Science.gov

Sample records for hot electron transistor

  1. Going ballistic: Graphene hot electron transistors

    NASA Astrophysics Data System (ADS)

    Vaziri, S.; Smith, A. D.; Östling, M.; Lupina, G.; Dabrowski, J.; Lippert, G.; Mehr, W.; Driussi, F.; Venica, S.; Di Lecce, V.; Gnudi, A.; König, M.; Ruhl, G.; Belete, M.; Lemme, M. C.

    2015-12-01

    This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly demonstrate the basic functionality, with on/off current switching over several orders of magnitude, but further developments are required to exploit the full potential of the GBT device family. In particular, interfaces between graphene and semiconductors or dielectrics are far from perfect and thus limit experimental device integrity, reliability and performance.

  2. Exploratory Corrugated Infrared Hot-Electron Transistor Arrays

    DTIC Science & Technology

    2009-02-01

    IHET infrared hot-electron transistor MgF2 magnesium fluoride Pd palladium QWIP quantum well infrared photodetector QWs quantum wells...15 nm palladium (Pd), 20 nm germanium (Ge), and 200 nm gold (Au) were deposited on all contacts and were alloyed at 425 C for 100 s. Finally, 200...nm magnesium fluoride (MgF2), 10 nm chromium (Cr), and 200 nm Au were deposited on the detector sidewalls as optical reflectors. The arrays were

  3. Design of III-Nitride Hot Electron Transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Geetak

    III-Nitride based devices have made great progress over the past few decades in electronics and photonics applications. As the technology and theoretical understanding of the III-N system matures, the limitations on further development are based on very basic electronic properties of the material, one of which is electron scattering (or ballistic electron effects). This thesis explores the design space of III-N based ballistic electron transistors using novel design, growth and process techniques. The hot electron transistor (HET) is a unipolar vertical device that operates on the principle of injecting electrons over a high-energy barrier (φBE) called the emitter into an n-doped region called base and finally collecting the high energy electrons (hot electrons) over another barrier (φBC) called the collector barrier. The injected electrons traverse the base in a quasi-ballistic manner. Electrons that get scattered in the base contribute to base current. High gain in the HET is thus achieved by enabling ballistic transport of electrons in the base. In addition, low leakage across the collector barrier (I BCleak) and low base resistance (RB) are needed to achieve high performance. Because of device attributes such as vertical structure, ballistic transport and low-resistance n-type base, the HET has the potential of operating at very high frequencies. Electrical measurements of a HET structure can be used to understand high-energy electron physics and extract information like mean free path in semiconductors. The III-Nitride material system is particularly suited for HETs as it offers a wide range of DeltaEcs and polarization charges which can be engineered to obtain barriers which can inject hot-electrons and have low leakage at room temperature. In addition, polarization charges in the III-N system can be engineered to obtain a high-density and high-mobility 2DEG in the base, which can be used to reduce base resistance and allow vertical scaling. With these

  4. Dual-mode operation of 2D material-base hot electron transistors.

    PubMed

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  5. Dual-mode operation of 2D material-base hot electron transistors

    PubMed Central

    Lan, Yann-Wen; Torres, Jr., Carlos M.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  6. Dual-mode operation of 2D material-base hot electron transistors

    NASA Astrophysics Data System (ADS)

    Lan, Yann-Wen; Torres, Carlos M., Jr.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  7. High-Current Gain Two-Dimensional MoS₂-Base Hot-Electron Transistors.

    PubMed

    Torres, Carlos M; Lan, Yann-Wen; Zeng, Caifu; Chen, Jyun-Hong; Kou, Xufeng; Navabi, Aryan; Tang, Jianshi; Montazeri, Mohammad; Adleman, James R; Lerner, Mitchell B; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong; Wang, Kang L

    2015-12-09

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications.

  8. Negative differential resistance in GaN tunneling hot electron transistors

    SciTech Connect

    Yang, Zhichao; Nath, Digbijoy; Rajan, Siddharth

    2014-11-17

    Room temperature negative differential resistance is demonstrated in a unipolar GaN-based tunneling hot electron transistor. Such a device employs tunnel-injected electrons to vary the electron energy and change the fraction of reflected electrons, and shows repeatable negative differential resistance with a peak to valley current ratio of 7.2. The device was stable when biased in the negative resistance regime and tunable by changing collector bias. Good repeatability and double-sweep characteristics at room temperature show the potential of such device for high frequency oscillators based on quasi-ballistic transport.

  9. Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation

    SciTech Connect

    Brazzini, Tommaso Sun, Huarui; Uren, Michael J.; Kuball, Martin; Casbon, Michael A.; Lees, Jonathan; Tasker, Paul J.; Jung, Helmut; Blanck, Hervé

    2015-05-25

    Hot electrons in AlGaN/GaN high electron mobility transistors are studied during radio frequency (RF) and DC operation by means of electroluminescence (EL) microscopy and spectroscopy. The measured EL intensity is decreased under RF operation compared to DC at the same average current, indicating a lower hot electron density. This is explained by averaging the DC EL intensity over the measured load line used in RF measurements, giving reasonable agreement. In addition, the hot electron temperature is lower by up to 15% under RF compared to DC, again at least partially explainable by the weighted averaging along the specific load line. However, peak electron temperature under RF occurs at high V{sub DS} and low I{sub DS} where EL is insignificant suggesting that any wear-out differences between RF and DC stress of the devices will depend on the balance between hot-carrier and field driven degradation mechanisms.

  10. Bloch oscillating transistor as the readout element for hot electron bolometers

    NASA Astrophysics Data System (ADS)

    Hassel, Juha; Seppä, Heikki; Lindell, Rene; Hakonen, Pertti

    2004-10-01

    In this paper we analyse the properties of the Bloch oscillating transistor as a preamplifier in cryogenic devices. We consider here especially the readout of hot electron bolometers (HEBs) based on Normal-Superconductor-Insulator tunnel junctions, but the results also apply more generally. We show that one can get an equivalent noise voltage below 1 nV/√Hz with a single BOT. By using N BOTs in a parallel array configuration, a further reduction by factor √N may be achieved.

