guttmann, Markus; Kolew, Alexander; Worgull, Matthias; Barié, Nicole; Schneider, Marc; Hofmann, Andreas; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-07-01

    This paper presents the hot-embossing replication of self-centering fiber alignment structures for high-precision, single-mode optical fiber connectors. To this end, a metal mold insert was fabricated by electroforming a polymer prototype patterned by means of deep proton writing (DPW). To achieve through-hole structures, we developed a postembossing process step to remove the residual layer inherently present in hot-embossed structures. The geometrical characteristics of the hot-embossed replicas are compared, before and after removal of the residual layer, with the DPW prototypes. Initial measurements on the optical performance of the replicas are performed. The successful replication of these components paves the way toward low-cost mass replication of DPW-fabricated prototypes in a variety of high-tech plastics.

  16. Controlling surface-plasmon-polaritons launching with hot spot cylindrical waves in a metallic slit structure.

    PubMed

    Yao, Wenjie; Sun, Chengwei; Gong, Qihuang; Chen, Jianjun

    2016-09-23

    Plasmonic nanostructures, which are used to generate surface plasmon polaritons (SPPs), always involve sharp corners where the charges can accumulate. This can result in strong localized electromagnetic fields at the metallic corners, forming the hot spots. The influence of the hot spots on the propagating SPPs are investigated theoretically and experimentally in a metallic slit structure. It is found that the electromagnetic fields radiated from the hot spots, termed as the hot spot cylindrical wave (HSCW), can greatly manipulate the SPP launching in the slit structure. The physical mechanism behind the manipulation of the SPP launching with the HSCW is explicated by a semi-analytic model. By using the HSCW, unidirectional SPP launching is experimentally realized in an ultra-small metallic step-slit structure. The HSCW bridges the localized surface plasmons and the propagating surface plasmons in an integrated platform and thus may pave a new route to the design of plasmonic devices and circuits.

  17. Modeling deflagration waves out of hot spots

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2017-01-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.

  18. HOT CELL BUILDING, TRA632, INTERIOR. WRIGHT 3TON HOIST ON EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. WRIGHT 3-TON HOIST ON EAST SIDE OF CELL 2. SIGN AT LEFT OF VIEW SAYS, "...DO NOT BRING FISSILE MATERIAL INTO AREA WITHOUT APPROVAL." CAMERA FACES NORTHWEST. INL NEGATIVE NO. HD46-29-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. In Situ Hot-Spot Assembly as a General Strategy for Probing Single Biomolecules.

    PubMed

    Liu, Huiqiao; Li, Qiang; Li, Mingmin; Ma, Sisi; Liu, Dingbin

    2017-05-02

    Single-molecule detection using surface-enhanced Raman spectroscopy (SERS) has attracted increasing attention in chemical and biomedical analysis. However, it remains a major challenge to probe single biomolecules by means of SERS hot spots owing to the small volume of hot spots and their random distribution on substrates. We here report an in situ hot-spot assembly method as a general strategy for probing single biomolecules. As a proof-of-concept, this proposed strategy was successfully used for the detection of single microRNA-21 (miRNA-21, a potential cancer biomarker) at the single-cell level, showing great capability in differentiating the expression of miRNA-21 in single cancer cells from normal cells. This approach was further extended to single-protein detection. The versatility of the strategy opens an exciting avenue for single-molecule detection of biomarkers of interest and thus holds great promise in a variety of biological and biomedical applications.

  20. Determination of hot-spot susceptibility of multistring photovoltaic modules in a central-station application

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Weaver, R. W.; Ross, R. G., Jr.; Spencer, R.; Arnett, J. C.

    1984-01-01

    Part of the effort of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) includes a program to improve module and array reliability. A collaborative activity with industry dealing with the problem of hot-spot heating due to the shadowing of photovoltaic cells in modules and arrays containing several paralleled cell strings is described. The use of multiparallel strings in large central-station arrays introduces the likelihood of unequal current sharing and increased heating levels. Test results that relate power dissipated, current imbalance, cross-strapping frequency, and shadow configuration to hot-spot heating levels are presented. Recommendations for circuit design configurations appropriate to central-station applications that reduce the risk of hot-spot problems are offered. Guidelines are provided for developing hot-spot tests for arrays when current imbalance is a threat.

  1. Preliminary Development of a Multifunctional Hot Structure Heat Shield

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Armand, Sasan C.; Perino, Scott V

    2014-01-01

    Development of a Multifunctional Hot Structure Heat Shield concept has initiated with the goal to provide advanced technology with significant benefits compared to the current state of the art heat shield technology. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heat shield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation has been sized for use underneath the hot structure to maintain desired internal temperatures. The approach was to develop a preliminary design to demonstrate feasibility of the concept. The preliminary results indicate that the concept has the potential to save both mass and volume with significantly less recession compared to traditional heat shield designs, and thus provide potential to enable new planetary missions.

  2. Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature

    NASA Astrophysics Data System (ADS)

    Nguyen, Dac-Trung; Lombez, Laurent; Gibelli, François; Boyer-Richard, Soline; Le Corre, Alain; Durand, Olivier; Guillemoles, Jean-François

    2018-03-01

    In common photovoltaic devices, the part of the incident energy above the absorption threshold quickly ends up as heat, which limits their maximum achievable efficiency to far below the thermodynamic limit for solar energy conversion. Conversely, the conversion of the excess kinetic energy of the photogenerated carriers into additional free energy would be sufficient to approach the thermodynamic limit. This is the principle of hot carrier devices. Unfortunately, such device operation in conditions relevant for utilization has never been evidenced. Here, we show that the quantitative thermodynamic study of the hot carrier population, with luminance measurements, allows us to discuss the hot carrier contribution to the solar cell performance. We demonstrate that the voltage and current can be enhanced in a semiconductor heterostructure due to the presence of the hot carrier population in a single InGaAsP quantum well at room temperature. These experimental results substantiate the potential of increasing photovoltaic performances in the hot carrier regime.

  3. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.

    PubMed

    Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L

    2014-01-21

    Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Functional annotation of HOT regions in the human genome: implications for human disease and cancer

    PubMed Central

    Li, Hao; Chen, Hebing; Liu, Feng; Ren, Chao; Wang, Shengqi; Bo, Xiaochen; Shu, Wenjie

    2015-01-01

    Advances in genome-wide association studies (GWAS) and large-scale sequencing studies have resulted in an impressive and growing list of disease- and trait-associated genetic variants. Most studies have emphasised the discovery of genetic variation in coding sequences, however, the noncoding regulatory effects responsible for human disease and cancer biology have been substantially understudied. To better characterise the cis-regulatory effects of noncoding variation, we performed a comprehensive analysis of the genetic variants in HOT (high-occupancy target) regions, which are considered to be one of the most intriguing findings of recent large-scale sequencing studies. We observed that GWAS variants that map to HOT regions undergo a substantial net decrease and illustrate development-specific localisation during haematopoiesis. Additionally, genetic risk variants are disproportionally enriched in HOT regions compared with LOT (low-occupancy target) regions in both disease-relevant and cancer cells. Importantly, this enrichment is biased toward disease- or cancer-specific cell types. Furthermore, we observed that cancer cells generally acquire cancer-specific HOT regions at oncogenes through diverse mechanisms of cancer pathogenesis. Collectively, our findings demonstrate the key roles of HOT regions in human disease and cancer and represent a critical step toward further understanding disease biology, diagnosis, and therapy. PMID:26113264

  5. Functional annotation of HOT regions in the human genome: implications for human disease and cancer.

    PubMed

    Li, Hao; Chen, Hebing; Liu, Feng; Ren, Chao; Wang, Shengqi; Bo, Xiaochen; Shu, Wenjie

    2015-06-26

    Advances in genome-wide association studies (GWAS) and large-scale sequencing studies have resulted in an impressive and growing list of disease- and trait-associated genetic variants. Most studies have emphasised the discovery of genetic variation in coding sequences, however, the noncoding regulatory effects responsible for human disease and cancer biology have been substantially understudied. To better characterise the cis-regulatory effects of noncoding variation, we performed a comprehensive analysis of the genetic variants in HOT (high-occupancy target) regions, which are considered to be one of the most intriguing findings of recent large-scale sequencing studies. We observed that GWAS variants that map to HOT regions undergo a substantial net decrease and illustrate development-specific localisation during haematopoiesis. Additionally, genetic risk variants are disproportionally enriched in HOT regions compared with LOT (low-occupancy target) regions in both disease-relevant and cancer cells. Importantly, this enrichment is biased toward disease- or cancer-specific cell types. Furthermore, we observed that cancer cells generally acquire cancer-specific HOT regions at oncogenes through diverse mechanisms of cancer pathogenesis. Collectively, our findings demonstrate the key roles of HOT regions in human disease and cancer and represent a critical step toward further understanding disease biology, diagnosis, and therapy.

  6. HOT Faults", Fault Organization, and the Occurrence of the Largest Earthquakes

    NASA Astrophysics Data System (ADS)

    Carlson, J. M.; Hillers, G.; Archuleta, R. J.

    2006-12-01

    We apply the concept of "Highly Optimized Tolerance" (HOT) for the investigation of spatio-temporal seismicity evolution, in particular mechanisms associated with largest earthquakes. HOT provides a framework for investigating both qualitative and quantitative features of complex feedback systems that are far from equilibrium and punctuated by rare, catastrophic events. In HOT, robustness trade-offs lead to complexity and power laws in systems that are coupled to evolving environments. HOT was originally inspired by biology and engineering, where systems are internally very highly structured, through biological evolution or deliberate design, and perform in an optimum manner despite fluctuations in their surroundings. Though faults and fault systems are not designed in ways comparable to biological and engineered structures, feedback processes are responsible in a conceptually comparable way for the development, evolution and maintenance of younger fault structures and primary slip surfaces of mature faults, respectively. Hence, in geophysical applications the "optimization" approach is perhaps more aptly replaced by "organization", reflecting the distinction between HOT and random, disorganized configurations, and highlighting the importance of structured interdependencies that evolve via feedback among and between different spatial and temporal scales. Expressed in the terminology of the HOT concept, mature faults represent a configuration optimally organized for the release of strain energy; whereas immature, more heterogeneous fault networks represent intermittent, suboptimal systems that are regularized towards structural simplicity and the ability to generate large earthquakes more easily. We discuss fault structure and associated seismic response pattern within the HOT concept, and outline fundamental differences between this novel interpretation to more orthodox viewpoints like the criticality concept. The discussion is flanked by numerical simulations of a 2D fault model, where we investigate different feedback mechanisms and their effect on seismicity evolution. We introduce an approach to estimate the state of a fault and thus its capability of generating a large (system-wide) event assuming likely heterogeneous distributions of hypocenters and stresses, respectively.

  7. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    PubMed

    Kieslich, Chris A; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish.

  8. The Two Sides of Complement C3d: Evolution of Electrostatics in a Link between Innate and Adaptive Immunity

    PubMed Central

    Kieslich, Chris A.; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of −1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic “hot-spots”. Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic “hot-spots” at the two functional sites of C3d, while the surface of CR2 lacks electrostatic “hot-spots” despite its excessively positive nature. We propose that the electrostatic “hot-spots” of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish. PMID:23300422

  9. Computational identification of binding energy hot spots in protein-RNA complexes using an ensemble approach.

    PubMed

    Pan, Yuliang; Wang, Zixiang; Zhan, Weihua; Deng, Lei

    2018-05-01

    Identifying RNA-binding residues, especially energetically favored hot spots, can provide valuable clues for understanding the mechanisms and functional importance of protein-RNA interactions. Yet, limited availability of experimentally recognized energy hot spots in protein-RNA crystal structures leads to the difficulties in developing empirical identification approaches. Computational prediction of RNA-binding hot spot residues is still in its infant stage. Here, we describe a computational method, PrabHot (Prediction of protein-RNA binding hot spots), that can effectively detect hot spot residues on protein-RNA binding interfaces using an ensemble of conceptually different machine learning classifiers. Residue interaction network features and new solvent exposure characteristics are combined together and selected for classification with the Boruta algorithm. In particular, two new reference datasets (benchmark and independent) have been generated containing 107 hot spots from 47 known protein-RNA complex structures. In 10-fold cross-validation on the training dataset, PrabHot achieves promising performances with an AUC score of 0.86 and a sensitivity of 0.78, which are significantly better than that of the pioneer RNA-binding hot spot prediction method HotSPRing. We also demonstrate the capability of our proposed method on the independent test dataset and gain a competitive advantage as a result. The PrabHot webserver is freely available at http://denglab.org/PrabHot/. leideng@csu.edu.cn. Supplementary data are available at Bioinformatics online.

  10. A&M. TAN633. Sections show view of hot cell caskentry doors, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-633. Sections show view of hot cell cask-entry doors, manipulators in each cell, drainage trenches, door and room details. Ralph M. Parsons 1229-13-ANP/GE-3-633-A-2. Date: December 1956. Approved by INEEL Classification Office for public release. INNEL index code no. 034-0633-00-693-107316 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. Insights on energy selective contacts for thermal energy harvesting using double resonant tunneling contacts and numerical modeling

    NASA Astrophysics Data System (ADS)

    Julian, A.; Jehl, Z.; Miyashita, N.; Okada, Y.; Guillemoles, J.-F.

    2016-12-01

    Energy selective electrical contacts have been proposed as a way to approach ultimate efficiencies both for thermoelectric and photovoltaic devices as they allow a reduction of the entropy production during the energy conversion process. A self-consistent numerical model based on the transfer matrix approach in the effective mass and envelope function approximation has been developed to calculate the electronic properties of double resonant tunneling barriers used as energy selective contacts in hot carrier solar cells. It is found that the application of an external electric bias significantly degrades the electronic transmission of the structure, and thus the tunneling current in the current-voltage characteristic. This is due to a symmetry breaking which can be offset using finely tuned asymmetric double resonant tunneling barriers, leading to a full recovery of the tunneling current in our model. Moreover, we model the heterostructure using electrons temperature in the emitter higher than that of the lattice, providing insights on the interpretation of experimental devices functioning in hot carrier conditions, especially regarding the previously reported shift of the resonance peak (negative differential resistance), which we interpret as related to a shift in the hot electron distribution while the maximum remains at the conduction band edge of the emitter. Finally, experimental results are presented using asymmetric structure showing significantly improved resonant properties at room temperature with very sharp negative differential resistance.

  12. Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.).

    PubMed

    Hromádková, Z; Ebringerová, A; Valachovic, P

    2002-01-01

    The insoluble plant residues, obtained after preparation of medicinal tinctures from the roots of valerian (Valeriana officinalis L.) by classical and ultrasound-assisted extraction with aqueous ethanol in a pilot plant, were subsequently treated with hot water to isolate the accessible polysaccharide cell wall components. At almost equal amounts of the hot-water extractable material, the yields of the recovered polysaccharides were lower in the ultrasonical experiment. This is due to the fact that a part of accessible polysaccharides were already solubilised by the aqueous ethanol and recoverable from the medicinal tincture. Therefore, the net yield of extracted polysaccharides was enhanced in the ultrasonical procedure. This fact as well as the sugar composition and structural features of the isolated polysaccharides suggest that ultrasonication have attacked the integrity of cell walls, released and degraded its most accessible polysaccharides (pectic polysaccharides and starch) and increased also the extractibility of its less accessible components--xylan, mannan and glucan. The water-soluble polysaccharide fractions from both the conventional and ultrasonical experiments exhibit significant immunostimulatory activities in mitogenic and comitogenic thymocyte tests.

  13. 112. ARAI Hot cell (ARA626) Building roof plan and details ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    112. ARA-I Hot cell (ARA-626) Building roof plan and details of roof ventilating equipment and parapet. Norman Engineering Company: 961-area/SF-626-A-2. Date: January 1959. Ineel index code no. 068-0626-00-613-102722. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  14. HOT CELL BUILDING, TRA632. ELEVATIONS FOR SOUTH, NORTH AND WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. ELEVATIONS FOR SOUTH, NORTH AND WEST SIDES OF 1958 EXTENSION. H.K. FERGUSON CO. 895-MTR-ETR-632-A3, 12/1958. INL INDEX NO. 531-0632-00-279-101926, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Zirconium Recycle Test Equipment for Hot Cell Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Emory D.; DelCul, Guillermo Daniel; Spencer, Barry B.

    2015-01-30

    The equipment components and assembly support work were modified for optimized, remote hot cell operations to complete this milestone. The modifications include installation of a charging door, Swagelok connector for the off-gas line between the reactor and condenser, and slide valve installation to permit attachment/replacement of the product salt collector bottle.

  16. Three-dimensional observation of an helical hot structure during a sawtooth crash in the WT-3 tokamak.

    PubMed

    Yamaguchi, S; Igami, H; Tanaka, H; Maekawa, T

    2004-07-23

    Sawtooth crashes in an Ohmically heated plasma in the WT-3 tokamak have been observed by using soft x-ray computer tomography at three different poloidal cross sections around the torus. Initially, collapsing proceeds slowly with keeping the helical structure of an m = 1/n = 1 hot core around the torus. It accelerates as the helical hot structure is strongly deformed and fades away in the manner that the hot core at the high field side becomes obscure and disappears, while that at the low field side is deformed into a thin crescent aligned along the inversion circle, which survives even at the completion of the crash. Copyright 2004 The American Physical Society

  17. User's Manual and Final Report for Hot-SMAC GUI Development

    NASA Technical Reports Server (NTRS)

    Yarrington, Phil

    2001-01-01

    A new software package called Higher Order Theory-Structural/Micro Analysis Code (HOT-SMAC) has been developed as an effective alternative to the finite element approach for Functionally Graded Material (FGM) modeling. HOT-SMAC is a self-contained package including pre- and post-processing through an intuitive graphical user interface, along with the well-established Higher Order Theory for Functionally Graded Materials (HOTFGM) thermomechanical analysis engine. This document represents a Getting Started/User's Manual for HOT-SMAC and a final report for its development. First, the features of the software are presented in a simple step-by-step example where a HOT-SMAC model representing a functionally graded material is created, mechanical and thermal boundary conditions are applied, the model is analyzed and results are reviewed. In a second step-by-step example, a HOT-SMAC model of an actively cooled metallic channel with ceramic thermal barrier coating is built and analyzed. HOT-SMAC results from this model are compared to recently published results (NASA/TM-2001-210702) for two grid densities. Finally, a prototype integration of HOTSMAC with the commercially available HyperSizer(R) structural analysis and sizing software is presented. In this integration, local strain results from HyperSizer's structural analysis are fed to a detailed HOT-SMAC model of the flange-to-facesheet bond region of a stiffened panel. HOT-SMAC is then used to determine the peak shear and peel (normal) stresses between the facesheet and bonded flange of the panel and determine the "free edge" effects.

  18. Eduard Strasburger (1844-1912): founder of modern plant cell biology.

    PubMed

    Volkmann, Dieter; Baluška, František; Menzel, Diedrik

    2012-10-01

    Eduard Strasburger, director of the Botany Institute and the Botanical Garden at the University of Bonn from 1881 to 1912, was one of the most admirable scientists in the field of plant biology, not just as the founder of modern plant cell biology but in addition as an excellent teacher who strongly believed in "education through science." He contributed to plant cell biology by discovering the discrete stages of karyokinesis and cytokinesis in algae and higher plants, describing cytoplasmic streaming in different systems, and reporting on the growth of the pollen tube into the embryo sac and guidance of the tube by synergides. Strasburger raised many problems which are hot spots in recent plant cell biology, e.g., structure and function of the plasmodesmata in relation to phloem loading (Strasburger cells) and signaling, mechanisms of cell plate formation, vesicle trafficking as a basis for most important developmental processes, and signaling related to fertilization.

  19. Improvement in antiproliferative activity of Angelica gigas Nakai by solid dispersion formation via hot-melt extrusion and induction of cell cycle arrest and apoptosis in HeLa cells.

    PubMed

    Jiang, Yunyao; Piao, Jingpei; Cho, Hyun-Jong; Kang, Wie-Soo; Kim, Hye-Young

    2015-01-01

    Angelica gigas Nakai (AGN) is one of the most popular herbal medicines and widely used as a functional food product. In this study, AGN was firstly processed by a low-temperature turbo mill and a hot melting extruder to reduce particle size and form solid dispersion (SD). Anticancer activity against HeLa cells was then examined. AGN-SD based on Soluplus was formed via hot-melt extrusion (HME) and showed the strongest cytotoxic effect on HeLa cells. In addition, the possible mechanism of cell death induced by AGN-SD on HeLa cells was also investigated. AGN-SD decreased cell viability, induced apoptosis, increased the production of reactive oxygen species, regulated the expression of Bcl-2 and Bax, and induced G2/M phase arrest in HeLa cells. This study suggested that AGN-SD based on Soluplus and the method to improve antiproliferative effect by SD formation via HME may be suitable for application in the pharmaceutical industry.

  20. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  1. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1985-03-12

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  2. Slab reformer

    NASA Technical Reports Server (NTRS)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1984-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  3. Slab reformer

    NASA Technical Reports Server (NTRS)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1985-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  4. Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire

    DOE PAGES

    Solbrig, Charles W.; Warmann, Stephen A.

    2016-01-01

    This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wallmore » allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.« less

  5. Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solbrig, Charles W.; Warmann, Stephen A.

    This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wallmore » allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.« less

  6. Morphology and viscoelastic properties of sealing materials based on EPDM rubber.

    PubMed

    Milić, J; Aroguz, A; Budinski-Simendić, J; Radicević, R; Prendzov, S

    2008-12-01

    In this applicative study, the ratio of active and inactive filler loadings was the prime factor for determining the dynamic-mechanical behaviour of ethylene-propylene-diene monomer rubbers. Scanning electron microscopy was used to study the structure of reinforced dense and microcellular elastomeric materials. The effects of filler and blowing agent content on the morphology of composites were investigated. Microcellular samples cured in salt bath show smaller cells and uniform cell size compared with samples cured in hot air. Dynamic-mechanical thermal analysis showed appreciable changes in the viscoelastic properties by increasing active filler content, which could enable tailoring the material properties to suit sealing applications.

  7. Low-resistivity bulk silicon prepared by hot-pressing boron- and phosphorus-hyperdoped silicon nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luan, Qingbin; Ni, Zhenyi; Zhu, Tiejun

    2014-12-15

    Technologically important low-resistivity bulk Si has been usually produced by the traditional Czochralski growth method. We now explore a novel method to obtain low-resistivity bulk Si by hot-pressing B- and P-hyperdoped Si nanocrystals (NCs). In this work bulk Si with the resistivity as low as ∼ 0.8 (40) mΩ•cm has been produced by hot pressing P (B)-hyperdoped Si NCs. The dopant type is found to make a difference for the sintering of Si NCs during the hot pressing. Bulk Si hot-pressed from P-hyperdoped Si NCs is more compact than that hot-pressed from B-hyperdoped Si NCs when the hot-pressing temperature ismore » the same. This leads to the fact that P is more effectively activated to produce free carriers than B in the hot-pressed bulk Si. Compared with the dopant concentration, the hot-pressing temperature more significantly affects the structural and electrical properties of hot-pressed bulk Si. With the increase of the hot-pressing temperature the density of hot-pressed bulk Si increases. The highest carrier concentration (lowest resistivity) of bulk Si hot-pressed from B- or P-hyperdoped Si NCs is obtained at the highest hot-pressing temperature of 1050 °C. The mobility of carriers in the hot-pressed bulk Si is low (≤  ∼ 30 cm{sup -2}V{sup -1}s{sup -1}) mainly due to the scattering of carriers induced by structural defects such as pores.« less

  8. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.

  9. Hot Corrosion Resistance and Mechanical Behavior of Atmospheric Plasma Sprayed Conventional and Nanostructured Zirconia Coatings

    NASA Astrophysics Data System (ADS)

    Saremi, Mohsen; Keyvani, Ahmad; Heydarzadeh Sohi, Mahmoud

    Conventional and nanostructured zirconia coatings were deposited on In-738 Ni super alloy by atmospheric plasma spray technique. The hot corrosion resistance of the coatings was measured at 1050°C using an atmospheric electrical furnace and a fused mixture of vanadium pent oxide and sodium sulfate respectively. According to the experimental results nanostructured coatings showed a better hot corrosion resistance than conventional ones. The improved hot corrosion resistance could be explained by the change of structure to a dense and more packed structure in the nanocoating. The evaluation of mechanical properties by nano indentation method showed the hardness (H) and elastic modulus (E) of the YSZ coating increased substantially after hot corrosion.

  10. Probabilistic structural analysis methods of hot engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hopkins, D. A.

    1989-01-01

    Development of probabilistic structural analysis methods for hot engine structures is a major activity at Lewis Research Center. Recent activities have focused on extending the methods to include the combined uncertainties in several factors on structural response. This paper briefly describes recent progress on composite load spectra models, probabilistic finite element structural analysis, and probabilistic strength degradation modeling. Progress is described in terms of fundamental concepts, computer code development, and representative numerical results.

  11. Structural Analysis of Single Domain Antibodies Bound to a Second Neutralizing Hot Spot on Ricin Toxin's Enzymatic Subunit*

    PubMed Central

    Rudolph, Michael J.; Cassidy, Michael S.; Rong, Yinghui

    2017-01-01

    Ricin toxin is a heterodimer consisting of RTA, a ribosome-inactivating protein, and RTB, a lectin that facilitates receptor-mediated uptake into mammalian cells. In previous studies, we demonstrated that toxin-neutralizing antibodies target four spatially distinct hot spots on RTA, which we refer to as epitope clusters I–IV. In this report, we identified and characterized three single domain camelid antibodies (VHH) against cluster II. One of these VHHs, V5E1, ranks as one of the most potent ricin-neutralizing antibodies described to date. We solved the X-ray crystal structures of each of the three VHHs (E1, V1C7, and V5E1) in complex with RTA. V5E1 buries a total of 1,133 Å2 of surface area on RTA and makes primary contacts with α-helix A (residues 18–32), α-helix F (182–194), as well as the F-G loop. V5E1, by virtue of complementarity determining region 3 (CDR3), may also engage with RTB and potentially interfere with the high affinity galactose-recognition element that plays a critical role in toxin attachment to cell surfaces and intracellular trafficking. The two other VHHs, E1 and V1C7, bind epitopes adjacent to V5E1 but display only weak toxin neutralizing activity, thereby providing structural insights into specific residues within cluster II that may be critical contact points for toxin inactivation. PMID:27903650

  12. 114. ARAI Hot cell (ARA626) Building details of fuel storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. ARA-I Hot cell (ARA-626) Building details of fuel storage pit in plan and section. Spaces shown for 20 elements. Norman Engineering Company: 961-area/SF-626-S-4. Date: January 1959. Ineel index code no. 068-0626-60-613-102752. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  13. Toward improved durability in advanced aircraft engine hot sections

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1989-01-01

    The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  14. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOEpatents

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  15. Single and multijunction silicon based thin film solar cells on a flexible substrate with absorber layers made by hot-wire CVD

    NASA Astrophysics Data System (ADS)

    Li, Hongbo

    2007-09-01

    With the worldwide growing concern about reliable energy supply and the environmental problems of fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic systems, can play a major role in the urgently needed energy transition in electricity production. Solar cells based on thin film silicon and its alloys are a promising candidate that is capable of fulfilling the fast increasing demand of a reliable solar cell supply. The conventional method to deposit silicon thin films is based on plasma enhanced chemical vapour deposition (PECVD) techniques, which have the disadvantage of increasing film inhomogeneity at a high deposition rate when scaling up for the industrial production. In this thesis, we study the possibility of making high efficiency single and multijunction thin film silicon solar cells with the so-called hot-wire CVD technique, in which no strong electromagnetic field is involved in the deposition. Therefore, the up-scaling for industrial production is straightforward. We report and discuss our findings on the correlation of substrate surface rms roughness and the main output parameter of a solar cell, the open circuit voltage Voc of c-Si:H n i p cells. By considering all the possible reasons that could influence the Voc of such cells, we conclude that the near linear correlation of Voc and substrate surface rms roughness is the result the two most probable reasons: the unintentional doping through the cracks originated near the valleys of the substrate surface due to the in-diffusion of impurities, and the high density electrical defects formed by the collision of columnar silicon structures. Both of them relate to the morphology of substrate surface. Therefore, to have the best cell performance on a rough substrate surface, a good control on the substrate surface morphology is necessary. Another issue influencing the performance of c-Si:H solar cells is the change in layer crystallinity during the growth of the c-Si:H i-layer. For PECVD deposited cells, it is often found that the layer crystallinity is enhanced with increasing film thickness. We found for Hot-wire deposited cells, however, the opposite development in material structure: the material becomes amorphous near the end of the deposition. This results in a deterioration of cell performance. We therefore introduce a so-called H2 reverse profiling technique, in which H2 is increased during the c-Si:H i-layer deposition. With this technique, a cell with an efficiency of 8.5% has been reached, which is in line with the best reported PECVD cells deposited on the same type of substrate. In the literature, carrier transport in c-Si:H cells has been a topic for debate. In this thesis, we present our finding of photogating effect on the spectral response of c-Si:H solar cells. When measured under coloured bias light, the apparent quantum efficiency value of a c-Si:H cell can be largely enhanced. This phenomenon is a typical result of trapping induced field modification in the bulk of a drift type solar cell. The discovery of this phenomenon has experimentally proved that field-driven transport to a large extend exist in a c-Si:H solar cell.

  16. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this paper is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components. The two primary technical challenges impacting the use of CMC TPS and hot structures for hypersonic vehicles are environmental durability and fabrication, and will be discussed briefly.

  17. HotRegion: a database of predicted hot spot clusters.

    PubMed

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  18. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells.

    PubMed

    Ulbrich, Claudia; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Magnusson, Nils; Infanger, Manfred; Grosse, Jirka; Eilles, Christoph; Sundaresan, Alamelu; Grimm, Daniela

    2014-01-01

    How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s-µg) is currently a hot topic in biomedicine. In r- and s-µg, various cell types were found to form 3D structures. This review will focus on the current knowledge of tissue engineering in space and on Earth using systems such as the random positioning machine (RPM), the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV) to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS), formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering.

  19. The Impact of Simulated and Real Microgravity on Bone Cells and Mesenchymal Stem Cells

    PubMed Central

    Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Magnusson, Nils; Infanger, Manfred; Grosse, Jirka; Eilles, Christoph

    2014-01-01

    How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s-µg) is currently a hot topic in biomedicine. In r- and s-µg, various cell types were found to form 3D structures. This review will focus on the current knowledge of tissue engineering in space and on Earth using systems such as the random positioning machine (RPM), the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV) to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS), formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering. PMID:25110709

  20. Slab reformer

    DOEpatents

    Spurrier, F.R.; DeZubay, E.A.; Murray, A.P.; Vidt, E.J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations are disclosed particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant. 14 figs.

  1. Heat exchanger for coal gasification process

    DOEpatents

    Blasiole, George A.

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  2. A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments.

    PubMed

    Munson-McGee, Jacob H; Peng, Shengyun; Dewerff, Samantha; Stepanauskas, Ramunas; Whitaker, Rachel J; Weitz, Joshua S; Young, Mark J

    2018-06-01

    The application of viral and cellular metagenomics to natural environments has expanded our understanding of the structure, functioning, and diversity of microbial and viral communities. The high diversity of many communities, e.g., soils, surface ocean waters, and animal-associated microbiomes, make it difficult to establish virus-host associations at the single cell (rather than population) level, assign cellular hosts, or determine the extent of viral host range from metagenomics studies alone. Here, we combine single-cell sequencing with environmental metagenomics to characterize the structure of virus-host associations in a Yellowstone National Park (YNP) hot spring microbial community. Leveraging the relatively low diversity of the YNP environment, we are able to overlay evidence at the single-cell level with contextualized viral and cellular community structure. Combining evidence from hexanucelotide analysis, single cell read mapping, network-based analytics, and CRISPR-based inference, we conservatively estimate that >60% of cells contain at least one virus type and a majority of these cells contain two or more virus types. Of the detected virus types, nearly 50% were found in more than 2 cellular clades, indicative of a broad host range. The new lens provided by the combination of metaviromics and single-cell genomics reveals a network of virus-host interactions in extreme environments, provides evidence that extensive virus-host associations are common, and further expands the unseen impact of viruses on cellular life.

  3. A&M. TAN607. Special service cubicle (hot cell). Details include Zpipe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-607. Special service cubicle (hot cell). Details include Z-pipe and stepped plug penetrations through shielding wall. Ralph M. Parsons 902-3-ANP-607-A116. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0607-693-106767 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. 111. ARAI Hot cell (ARA626) Building elevations of north, south, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    111. ARA-I Hot cell (ARA-626) Building elevations of north, south, east, and west sides. Includes details of personnel decontamination area, dark room, and other features. Norman Engineering Company: 961-area/SF-626-A-3. Date: January 1959. Ineel index code no. 068-0626-00-613-102723. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  5. HOT CELL BUILDING, TRA632. FIRST FLOOR FOUNDATION PLAN SHOWS SECTIONALIZED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. FIRST FLOOR FOUNDATION PLAN SHOWS SECTIONALIZED FLOOR LOADINGS AND CONCRETE SLAB THICKNESSES, A TYPICAL FEATURE OF NUCLEAR ARCHITECTURE. IDAHO OPERATIONS OFFICE MTR-632-IDO-2, 11/1952. INL INDEX NO. 531-0632-62-396-110561, REV. 1. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Mo99 Production Plant Layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Naranjo, Angela Carol

    The NorthStar Medical Technologies 99Mo production facility configuration is envisioned to be 8 accelerator pairs irradiating 7 100Mo targets (one spare accelerator pair undergoing maintenance while the other 7 pairs are irradiating targets). The required shielding in every direction for the accelerators is initially estimated to be 10 feet of concrete. With the accelerator pairs on one (ground) level and spaced with the required shielding between adjacent pairs, the only practical path for target insertion and removal while minimizing floor space is vertical. The current scheme then requires a target vertical lift of nominally 10 feet through a shield stack.more » It is envisioned that the lift will be directly into a hot cell where an activated target can be removed from its holder and a new target attached and lowered. The hot cell is on a rail system so that a single hot cell can service all active target locations, as well as deliver the ready targets to the separations lab. On this rail system, coupled to the hot cell, will be a helium recovery and clean-up system. All helium coolant equipment is located on the upper level near to the target removal point.« less

  7. Producibility and Serviceability of Kevlar-49 Structures Made on Hot Layup Tools

    DTIC Science & Technology

    1975-05-01

    changes for a typical airframe composite part and established improved machining practices for Kevlar-49. Some of the more signifi- cant conclusions...reverse side if necessary 8nd identify by block number) Composite Materials Inlet Fairing Helicopters Hot Layup Tools (HLT) Kevlar -49 20. ABSTRACT...CLASSlFlCATlON OF THIS PAGE(Whm Data Bnlorod) 0 Demonstrate the low cost aspects of using Hot Layup Tools (HLT) to fabricate composite structures. a

  8. Evaluation of a risk-based environmental hot spot delineation algorithm.

    PubMed

    Sinha, Parikhit; Lambert, Michael B; Schew, William A

    2007-10-22

    Following remedial investigations of hazardous waste sites, remedial strategies may be developed that target the removal of "hot spots," localized areas of elevated contamination. For a given exposure area, a hot spot may be defined as a sub-area that causes risks for the whole exposure area to be unacceptable. The converse of this statement may also apply: when a hot spot is removed from within an exposure area, risks for the exposure area may drop below unacceptable thresholds. The latter is the motivation for a risk-based approach to hot spot delineation, which was evaluated using Monte Carlo simulation. Random samples taken from a virtual site ("true site") were used to create an interpolated site. The latter was gridded and concentrations from the center of each grid box were used to calculate 95% upper confidence limits on the mean site contaminant concentration and corresponding hazard quotients for a potential receptor. Grid cells with the highest concentrations were removed and hazard quotients were recalculated until the site hazard quotient dropped below the threshold of 1. The grid cells removed in this way define the spatial extent of the hot spot. For each of the 100,000 Monte Carlo iterations, the delineated hot spot was compared to the hot spot in the "true site." On average, the algorithm was able to delineate hot spots that were collocated with and equal to or greater in size than the "true hot spot." When delineated hot spots were mapped onto the "true site," setting contaminant concentrations in the mapped area to zero, the hazard quotients for these "remediated true sites" were on average within 5% of the acceptable threshold of 1.

  9. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.

    PubMed

    Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun

    2014-07-23

    The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.