  11. Mechanism of hot electron electroluminescence in GaN-based transistors

    NASA Astrophysics Data System (ADS)

    Brazzini, Tommaso; Sun, Huarui; Sarti, Francesco; Pomeroy, James W.; Hodges, Chris; Gurioli, Massimo; Vinattieri, Anna; Uren, Michael J.; Kuball, Martin

    2016-11-01

    The nature of hot electron electroluminescence (EL) in AlGaN/GaN high electron mobility transistors is studied and attributed to Bremsstrahlung. The spectral distribution has been corrected, for the first time, for interference effects due to the multilayered device structure, and this was shown to be crucial for the correct interpretation of the data, avoiding artefacts in the spectrum and misinterpretation of the results. An analytical expression for the spectral distribution of emitted light is derived assuming Bremsstrahlung as the only origin and compared to the simplified exponential model for the high energy tail commonly used for electron temperature extraction: the electron temperature obtained results about 20% lower compared to the approximated exponential model. Comparison of EL intensity for devices from different wafers illustrated the dependence of EL intensity on the material quality. The polarization of electroluminescence also confirms Bremsstrahlung as the dominant origin of the light emitted, ruling out other possible main mechanisms.

  12. Modeling and Design of GaN High Electron Mobility Transistors and Hot Electron Transistors through Monte Carlo Particle-based Device Simulations

    NASA Astrophysics Data System (ADS)

    Soligo, Riccardo

    In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the

  13. Resonant plasmonic terahertz detection in vertical graphene-base hot-electron transistors

    SciTech Connect

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Mitin, V.; Shur, M. S.

    2015-11-28

    We analyze dynamic properties of vertical graphene-base hot-electron transistors (GB-HETs) and consider their operation as detectors of terahertz (THz) radiation using the developed device model. The GB-HET model accounts for the tunneling electron injection from the emitter, electron propagation across the barrier layers with the partial capture into the GB, and the self-consistent oscillations of the electric potential and the hole density in the GB (plasma oscillations), as well as the quantum capacitance and the electron transit-time effects. Using the proposed device model, we calculate the responsivity of GB-HETs operating as THz detectors as a function of the signal frequency, applied bias voltages, and the structural parameters. The inclusion of the plasmonic effect leads to the possibility of the GB-HET operation at the frequencies significantly exceeding those limited by the characteristic RC-time. It is found that the responsivity of GB-HETs with a sufficiently perfect GB exhibits sharp resonant maxima in the THz range of frequencies associated with the excitation of plasma oscillations. The positions of these maxima are controlled by the applied bias voltages. The GB-HETs can compete with and even surpass other plasmonic THz detectors.

  14. Trapping in GaN-based metal-insulator-semiconductor transistors: Role of high drain bias and hot electrons

    SciTech Connect

    Meneghini, M. Bisi, D.; Meneghesso, G.; Zanoni, E.

    2014-04-07

    This paper describes an extensive analysis of the role of off-state and semi-on state bias in inducing the trapping in GaN-based power High Electron Mobility Transistors. The study is based on combined pulsed characterization and on-resistance transient measurements. We demonstrate that—by changing the quiescent bias point from the off-state to the semi-on state—it is possible to separately analyze two relevant trapping mechanisms: (i) the trapping of electrons in the gate-drain access region, activated by the exposure to high drain bias in the off-state; (ii) the trapping of hot-electrons within the AlGaN barrier or the gate insulator, which occurs when the devices are operated in the semi-on state. The dependence of these two mechanisms on the bias conditions and on temperature, and the properties (activation energy and cross section) of the related traps are described in the text.

  15. Current gain in sub-10 nm base GaN tunneling hot electron transistors with AlN emitter barrier

    SciTech Connect

    Yang, Zhichao Zhang, Yuewei; Nath, Digbijoy N.; Rajan, Siddharth; Khurgin, Jacob B.

    2015-01-19

    We report on Gallium Nitride-based tunneling hot electron transistor amplifier with common-emitter current gain greater than 1. Small signal current gain up to 5 and dc current gain of 1.3 were attained in common-emitter configuration with collector current density in excess of 50 kA/cm{sup 2}. The use of a combination of 1 nm GaN/3 nm AlN layers as an emitter tunneling barrier was found to improve the energy collimation of the injected electrons. These results represent demonstration of unipolar vertical transistors in the III-nitride system that can potentially lead to higher frequency and power microwave devices.

  16. Impact ionization in the base of a hot-electron AlSb/InAs bipolar transistor

    NASA Technical Reports Server (NTRS)

    Vengurlekar, Arvind S.; Capasso, Federico; Chiu, T. Heng

    1990-01-01

    The operation of a new AlSb/InAs heterojunction bipolar transistor is studied. The electrons are injected into a p-InAs base across the AlSb/InAs heterojunction. The conduction-band discontinuity at this heterojunction is sufficiently large so that energy of the electrons injected into InAs exceeds the threshold for generating electron-hole pairs by impact ionization. The observed incremental common base current at zero collector-base bias decreases and becomes negative as the emitter current is increased, thus providing direct evidence for impact ionization entirely by band-edge discontinuities.

  17. Enhanced thermal radiation in terahertz and far-infrared regime by hot phonon excitation in a field effect transistor

    SciTech Connect

    Chung, Pei-Kang; Yen, Shun-Tung

    2014-11-14

    We demonstrate the hot phonon effect on thermal radiation in the terahertz and far-infrared regime. A pseudomorphic high electron mobility transistor is used for efficiently exciting hot phonons. Boosting the hot phonon population can enhance the efficiency of thermal radiation. The transistor can yield at least a radiation power of 13 μW and a power conversion efficiency higher than a resistor by more than 20%.

  18. Velocity Saturation of Hot Carriers in Two-Dimensional Transistors

    NASA Astrophysics Data System (ADS)

    Bird, Jonathan

    Two-dimensional (2D) materials, including graphene and transition-metal dichalcogenides, have emerged in recent years as possible ``channel-replacement'' materials for use in future generations of post-CMOS devices. Realizing the full potential of these materials requires strategies to maximize their current-carrying capacity, while minimizing Joule losses to its environment. A major source of dissipation for hot carriers in any semiconductor is spontaneous optical-phonon emission, resulting in saturation of the drift velocity. In this presentation, I discuss the results of studies of velocity saturation in both graphene and molybdenum-disulphide transistors, emphasizing how this phenomenon impacts resulting transistor operation. While in graphene the large intrinsic optical-phonon energies promise high saturation velocities, experiments to date have revealed a significant degradation of the drift velocity that arises from the loss of energy from hot carriers to the underlying substrate. I discuss here how this problem can be overcome by implementing a strategy of nanosecond electrical pulsing [H. Ramamoorthy et al., Nano Lett., under review], as a means to drive graphene's hot carriers much faster than substrate heating can occur. In this way we achieve saturation velocities that approach the Fermi velocity near the Dirac point, and which exceed those reported for suspended graphene and for devices fabricated on boron nitride substrates. Corresponding current densities reach those found in carbon nanotubes, and in graphene-on-diamond transistors. In this sense we are able to ``free'' graphene from the influence of its substrate, revealing a pathway to achieve the superior electrical performance promised by this material. Velocity saturation is also found to be important for the operation of monolayer molybdenum-disulphide transistors, where it limits the drain current observed in saturation [G. He et al., Nano Lett. 15, 5052 (2015)]. The implications of these

  19. Hot Electron Emission in Semiconductors.

    DTIC Science & Technology

    2014-09-26

    Second Interim Report Hot Electron Emission in Semiconductors Jan. 85 - June 85 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 6. CONTRACT OR GRANT NUMBER(a...KEY WORDS (Continue on reverse side Jf necessary and identify by block number) " -novel tunable FIR sources) • hot electron emission in GaAs/GaAlAs...heterostructures)" -,/ " streaming of hot carriers in crossed electric and magnetic fields ABST’AACr C-rrhmus- m .wr. efe it rewo-- .rv d identify by

  20. Silicon Hot-Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Hsieh, Wen-Ting; Mitchell, Robert R.; Isenberg, Hal D.; Stahle, Carl M.; Cao, Nga T.; Schneider, Gideon; Travers, Douglas E.; Moseley, S. Harvey; Wollack, Edward J.

    2004-01-01

    We discuss a new type of direct detector, a silicon hot-electron bolometer, for measurements in the far-infrared and submillimeter spectral ranges. High performance bolometers can be made using the electron-phonon conductance in heavily doped silicon to provide thermal isolation from the cryogenic bath. Noise performance is expected to be near thermodynamic limits, allowing background limited performance for many far infrared and submillimeter photometric and spectroscopic applications.

  1. Two-dimensional materials and their prospects in transistor electronics.

    PubMed

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.

  2. Impact ionization in N-polar AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Killat, N. E-mail: Martin.Kuball@bristol.ac.uk; Uren, M. J.; Kuball, M. E-mail: Martin.Kuball@bristol.ac.uk; Keller, S.; Kolluri, S.; Mishra, U. K.

    2014-08-11

    The existence of impact ionization as one of the open questions for GaN device reliability was studied in N-polar AlGaN/GaN high electron mobility transistors. Electroluminescence (EL) imaging and spectroscopy from underneath the device gate contact revealed the presence of hot electrons in excess of the GaN bandgap energy even at moderate on-state bias conditions, enabling impact ionization with hole currents up to several hundreds of pA/mm. The detection of high energy luminescence from hot electrons demonstrates that EL analysis is a highly sensitive tool to study degradation mechanisms in GaN devices.

  3. Jumping-droplet electronics hot-spot cooling

    DOE PAGES

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; ...

    2017-03-20

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobicmore » surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.« less

  4. Electrolyte-gated transistors for organic and printed electronics.

    PubMed

    Kim, Se Hyun; Hong, Kihyon; Xie, Wei; Lee, Keun Hyung; Zhang, Sipei; Lodge, Timothy P; Frisbie, C Daniel

    2013-04-04

    Here we summarize recent progress in the development of electrolyte-gated transistors (EGTs) for organic and printed electronics. EGTs employ a high capacitance electrolyte as the gate insulator; the high capacitance increases drive current, lowers operating voltages, and enables new transistor architectures. Although the use of electrolytes in electronics is an old concept going back to the early days of the silicon transistor, new printable, fast-response polymer electrolytes are expanding the potential applications of EGTs in flexible, printed digital circuits, rollable displays, and conformal bioelectronic sensors. This report introduces the structure and operation mechanisms of EGTs and reviews key developments in electrolyte materials for use in printed electronics. The bulk of the article is devoted to electrical characterization of EGTs and emerging applications.

  5. Electron transporting water-gated thin film transistors

    NASA Astrophysics Data System (ADS)

    Al Naim, Abdullah; Grell, Martin

    2012-10-01

    We demonstrate an electron-transporting water-gated thin film transistor, using thermally converted precursor-route zinc-oxide (ZnO) intrinsic semiconductors with hexamethyldisilazene (HMDS) hydrophobic surface modification. Water gated HMDS-ZnO thin film transistors (TFT) display low threshold and high electron mobility. ZnO films constitute an attractive alternative to organic semiconductors for TFT transducers in sensor applications for waterborne analytes. Despite the use of an electrolyte as gate medium, the gate geometry (shape of gate electrode and distance between gate electrode and TFT channel) is relevant for optimum performance of water-gated TFTs.

  6. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.

    PubMed

    Jin, Jae Sik; Lee, Joon Sik

    2007-11-01

    An electron-phonon interaction model is proposed and applied to thermal transport in semiconductors at micro/nanoscales. The high electron energy induced by the electric field in a transistor is transferred to the phonon system through electron-phonon interaction in the high field region of the transistor. Due to this fact, a hot spot occurs, which is much smaller than the phonon mean free path in the Si-layer. The full phonon dispersion model based on the Boltzmann transport equation (BTE) with the relaxation time approximation is applied for the interactions among different phonon branches and different phonon frequencies. The Joule heating by the electron-phonon scattering is modeled through the intervalley and intravalley processes for silicon by introducing average electron energy. The simulation results are compared with those obtained by the full phonon dispersion model which treats the electron-phonon scattering as a volumetric heat source. The comparison shows that the peak temperature in the hot spot region is considerably higher and more localized than the previous results. The thermal characteristics of each phonon mode are useful to explain the above phenomena. The optical mode phonons of negligible group velocity obtain the highest energy density from electrons, and resides in the hot spot region without any contribution to heat transport, which results in a higher temperature in that region. Since the acoustic phonons with low group velocity show the higher energy density after electron-phonon scattering, they induce more localized heating near the hot spot region. The ballistic features are strongly observed when phonon-phonon scattering rates are lower than 4 x 10(10) S(-1).

  7. Multiplexing of Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  8. Graphene based field effect transistors: Efforts made towards flexible electronics

    NASA Astrophysics Data System (ADS)

    Sharma, Bhupendra K.; Ahn, Jong-Hyun

    2013-11-01

    The integration of flexibility in existing electronics has been realized as a key point for practical application of unusual format electronics that can extend the application limit of biomedical equipments and of course daily routine kind of electronic devices. Graphene showed the great potentiality for flexible format owing to its excellent electronic, mechanical and optical properties. Field effect transistor (FET) is a basic unit for digital and analog electronics thus enormous efforts have been attempted to fabricate the flexible FETs in order to get the high performance. This article reviews the recent development of graphene based FETs including the fabrication and active layers material compatibility in flexible format.