    PubMed

    St-Gelais, Raphael; Bhatt, Gaurang Ravindra; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal

    2017-03-28

    Near-field thermophotovoltaics (NFTPV) is a promising approach for direct conversion of heat to electrical power. This technology relies on the drastic enhancement of radiative heat transfer (compared to conventional blackbody radiation) that occurs when objects at different temperatures are brought to deep subwavelength distances (typically <100 nm) from each other. Achieving such radiative heat transfer between a hot object and a photovoltaic (PV) cell could allow direct conversion of heat to electricity with a greater efficiency than using current solid-state technologies (e.g., thermoelectric generators). One of the main challenges in the development of this technology, however, is its incompatibility with conventional silicon PV cells. Thermal radiation is weak at frequencies larger than the ∼1.1 eV bandgap of silicon, such that PV cells with lower excitation energies (typically 0.4-0.6 eV) are required for NFTPV. Using low bandgap III-V semiconductors to circumvent this limitation, as proposed in most theoretical works, is challenging and therefore has never been achieved experimentally. In this work, we show that hot carrier PV cells based on Schottky junctions between silicon and metallic films could provide an attractive solution for achieving high efficiency NFTPV electricity generation. Hot carrier science is currently an important field of research and several approaches are investigated for increasing the quantum efficiency (QE) of hot carrier generation beyond conventional Fowler model predictions. If the Fowler limit can indeed be overcome, we show that hot carrier-based NFTPV systems-after optimization of their thermal radiation spectrum-could allow electricity generation with up to 10-30% conversion efficiencies and 10-500 W/cm 2 generated power densities (at 900-1500 K temperatures). We also discuss how the unique properties of thermal radiation in the extreme near-field are especially well suited for investigating recently proposed approaches for high QE hot carrier junctions. We therefore expect our work to be of interest for the field of hot carrier science and-by relying solely on conventional thin film materials-to provide a path for the experimental demonstration of NFTPV energy conversion.

  11. Preface of the "Symposium on Mathematical Models and Methods to investigate Heterogeneity in Cell and Cell Population Biology"

    NASA Astrophysics Data System (ADS)

    Clairambault, Jean

    2016-06-01

    This session investigates hot topics related to mathematical representations of cell and cell population dynamics in biology and medicine, in particular, but not only, with applications to cancer. Methods in mathematical modelling and analysis, and in statistical inference using single-cell and cell population data, should contribute to focus this session on heterogeneity in cell populations. Among other methods are proposed: a) Intracellular protein dynamics and gene regulatory networks using ordinary/partial/delay differential equations (ODEs, PDEs, DDEs); b) Representation of cell population dynamics using agent-based models (ABMs) and/or PDEs; c) Hybrid models and multiscale models to integrate single-cell dynamics into cell population behaviour; d) Structured cell population dynamics and asymptotic evolution w.r.t. relevant traits; e) Heterogeneity in cancer cell populations: origin, evolution, phylogeny and methods of reconstruction; f) Drug resistance as an evolutionary phenotype: predicting and overcoming it in therapeutics; g) Theoretical therapeutic optimisation of combined drug treatments in cancer cell populations and in populations of other organisms, such as bacteria.

  12. Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas.

    PubMed

    Mondal, Sudipta; Narayanan, V; Ding, Wen Jun; Lad, Amit D; Hao, Biao; Ahmad, Saima; Wang, Wei Min; Sheng, Zheng Ming; Sengupta, Sudip; Kaw, Predhiman; Das, Amita; Kumar, G Ravindra

    2012-05-22

    Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (10(18) W/cm(2)) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy "hot" electrons created by the laser pulse and "cold" return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments.

  13. Development of a new low cost antireflective coating technique for solar cells

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J. H.; Warfield, D. B.; Johnson, G. A.

    1982-01-01

    The goal of this study was the development of an antireflective (AR) coating technique that has the potential for high throughput and low cost yet is capable of producing films of good optical quality. Previous efforts to develop sprayed AR coatings had utilized titanium isopropoxide mixed with volatile solvents. These films worked well on smooth surfaces but when applied to etched semi-crystalline silicon surfaces yielded inconsistent results with more than 20 percent of the AM1 incident light being reflected. In this program titanium isopropoxide was sprayed directly onto heater wafers (410 C) to produce a uniform AR coating even on highly textured surfaces. Tests on various types of solar cells yielded performance improvements for the hot sprayed AR cells that are equivalent to that observed for evaporated TiOx AR coated cells. As an extension of this effort a new double layer AR consisting of a bottom layer of hot sprayed titanium isopropoxide and a top layer of hot sprayed aluminum isopropoxide in methylene chloride has resulted in more than 10 percent improvement in cell output as compared to a single layer AR cell.

  14. European Directions for Hypersonic Thermal Protection Systems and Hot Structures

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2007-01-01

    This presentation will overview European Thermal Protection Systems (TPS) and Hot Structures activities in Europe. The Europeans have a lot of very good work going on in the area. The presentation will discuss their emphasis on focused technology development for their flight vehicles.

  15. GPU-enabled molecular dynamics simulations of ankyrin kinase complex

    NASA Astrophysics Data System (ADS)

    Gautam, Vertika; Chong, Wei Lim; Wisitponchai, Tanchanok; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abd.; Tayapiwatana, Chatchai; Lee, Vannajan Sanghiran

    2014-10-01

    The ankyrin repeat (AR) protein can be used as a versatile scaffold for protein-protein interactions. It has been found that the heterotrimeric complex between integrin-linked kinase (ILK), PINCH, and parvin is an essential signaling platform, serving as a convergence point for integrin and growth-factor signaling and regulating cell adhesion, spreading, and migration. Using ILK-AR with high affinity for the PINCH1 as our model system, we explored a structure-based computational protocol to probe and characterize binding affinity hot spots at protein-protein interfaces. In this study, the long time scale dynamics simulations with GPU accelerated molecular dynamics (MD) simulations in AMBER12 have been performed to locate the hot spots of protein-protein interaction by the analysis of the Molecular Mechanics-Poisson-Boltzmann Surface Area/Generalized Born Solvent Area (MM-PBSA/GBSA) of the MD trajectories. Our calculations suggest good binding affinity of the complex and also the residues critical in the binding.

  16. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  17. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    PubMed

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.

  18. The yeast Hot1 transcription factor is critical for activating a single target gene, STL1

    PubMed Central

    Bai, Chen; Tesker, Masha; Engelberg, David

    2015-01-01

    Transcription factors are commonly activated by signal transduction cascades and induce expression of many genes. They therefore play critical roles in determining the cell's fate. The yeast Hog1 MAP kinase pathway is believed to control the transcription of hundreds of genes via several transcription factors. To identify the bona fide target genes of Hog1, we inducibly expressed the spontaneously active variant Hog1D170A+F318L in cells lacking the Hog1 activator Pbs2. This system allowed monitoring the effects of Hog1 by itself. Expression of Hog1D170A+F318L in pbs2∆ cells imposed induction of just 105 and suppression of only 26 transcripts by at least twofold. We looked for the Hog1-responsive element within the promoter of the most highly induced gene, STL1 (88-fold). A novel Hog1 responsive element (HoRE) was identified and shown to be the direct target of the transcription factor Hot1. Unexpectedly, we could not find this HoRE in any other yeast promoter. In addition, the only gene whose expression was abolished in hot1∆ cells was STL1. Thus Hot1 is essential for transcription of just one gene, STL1. Hot1 may represent a class of transcription factors that are essential for transcription of a very few genes or even just one. PMID:25904326

  19. Structural analysis and biomedical applications of dextran produced by a new isolate Pediococcus pentosaceus screened from biodiversity hot spot Assam.

    PubMed

    Patel, Seema; Kasoju, Naresh; Bora, Utpal; Goyal, Arun

    2010-09-01

    Dextran produced by a natural isolate of Pediococcus pentosaceus, screened from Assam, in the Northeastern region of India, was estimated, purified, structure characterised and functionality analysed. The dextran concentration in the cell free supernatant of the isolate P. pentosaceus was 10.2mg/ml. FT-IR analysis revealed the hydroxyl and carboxyl functional groups present in the dextran. (1)H NMR and (13)C NMR spectral data revealed that the dextran has a linear backbone of alpha-(1-->6) linked D-glucose residues. The decrease in viscosity of dextran solution with the increase in shear rate, threw light on its typical non-Newtonian pseudoplastic behaviour. The cytotoxicity tests on human cervical cancer (HeLa) cell line was studied which showed the dextran is non-toxic and biocompatible, rendering it safe for drug delivery, tissue engineering and various other biomedical applications. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Investigation into Formation of Lipid Hydroperoxides from Membrane Lipids in Escherichia coli O157:H7 following Exposure to Hot Water.

    PubMed

    Cálix-Lara, Thelma F; Kirsch, Katie R; Hardin, Margaret D; Castillo, Alejandro; Smith, Stephen B; Taylor, Thomas M

    2015-06-01

    Although studies have shown antimicrobial treatments consisting of hot water sprays alone or paired with lactic acid rinses are effective for reducing Escherichia coli O157:H7 loads on beef carcass surfaces, the mechanisms by which these interventions inactivate bacterial pathogens are still poorly understood. It was hypothesized that E. coli O157:H7 exposure to hot water in vitro at rising temperatures for longer time periods would result in increasing deterioration of bacterial outer membrane lipids, sensitizing the pathogen to subsequent lactic acid application. Cocktails of E. coli O157:H7 strains were subjected to hot water at 25 (control) 65, 75, or 85 °C incrementally up to 60 s, after which surviving cells were enumerated by plating. Formation of lipid hydroperoxides from bacterial membranes and cytoplasmic accumulation of L-lactic acid was quantified spectrophotometrically. Inactivation of E. coli O157:H7 proceeded in a hot water exposure duration- and temperature-dependent manner, with populations being reduced to nondetectable numbers following heating of cells in 85 °C water for 30 and 60 s (P < 0.05). Lipid hydroperoxide formation was not observed to be dependent upon increasing water temperature or exposure period. The data suggest that hot water application prior to organic acid application may function to increase the sensitivity of E. coli O157:H7 cells by degrading membrane lipids.

  1. AMTEC Generator: Phase 1 Propane System

    DTIC Science & Technology

    2002-10-15

    Final Report 15 October 2002 17 Figure 18. Model Predictions with a 28W Gross AMTEC Converter, 27 g/hr, 8.3% Overall Efficiency 5 10 15...hot) (C ) fuel flow rate (mg/s) efficiency electrical output cell hot temp Design point: cell power = 28.3 W η thermal = 8.3% fuel flow rate = 7.4...Metal Thermal to Electric Conversion ( AMTEC ) technology converts the heat from

  2. A&M. TAN633. Hot cell floor plans, elevations, sections. Hole schedule ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-633. Hot cell floor plans, elevations, sections. Hole schedule (penetrations through concrete). Swing-door details. Ralph M. Parsons 1229-13-ANP/GE-3-633-A-3. Date: December 1956. Approved by INEEL Classification Office for public release. INNEL index code no. 034-0633-00-693-107317 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. 115. ARAI Details of hot cell section of building ARA626. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. ARA-I Details of hot cell section of building ARA-626. Shows location of high density concrete, viewing windows, filters, monorail crane, bridge crane, and other details. Norman Engineering Company 961-area/SF-626-MS-1. Date: January 1959. Ineel index code no. 068-0626-40-613-102737. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  4. A&M. Hot liquid waste treatment building (TAN616). Contextual view, facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Contextual view, facing south. Wall of hot shop (TAN-607) with high bay at left of view. Lower-roofed building at left edge of view is TAN- 633, hot cell annex. Complex at center of view is TAN-616. Tall metal building with gable roof is TAN-615. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-2-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  5. The influences of fluorine and process variations on polysilicon film stress and MOSFET hot carrier effects

    NASA Technical Reports Server (NTRS)

    Lowry, Lynn E.; Macwilliams, Kenneth P.; Isaac, Mary

    1991-01-01

    The use of fluorinated gate oxides may provide an improvement in nMOSFET reliability by enhancing hot carrier resistance. In order to clarify the mechanisms by which polysilicon processing and fluorination influence the oxide behavior, a matrix of nMOSFET structures was prepared using various processing, doping, and implantation strategies. These structures were evaluated for crystalline morphology and chemical element distribution. Mechanical stress measurements were taken on the polysilicon films from room temperature to cryogenic temperature. These examinations showed that fluorination of a structure with randomly oriented polysilicon can reduce residual mechanical stress and improve hot carrier resistance at room temperature.

  6. Structure and Stoichiometry of MgxZny in Hot-Dipped Zn-Mg-Al Coating Layer on Interstitial-Free Steel

    NASA Astrophysics Data System (ADS)

    Kim, Jaenam; Lee, Chongsoo; Jin, Youngsool

    2018-03-01

    Correlations of stoichiometry and phase structure of MgxZny in hot-dipped Zn-Mg-Al coating layer which were modified by additive element have been established on the bases of diffraction and phase transformation principles. X-ray diffraction (XRD) results showed that MgxZny in the Zn-Mg-Al coating layers consist of Mg2Zn11 and MgZn2. The additive elements had a significant effect on the phase fraction of Mg2Zn11 while the Mg/Al ratio had a negligible effect. Transmission electron microscope (TEM) assisted selected area electron diffraction (SAED) results of small areas MgxZny were indexed dominantly as MgZn2 which have different Mg/Zn stoichiometry between 0.10 and 0.18. It is assumed that the MgxZny have deviated stoichiometry of the phase structure with additive element. The deviated Mg2Zn11 phase structure was interpreted as base-centered orthorhombic by applying two theoretical validity: a structure factor rule explained why the base-centered orthorhombic Mg2Zn11 has less reciprocal lattice reflections in the SAED compared to hexagonal MgZn2, and a phase transformation model elucidated its reasonable lattice point sharing of the corresponding unit cell during hexagonal MgZn2 (a, b = 0.5252 nm, c = 0.8577 nm) transform to intermediate tetragonal and final base-centered orthorhombic Mg2Zn11 (a = 0.8575 nm, b = 0.8874 nm, c = 0.8771 nm) in the equilibrium state.

  7. Radioprotective Effects of Sulfur-containing Mineral Water of Ramsar Hot Spring with High Natural Background Radiation on Mouse Bone Marrow Cells.

    PubMed

    Heidari, A H; Shabestani Monfared, A; Mozdarani, H; Mahmoudzadeh, A; Razzaghdoust, A

    2017-12-01

    We intend to study the inhibitory effect of sulfur compound in Ramsar hot spring mineral on tumor-genesis ability of high natural background radiation. The radioprotective effect of sulfur compounds was previously shown on radiation-induced chromosomal aberration, micronuclei in mouse bone marrow cells and human peripheral lymphocyte. Ramsar is known for having the highest level of natural background radiation on Earth. This study was performed to show the radioprotective effect of sulfur-containing Ramsar mineral water on mouse bone marrow cells. Mice were fed three types of water (drinking water, Ramsar radioactive water containing sulfur and Ramsar radioactive water whose sulfur was removed). Ten days after feeding, mice were irradiated by gamma rays (0, 2 and 4 Gy). 48 and 72 hours after irradiating, mice were killed and femurs were removed. Frequency of micronuclei was determined in bone marrow erythrocytes. A significant reduction was shown in the rate of micronuclei polychromatic erythrocyte in sulfur-containing hot spring water compared to sulfur-free water in hot spring mineral water. Gamma irradiation induced significant increases in micronuclei polychromatic erythrocyte (MNPCE) and decreases in polychromatic erythrocyte/polychromatic erythrocyte + normochromatic erythrocyte ratio (PCEs/PCEs+NCEs) (P < 0.001) in sulfur-containing hot spring water compared to sulfur-free hot spring mineral water. Also, apparently there was a significant difference between drinking water and sulfur-containing hot spring water in micronuclei polychromatic erythrocyte and polychromatic erythrocyte/polychromatic erythrocyte+ normochromatic erythrocyte ratio. The results indicate that sulfur-containing mineral water could result in a significant reduction in radiation-induced micronuclei representing the radioprotective effect of sulfur compounds.

  8. More Authors, More Institutions, and More Funding Sources: Hot Papers in Biology from 1991 to 1993.

    ERIC Educational Resources Information Center

    Haiqi, Zhang

    1997-01-01

    A bibliometric study analyzed the authorship of biology periodicals, "Nature,""Science," and "Cell" from 1991 to 1993. The source data consisted of "hot papers" in biology and a sample of articles from the three periodicals. Results showed that the hot papers have more authors and participating institutions, and that funding sources are related to…

  9. Use of low temperature blowers for recirculation of hot gases

    DOEpatents

    Maru, H.C.; Forooque, M.

    1982-08-19

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  10. Process to make core-shell structured nanoparticles

    DOEpatents

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  11. Improved Cathode Structure for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been demonstrated to mitigate the effects of crossover and decrease the airflow required.

  12. Heat to electricity conversion by cold carrier emissive energy harvesters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strandberg, Rune

    2015-12-07

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings whilemore » converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved.« less

  13. Effects of Temperature on the Meiotic Recombination Landscape of the Yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Ke; Wu, Xue-Chang; Zheng, Dao-Qiong; Petes, Thomas D

    2017-12-19

    Although meiosis in warm-blooded organisms takes place in a narrow temperature range, meiosis in many organisms occurs over a wide variety of temperatures. We analyzed the properties of meiosis in the yeast Saccharomyces cerevisiae in cells sporulated at 14°C, 30°C, or 37°C. Using comparative-genomic-hybridization microarrays, we examined the distribution of Spo11-generated meiosis-specific double-stranded DNA breaks throughout the genome. Although there were between 300 and 400 regions of the genome with high levels of recombination (hot spots) observed at each temperature, only about 20% of these hot spots were found to have occurred independently of the temperature. In S. cerevisiae , regions near the telomeres and centromeres tend to have low levels of meiotic recombination. This tendency was observed in cells sporulated at 14°C and 30°C, but not at 37°C. Thus, the temperature of sporulation in yeast affects some global property of chromosome structure relevant to meiotic recombination. Using single-nucleotide polymorphism (SNP)-specific whole-genome microarrays, we also examined crossovers and their associated gene conversion events as well as gene conversion events that were unassociated with crossovers in all four spores of tetrads obtained by sporulation of diploids at 14°C, 30°C, or 37°C. Although tetrads from cells sporulated at 30°C had slightly (20%) more crossovers than those derived from cells sporulated at the other two temperatures, spore viability was good at all three temperatures. Thus, despite temperature-induced variation in the genetic maps, yeast cells produce viable haploid products at a wide variety of sporulation temperatures. IMPORTANCE In the yeast Saccharomyces cerevisiae , recombination is usually studied in cells that undergo meiosis at 25°C or 30°C. In a genome-wide analysis, we showed that the locations of genomic regions with high and low levels of meiotic recombination (hot spots and cold spots, respectively) differed dramatically in cells sporulated at 14°C, 30°C, and 37°C. Thus, in yeast, and likely in other non-warm-blooded organisms, genetic maps are strongly affected by the environment. Copyright © 2017 Zhang et al.

  14. The major glucosinolate hydrolysis product in rocket (Eruca sativa L.), sativin, is 1,3-thiazepane-2-thione: Elucidation of structure, bioactivity, and stability compared to other rocket isothiocyanates.

    PubMed

    Fechner, Jana; Kaufmann, Martin; Herz, Corinna; Eisenschmidt, Daniela; Lamy, Evelyn; Kroh, Lothar W; Hanschen, Franziska S

    2018-09-30

    Rocket is rich in glucosinolates and valued for its hot and spicy taste. Here we report the structure elucidation, bioactivity, and stability of the mainly formed glucosinolate hydrolysis product, namely sativin, which was formerly thought to be 4-mercaptobutyl isothiocyanate. However, by NMR characterization we revealed that sativin is in fact 1,3-thiazepane-2-thione, a tautomer of 4-mercaptobutyl isothiocyanate with 7-membered ring structure and so far unknown. This finding was further substantiated by conformation sampling using molecular modeling and total enthalpy calculation with density functional theory. During aqueous heat treatment sativin in general was quite stable, while the isothiocyanates erucin and sulforaphane were labile, having half-lives of 132 min and 56 min (pH 5, 100 °C), respectively. Moreover, using a WST-1 assay, we found that sativin did not reduce cell viability of HepG2 cells in a range of 0.3-30 µM, and, therefore, exhibited no cytotoxic effects in this cell line. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Structural Analysis of Single Domain Antibodies Bound to a Second Neutralizing Hot Spot on Ricin Toxin's Enzymatic Subunit.

    PubMed

    Rudolph, Michael J; Vance, David J; Cassidy, Michael S; Rong, Yinghui; Mantis, Nicholas J

    2017-01-20

    Ricin toxin is a heterodimer consisting of RTA, a ribosome-inactivating protein, and RTB, a lectin that facilitates receptor-mediated uptake into mammalian cells. In previous studies, we demonstrated that toxin-neutralizing antibodies target four spatially distinct hot spots on RTA, which we refer to as epitope clusters I-IV. In this report, we identified and characterized three single domain camelid antibodies (V H H) against cluster II. One of these V H Hs, V5E1, ranks as one of the most potent ricin-neutralizing antibodies described to date. We solved the X-ray crystal structures of each of the three V H Hs (E1, V1C7, and V5E1) in complex with RTA. V5E1 buries a total of 1,133 Å 2 of surface area on RTA and makes primary contacts with α-helix A (residues 18-32), α-helix F (182-194), as well as the F-G loop. V5E1, by virtue of complementarity determining region 3 (CDR3), may also engage with RTB and potentially interfere with the high affinity galactose-recognition element that plays a critical role in toxin attachment to cell surfaces and intracellular trafficking. The two other V H Hs, E1 and V1C7, bind epitopes adjacent to V5E1 but display only weak toxin neutralizing activity, thereby providing structural insights into specific residues within cluster II that may be critical contact points for toxin inactivation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions.

    PubMed

    Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi

    2008-04-01

    Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  17. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-09-01

    A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.

  18. CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CP640) LOOKING NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CP-640) LOOKING NORTHWEST SHOWING FORMING AND PLACEMENT OF REINFORCING STEEL FOR SOUTH WALLS OF CELLS 1, 3, 4 AND 5 AND WEST WALL FOR CELLS 1 AND 2; CONSTRUCTION 13 PERCENT COMPLETE. INL PHOTO NUMBER NRTS 59-6436. J. Anderson, Photographer, 12/18/1959 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. HOT CELL BUILDING, TRA632, INTERIOR. WINDOWED ROOM IS OFFICE; NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. WINDOWED ROOM IS OFFICE; NEXT DOOR WAS DARKROOM, AND THIRD DOOR LED TO ANOTHER OFFICE. ALL ARE ALONG NORTH WALL OF BUILDING (ETR EXTENSION OF 1958). CAMERA FACES NORTHEAST. PUMICE BLOCK WALLS. INL NEGATIVE NO. HD46-29-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences.

    PubMed

    Chen, Peng; Li, Jinyan; Wong, Limsoon; Kuwahara, Hiroyuki; Huang, Jianhua Z; Gao, Xin

    2013-08-01

    Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. Copyright © 2013 Wiley Periodicals, Inc.

  1. Reaction kinetics and product distributions in photoelectrochemical cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koval, C.A.

    1992-01-01

    Hot electron reaction studies at p-InP/CH[sub 3]CN interface revealed essential/desirable features for redox systems used to investigate hot carriers in photoelectrocehmical cells. Reduction of dibromoethylbenzene (DBEB) in presence of metallocene couples is being studied using rotating rink disk electrodes of n-and p-InP disks and Pt rings. At highly doped p-InP electrodes, reduction of DBEB can be very efficient (>30%). A minielectrochemical cell was used to investigate electron transfer at nonilluminated n-WSe[sub 2]/dimethylferrocene[sup +/0] interfaces.

  2. The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells

    PubMed Central

    Philippa, Bronson; Stolterfoht, Martin; Burn, Paul L.; Juška, Gytis; Meredith, Paul; White, Ronald D.; Pivrikas, Almantas

    2014-01-01

    A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states. PMID:25047086

  3. The effect of side-chain substitution and hot processing on diketopyrrolopyrrole-based polymers for organic solar cells.

    PubMed

    Heintges, Gaël H L; Leenaers, Pieter J; Janssen, René A J

    2017-07-14

    The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of alternating DPP and oligothiophene units, are substituted with linear and second position branched alkyl side chains. For the polymer-fullerene blends that can be processed at room temperature, hot processing does not enhance the power conversion efficiencies compared to cold processing because the increased solubility at elevated temperatures results in the formation of wider polymer fibres that reduce charge generation. Instead, hot processing seems to be advantageous when cold processing is not possible due to a limited solubility at room temperature. The resulting morphologies are consistent with a nucleation-growth mechanism for polymer fibres during drying of the films.

  4. The effects of composition and thermal path on hot ductility of forging steels

    NASA Astrophysics Data System (ADS)

    Connolly, Brendan M.

    This work examines the effects of composition and thermal path on the hot ductility of several forging steels with varied aluminum and nitrogen content. The primary mechanisms and controlling factors related to hot ductility are identified with a focus on the role of precipitates and segregation. The unique thermal paths and solidification structures of large cross-section forging ingots are discussed. Hot ductility testing is performed in a manner that approximates industrial conditions experienced by large cross-section forging ingots. A computer model for precipitation of aluminum nitride and vanadium nitride in austenite is presented. Industrial material is examined for comparison to experimental findings. It is found that increased aluminum and nitrogen content coarsens the as-solidified structure. The combined effects of microsegregation and uphill diffusion during deformation allow for carbide precipitation at prior austenite grain boundaries which reduces the hot ductility.

  5. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds.

    PubMed

    Köker, Tuğba; Tang, Nathalie; Tian, Chao; Zhang, Wei; Wang, Xueding; Martel, Richard; Pinaud, Fabien

    2018-02-09

    The in cellulo assembly of plasmonic nanomaterials into photo-responsive probes is of great interest for many bioimaging and nanophotonic applications but remains challenging with traditional nucleic acid scaffolds-based bottom-up methods. Here, we address this quandary using split-fluorescent protein (FP) fragments as molecular glue and switchable Raman reporters to assemble gold or silver plasmonic nanoparticles (NPs) into photonic clusters directly in live cells. When targeted to diffusing surface biomarkers in cancer cells, the NPs self-assemble into surface-enhanced Raman-scattering (SERS) nanoclusters having hot spots homogenously seeded by the reconstruction of full-length FPs. Within plasmonic hot spots, autocatalytic activation of the FP chromophore and near-field amplification of its Raman fingerprints enable selective and sensitive SERS imaging of targeted cells. This FP-driven assembly of metal colloids also yields enhanced photoacoustic signals, allowing the hybrid FP/NP nanoclusters to serve as contrast agents for multimodal SERS and photoacoustic microscopy with single-cell sensitivity.

  6. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  7. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Parsons, Edward L.

    1995-01-01

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

  8. Hot Carrier Extraction from Multilayer Graphene.

    PubMed

    Urcuyo, Roberto; Duong, Dinh Loc; Sailer, Patrick; Burghard, Marko; Kern, Klaus

    2016-11-09

    Hot carriers in semiconductor or metal nanostructures are relevant, for instance, to enhance the activity of oxide-supported metal catalysts or to achieve efficient photodetection using ultrathin semiconductor layers. Moreover, rapid collection of photoexcited hot carriers can improve the efficiency of solar cells, with a theoretical maximum of 85%. Because of the long lifetime of secondary excited electrons, graphene is an especially promising two-dimensional material to harness hot carriers for solar-to-electricity conversion. However, the photoresponse of thus far realized graphene photoelectric devices is mainly governed by thermal effects, which yield only a very small photovoltage. Here, we report a Gr-TiO x -Ti heterostructure wherein the photovoltaic effect is predominant. By doping the graphene, the open circuit voltage reaches values up to 0.30 V, 2 orders of magnitude larger than for devices relying upon the thermoelectric effect. The photocurrent turned out to be limited by trap states in the few-nanometer-thick TiO x layer. Our findings represent a first valuable step toward the integration of graphene into third-generation solar cells based upon hot carrier extraction.

  9. Cross-flow vortex structure and transition measurements using multi-element hot films

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Mangalam, Siva M.; Maddalon, Dal V.; Collier, Fayette S., Jr.

    1991-01-01

    An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling (nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory.

  10. Design of the sample cell in near-field surface-enhanced Raman scattering by finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Li, Yaqin; Jian, Guoshu; Wu, Shifa

    2006-11-01

    The rational design of the sample cell may improve the sensitivity of surface-enhanced Raman scattering (SERS) detection in a high degree. Finite difference time domain (FDTD) simulations of the configuration of Ag film-Ag particles illuminated by plane wave and evanescent wave are performed to provide physical insight for design of the sample cell. Numerical solutions indicate that the sample cell can provide more "hot spots' and the massive field intensity enhancement occurs in these "hot spots'. More information on the nanometer character of the sample can be got because of gradient-field Raman (GFR) of evanescent wave.

  11. Dislocation blocking by AlGaN hot electron injecting layer in the epitaxial growth of GaN terahertz Gunn diode

    NASA Astrophysics Data System (ADS)

    Li, Liang; Yang, Lin'an; Zhang, Jincheng; Hao, Yue

    2013-09-01

    This paper reports an efficient method to improve the crystal quality of GaN Gunn diode with AlGaN hot electron injecting layer (HEI). An evident reduction of screw dislocation and edge dislocation densities is achieved by the strain management and the enhanced lateral growth in high temperature grown AlGaN HEI layer. Compared with the top hot electron injecting layer (THEI) structure, the bottom hot electron injecting layer (BHEI) structure enhances the crystal quality of transit region due to the growth sequence modulation of HEI layer. A high Hall mobility of 2934 cm2/Vs at 77 K, a nearly flat downtrend of Hall mobility at the temperature ranging from 300 to 573 K, a low intensity of ratio of yellow luminescence band to band edge emission, a narrow band edge emission line-width, and a smooth surface morphology are observed for the BHEI structural epitaxy of Gunn diode, which indicates that AlGaN BHEI structure is a promising candidate for fabrication of GaN Gunn diodes in terahertz regime.

  12. Advances in Ultra High Temperature Ceramics for Hot Structures

    NASA Astrophysics Data System (ADS)

    Scatteia, Luigi; Monteverde, Federico; Alfano, Davide; Cantoni, Stefania

    The objective of this paper is to describe the current state of the art of the research on Ultra High Temperature Ceramic materials with particular reference to their space applications, and also to report on the activities performed on UHTC in the past decade by the Italian Aerospace Research Centre in the specific technological field of structural thermal protection systems. Within several internal research project, various UHTC composition, mainly based upon Zirconium Diboride and Hafnium Diboride with added secondary phases and sintering aid were examined characterized in their mechanical properties and oxidation resistance. Two main composition were selected as the most promising for hot structure manufacturing: these materials were extensively characterized in order to obtain a comprehensive database of properties to feed the thermomechanical design of prototype hot structures. Technological demonstrators were manufactured by hot pressing followed by further fine machining with Electrical Discharge methods, and then tested at high temperature for long times in a plasma torch facility. The main outstanding results obtained are discussed in this paper. Future outlooks related to the UHTC technology and its further development are also provided.

  13. Hot and Spicy versus Cool and Minty as an Example of Organic Structure-Activity Relationships

    NASA Astrophysics Data System (ADS)

    Kimbrough, Doris R.

    1997-07-01

    There are two classes of substances that activate neural receptors that are involved in temperature perception. Structures of substances found in spices and food that we normally associate with "hot" (or spicy) and "cool" (or minty) flavors are presented and discussed. Functional group similarities within the two groups provide an interesting example of the relationship between molecular structure and molecular function in organic chemistry.

  14. Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells

    PubMed Central

    Chao, Jane C-J; Chiang, Shih-Wen; Wang, Ching-Chiung; Tsai, Ya-Hui; Wu, Ming-Shun

    2006-01-01

    AIM: To investigate the effect of hot water-extracted Lycium barbarum (LBE) and Rehmannia glutinosa (RGE) on cell proliferation and apoptosis in rat and/or human hepatocellular carcinoma (HCC) cells. METHODS: Rat (H-4-II-E) and human HCC (HA22T/VGH) cell lines were incubated with various concentrations (0-10 g/L) of hot water-extracted LBE and RGE. After 6-24 h incubation, cell proliferation (n = 6) was measured by a colorimetric method. The apoptotic cells (n = 6) were detected by flow cytometry. The expression of p53 protein (n = 3) was determined by SDS-PAGE and Western blotting. RESULTS: Crude LBE (2-5 g/L) and RGE (2-10 g/L) dose-dependently inhibited proliferation of H-4-II-E cells by 11% (P < 0.05) to 85% (P < 0.01) after 6-24 h treatment. Crude LBE at a dose of 5 g/L suppressed cell proliferation of H-4-II-E cells more effectively than crude RGE after 6-24 h incubation (P < 0.01). Crude LBE (2-10 g/L) and RGE (2-5 g/L) also dose-dependently inhibited proliferation of HA22T/VGH cells by 14%-43% (P < 0.01) after 24 h. Crude LBE at a dose of 10 g/L inhibited the proliferation of HA22T/VGH cells more effectively than crude RGE (56.8% ± 1.6% vs 70.3% ± 3.1% of control, P = 0.0003 < 0.01). The apoptotic cells significantly increased in H-4-II-E cells after 24 h treatment with higher doses of crude LBE (2-5 g/L) and RGE (5-10 g/L) (P < 0.01). The expression of p53 protein in H-4-II-E cells was 119% and 143% of the control group compared with the LBE-treated (2, 5 g/L) groups, and 110% and 132% of the control group compared with the RGE -treated (5, 10 g/L) groups after 24 h. CONCLUSION: Hot water-extracted crude LBE (2-5 g/L) and RGE (5-10 g/L) inhibit proliferation and stimulate p53-mediated apoptosis in HCC cells. PMID:16874858

  15. Optimization of a Hot Structure Aeroshell and Nose Cap for Mars Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.; Daryabeigi, Kamran

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is preparing to send humans beyond Low Earth Orbit and eventually to the surface of Mars. As part of the Evolvable Mars Campaign, different vehicle configurations are being designed and considered for delivering large payloads to the surface of Mars. Weight and packing volume are driving factors in the vehicle design, and the thermal protection system (TPS) for planetary entry is a technology area which can offer potential weight and volume savings. The feasibility and potential benefits of a ceramic matrix composite hot structure concept for different vehicle configurations are explored in this paper, including the nose cap for a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and an aeroshell for a mid lift-to-drag (Mid L/D) concept. The TPS of a planetary entry vehicle is a critical component required to survive the severe aerodynamic heating environment during atmospheric en- try. The current state-of-the-art is an ablative material to protect the vehicle from the heat load. The ablator is bonded to an underlying structure, which carries the mechanical loads associated with entry. The alternative hot structure design utilizes an advanced carbon-carbon material system on the outer surface of the vehicle, which is exposed to the severe heating and acts as a load carrying structure. The preliminary design using the hot structure concept and the ablative concept is determined for the spherical nose cap of the HIAD entry vehicle and the aeroshell of the Mid L/D entry vehicle. The results of the study indicate that the use of hot structures for both vehicle concepts leads to a feasible design with potential weight and volume savings benefits over current state-of-the-art TPS technology that could enable future missions.

  16. Preparation and Thermoelectric Properties of Cu2Se Hot-Pressed from Hydrothermal Synthesis Nanopowders

    NASA Astrophysics Data System (ADS)

    Gao, F.; Leng, S. L.; Zhu, Z.; Li, X. J.; Hu, X.; Song, H. Z.

    2018-04-01

    The nanopowders of Cu2Se were synthesized by the hydrothermal method, and then were hot-pressed into bulk pellets. The effects of different preparation conditions on the structure and thermoelectric properties of Cu2Se nanocrystalline bulk alloys were investigated. The resistivity and Seebeck coefficients increase with the increment of hot-pressing temperatures, while they decrease with the increment of hot-pressing time, except for the Seebeck coefficients of the sample hot-pressed for 30 min. Based on the power factors and dimensionless thermoelectric figure-of-merit ( ZT) values, the optimum hot-pressing parameters are 700°C and 30 min.

  17. DICER1 hot-spot mutations in ovarian gynandroblastoma.

    PubMed

    Wang, Yemin; Karnezis, Anthony N; Magrill, Jamie; Tessier-Cloutier, Basile; Lum, Amy; Senz, Janine; Gilks, C Blake; McCluggage, W Glenn; Huntsman, David G; Kommoss, Friedrich

    2018-04-16

    Gynandroblastoma is a rare ovarian sex cord-stromal tumour characterised by the presence of both male (Sertoli and/or Leydig cells) and female (granulosa cells) components. We investigated the mutational status of DICER1, FOXL2 and AKT1 genes at hot-spot regions that are known to be the key driving events in the development of Sertoli-Leydig cell tumour (SLCT), adult granulosa cell tumour (aGCT) and juvenile granulosa cell tumour (jGCT), respectively, to gain insights into the molecular pathogenesis of gynandroblastoma. Sixteen cases of gynandroblastoma were studied. All contained SLCT or Sertoli cell tumour components. aGCT and jGCT components were identified in seven and 10 cases, respectively, with one presenting both components. Heterozygous hot-spot mutations in the RNase IIIb domain of DICER1 were discovered in three cases, including one case with heterologous mucinous elements, all of which were composed of moderately or poorly differentiated SLCT and jGCT components, and harboured the mutations in both histological components. None of the 16 cases displayed mutations at the p.C134W (c.402C→G) of FOXL2 or within the pleckstrin-homology domain of AKT1. All cases showed FOXL2 immunostaining in both male and female components. DICER1 hot-spot mutation is the key-driving event in a subset of gynandroblastomas containing components of SLCT and jGCT. Gynandroblastomas composed of SLCT and jGCT may represent morphological variants of SLCT. The molecular basis of gynandroblastoma containing a component of aGCT is different from pure aGCT. © 2018 John Wiley & Sons Ltd.

  18. Total and Viable Legionella pneumophila Cells in Hot and Natural Waters as Measured by Immunofluorescence-Based Assays and Solid-Phase Cytometry ▿†

    PubMed Central

    Parthuisot, N.; Binet, M.; Touron-Bodilis, A.; Pougnard, C.; Lebaron, P.; Baudart, J.

    2011-01-01

    A new method was developed for the rapid and sensitive detection of viable Legionella pneumophila. The method combines specific immunofluorescence (IF) staining using monoclonal antibodies with a bacterial viability marker (ChemChrome V6 cellular esterase activity marker) by means of solid-phase cytometry (SPC). IF methods were applied to the detection and enumeration of both the total and viable L. pneumophila cells in water samples. The sensitivity of the IF methods coupled to SPC was 34 cells liter−1, and the reproducibility was good, with the coefficient of variation generally falling below 30%. IF methods were applied to the enumeration of total and viable L. pneumophila cells in 46 domestic hot water samples as well as in cooling tower water and natural water samples, such as thermal spring water and freshwater samples. Comparison with standard plate counts showed that (i) the total direct counts were always higher than the plate counts and (ii) the viable counts were higher than or close to the plate counts. With domestic hot waters, when the IF assay was combined with the viability test, SPC detected up to 3.4 × 103 viable but nonculturable L. pneumophila cells per liter. These direct IF methods could be a powerful tool for high-frequency monitoring of domestic hot waters or for investigating the occurrence of viable L. pneumophila in both man-made water systems and environmental water samples. PMID:21742913

  19. Method for detecting austenite grains in low-carbon steel after hot deformation

    NASA Astrophysics Data System (ADS)

    Ferdian, D.; Ariati, M.; Norman, A.

    2013-09-01

    The structure of low-carbon steel after hot deformation at 1060 and 960°C with different degrees is studied. A procedure is developed for specimen etching in a reagent based on picric acid making it possible to detect clear austenite grain boundaries and sub-boundaries after hot deformation.

  20. Leaf Oil Body Functions as a Subcellular Factory for the Production of a Phytoalexin in Arabidopsis1[W

    PubMed Central

    Shimada, Takashi L.; Takano, Yoshitaka; Shimada, Tomoo; Fujiwara, Masayuki; Fukao, Yoichiro; Mori, Masashi; Okazaki, Yozo; Saito, Kazuki; Sasaki, Ryosuke; Aoki, Koh; Hara-Nishimura, Ikuko

    2014-01-01

    Oil bodies are intracellular structures present in the seed and leaf cells of many land plants. Seed oil bodies are known to function as storage compartments for lipids. However, the physiological function of leaf oil bodies is unknown. Here, we show that leaf oil bodies function as subcellular factories for the production of a stable phytoalexin in response to fungal infection and senescence. Proteomic analysis of oil bodies prepared from Arabidopsis (Arabidopsis thaliana) leaves identified caleosin (CLO3) and α-dioxygenase (α-DOX1). Both CLO3 and α-DOX1 were localized on the surface of oil bodies. Infection with the pathogenic fungus Colletotrichum higginsianum promoted the formation of CLO3- and α-DOX1-positive oil bodies in perilesional areas surrounding the site of infection. α-DOX1 catalyzes the reaction from α-linolenic acid (a major fatty acid component of oil bodies) to an unstable compound, 2-hydroperoxy-octadecatrienoic acid (2-HPOT). Intriguingly, a combination of α-DOX1 and CLO3 produced a stable compound, 2-hydroxy-octadecatrienoic acid (2-HOT), from α-linolenic acid. This suggests that the colocalization of α-DOX1 and CLO3 on oil bodies might prevent the degradation of unstable 2-HPOT by efficiently converting 2-HPOT into the stable compound 2-HOT. We found that 2-HOT had antifungal activity against members of the genus Colletotrichum and that infection with C. higginsianum induced 2-HOT production. These results defined 2-HOT as an Arabidopsis phytoalexin. This study provides, to our knowledge, the first evidence that leaf oil bodies produce a phytoalexin under a pathological condition, which suggests a new mechanism of plant defense. PMID:24214535

  1. Microscopic physical biomarkers in carbonate hot springs: implications in the search for life on Mars

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Albert, F. G.; Chafetz, H. S.; Combie, J.; Graham, C. R.; Kieft, T. L.; Kivett, S. J.; McKay, D. S.; Steele, A.; Taunton, A. E.; hide

    2000-01-01

    Physical evidence of life (physical biomarkers) from the deposits of carbonate hot springs were documented at the scale of microorganisms--submillimeter to submicrometer. The four moderate-temperature (57 to 72 degrees C), neutral pH springs reported on in this study, support diverse communities of bacteria adapted to specific physical and chemical conditions. Some of the microbes coexist with travertine deposits in endolithic communities. In other cases, the microbes are rapidly coated and destroyed by precipitates but leave distinctive mineral fabrics. Some microbes adapted to carbonate hot springs produce an extracellular polymeric substance which forms a three-dimensional matrix with living cells and cell remains, known as a biofilm. Silicon and iron oxides often coat the biofilm, leading to long-term preservation. Submicrometer mineralized spheres composed of calcium fluoride or silica are common in carbonate hot spring deposits. Sphere formation is biologically mediated, but the spheres themselves are apparently not fossils or microbes. Additionally, some microbes selectively weather mineral surfaces in distinctive patterns. Hot spring deposits have been cited as prime locations for exobiological exploration of Mars. The presence of preserved microscopic physical biomarkers at all four sites supports a strategy of searching for evidence of life in hot spring deposits on Mars.

  2. Parametric Study of an Ablative TPS and Hot Structure Heatshield for a Mars Entry Capsule Vehicle

    NASA Technical Reports Server (NTRS)

    Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.

    2017-01-01

    The National Aeronautics and Space Administration is planning to send humans to Mars. As part of the Evolvable Mars Campaign, different en- try vehicle configurations are being designed and considered for delivering larger payloads than have been previously sent to the surface of Mars. Mass and packing volume are driving factors in the vehicle design, and the thermal protection for planetary entry is an area in which advances in technology can offer potential mass and volume savings. The feasibility and potential benefits of a carbon-carbon hot structure concept for a Mars entry vehicle is explored in this paper. The windward heat shield of a capsule design is assessed for the hot structure concept as well as an ablative thermal protection system (TPS) attached to a honeycomb sandwich structure. Independent thermal and structural analyses are performed to determine the minimum mass design. The analyses are repeated for a range of design parameters, which include the trajectory, vehicle size, and payload. Polynomial response functions are created from the analysis results to study the capsule mass with respect to the design parameters. Results from the polynomial response functions created from the thermal and structural analyses indicate that the mass of the capsule was higher for the hot structure concept as compared to the ablative TPS for the parameter space considered in this study.

  3. First analysis of the ν3 +ν5 combination band of SF6 observed at Doppler-limited resolution and effective model for the ν3 +ν5 -ν5 hot band

    NASA Astrophysics Data System (ADS)

    Faye, M.; Manceron, L.; Roy, P.; Boudon, V.; Loëte, M.

    2018-06-01

    Sulfur hexafluoride is a greenhouse gas with a long lifetime in the atmosphere and an important tracer for air mass circulation atmospheric models. The IR spectrum of this heavy species, however, features many hot bands at room temperature (at which only 30% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v6 and v5 = 1 vibrational states. Using a cryogenic long path cell with variable optical path length and temperatures regulated between 168 and 163 K, coupled to Synchrotron Radiation and a high resolution interferometer, Doppler-limited spectra of the very weak ν3 +ν5 band near 1450 cm-1 have been recorded. Low temperature was used to limit the presence of hot bands and simplify the rotational structure. The spectrum has been analyzed thanks to the XTDS software package. Combining with the results obtained previously on the weak difference bands in the far infrared region involving the v5 = 1 states, we are thus able to use the tensorial model to propose a spectroscopic parameter set for modelling the strong ν3 +ν5 -ν5 hot band. The model constitutes a coherent set of molecular parameters and enable spectral simulation for atmospheric sounding. Test simulations at different temperatures and in nitrogen broadened conditions are presented and compared with new experimental cross section data for the absorption region relevant for atmospheric quantification.

  4. Large structural, thin-wall castings made of metals subject to hot tearing, and their fabrication

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor)

    2001-01-01

    An article, such as a gas turbine engine mixer, is made by providing a mold structure defining a thin-walled, hollow article, and a base metal that is subject to hot tear cracking when cast in a generally equiaxed polycrystalline form, such as Rene' 108 and Mar-M247. The article is fabricated by introducing the molten base metal into the mold structure, and directionally solidifying the base metal in the mold structure to form a directionally oriented structure. The directionally oriented structure may be formed of a single grain or oriented multiple grains.

  5. Prediction of hot regions in protein-protein interaction by combining density-based incremental clustering with feature-based classification.

    PubMed

    Hu, Jing; Zhang, Xiaolong; Liu, Xiaoming; Tang, Jinshan

    2015-06-01

    Discovering hot regions in protein-protein interaction is important for drug and protein design, while experimental identification of hot regions is a time-consuming and labor-intensive effort; thus, the development of predictive models can be very helpful. In hot region prediction research, some models are based on structure information, and others are based on a protein interaction network. However, the prediction accuracy of these methods can still be improved. In this paper, a new method is proposed for hot region prediction, which combines density-based incremental clustering with feature-based classification. The method uses density-based incremental clustering to obtain rough hot regions, and uses feature-based classification to remove the non-hot spot residues from the rough hot regions. Experimental results show that the proposed method significantly improves the prediction performance of hot regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Fabrication and characterization of artificial hair cell sensor based on MWCNT-PDMS composite

    NASA Astrophysics Data System (ADS)

    Kim, Chi Yeon; Lee, Hyun Sup; Cho, Yo Han; Joh, Cheeyoung; Choi, Pyung; Park, Seong Jin

    2011-06-01

    The aim of this work is to design and fabricate a flow sensor using an artificial hair cell (AHC) inspired by biological hair cells of fish. The sensor consists of a single cilium structure with high aspect ratio and a mechanoreceptor using force sensitive resistor (FSR). The cilium structure is designed for capturing a drag force with direction due to flow field around the sensor and the mechanoreceptor is designed for sensing the drag force with direction from the cilium structure and converting it into an electric signal. The mechanoreceptor has a symmetric four electrodes to sense the drag force and its direction. To fabricate the single cilium structure with high aspect ratio, we have proposed a new design concept using a separated micro mold system (SMS) fabricated by the LIGA process. For a successful replication of the cilium structure, we used the hot embossing process with the help of a double-sided mold system. We used a composite of multiwall carbon nanotube and polydimethylsiloxane (MWCNT-PDMS). The performance of the mechanoreceptors was measured by a computer-controlled nanoindenter. We carried out several experiments with the sensor in the different flow rate and direction using the experimental test apparatus. To calibrate the sensor and calculate the velocity with direction based the signal from the sensor, we analyzed the coupled phenomena between flow field and the cilium structure to calculate the deflection of the cilium structure and the drag force applying to the cilium structure due to the flow field around sensor.

  7. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    PubMed

    Liang, Jingyan; Kang, Dedong; Wang, Yingge; Yu, Ying; Fan, Jianglin; Takashi, En

    2015-01-01

    Hot spring or hot spa bathing (Onsen) is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C) on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C) control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  8. Formation and interaction of multiple coherent phase space structures in plasma

    NASA Astrophysics Data System (ADS)

    Kakad, Amar; Kakad, Bharati; Omura, Yoshiharu

    2017-06-01

    The head-on collision of multiple counter-propagating coherent phase space structures associated with the ion acoustic solitary waves (IASWs) in plasmas composed of hot electrons and cold ions is studied here by using one-dimensional Particle-in-Cell simulation. The chains of counter-propagating IASWs are generated in the plasma by injecting the Gaussian perturbations in the equilibrium electron and ion densities. The head-on collisions of the counter-propagating electron and ion phase space structures associated with IASWs are allowed by considering the periodic boundary condition in the simulation. Our simulation shows that the phase space structures are less significantly affected by their collision with each other. They emerge out from each other by retaining their characteristics, so that they follow soliton type behavior. We also find that the electrons trapped within these IASW potentials are accelerated, while the ions are decelerated during the course of their collisions.

  9. Reaction kinetics and product distributions in photoelectrochemical cells. Technical progress report, March 15, 1992--March 14, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koval, C.A.

    1992-12-01

    Hot electron reaction studies at p-InP/CH{sub 3}CN interface revealed essential/desirable features for redox systems used to investigate hot carriers in photoelectrocehmical cells. Reduction of dibromoethylbenzene (DBEB) in presence of metallocene couples is being studied using rotating rink disk electrodes of n-and p-InP disks and Pt rings. At highly doped p-InP electrodes, reduction of DBEB can be very efficient (>30%). A minielectrochemical cell was used to investigate electron transfer at nonilluminated n-WSe{sub 2}/dimethylferrocene{sup +/0} interfaces.

  10. Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy.

    PubMed

    Antunes, Dinler A; Rigo, Maurício M; Freitas, Martiela V; Mendes, Marcus F A; Sinigaglia, Marialva; Lizée, Gregory; Kavraki, Lydia E; Selin, Liisa K; Cornberg, Markus; Vieira, Gustavo F

    2017-01-01

    Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient's own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide-ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide-MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC "hot-spots" for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made.

  11. Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy

    PubMed Central

    Antunes, Dinler A.; Rigo, Maurício M.; Freitas, Martiela V.; Mendes, Marcus F. A.; Sinigaglia, Marialva; Lizée, Gregory; Kavraki, Lydia E.; Selin, Liisa K.; Cornberg, Markus; Vieira, Gustavo F.

    2017-01-01

    Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient’s own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide–ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide–MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC “hot-spots” for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made. PMID:29046675

  12. An electrochemical model for hot-salt stress-corrosion of titanium alloys

    NASA Technical Reports Server (NTRS)

    Garfinkle, M.

    1972-01-01

    An electrochemical model of hot-salt stress-corrosion cracking of titanium alloys is proposed based on an oxygen-concentration cell. Hydrogen embrittlement is proposed as the direct cause of cracking, the hydrogen being generated as the results of the hydrolysis of complex halides formed at the shielded anode of the electrochemical cell. The model found to be consistent with the diverse observations made both in this study and by many investigators in this field.

  13. Ice-cooled vest for work in hot mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    A specially designed ice-cooled vest is worn while working in hot environments where cooling the mine air is not possible. The vest holds a total of 44 individual ice cells in packets that are firmly held near the wearer's skin. These ice cells remove heat from the wearer, reducing heat stress and increasing comfort. Laboratory testing at Pennsylvania State University showed that the cooling vest greatly prolongs the time that men can work in hot environments. Rescue men, wearing breathing apparatus and working in very humid air at 96/sup 0/F were able to work about 40% longer when using themore » vest. The vest has also been tested for several months in a chemical plant.« less

  14. Ammonia oxidation driven by archaea rather than bacteria in the hot spring at Tengchong geothermal field, China.

    NASA Astrophysics Data System (ADS)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Li, Jiwei; Ta, Kaiwen

    2015-04-01

    The occurrence of microbial mediated ammonia oxidation and these organisms are present in large numbers in natural environments indicated a potential biogeochemical role for them in the global nitrogen cycle. However, very little is understood about their role and contribution to nitrification in the high temperature extreme environments. Here we explore the ammonia oxidation rates and abundance of potential ammonia-oxidizing archaea (AOA) in upper and bottom sediments from Gongxiaoshe hot spring, Tengchong, Yunnan, China. The 15N-incorporating AOA cells and cell aggregated were detected with Fluorescence in situ hybridization (FISH) and Nano secondary ion mass spectrometry (Nano-SIMS). Ammonia oxidation rates measured using 15N-NO3- pool dilution in upper and bottom sediments (without NH4+ stimulated) were 4.8 and 5.3 nmol N g-1h-1, respectively. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both of the two spring sediments by 16S rRNA gene analysis. Furthermore, it should be noted that no ammonia-oxidizing bacterial clones detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present at 2.75-9.80×105 and 0.128-1.96×108 gene copies g-1 sediment. Based on the reaction rates and AOA abundance, we estimated the cell-specific nitrification rates were 0.41 to 0.79 fmol N archaeal cell-1 h-1, which are comparable to those observed in estuary environment. We suggest that AOA have the responsibility in nitrification in this hot spring, and these archaea rather than bacteria may be considered as a driver in nitrogen cycling in terrestrial hot ecosystems. Key words: ammonia-oxidizing archaea (AOA); nitrification; ammonia-oxidizing rate; hot spring;

  15. Highly Extensible Programmed Biosensing Circuits with Fast Memory

    DTIC Science & Technology

    2011-12-16

    single-cell imaging in microfluidic environment. Yeast strain YTS2ab_1 has constitutive Hog1-eGFP production and thus upon a step function of sorbitol ...expect a sorbitol pulse to cause Hog1-NeGFP to localize to the nucleus, and the resulting Hog1-Hot1 interaction to drive nuclear fluorescence...YTS2ab_3 – W303-A background, hot1D::loxP, hog1D::loxP, HO::Hog1:Hog1-NeGFP_Hot1:Hot1-CeGFP Time = 5 min prior to Sorbitol Pulse (A) Brightfield, 63X Oil

  16. Effects of Temperature on the Meiotic Recombination Landscape of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Zhang, Ke; Wu, Xue-Chang

    2017-01-01

    ABSTRACT Although meiosis in warm-blooded organisms takes place in a narrow temperature range, meiosis in many organisms occurs over a wide variety of temperatures. We analyzed the properties of meiosis in the yeast Saccharomyces cerevisiae in cells sporulated at 14°C, 30°C, or 37°C. Using comparative-genomic-hybridization microarrays, we examined the distribution of Spo11-generated meiosis-specific double-stranded DNA breaks throughout the genome. Although there were between 300 and 400 regions of the genome with high levels of recombination (hot spots) observed at each temperature, only about 20% of these hot spots were found to have occurred independently of the temperature. In S. cerevisiae, regions near the telomeres and centromeres tend to have low levels of meiotic recombination. This tendency was observed in cells sporulated at 14°C and 30°C, but not at 37°C. Thus, the temperature of sporulation in yeast affects some global property of chromosome structure relevant to meiotic recombination. Using single-nucleotide polymorphism (SNP)-specific whole-genome microarrays, we also examined crossovers and their associated gene conversion events as well as gene conversion events that were unassociated with crossovers in all four spores of tetrads obtained by sporulation of diploids at 14°C, 30°C, or 37°C. Although tetrads from cells sporulated at 30°C had slightly (20%) more crossovers than those derived from cells sporulated at the other two temperatures, spore viability was good at all three temperatures. Thus, despite temperature-induced variation in the genetic maps, yeast cells produce viable haploid products at a wide variety of sporulation temperatures. PMID:29259092

  17. Hypnosis for hot flashes among postmenopausal women study: A study protocol of an ongoing randomized clinical trial

    PubMed Central

    2011-01-01

    Background Hot flashes are a highly prevalent problem associated with menopause and breast cancer treatments. The recent findings from the Women's Health Initiative have important implications for the significance of a non-hormonal, mind-body intervention for hot flashes in breast cancer survivors. Women who take hormone therapy long-term may have a 1.2 to 2.0 fold increased risk of developing breast cancer. In addition, it is now known that hormone therapy with estrogen and progestin is associated with increased risk of cardiovascular disease and stroke. Currently there are limited options to hormone replacement therapy as non-hormonal pharmacological agents are associated with only modest activity and many adverse side effects. Because of this there is a need for more alternative, non-hormonal therapies. Hypnosis is a mind-body intervention that has been shown to reduce self-reported hot flashes by up to 68% among breast cancer survivors, however, the use of hypnosis for hot flashes among post-menopausal women has not been adequately explored and the efficacy of hypnosis in reducing physiologically measured hot flashes has not yet been determined. Methods/design A sample of 180 post-menopausal women will be randomly assigned to either a 5-session Hypnosis Intervention or 5-session structured-attention control with 12 week follow-up. The present study will compare hypnosis to a structured-attention control in reducing hot flashes (perceived and physiologically monitored) in post-menopausal women in a randomized clinical trial. Outcomes will be hot flashes (self-report daily diaries; physiological monitoring; Hot Flash Related Daily Interference Scale), anxiety (State-Trait Anxiety Inventory; Hospital Anxiety and Depression Scale (HADS); anxiety visual analog scale (VAS rating); depression (Center for Epidemiologic Studies Depression Scale), sexual functioning (Sexual Activity Questionnaire), sleep quality (Pittsburgh Sleep Quality Index) and cortisol. Discussion This study will be the first full scale test of hypnosis for hot flashes; one of the first studies to examine both perceived impact and physiologically measured impact of a mind-body intervention for hot flashes using state-of-the-art 24 hour ambulatory physiological monitoring; the first study to examine the effect of hypnosis for hot flashes on cortisol; and the first investigation of the role of cognitive expectancies in treatment of hot flashes in comparison to a Structured-Attention Control. Trial Registration This clinical trial has been registered with ClinicalTrials.gov, a service of the U.S. National Institutes of Health, ClinicalTrials.gov Identifier: NCT01293695. PMID:21989181

  18. Post-flare loops embedded in a hot coronal fan-like structure

    NASA Technical Reports Server (NTRS)

    Svestka, Z.; Farnik, F.; Hudson, H. S.; Hick, P.

    1997-01-01

    Limb events were demonstrated on the sun in which rising post-flare loops were embedded in hot structures looking in soft X-rays like fans of rays, formed during the flare and extending high into the corona. One of these structures is analyzed and it is suggested that these fans of rays represent temporary ministreamers, along which mass flows into interplanetary space. This suggestion is supported by maps of solar wind density constructed from scintillation measurements.

  19. In silico-designed novel non-peptidic ABAD LD hot spot mimetics reverse Aβ-induced mitochondrial impairments in vitro.

    PubMed

    Viswanath, Ambily Nath Indu; Kim, TaeHun; Jung, Seo Yun; Lim, Sang Min; Pae, Ae Nim

    2017-12-01

    Present work aimed to introduce non-peptidic ABAD loop D (L D ) hot spot mimetics as ABAD-Aβ inhibitors. A full-length atomistic model of ABAD-Aβ complex was built as a scaffold to launch the lead design and its topology later verified by cross-checking the computational mutagenesis results with that of in vitro data. Thereafter, the interactions of prime Aβ-binding L D residues-Tyr101, Thr108, and Thr110-were translated into specific pharmacophore features and this hypothesis subsequently used as a virtual screen query. ELISA-based screening of 20 hits identified two promising lead candidates, VC15 and VC19 with an IC 50 of 4.4 ± 0.3 and 9.6 ± 0.1 μm, respectively. They productively reversed Aβ-induced mitochondrial dysfunctions such as mitochondrial membrane potential loss (JC-1 assay), toxicity (MTT assay), and ATP reduction (ATP assay) in addition to increased cell viabilities. This is the first reporting of L D hot spot-centric in silico scheme to discover novel compounds with promising ABAD-Aβ inhibitory potential. These chemotypes are proposed for further structural optimization to derive novel Alzheimer's disease (AD) therapeutics. © 2017 John Wiley & Sons A/S.

  20. Magnesia tuned multi-walled carbon nanotubes–reinforced alumina nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Iftikhar, E-mail: ifahmad@ksu.edu.sa; Islam, Mohammad; Dar, Mushtaq Ahmad

    2015-01-15

    Magnesia tuned alumina ceramic nanocomposites, reinforced with multi-walled carbon nanotubes, were condensed using pressureless and hot-press sintering processes. Densification, microstructure and mechanical properties of the produced nanocomposites were meticulously investigated. Electron microscopy studies revealed the homogenous carbon nanotube dispersion within the alumina matrix and confirmed the retention of carbon nanotubes' distinctive tubular morphology and nanoscale features during the extreme mixing/sintering processes. Pressureless sintered nanocomposites showed meagre mechanical responses due to the poorly-integrated microstructures with a slight improvement upon magnesia addition. Conversely, both the magnesia addition and application of hot-press sintering technique resulted in the nanocomposite formation with near-theoretical densities (~more » 99%), well-integrated microstructures and superior mechanical properties. Hot-press sintered nanocomposites incorporating 300 and 600 ppm magnesia exhibited an increase in hardness (10 and 11%), flexural strength (5 and 10%) and fracture toughness (15 and 20%) with respect to similar magnesia-free samples. Compared to monolithic alumina, a decent rise in fracture toughness (37%), flexural strength (22%) and hardness (20%) was observed in the hot-press sintered nanocomposites tuned with merely 600 ppm magnesia. Mechanically superior hot-press sintered magnesia tailored nanocomposites are attractive for several load-bearing structural applications. - Highlights: • MgO tailored Al{sub 2}O{sub 3}–2 wt.% CNT nanocomposites are presented. • The role of MgO and sintering on nanocomposite structures and properties was studied. • Well-dispersed CNTs maintained their morphology/structure after harsh sintering. • Hot-pressing and MgO led nanocomposites to higher properties/unified structures. • MgO tuned composites showed higher toughness (37%) and strength (22%) than Al{sub 2}O{sub 3}.« less

  1. AIR VEHICLES INTEGRATION AND TECHNOLOGY RESEARCH (AVIATR) Task Order 0015: Predictive Capability for Hypersonic Structural Response and Life Prediction Phase 1 - Identification of Knowledge Gaps

    DTIC Science & Technology

    2010-08-01

    using load - bearing tanks with parasitic TPS was considered to be a lower weight design when all details were accounted for. The cold structure...share one very key element with the design of load bearing hot structure – the design drive toward thin gauge metallic skin under complex and coupled...39 skin panel joints and their susceptibility to high acoustic loading coupled with transient heating, and hot structure skin deflections and

  2. Structural hot spots for the solubility of globular proteins

    PubMed Central

    Ganesan, Ashok; Siekierska, Aleksandra; Beerten, Jacinte; Brams, Marijke; Van Durme, Joost; De Baets, Greet; Van der Kant, Rob; Gallardo, Rodrigo; Ramakers, Meine; Langenberg, Tobias; Wilkinson, Hannah; De Smet, Frederik; Ulens, Chris; Rousseau, Frederic; Schymkowitz, Joost

    2016-01-01

    Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. PMID:26905391

  3. Geo Techno Park potential at Arjuno-Welirang Volcano hosted geothermal area, Batu, East Java, Indonesia (Multi geophysical approach)

    NASA Astrophysics Data System (ADS)

    Maryanto, Sukir

    2017-11-01

    Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.

  4. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation.

    PubMed

    Weber, C R; Clark, D S; Cook, A W; Busby, L E; Robey, H F

    2014-05-01

    Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10-100.

  5. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation

    NASA Astrophysics Data System (ADS)

    Weber, C. R.; Clark, D. S.; Cook, A. W.; Busby, L. E.; Robey, H. F.

    2014-05-01

    Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10--100.

  6. Joint effects of citrus peel use and black tea intake on the risk of squamous cell carcinoma of the skin

    PubMed Central

    Hakim, Iman A; Harris, Robin B

    2001-01-01

    Background Differences in tea drinking habits and/or citrus peel use are likely to vary by populations and could contribute to the inconsistencies found between studies comparing their consumption and cancer risk. Methods A population-based case-control study was used to evaluate the relationships between citrus peel use and black tea intake and squamous cell carcinoma (SCC) of the skin. Moreover, we assessed the independent and interactive effects of citrus peel and black tea in the development of SCC. Results Hot and iced teas were consumed by 30.7% and 51.8% of the subjects, respectively. Peel consumption was reported by 34.5% of subjects. Controls were more likely than were cases to report citrus peel use (odds ratio (OR) = 0.67) and hot tea intake (OR = 0.79). After adjustment for hot and iced tea intake, the ORs associated with citrus peel use were 0.55 and 0.69, respectively, whereas the corresponding adjusted ORs for hot and iced tea intake after adjustment for citrus peel use were 0.87 and 1.22 respectively. Compared with those who did not consume hot black tea or citrus peel, the adjusted ORs associated with sole consumption of hot black tea or citrus peel were 0.60 and 0.30, respectively. Subjects who reported consumption of both hot black tea and citrus peel had a significant marked decrease (OR= 0.22; 95% CI = 0.10 – 0.51) risk of skin SCC. Conclusion These results indicate that both citrus peel use and strong (hot) black tea have independent potential protective effects in relation to skin SCC. PMID:11527506

  7. Resistivity structure and geochemistry of the Jigokudani Valley hydrothermal system, Mt. Tateyama, Japan

    NASA Astrophysics Data System (ADS)

    Seki, Kaori; Kanda, Wataru; Tanbo, Toshiya; Ohba, Takeshi; Ogawa, Yasuo; Takakura, Shinichi; Nogami, Kenji; Ushioda, Masashi; Suzuki, Atsushi; Saito, Zenshiro; Matsunaga, Yasuo

    2016-10-01

    This study clarifies the hydrothermal system of Jigokudani Valley near Mt. Tateyama volcano in Japan by using a combination of audio-frequency magnetotelluric (AMT) survey and hot-spring water analysis in order to assess the potential of future phreatic eruptions in the area. Repeated phreatic eruptions in the area about 40,000 years ago produced the current valley morphology, which is now an active solfatara field dotted with hot springs and fumaroles indicative of a well-developed hydrothermal system. The three-dimensional (3D) resistivity structure of the hydrothermal system was modeled by using the results of an AMT survey conducted at 25 locations across the valley in 2013-2014. The model suggests the presence of a near-surface highly conductive layer of < 50 m in thickness across the entire valley, which is interpreted as a cap rock layer. Immediately below the cap rock is a relatively resistive body interpreted as a gas reservoir. Field measurements of temperature, pH, and electrical conductivity (EC) were taken at various hot springs across the valley, and 12 samples of hot-spring waters were analyzed for major ion chemistry and H2O isotopic ratios. All hot-spring waters had low pH and could be categorized into three types on the basis of the Cl-/SO 42 - concentration ratio, with all falling largely on a mixing line between magmatic fluids and local meteoric water (LMW). The geochemical analysis suggests that the hydrothermal system includes a two-phase zone of vapor-liquid. A comparison of the resistivity structure and the geochemically inferred structure suggests that a hydrothermal reservoir is present at a depth of approximately 500 m, from which hot-spring water differentiates into the three observed types. The two-phase zone appears to be located immediately beneath the cap rock structure. These findings suggest that the hydrothermal system of Jigokudani Valley exhibits a number of factors that could trigger a future phreatic eruption.

  8. Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1).

    PubMed

    Zeng, Meijuan; Ximenes, Eduardo; Ladisch, Michael R; Mosier, Nathan S; Vermerris, Wilfred; Huang, Chia-Ping; Sherman, Debra M

    2012-02-01

    Lignin content, composition, distribution as well as cell wall thickness, structures, and type of tissue have a measurable effect on enzymatic hydrolysis of cellulose in lignocellulosic feedstocks. The first part of our work combined compositional analysis, pretreatment and enzyme hydrolysis for fractionated pith, rind, and leaf tissues from a hybrid stay-green corn, in order to identify the role of structural characteristics on enzyme hydrolysis of cell walls. The extent of enzyme hydrolysis follows the sequence rind < leaves < pith with 90% conversion of cellulose to glucose in 24 h in the best cases. Physical fractionation of corn stalks or other C(4) grasses into soft and hard tissue types could reduce cost of cellulose conversion by enabling reduced enzyme loadings to hydrolyze soft tissue, and directing the hard tissue to other uses such as thermal processing, combustion, or recycle to the land from which the corn was harvested. Copyright © 2011 Wiley Periodicals, Inc.

  9. Medium-energy heavy-ion single-event-burnout imaging of power MOSFETs

    NASA Astrophysics Data System (ADS)

    Musseau, O.; Torres, A.; Campbell, A. B.; Knudson, A. R.; Buchner, S.; Fischer, B.; Schlogl, M.; Briand, P.

    1999-12-01

    We present the first experimental determination of the SEB sensitive area in a power MOSFET irradiated with a high-LET heavy-ion microbeam. We used a spectroscopy technique to perform coincident measurements of the charge collected in both source and drain junctions together, with a nondestructive technique (current limitation). The resulting charge collection images are related to the physical structure of the individual cells. These experimental data reveal the complex 3-dimensional behavior of a real structure, which can not easily be simulated using available tools. As the drain voltage is increased, the onset of burnout is reached, characterized by a sudden change in the charge collection image. "Hot spots" are observed where the collected charge reaches its maximum value. Those spots, due to burnout triggering events, correspond to areas where the silicon is degraded through thermal effects along a single ion track. This direct observation of SEB sensitive areas as applications for, either device hardening, by modifying doping profiles or layout of the cells, or for code calibration and device simulation.

  10. Lithography with MeV Energy Ions for Biomedical Applications: Accelerator Considerations

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Whitlow, H. J.; Nakagawa, S. T.; Yoshida, E.

    2009-03-01

    MeV ion beam lithographies are very powerful techniques for 3D direct writing in positive or negtive photoresist materials. Nanometer-scale rough structures, or clear areas with straight vertical sidewalls as thin as a few 10's of nm in a resist of a few nm to 100 μm thickness can be made. These capabilities are particularly useful for lithography in cellular- and sub-cellular level biomedical research and technology applications. It can be used for tailor making special structures such as optical waveguides, biosensors, DNA sorters, spotting plates, systems for DNA, protein and cell separation, special cell-growth substrates and microfluidic lab-on-a-chip devices. Furthermore MeV ion beam lithography can be used for rapid prototyping, and also making master stamps and moulds for mass production by hot embossing and nanoimprint lithography. The accelerator requirements for three different high energy ion beam lithography techniques are overviewed. We consider the special requirements placed on the accelerator and how this is achieved for a commercial proton beam writing tool.

  11. Double layer-like structures in the core of an argon helicon plasma source with uniform magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umair Siddiqui, M., E-mail: musiddiqui@wisc.edu; Hershkowitz, Noah

    2014-02-15

    A hot (T{sub e} ≈ 10 eV) electron population is observed in the core of a 3 mTorr argon helicon plasma source at 500 W RF power and 900 G uniform axial magnetic field strength, 12 cm from the edge of the helicon antenna. A double layer-like structure consisting of a localized axial electric field of approximately 8 V/cm over 1–2 cm is observed adjacent to the hot electron population. The potential step generated by the electric field is shown to be large enough to trap the hot electrons. To our knowledge this is the first observation of these structures in the core of amore » helicon discharge.« less

  12. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, S. N.; Nagpal, V. K.; Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    This paper presents predictive methods/codes for computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of (1) acoustic noise generated from a vibrating component, (2) degradation in material properties of the composite laminate at use temperature, (3) dynamic response of acoustically excited hot multilayered composite structure, (4) degradation in the first-ply strength of the excited structure due to acoustic loading, and (5) acoustic fatigue resistance of the excited structure, including propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisure) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  13. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.; Nagpal, Vinod K.; Sutjahjo, Edhi

    1991-01-01

    Predictive methods/computer codes for the computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component are discussed. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of acoustic noise generated from a vibrating component, degradation in material properties of a composite laminate at use temperature, dynamic response of acoustically excited hot multilayered composite structure, degradation in the first ply strength of the excited structure due to acoustic loading, and acoustic fatigue resistance of the excited structure, including the propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisture) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  14. A Comparison of the Hot Spot and the Average Cancer Cell Counting Methods and the Optimal Cutoff Point of the Ki-67 Index for Luminal Type Breast Cancer.

    PubMed

    Arima, Nobuyuki; Nishimura, Reiki; Osako, Tomofumi; Nishiyama, Yasuyuki; Fujisue, Mamiko; Okumura, Yasuhiro; Nakano, Masahiro; Tashima, Rumiko; Toyozumi, Yasuo

    2016-01-01

    In this case-control study, we investigated the most suitable cell counting area and the optimal cutoff point of the Ki-67 index. Thirty recurrent cases were selected among hormone receptor (HR)-positive/HER2-negative breast cancer patients. As controls, 90 nonrecurrent cases were randomly selected by allotting 3 controls to each recurrent case based on the following criteria: age, nodal status, tumor size, and adjuvant endocrine therapy alone. Both the hot spot and the average area of the tumor were evaluated on a Ki-67 immunostaining slide. The median Ki-67 index value at the hot spot and average area were 25.0 and 14.5%, respectively. Irrespective of the area counted, the Ki-67 index value was significantly higher in all of the recurrent cases (p < 0.0001). The multivariate analysis revealed that the Ki-67 index value of 20% at the hot spot was the most suitable cutoff point for predicting recurrence. Moreover, higher x0394;Ki-67 index value (the difference between the hot spot and the average area, ≥10%) and lower progesterone receptor expression (<20%) were significantly correlated with recurrence. A higher Ki-67 index value at the hot spot strongly correlated with recurrence, and the optimal cutoff point was found to be 20%. © 2015 S. Karger AG, Basel.