  9. Low Temperature Photoluminescence (PL) from High Electron Mobility Transistors (HEMTs)

    DTIC Science & Technology

    2015-03-01

    temperature Photoluminescence (PL) from High Electron Mobility Transistor (HEMT) structures that have been modified by proton irradiation. The samples are...samples and exposed the structures to various levels of proton irradiation. For electronics operating in extreme environments where the parts...valence band, generating photons. This emission could be used to determine the effects of proton irradiation on a 2DEG. Exciting the HEMT samples

  10. Quantum effects in the hot electron microbolometer

    SciTech Connect

    Tang, A.; Richards, P.L.

    1994-10-01

    The theory of the hot electron microbolometer proposed by Nahum et al. assumed that the photon energy is thermalized in the electrons in the Cu absorber before relaxing to the lattice. Since the photons initially excite individual electrons to K{omega}>>k{sub B}T, however, direct relaxation of these hot electrons to phonons must also be considered. Theoretical estimates suggest that this extra relaxation channel increases the effective thermal conductance for K{omega}>>k{sub B}T and influences bolometer noise. Calculations of these effects are presented which predict very useful performance both for ground-based and spacebased astronomical photometry at millimeter and submillimeter wavelengths.

  11. Reconfigurable Boolean Logic Using Magnetic Single-Electron Transistors

    PubMed Central

    Gonzalez-Zalba, M. Fernando; Ciccarelli, Chiara; Zarbo, Liviu P.; Irvine, Andrew C.; Campion, Richard C.; Gallagher, Bryan L.; Jungwirth, Tomas; Ferguson, Andrew J.; Wunderlich, Joerg

    2015-01-01

    We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network. PMID:25923789

  12. Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.

    PubMed

    Quevedo-Lopez, M A; Wondmagegn, W T; Alshareef, H N; Ramirez-Bon, R; Gnade, B E

    2011-06-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed.

  13. Hot Electron Energy Relaxation in Quantum Wells

    NASA Astrophysics Data System (ADS)

    Yang, Chia-Hung

    We present experimental results on hot electron relaxation in doped bulk GaAs and quantum wells. Using steady state photoluminescence we measured the electron -LO phonon scattering time for thermalized hot electrons in quantum wells. The results are in good agreement with our theoretical calculation of electron-LO phonon interaction in two dimensional systems. Within random phase approximation, the emitted LO phonons may couple to two dimensional plasmons. Both the screening and phonon reabsorption properties can be drastically changed as a function of electron density, temperature and phonon lifetime. Theoretical energy relaxation rates, including dynamical screening and phonon reabsorption effects, will be presented. For hot electrons with energies well above the LO phonon energy, we developed a two-beam, lock-in technique to measure the energy-resolved cooling rate. In the case of quantum wells, hot electrons relax at a constant rate. For heavily doped bulk GaAs, the relaxation rate is inversely proportional to electron kinetic energy. The new method demonstrates itself as a valuable way to study the fast initial relaxation which would otherwise need femtosecond pulse laser techniques.

  14. Electronic conduction in a model three-terminal molecular transistor.

    PubMed

    He, Haiying; Pandey, Ravindra; Karna, Shashi P

    2008-12-17

    The electronic conduction of a novel, three-terminal molecular architecture, analogous to a heterojunction bipolar transistor, is studied. In this architecture, two diode arms consisting of donor-acceptor molecular wires fuse through a ring, while a gate modulating wire is a pi-conjugated wire. The calculated results show the enhancement or depletion mode of a transistor on applying a gate field along the positive or negative direction. A small gate field is required to switch on the current in the proposed architecture. The changes in the electronic conduction can be attributed to the intrinsic dipolar molecular architecture in terms of the evolution of molecular wavefunctions, specifically the one associated with the terphenyl group of the modulating wire in the presence of the gate field.

  15. Electronic polymers and DNA self-assembled in nanowire transistors.

    PubMed

    Hamedi, Mahiar; Elfwing, Anders; Gabrielsson, Roger; Inganäs, Olle

    2013-02-11

    Aqueous self-assembly of DNA and molecular electronic materials can lead to the creation of innumerable copies of identical devices, and inherently programmed complex nanocircuits. Here self-assembly of a water soluble and highly conducting polymer PEDOT-S with DNA in aqueous conditions is shown. Orientation and assembly of the conducting DNA/PEDOT-S complex into electrochemical DNA nanowire transistors is demonstrated.

  16. Kinase detection with gallium nitride based high electron mobility transistors.

    PubMed

    Makowski, Matthew S; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena

    2013-07-01

    A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing.

  17. High Electron Mobility Transistors (HEMT). Selected Papers

    DTIC Science & Technology

    2010-06-01

    phase shifts experienced by the incident electron aElectronic mail: linzhou@asu.edu. FIG. 1. Cross-sectional high-resolution TEM image recorded in 112...strongly diffracting condition and has a uniform potential through its projected thickness, then the relationship between the holographic phase shift ...of AFRL-RY-WP-TR-2010-1178. 15. SUBJECT TERMS microelectronics, heterostructure, holography , modeling/simulation 16. SECURITY CLASSIFICATION OF

  18. Superconducting Quantum Interference Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Enrico, Emanuele; Giazotto, Francesco

    2016-06-01

    We propose the concept of a quantized single-electron source based on the interplay between Coulomb blockade and magnetic flux-controllable superconducting proximity effect. We show that flux dependence of the induced energy gap in the density of states of a nanosized metallic wire can be exploited as an efficient tunable energy barrier which enables charge-pumping configurations with enhanced functionalities. This control parameter strongly affects the charging landscape of a normal metal island with non-negligible Coulombic energy. Under a suitable evolution of a time-dependent magnetic flux the structure behaves like a turnstile for single electrons in a fully electrostatic regime.

  19. Intrinsic magnetic refrigeration of a single electron transistor

    SciTech Connect

    Ciccarelli, C.; Ferguson, A. J.; Campion, R. P.; Gallagher, B. L.

    2016-02-01

    In this work, we show that aluminium doped with low concentrations of magnetic impurities can be used to fabricate quantum devices with intrinsic cooling capabilities. We fabricate single electron transistors made of aluminium doped with 2% Mn by using a standard multi angle evaporation technique and show that the quantity of metal used to fabricate the devices generates enough cooling power to achieve a drop of 160 mK in the electron temperature at the base temperature of our cryostat (300 mK). The cooling mechanism is based on the magneto-caloric effect from the diluted Mn moments.