  15. Protein binding hot spots prediction from sequence only by a new ensemble learning method.

    PubMed

    Hu, Shan-Shan; Chen, Peng; Wang, Bing; Li, Jinyan

    2017-10-01

    Hot spots are interfacial core areas of binding proteins, which have been applied as targets in drug design. Experimental methods are costly in both time and expense to locate hot spot areas. Recently, in-silicon computational methods have been widely used for hot spot prediction through sequence or structure characterization. As the structural information of proteins is not always solved, and thus hot spot identification from amino acid sequences only is more useful for real-life applications. This work proposes a new sequence-based model that combines physicochemical features with the relative accessible surface area of amino acid sequences for hot spot prediction. The model consists of 83 classifiers involving the IBk (Instance-based k means) algorithm, where instances are encoded by important properties extracted from a total of 544 properties in the AAindex1 (Amino Acid Index) database. Then top-performance classifiers are selected to form an ensemble by a majority voting technique. The ensemble classifier outperforms the state-of-the-art computational methods, yielding an F1 score of 0.80 on the benchmark binding interface database (BID) test set. http://www2.ahu.edu.cn/pchen/web/HotspotEC.htm .

  16. Microstructural analysis of hot press formed 22MnB5 steel

    NASA Astrophysics Data System (ADS)

    Aziz, Nuraini; Aqida, Syarifah Nur; Ismail, Izwan

    2017-10-01

    This paper presents a microstructural study on hot press formed 22MnB5 steel for enhanced mechanical properties. Hot press forming process consists of simultaneous forming and quenching of heated blank. The 22MnB5 steel was processed at three different parameter settings: quenching time, water temperature and water flow rate. 22MnB5 was processed using 33 full factorial design of experiment (DOE). The full factorial DOE was designed using three factors of quenching time, water temperature and water flow rate at three levels. The factors level were quenching time range of 5 - 11 s, water temperature; 5 - 27°C and water flow rate; 20 - 40 L/min. The as-received and hot press forming processed steel was characterised for metallographic study and martensitic structure area percentage using JEOL Field Emission Scanning Electron Microscopic (FESEM). From the experimental finding, the hot press formed 22MnB5 steel consisted of 50 to 84% martensitic structure area. The minimum quenching time of 8 seconds was required to obtain formed sample with high percentage of martensite. These findings contribute to initial design of processing parameters in hot press forming of 22MnB5 steel blanks for automotive component.

  17. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged.

    PubMed

    Zykwinska, Agata; Thibault, Jean-François; Ralet, Marie-Christine

    2007-01-01

    The structure of arabinan and galactan domains in association with cellulose microfibrils was investigated using enzymatic and alkali degradation procedures. Sugar beet and potato cell wall residues (called 'natural' composites), rich in pectic neutral sugar side chains and cellulose, as well as 'artificial' composites, created by in vitro adsorption of arabinan and galactan side chains onto primary cell wall cellulose, were studied. These composites were sequentially treated with enzymes specific for pectic side chains and hot alkali. The degradation approach used showed that most of the arabinan and galactan side chains are in strong interaction with cellulose and are not hydrolysed by pectic side chain-degrading enzymes. It seems unlikely that isolated arabinan and galactan chains are able to tether adjacent microfibrils. However, cellulose microfibrils may be tethered by different pectic side chains belonging to the same pectic macromolecule.

  18. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    NASA Astrophysics Data System (ADS)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  19. Lignin structural alterations in thermochemical pretreatments with limited delignification

    DOE PAGES

    Pu, Yunqiao; Hu, Fan; Huang, Fang; ...

    2015-08-02

    Lignocellulosic biomass has a complex and rigid cell wall structure that makes biomass recalcitrant to biological and chemical degradation. Among the three major structural biopolymers (i.e., cellulose, hemicellulose and lignin) in plant cell walls, lignin is considered the most recalcitrant component and generally plays a negative role in the biochemical conversion of biomass to biofuels. The conversion of biomass to biofuels through a biochemical platform usually requires a pretreatment stage to reduce the recalcitrance. Pretreatment renders compositional and structural changes of biomass with these changes ultimately govern the efficiency of the subsequent enzymatic hydrolysis. Dilute acid, hot water, steam explosion,more » and ammonia fiber expansion pretreatments are among the leading thermochemical pretreatments with a limited delignification that can reduce biomass recalcitrance. Practical applications of these pretreatment are rapidly developing as illustrated by recent commercial scale cellulosic ethanol plants. While these thermochemical pretreatments generally lead to only a limited delignification and no significant change of lignin content in the pretreated biomass, the lignin transformations that occur during these pretreatments and the roles they play in recalcitrance reduction is an important research aspect. This review highlights recent advances in our understanding of lignin alterations during these limited delignification thermochemical pretreatments, with emphasis on lignin chemical structures, molecular weights, and redistributions in the pretreated biomass.« less

  20. Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation

    DOEpatents

    LaCount, Robert B.

    1993-01-01

    A furnace with two hot zones holds multiple analysis tubes. Each tube has a separable sample-packing section positioned in the first hot zone and a catalyst-packing section positioned in the second hot zone. A mass flow controller is connected to an inlet of each sample tube, and gas is supplied to the mass flow controller. Oxygen is supplied through a mass flow controller to each tube to either or both of an inlet of the first tube and an intermediate portion between the tube sections to intermingle with and oxidize the entrained gases evolved from the sample. Oxidation of those gases is completed in the catalyst in each second tube section. A thermocouple within a sample reduces furnace temperature when an exothermic condition is sensed within the sample. Oxidized gases flow from outlets of the tubes to individual gas cells. The cells are sequentially aligned with an infrared detector, which senses the composition and quantities of the gas components. Each elongated cell is tapered inward toward the center from cell windows at the ends. Volume is reduced from a conventional cell, while permitting maximum interaction of gas with the light beam. Reduced volume and angulation of the cell inlets provide rapid purgings of the cell, providing shorter cycles between detections. For coal and other high molecular weight samples, from 50% to 100% oxygen is introduced to the tubes.

  1. Dynamic Response of X-37 Hot Structure Control Surfaces Exposed to Controlled Reverberant Acoustic Excitation

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Rizzi, Stephen A.; Rice, Chad E.

    2004-01-01

    This document represents a compilation of three informal reports from reverberant acoustic tests performed on X-37 hot structure control surfaces in the NASA Langley Research Center Structural Acoustics Loads and Transmission (SALT) facility. The first test was performed on a carbon-silicone carbide flaperon subcomponent on February 24, 2004. The second test was performed on a carbon-carbon ruddervator subcomponent on May 27, 2004. The third test was performed on a carbon-carbon flaperon subcomponent on June 30, 2004.

  2. Turbine Engine Hot Section Technology 1986

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Turbine Engine Hot Section Technology (HOST) Project of the NASA Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine durability problems. Presentations were made concerning the hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes. The presentations were divided into six sessions: Instrumentation, Combustion, Turbine Heat Transfer, Structural Analysis, Fatigue and Fracture, and Surface Protection. Topics discussed included modeling of thermal and fluid-flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response, and life-prediction methods. Researchers from industry, academia, and government presented results of their work sponsored by the HOST project.

  3. Milestones Towards Hot CMC Structures for Operational Space Rentry Vehicles

    NASA Astrophysics Data System (ADS)

    Hald, H.; Weihs, H.; Reimer, T.

    2002-01-01

    Hot structures made of ceramic matrix composites (CMC) for space reentry vehicles play a key role regarding feasibility of advanced and reusable future space transportation systems. Thus realization of applicable flight hardware concerning hot primary structures like a nose cap or body flaps and thermal protection systems (TPS) requires system competence w.r.t. sophisticated know how in material processing, manufacturing and qualification of structural components and in all aspects from process control, use of NDI techniques, arc jet testing, hot structure testing to flight concept validation. This goal has been achieved so far by DLR while following a dedicated development road map since more than a decade culminating at present in the supply of the nose cap system for NASA's X-38; the flight hardware has been installed successfully in October 2001. A number of unique hardware development milestones had to be achieved in the past to finally reach this level of system competence. It is the intention of this paper to highlight the most important technical issues and achievements from the essential projects and developments to finally provide a comprehensive insight into DLR's past and future development road map w.r.t. CMC hot structures for space reentry vehicles. Based on DLR's C/C-SiC material which is produced with the inhouse developed liquid silicon infiltration process (LSI) the development strategy first concentrated on basic material properties evaluation in various arc jet testing facilities. As soon as a basic understanding of oxidation and erosion mechanisms had been achieved further efforts concentrated on inflight verification of both materials and design concepts for hot structures. Consequently coated and uncoated C/C-SiC specimens were integrated into the ablative heat shield of Russian FOTON capsules and they were tested during two missions in 1992 and 1994. Following on, a hot structure experiment called CETEX which principally was a kind of a little nose cap had been developed and tested during the EXPRESS mission in 1995. These three flight tests were the first ones in Europe carried out with such a kind of material and hot structural concept and manifold lessons learned w.r.t. material behaviour and structural design performance under the severe environment conditions of ballistic capsule reentry could be achieved. Within an ESA program called FESTIP we developed a new design concept for a rigid surface TPS based on CMC's which should be adaptable to the outer side of a cryogenic tank structure of a future SSTO vehicle. Special TPS concept features are (flat) integral stiffened CMC panels, hot CMC fasteners for outside attachment capability, thermal displacement compensation, sealing and insulation, provision of a purge gap etc. Two test samples have been constructed and manufactured in close cooperation with industrial companies and finally they were tested very successfully under realistic thermal and mechanical loading conditions. A further key technology is high temperature fastening of shell like CMC components; here two new CMC based fastener concepts featuring a combination of screwing and riveting methods could be developed and qualified even under high temperature fatigue loads within ESA and national German programs. In addition high temperature testing technology has been matured over years and some extraordinary tests of components like the EMA bearing for the X-38 body flaps designed and manufactured by MAN-T could be tested very successfully. Finally these developments put DLR in the position to develop and provide the nose cap system for X-38 from NASA and some of the most demanding basic features will be highlighted briefly (details in a separate paper). Reflecting the described developments and considering near future programs like CRV and other ongoing experimental developments it is obvious that we now entered a state of transition from basic technology development towards operational use of such kind of materials and structures.

  4. Do weather conditions correlate with findings in failed, provision-filled nest cells of Megachile rotundata (Hymenoptera: Megachilidae) in western North America?

    PubMed

    Pitts-Singer, Theresa L; James, Rosalind R

    2008-06-01

    Cavity-nesting alfalfa leafcutting bees, Megachile rotundata (F.) (Hymenoptera: Megachilidae), are excellent pollinators of alfalfa, Medicago savita L., for seed production. In commercial settings, artificial cavities are placed in field domiciles for nesting and, thereby, bee populations are sustained for future use. For this study, cells from leafcutting bee nests were collected in late summer from commercial seed fields. Over 3 yr (2003-2005), 39 samples in total of approximately equal to 1,000 cells each were taken from several northwestern U.S. states and from Manitoba, Canada. X-radiography of 500 cells from each sample was used to identify "pollen balls" (i.e., cells in which the pollen-nectar provision remained, but the egg or larva, if present, was not detectable on an x-radiograph). Most U.S. samples seemed to have higher proportions of pollen ball cells than Manitoba samples. Pollen ball cells were dissected to determine the moisture condition of the mass provision and true contents of each cell. Most pollen ball cells from Manitoba samples contained fungus, the frequency of which was positively correlated with cool, wet weather. In the United States, most pollen ball cells had moist provisions, and many of them lacked young brood. Correlation analysis revealed that pollen ball cells occurred in greater proportions in fields with more hot days (above 38 degrees C). Broodless pollen ball cells occurred in greater proportions under cool conditions, but dead small larvae (second-third instars) seemed to occur in greater proportions under hot conditions. Pollen ball cells with unhatched eggs and first instars (in the chorion) occurred in lesser proportions under hot conditions.

  5. Nanoscale Microelectronic Circuit Development

    DTIC Science & Technology

    2011-06-17

    structure to obtain a one-hot-encoded output instead of a thermometer code …………………………………………………………………………44 Figure 37. A folded ...thermometer code Figure 37. A folded PLINCO cell. The output of the PLINCO is 8-wide, but only the left half or right half is passed on. A carry...noise figure requirements are not stringent since the GPS signal is spread spectrum coded , providing over 40 dB of processing gain and easing the

  6. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples.

    PubMed

    Yu, Feiqiao Brian; Blainey, Paul C; Schulz, Frederik; Woyke, Tanja; Horowitz, Mark A; Quake, Stephen R

    2017-07-05

    Metagenomics and single-cell genomics have enabled genome discovery from unknown branches of life. However, extracting novel genomes from complex mixtures of metagenomic data can still be challenging and represents an ill-posed problem which is generally approached with ad hoc methods. Here we present a microfluidic-based mini-metagenomic method which offers a statistically rigorous approach to extract novel microbial genomes while preserving single-cell resolution. We used this approach to analyze two hot spring samples from Yellowstone National Park and extracted 29 new genomes, including three deeply branching lineages. The single-cell resolution enabled accurate quantification of genome function and abundance, down to 1% in relative abundance. Our analyses of genome level SNP distributions also revealed low to moderate environmental selection. The scale, resolution, and statistical power of microfluidic-based mini-metagenomics make it a powerful tool to dissect the genomic structure of microbial communities while effectively preserving the fundamental unit of biology, the single cell.

  7. Fast-Response-Time Shape-Memory-Effect Foam Actuators

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2010-01-01

    Bulk shape memory alloys, such as Nitinol or CuAlZn, display strong recovery forces undergoing a phase transformation after being strained in their martensitic state. These recovery forces are used for actuation. As the phase transformation is thermally driven, the response time of the actuation can be slow, as the heat must be passively inserted or removed from the alloy. Shape memory alloy TiNi torque tubes have been investigated for at least 20 years and have demonstrated high actuation forces [3,000 in.-lb (approximately equal to 340 N-m) torques] and are very lightweight. However, they are not easy to attach to existing structures. Adhesives will fail in shear at low-torque loads and the TiNi is not weldable, so that mechanical crimp fits have been generally used. These are not reliable, especially in vibratory environments. The TiNi is also slow to heat up, as it can only be heated indirectly using heater and cooling must be done passively. This has restricted their use to on-off actuators where cycle times of approximately one minute is acceptable. Self-propagating high-temperature synthesis (SHS) has been used in the past to make porous TiNi metal foams. Shape Change Technologies has been able to train SHS derived TiNi to exhibit the shape memory effect. As it is an open-celled material, fast response times were observed when the material was heated using hot and cold fluids. A methodology was developed to make the open-celled porous TiNi foams as a tube with integrated hexagonal ends, which then becomes a torsional actuator with fast response times. Under processing developed independently, researchers were able to verify torques of 84 in.-lb (approximately equal to 9.5 Nm) using an actuator weighing 1.3 oz (approximately equal to 37 g) with very fast (less than 1/16th of a second) initial response times when hot and cold fluids were used to facilitate heat transfer. Integrated structural connections were added as part of the net shape process, eliminating the need for welding, adhesives, or mechanical crimping. Inexpensive net-shape processing was used, which reduces the cost of the actuator by over a factor of 10 over nonporous TiNi made by hot drawing of tube or electrical discharge machining. By forming the alloy as an open-celled foam, the surface area for heat transfer is dramatically increased, allowing for much faster response times. The technology also allows for netshape fabrication of the actuator, which allows for structural connections to be integrated into the actuator material, making these actuators significantly less expensive. Commercial applications include actuators for concepts such as the variable area chevron and nozzle in jet aircraft. Lightweight tube or rod components can be supplied to interested parties.

  8. Extensive Myiasis infestation associated with Oral Squamous Cell Carcinoma: Report of two cases

    PubMed Central

    Biradar, Sudharani; Wankhede, Pranali; Munde, Anita; Shaikh, Safia

    2015-01-01

    Myiasis is the condition of infestation of the body by fly larvae (maggots). The deposited eggs develop into larvae, which penetrate deep structures causing adjacent tissue destruction. It is an uncommon clinical condition, being more frequent in tropical countries and hot climate regions, and associated with poor hygiene, suppurative oral lesions, alcoholism and senility. The diagnosis of Myiasis is basically made by the presence of larvae. The reported cases of oral Myiasis associated with oral cancer in the literature are few. This paper reports two cases of oral and maxillofacial Myiasis involving larvae in patients with squamous cell carcinoma in adult males. The condition was managed by manual removal of the larvae, one by one, with the help of forceps and subsequent management through proper health care. PMID:25709682

  9. Hot compression process for making edge seals for fuel cells

    DOEpatents

    Dunyak, Thomas J.; Granata, Jr., Samuel J.

    1994-01-01

    A hot compression process for forming integral edge seals in anode and cade assemblies wherein the assemblies are made to a nominal size larger than a finished size, beads of AFLAS are applied to a band adjacent the peripheral margins on both sides of the assemblies, the assemblies are placed in a hot press and compressed for about five minutes with a force sufficient to permeate the peripheral margins with the AFLAS, cooled and cut to finished size.

  10. Protein-protein interface analysis and hot spots identification for chemical ligand design.

    PubMed

    Chen, Jing; Ma, Xiaomin; Yuan, Yaxia; Pei, Jianfeng; Lai, Luhua

    2014-01-01

    Rational design for chemical compounds targeting protein-protein interactions has grown from a dream to reality after a decade of efforts. There are an increasing number of successful examples, though major challenges remain in the field. In this paper, we will first give a brief review of the available methods that can be used to analyze protein-protein interface and predict hot spots for chemical ligand design. New developments of binding sites detection, ligandability and hot spots prediction from the author's group will also be described. Pocket V.3 is an improved program for identifying hot spots in protein-protein interface using only an apo protein structure. It has been developed based on Pocket V.2 that can derive receptor-based pharmacophore model for ligand binding cavity. Given similarities and differences between the essence of pharmacophore and hot spots for guiding design of chemical compounds, not only energetic but also spatial properties of protein-protein interface are used in Pocket V.3 for dealing with protein-protein interface. In order to illustrate the capability of Pocket V.3, two datasets have been used. One is taken from ASEdb and BID having experimental alanine scanning results for testing hot spots prediction. The other is taken from the 2P2I database containing complex structures of protein-ligand binding at the original protein-protein interface for testing hot spots application in ligand design.

  11. Influence of Plastic Deformation on Martensitic Transformation During Hot Stamping of Complex Structure Auto Parts

    NASA Astrophysics Data System (ADS)

    Shen, Yuhan; Song, Yanli; Hua, Lin; Lu, Jue

    2017-04-01

    The ultra-high strength steel auto parts manufactured by hot stamping are widely applied for weight reduction and safety improvement. During the hot stamping process, hot forming and quenching are performed in one step wherein plastic deformation and phase transformation simultaneously take place and affect each other. Thereinto, the influence of deformation on martensitic transformation is of great importance. In the present paper, the influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts was investigated. For this purpose, a B-pillar reinforced panel in B1500HS steel was manufactured by hot stamping, and the process was simulated by finite element software based on a thermo-mechanical-metallurgical coupled model. Considering various deformation degrees, the microstructures and mechanical properties at four typical locations of the hot stamped B-pillar reinforced panel were detected. The results show that the martensitic content and the microhardness increase with the increase in the deformation amount. There are two reasons causing this phenomenon: (1) the increase in mechanical driving force and (2) the increased probability of the martensitic nucleation at crystal defects. The x-ray diffraction analysis indicates the carbon enrichment in retained austenite which results from the carbon diffusion during the low-carbon martensite formation. Furthermore, the carbon content decreases with the increase in the deformation amount, because the deformation of austenite suppresses the carbon diffusion.

  12. Clinical Hypnosis in the Treatment of Post-Menopausal Hot Flashes: A Randomized Controlled Trial

    PubMed Central

    Elkins, Gary R.; Fisher, William I.; Johnson, Aimee K.; Carpenter, Janet S.; Keith, Timothy Z.

    2012-01-01

    Objective The use of estrogen and progesterone to manage vasomotor symptoms (i.e., hot flashes, night sweats) has declined due to concerns over their risks and there is an increased interest in alternate, effective, and low-risk treatments. This study reports the results of a randomized, controlled trial of clinical hypnosis in treating vasomotor symptoms among post-menopausal women. Methods Randomized, single-blind, controlled, clinical trial involving 187 post-menopausal women reporting a minimum of seven hot flashes per day, or at least 50 hot flashes a week at baseline between December 2008 and April 2012. Eligible participants received five weekly sessions of either clinical hypnosis or structured-attention control. Primary outcomes were hot flash frequency (subjectively and physiologically recorded) and hot flash score assessed by daily diaries at weeks 2–6, and 12. Secondary outcomes included measures of hot flash related daily interference, sleep quality and treatment satisfaction. Results In a modified intent-to-treat analysis that included all randomized participants that provided data, reported subjective hot flash frequency from baseline to week 12 showed a mean reduction of 55.82 hot flashes for the clinical hypnosis intervention (74.16%), versus a 12.89 hot flash reduction (17.13%) for the control (p<.001, 95% CI, 36.15–49.67). Mean reduction in hot flash score was 18.83 (80.32%) for the clinical hypnosis intervention as compared to 3.53 (15.38%) for the control (p<.001, 95% CI, 12.60–17.54). At 12 week follow-up, the mean reduction in physiologically monitored hot flashes was 5.92 (56.86%) for clinical hypnosis and .88 (9.94%) for the control (p<.001, 95% CI, 2.00–5.46). Secondary outcomes were significantly improved compared to control at 12 week follow-up in hot flash related interference (p<.001, 95% CI, 2.74–4.02), sleep quality (p<.001, 95% CI, 3.65–5.84), and treatment satisfaction (p<.001, 95% CI, 7.79–8.59). Conclusion Compared to a structured attention control, clinical hypnosis resulted in significant reductions in self-reported and physiologically measured hot flashes as well as hot flash scores in post-menopausal women. PMID:23435026

  13. Dynamically hot galaxies. I - Structural properties

    NASA Technical Reports Server (NTRS)

    Bender, Ralf; Burstein, David; Faber, S. M.

    1992-01-01

    Results are reported from an analysis of the structural properties of dynamically hot galaxies which combines central velocity dispersion, effective surface brightness, and effective radius into a new 3-space (k), in which the axes are parameters that are physically meaningful. Hot galaxies are found to divide into groups in k-space that closely parallel conventional morphological classifications, namely, luminous ellipticals, compacts, bulges, bright dwarfs, and dwarf spheroidals. A major sequence is defined by luminous ellipticals, bulges, and most compacts, which together constitute a smooth continuum in k-space. Several properties vary smoothly with mass along this continuum, including bulge-to-disk ratio, radio properties, rotation, degree of velocity anisotropy, and 'unrelaxed'. A second major sequence is comprised of dwarf ellipticals and dwarf spheroidals. It is suggested that mass loss is a major factor in hot dwarf galaxies, but the dwarf sequence cannot be simply a mass-loss sequence, as it has the wrong direction in k-space.

  14. Formation of biogenic sheath-like Fe oxyhydroxides in a near-neutral pH hot spring: Implications for the origin of microfossils in high-temperature, Fe-rich environments

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Chen, Shun; Xu, Hengchao

    2013-12-01

    small hot spring that is informally called "Fe-waterfall spring" and is located in the Rehai geothermal area discharges hot (42 to 73°C), near-neutral (pH = 7.65) Fe-rich water. Submerged reddish precipitates are composed largely of ferrihydrite, goethite, lepidocrocite, opal-A, quartz, and anorthite, as revealed by X-ray diffraction (XRD) and Mössbauer spectroscopy. Molecular phylogenetic analysis demonstrates that the bacterial community in these precipitates is mainly composed of Cyanobacteria, Planctomycetes, β-proteobacteria, Deinococci-Thermus, and Chlorobi. Scanning electron microscopy and high-resolution transmission electron microscopy examinations show that abundant sheath-like Fe oxyhydroxides, which exhibit different morphologies and sizes, are present in Fe-rich precipitates. These sheath-like structures are composed of ferrihydrite rather than more crystalline lepidocrocite or goethite. Energy-dispersive X-ray spectrometer, scanning transmission electron microscopy, and nano secondary ion mass spectrometry reveal that they are mainly composed of Fe, Si, and O, together with some trace elements. Most of the sheath-like structures are not morphologically comparable to biogenic Fe oxyhydroxides produced by known chemolithotrophic Fe oxidizers, which is consistent with the fact that no chemolithotrophic Fe oxidizers were identified by molecular analysis in the precipitates. We suggest that the sheath-like Fe oxyhydroxides are formed through passive Fe sorption and nucleation onto the cell walls of various thermophiles rather than by the direct metabolic activities of chemolithotrophic Fe oxidizers. Biogenic sheath-like Fe oxyhydroxides in Fe-waterfall spring have important implications for geochemical cycles driven by microorganisms, the origin of microfossils, and the formation of banded iron formations (BIFs) in the Archean ocean.

  15. Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs

    USGS Publications Warehouse

    Campbell, Kate M.; Kouris, Angela; England, Whitney; Anderson, Rika E.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Whitaker, Rachel J.

    2017-01-01

    Abiotic and biotic forces shape the structure and evolution of microbial populations. We investigated forces that shape the spatial and temporal population structure of Sulfolobus islandicus by comparing geochemical and molecular analysis from seven hot springs in five regions sampled over 3 years in Yellowstone National Park. Through deep amplicon sequencing, we uncovered 148 unique alleles at two loci whose relative frequency provides clear evidence for independent populations in different hot springs. Although geography controls regional geochemical composition and population differentiation, temporal changes in population were not explained by corresponding variation in geochemistry. The data suggest that the influence of extinction, bottleneck events and/or selective sweeps within a spring and low migration between springs shape these populations. We suggest that hydrologic events such as storm events and surface snowmelt runoff destabilize smaller hot spring environments with smaller populations and result in high variation in the S. islandicus population over time. Therefore, physical abiotic features such as hot spring size and position in the landscape are important factors shaping the stability and diversity of the S. islandicus meta-population within Yellowstone National Park.

  16. The effects of morphine on the temporal structure of Wistar rat behavioral response to pain in hot-plate.

    PubMed

    Casarrubea, Maurizio; Faulisi, Fabiana; Magnusson, Magnus S; Crescimanno, Giuseppe

    2016-08-01

    The largest amount of researches on the hot-plate test was carried out using quantitative assessments. However, the evaluation of the relationships among the different elements that compose the behavioral response to pain requires different approaches. Although previous studies have provided clear information on the behavioral structure of the response, no data are available on its temporal structure. The objective of this study was to investigate the temporal structure of the behavioral response to pain in Wistar rat tested in hot-plate and how this structure was influenced by morphine-induced analgesia. The behavior of four groups of subjects tested in hot-plate, one administered saline and three with different doses (3, 6, 12 mg/kg) of morphine IP, was analyzed by means of quantitative and t-pattern analyses. The latter is a multivariate technique able to detect the existence of statistically significant temporal relationships among the behavioral events in time. A clear-cut influence of morphine on quantitative parameters of the response to the noxious stimulation was observed. T-pattern analysis evidenced profound structural changes of behavior. Twenty-four different t-patterns were identified following saline, whereas a dose-dependent reduction was observed following morphine. Such a reduction was accompanied by a decrease of the total amount of t-patterns detected. Morphine, by reducing the effects of the noxious stimulation, orients animal behavior prevalently toward exploratory t-patterns. In addition, it is suggested that the temporal structure of the response is very quickly organized and adapted to environmental noxious cues.

  17. Structural evolution of molybdenum carbides in hot aqueous environments and impact on low-temperature hydroprocessing of acetic acid

    DOE PAGES

    Choi, Jae -Soon; Schwartz, Viviane; Santillan-Jimenez, Eduardo; ...

    2015-03-13

    In this paper, we investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating themore » possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. Finally, the results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.« less

  18. Effect of Starting As-cast Structure on the Microstructure-Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay

    2018-03-01

    Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.

  19. Effect of Starting As-cast Structure on the Microstructure-Texture Evolution During Subsequent Processing and Finally Ridging Behavior of Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay

    2018-06-01

    Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.

  20. UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.

    NASA Astrophysics Data System (ADS)

    Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas

    2018-01-01

    The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.

  1. A Burke-Schumann Analysis of Dual-Flame Structure Supported by a Burning Droplet

    NASA Technical Reports Server (NTRS)

    Nayagam, V.; Dietrich, D.; Williams, F. A.

    2016-01-01

    Droplet combustion experiments carried out onboard the International Space Station (ISS), using pure fuels and fuel mixtures, have shown that quasi-steady burning can be sustained by a non-traditional flame configuration, namely a "cool flame" burning in the "partial-burning" regime where both fuel and oxygen leak through the low-temperature controlled flame-sheet. Recent experiments involving large, bi-component fuel (n-decane and hexanol, 50/50 by volume) droplets at elevated pressures show that the visible, hot flame becomes extremely weak while the burning rate remains relatively high, suggesting the possibility of simultaneous presence of "cool" and "hot" flames of roughly equal importance. The radiant output from these bi-component droplets is relatively high and cannot be accounted for only by the presence of a visible hot-flame. In this analysis we explore the theoretical possibility of a dual-flame structure, where one flame lies close to the droplet surface called the "cool-flame," and other farther away from the droplet surface, termed the "hot-flame." A Burke-Schumann analysis of this dual-structure seems to indicate such flame structures are possible over a narrow range of initial conditions. Theoretical results can be compared against available experimental data for pure and bi-component fuel droplet combustion to test how realistic the model may be.

  2. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.

    PubMed

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-12-03

    Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

  3. Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems.

    PubMed

    Shen, S C; Chang, S J; Yeh, C Y; Teng, P C

    2013-11-04

    In this paper, total internal reflection-refraction (TIR-R) concentration (U-TIR-R-C) lens module were designed for uniformity using the energy configuration method to eliminate hot spots on the surface of solar cell and increase conversion efficiency. The design of most current solar concentrators emphasizes the high-power concentration of solar energy, however neglects the conversion inefficiency resulting from hot spots generated by uneven distributions of solar energy concentrated on solar cells. The energy configuration method proposed in this study employs the concept of ray tracing to uniformly distribute solar energy to solar cells through a U-TIR-R-C lens module. The U-TIR-R-C lens module adopted in this study possessed a 76-mm diameter, a 41-mm thickness, concentration ratio of 1134 Suns, 82.6% optical efficiency, and 94.7% uniformity. The experiments demonstrated that the U-TIR-R-C lens module reduced the core temperature of the solar cell from 108 °C to 69 °C and the overall temperature difference from 45 °C to 10 °C, and effectively relative increased the conversion efficiency by approximately 3.8%. Therefore, the U-TIR-R-C lens module designed can effectively concentrate a large area of sunlight onto a small solar cell, and the concentrated solar energy can be evenly distributed in the solar cell to achieve uniform irradiance and effectively eliminate hot spots.

  4. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER.

    PubMed

    Heusermann, Wolf; Hean, Justin; Trojer, Dominic; Steib, Emmanuelle; von Bueren, Stefan; Graff-Meyer, Alexandra; Genoud, Christel; Martin, Katrin; Pizzato, Nicolas; Voshol, Johannes; Morrissey, David V; Andaloussi, Samir E L; Wood, Matthew J; Meisner-Kober, Nicole C

    2016-04-25

    Exosomes are nanovesicles released by virtually all cells, which act as intercellular messengers by transfer of protein, lipid, and RNA cargo. Their quantitative efficiency, routes of cell uptake, and subcellular fate within recipient cells remain elusive. We quantitatively characterize exosome cell uptake, which saturates with dose and time and reaches near 100% transduction efficiency at picomolar concentrations. Highly reminiscent of pathogenic bacteria and viruses, exosomes are recruited as single vesicles to the cell body by surfing on filopodia as well as filopodia grabbing and pulling motions to reach endocytic hot spots at the filopodial base. After internalization, exosomes shuttle within endocytic vesicles to scan the endoplasmic reticulum before being sorted into the lysosome as their final intracellular destination. Our data quantify and explain the efficiency of exosome internalization by recipient cells, establish a new parallel between exosome and virus host cell interaction, and suggest unanticipated routes of subcellular cargo delivery. © 2016 Heusermann et al.

  5. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER

    PubMed Central

    Hean, Justin; Trojer, Dominic; Steib, Emmanuelle; von Bueren, Stefan; Graff-Meyer, Alexandra; Genoud, Christel; Martin, Katrin; Pizzato, Nicolas; Voshol, Johannes; Morrissey, David V.; Andaloussi, Samir E.L.; Wood, Matthew J.

    2016-01-01

    Exosomes are nanovesicles released by virtually all cells, which act as intercellular messengers by transfer of protein, lipid, and RNA cargo. Their quantitative efficiency, routes of cell uptake, and subcellular fate within recipient cells remain elusive. We quantitatively characterize exosome cell uptake, which saturates with dose and time and reaches near 100% transduction efficiency at picomolar concentrations. Highly reminiscent of pathogenic bacteria and viruses, exosomes are recruited as single vesicles to the cell body by surfing on filopodia as well as filopodia grabbing and pulling motions to reach endocytic hot spots at the filopodial base. After internalization, exosomes shuttle within endocytic vesicles to scan the endoplasmic reticulum before being sorted into the lysosome as their final intracellular destination. Our data quantify and explain the efficiency of exosome internalization by recipient cells, establish a new parallel between exosome and virus host cell interaction, and suggest unanticipated routes of subcellular cargo delivery. PMID:27114500

  6. Hot cell examination table

    DOEpatents

    Gaal, Peter S.; Ebejer, Lino P.; Kareis, James H.; Schlegel, Gary L.

    1991-01-01

    A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.

  7. Hot-spot investigations of utility scale panel configurations

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Dally, R. B.; Rumburg, J. P.

    1984-01-01

    The causes of array faults and efforts to mitigate their effects are examined. Research is concentrated on the panel for the 900 kw second phase of the Sacramento Municipal Utility District (SMUD) project. The panel is designed for hot spot tolerance without comprising efficiency under normal operating conditions. Series/paralleling internal to each module improves tolerance in the power quadrant to cell short or open circuits. Analtyical methods are developed for predicting worst case shade patterns and calculating the resultant cell temperature. Experiments conducted on a prototype panel support the analytical calculations.

  8. What controls the distribution and tectono-magmatic features of oceanic hot spot volcanoes

    NASA Astrophysics Data System (ADS)

    Acocella, Valerio; Vezzoli, Luigina

    2016-04-01

    Hot spot oceanic volcanoes worldwide show significant deviations from the classic Hawaiian reference model; these mainly concern the distribution of edifices and overall tectono-magmatic features, as the development of the volcanic rift zones and extent of flank instability. Here we try to explain these deviations investigating and comparing the best-known hot spot oceanic volcanoes. At a general scale, these volcanoes show an age-distance progression ranging from focused to scattered. This is here explained as due to several independent factors, as the thermal or mechanical weakening of the plate (due to the lithosphere thickness or regional structures, respectively), or the plume structure. At a more detailed scale, hot spot volcanoes show recurrent features, including mafic shield edifices with summit caldera and volcanic rift zones, often at the head of an unstable flank. However, despite this recurrence, a widespread tectono-magmatic variability is often found. Here we show how this variability depends upon the magma supply and age of the oceanic crust (influencing the thickness of the overlying pelagic sediments). Well-developed rift zones and larger collapses are found on hot spot volcanoes with higher supply rate and older crust, as Hawaii and Canary Islands. Poorly-developed rift zones and limited collapses occur on hot spot volcanoes with lower supply rate and younger crust, as Easter Island and Ascension. Transitional features are observed at hot spots with intermediate productivity (Cape Verde, Reunion, Society Islands and, to a minor extent, the Azores), whereas the scarcity or absence of pelagic sediments may explain the lack of collapses and developed rift zones in the productive Galapagos hot spot.

  9. Capsicum and capsaicin--a review: case report of the use of hot peppers in child abuse.

    PubMed

    Tominack, R L; Spyker, D A

    1987-01-01

    Capsaicin, the active principle of hot peppers of the genus Capsicum, exhibits broad bioactivity. It targets neuronal structures which contain substance P, clinically seen as gastrointestinal and dermatologic irritation, bronchospasm and fibrinolysis. As a research tool, capsaicin profoundly alters neurologic anatomy and function. We review the toxicity of capsaicin and comment briefly on the use of hot peppers in child abuse.

  10. Low temperature junction growth using hot-wire chemical vapor deposition

    DOEpatents

    Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

    2014-02-04

    A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

  11. CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP640) LOOKING NORTHWEST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF HOT PILOT PLANT (CPP-640) LOOKING NORTHWEST, SHOWING FORMING FOR NORTH WALLS OF CELLS 1, 4 AND 5; CONSTRUCTION 21 PERCENT COMPLETE. INL PHOTO NUMBER NRTS-60-1874. Holmes, Photographer, 4/21/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. Two-photon photoemission study of competing Auger and surface-mediated relaxation of hot electrons in CdSe quantum dot solids.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; Mitoraj, Dariusz; Eichberger, Rainer; Hannappel, Thomas; Vanmaekelbergh, Daniel

    2013-04-10

    Solids composed of colloidal quantum dots hold promise for third generation highly efficient thin-film photovoltaic cells. The presence of well-separated conduction electron states opens the possibility for an energy-selective collection of hot and equilibrated carriers, pushing the efficiency above the one-band gap limit. However, in order to reach this goal the decay of hot carriers within a band must be better understood and prevented, eventually. Here, we present a two-photon photoemission study of the 1Pe→1Se intraband relaxation dynamics in a CdSe quantum dot solid that mimics the active layer in a photovoltaic cell. We observe fast hot electron relaxation from the 1Pe to the 1Se state on a femtosecond-scale by Auger-type energy donation to the hole. However, if the oleic acid capping is exchanged for hexanedithiol capping, fast deep hole trapping competes efficiently with this relaxation pathway, blocking the Auger-type electron-hole energy exchange. A slower decay becomes then visible; we provide evidence that this is a multistep process involving the surface.

  13. The Role of Nano-TiO2 Lubricating Fluid on the Hot Rolled Surface and Metallographic Structure of SS41 Steel

    PubMed Central

    Meng, Yanan; Sun, Jianlin; Wu, Ping; Dong, Chang; Yan, Xudong

    2018-01-01

    In this paper, nano-TiO2lubricating fluid was chosen as an advanced rolling lubricant to investigate its effect on the hot rolled surface and metallographic structure of SS41 steel strips. The tribological performances of nano-TiO2 lubricating fluid were measured by a four-ball tribotester. The hot rolling experiments under different lubrication conditions were carried out by a four-high rolling mill. The surface morphology, oxide scales and metallographic structure after hot rolling were observed using a confocal laser scanning microscope and scanning electron microscope (SEM), respectively. The composition of surface attachments was analyzed with X-ray photoelectron spectroscopy (XPS). The results indicate that the nano-TiO2 lubricating fluid has a better tribological performance. The surface defects on the hot rolled surface could be decreased. The phase composition of the surface still appears as a mixture of ferrite and pearlite. The surface of steel strips is not micro-alloyed with titanium as predicted. Additionally, the grain size of rolled steel strips which were lubricated with the nano-TiO2lubricating fluid decreased by nearly 50%, compared with traditional lubricating fluid. Furthermore, it was found that the thickness of the oxide layers on the surface reduced, whilst the Rockwell hardness of the oxide layers was enhanced as nano-TiO2 lubricating fluid was applied. PMID:29462937

  14. The Role of Nano-TiO2 Lubricating Fluid on the Hot Rolled Surface and Metallographic Structure of SS41 Steel.

    PubMed

    Meng, Yanan; Sun, Jianlin; Wu, Ping; Dong, Chang; Yan, Xudong

    2018-02-16

    In this paper, nano-TiO2lubricating fluid was chosen as an advanced rolling lubricant to investigate its effect on the hot rolled surface and metallographic structure of SS41 steel strips. The tribological performances of nano-TiO2 lubricating fluid were measured by a four-ball tribotester. The hot rolling experiments under different lubrication conditions were carried out by a four-high rolling mill. The surface morphology, oxide scales and metallographic structure after hot rolling were observed using a confocal laser scanning microscope and scanning electron microscope (SEM), respectively. The composition of surface attachments was analyzed with X-ray photoelectron spectroscopy (XPS). The results indicate that the nano-TiO2 lubricating fluid has a better tribological performance. The surface defects on the hot rolled surface could be decreased. The phase composition of the surface still appears as a mixture of ferrite and pearlite. The surface of steel strips is not micro-alloyed with titanium as predicted. Additionally, the grain size of rolled steel strips which were lubricated with the nano-TiO2lubricating fluid decreased by nearly 50%, compared with traditional lubricating fluid. Furthermore, it was found that the thickness of the oxide layers on the surface reduced, whilst the Rockwell hardness of the oxide layers was enhanced as nano-TiO2 lubricating fluid was applied.

  15. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information.

    PubMed

    Sumbalova, Lenka; Stourac, Jan; Martinek, Tomas; Bednar, David; Damborsky, Jiri

    2018-05-23

    HotSpot Wizard is a web server used for the automated identification of hotspots in semi-rational protein design to give improved protein stability, catalytic activity, substrate specificity and enantioselectivity. Since there are three orders of magnitude fewer protein structures than sequences in bioinformatic databases, the major limitation to the usability of previous versions was the requirement for the protein structure to be a compulsory input for the calculation. HotSpot Wizard 3.0 now accepts the protein sequence as input data. The protein structure for the query sequence is obtained either from eight repositories of homology models or is modeled using Modeller and I-Tasser. The quality of the models is then evaluated using three quality assessment tools-WHAT_CHECK, PROCHECK and MolProbity. During follow-up analyses, the system automatically warns the users whenever they attempt to redesign poorly predicted parts of their homology models. The second main limitation of HotSpot Wizard's predictions is that it identifies suitable positions for mutagenesis, but does not provide any reliable advice on particular substitutions. A new module for the estimation of thermodynamic stabilities using the Rosetta and FoldX suites has been introduced which prevents destabilizing mutations among pre-selected variants entering experimental testing. HotSpot Wizard is freely available at http://loschmidt.chemi.muni.cz/hotspotwizard.

  16. Lithospheric structure of a nascent spreading ridge inferred from gravity data: The western Gulf of Aden

    NASA Astrophysics Data System (ADS)

    HéBert, HéLèNe; Deplus, Christine; Huchon, Philippe; Khanbari, Khaled; Audin, Laurence

    2001-11-01

    The Aden spreading ridge (Somalia/Arabia plate boundary) does not connect directly to the Red Sea spreading ridge. It propagates toward the East African Rift through the Afar depression, where the presence of a hot spot has been postulated from seismological and geochemical evidence. The spreading direction (N37°E) is highly oblique to the overall trend (N90°E) of the ridge. We present and interpret new geophysical data gathered during the Tadjouraden cruise (R/V L'Atalante, 1995) in the Gulf of Aden west of 46°E. These data allow us to study the propagation of the ridge toward the Afar and to discuss the processes of the seafloor spreading initiation. We determine the lithospheric structure of the ridge using gravity data gathered during the cruise with the constraint of available refraction data. A striking Bouguer anomaly gradient together with the identification of magnetic anomalies defines the geographical extent of oceanic crust. The inversion of the Bouguer anomaly is performed in terms of variations of crustal thickness only and then discussed with respect to the expected thermal structure of the mantle lithosphere, which should depend not only on the seafloor spreading but also on the hot spot beneath East Africa. Our results allow us to define three distinct lithospheric domains in the western Gulf of Aden. East of 44°45'E the lithosphere displays an oceanic character (thermal subsidence recorded for the last 10 Ma and constant crustal thickness). Between 43°30'E and 44°10'E the lithosphere is of continental type but locally thinned beneath the axial valley. The central domain defined between 44°10'E and 44°45'E is characterized by a transitional lithosphere which can be seen as a stretched continental crust where thick blocks are mixed with thinned crust; it displays en echelon basins that are better interpreted as extension cells rather than accretion cells.

  17. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile

    PubMed Central

    Ruff, Steven W.; Farmer, Jack D.

    2016-01-01

    The Mars rover Spirit encountered outcrops and regolith composed of opaline silica (amorphous SiO2·nH2O) in an ancient volcanic hydrothermal setting in Gusev crater. An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring fluids was suggested previously. However, the potential significance of the characteristic nodular and mm-scale digitate opaline silica structures was not recognized. Here we report remarkably similar features within active hot spring/geyser discharge channels at El Tatio in northern Chile, where halite-encrusted silica yields infrared spectra that are the best match yet to spectra from Spirit. Furthermore, we show that the nodular and digitate silica structures at El Tatio that most closely resemble those on Mars include complex sedimentary structures produced by a combination of biotic and abiotic processes. Although fully abiotic processes are not ruled out for the Martian silica structures, they satisfy an a priori definition of potential biosignatures. PMID:27853166

  18. Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting.

    PubMed

    Dallago, M; Fontanari, V; Torresani, E; Leoni, M; Pederzolli, C; Potrich, C; Benedetti, M

    2018-02-01

    Traditional implants made of bulk titanium are much stiffer than human bone and this mismatch can induce stress shielding. Although more complex to produce and with less predictable properties compared to bulk implants, implants with a highly porous structure can be produced to match the bone stiffness and at the same time favor bone ingrowth and regeneration. This paper presents the results of the mechanical and dimensional characterization of different regular cubic open-cell cellular structures produced by Selective Laser Melting (SLM) of Ti6Al4V alloy, all with the same nominal elastic modulus of 3GPa that matches that of human trabecular bone. The main objective of this research was to determine which structure has the best fatigue resistance through fully reversed fatigue tests on cellular specimens. The quality of the manufacturing process and the discrepancy between the actual measured cell parameters and the nominal CAD values were assessed through an extensive metrological analysis. The results of the metrological assessment allowed us to discuss the effect of manufacturing defects (porosity, surface roughness and geometrical inaccuracies) on the mechanical properties. Half of the specimens was subjected to a stress relief thermal treatment while the other half to Hot Isostatic Pressing (HIP), and we compared the effect of the treatments on porosity and on the mechanical properties. Fatigue strength seems to be highly dependent on the surface irregularities and notches introduced during the manufacturing process. In fully reversed fatigue tests, the high performances of stretching dominated structures compared to bending dominated structures are not found. In fact, with thicker struts, such structures proved to be more resistant, even if bending actions were present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods

    PubMed Central

    Shi, Zhengqi; Jayatissa, Ahalapitiya H.

    2018-01-01

    With the rapid increase of efficiency up to 22.1% during the past few years, hybrid organic-inorganic metal halide perovskite solar cells (PSCs) have become a research “hot spot” for many solar cell researchers. The perovskite materials show various advantages such as long carrier diffusion lengths, widely-tunable band gap with great light absorption potential. The low-cost fabrication techniques together with the high efficiency makes PSCs comparable with Si-based solar cells. But the drawbacks such as device instability, J-V hysteresis and lead toxicity reduce the further improvement and the future commercialization of PSCs. This review begins with the discussion of crystal and electronic structures of perovskite based on recent research findings. An evolution of PSCs is also analyzed with a greater detail of each component, device structures, major device fabrication methods and the performance of PSCs acquired by each method. The following part of this review is the discussion of major barriers on the pathway for the commercialization of PSCs. The effects of crystal structure, fabrication temperature, moisture, oxygen and UV towards the stability of PSCs are discussed. The stability of other components in the PSCs are also discussed. The lead toxicity and updated research progress on lead replacement are reviewed to understand the sustainability issues of PSCs. The origin of J-V hysteresis is also briefly discussed. Finally, this review provides a roadmap on the current needs and future research directions to address the main issues of PSCs. PMID:29734667

  20. Performance of a hypersonic hot fuselage structure with a carbon dioxide frost projected, nonintegral cryogenic tank

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Jackson, L. R.

    1975-01-01

    A model which consisted of a hot structure and a nonintegral tank protected by a carbon dioxide frost thermal protection system was tested under the following conditions: (1) room temperature loading and (2) heating and loading corresponding to the Mach 8 flight of an air-breathing launch vehicle. In the simulated flight tests, liquid nitrogen inside the tank was withdrawn at the rate fuel would be consumed. Prior to each simulated flight test, carbon dioxide was cryodeposited in the insulation surrounding the tank; during the tests, subliming CO2 frost absorbed heat and provided a purge gas for the space between the tank and the structure. A method of flame spraying the joints between panels with a nickel-aluminum material was developed to prevent excessive leakage of the purge gas through the outer structure. The tests indicated that the hot structure (with a joint repaired by riveting), the nonintegral tank and suspension system, and the carbon dioxide frost thermal protection system provide a workable concept with predictable performance.

  1. Effect of emitter layer doping concentration on the performance of a silicon thin film heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Shen, Hong-Lie; Yue, Zhi-Hao; Jiang, Feng; Wu, Tian-Ru; Pan, Yuan-Yuan

    2013-01-01

    A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/ epitaxial c-Si(47 μm)/epitaxial c-Si(3 μm) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3+SiH4+H2)) on the performance of the solar cell is studied by means of current density—voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.

  2. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Zhi; Wan, Yan; Yang, Mengjin; Snaider, Jordan; Zhu, Kai; Huang, Libai

    2017-04-01

    The Shockley-Queisser limit for solar cell efficiency can be overcome if hot carriers can be harvested before they thermalize. Recently, carrier cooling time up to 100 picoseconds was observed in hybrid perovskites, but it is unclear whether these long-lived hot carriers can migrate long distance for efficient collection. We report direct visualization of hot-carrier migration in methylammonium lead iodide (CH3NH3PbI3) thin films by ultrafast transient absorption microscopy, demonstrating three distinct transport regimes. Quasiballistic transport was observed to correlate with excess kinetic energy, resulting in up to 230 nanometers transport distance that could overcome grain boundaries. The nonequilibrium transport persisted over tens of picoseconds and ~600 nanometers before reaching the diffusive transport limit. These results suggest potential applications of hot-carrier devices based on hybrid perovskites.

  3. Construction and testing of crumb rubber modified hot mix asphalt pavement.

    DOT National Transportation Integrated Search

    1999-12-01

    This research project was structured toward addressing that portion of ISTEA which directs the individual states to conduct studies on the recyclability of crumb rubber modified : (CRM) hot mix asphalt (HMA) and the technical performance of CRMHMA pa...

  4. Druggable orthosteric and allosteric hot spots to target protein-protein interactions.

    PubMed

    Ma, Buyong; Nussinov, Ruth

    2014-01-01

    Drug designing targeting protein-protein interactions is challenging. Because structural elucidation and computational analysis have revealed the importance of hot spot residues in stabilizing these interactions, there have been on-going efforts to develop drugs which bind the hot spots and out-compete the native protein partners. The question arises as to what are the key 'druggable' properties of hot spots in protein-protein interactions and whether these mimic the general hot spot definition. Identification of orthosteric (at the protein- protein interaction site) and allosteric (elsewhere) druggable hot spots is expected to help in discovering compounds that can more effectively modulate protein-protein interactions. For example, are there any other significant features beyond their location in pockets in the interface? The interactions of protein-protein hot spots are coupled with conformational dynamics of protein complexes. Currently increasing efforts focus on the allosteric drug discovery. Allosteric drugs bind away from the native binding site and can modulate the native interactions. We propose that identification of allosteric hot spots could similarly help in more effective allosteric drug discovery. While detection of allosteric hot spots is challenging, targeting drugs to these residues has the potential of greatly increasing the hot spot and protein druggability.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for the safety operation procedure for hot cell. It covers the master-slave manipulators, dry waste removal, cell transfers, hoists, cask handling, liquid waste system, and physical characterization of fluids.

  6. Development of a high-density nonwoven structure to improve the stab resistance of protective clothing material.

    PubMed

    Bao, Limin; Wang, Yanling; Baba, Takeichiro; Fukuda, Yasuhiro; Wakatsuki, Kaoru; Morikawa, Hideaki

    2017-12-07

    The purpose of this research was to enhance the stab resistance of protective clothing material by developing a new high-density nonwoven structure. Ice picks often injure Japanese police officers due to the strict regulation of swords in the country. Consequently, this study was designed to improve stab resistance against ice picks. Most existing anti-stab protective clothing research has focused on various fabrics impregnated with resin, an approach that brings with it problems of high cost and complicated processing. Seldom has research addressed the potential for improving stab resistance by using nonwoven structures, which exhibit better stab resistance than fabric. In this research, we prepared a series of nonwoven structures with densities ranging from about 0.14 g/cm 3 to 0.46 g/cm 3 by varying the number of stacked layers of Kevlar/polyester nonwoven under a hot press. We then proposed two methods for producing such hot-press nonwovens: the multilayer hot-press method and the monolayer hot-press method. Stab resistance was evaluated according to NIJ Standard-0115.00. We also investigated the relationship among nonwoven density, stab resistance, and flexural rigidity, and here we discuss the respective properties of the two proposed methods. Our results show that stab resistance and flexural rigidity increase with nonwoven density, but flexural rigidity of nonwovens prepared using the monolayer hot-press method only shows a slight change as nonwoven density increases. Though the two methods exhibit little difference in maximum load, the flexural rigidity of nonwovens prepared using the monolayer hot-press method is much lower, which contributes to superior wear comfort. Finally, we investigated the mechanism behind the stabbing process. Stabbing with an ice pick is a complicated process that involves many factors. Our findings indicate that nonwovens stop penetration primarily in two ways: nonwoven deformation and fiber fractures.

  7. Development of a high-density nonwoven structure to improve the stab resistance of protective clothing material

    PubMed Central

    BAO, Limin; WANG, Yanling; BABA, Takeichiro; FUKUDA, Yasuhiro; WAKATSUKI, Kaoru; MORIKAWA, Hideaki

    2017-01-01

    The purpose of this research was to enhance the stab resistance of protective clothing material by developing a new high-density nonwoven structure. Ice picks often injure Japanese police officers due to the strict regulation of swords in the country. Consequently, this study was designed to improve stab resistance against ice picks. Most existing anti-stab protective clothing research has focused on various fabrics impregnated with resin, an approach that brings with it problems of high cost and complicated processing. Seldom has research addressed the potential for improving stab resistance by using nonwoven structures, which exhibit better stab resistance than fabric. In this research, we prepared a series of nonwoven structures with densities ranging from about 0.14 g/cm3 to 0.46 g/cm3 by varying the number of stacked layers of Kevlar/polyester nonwoven under a hot press. We then proposed two methods for producing such hot-press nonwovens: the multilayer hot-press method and the monolayer hot-press method. Stab resistance was evaluated according to NIJ Standard-0115.00. We also investigated the relationship among nonwoven density, stab resistance, and flexural rigidity, and here we discuss the respective properties of the two proposed methods. Our results show that stab resistance and flexural rigidity increase with nonwoven density, but flexural rigidity of nonwovens prepared using the monolayer hot-press method only shows a slight change as nonwoven density increases. Though the two methods exhibit little difference in maximum load, the flexural rigidity of nonwovens prepared using the monolayer hot-press method is much lower, which contributes to superior wear comfort. Finally, we investigated the mechanism behind the stabbing process. Stabbing with an ice pick is a complicated process that involves many factors. Our findings indicate that nonwovens stop penetration primarily in two ways: nonwoven deformation and fiber fractures. PMID:28978816

  8. Hierarchical Simulation of Hot Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.

    1993-01-01

    Computational procedures are described to simulate the thermal and mechanical behavior of high temperature metal matrix composites (HT-MMC) in the following three broad areas: (1) Behavior of HT-MMC's from micromechanics to laminate via Metal Matrix Composite Analyzer (METCAN), (2) tailoring of HT-MMC behavior for optimum specific performance via Metal Matrix Laminate Tailoring (MMLT), and (3) HT-MMC structural response for hot structural components via High Temperature Composite Analyzer (HITCAN). Representative results from each area are presented to illustrate the effectiveness of computational simulation procedures. The sample case results show that METCAN can be used to simulate material behavior such as strength, stress-strain response, and cyclic life in HTMMC's; MMLT can be used to tailor the fabrication process for optimum performance such as that for in-service load carrying capacity of HT-MMC's; and HITCAN can be used to evaluate static fracture and fatigue life of hot pressurized metal matrix composite rings.

  9. Morphology of a Hot Coronal Cavity Core as Observed by Hinode/XRT

    NASA Technical Reports Server (NTRS)

    Reeves, K. K.; Gibson, S. E.; Kucera, T. A.; Hudson, H. S.

    2010-01-01

    We follow a coronal cavity that was observed by Hinode/XRT during the summer of 2008. This cavity has a persistent area of relatively bright X-ray emission in its center. We use multifilter data from XRT to study the thermal emission from this cavity, and find that the bright center is hotter than the surrounding cavity plasma with temperatures of about 1.6 MK. We follow the morphology of this hot feature as the cavity structure rotates over the limb during the several days between July 19 - 23 2008. We find that the hot structure at first looks fairly circular, then appears to expand and elongate, and then shrinks again to a compact circular shape. We interpret this apparent change in shape as being due to the morphology of the filament channel associated with the cavity, and the change in viewing angle as the structure rotates over the limb of the Sun.

  10. Modeling and optimization of the hot embossing process for micro- and nanocomponent fabrication

    NASA Astrophysics Data System (ADS)

    Worgull, M.; Heckele, Mathias P.; Hétu, J. F.; Kabanemi, K. K.

    2006-01-01

    Hot embossing and injection molding belong to the established plastic molding processes in microengineering. Based on experimental findings, a variety of microstructures have been replicated using these processes. However, with increasing requirements regarding the embossing surface, and the simultaneous decrease of the structure size down into the nanorange, increasing know-how is needed to adapt hot embossing to industrial standards. To reach this objective, a German-Canadian cooperation project has been launched to study hot embossing theoretically by process simulation and experimentally. The present publication reports on the proceeding and present first results.

  11. Complexity and robustness

    PubMed Central

    Carlson, J. M.; Doyle, John

    2002-01-01

    Highly optimized tolerance (HOT) was recently introduced as a conceptual framework to study fundamental aspects of complexity. HOT is motivated primarily by systems from biology and engineering and emphasizes, (i) highly structured, nongeneric, self-dissimilar internal configurations, and (ii) robust yet fragile external behavior. HOT claims these are the most important features of complexity and not accidents of evolution or artifices of engineering design but are inevitably intertwined and mutually reinforcing. In the spirit of this collection, our paper contrasts HOT with alternative perspectives on complexity, drawing on real-world examples and also model systems, particularly those from self-organized criticality. PMID:11875207

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William A; Railkar, Sudhir; Shiao, Ming C

    Field studies in a hot, humid climate were conducted to investigate the thermal and hygrothermal performance of ventilated attics and non-ventilated semi-conditioned attics sealed with open-cell and with closed-cell spray polyurethane foam insulation. Moisture pin measurements made in the sheathing and absolute humidity sensor data from inside the foam and from the attic air show that moisture is being stored in the foam. The moisture in the foam diffuses to and from the sheathing dependent on the pressure gradient at the foam-sheathing interface which is driven by the irradiance and night-sky radiation. Ventilated attics in the same hot, humid climatemore » showed less moisture movement in the sheathing than those sealed with either open- or closed-cell spray foam. In the ventilated attics the relative humidity drops as the attic air warms; however, the opposite was observed in the sealed attics. Peaks in measured relative humidity in excess of 80 90% and occasionally near saturation (i.e., 100%) were observed from solar noon till about 8 PM on hot, humid days. The conditioned space of the test facility is heated and cooled by an air-to-air heat pump. Therefore the partial pressure of the indoor air during peak irradiance is almost always less than that observed in the sealed attics. Field data will be presented to bring to light the critical humidity control issues in sealed attics exposed to hot, humid climates.« less

  13. Development of an Antifungal Denture Adhesive Film for Oral Candidiasis Utilizing Hot Melt Extrusion Technology

    PubMed Central

    Park, Jun-Bom; Prodduturi, Suneela; Morott, Joe; Kulkarni, Vijay I.; Jacob, Melissa R.; Khan, Shabana I.; Stodghill, Steven P.; Repka, Michael A.

    2017-01-01

    Objectives The overall goal of this research was to produce a stable hot-melt extruded “Antifungal Denture Adhesive film” (ADA) system for the treatment of oral candidiasis. Methods The ADA systems with hydroxypropyl cellulose (HPC) and/or polyethylene oxide (PEO) containing clotrimazole (10%) or nystatin (10%) were extruded utilizing a lab scale twin-screw hot-melt extruder. Rolls of the antifungal-containing films were collected and subsequently die-cut into shapes adapted for a maxillary (upper) and mandibular (lower) denture. Results DSC and PXRD results indicated that the crystallinity of both APIs was changed to amorphous phase after hot-melt extrusion. The ADA system, containing blends of HPC and PEO, enhanced the effectiveness of the antimicrobials a maximum of 5-fold toward the inhibition of cell adherence of C. albicans to mammalian cells/Vero cells. Remarkably, a combination of the two polymers without drug also demonstrated a 38% decrease in cell adhesion to the fungi due to the viscosity and the flexibility of the polymers. Drug-release profiles indicated that both drug concentrations were above the minimum inhibitory concentration (MIC) for C. albicans within 10 minutes and was maintained for over 10 hours. In addition, based on the IC50 and MIC values, it was observed that the antifungal activities of both drugs were increased significantly in the ADA systems. Conclusions Based on these findings, the ADA system may be used for primary, prophylaxis or adjunct treatment of oral or pharyngeal candidiasis via controlled-release of the antifungal agent from the polymer matrix. PMID:25169007

  14. Development of an antifungal denture adhesive film for oral candidiasis utilizing hot melt extrusion technology.

    PubMed

    Park, Jun-Bom; Prodduturi, Suneela; Morott, Joe; Kulkarni, Vijay I; Jacob, Melissa R; Khan, Shabana I; Stodghill, Steven P; Repka, Michael A

    2015-01-01

    The overall goal of this research was to produce a stable hot-melt extruded 'Antifungal Denture Adhesive film' (ADA) system for the treatment of oral candidiasis. The ADA systems with hydroxypropyl cellulose (HPC) and/or polyethylene oxide (PEO) containing clotrimazole (10%) or nystatin (10%) were extruded utilizing a lab scale twin-screw hot-melt extruder. Rolls of the antifungal-containing films were collected and subsequently die-cut into shapes adapted for a maxillary (upper) and mandibular (lower) denture. Differential scanning calorimeter and powder X-ray diffraction results indicated that the crystallinity of both APIs was changed to amorphous phase after hot-melt extrusion. The ADA system, containing blends of HPC and PEO, enhanced the effectiveness of the antimicrobials a maximum of fivefold toward the inhibition of cell adherence of Candida albicans to mammalian cells/Vero cells. Remarkably, a combination of the two polymers without drug also demonstrated a 38% decrease in cell adhesion to the fungi due to the viscosity and the flexibility of the polymers. Drug-release profiles indicated that both drug concentrations were above the minimum inhibitory concentration (MIC) for C. albicans within 10 min and was maintained for over 10 h. In addition, based on the IC50 and MIC values, it was observed that the antifungal activities of both drugs were increased significantly in the ADA systems. Based on these findings, the ADA system may be used for primary, prophylaxis or adjunct treatment of oral or pharyngeal candidiasis via controlled release of the antifungal agent from the polymer matrix.

  15. Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas

    PubMed Central

    Mondal, Sudipta; Narayanan, V.; Ding, Wen Jun; Lad, Amit D.; Hao, Biao; Ahmad, Saima; Wang, Wei Min; Sheng, Zheng Ming; Sengupta, Sudip; Kaw, Predhiman; Das, Amita; Kumar, G. Ravindra

    2012-01-01

    Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (1018W/cm2) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy “hot” electrons created by the laser pulse and “cold” return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments. PMID:22566660

  16. Influence of hot isostatic pressing on ZrO2-CaO dental ceramics properties.

    PubMed

    Gionea, Alin; Andronescu, Ecaterina; Voicu, Georgeta; Bleotu, Coralia; Surdu, Vasile-Adrian

    2016-08-30

    Different hot isostatic pressing conditions were used to obtain zirconia ceramics, in order to assess the influence of HIP on phase transformation, compressive strength, Young's modulus and density. First, CaO stabilized zirconia powder was synthesized through sol-gel method, using zirconium propoxide, calcium isopropoxide and 2-metoxiethanol as precursors, then HIP treatment was applied to obtain final dense ceramics. Ceramics were morphologically and structurally characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Density measurements, compressive strength and Young's modulus tests were also performed in order to evaluate the effect of HIP treatment. The zirconia powders heat treated at 500°C for 2h showed a pure cubic phase with average particle dimension about 70nm. The samples that were hot isostatic pressed presented a mixture of monoclinic-tetragonal or monoclinic-cubic phases, while for pre-sintered samples, cubic zirconia was the single crystalline form. Final dense ceramics were obtained after HIP treatment, with relative density values higher than 94%. ZrO2-CaO ceramics presented high compressive strength, with values in the range of 500-708.9MPa and elastic behavior with Young's modulus between 1739MPa and 4372MPa. Finally zirconia ceramics were tested for biocompatibility allowing the normal development of MG63 cells in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A selective estrogen receptor modulator for the treatment of hot flushes.

    PubMed

    Wallace, Owen B; Lauwers, Kenneth S; Dodge, Jeffrey A; May, Scott A; Calvin, Joel R; Hinklin, Ronald; Bryant, Henry U; Shetler, Pamela K; Adrian, Mary D; Geiser, Andrew G; Sato, Masahiko; Burris, Thomas P

    2006-02-09

    A selective estrogen receptor modulator (SERM) for the potential treatment of hot flushes is described. (R)-(+)-7,9-difluoro-5-[4-(2-piperidin-1-ylethoxy)phenyl]-5H-6-oxachrysen-2-ol, LSN2120310, potently binds ERalpha and ERbeta and is an antagonist in MCF-7 breast adenocarcinoma and Ishikawa uterine cancer cell lines. The compound is a potent estrogen antagonist in the rat uterus. In ovariectomized rats, the compound lowers cholesterol, maintains bone mineral density, and is efficacious in a morphine dependent rat model of hot flush efficacy.

  18. Thermal degradation of wood fibers during hot-pressing of MDF composites. Part I, Relative effects and benefits of thermal exposure

    Treesearch

    Jerrold E. Winandy; Andrzej M. Krzysik

    2007-01-01

    This research evaluated the potential of wood fiber to chemically decompose during hot-pressing. We evaluated changes in carbohydrate composition and structure as a function of multiple press temperatures (180°, 200°, and 220°C) and an array of hot-pressing durations from 180 to 2500 s. Results show how this thermal degradation in chemical composition directly results...

  19. Controlled formation of intense hot spots in Pd@Ag core-shell nanooctapods for efficient photothermal conversion

    NASA Astrophysics Data System (ADS)

    Liu, Maochang; Yang, Yang; Li, Naixu; Du, Yuanchang; Song, Dongxing; Ma, Lijing; Wang, Yi; Zheng, Yiqun; Jing, Dengwei

    2017-08-01

    Plasmonic Ag nanostructures have been of great interest for such applications in cancer therapy and catalysis, etc. However, the relatively week Ag-Ag interaction and spontaneous atom diffusion make it very difficult to generate concaved or branched structures in Ag nanocrystals with sizes less than 100 nm, which has been considered very favorable for plasmonic effects. Herein, by employing a cubic Pd seed and a specific reducing agent to restrict the surface diffusion of Ag atoms, Pd@Ag core-shell nanooctapod structures where Ag atoms can be selectively deposited onto the corner sites of the Pd cubes were obtained. Such selective decoration enables us to precisely control the locations for the hot spot formation during light irradiation. We find that the branched nanooctapod structure shows strong absorption in the visible-light region and generates intense hot spots around the octapod arms of Ag. As such, the photothermal conversion efficiency could be significantly improved by more than 50% with a colloid solution containing only ppm-level nanooctapods compared with pure water. The reported nanostructure is expected to find extensive applications due to its controlled formation of light-induced hot spots at certain points on the crystal surface.

  20. Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface.

    PubMed

    Gu, Yun-Qing; Fan, Tian-Xing; Mou, Jie-Gang; Yu, Wei-Bo; Zhao, Gang; Wang, Evan

    2016-01-01

    In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis.

  1. Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface

    PubMed Central

    Gu, Yun-qing; Fan, Tian-xing; Mou, Jie-gang; Yu, Wei-bo; Zhao, Gang; Wang, Evan

    2016-01-01

    In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis. PMID:27022235

  2. A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons

    PubMed Central

    Farrell, Daniel J.; Sodabanlu, Hassanet; Wang, Yunpeng; Sugiyama, Masakazu; Okada, Yoshitaka

    2015-01-01

    The direct conversion of solar energy to electricity can be broadly separated into two main categories: photovoltaics and thermal photovoltaics, where the former utilizes gradients in electrical potential and the latter thermal gradients. Conventional thermal photovoltaics has a high theoretical efficiency limit (84%) but in practice cannot be easily miniaturized and is limited by the engineering challenges of sustaining large (>1,000 K) temperature gradients. Here we show a hot-carrier-based thermophotonic solar cell, which combines the compact nature of photovoltaic devices with the potential to reach the high-efficiency regime of thermal photovoltaics. In the device, a thermal gradient of 500 K is established by hot electrons, under Stokes illumination, rather than by raising the temperature of the material itself. Under anti-Stokes (sub-bandgap) illumination we observe a thermal gradient of ∼20 K, which is maintained by steady-state Auger heating of carriers and corresponds to a internal thermal up-conversion efficiency of 30% between the collector and solar cell. PMID:26541415

  3. Report Summarizing the Effort Required to Initiate Welding of Irradiated Materials within the Welding Cubicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Greg; Sutton, Benjamin J.; Tatman, Jonathan K.

    The advanced welding facility within a hot cell at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory (ORNL), which has been jointly funded by the U.S. Department of Energy (DOE), Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, is in the final phase of development. Research and development activities in this facility will involve direct testing of advanced welding technologies on irradiated materials in order to address the primary technical challenge of helium induced cracking that can arise when conventionalmore » fusion welding techniques are utilized on neutron irradiated stainless steels and nickel-base alloys. This report details the effort that has been required since the beginning of fiscal year 2017 to initiate welding research and development activities on irradiated materials within the hot cell cubicle, which houses welding sub-systems that include laser beam welding (LBW) and friction stir welding (FSW) and provides material containment within the hot cell.« less

  4. TEST SYSTEM FOR EVALUATING SPENT NUCLEAR FUEL BENDING STIFFNESS AND VIBRATION INTEGRITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements specified by federal regulations. For normal conditions of transport, vibration loads incident to transport must be considered. This is particularly relevant for high-burnup fuel (>45 GWd/MTU). As the burnup of the fuel increases, a number of changes occur that may affect the performance of the fuel and cladding in storage and during transportation. The mechanical properties of high-burnup de-fueled cladding have been previously studied by subjecting defueled cladding tubes to longitudinal (axial) tensile tests, ring-stretch tests, ring-compression tests, and biaxial tube burst tests. The objective of this study ismore » to investigate the mechanical properties and behavior of both the cladding and the fuel in it under vibration/cyclic loads similar to the sustained vibration loads experienced during normal transport. The vibration loads to SNF rods during transportation can be characterized by dynamic, cyclic, bending loads. The transient vibration signals in a specified transport environment can be analyzed, and frequency, amplitude and phase components can be identified. The methodology being implemented is a novel approach to study the vibration integrity of actual SNF rod segments through testing and evaluating the fatigue performance of SNF rods at defined frequencies. Oak Ridge National Laboratory (ORNL) has developed a bending fatigue system to evaluate the response of the SNF rods to vibration loads. A three-point deflection measurement technique using linear variable differential transformers is used to characterize the bending rod curvature, and electromagnetic force linear motors are used as the driving system for mechanical loading. ORNL plans to use the test system in a hot cell for SNF vibration testing on high burnup, irradiated fuel to evaluate the pellet-clad interaction and bonding on the effective lifetime of fuel-clad structure bending fatigue performance. Technical challenges include pure bending implementation, remote installation and detachment of the SNF test specimen, test specimen deformation measurement, and identification of a driving system suitable for use in a hot cell. Surrogate test specimens have been used to calibrate the test setup and conduct systematic cyclic tests. The calibration and systematic cyclic tests have been used to identify test protocol issues prior to implementation in the hot cell. In addition, cyclic hardening in unidirectional bending and softening in reverse bending were observed in the surrogate test specimens. The interface bonding between the surrogate clad and pellets was found to impact the bending response of the surrogate rods; confirming this behavior in the actual spent fuel segments will be an important aspect of the hot cell test implementation,« less

  5. Phylogenetic Diversity Analysis of Subterranean Hot Springs in Iceland

    PubMed Central

    Marteinsson, Viggó Thór; Hauksdóttir, Sigurbjörg; Hobel, Cédric F. V.; Kristmannsdóttir, Hrefna; Hreggvidsson, Gudmundur Oli; Kristjánsson, Jakob K.