  20. Hot electron dynamics in graphene

    SciTech Connect

    Ling, Meng-Chieh

    2011-01-01

    Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively isolated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during the recent years. It draws so much attentions not only because of its potential application in future electronic devices but also because of its fundamental properties: its quasiparticles are governed by the two-dimensional Dirac equation, and exhibit a variety of phenomena such as the anomalous integer quantum Hall effect (IQHE) [Novoselov et al. (2005)] measured experimentally, a minimal conductivity at vanishing carrier concentration [Neto et al. (2009)], Kondo effect with magnetic element doping [Hentschel and Guinea (2007)], Klein tunneling in p-n junctions [Cheianov and Fal’ko (2006), Beenakker (2008)], Zitterbewegung [Katsnelson (2006)], and Schwinger pair production [Schwinger (1951); Dora and Moessner (2010)]. Although both electron-phonon coupling and photoconductivity in graphene also draws great attention [Yan et al. (2007); Satou et al. (2008); Hwang and Sarma (2008); Vasko and Ryzhii (2008); Mishchenko (2009)], the nonequilibrium behavior based on the combination of electronphonon coupling and Schwinger pair production is an intrinsic graphene property that has not been investigated. Our motivation for studying clean graphene at low temperature is based on the following effect: for a fixed electric field, below a sufficiently low temperature linear eletric transport breaks down and nonlinear transport dominates. The criteria of the strength of this field [Fritz et al. (2008)] is eE = T2/~vF (1.1) For T >√eE~vF the system is in linear transport regime while for T <√eE~vF the system is in nonlinear transport regime. From the scaling’s point of view, at the nonlinear transport regime

  1. Electron density window for best frequency performance, lowest phase noise and slowest degradation of GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Matulionis, Arvydas

    2013-07-01

    The problems in the realm of nitride heterostructure field-effect transistors (HFETs) are discussed in terms of a novel fluctuation-dissipation-based approach impelled by a recent demonstration of strong correlation of hot-electron fluctuations with frequency performance and degradation of the devices. The correlation has its genesis in the dissipation of the LO-mode heat accumulated by the non-equilibrium longitudinal optical phonons (hot phonons) confined in the channel that hosts the high-density hot-electron gas subjected to a high electric field. The LO-mode heat causes additional scattering of hot electrons and facilitates defect formation in a different manner than the conventional heat contained mainly in the acoustic phonon mode. We treat the heat dissipation problem in terms of the hot-phonon lifetime responsible for the conversion of the non-migrant hot phonons into migrant acoustic modes and other vibrations. The lifetime is measured over a wide range of electron density and supplied electric power. The optimal conditions for the dissipation of the LO-mode heat are associated with the plasmon-assisted disintegration of hot phonons. Signatures of plasmons are experimentally resolved in fluctuations, dissipation, hot-electron transport, transistor frequency performance, transistor phase noise and transistor reliability. In particular, a slower degradation and a faster operation of GaN-based HFETs take place inside the electron density window where the resonant plasmon-assisted ultrafast dissipation of the LO-mode heat comes into play. A novel heterostructure design for the possible improvement of HFET performance is proposed, implemented and tested.

  2. Hot-carrier induced degradation and recovery in polysilicon-emitter bipolar transistors

    NASA Astrophysics Data System (ADS)

    Sheng, S. R.; McAlister, S. P.; Storey, C.; Lee, L.-S.; Hwang, H. P.

    2002-10-01

    The hot-carrier induced degradation in submicron polysilicon-emitter NPN bipolar transistors with different emitter geometries and its post-stress reversibility have been investigated in detail. We show that the hot-carrier induced degradation during reverse emitter-base (EB) bias stressing can alter the EB junction, as well as the collector-base junction region. Oxide/silicon interface traps and positive charged defects are generated by the hot-carrier injection, both of which cause an increase in the low bias base current, and consequently degradation in the current gain. Our results confirm that the oxide/silicon interface traps generated by electrical stressing are located in the same region as those present in unstressed devices--around the emitter perimeter. The hot-carrier induced changes are not stable even at room temperature, and are partially reversed by annealing at 300 °C, indicating the existence of both a reversible component, with a broad distribution of annealing activation energies, and an irreversible component. We suggest that more than one microscopic process determines the hot-carrier induced degradation in devices. Which process plays a dominant role in a given device may be dependent on device technologies employed and stressing conditions.

  3. Hot electron transport and current sensing

    NASA Astrophysics Data System (ADS)

    Abraham, Mathew Cheeran

    The effect of hot electrons on momentum scattering rates in a two-dimensional electron gas is critically examined. It is shown that with hot electrons it is possible to explore the temperature dependence of individual scattering mechanisms not easily probed under equilibrium conditions; both the Bloch-Gruneisen (BG) phonon scattering phenomena and the reduction in impurity scattering are clearly observed. The theoretical calculations are consistent with the results obtained from hot electrons experiments. As a function of bias current, a resistance peak is formed in a 2DEG if the low temperature impurity limited mobilities muI( T = 0) is comparable to muph(TBG ) the phonon limited mobility at the critical BG temperature. In this case, as the bias current is increased, the electron temperature Te rises due to Joule heating and the rapid increase in phonon scattering can be detected before the effect of the reduction in impurity scattering sets in. If muI(T = 0) << muph(TBG), there is no peak in resistance because the impurity scattering dominates sufficiently and its reduction has a much stronger effect on the total resistance than the rise in phonon scattering. Furthermore, knowing the momentum relaxation rates allows us to analyze the possible interplay between electron-electron and electron-boundary scattering. The prediction that a Knudsen to Poiseuille (KP) transition similar to that of a classical gas can occur in electron flow [26] is examined for the case of a wire defined in a 2DEG. Concurrently, an appropriate current imaging technique to detect this transition is sought. A rigorous evaluation of magnetic force microscopy (MFM) as a possible candidate to detect Poiseuille electronic flow was conducted, and a method that exploits the mechanical resonance of the MFM cantilever was implemented to significantly improve its current sensitivity.

  4. Low-frequency noise in single electron tunneling transistor

    NASA Astrophysics Data System (ADS)

    Tavkhelidze, A. N.; Mygind, J.

    1998-01-01

    The noise in current biased aluminium single electron tunneling (SET) transistors has been investigated in the frequency range of 5 mHztransistor versus gate voltage) strongly depends on the background charge configuration resulting from the cooling sequence and eventual radio frequency (rf) irradiation. The measured noise spectra which show both 1/f and 1/f1/2 dependencies and saturation for f<100 mHz can be fitted by two-level fluctuators with Debye-Lorentzian spectra and relaxation times of order seconds. In some cases, the positive and negative slopes of the V(Vg) curve have different overlaid noise patterns. For fixed bias on both slopes, we measure the same noise spectrum, and believe that the asymmetric noise is due to dynamic charge trapping near or inside one of the junctions induced when ramping the junction voltage. Dynamic trapping may limit the high frequency applications of the SET transistor. Also reported on are the effects of rf irradiation and the dependence of the SET transistor noise on bias voltage.