    2001-01-01

    Geothermal energy has been harnessed and used for domestic heating in Iceland. In wells that are typically drilled to a depth of 1,500 to 2,000 m, the temperature of the source water is 50 to 130°C. The bottoms of the boreholes can therefore be regarded as subterranean hot springs and provide a unique opportunity to study the subterranean biosphere. Large volumes of geothermal fluid from five wells and a mixture of geothermal water from 50 geothermal wells (hot tap water) were sampled and concentrated through a 0.2-μm-pore-size filter. Cells were observed in wells RG-39 (91.4°C) and MG-18 (71.8°C) and in hot tap water (76°C), but no cells were detected in wells SN-4, SN-5 (95 to 117°C), and RV-5 (130°C). Archaea and Bacteria were detected by whole-cell fluorescent in situ hybridization. DNAs were extracted from the biomass, and small-subunit rRNA genes (16S rDNAs) were amplified by PCR using primers specific for the Archaea and Bacteria domains. The PCR products were cloned and sequenced. The sequence analysis showed 11 new operational taxonomic units (OTUs) out of 14, 3 of which were affiliated with known surface OTUs. Samples from RG-39 and hot tap water were inoculated into enrichment media and incubated at 65 and 85°C. Growth was observed only in media based on geothermal water. 16S rDNA analysis showed enrichments dominated with Desulfurococcales relatives. Two strains belonging to Desulfurococcus mobilis and to the Thermus/Deinococcus group were isolated from borehole RG-39. The results indicate that subsurface volcanic zones are an environment that provides a rich subsurface for novel thermophiles. PMID:11526029

  6. Phylogenetic diversity analysis of subterranean hot springs in Iceland.

    PubMed

    Marteinsson, V T; Hauksdóttir, S; Hobel, C F; Kristmannsdóttir, H; Hreggvidsson, G O; Kristjánsson, J K

    2001-09-01

    Geothermal energy has been harnessed and used for domestic heating in Iceland. In wells that are typically drilled to a depth of 1,500 to 2,000 m, the temperature of the source water is 50 to 130 degrees C. The bottoms of the boreholes can therefore be regarded as subterranean hot springs and provide a unique opportunity to study the subterranean biosphere. Large volumes of geothermal fluid from five wells and a mixture of geothermal water from 50 geothermal wells (hot tap water) were sampled and concentrated through a 0.2-microm-pore-size filter. Cells were observed in wells RG-39 (91.4 degrees C) and MG-18 (71.8 degrees C) and in hot tap water (76 degrees C), but no cells were detected in wells SN-4, SN-5 (95 to 117 degrees C), and RV-5 (130 degrees C). Archaea and Bacteria were detected by whole-cell fluorescent in situ hybridization. DNAs were extracted from the biomass, and small-subunit rRNA genes (16S rDNAs) were amplified by PCR using primers specific for the Archaea and Bacteria domains. The PCR products were cloned and sequenced. The sequence analysis showed 11 new operational taxonomic units (OTUs) out of 14, 3 of which were affiliated with known surface OTUs. Samples from RG-39 and hot tap water were inoculated into enrichment media and incubated at 65 and 85 degrees C. Growth was observed only in media based on geothermal water. 16S rDNA analysis showed enrichments dominated with Desulfurococcales relatives. Two strains belonging to Desulfurococcus mobilis and to the Thermus/Deinococcus group were isolated from borehole RG-39. The results indicate that subsurface volcanic zones are an environment that provides a rich subsurface for novel thermophiles.

  7. Ground/Flight Correlation of Aerodynamic Loads with Structural Response

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Davis, Mark C.

    2009-01-01

    Ground and flight tests provide a basis and methodology for in-flight characterization of the aerodynamic and structural performance through the monitoring of the fluid-structure interaction. The NF-15B flight tests of the Intelligent Flight Control System program provided a unique opportunity to test the correlation of aerodynamic loads with points of flow attaching and detaching from the surface, which are also known as flow bifurcation points, as observed in a previous wind tunnel test performed at the U.S. Air Force Academy (Colorado Springs, Colorado). Moreover, flight tests, along with the subsequent unsteady aerodynamic tests in the NASA Transonic Dynamics Tunnel (TDT), provide a basis using surface flow sensors as means of assessing the aeroelastic performance of flight vehicles. For the flight tests, the NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. This data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in a structural response, which were then compared with the hot-film sensor signals. The hot-film sensor signals near the stagnation region were found to be highly correlated with the root-bending strains. For the TDT tests, a flexible wing section developed under the U.S. Air Force Research Lab SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at two span stations. The TDT tests confirmed the correlation between flow bifurcation points and the wing structural response to tunnel-generated gusts. Furthermore, as the wings structural modes were excited by the gusts, a gradual phase change between the flow bifurcation point and the structural mode occurred during a resonant condition.

  8. High-definition micropatterning method for hard, stiff and brittle polymers.

    PubMed

    Zhao, Yiping; Truckenmuller, Roman; Levers, Marloes; Hua, Wei-Shu; de Boer, Jan; Papenburg, Bernke

    2017-02-01

    Polystyrene (PS) is the most commonly used material in cell culture devices, such as Petri dishes, culture flasks and well plates. Micropatterning of cell culture substrates can significantly affect cell-material interactions leading to an increasing interest in the fabrication of topographically micro-structured PS surfaces. However, the high stiffness combined with brittleness of PS (elastic modulus 3-3.5GPa) makes high-quality patterning into PS difficult when standard hard molds, e.g. silicon and nickel, are used as templates. A new and robust scheme for easy processing of large-area high-density micro-patterning into PS film is established using nanoimprinting lithography and standard hot embossing techniques. Including an extra step through an intermediate PDMS mold alone does not result in faithful replication of the large area, high-density micropattern into PS. Here, we developed an approach using an additional intermediate mold out of OrmoStamp, which allows for high-quality and large-area micro-patterning into PS. OrmoStamp was originally developed for UV nanoimprint applications; this work demonstrates for the first time that OrmoStamp is a highly adequate material for micro-patterning of PS through hot embossing. Our proposed processing method achieves high-quality replication of micropatterns in PS, incorporating features with high aspect ratio (4:1, height:width), high density, and over a large pattern area. The proposed scheme can easily be adapted for other large-area and high-density micropatterns of PS, as well as other stiff and brittle polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication

    NASA Astrophysics Data System (ADS)

    Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh

    2016-08-01

    In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.

  10. Variable ligand- and receptor-binding hot spots in key strains of influenza neuraminidase

    PubMed Central

    Votapka, Lane; Demir, Özlem; Swift, Robert V; Walker, Ross C; Amaro, Rommie E

    2012-01-01

    Influenza A continues to be a major public health concern due to its ability to cause epidemic and pandemic disease outbreaks in humans. Computational investigations of structural dynamics of the major influenza glycoproteins, especially the neuraminidase (NA) enzyme, are able to provide key insights beyond what is currently accessible with standard experimental techniques. In particular, all-atom molecular dynamics simulations reveal the varying degrees of flexibility for such enzymes. Here we present an analysis of the relative flexibility of the ligand- and receptor-binding area of three key strains of influenza A: highly pathogenic H5N1, the 2009 pandemic H1N1, and a human N2 strain. Through computational solvent mapping, we investigate the various ligand- and receptor-binding “hot spots” that exist on the surface of NA which interacts with both sialic acid receptors on the host cells and antiviral drugs. This analysis suggests that the variable cavities found in the different strains and their corresponding capacities to bind ligand functional groups may play an important role in the ability of NA to form competent reaction encounter complexes with other species of interest, including antiviral drugs, sialic acid receptors on the host cell surface, and the hemagglutinin protein. Such considerations may be especially useful for the prediction of how such complexes form and with what binding capacity. PMID:22872804

  11. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.

    1988-01-01

    In the present work, the boundary element method (BEM) is chosen as the basic analysis tool, principally because the definition of temperature, flux, displacement and traction are very precise on a boundary-based discretization scheme. One fundamental difficulty is, of course, that a BEM formulation requires a considerable amount of analytical work, which is not needed in the other numerical methods. Progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The primary thrust of the program to date has been directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state.

  12. Thermally conductive porous element-based recuperators

    NASA Technical Reports Server (NTRS)

    Du, Jian Hua (Inventor); Chow, Louis C (Inventor); Lin, Yeong-Ren (Inventor); Wu, Wei (Inventor); Kapat, Jayanta (Inventor); Notardonato, William U. (Inventor)

    2012-01-01

    A heat exchanger includes at least one hot fluid flow channel comprising a first plurality of open cell porous elements having first gaps there between for flowing a hot fluid in a flow direction and at least one cold fluid flow channel comprising a second plurality of open cell porous elements having second gaps therebetween for flowing a cold fluid in a countercurrent flow direction relative to the flow direction. The thermal conductivity of the porous elements is at least 10 W/mK. A separation member is interposed between the hot and cold flow channels for isolating flow paths associated these flow channels. The first and second plurality of porous elements at least partially overlap one another to form a plurality of heat transfer pairs which transfer heat from respective ones of the first porous elements to respective ones of the second porous elements through the separation member.

  13. Rationally Controlled Synthesis of CdSexTe1-x Alloy Nanocrystals and Their Application in Efficient Graded Bandgap Solar Cells.

    PubMed

    Wen, Shiya; Li, Miaozi; Yang, Junyu; Mei, Xianglin; Wu, Bin; Liu, Xiaolin; Heng, Jingxuan; Qin, Donghuan; Hou, Lintao; Xu, Wei; Wang, Dan

    2017-11-08

    CdSe x Te 1-x semiconductor nanocrystals (NCs), being rod-shaped/irregular dot-shaped in morphology, have been fabricated via a simple hot-injection method. The NCs composition is well controlled through varying molar ratios of Se to Te precursors. Through changing the composition of the CdSe x Te 1-x NCs, the spectral absorption of the NC thin film between 570-800 nm is proved to be tunable. It is shown that the bandgap of homogeneously alloyed CdSe x Te 1-x active thin film is nonlinearly correlated with the different compositions, which is perceived as optical bowing. The solar cell devices based on CdSe x Te 1-x NCs with the structure of ITO/ZnO/CdSe/CdSe x Te 1-x /MoO x /Au and the graded bandgap ITO/ZnO/CdSe( w / o )/CdSe x Te 1-x /CdTe/MoO x /Au are systematically evaluated. It was found that the performance of solar cells degrades almost linearly with the increase of alloy NC film thickness with respect to ITO/ZnO/CdSe/CdSe 0.2 Te 0.8 /MoO x /Au. From another perspective, in terms of the graded bandgap structure of ITO/ZnO/CdSe/CdSe x Te 1-x /CdTe/MoO x /Au, the performance is improved in contrast with its single-junction analogues. The graded bandgap structure is proved to be efficient when absorbing spectrum and the solar cells fabricated under the structure of ITO/ZnO/CdSe 0.8 Te 0.2 /CdSe 0.2 Te 0.8 /CdTe/MoO x /Au indicate power conversion efficiency (PCE) of 6.37%, a value among the highest for solution-processed inversely-structured CdSe x Te 1-x NC solar cells. As the NC solar cells are solution-processed under environmental conditions, they are promising for fabricating solar cells at low cost, roll by roll and in large area.

  14. Rationally Controlled Synthesis of CdSexTe1−x Alloy Nanocrystals and Their Application in Efficient Graded Bandgap Solar Cells

    PubMed Central

    Wen, Shiya; Li, Miaozi; Yang, Junyu; Mei, Xianglin; Wu, Bin; Liu, Xiaolin; Heng, Jingxuan; Hou, Lintao; Xu, Wei; Wang, Dan

    2017-01-01

    CdSexTe1−x semiconductor nanocrystals (NCs), being rod-shaped/irregular dot-shaped in morphology, have been fabricated via a simple hot-injection method. The NCs composition is well controlled through varying molar ratios of Se to Te precursors. Through changing the composition of the CdSexTe1−x NCs, the spectral absorption of the NC thin film between 570–800 nm is proved to be tunable. It is shown that the bandgap of homogeneously alloyed CdSexTe1−x active thin film is nonlinearly correlated with the different compositions, which is perceived as optical bowing. The solar cell devices based on CdSexTe1−x NCs with the structure of ITO/ZnO/CdSe/CdSexTe1−x/MoOx/Au and the graded bandgap ITO/ZnO/CdSe(w/o)/CdSexTe1−x/CdTe/MoOx/Au are systematically evaluated. It was found that the performance of solar cells degrades almost linearly with the increase of alloy NC film thickness with respect to ITO/ZnO/CdSe/CdSe0.2Te0.8/MoOx/Au. From another perspective, in terms of the graded bandgap structure of ITO/ZnO/CdSe/CdSexTe1−x/CdTe/MoOx/Au, the performance is improved in contrast with its single-junction analogues. The graded bandgap structure is proved to be efficient when absorbing spectrum and the solar cells fabricated under the structure of ITO/ZnO/CdSe0.8Te0.2/CdSe0.2Te0.8/CdTe/MoOx/Au indicate power conversion efficiency (PCE) of 6.37%, a value among the highest for solution-processed inversely-structured CdSexTe1−x NC solar cells. As the NC solar cells are solution-processed under environmental conditions, they are promising for fabricating solar cells at low cost, roll by roll and in large area. PMID:29117132

  15. Turbine Engine Hot Section Technology, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Presentations were made concerning the hot section environment and behavior of combustion liners, turbine blades, and waves. The presentations were divided into six sessions: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, and surface properties. The principal objective of each session was to disseminate research results to date, along with future plans. Topics discussed included modeling of thermal and fluid flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior, stress-strain response, and life prediction methods.

  16. Characterization of fission gas bubbles in irradiated U-10Mo fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Andrew M.; Burkes, Douglas E.; MacFarlan, Paul J.

    2017-09-01

    Irradiated U-10Mo fuel samples were prepared with traditional mechanical potting and polishing methods with in a hot cell. They were then removed and imaged with an SEM located outside of a hot cell. The images were then processed with basic imaging techniques from 3 separate software packages. The results were compared and a baseline method for characterization of fission gas bubbles in the samples is proposed. It is hoped that through adoption of or comparison to this baseline method that sample characterization can be somewhat standardized across the field of post irradiated examination of metal fuels.

  17. Effect of initial microstructure on the compactability of rapidly solidified Ti-rich TiAl powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, M.; Chiba, A.; Morizono, Y.

    1997-12-31

    Initial microstructure dependence of compactability at elevated temperature in rapidly solidified Ti-rich TiAl alloy powders produced by plasma rotating electrode process (PREP) has been investigated. There were two kinds of powders with respect to the microstructure. The first one had a surface relief of a martensitic phase, which was referred as M powder. The second one had a dendritic structure, which was referred as D powder. {alpha}{sub 2}+{gamma} microduplex and {alpha}{sub 2}/{gamma} lamellar structures were formed in M and D powders of the Ti-40 at%Al alloy by heat treatment at 1,273 K, respectively. The microduplex structure consisted of {gamma} precipitatemore » in the twin related {alpha}{sub 2} matrix with the usual orientation relationship. It was difficult to compact the D powder by hot pressing at 1,273 K under 50 MPa for 14.4 ks. On the other hand, the M powder was compacted easily by hot pressing with the same condition. The twin related {alpha}{sub 2} and {alpha}{sub 2} boundary changed to random ones and the {alpha}{sub 2} and {gamma} phases lost the usual orientation relationship in the duplex structure during the hot pressing. In other words, the low energy boundaries were changed to the high energy ones suitable for grain boundary sliding. Dislocations were scarcely observed inside of both the {alpha}{sub 2} and {gamma} crystal grains. It was concluded that the grain boundary sliding was a predominant deformation mode in the M powder during the hot pressing. D and M powders in Ti-45 and 47 at%Al alloys showed the same tendency as those in Ti-40 at%Al alloy during hot pressing.« less

  18. Characterization of Extrasolar Planets Using SOFIA

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    Topics include: the landscape of extrasolar planets, why focus on transiting planets, some history and Spitzer results, problems in atmospheric structure or hot Jupiters and hot super Earths, what observations are needed to make progress, and what SOFIA can currently do and comments on optimized instruments.

  19. Theoretical predictions for hot-carrier generation from surface plasmon decay

    PubMed Central

    Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.; Goddard III, William A.; Atwater, Harry A.

    2014-01-01

    Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited ‘hot’ electrons and holes generated by plasmon decay, before inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find that carrier energy distributions are sensitive to the electronic band structure of the metal: gold and copper produce holes hotter than electrons by 1–2 eV, while silver and aluminium distribute energies more equitably between electrons and holes. Momentum-direction distributions for hot carriers are anisotropic, dominated by the plasmon polarization for aluminium and by the crystal orientation for noble metals. We show that in thin metallic films intraband transitions can alter the carrier distributions, producing hotter electrons in gold, but interband transitions remain dominant. PMID:25511713

  20. Action Memorandum for Decommissioning of TAN-607 Hot Shop Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. A. Pinzel

    The Department of Energy is documenting the selection of an alternative for the TAN-607 Hot Shop Area using a Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA). The scope of the removal action is limited to TAN-607 Hot Shop Area. An engineering evaluation/cost analysis (EE/CA) has assisted the Department of Energy Idaho Operations Office in identifuomg the most effective method for performing the decommissioning of this structure whose mission has ended. TAN-607 Hot Shop Area is located at Test Area North Technical Support Facility within the Idaho National Laboratory Site. The selected alternative consists of demolishing themore » TAN-607 aboveground structures and components, removing belowground noninert components (e.g. wood products), and removing the radiologically contaminated debris that does not meet remedial action objectives (RAOs), as defined in the Record of Decision Amendment for the V-Tanks and Explanation of Significant Differences for the PM-2A Tanks at Test Area North, Operable Unit 1-10.« less

  1. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhi; Wan, Yan; Yang, Mengjin

    The Shockley-Queisser limit for solar cell efficiency can be overcome if hot carriers can be harvested before they thermalize. Recently, carrier cooling time up to 100 picoseconds was observed in hybrid perovskites, but it is unclear whether these long-lived hot carriers can migrate long distance for efficient collection. Here, we report direct visualization of hot-carrier migration in methylammonium lead iodide (CH 3NH 3PbI 3) thin films by ultrafast transient absorption microscopy, demonstrating three distinct transport regimes. Quasiballistic transport was observed to correlate with excess kinetic energy, resulting in up to 230 nanometers transport distance that could overcome grain boundaries. Themore » nonequilibrium transport persisted over tens of picoseconds and ~600 nanometers before reaching the diffusive transport limit. Lastly, these results suggest potential applications of hot-carrier devices based on hybrid perovskites.« less

  2. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy

    DOE PAGES

    Guo, Zhi; Wan, Yan; Yang, Mengjin; ...

    2017-04-07

    The Shockley-Queisser limit for solar cell efficiency can be overcome if hot carriers can be harvested before they thermalize. Recently, carrier cooling time up to 100 picoseconds was observed in hybrid perovskites, but it is unclear whether these long-lived hot carriers can migrate long distance for efficient collection. Here, we report direct visualization of hot-carrier migration in methylammonium lead iodide (CH 3NH 3PbI 3) thin films by ultrafast transient absorption microscopy, demonstrating three distinct transport regimes. Quasiballistic transport was observed to correlate with excess kinetic energy, resulting in up to 230 nanometers transport distance that could overcome grain boundaries. Themore » nonequilibrium transport persisted over tens of picoseconds and ~600 nanometers before reaching the diffusive transport limit. Lastly, these results suggest potential applications of hot-carrier devices based on hybrid perovskites.« less

  3. Enhancing performance and uniformity of CH3NH3PbI3-xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Jin, Zhiwen; Li, Hui; Wang, Jizheng

    2016-02-01

    To fabricate high-performance metal-halide perovskite solar cells, a thermal annealing process is indispensable in preparing high quality perovskite film. And usually such annealing is performed on hot plate. However hot-plate annealing could cause problems such as inhomogeneous heating (induced by non-tight contact between the sample and the plate), it is also not fit for large scale manufactory. In this paper, we conduct the annealing process in air-heated oven under various humidity environments, and compared the resulted films (CH3NH3PbI3-xClx) and devices (Al/PC61BM/CH3NH3PbI3-xClx/PEDOT:PSS/ITO/glass) with that obtained via hot-plate annealing. It is found that the air-heated-oven annealing is superior to the hot-plate annealing: the annealing time is shorter, the films are more uniform, and the devices exhibit higher power conversion efficiency and better uniformity. The highest efficiencies achieved for the oven and hot-plate annealing processes are 14.9% and 13.5%, and the corresponding standard deviations are 0.5% and 0.8%, respectively. Our work here indicates that air-heated-oven annealing could be a more reliable and more efficient way for both lab research and large-scale production.

  4. Synthesis and characterization of cadmium sulphide thin films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Chodavadiya, Nisarg; Chapanari, Amisha; Zinzala, Jignesh; Ray, Jaymin; Pandya, Samir

    2018-05-01

    An II-VI group semiconductor is Wide band gap materials and has been widely studied due to their fundamental optical, structural, and electrical properties. Cadmium sulphide (CdS) is one of the most emerged materials in II-VI group. It has many applications such as buffer later in photovoltaic cell, multilayer light emitting diodes, optical filters, thin film field effect transistors, gas sensors, light detectors etc. It is fundamentally an n-type material with an optical band gap of 2.4 eV. Owing to these properties we had studied CdS thin films synthesis and characterized by Raman, Ultraviolet - Visible spectroscopy (UV-VIS) and Hot probe method. CdS thin films were prepared by spin coating of the Cadmium-thiourea precursor solution. Visual inspection after 20 minute thermolysis time the films were looks uniform and shiny pale yellow in color. Raman confirms the A1 vibration of pure CdS. UV-VIS gives the band gap about 2.52 eV, which confirms the formation of nanocrystalline form of CdS. Finally, hot probe signifies the n-type conductivity of the CdS film.

  5. Operating experience with a 250 kW el molten carbonate fuel cell (MCFC) power plant

    NASA Astrophysics Data System (ADS)

    Bischoff, Manfred; Huppmann, Gerhard

    The MTU MCFC program is carried out by a European consortium comprising the German companies MTU Friedrichshafen GmbH, Ruhrgas AG and RWE Energie AG as well as the Danish company Energi E2 S/A. MTU acts as consortium leader. The company shares a license and technology exchange agreement with Fuel Cell Energy Inc., Danbury, CT, USA (formerly Energy Research Corp., ERC). The program was started in 1990 and covers a period of about 10 years. The highlights of this program to date are: Considerable improvements regarding component stability have been demonstrated on laboratory scale. Manufacturing technology has been developed to a point which enables the consortium to fabricate the porous components on a 250 cm 2 scale. Several large area stacks with 5000-7660 cm 2 cell area and a power range of 3-10 kW have been tested at the facilities in Munich (Germany) and Kyndby (Denmark). These stacks have been supplied by FCE. As far as the system design is concerned it was soon realized that conventional systems do not hold the promise for competitive power plants. A system analysis led to the conclusion that a new innovative design approach is required. As a result the "Hot Module" system was developed by the consortium. A Hot Module combines all the components of a MCFC system operating at the similar temperatures and pressures into a common thermally insulated vessel. In August 1997 the consortium started its first full size Hot Module MCFC test plant at the facilities of Ruhrgas AG in Dorsten, Germany. The stack was assembled in Munich using 292 cell packages purchased from FCE. The plant is based on the consortium's unique and proprietary "Hot Module" concept. It operates on pipeline natural gas and was grid connected on 16 August 1997. After a total of 1500 h of operation, the plant was intentionally shut down in a controlled manner in April 1998 for post-test analysis. The Hot Module system concept has demonstrated its functionality. The safety concept has been convincingly proven, though in part unintentionally. The electrical power level of 155 kW (ca. 60% of maximum power) achieved allows validation of the concept with reasonable degree of confidence. Horizontal stack operation—an essential innovation of the Hot Module concept—is feasible. The fuel processing subsystem worked reliably as expected. After initial problems in the inverter control software, the electrical and control subsystem operated to full satisfaction. Stable automatic operation not only under various load conditions, but also in idle mode, hot parking mode, and grid-independent mode has been demonstrated. Together with progress achieved by FCE in the qualification of large direct fuel cell (DFC) stacks the basis was laid for the next test unit of similar design, which will be operated in Bielefeld, Germany. The pre-tests of the stack took place already in July 1999 with good results. Additionally, projects for the test of the DFC Hot Module operating on biogas and other opportunity fuels are under preparation.

  6. Oxidation of boron nitride in an arc heated jet.

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.

    1971-01-01

    Two grades of hot pressed boron nitride and a boron nitride composite were subjected to oxidation tests in a 2.5 megawatt atmospheric arc jet. The results showed that fabrication and/or composition influenced thermal shock and oxidation resistance. Changes in surface structure and recession due to oxidation suggest correlation with specimen composition. The boron nitride composite reacted with the oxygen in the hot subsonic airstream to produce a glassy coating on the hot face surface.

  7. Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet

    DTIC Science & Technology

    2012-01-01

    polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that

  8. Microscale Biosignatures and Abiotic Mineral Authigenesis in Little Hot Creek, California

    PubMed Central

    Kraus, Emily A.; Beeler, Scott R.; Mors, R. Agustin; Floyd, James G.; Stamps, Blake W.; Nunn, Heather S.; Stevenson, Bradley S.; Johnson, Hope A.; Shapiro, Russell S.; Loyd, Sean J.; Spear, John R.; Corsetti, Frank A.

    2018-01-01

    Hot spring environments can create physical and chemical gradients favorable for unique microbial life. They can also include authigenic mineral precipitates that may preserve signs of biological activity on Earth and possibly other planets. The abiogenic or biogenic origins of such precipitates can be difficult to discern, therefore a better understanding of mineral formation processes is critical for the accurate interpretation of biosignatures from hot springs. Little Hot Creek (LHC) is a hot spring complex located in the Long Valley Caldera, California, that contains mineral precipitates composed of a carbonate base (largely submerged) topped by amorphous silica (largely emergent). The precipitates occur in close association with microbial mats and biofilms. Geological, geochemical, and microbiological data are consistent with mineral formation via degassing and evaporation rather than direct microbial involvement. However, the microfabric of the silica portion is stromatolitic in nature (i.e., wavy and finely laminated), suggesting that abiogenic mineralization has the potential to preserve textural biosignatures. Although geochemical and petrographic evidence suggests the calcite base was precipitated via abiogenic processes, endolithic microbial communities modified the structure of the calcite crystals, producing a textural biosignature. Our results reveal that even when mineral precipitation is largely abiogenic, the potential to preserve biosignatures in hot spring settings is high. The features found in the LHC structures may provide insight into the biogenicity of ancient Earth and extraterrestrial rocks.

  9. Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Leonard, R. M.; Kettridge, N.; Devito, K. J.; Petrone, R. M.; Mendoza, C. A.; Waddington, J. M.; Krause, S.

    2018-01-01

    Soil-surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short-lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil-surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high-resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber-Optic Distributed Temperature Sensing. Soil-surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.

  10. Gravitational Lensing Effect on the Two-Point Correlation of Hot Spots in the Cosmic Microwave Background.

    PubMed

    Takada; Komatsu; Futamase

    2000-04-20

    We investigate the weak gravitational lensing effect that is due to the large-scale structure of the universe on two-point correlations of local maxima (hot spots) in the two-dimensional sky map of the cosmic microwave background (CMB) anisotropy. According to the Gaussian random statistics, as most inflationary scenarios predict, the hot spots are discretely distributed, with some characteristic angular separations on the last scattering surface that are due to oscillations of the CMB angular power spectrum. The weak lensing then causes pairs of hot spots, which are separated with the characteristic scale, to be observed with various separations. We found that the lensing fairly smooths out the oscillatory features of the two-point correlation function of hot spots. This indicates that the hot spot correlations can be a new statistical tool for measuring the shape and normalization of the power spectrum of matter fluctuations from the lensing signatures.

  11. Medium-energy heavy-ion single-event-burnout imaging of power MOSFETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musseau, O.; Torres, A.; Campbell, A.B.

    The authors present the first experimental determination of the SEB sensitive area in a power MOSFET irradiated with a high-LET heavy-ion microbeam. They used a spectroscopy technique to perform coincident measurements of the charge collected in both source and drain junctions together, with a non-destructive technique (current limitation). The resulting charge collection images are related to the physical structure of the individual cells. These experimental data reveal the complex 3-dimensional behavior of a real structure, which can not easily be simulated using available tools. As the drain voltage is increased, the onset of burnout is reached, characterized by a suddenmore » change in the charge collection image. Hot spots are observed where the collected charge reaches its maximum value. Those spots, due to burnout triggering events, correspond to areas where the silicon is degraded through thermal effects along a single ion track. This direct observation of SEB sensitive areas as applications for, either device hardening, by modifying doping profiles or layout of the cells, or for code calibration and device simulation.« less

  12. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China.

    PubMed

    Song, Zhao-Qi; Wang, Feng-Ping; Zhi, Xiao-Yang; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Tang, Shu-Kun; Jiang, Hong-Chen; Zhang, Chuanlun L; Dong, Hailiang; Li, Wen-Jun

    2013-04-01

    Thousands of hot springs are located in the north-eastern part of the Yunnan-Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2-8.6; temperature 47-96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene-pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus-Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non-acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non-acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  13. Chlorella vulgaris Induces Apoptosis of Human Non-Small Cell Lung Carcinoma (NSCLC) Cells.

    PubMed

    Zhang, Zhi-Dong; Liang, Kai; Li, Kun; Wang, Guo-Quan; Zhang, Ke-Wei; Cai, Lei; Zhai, Shui-Ting; Chou, Kuo-Chen

    2017-01-01

    Chlorella vulgaris (C. vulgaris), a unicellular green microalga, has been widely used as a food supplement and reported to have antioxidant and anticancer properties. The current study was designed to assess the cytotoxic, apoptotic, and DNA-damaging effects of C. vulgaris growth factor (CGF), hot water C. vulgaris extracts, inlung tumor A549 and NCI-H460 cell lines. A549 cells, NCI-H460 cells, and normal human fibroblasts were treated with CGF at various concentrations (0-300 μg/ml) for 24 hr. The comet assay and γH2AX assay showed DNA damage in A549 and NCI-H460 cells upon CGF exposure. Evaluation of apoptosis by the TUNEL assay and DNA fragmentation analysis by agarose gel electrophoresis showed that CGF induced apoptosis in A549 and NCI-H460 cells. Chlorella vulgaris hot water extract induced apoptosis and DNA damage in human lung carcinoma cells. CGF can thus be considered a potential cytotoxic or genotoxic drug for treatment of lung carcinoma. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. A&M. Hot liquid waste treatment building (TAN616). Camera facing east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing east. Showing west facades of structure. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  15. Investigation and process optimization of SONOS cell's drain disturb in 2-transistor structure flash arrays

    NASA Astrophysics Data System (ADS)

    Xu, Zhaozhao; Qian, Wensheng; Chen, Hualun; Xiong, Wei; Hu, Jun; Liu, Donghua; Duan, Wenting; Kong, Weiran; Na, Wei; Zou, Shichang

    2017-03-01

    The mechanism and distribution of drain disturb (DD) are investigated in silicon-oxide-nitride-oxide-silicon (SONOS) flash cells. It is shown that DD is the only concern in this paper. First, the distribution of trapped charge in nitride layer is found to be non-localized (trapped in entire nitride layer along the channel) after programming. Likewise, the erase is also non-localized. Then, the main disturb mechanism: Fowler Nordheim tunneling (FNT) has been confirmed in this paper with negligible disturb effect from hot-hole injection (HHI). And then, distribution of DD is confirmed to be non-localized similarly, which denotes that DD exists in entire tunneling oxide (Oxide for short). Next, four process optimization ways are proposed for minimization of DD, and VTH shift is measured. It reveals that optimized lightly doped drain (LDD), halo, and channel implant are required for the fabrication of a robust SONOS cell. Finally, data retention and endurance of the optimized SONOS are demonstrated.

  16. Four hot DOGs in the microwave

    NASA Astrophysics Data System (ADS)

    Frey, Sándor; Paragi, Zsolt; Gabányi, Krisztina Éva; An, Tao

    2016-01-01

    Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them are at high redshifts (z ˜ 2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7 GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J0757+5113, WISE J1603+2745), the flux density of the VLBI-detected components is much smaller than the total flux density, suggesting that ˜70-90 per cent of the radio emission, while still dominated by AGN, originates from angular scales larger than that probed by the EVN. The source WISE J1146+4129 appears a candidate compact symmetric object, and WISE J1814+3412 shows a 5.1 kpc double structure, reminiscent of hotspots in a medium-sized symmetric object. Our observations support that AGN residing in hot DOGs may be genuine young radio sources where starburst and AGN activities coexist.

  17. Ultrafast decay of hot phonons in an AlGaN/AlN/AlGaN/GaN camelback channel

    NASA Astrophysics Data System (ADS)

    Leach, J. H.; Wu, M.; Morkoç, H.; Liberis, J.; Šermukšnis, E.; Ramonas, M.; Matulionis, A.

    2011-11-01

    A bottleneck for heat dissipation from the channel of a GaN-based heterostructure field-effect transistor is treated in terms of the lifetime of nonequilibrium (hot) longitudinal optical phonons, which are responsible for additional scattering of electrons in the voltage-biased quasi-two-dimensional channel. The hot-phonon lifetime is measured for an Al0.33Ga0.67N/AlN/Al0.1Ga0.9N/GaN heterostructure where the mobile electrons are spread in a composite Al0.1Ga0.9N/GaN channel and form a camelback electron density profile at high electric fields. In accordance with plasmon-assisted hot-phonon decay, the parameter of importance for the lifetime is not the total charge in the channel (the electron sheet density) but rather the electron density profile. This is demonstrated by comparing two structures with equal sheet densities (1 × 1013 cm-2), but with different density profiles. The camelback channel profile exhibits a shorter hot-phonon lifetime of ˜270 fs as compared with ˜500 fs reported for a standard Al0.33Ga0.67N/AlN/GaN channel at low supplied power levels. When supplied power is sufficient to heat the electrons > 600 K, ultrafast decay of hot phonons is observed in the case of the composite channel structure. In this case, the electron density profile spreads to form a camelback profile, and hot-phonon lifetime reduces to ˜50 fs.

  18. Mycelial antineoplastic activity of Agaricus blazei.

    PubMed

    Bertéli, Míria Benetati Delgado; Umeo, Suzana Harue; Bertéli, André; do Valle, Juliana Silveira; Linde, Giani Andrea; Colauto, Nelson Barros

    2014-08-01

    Basidiocarp of Agaricus blazei (=Agaricus brasiliensis; =Agaricus subrufescens) is used as teas or capsules due to its antineoplastic effect but there are few reports of using mycelium for this purpose. The objective of this study was to evaluate the antineoplastic activity on sarcoma 180 cells implanted in mice of two forms of preparation of the mycelium from two A. blazei strains grown in culture medium with different concentrations of isolated soy protein. Mycelia were grown in Pontecorvo medium with different concentrations of isolated soybean protein (ISP). Mycelial hot water extract, moistened mycelial powder, hot water extract of green tea, Ifosfamida(®) (ifosfamide drug), and saline solution were administered daily by gavage in mice with sarcoma 180 cells to evaluate antineoplastic activity. It was concluded that antineoplastic activity was the same for both strains, except when used as moistened mycelial powder, which rules out the use of mycelial powder in capsules. Mycelial hot water extract had high antineoplastic activity with lower metabolic demand on the spleen and maintenance of normal blood parameters. Mycelial growth in different ISP concentrations had the same antineoplastic activity. Also the vegetative mycelium was as effective as the basidiocarp for sarcoma 180 tumor inhibition. Green tea was as effective as mycelial hot water extract.

  19. Hypersonic Materials and Structures

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2016-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this presentation is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components.

  20. Hot Spots in a Network of Functional Sites

    PubMed Central

    Ozbek, Pemra; Soner, Seren; Haliloglu, Turkan

    2013-01-01

    It is of significant interest to understand how proteins interact, which holds the key phenomenon in biological functions. Using dynamic fluctuations in high frequency modes, we show that the Gaussian Network Model (GNM) predicts hot spot residues with success rates ranging between S 8–58%, C 84–95%, P 5–19% and A 81–92% on unbound structures and S 8–51%, C 97–99%, P 14–50%, A 94–97% on complex structures for sensitivity, specificity, precision and accuracy, respectively. High specificity and accuracy rates with a single property on unbound protein structures suggest that hot spots are predefined in the dynamics of unbound structures and forming the binding core of interfaces, whereas the prediction of other functional residues with similar dynamic behavior explains the lower precision values. The latter is demonstrated with the case studies; ubiquitin, hen egg-white lysozyme and M2 proton channel. The dynamic fluctuations suggest a pseudo network of residues with high frequency fluctuations, which could be plausible for the mechanism of biological interactions and allosteric regulation. PMID:24023934

  1. Origin of Plasmon Lineshape and Enhanced Hot Electron Generation in Metal Nanoparticles.

    PubMed

    You, Xinyuan; Ramakrishna, S; Seideman, Tamar

    2018-01-04

    Plasmon-generated hot carriers are currently being studied intensively for their role in enhancing the efficiency of photovoltaic and photocatalytic processes. Theoretical studies of the hot electrons subsystem have generated insight, but we show that a unified quantum-mechanical treatment of the plasmon and hot electrons reveals new physical phenomena. Instead of a unidirectional energy transfer process in Landau damping, back energy transfer is predicted in small metal nanoparticles (MNPs) within a model-Hamiltonian approach. As a result, the single Lorentzian plasmonic line shape is modulated by a multipeak structure, whose individual line width provides a direct way to probe the electronic dephasing. More importantly, the hot electron generation can be enhanced greatly by matching the incident energy to the peaks of the modulated line shape.