  5. Radio frequency analog electronics based on carbon nanotube transistors

    PubMed Central

    Kocabas, Coskun; Kim, Hoon-sik; Banks, Tony; Rogers, John A.; Pesetski, Aaron A.; Baumgardner, James E.; Krishnaswamy, S. V.; Zhang, Hong

    2008-01-01

    The potential to exploit single-walled carbon nanotubes (SWNTs) in advanced electronics represents a continuing, major source of interest in these materials. However, scalable integration of SWNTs into circuits is challenging because of difficulties in controlling the geometries, spatial positions, and electronic properties of individual tubes. We have implemented solutions to some of these challenges to yield radio frequency (RF) SWNT analog electronic devices, such as narrow band amplifiers operating in the VHF frequency band with power gains as high as 14 dB. As a demonstration, we fabricated nanotube transistor radios, in which SWNT devices provide all of the key functions, including resonant antennas, fixed RF amplifiers, RF mixers, and audio amplifiers. These results represent important first steps to practical implementation of SWNTs in high-speed analog circuits. Comparison studies indicate certain performance advantages over silicon and capabilities that complement those in existing compound semiconductor technologies. PMID:18227509

  6. Superconducting cuprate heterostructures for hot electron bolometers

    NASA Astrophysics Data System (ADS)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  7. Superconducting cuprate heterostructures for hot electron bolometers

    SciTech Connect

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-25

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La{sub 2−x}Sr{sub x}CuO{sub 4} layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV∼γI{sup 3}, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g{sub e−ph}≈1 W/K cm{sup 2} at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  8. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    SciTech Connect

    Kim, Suhyun; Kim, Joong Jung; Jung, Younheum; Lee, Kyungwoo; Byun, Gwangsun; Hwang, KyoungHwan; Lee, Sunyoung; Lee, Kyupil

    2013-09-15

    Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  9. Basic idea of Corbino-type single-electron transistor

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Taira, Hisao

    2015-01-01

    We have formulated the transmission probability of an electron in a Corbino quantum disk by taking into account charging effect. The geometrical potential of the Corbino disk has a singularity at the centre of the disk. In order to avoid this singularity problem, we have to reformulate the Schrödinger equation in the Riemannian manifold. The Schrödinger equation describing the motion of the electron in the Corbino disk must be expressed by introducing a momentum operator reformed by the metric tensor. In order to obtain a Hermitian momentum operator, we must deform the Hilbert space by introducing a new wave function. This deformation leads to the extra potential term in the Schroodinger equation, which depends on the metric, i.e., the geometry of the disk. It should be noted that the charging energy of confining electrons in the Corbino disk should depend on the geometry of the disk. We discuss the quantum tunneling of an electron confined in the Corbino disk in order to investigate the effect of both geometrical potential and charging energy of confining electrons in the Corbino disk by using the Wentzel-Kramers-Brillouin (WKB) method. It is expected that the charging energy, which depends on the effective confining potential, plays an important role in the transmission probability. This suggests that the formulated transmission probability is applicable to the analysis of the single-electron transistor.

  10. Electronic Model of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  11. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  12. Molecular electronics: the single-molecule switch and transistor

    NASA Astrophysics Data System (ADS)

    Sotthewes, Kai; Geskin, Victor; Heimbuch, Rene; Kumar, Avijit; Zandvliet, Harold

    2014-03-01

    In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge, we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e. compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

  13. Ambipolar Organic Tri-Gate Transistor for Low-Power Complementary Electronics.

    PubMed

    Torricelli, Fabrizio; Ghittorelli, Matteo; Smits, Edsger C P; Roelofs, Christian W S; Janssen, René A J; Gelinck, Gerwin H; Kovács-Vajna, Zsolt M; Cantatore, Eugenio

    2016-01-13

    Ambipolar transistors typically suffer from large off-current inherently due to ambipolar conduction. Using a tri-gate transistor it is shown that it is possible to electrostatically switch ambipolar polymer transistors from ambipolar to unipolar mode. In unipolar mode, symmetric characteristics with an on/off current ratio of larger than 10(5) are obtained. This enables easy integration into low-power complementary logic and volatile electronic memories.

  14. Fabrication and single-electron-transfer operation of a triple-dot single-electron transistor

    SciTech Connect

    Jo, Mingyu Uchida, Takafumi; Tsurumaki-Fukuchi, Atsushi; Arita, Masashi; Takahashi, Yasuo; Fujiwara, Akira; Nishiguchi, Katsuhiko; Ono, Yukinori; Inokawa, Hiroshi

    2015-12-07

    A triple-dot single-electron transistor was fabricated on silicon-on-insulator wafer using pattern-dependent oxidation. A specially designed one-dimensional silicon wire having small constrictions at both ends was converted to a triple-dot single-electron transistor by means of pattern-dependent oxidation. The fabrication of the center dot involved quantum size effects and stress-induced band gap reduction, whereas that of the two side dots involved thickness modulation because of the complex edge structure of two-dimensional silicon. Single-electron turnstile operation was confirmed at 8 K when a 100-mV, 1-MHz square wave was applied. Monte Carlo simulations indicated that such a device with inhomogeneous tunnel and gate capacitances can exhibit single-electron transfer.

  15. Theory of hot electron photoemission from graphene

    NASA Astrophysics Data System (ADS)

    Ang, Lay Kee; Liang, Shijun

    Motivated by the development of Schottky-type photodetectors, some theories have been proposed to describe how the hot carriers generated by the incident photon are transported over the Schottky barrier through the internal photoelectric effect. One of them is Fowler's law proposed as early as 1931, which studied the temperature dependence of photoelectric curves of clean metals. This law is very successful in accounting for mechanism of detecting photons of energy lower than the band gap of semiconductor based on conventional metal/semiconductor Schottky diode. With the goal of achieving better performance, graphene/silicon contact-based- graphene/WSe2 heterostructure-based photodetectors have been fabricated to demonstrate superior photodetection efficiency. However, the theory of how hot electrons is photo-excited from graphene into semiconductor remains unknown. In the current work, we first examine the photoemission process from suspended graphene and it is found that traditional Einstein photoelectric effect may break down for suspended graphene due to the unique linear band structure. Furthermore, we find that the same conclusion applies for 3D graphene analog (e.g. 3D topological Dirac semi-metal). These findings are very useful to further improve the performance of graphene-based photodetector, hot-carrier solar cell and other kinds of sensor.

  16. Study of the Coupling of Terahertz Radiation to Heterostructure Transistors with a Free Electron Laser Source

    NASA Astrophysics Data System (ADS)

    Ortolani, Michele; di Gaspare, Alessandra; Giovine, Ennio; Evangelisti, Florestano; Foglietti, Vittorio; Doria, Andrea; Gallerano, Gian Piero; Giovenale, Emilio; Messina, Giovanni; Spassovsky, Ivan; Lanzieri, Claudio; Peroni, Marco; Cetronio, Antonio

    2009-12-01

    High electron mobility transistors can work as room-temperature direct detectors of radiation at frequency much higher than their cutoff frequency. Here, we present a tool based on a Free Electron Laser source to study the detection mechanism and the coupling of the high frequency signal into the transistor channel. We performed a mapping over a wide area of the coupling of 0.15 THz radiation to an AlGaN/GaN transistors with cut-off frequency of 30 GHz. Local, polarization-dependent irradiation allowed us to selectively couple the signal to the channel either directly or through individual transistor bias lines, in order to study the nonlinear properties of the transistor channel. Our results indicate that HEMT technology can be used to design a millimeter-wave focal plane array with integrated planar antennas and readout electronics.

  17. Ab initio studies of phosphorene island single electron transistor

    NASA Astrophysics Data System (ADS)

    Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.

    2016-05-01

    Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.

  18. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.

    PubMed

    Harutyunyan, Hayk; Martinson, Alex B F; Rosenmann, Daniel; Khorashad, Larousse Khosravi; Besteiro, Lucas V; Govorov, Alexander O; Wiederrecht, Gary P

    2015-09-01

    The interaction of light and matter in metallic nanosystems is mediated by the collective oscillation of surface electrons, called plasmons. After excitation, plasmons are absorbed by the metal electrons through inter- and intraband transitions, creating a highly non-thermal distribution of electrons. The electron population then decays through electron-electron interactions, creating a hot electron distribution within a few hundred femtoseconds, followed by a further relaxation via electron-phonon scattering on the timescale of a few picoseconds. In the spectral domain, hot plasmonic electrons induce changes to the plasmonic resonance of the nanostructure by modifying the dielectric constant of the metal. Here, we report on the observation of anomalously strong changes to the ultrafast temporal and spectral responses of these excited hot plasmonic electrons in hybrid metal/oxide nanostructures as a result of varying the geometry and composition of the nanostructure and the excitation wavelength. In particular, we show a large ultrafast, pulsewidth-limited contribution to the excited electron decay signal in hybrid nanostructures containing hot spots. The intensity of this contribution correlates with the efficiency of the generation of highly excited surface electrons. Using theoretical models, we attribute this effect to the generation of hot plasmonic electrons from hot spots. We then develop general principles to enhance the generation of energetic electrons through specifically designed plasmonic nanostructures that could be used in applications where hot electron generation is beneficial, such as in solar photocatalysis, photodetectors and nonlinear devices.

  19. Free electron gas primary thermometer: The bipolar junction transistor

    SciTech Connect

    Mimila-Arroyo, J.

    2013-11-04

    The temperature of a bipolar transistor is extracted probing its carrier energy distribution through its collector current, obtained under appropriate polarization conditions, following a rigorous mathematical method. The obtained temperature is independent of the transistor physical properties as current gain, structure (Homo-junction or hetero-junction), and geometrical parameters, resulting to be a primary thermometer. This proposition has been tested using off the shelf silicon transistors at thermal equilibrium with water at its triple point, the transistor temperature values obtained involve an uncertainty of a few milli-Kelvin. This proposition has been successfully tested in the temperature range of 77–450 K.

  20. Ultimate response time of high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Rudin, Sergey; Rupper, Greg; Shur, Michael

    2015-05-01

    We present theoretical studies of the response time of the two-dimensional gated electron gas to femtosecond pulses. Our hydrodynamic simulations show that the device response to a short pulse or a step-function signal is either smooth or oscillating time-decay at low and high mobility, μ, values, respectively. At small gate voltage swings, U0 = Ug - Uth, where Ug is the gate voltage and Uth is the threshold voltage, such that μU0/L < vs, where L is the channel length and vs is the effective electron saturation velocity, the decay time in the low mobility samples is on the order of L2/(μU0), in agreement with the analytical drift model. However, the decay is preceded by a delay time on the order of L/s, where s is the plasma wave velocity. This delay is the ballistic transport signature in collision-dominated devices, which becomes important during very short time periods. In the high mobility devices, the period of the decaying oscillations is on the order of the plasma wave velocity transit time. Our analysis shows that short channel field effect transistors operating in the plasmonic regime can meet the requirements for applications as terahertz detectors, mixers, delay lines, and phase shifters in ultra high-speed wireless communication circuits.

  1. Ionization damage in NPN transistors caused by lower energy electrons

    NASA Astrophysics Data System (ADS)

    Li, Xingji; Xiao, Jingdong; Liu, Chaoming; Zhao, Zhiming; Geng, Hongbin; Lan, Mujie; Yang, Dezhuang; He, Shiyu

    2010-09-01

    Electrical degradation of two type NPN bipolar junction transistors (BJTs) with different emitter sizes was examined under exposures of 70 and 110 keV electrons. Base and collector currents as a function of base-emitter voltage were in-situ measured during exposure. Experimental results show that both the 70 and 110 keV electrons produce an evident ionization damage to the NPN BJTs. With increasing fluence, collector currents of the NPN BJTs hardly change in the whole range of base-emitter voltage from 0 to 1.2 V, while base currents increase in a gradually mitigative trend. Base currents vary more at lower base-emitter voltages than at higher ones for a given fluence. The change in the reciprocal of current gain at a fixed base-emitter voltage of 0.65 V increases non-linearly at lower fluences and tends to be gradually saturated at higher fluences. Sensitivity to ionization damage increases for BJTs with an emitter having a larger perimeter-to-area ratio.

  2. Ultimate response time of high electron mobility transistors

    SciTech Connect

    Rudin, Sergey; Rupper, Greg; Shur, Michael

    2015-05-07

    We present theoretical studies of the response time of the two-dimensional gated electron gas to femtosecond pulses. Our hydrodynamic simulations show that the device response to a short pulse or a step-function signal is either smooth or oscillating time-decay at low and high mobility, μ, values, respectively. At small gate voltage swings, U{sub 0} = U{sub g} − U{sub th}, where U{sub g} is the gate voltage and U{sub th} is the threshold voltage, such that μU{sub 0}/L < v{sub s}, where L is the channel length and v{sub s} is the effective electron saturation velocity, the decay time in the low mobility samples is on the order of L{sup 2}/(μU{sub 0}), in agreement with the analytical drift model. However, the decay is preceded by a delay time on the order of L/s, where s is the plasma wave velocity. This delay is the ballistic transport signature in collision-dominated devices, which becomes important during very short time periods. In the high mobility devices, the period of the decaying oscillations is on the order of the plasma wave velocity transit time. Our analysis shows that short channel field effect transistors operating in the plasmonic regime can meet the requirements for applications as terahertz detectors, mixers, delay lines, and phase shifters in ultra high-speed wireless communication circuits.