  2. Properties of dispersion-strengthened chromium - 4-volume-percent-thoria alloys produced by ball milling in hydrogen iodide

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1974-01-01

    The effects of processing variables on the tensile properties and ductile-to-brittle transition temperature (DBTT) of Cr + 4 vol. %ThO2 alloys and of pure Cr produced by ball milling in hydrogen iodide were investigated. Hot rolled Cr + ThO2 was stronger than either hot pressed Cr + ThO2 or pure Cr at temperatures up to 1537 C. Hot pressed Cr + ThO2 had a DBTT of 501 C as compared with minus 8 to 24 C for the hot rolled Cr + ThO2 and with 139 C for pure Cr. It is postulated that the dispersoid in the hot rolled alloys lowers the DBTT by inhibiting recovery and recrystallization of the strained structure.

  3. Factors Affecting the Development of Oxide Scales on Austenitic Stainless Steels during Hot Rolling in Steckel Mills

    NASA Astrophysics Data System (ADS)

    Cobo, S. J.; Rainforth, W. M.

    2008-10-01

    The hot rolling of austenitic stainless steels in Steckel Mills introduces particular characteristics to the development of oxides scales and surface structures. In this work, the formation of oxide structures during multipass hot rolling of 302 steel was studied under different sets of processing parameters in a laboratory system designed for the simulation of the Steckel process. The resulting surface structures were characterized by a set of complementary techniques involving scanning electron microscopy, energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and glow discharge optical spectroscopy (GDOS). The surface analysis revealed two alternative surface structures: one consisting in a thin protective oxide layer rich in Cr2O3 and the other consisting in thick complex structures containing several successive nonprotective oxide scale and metal layers resulting from a cyclic oxidation pattern involving stages of protective oxidation, chemical breakaway, and duplex oxidation. The critical condition that determined the activation of one mechanism or the other was identified associated with the parabolic rate constant for Cr2O3 growth and the diffusivity of Cr in the alloy. The effects of changes in temperature, deformation, and furnace atmosphere are discussed. Alternatives for controlling scale development are presented.

  4. Empirical correlations of the performance of vapor-anode PX-series AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L.; Merrill, J.M.; Mayberry, C.

    Power systems based on AMTEC technology will be used for future NASA missions, including a Pluto-Express (PX) or Europa mission planned for approximately year 2004. AMTEC technology may also be used as an alternative to photovoltaic based power systems for future Air Force missions. An extensive development program of Alkali-Metal Thermal-to-Electric Conversion (AMTEC) technology has been underway at the Vehicle Technologies Branch of the Air Force Research Laboratory (AFRL) in Albuquerque, New Mexico since 1992. Under this program, numerical modeling and experimental investigations of the performance of the various multi-BASE tube, vapor-anode AMTEC cells have been and are being performed.more » Vacuum testing of AMTEC cells at AFRL determines the effects of changing the hot and cold end temperatures, T{sub hot} and T{sub cold}, and applied external load, R{sub ext}, on the cell electric power output, current-voltage characteristics, and conversion efficiency. Test results have traditionally been used to provide feedback to cell designers, and to validate numerical models. The current work utilizes the test data to develop empirical correlations for cell output performance under various working conditions. Because the empirical correlations are developed directly from the experimental data, uncertainties arising from material properties that must be used in numerical modeling can be avoided. Empirical correlations of recent vapor-anode PX-series AMTEC cells have been developed. Based on AMTEC theory and the experimental data, the cell output power (as well as voltage and current) was correlated as a function of three parameters (T{sub hot}, T{sub cold}, and R{sub ext}) for a given cell. Correlations were developed for different cells (PX-3C, PX-3A, PX-G3, and PX-5A), and were in good agreement with experimental data for these cells. Use of these correlations can greatly reduce the testing required to determine electrical performance of a given type of AMTEC cell over a wide range of operating conditions.« less

  5. Design of stationary PEFC system configurations to meet heat and power demands

    NASA Astrophysics Data System (ADS)

    Wallmark, Cecilia; Alvfors, Per

    This paper presents heat and power efficiencies of a modeled PEFC system and the methods used to create the system configuration. The paper also includes an example of a simulated fuel cell system supplying a building in Sweden with heat and power. The main method used to create an applicable fuel cell system configuration is pinch technology. This technology is used to evaluate and design a heat exchanger network for a PEFC system working under stationary conditions, in order to find a solution with high heat utilization. The heat exchanger network in the system connecting the reformer, the burner, gas cleaning, hot-water storage and the PEFC stack will affect the heat transferred to the hot-water storage and thereby the heating of the building. The fuel, natural gas, is reformed to a hydrogen-rich gas within a slightly pressurized system. The fuel processor investigated is steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation. The system is connected to the electrical grid for backup and peak demands and to a hot-water storage to meet the varying heat demand for the building. The procedure for designing the fuel cell system installation as co-generation system is described, and the system is simulated for a specific building in Sweden during 1 year. The results show that the fuel cell system in combination with a burner and hot-water storage could supply the building with the required heat without exceeding any of the given limitations. The designed co-generation system will provide the building with most of its power requirements and would further generate income by sale of electricity to the power grid.

  6. Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.

    Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.

  7. Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems

    DOE PAGES

    Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.; ...

    2018-06-25

    Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.

  8. Assessment of the geothermal potential of southwestern New Mexico. Final report, July 1, 1978-April 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elston, W.E.

    1981-07-01

    Results are reported of geologic mapping of geothermal anomalies in the Gila Hot Springs KGRA/Mimbres Hot Springs area, Grant County. They suggest that both hot-spring occurrences are structurally controlled by the intersection of a major Basin and Range fault and the disturbed margin of an ash-flow tuff cauldron. Hydrothermal alteration in both areas is related to mid-Tertiary volcanism, not to modern hot springs. At Gila Hot Springs, the geothermal aquifer is a zone at the contact between the unwelded top of a major ash-flow tuff sheet (Bloodgood Canyon Rhyolite Tuff) and a succession of interlayered vesicular basaltic andesite flows andmore » thin sandstone beds (Bearwallow Mountain Formation). Scattered groups of natural hot springs occur at intersections of this zone and the faults bordering the northeastern side of the Gila Hot Springs graben. Hydrothermal alteration of Bloodgood Canyon Rhyolite Tuff near major faults seems to have increased its permeability. At Mimbres Hot Springs, a single group of hot springs is controlled by the intersection of the Mimbres Hot Springs fault and a fractured welded ash-flow tuff that fills the Emory cauldron (Kneeling Nun Tuff). Gila Hot Springs and Mimbres Hot Springs do not seem to be connected by throughgoing faults. At both localities, hot spring water is used locally for space heating and domestic hot water; at Gila Hot Springs, water of 65.6/sup 0/C (150/sup 0/F) is used to generate electricity by means of a 10 kw freon Rankine Cycle engine. This is the first such application in New Mexico.« less

  9. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples

    PubMed Central

    Yu, Feiqiao Brian; Blainey, Paul C; Schulz, Frederik; Woyke, Tanja; Horowitz, Mark A; Quake, Stephen R

    2017-01-01

    Metagenomics and single-cell genomics have enabled genome discovery from unknown branches of life. However, extracting novel genomes from complex mixtures of metagenomic data can still be challenging and represents an ill-posed problem which is generally approached with ad hoc methods. Here we present a microfluidic-based mini-metagenomic method which offers a statistically rigorous approach to extract novel microbial genomes while preserving single-cell resolution. We used this approach to analyze two hot spring samples from Yellowstone National Park and extracted 29 new genomes, including three deeply branching lineages. The single-cell resolution enabled accurate quantification of genome function and abundance, down to 1% in relative abundance. Our analyses of genome level SNP distributions also revealed low to moderate environmental selection. The scale, resolution, and statistical power of microfluidic-based mini-metagenomics make it a powerful tool to dissect the genomic structure of microbial communities while effectively preserving the fundamental unit of biology, the single cell. DOI: http://dx.doi.org/10.7554/eLife.26580.001 PMID:28678007

  10. Evolution of Hot Gas in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Mathews, William G.

    2004-01-01

    This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.

  11. Simulations of electron transport and ignition for direct-drive fast-ignition targets

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Anderson, K. S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J. A.; Skupsky, S.; Theobald, W.; Stoeckl, C.

    2008-11-01

    The performance of high-gain, fast-ignition fusion targets is investigated using one-dimensional hydrodynamic simulations of implosion and two-dimensional (2D) hybrid fluid-particle simulations of hot-electron transport, ignition, and burn. The 2D/3D hybrid-particle-in-cell code LSP [D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] and the 2D fluid code DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] are integrated to simulate the hot-electron transport and heating for direct-drive fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. The self-generated resistive magnetic field is found to collimate the hot-electron beam, increase the coupling efficiency of hot electrons with the target, and reduce the minimum energy required for ignition. Resistive filamentation of the hot-electron beam is also observed. The minimum energy required for ignition is found for hot electrons with realistic angular spread and Maxwellian energy-distribution function.

  12. Defense Activated by 9-Lipoxygenase-Derived Oxylipins Requires Specific Mitochondrial Proteins1[W

    PubMed Central

    Vellosillo, Tamara; Aguilera, Verónica; Marcos, Ruth; Bartsch, Michael; Vicente, Jorge; Cascón, Tomas; Hamberg, Mats; Castresana, Carmen

    2013-01-01

    9-Lipoxygenases (9-LOXs) initiate fatty acid oxygenation, resulting in the formation of oxylipins activating plant defense against hemibiotrophic pathogenic bacteria. Previous studies using nonresponding to oxylipins (noxy), a series of Arabidopsis (Arabidopsis thaliana) mutants insensitive to the 9-LOX product 9-hydroxy-10,12,15-octadecatrienoic acid (9-HOT), have demonstrated the importance of cell wall modifications as a component of 9-LOX-induced defense. Here, we show that a majority (71%) of 41 studied noxy mutants have an added insensitivity to isoxaben, an herbicide inhibiting cellulose synthesis and altering the cell wall. The specific mutants noxy2, noxy15, and noxy38, insensitive to both 9-HOT and isoxaben, displayed enhanced susceptibility to Pseudomonas syringae DC3000 as well as reduced activation of salicylic acid-responding genes. Map-based cloning identified the mutation in noxy2 as At5g11630 encoding an uncharacterized mitochondrial protein, designated NOXY2. Moreover, noxy15 and noxy38 were mapped at the DYNAMIN RELATED PROTEIN3A and FRIENDLY MITOCHONDRIA loci, respectively. Fluorescence microscopy and molecular analyses revealed that the three noxy mutants characterized exhibit mitochondrial dysfunction and that 9-HOT added to wild-type Arabidopsis causes mitochondrial aggregation and loss of mitochondrial membrane potential. The results suggest that the defensive responses and cell wall modifications caused by 9-HOT are under mitochondrial retrograde control and that mitochondria play a fundamental role in innate immunity signaling. PMID:23370715

  13. In vivo and in vitro evaluation for nutraceutical purposes of capsaicin, capsanthin, lutein and four pepper varieties.

    PubMed

    Fernández-Bedmar, Zahira; Alonso-Moraga, Angeles

    2016-12-01

    The purpose of this study is to determine the nutraceutic potential of different Capsicum sp, capsaicin, capsanthin and lutein and provide data in order to clarify the conflicting results obtained for capsaicin by different authors. To achieve these objectives, in vivo (geno/antigenotoxicity and lifespan assays in the animal model Drosophila) and in vitro (cytotoxicity and DNA-fragmentation assays in HL60 promyelocytic cell line) assays were carried out. Results showed that i) none of the tested substances were genotoxic except green hot pepper and capsaicin at the highest tested concentration (5 mg/mL and 11.5 μM respectively), ii) all tested substances except green hot pepper are antimutagenic against H 2 O 2 -induced damage, iii) only red sweet pepper significantly extend the lifespan and healthspan of D. melanogaster at 1.25 and 2.5 mg/mL, iv) all pepper varieties induce dose-depended cytotoxic effect in HL60 cells with different IC 50 , and v) all pepper varieties and capsaicin exerted proapoptotic effect on HL60 cells. (i) sweet peppers could be suggested as nutraceutical food, (ii) hot peppers should be moderately consumed, and (iii) supplementary studies are necessary to clarify the synergic effect of the carotenoids and capsaicinoids in the hot pepper food matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Flexible Sheet-Type Sensor for Noninvasive Measurement of Cellular Oxygen Metabolism on a Culture Dish.

    PubMed

    Kojima, Mari; Takehara, Hiroaki; Akagi, Takanori; Shiono, Hirofumi; Ichiki, Takanori

    2015-01-01

    A novel flexible sensor was developed for the noninvasive oxygen metabolism measurement of cultivated cells and tissues. This device is composed of a transparent double-layered polymer sheet of ethylene-vinyl alcohol (EVOH) and poly(dimethylsiloxane) (PDMS) having an array of microhole structures of 90 μm diameter and 50 μm depth on its surface. All the microhole structures were equipped with a 1-μm-thick optical chemical sensing layer of platinum porphyrin-fluoropolymer on their bottom. The three-dimensional microstructures of the sensor were fabricated by a newly developed simple and low-cost production method named self-aligned hot embossing. The device was designed to be attached slightly above the cells cultivated on a dish to form a temporarily closed microspace over the target cells during measurement. Since the change in oxygen concentration is relatively fast in the microcompartmentalized culture medium, a rapid evaluation of the oxygen consumption rate is possible by measuring the phosphorescence lifetime of the platinum porphyrin-fluoropolymer. The combined use of the device and an automated optical measurement system enabled the high-throughput sensing of cellular oxygen consumption (100 points/min). We monitored the oxygen metabolism of the human breast cancer cell line MCF7 on a Petri dish and evaluated the oxygen consumption rate to be 0.72 ± 0.12 fmol/min/cell. Furthermore, to demonstrate the utility of the developed sensing system, we demonstrated the mapping of the oxygen consumption rate of rat brain slices and succeeded in visualizing a clear difference among the layer structures of the hippocampus, i.e., the cornu ammonis (CA1 and CA3) and dentate gyrus (DG).

  15. Monolithic Solid Oxide Fuel Cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  16. Comparison of fatigue analysis approaches for hot-mix asphalt to ensure a state of good repair.

    DOT National Transportation Integrated Search

    2013-10-01

    Fatigue cracking is a primary form of distress in hot-mix asphalt. The long-term nature of fatigue due to repeated : loading and aging and its required tie to pavement structure present challenges in terms of evaluating mixture : resistance. This pro...

  17. A&M. Hot liquid waste treatment building (TAN616). Camera facing northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing northeast. South wall with oblique views of west sides of structure. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. Analysis of load-induced strains in a hot mix asphalt perpetual pavement : final report, April 2009.

    DOT National Transportation Integrated Search

    2009-04-01

    This report presents the findings of a research study conducted to investigate the structural performance of a 275 mm hot : mix asphalt perpetual pavement constructed as part of the WIM bypass lane at the Kenosha Safety & Weigh Station : Facility. Tw...

  19. Hot-atom versus Eley-Rideal dynamics in hydrogen recombination on Ni(100). I. The single-adsorbate case.

    PubMed

    Martinazzo, R; Assoni, S; Marinoni, G; Tantardini, G F

    2004-05-08

    We compare the efficiency of the Eley-Rideal (ER) reaction with the formation of hot-atom (HA) species in the simplest case, i.e., the scattering of a projectile off a single adsorbate, considering the Hydrogen and Hydrogen-on-Ni(100) system. We use classical mechanics and the accurate embedded diatomics-in-molecules potential to study the collision system over a wide range of collision energies (0.10-1.50 eV), both with a rigid and a nonrigid Ni substrate and for impact on the occupied and neighboring empty cells. In the rigid model metastable and truly bound hot-atoms occur and we find that the cross section for the formation of bound hot-atoms is considerably higher than that for the ER reaction over the whole range of collision energies examined. Metastable hot-atoms form because of the inefficient energy transfer to the adsorbate and have lifetimes of the order 0.1-0.7 ps, depending on the collision energy. When considering the effects of lattice vibrations we find, on average, a consistent energy transfer to the substrate, say 0.1-0.2 eV, which forced us to devise a two-step dynamical model to get rid of the problems associated with the use of periodic boundary conditions. Results for long-lived HA formation due to scattering on the occupied cell at a surface temperature of 120 K agree well with those of the rigid model, suggesting that in the above process the substrate plays only a secondary role and further calculations at surface temperatures of 50 and 300 K are in line with these findings. However, considerably high cross sections for formation of long-lived hot-atoms result also from scattering off the neighboring cells where the energy transfer to the lattice cannot be neglected. Metastable hot-atoms are reduced in number and have usually lifetimes shorter than those of the rigid-model, say less than 0.3 ps. In addition, ER cross sections are only slightly affected by the lattice motion and show a little temperature dependence. Finally, we find also that absorption and reflection strongly depend on the correct consideration of lattice vibrations and the occurrence of trapping. (c) 2004 American Institute of Physics.

  20. Hot-spot analysis for drug discovery targeting protein-protein interactions.

    PubMed

    Rosell, Mireia; Fernández-Recio, Juan

    2018-04-01

    Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.

  1. Identification of kinetically hot residues in proteins.

    PubMed Central

    Demirel, M. C.; Atilgan, A. R.; Jernigan, R. L.; Erman, B.; Bahar, I.

    1998-01-01

    A number of recent studies called attention to the presence of kinetically important residues underlying the formation and stabilization of folding nuclei in proteins, and to the possible existence of a correlation between conserved residues and those participating in the folding nuclei. Here, we use the Gaussian network model (GNM), which recently proved useful in describing the dynamic characteristics of proteins for identifying the kinetically hot residues in folded structures. These are the residues involved in the highest frequency fluctuations near the native state coordinates. Their high frequency is a manifestation of the steepness of the energy landscape near their native state positions. The theory is applied to a series of proteins whose kinetically important residues have been extensively explored: chymotrypsin inhibitor 2, cytochrome c, and related C2 proteins. Most of the residues previously pointed out to underlie the folding process of these proteins, and to be critically important for the stabilization of the tertiary fold, are correctly identified, indicating a correlation between the kinetic hot spots and the early forming structural elements in proteins. Additionally, a strong correlation between kinetically hot residues and loci of conserved residues is observed. Finally, residues that may be important for the stability of the tertiary structure of CheY are proposed. PMID:9865946

  2. Evidence for a Dayside Thermal Inversion and High Metallicity for the Hot Jupiter WASP-18b

    NASA Astrophysics Data System (ADS)

    Sheppard, Kyle; Mandell, Avi M.; Tamburo, Patrick; Gandhi, Siddarth; Pinhas, Arazi; Madhusudhan, Nikku; Deming, Drake

    2018-01-01

    Hot Jupiters have been vital in revealing the structural and atmospheric diversity of gas-rich planets. Since they are exposed to extreme conditions and relatively easy to observe through transit and eclipse spectroscopy, hot Jupiters provide a window into a unique part of parameter space, allowing us to better understand both atmospheric physics and planetary structure. Additionally, constraints on the structure and composition of exoplanetary atmospheres allow us to test and generalize planetary formation models. We find evidence for a strong thermal inversion in the dayside atmosphere of the highly irradiated hot Jupiter WASP-18b (Teq=2400K, M=10MJ) based on Hubble Space Telescope secondary eclipse observations and Spitzer eclipse photometry. We report a 4.7σ detection of CO, and a non-detection of water vapor as well as all other relevant species (e.g., TiO, VO). The most probable atmospheric retrieval solution indicates a C/O ratio of 1 and an extremely high metallicity (C/H=~283x solar). If confirmed with future observations, WASP-18b would be the first example of a planet with a non-oxide driven thermal inversion and an atmospheric metallicity inconsistent with that predicted for Jupiter-mass planets.

  3. Potential ability of hot water adzuki (Vigna angularis) extracts to inhibit the adhesion, invasion, and metastasis of murine B16 melanoma cells.

    PubMed

    Itoh, Tomohiro; Umekawa, Hayato; Furuichi, Yukio

    2005-03-01

    The 40% ethanol eluent of the fraction of hot-water extract from adzuki beans (EtEx.40) adsorbed onto DIAION HP-20 resin has many biological activities, for example, antioxidant, antitumorigenesis, and intestinal alpha-glucosidase suppressing activities. This study examined the inhibitory effect of EtEx.40 on experimental lung metastasis and the invasion of B16-BL6 melanoma cells. EtEx.40 was found significantly to reduce the number of tumor colonies. It also inhibited the adhesion and migration of B16-BL6 melanoma cells into extracellular matrix components and their invasion into reconstituted basement membrane (matrigel) without affecting cell proliferation in vitro. These in vivo data suggest that EtEx.40 possesses a strong antimetastatic ability, which might be a lead compound in functional food development.

  4. A transient hot-wire instrument for thermal conductivity measurements in electrically conducting liquids at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Alloush, A.; Gosney, W. B.; Wakeham, W. A.

    1982-09-01

    This paper describes a novel type of transient hot-wire cell for thermal conductivity measurements on electrically conducting liquids. A tantalum wire of 25 μm. diameter is used as the sensing element in the cell, and it is insulated from the conducting liquids by an anodic film of tantalum pentoxide, 70 nm thick. The cell is suitable for measurements on conducting liquids at elevated temperatures. The results of test measurements on liquid water at its saturation vapor pressure are reported in order to confirm the correct operation of the thermal conductivity cell. The data, which have an estimated accuracy of ±3%, depart by less than ±1.8% from the correlation proposed by the International Association for the Properties of Steam. Results are also presented for concentrated aqueous solutions of lithium bromide, which are frequently used in absorption refrigerator cycles.

  5. Ethanol-extracted Cameroonian propolis exerts estrogenic effects and alleviates hot flushes in ovariectomized Wistar rats.

    PubMed

    Zingue, Stéphane; Nde, Chantal Beatrice Magne; Michel, Thomas; Ndinteh, Derek Tantoh; Tchatchou, Jules; Adamou, Moïse; Fernandez, Xavier; Fohouo, Fernand-Nestor Tchuenguem; Clyne, Colin; Njamen, Dieudonné

    2017-01-21

    Since the biological properties of propolis depend to the plants that can be found in a specific region, propolis from unexplored regions attracts the attention of scientists. Ethanolic extract of Cameroonian propolis (EEP) is used to treat various ailments including gynecological problems and amenorrhea. Since there were no scientific data to support the above claims, the present study was therefore undertaken to assess estrogenic properties of Cameroonian propolis. To achieve our goal, the ability of EEP to induce MCF-7 cells proliferation in E-screen assay as well as to activate estrogen receptors α (ERα) and β (ERβ) in cell-based reporter gene assays using human embryonic kidney cells (HEK293T) transfected with ERs was tested. Further, a 3-day uterotrophic assay was performed and the ability of EEP to alleviate hot flushes in ovariectomized adult rats was evaluated. In vitro, EEP showed an antiestrogenic activity in both HEK293T ER-α and ER-β cells. In vivo, EEP induced a significant increase in a bell shape dose response manner of the uterine wet weight, the total protein levels in the uterus, the uterine and vaginal epithelium height and acini border cells of mammary gland with the presence of abundant eosinophil secretions. Moreover, EEP induced a significant decrease in the total number, average duration as well as frequency of hot flushes after 3 days of treatment in rat (equivalent to a month in woman). The dose of 150 mg/kg exhibited the most potent estrogenic effects among all the tested doses. The UPLC-HRMS analysis showed the presence of caffeic acid derivatives and trirtepernoids in EEP, which are well known endowed with estrogenic properties. These results suggest that Ethanolic extract of Cameroonian propolis has estrogen-like effects in vivo and may alleviate some menopausal problems such as vaginal dryness and hot flushes. Ethanol-extracted Cameroobian propolis exhibited in vitro and in vivo estrogen-like effects. This extract may contain promising phytoestrogens.

  6. Effect of deposition pressure on the morphology and structural properties of carbon nanotubes synthesized by hot-filament chemical vapor deposition.

    PubMed

    Arendse, C J; Malgas, G F; Scriba, M R; Cummings, F R; Knoesen, D

    2007-10-01

    Hot-filament chemical vapor deposition has developed into an attractive method for the synthesis of various carbon nanostructures, including carbon nanotubes. This is primarily due to its versatility, low cost, repeatability, up-scalability, and ease of production. The resulting nano-material synthesized by this technique is dependent on the deposition conditions which can be easily controlled. In this paper we report on the effect of the deposition pressure on the structural properties and morphology of carbon nanotubes synthesized by hot-filament chemical vapor deposition, using Raman spectroscopy and high-resolution scanning electron microscopy, respectively. A 10 nm-thick Ni layer, deposited on a SiO2/Si substrate, was used as catalyst for carbon nanotube growth. Multi-walled carbon nanotubes with diameters ranging from 20-100 nm were synthesized at 500 degrees C with high structural perfection at deposition pressures between 150 and 200 Torr. Raman spectroscopy measurements confirm that the carbon nanotube deposit is homogeneous across the entire substrate area.

  7. Microstructure and mechanical properties of a hot-extruded Al-based composite reinforced with core-shell-structured Ti/Al3Ti

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wu, Bao-lin; Liu, Yu-lin

    2017-12-01

    An Al-based composite reinforced with core-shell-structured Ti/Al3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate tensile strength and elongation of the composite sintered at 620°C for 5 h and extruded at a mass ratio of 12.75:1 reached 304 MPa and 14%, respectively, and its compressive deformation reached 60%. The promising mechanical properties are due to the core-shell-structured reinforcement, which is mainly composed of Al3Ti and Ti and is bonded strongly with the Al matrix, and to the reduced crack sensitivity of Al3Ti. The refined grains after hot extrusion also contribute to the mechanical properties of this composite. The mechanical properties might be further improved through regulating the relative thickness of Al-Ti intermetallics and Ti metal layers by adjusting the sintering time and the subsequent extrusion process.

  8. Replication of cicada wing's nano-patterns by hot embossing and UV nanoimprinting.

    PubMed

    Hong, Sung-Hoon; Hwang, Jaeyeon; Lee, Heon

    2009-09-23

    The hydrophobicity of the cicada wing originates from its naturally occurring, surface nano-structure. The nano-structure of the cicada wing consists of an array of nano-sized pillars, 100 nm in diameter and 300 nm in height. In this study, the nano-structure of the cicada wing was successfully duplicated by using hot embossing lithography and UV nanoimprint lithography (NIL). The diameter and pitch of replication were the same as those of the original cicada wing and the height was a little smaller than that of the original master. The transmittance of the hot embossed PVC film was increased by 2-6% compared with that of the bare PVC film. The hydrophobicity was measured by water contact angle measurements. The water contact angle of the replica, made of UV cured polymer, was 132 degrees +/- 2 degrees , which was slightly lower than that of the original cicada wing (138 degrees +/- 2 degrees ), but much higher than that of the UV cured polymer surface without any nano-sized pillars (86 degrees ).

  9. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis

    PubMed Central

    Yusof, Yasmin Anum Mohd; Md. Saad, Suhana; Makpol, Suzana; Shamaan, Nor Aripin; Ngah, Wan Zurinah Wan

    2010-01-01

    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2. INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti‐cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail. METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0‐4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis. RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p < 0.05), with an IC50 of 1.6 mg/ml. DNA damage as measured by Comet assay was increased in HepG2 cells at all concentrations of Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro‐ apoptotic proteins P53, Bax and caspase‐3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti‐apoptotic protein Bcl‐2. CONCLUSIONS: Chlorella vulgaris may have anti‐cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase‐3 proteins and through a reduction of Bcl‐2 protein, which subsequently lead to increased DNA damage and apoptosis. PMID:21340229

  10. Novel structure design of composite proton exchange membranes with continuous and through-membrane proton-conducting channels

    NASA Astrophysics Data System (ADS)

    Wang, Hang; Tang, Chenxiao; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Li, Hongjun

    2017-10-01

    The primary goal of this study is to develop a high-performanced proton exchange membrane with the characteristics of through-membrane and continuous solution blown nanofibers as proton-conducting channels. The curled sulfonated phenolphthalein poly (ether sulfone) and poly (vinylidene fluoride) nanofibers were separately fabricated through the solution blowing process which is a new nanofiber fabricating method with high productivity, then they were fabricated into a sandwich-structured mat. Then this sandwich-structured mat was hot-pressed to form the designed structure using different melting temperatures of the two polymers by melting and making poly (vinylidene fluoride) flow into the phenolphthalein poly (ether sulfone) nanofiber mat. The characteristics of the composite membrane, such as morphology and performance of the membrane, were investigated. The characterization results proved the successful preparation of the membrane structure. Performance results showed that the novel structured membrane with through-membrane nanofibers significantly improved water swelling and methanol permeability, though its conductivity is lower than that of Nafion, the cell performance showed comparable results. Therefore, the novel structure design can be considered as a promising method for preparing of proton exchange membranes.

  11. Fuel Cells | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    to develop fuel cells on campus. Does your campus support telecommunications networks where there is captures waste heat to generate hot water. Additionally, the exhaust carbon dioxide is routed to an energy conversion calculation methodologies. U.S. Department of Energy - Fuel Cell Animation: Provides an

  12. The effect of liquid hot water pretreatment on the chemical-structural alteration and the reduced recalcitrance in poplar.

    PubMed

    Li, Mi; Cao, Shilin; Meng, Xianzhi; Studer, Michael; Wyman, Charles E; Ragauskas, Arthur J; Pu, Yunqiao

    2017-01-01

    Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood. We investigated the effects of LHW pretreatment with different severity factors (log R 0 ) on the structural changes of fast-grown poplar ( Populus trichocarpa ). With the severity factor ranging from 3.6 to 4.2, LHW pretreatment resulted in a substantial xylan solubilization by 50-77% ( w/w , dry matter). The molecular weights of the remained hemicellulose in pretreated solids also have been significantly reduced by 63-75% corresponding to LHW severity factor from 3.6 to 4.2. In addition, LHW had a considerable impact on the cellulose structure. The cellulose crystallinity increased 6-9%, whereas its degree of polymerization decreased 35-65% after pretreatment. We found that the pretreatment severity had an empirical linear correlation with the xylan solubilization ( R 2  = 0.98, r  = + 0.99), hemicellulose molecular weight reduction ( R 2  = 0.97, r  = - 0.96 and R 2  = 0.93, r  = - 0.98 for number-average and weight-average degree of polymerization, respectively), and cellulose crystallinity index increase ( R 2  = 0.98, r  = + 0.99). The LHW pretreatment also resulted in small changes in lignin structure such as decrease of β- O -4' ether linkages and removal of cinnamyl alcohol end group and acetyl group, while the S/G ratio of lignin in LHW pretreated poplar residue remained no significant change compared with the untreated poplar. This study revealed that the solubilization of xylan, the reduction of hemicellulose molecular weights and cellulose degree of polymerization, and the cleavage of alkyl-aryl ether bonds in lignin resulted from LHW pretreatment are critical factors associated with reduced cell wall recalcitrance. The chemical-structural changes of the three major components, cellulose, lignin, and hemicellulose, during LHW pretreatment provide useful and fundamental information of factors governing feedstock recalcitrance during hydrothermal pretreatment.

  13. PCR on yeast colonies: an improved method for glyco-engineered Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Saccharomyces cerevisiae is extensively used in bio-industries. However, its genetic engineering to introduce new metabolism pathways can cause unexpected phenotypic alterations. For example, humanisation of the glycosylation pathways is a high priority pharmaceutical industry goal for production of therapeutic glycoproteins in yeast. Genomic modifications can lead to several described physiological changes: biomass yields decrease, temperature sensitivity or cell wall structure modifications. We have observed that deletion of several N-mannosyltransferases in Saccharomyces cerevisiae, results in strains that can no longer be analyzed by classical PCR on yeast colonies. Findings In order to validate our glyco-engineered Saccharomyces cerevisiae strains, we developed a new protocol to carry out PCR directly on genetically modified yeast colonies. A liquid culture phase, combined with the use of a Hot Start DNA polymerase, allows a 3-fold improvement of PCR efficiency. The results obtained are repeatable and independent of the targeted sequence; as such the protocol is well adapted for intensive screening applications. Conclusions The developed protocol enables by-passing of many of the difficulties associated with PCR caused by phenotypic modifications brought about by humanisation of the glycosylation in yeast and allows rapid validation of glyco-engineered Saccharomyces cerevisiae cells. It has the potential to be extended to other yeast strains presenting cell wall structure modifications. PMID:23688076

  14. Dressing control of biphoton waveform transitions

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Zhang, Dan; Zhang, Da; Hao, Ling; Chen, Haixia; Wang, Zhiguo; Zhang, Yanpeng

    2018-05-01

    We experimentally realize and theoretically analyze narrow-band biphotons generated in a hot rubidium vapor cell by four-wave-mixing processing. A dressing laser beam is used to alternate both linear and nonlinear susceptibilities of the vapor, thereby modifying the biphoton's temporal correlation function. Most notably, the correlation time is increased from 6 to 165 ns. The biphoton shape is also shown to change as a result of the coupled-states dressing. We observed Rabi oscillations and optical precursors in hot atomic vapor cells. We also theoretically simulated biphoton correlation times as influenced by dressing-laser detuning and power, the results of which are consistent with our experiments.

  15. Hot cell shield plug extraction apparatus

    DOEpatents

    Knapp, Philip A.; Manhart, Larry K.

    1995-01-01

    An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

  16. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner

    2013-07-01

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to themore » hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)« less

  17. Heat inactivation of wine spoilage yeast Dekkera bruxellensis by hot water treatment.

    PubMed

    Fabrizio, V; Vigentini, I; Parisi, N; Picozzi, C; Compagno, C; Foschino, R

    2015-08-01

    Cell suspensions of four Dekkera bruxellensis strains (CBS 2499, CBS 2797, CBS 4459 and CBS 4601) were subjected to heat treatment in deionized water at four different temperatures (55·0, 57·5, 60·0 and 62·5°C) to investigate their thermal resistance. The decimal reduction times at a specific temperature were calculated from the resulting inactivation curves: the D-values at 55·0°C ranged from 63 to 79·4 s, at 57·5°C from 39·6 to 46·1 s, at 60·0°C from 19·5 to 20·7 s, at 62·5°C from 10·2 to 13·7 s. The z-values were between 9·2 and 10·2°C, confirming that heat resistance is a strain-dependent character. A protocol for the sanitization of 225 l casks by immersion in hot water was set up and applied to contaminated 3-year-old barrels. The heat penetration through the staves was evaluated for each investigated temperature by positioning a thermal probe at 8 mm deep. A treatment at 60°C for an exposure time of 19 min allowed to eliminate the yeast populations up to a log count reduction of 8. Brettanomyces/Dekkera bruxellensis is the main yeast involved in red wine spoilage that occurs during ageing in barrel, generating considerable economic losses. Current sanitization protocols, performed using different chemicals, are ineffective due to the porous nature of the wood. The thermal inactivation of D. bruxellensis cells by hot water treatment proves to be efficacious and easy to perform, provided that the holding time at the killing temperature takes into account the filling time of the vessel and the time for the heat penetration into the wood structure. © 2015 The Society for Applied Microbiology.

  18. Development of an integrated BEM approach for hot fluid structure interaction: BEST-FSI: Boundary Element Solution Technique for Fluid Structure Interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1992-01-01

    As part of the continuing effort at NASA LeRC to improve both the durability and reliability of hot section Earth-to-orbit engine components, significant enhancements must be made in existing finite element and finite difference methods, and advanced techniques, such as the boundary element method (BEM), must be explored. The BEM was chosen as the basic analysis tool because the critical variables (temperature, flux, displacement, and traction) can be very precisely determined with a boundary-based discretization scheme. Additionally, model preparation is considerably simplified compared to the more familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow is captured through the use of an analytical fundamental solution, eliminating the dependence of the solution on the discretization pattern. The price that must be paid in order to realize these advantages is that any BEM formulation requires a considerable amount of analytical work, which is typically absent in the other numerical methods. All of the research accomplishments of a multi-year program aimed toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-orbit engine hot section components are detailed. Most of the effort was directed toward the examination of fluid flow, since BEM's for fluids are at a much less developed state. However, significant strides were made, not only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure interaction problem.

  19. Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): Characteristics and controls on regional distribution

    NASA Astrophysics Data System (ADS)

    Guido, Diego M.; Campbell, Kathleen A.

    2011-06-01

    The Deseado Massif, Santa Cruz Province, Argentinean Patagonia, hosts numerous Middle to Late Jurassic age geothermal and epithermal features represented by siliceous and calcareous chemical precipitates from hot springs (sinters and travertines, respectively), hydrothermal breccias, quartz veins, and widespread hydrothermal silicification. They indicate pauses in explosive volcanic activity, marking the final stages in the evolution of an extensive Jurassic (ca. 178-151 Ma) volcanic complex set in a diffuse extensional back-arc setting heralding the opening of the Atlantic Ocean. Published paleo-hot spring sites for the Deseado Massif, plus additional sites identified during our recent field studies, reveal a total of 23 locations, five of which were studied in detail to determine their geologic and facies associations. They show structural, lithologic, textural and biotic similarities with Miocene to Recent hot spring systems from the Taupo and Coromandel volcanic zones, New Zealand, as well as with modern examples from Yellowstone National Park, U.S.A. These comparisons aid in the definition of facies assemblages for Deseado Massif deposits - proximal, middle apron and distal siliceous sinter and travertine terraces and mounds, with preservation of many types of stromatolitic fabrics - that likely were controlled by formation temperature, pH, hydrodynamics and fluid compositions. Locally the mapped hot spring deposits largely occur in association with reworked volcaniclastic lacustrine and/or fluvial sediments, silicic to intermediate lava domes, and hydrothermal mineralization, all of which are related to local and regional structural lineaments. Moreover, the numerous geothermal and significant epithermal (those with published minable resources) deposits of the Deseado Massif geological province mostly occur in four regional NNW and WNW hydrothermal-structural belts (Northwestern, Northern, Central, and Southern), defined here by alignment of five or more hot spring deposits and confirmed as structurally controlled by aeromagnetic data. The Northern and Northwestern belts, in particular, concentrate most of the geothermal and epithermal occurrences. Hence, Jurassic hydrothermal fluid flow was strongly influenced by the most dominant and long-active geological boundaries in the region, the outer limits of the Deseado Massif 'horst' itself.

  20. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures

    NASA Astrophysics Data System (ADS)

    Anyasodor, Gerald; Koroschetz, Christian

    2017-09-01

    To achieve the high volume manufacture of lightweight passenger cars at economic cost as required in the automotive industry, low density materials and new process route will be needed. While high strength aluminium alloy grades: AA7075 and AA6082 may provide the alternative material solution, hot stamping process used for high-strength and ultrahigh strength steels such as boron steel 22mnb5 can enable the volume manufacture of panel components with high-strength and complex-shape for car body and chassis structures. These aluminium alloy grades can be used to manufacture panel components with possible yield strengths ≥ 500 MPa. Due to the differences in material behaviors, hot stamping process of 22mnb5 cannot be directly applied to high strength aluminium alloy grades. Despite recorded successes in laboratories, researches and niche hot forming processes of high strength aluminium alloy grades, not much have been achieved for adequate and efficient volume manufacturing system applicable in the automotive industry. Due to lack of such system and based on expert knowledge in hot stamping production-line, AP&T presents in this paper a hot stamping processing route for high strength aluminium alloys been suitable for production-line development and volume manufacturing.

  1. Helium glow detector experiment, MA-088. [Apollo Soyuz test project data reduction

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1978-01-01

    Of the two 584 A channels in the helium glow detector, channel #1 appeared to provide data with erratic count rates and undue susceptibility to dayglow and solar contamination possibly because of filter fatigue or failure. Channel #3 data appear normal and of high quality. For this reason only data from this last channel was analyzed and used for detailed comparison with theory. Reduction and fitting techniques are described, as well as applications of the data in the study of nighttime and daytime Hel 584 A emission. A hot model of the interstellar medium is presented. Topics covered in the appendix include: observations of interstellar helium with a gas absorption cell: implications for the structure of the local interstellar medium; EUV dayglow observations with a helium gas absorption cell; and EUV scattering from local interstellar helium at nonzero temperatures: implications for the derivations of interstellar medium parameters.

  2. Effects of short-term hypothermal and contrast exposure on immunophysiological parameters of laboratory animals.

    PubMed

    Kalenova, L F; Fisher, T A; Suhovey, J G; Besedin, I M

    2009-05-01

    Experiments on inbred animals showed that short-term exposure in cold water significantly modified structural and functional parameters of the immune system at different levels of its organization, from bone marrow hemopoiesis to effector stage of the immune response to antigen. The thermal factor caused changes in nonspecific and specific mechanisms of the immune system. Hypothermal exposure (7-9 degrees C, 5 sec) increased the thymic index and bone marrow lymphocyte count, reduced absorption capacity and stimulated metabolic activity of phagocytes, stimulated cell-mediated and suppressed humoral immunity. Contrast exposure in cold and hot water (7-9 degrees C, 5 sec/40-42 degrees C, 30 sec) increased monocyte count in bone marrow and reduced it in the their peripheral blood, reduced metabolic activity of phagocytes, stimulated cell-mediated and suppressed humoral immunity. These data demonstrate physiological mechanisms of interactions between the thermoregulatory and immune systems.

  3. Phenomenological and statistical analyses of turbulence in forced convection with temperature-dependent viscosity under non-Boussinesq condition.

    PubMed

    Yahya, S M; Anwer, S F; Sanghi, S

    2013-10-01

    In this work, Thermal Large Eddy Simulation (TLES) is performed to study the behavior of weakly compressible Newtonian fluids with anisotropic temperature-dependent viscosity in forced convection turbulent flow. A systematic analysis of variable-viscosity effects, isolated from gravity, with relevance to industrial cooling/heating applications is being carried out. A LES of a planar channel flow with significant heat transfer at a low Mach number was performed to study effects of fluid property variation on the near-wall turbulence structure. In this flow configuration the top wall is maintained at a higher temperature (T hot ) than the bottom wall (T cold ). The temperature ratio (R θ = T hot /T cold ) is fixed at 1.01, 2 and 3 to study the effects of property variations at low Mach number. Results indicate that average and turbulent fields undergo significant changes. Compared with isothermal flow with constant viscosity, we observe that turbulence is enhanced in the cold side of the channel, characterized by locally lower viscosity whereas a decrease of turbulent kinetic energy is found at the hot wall. The turbulent structures near the cold wall are very short and densely populated vortices but near the hot wall there seems to be a long streaky structure or large elongated vortices. Spectral study reveals that turbulence is completely suppressed at the hot side of the channel at a large temperature ratio because no inertial zone is obtained (i.e. index of Kolmogorov scaling law is zero) from the spectra in these region.

  4. Interolog interfaces in protein–protein docking

    PubMed Central

    Alsop, James D.

    2015-01-01

    ABSTRACT Proteins are essential elements of biological systems, and their function typically relies on their ability to successfully bind to specific partners. Recently, an emphasis of study into protein interactions has been on hot spots, or residues in the binding interface that make a significant contribution to the binding energetics. In this study, we investigate how conservation of hot spots can be used to guide docking prediction. We show that the use of evolutionary data combined with hot spot prediction highlights near‐native structures across a range of benchmark examples. Our approach explores various strategies for using hot spots and evolutionary data to score protein complexes, using both absolute and chemical definitions of conservation along with refinements to these strategies that look at windowed conservation and filtering to ensure a minimum number of hot spots in each binding partner. Finally, structure‐based models of orthologs were generated for comparison with sequence‐based scoring. Using two data sets of 22 and 85 examples, a high rate of top 10 and top 1 predictions are observed, with up to 82% of examples returning a top 10 hit and 35% returning top 1 hit depending on the data set and strategy applied; upon inclusion of the native structure among the decoys, up to 55% of examples yielded a top 1 hit. The 20 common examples between data sets show that more carefully curated interolog data yields better predictions, particularly in achieving top 1 hits. Proteins 2015; 83:1940–1946. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:25740680

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles W. Solbrig; Chad Pope; Jason Andrus

    The fuel cycle facility (FCF) at the Idaho National Laboratory is a nuclear facility which must be licensed in order to operate. A safety analysis is required for a license. This paper describes the analysis of the Design Basis Accident for this facility. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. The hot cell is used to process spent metallic nuclear fuel. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure,more » temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.« less

  6. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    PubMed

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  7. Heat transport in bubbling turbulent convection

    PubMed Central

    Lakkaraju, Rajaram; Stevens, Richard J. A. M.; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh–Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 106 and 5 × 109. We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh–Bénard convection. PMID:23696657

  8. Heat transport in bubbling turbulent convection.

    PubMed

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-04

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  9. Submerged RadBall® deployments in Hanford Site hot cells containing 137CsCl capsules.

    PubMed

    Farfán, Eduardo B; Coleman, J Rusty; Stanley, Steven; Adamovics, John; Oldham, Mark; Thomas, Andrew

    2012-07-01

    The overall objective of this study was to demonstrate that a new technology, known as RadBall®, could locate submerged radiological hazards. RadBall® is a novel, passive, radiation detection device that provides a 3-D visualization of radiation from areas where measurements have not been previously possible due to lack of access or extremely high radiation doses. This technology has been under development during recent years, and all of its previous tests have included dry deployments. This study involved, for the first time, underwater RadBall® deployments in hot cells containing 137CsCl capsules at the U.S. Department of Energy's Hanford Site. RadBall® can be used to characterize a contaminated room, hot cell, or glovebox by providing the locations of the radiation sources and hazards, identifying the radionuclides present within the cell, and determining the radiation sources' strength (e.g., intensities or dose rates). These parameters have been previously determined for dry deployments; however, only the location of radiation sources and hazards can be determined for an underwater RadBall® deployment. The results from this study include 3-D images representing the location of the radiation sources within the Hanford Site cells. Due to RadBall®'s unique deployability and non-electrical nature, this technology shows significant promise for future characterization of radiation hazards prior to and during the decommissioning of contaminated nuclear facilities.

  10. Hot gas filter and system assembly

    DOEpatents

    Lippert, Thomas Edwin; Palmer, Kathryn Miles; Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.; Bachovchin, Dennis Michael

    1999-01-01

    A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

  11. Hot gas filter and system assembly

    DOEpatents

    Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

    1999-08-31

    A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

  12. Reigniting the Debate: First Spectroscopic Evidence for Stratospheres In Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Mandell, Avi M.; Haynes, Korey; Madhusudhan, Nikku; Deming, Drake; Knutson, Heather

    2015-12-01

    Hot Jupiters represent an extreme end of the exoplanet distribution: they orbit very close to their host stars, which subjects them to an intense heating from stellar radiation. An inverted temperature structure (i.e. a stratosphere) was an early observable prediction from atmospheric models of these planets, which demonstrated that high-temperature absorbers such as TiO and VO could reprocess incident UV/visible irradiation to heat the upper layers of the atmosphere.Evidence for such thermal inversions began with the first secondary eclipse measurements of transiting hot Jupiters taken with the IRAC camera on Spitzer, offering the chance to physical processe at work in the atmospheres of hot exoplanets. However, these efforts have been stymied by recent revelations of significant systematic biases and uncertainties buried within older Spitzer results, calling into question whether or not temperature inversions are actually present in hot Jupiters.We have recently published spectroscopy of secondary eclipses of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is one of the most highly irradiated hot Jupiters discovered to date and orbits a relatively inactive A star, making it an excellent candidate for eclipse spectroscopy at NIR wavelengths (1.1 - 1.7 µm). We find that a fit to combined data from HST, Spitzer and ground-based photometry can rule out models without a temperature inversion; additionally, we find that our measured spectrum displays excess in the measured flux toward short wavelengths that is best explained as emission from TiO.This discovery re-opens the debate on the presence and origin of stratospheres in hot Jupiters, but it also confirms that the combination of HST spectroscopy and a robust analysis of Spitzer and ground-based photometry can conclusively detect thermally inverted atmospheres. In this talk I will present the theoretical underpinnings of temperature inversions in hot Jupiters, discuss the current state of observational evidence including our results for WASP-33b, and describe a path forward for how we can leverage future measurements of exoplanet atmospheric temperature structure to inform our understanding of the composition and formation of exoplanets.

  13. Experimental study on the monomer structure of solar semiconductor cold wall

    NASA Astrophysics Data System (ADS)

    Fu, Yuanyuan; Liu, Qiuxin; Chen, Tianshou

    2018-06-01

    In this paper, solar semiconductor cold wall structure was adopted in the net-zero energy buildings, NZEB for short. The heat transfer and refrigeration effect of the monomer structure of semiconductor cold wall were tested, we get that the monomer structure of semiconductor cold wall has certain cooling effect. However, the heat exchange effect is not good of the cold and hot aluminum plate only through natural convection and radiation heat transfer. It is necessary to further study the process of semiconductor refrigeration and heat transfer and the factors that affect the cooling effect. At the same time, it put forward a series of suggestions and improvement opinion for NZEB in hot summer and cold winter areas.

  14. Calculation methods study on hot spot stress of new girder structure detail

    NASA Astrophysics Data System (ADS)

    Liao, Ping; Zhao, Renda; Jia, Yi; Wei, Xing

    2017-10-01

    To study modeling calculation methods of new girder structure detail's hot spot stress, based on surface extrapolation method among hot spot stress method, a few finite element analysis models of this welded detail were established by finite element software ANSYS. The influence of element type, mesh density, different local modeling methods of the weld toe and extrapolation methods was analyzed on hot spot stress calculation results at the toe of welds. The results show that the difference of the normal stress in the thickness direction and the surface direction among different models is larger when the distance from the weld toe is smaller. When the distance from the toe is greater than 0.5t, the normal stress of solid models, shell models with welds and non-weld shell models tends to be consistent along the surface direction. Therefore, it is recommended that the extrapolated point should be selected outside the 0.5t for new girder welded detail. According to the results of the calculation and analysis, shell models have good grid stability, and extrapolated hot spot stress of solid models is smaller than that of shell models. So it is suggested that formula 2 and solid45 should be carried out during the hot spot stress extrapolation calculation of this welded detail. For each finite element model under different shell modeling methods, the results calculated by formula 2 are smaller than those of the other two methods, and the results of shell models with welds are the largest. Under the same local mesh density, the extrapolated hot spot stress decreases gradually with the increase of the number of layers in the thickness direction of the main plate, and the variation range is within 7.5%.

  15. Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1-xZnxFe2O4 (x = 0.0, 0.5) spinel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh Yadav, Raghvendra; Kuřitka, Ivo; Havlica, Jaromir; Hnatko, Miroslav; Alexander, Cigáň; Masilko, Jiri; Kalina, Lukas; Hajdúchová, Miroslava; Rusnak, Jaroslav; Enev, Vojtěch

    2018-02-01

    In this article, Co1-xZnxFe2O4 (x = 0.0 and 0.5) disc-shaped pellets were formed by hot-press sintering of nanoparticles at temperature 925 °C for 10 min in vacuum atmosphere under 30 MPa mechanical pressure. X-ray diffraction study confirmed the formation of spinel cubic ferrite structure of hot-press sintered spinel ferrite Co1-xZnxFe2O4 (x = 0.0 and 0.5) samples. The scanning electron microscopy image indicated that the growth and densification of smaller ferrite nanoparticles were higher than larger ferrite nanoparticles. Magnetic properties of sintered samples were investigated by the superconducting quantum interface device (SQUID) magnetometer at room temperature. The hot press sintered Co1-xZnxFe2O4 (x = 0.0 and 0.5) pellet samples exhibited magnetic properties dependent on the grain size of spinel ferrite particles. The maximum saturation magnetization 82.47 emu/g was obtained for Co0.5Zn0.5Fe2O4 hot press sintered sample of ball-milled ferrite particles. Further, the impact of grain size and density of sample on hardness, dielectric property and ac conductivity of hot-press sintered samples was investigated. In addition, the longitudinal wave velocity (Vl), transverse wave velocity (Vt), mean elastic wave velocity (Vm), bulk modulus (B), rigidity modulus (G), Young's modulus (E), Poisson ratio (σ) and Debye temperature (θD) were calculated. The elastic moduli of hot press sintered ferrite samples were corrected to zero porosity using Hosselman and Fulrath model.

  16. Hot and cold executive functions in youth with psychotic symptoms.

    PubMed

    MacKenzie, L E; Patterson, V C; Zwicker, A; Drobinin, V; Fisher, H L; Abidi, S; Greve, A N; Bagnell, A; Propper, L; Alda, M; Pavlova, B; Uher, R

    2017-12-01

    Psychotic symptoms are common in children and adolescents and may be early manifestations of liability to severe mental illness (SMI), including schizophrenia. SMI and psychotic symptoms are associated with impairment in executive functions. However, previous studies have not differentiated between 'cold' and 'hot' executive functions. We hypothesized that the propensity for psychotic symptoms is specifically associated with impairment in 'hot' executive functions, such as decision-making in the context of uncertain rewards and losses. In a cohort of 156 youth (mean age 12.5, range 7-24 years) enriched for familial risk of SMI, we measured cold and hot executive functions with the spatial working memory (SWM) task (total errors) and the Cambridge Gambling Task (decision-making), respectively. We assessed psychotic symptoms using the semi-structured Kiddie Schedule for Affective Disorders and Schizophrenia interview, Structured Interview for Prodromal Syndromes, Funny Feelings, and Schizophrenia Proneness Instrument - Child and Youth version. In total 69 (44.23%) youth reported psychotic symptoms on one or more assessments. Cold executive functioning, indexed with SWM errors, was not significantly related to psychotic symptoms [odds ratio (OR) 1.36, 95% confidence interval (CI) 0.85-2.17, p = 0.204). Poor hot executive functioning, indexed as decision-making score, was associated with psychotic symptoms after adjustment for age, sex and familial clustering (OR 2.37, 95% CI 1.25-4.50, p = 0.008). The association between worse hot executive functions and psychotic symptoms remained significant in sensitivity analyses controlling for general cognitive ability and cold executive functions. Impaired hot executive functions may be an indicator of risk and a target for pre-emptive early interventions in youth.

  17. Sodium Chloride Crystal-Induced SERS Platform for Controlled Highly Sensitive Detection of Illicit Drugs.

    PubMed

    Yu, Borong; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Shaofei; Yang, Liangbao

    2018-04-03

    A sodium chloride crystal-driven spontaneous 'hot spot' structure was demonstrated as a SERS-active platform, to get reproducible SERS signals, and eliminate the need for mapping large areas, in comparison with solution phase testing. During the process of solvent evaporation, the crystals produced induced silver aggregates to assemble around themselves. The micro-scale crystals can also act as a template to obtain an optical position, such that the assembled hot area is conveniently located during SERS measurements. More importantly, the chloride ions added in colloids can also replace the citrate and on the surface of the silver sol, and further decrease the background interference. High quality SERS spectra from heroin, methamphetamine (MAMP), and cocaine have been obtained on the crystal-driven hot spot structure with high sensitivity and credible reproducibility. This approach can not only bring the nanoparticles to form plasmonic hot spots in a controlled way, and thus provide high sensitivity, but also potentially be explored as an active substrate for label-free detection of other illicit drugs or additives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermally-Driven Mantle Plumes Reconcile Hot-spot Observations

    NASA Astrophysics Data System (ADS)

    Davies, D.; Davies, J.

    2008-12-01

    Hot-spots are anomalous regions of magmatism that cannot be directly associated with plate tectonic processes (e.g. Morgan, 1972). They are widely regarded as the surface expression of upwelling mantle plumes. Hot-spots exhibit variable life-spans, magmatic productivity and fixity (e.g. Ito and van Keken, 2007). This suggests that a wide-range of upwelling structures coexist within Earth's mantle, a view supported by geochemical and seismic evidence, but, thus far, not reproduced by numerical models. Here, results from a new, global, 3-D spherical, mantle convection model are presented, which better reconcile hot-spot observations, the key modification from previous models being increased convective vigor. Model upwellings show broad-ranging dynamics; some drift slowly, while others are more mobile, displaying variable life-spans, intensities and migration velocities. Such behavior is consistent with hot-spot observations, indicating that the mantle must be simulated at the correct vigor and in the appropriate geometry to reproduce Earth-like dynamics. Thermally-driven mantle plumes can explain the principal features of hot-spot volcanism on Earth.

  19. Hot deformation constitutive equation and processing map of Alloy 690

    NASA Astrophysics Data System (ADS)

    Feng, Han; Zhang, Songchuang; Ma, Mingjuan; Song, Zhigang

    The hot deformation behavior of alloy 690 was studied in the temperature range of 800-1300 C and strain rate range of 0.1-10 s-1 by hot compression tests in a Gleeble 1500+ thermal mechanical simulator. The results indicated that flow stress of alloy 690 is sensitive to deformation temperature and strain rate and peak stress increases with decreasing of temperature and increasing of strain rate. In addition, the hot deformation parameters of deformation activation were calculated and the apparent activation energy of this alloy is about 300 kJ/mol. The constitutive equation which can be used to relate peak stress to the absolute temperature and strain rate was obtained. It's further found that the processing maps exhibited two domains which are considered as the optimum windows for hot working. The microstructure observations of the specimens deformed in this domain showed the full dynamic recrystallization (DRX) structure. There was a flow instability domain in the processing map where hot working should be avoided.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.; Lu, S. X.; Li, C. H.

    In an atrium measured 120 m by 180 m by 36.5 m high, fire tests were conducted under 'natural filling' and 'mechanical exhaust' conditions by hot smoke test method. The fire size was 8 MW released by an ethanol pool of 3.6 m in diameter. The distribution of vertical temperature profiles above the fire source and the gas layer temperatures were measured. From these measurements, it was shown that the fans successfully exhausted hot smoke to control descending of hot smoke layer and temperature rising rate. The hot smoke layer can be maintained at about 30 m which was almostmore » 2 times of hot layer height in 'natural filling' condition. The temperature risings in both conditions were too low to cause thermal damage to the structure, only 18.6 K and 12 K. The centerline temperature above the fire source and the height of hot smoke layer were calculated using the plume models. The calculated results agreed well with the conclusions obtained from the experiment results.« less

  1. Inhibition of Listeria monocytogenes in Hot Dogs by Surface Application of Freeze-Dried Bacteriocin-Containing Powders from Lactic Acid Bacteria.

    PubMed

    Ünlü, Gülhan; Nielsen, Barbara; Ionita, Claudia

    2016-06-01

    Six lactic acid bacteria (LAB) strains, Lactococcus lactis BFE 920, L. lactis subsp. lactis ATCC 11454, L. lactis subsp. cremoris ATCC 14365, Lactobacillus curvatus L442, Lact. curvatus LTH 1174, and Lact. bavaricus MN, were grown in cheddar cheese whey supplemented with complex nutrient sources. Cell-free culture supernatants were freeze-dried, and the resulting bacteriocin-containing powders were applied on the surface of hot dogs that were inoculated (~4 log cfu/hot dog) with a five-strain Listeria monocytogenes cocktail. Hot dogs were vacuum-sealed and stored at 4 °C for 4 weeks. L. monocytogenes was enumerated, using both tryptic soy agar (TSA) and oxford listeria agar (OXA), on day 0 and at 1, 2, 3, and 4 weeks of the refrigerated storage. In hot dogs containing only the L. monocytogenes inoculum, L. monocytogenes counts increased from 4 up to 7 log cfu/hot dog. All samples containing freeze-dried bacteriocin-containing powders exhibited significantly lowered (P < 0.05) L. monocytogenes populations on the surface of hot dogs throughout the 4-week study except for bavaricin MN powder. Bacterial counts on hot dogs packed without any powder were statistically equal on day 0 when enumerated on OXA. Freeze-dried bacteriocin-containing powders from Lact. curvatus L442 and L. lactis subsp. cremoris ATCC 14365 decreased L. monocytogenes populations on the surface of hot dogs by greater than 2 log cfu/hot dog throughout the 4-week study. For the powdered bacteriocin preparations from L. lactis BFE 920, L. lactis subsp. lactis ATCC 11454, and Lact. curvatus LTH 1174, L. monocytogenes populations were determined to be approximately 3-log cfu/hot dog after 4 weeks of storage.

  2. Development of a new bench for puncturing of irradiated fuel rods in STAR hot laboratory

    NASA Astrophysics Data System (ADS)

    Petitprez, B.; Silvestre, P.; Valenza, P.; Boulore, A.; David, T.

    2018-01-01

    A new device for puncturing of irradiated fuel rods in commercial power plants has been designed by Fuel Research Department of CEA Cadarache in order to provide experimental data of high precision on fuel pins with various designs. It will replace the current set-up that has been used since 1998 in hot cell 2 of STAR facility with more than 200 rod puncturing experiments. Based on this consistent experimental feedback, the heavy-duty technique of rod perforation by clad punching has been preserved for the new bench. The method of double expansion of rod gases is also retained since it allows upgrading the confidence interval of volumetric results obtained from rod puncturing. Furthermore, many evolutions have been introduced in the new design in order to improve its reliability, to make the maintenance easier by remote handling and to reduce experimental uncertainties. Tightness components have been studied with Sealing Laboratory Maestral at Pierrelatte so as to make them able to work under mixed pressure conditions (from vacuum at 10-5 mbar up to pressure at 50 bars) and to lengthen their lifetime under permanent gamma irradiation in hot cell. Bench ergonomics has been optimized to make its operating by remote handling easier and to secure the critical phases of a puncturing experiment. A high pressure gas line equipped with high precision pressure sensors out of cell can be connected to the bench in cell for calibration purposes. Uncertainty analyses using Monte Carlo calculations have been performed in order to optimize capacity of the different volumes of the apparatus according to volumetric characteristics of the rod to be punctured. At last this device is composed of independent modules which allow puncturing fuel pins out of different geometries (PWR, BWR, VVER). After leak tests of the device and remote handling simulation in a mock-up cell, several punctures of calibrated specimens have been performed in 2016. The bench will be implemented soon in hot cell 2 of STAR facility for final qualification tests. PWR rod punctures are already planned for 2018.

  3. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre

    NASA Astrophysics Data System (ADS)

    Leite, Ivo T.; Turtaev, Sergey; Jiang, Xin; Šiler, Martin; Cuschieri, Alfred; Russell, Philip St. J.; Čižmár, Tomáš

    2018-01-01

    Holographic optical tweezers (HOT) hold great promise for many applications in biophotonics, allowing the creation and measurement of minuscule forces on biomolecules, molecular motors and cells. Geometries used in HOT currently rely on bulk optics, and their exploitation in vivo is compromised by the optically turbid nature of tissues. We present an alternative HOT approach in which multiple three-dimensional (3D) traps are introduced through a high-numerical-aperture multimode optical fibre, thus enabling an equally versatile means of manipulation through channels having cross-section comparable to the size of a single cell. Our work demonstrates real-time manipulation of 3D arrangements of micro-objects, as well as manipulation inside otherwise inaccessible cavities. We show that the traps can be formed over fibre lengths exceeding 100 mm and positioned with nanometric resolution. The results provide the basis for holographic manipulation and other high-numerical-aperture techniques, including advanced microscopy, through single-core-fibre endoscopes deep inside living tissues and other complex environments.

  4. Studying the complex spectral line profiles in the spectra of hot emission stars and quasars .

    NASA Astrophysics Data System (ADS)

    Danezis, E.; Lyratzi, E.; Antoniou, A.; Popović, L. Č.; Dimitrijević, M. S.

    Some Hot Emission Stars and AGNs present peculiar spectral line profiles which are due to DACs and SACs phenomena. The origin and the mechanisms which are responsible for the creation of DACs/SACs is an important problem that has been studied by many researchers. This paper is a review of our efforts to study the origin and the mechanisms of these phenomena. At first we present a theoretic ad hoc picture for the structure of the plasma that surrounds the specific category of hot emission stars that present DACs or SACs. Then we present the mathematical model that we constructed, which is based on the properties of the above ad hoc theoretical structure. Finally, we present some results from our statistical studies that prove the consistency of our model with the classical physical theory.

  5. Structural transformations in hull material clad by nitrogen stainless steel using various methods

    NASA Astrophysics Data System (ADS)

    Sagaradze, V. V.; Kataeva, N. V.; Mushnikova, S. Yu.; Khar'kov, O. A.; Kalinin, G. Yu.; Yampol'skii, V. D.

    2014-02-01

    Specimens of a 10N3KhDMBF shipbuilding hull steel were clad by a 04Kh20N6G11M2AFB nitrogen austenitic steel using various treatment conditions, which included hot rolling, austenitic facing, and explosive welding followed by hot rolling and heat treatment. Between the base and cladding materials, an intermediate layer with variable concentrations of chromium, manganese, and nickel was found, in which a martensitic structure was formed. In all the cases, the strength of bonding of the cladding layer to the hull steel (determined in tests for shear to fracture) was fairly high (σsh = 437-520 MPa). The only exception was the specimen produced by unidirectional facing without subsequent hot rolling (σsh = 308 MPa), in which nonfusions between the faced beads of stainless steel were detected.

  6. Superlattice photoelectrodes for photoelectrochemical cells

    DOEpatents

    Nozik, Arthur J.

    1987-01-01

    A superlattice or multiple-quantum-well semiconductor is used as a photoelectrode in a photoelectrochemical process for converting solar energy into useful fuels or chemicals. The quantum minibands of the superlattice or multiple-quantum-well semiconductor effectively capture hot-charge carriers at or near their discrete quantum energies and deliver them to drive a chemical reaction in an electrolyte. The hot-charge carries can be injected into the electrolyte at or near the various discrete multiple energy levels quantum minibands, or they can be equilibrated among themselves to a hot-carrier pool and then injected into the electrolyte at one average energy that is higher than the lowest quantum band gap in the semiconductor.

  7. Metabolic Activity in the Insular Cortex and Hypothalamus Predicts Hot Flashes: An FDG-PET Study

    PubMed Central

    Deckersbach, Thilo; Lin, Nancy U.; Makris, Nikos; Skaar, Todd C.; Rauch, Scott L.; Dougherty, Darin D.; Hall, Janet E.

    2012-01-01

    Context: Hot flashes are a common side effect of adjuvant endocrine therapies (AET; leuprolide, tamoxifen, aromatase inhibitors) that reduce quality of life and treatment adherence in breast cancer patients. Because hot flashes affect only some women, preexisting neurobiological traits might predispose to their development. Previous studies have implicated the insula during the perception of hot flashes and the hypothalamus in thermoregulatory dysfunction. Objective: The aim of the study was to understand whether neurobiological factors predict hot flashes. Design: [18F]-Fluorodeoxyglucose (FDG) positron emission tomography (PET) brain scans coregistered with structural magnetic resonance imaging were used to determine whether metabolic activity in the insula and hypothalamic thermoregulatory and estrogen-feedback regions measured before and in response to AET predict hot flashes. Findings were correlated with CYP2D6 genotype because of CYP2D6 polymorphism associations with tamoxifen-induced hot flashes. Outcome Measures: We measured regional cerebral metabolic rate of glucose uptake (rCMRglu) in the insula and hypothalamus on FDG-PET. Results: Of 18 women without hot flashes who began AET, new-onset hot flashes were reported by 10 (55.6%) and were detected objectively in nine (50%) participants. Prior to the use of all AET, rCMRglu in the insula (P ≤ 0.01) and hypothalamic thermoregulatory (P = 0.045) and estrogen-feedback (P = 0.007) regions was lower in women who reported developing hot flashes. In response to AET, rCMRglu was further reduced in the insula in women developing hot flashes (P ≤ 0.02). Insular and hypothalamic rCMRglu levels were lower in intermediate than extensive CYP2D6 metabolizers. Conclusions: Trait neurobiological characteristics predict hot flashes. Genetic variability in CYP2D6 may underlie the neurobiological predisposition to hot flashes induced by AET. PMID:22723326

  8. Hyper-X Hot Structures Comparison of Thermal Analysis and Flight Data

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Leonard, Charles P.; Bruce, Walter E., III

    2004-01-01

    The Hyper-X (X-43A) program is a flight experiment to demonstrate scramjet performance and operability under controlled powered free-flight conditions at Mach 7 and 10. The Mach 7 flight was successfully completed on March 27, 2004. Thermocouple instrumentation in the hot structures (nose, horizontal tail, and vertical tail) recorded the flight thermal response of these components. Preflight thermal analysis was performed for design and risk assessment purposes. This paper will present a comparison of the preflight thermal analysis and the recorded flight data.

  9. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 3: Systems' manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1989-01-01

    The internal structure is discussed of the MHOST finite element program designed for 3-D inelastic analysis of gas turbine hot section components. The computer code is the first implementation of the mixed iterative solution strategy for improved efficiency and accuracy over the conventional finite element method. The control structure of the program is covered along with the data storage scheme and the memory allocation procedure and the file handling facilities including the read and/or write sequences.

  10. Significant Correlation between TLR2 Agonist Activity and TNF-α Induction in J774.A1 Macrophage Cells by Different Medicinal Mushroom Products.

    PubMed

    Coy, Catherine; Standish, Leanna J; Bender, Geoff; Lu, Hailing

    2015-01-01

    In the US market, there is a variety of mushroom preparations available, even within the same species of mushroom. Nonetheless, little is known about whether species or the various extraction methods affect biological activity and potency of the immune modulatory activity of mushroom extracts. After discovering that protein-bound polysaccharide-K, a hot water extract from Trametes versicolor, was a potent Toll-like receptor (TLR)-2 agonist that stimulates both innate and adaptive immunity, this study was initiated to evaluate whether other medicinal mushroom products also have TLR2 agonist activity and immune-enhancing potential as measured by the induction of tumor necrosis factor (TNF)-α in J774.A1 murine macrophage cells. Furthermore, the products were divided by extraction method and species to determine whether these factors affect their immunomodulatory activity. The results showed that the majority (75%) of mushroom products tested had TLR2 agonist activity and that there was a significant correlation between TLR2 agonist activity and TNF-α induction potential in the mushroom products analyzed. In addition, the data demonstrated that hot water mushroom extracts are more potent than ground mushroom products in activating TLR2 and inducing TNF-α. These data provide evidence that extraction methods may affect the biological activity of mushroom products; thus, further studies are warranted to investigate the structural differences between various mushroom products.

  11. Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh, E-mail: a.kiani@unb.ca

    In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples withmore » nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.« less

  12. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contactmore » is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.« less

  13. 14 CFR 31.85 - Required basic equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... indicator. (b) For hot air balloons: (1) A fuel quantity gauge. If fuel cells are used, means must be incorporated to indicate to the crew the quantity of fuel in each cell during flight. The means must be calibrated in appropriate units or in percent of fuel cell capacity. (2) An envelope temperature indicator...

  14. 14 CFR 31.85 - Required basic equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... indicator. (b) For hot air balloons: (1) A fuel quantity gauge. If fuel cells are used, means must be incorporated to indicate to the crew the quantity of fuel in each cell during flight. The means must be calibrated in appropriate units or in percent of fuel cell capacity. (2) An envelope temperature indicator...

  15. 14 CFR 31.85 - Required basic equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... indicator. (b) For hot air balloons: (1) A fuel quantity gauge. If fuel cells are used, means must be incorporated to indicate to the crew the quantity of fuel in each cell during flight. The means must be calibrated in appropriate units or in percent of fuel cell capacity. (2) An envelope temperature indicator...

  16. 14 CFR 31.85 - Required basic equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... indicator. (b) For hot air balloons: (1) A fuel quantity gauge. If fuel cells are used, means must be incorporated to indicate to the crew the quantity of fuel in each cell during flight. The means must be calibrated in appropriate units or in percent of fuel cell capacity. (2) An envelope temperature indicator...

  17. Film bonded fuel cell interface configuration

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1985-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  18. Process for making film-bonded fuel cell interfaces

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1990-07-03

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  19. A comparative study on the characteristics of radioactivities and negative air ions originating from the minerals in some radon hot springs.

    PubMed

    Sakoda, Akihiro; Hanamoto, Katsumi; Haruki, Naoto; Nagamatsu, Tomohiro; Yamaoka, Kiyonori

    2007-01-01

    To elucidate the characteristics of some radon hot springs, we simulated a hot spring by soaking the rocks for the radon therapy in water and measured the concentrations of radon and negative air ions in various conditions. In the results, the individual rock structure could contribute to radon leaching because the radon leaching rates were independent of the grain sizes. More negative air ions were generated by the wet rocks than by the dry rocks.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G. H.; Pesaran, A.; Spotnitz, R.

    To understand further the thermal abuse behavior of large format Li-ion batteries for automotive applications, the one-dimensional modeling approach formulated by Hatchard et al. was reproduced. Then it was extended to three dimensions so we could consider the geometrical features, which are critical in large cells for automotive applications. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, and is used to simulate oven tests, and to determine how a local hot spot can propagate through the cell. In simulations of oven abuse testing of cells with cobalt oxide cathodemore » and graphite anode with standard LiPF6 electrolyte, the three-dimensional model predicts that thermal runaway will occur sooner or later than the lumped model, depending on the size of the cell. The model results showed that smaller cells reject heat faster than larger cells; this may prevent them from going into thermal runaway under identical abuse conditions. In simulations of local hot spots inside a large cylindrical cell, the three-dimensional model predicts that the reactions initially propagate in the azimuthal and longitudinal directions to form a hollow cylinder-shaped reaction zone.« less

Top