  3. Towards parallel fabrication of single electron transistors using carbon nanotubes.

    PubMed

    Islam, Muhammad R; Joung, Daeha; Khondaker, Saiful I

    2015-06-07

    Single electron transistors (SETs) are considered to be promising building blocks for post CMOS era electronic devices, however, a major bottleneck for practical realization of SET based devices is a lack of a parallel fabrication approach. Here, we have demonstrated a technique for the scalable fabrication of SETs using single-walled carbon nanotubes (SWNTs). The approach is based on the integration of solution processed individual SWNTs via dielectrophoresis (DEP) at the selected position of the circuit with a 100 nm channel length, where the metal-SWNT Schottky contact works as a tunnel barrier. Measurements carried out at a low temperature (4.2 K) show that the majority of the devices with a contact resistance (RT) > 100 kΩ display SET behavior. For the devices with 100 kΩ < RT < 1 MΩ, periodic, well-defined Coulomb diamonds with a charging energy of ∼14 meV, corresponding to the transport through a single quantum dot (QD) was observed. For devices with high RT (>1 MΩ) multiple QD behavior was observed. From the transport study of 50 SWNT devices, a total of 38 devices show SET behavior giving a yield of 76%. The results presented here are a significant step forward for the practical realization of SET based devices.

  4. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    SciTech Connect

    Guo, Li Qiang Ding, Jian Ning; Huang, Yu Kai; Zhu, Li Qiang

    2015-08-15

    Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO{sub 2} electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO) synaptic transistor. In such synaptic transistors, protons within the SiO{sub 2} electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF) behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  5. Plasma mechanism of terahertz photomixing in high-electron mobility transistor under interband photoexcitation

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Khmyrova, I.; Satou, A.; Vaccaro, P. O.; Aida, T.; Shur, M.

    2002-11-01

    We show that modulated near-infrared radiation can generate terahertz plasma oscillations in the channel of a high-electron mobility transistor. This effect is associated with a temporarily periodic injection of the electrons photoexcited by modulated near-infrared radiation into the transistor channel. The excitation of the plasma oscillations has the resonant character. It results in the pertinent excitation of the electric current in the external circuit that can be used for generation of terahertz electromagnetic radiation.

  6. Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely-Low Energy Consumption Electronics

    DTIC Science & Technology

    2015-12-17

    single-electron transistor, tunnel transistor, energy- efficient electronics 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT U c. THIS PAGE...Publications/Patents p.39 III.B. Presentations p.39 . 9 . I. Introduction and Background Excessive heat dissipation (or power consumption) of modem...of heat dissipation/power consumption of smart phones, tablets, and laptops is such that it prohibits a continuous and prolonged operation of these

  7. The nature of hot electrons generated by exothermic catalytic reactions

    NASA Astrophysics Data System (ADS)

    Nedrygailov, Ievgen I.; Park, Jeong Young

    2016-02-01

    We review recent progress in studies of the nature of hot electrons generated in metal nanoparticles and thin films on oxide supports and their role in heterogeneous catalysis. We show that the creation of hot electrons and their transport across the metal-oxide interface is an inherent component of energy dissipation accompanying catalytic and photocatalytic surface reactions. The intensity of hot electron flow is well correlated with turnover rates of corresponding reactions. We also show that controlling the flow of hot electrons crossing the interface can lead to the control of chemical reaction rates. Finally, we discuss perspectives of hot-electron-mediated surface chemistry that promise the capability to drive catalytic reactions with enhanced efficiency and selectivity through electron-mediated, non-thermal processes.

  8. Metal oxide semiconductor thin-film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  9. Physics-based analytical model for ferromagnetic single electron transistor

    NASA Astrophysics Data System (ADS)

    Jamshidnezhad, K.; Sharifi, M. J.

    2017-03-01

    A physically based compact analytical model is proposed for a ferromagnetic single electron transistor (FSET). This model is based on the orthodox theory and solves the master equation, spin conservation equation, and charge neutrality equation simultaneously. The model can be applied to both symmetric and asymmetric devices and does not introduce any limitation on the applied bias voltages. This feature makes the model suitable for both analog and digital applications. To verify the accuracy of the model, its results regarding a typical FSET in both low and high voltage regimes are compared with the existing numerical results. Moreover, the model's results of a parallel configuration FSET, where no spin accumulation exists in the island, are compared with the results obtained from a Monte Carlo simulation using SIMON. These two comparisons show that our model is valid and accurate. As another comparison, the model is compared analytically with an existing model for a double barrier ferromagnetic junction (having no gate). This also verifies the accuracy of the model.

  10. Ab initio study of hot electrons in GaAs.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G

    2015-04-28

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials.

  11. Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride

    SciTech Connect

    Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth

    2015-12-28

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.

  12. Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride

    NASA Astrophysics Data System (ADS)

    Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth

    2015-12-01

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.

  13. Correlation between microstructure, electronic properties and flicker noise in organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Jurchescu, Oana D.; Hamadani, Behrang H.; Xiong, Hao D.; Park, Sungkyu K.; Subramanian, Sankar; Zimmerman, Neil M.; Anthony, John E.; Jackson, Thomas N.; Gundlach, David J.

    2008-03-01

    We report on observations of a correlation between the microstructure of organic thin films and their electronic properties when incorporated in field-effect transistors. We present a simple method to induce enhanced grain growth in solution-processed thin film transistors by chemical modification of the source-drain contacts. This leads to improved device performance and gives a unique thin film microstructure for fundamental studies concerning the effect of structural order on the charge transport. We demonstrate that the 1/f flicker noise is sensitive to organic semiconductor thin film microstructure changes in the transistor channel.

  14. Influence of high-energy electron irradiation on ultra-low-k characteristics and transistor performance

    NASA Astrophysics Data System (ADS)

    Steidel, Katja; Choi, Kang-Hoon; Freitag, Martin; Gutsch, Manuela; Hohle, Christoph; Seidel, Robert; Thrun, Xaver; Werner, Thomas

    2013-03-01

    While significant resources are invested in bringing EUV lithography to the market, multi electron beam direct patterning is still being considered as an alternative or complementary approach for patterning of advanced technology nodes. The possible introduction of direct write technology into an advanced process flow however may lead to new challenges. For example, the impact of high-energy electrons on dielectric materials and devices may lead to changes in the electrical parameters of the circuit compared to parts conventionally exposed by optical lithography. Furthermore, degradation of product reliability may occur. These questions have not yet been clarified in detail. For this study, pre-structured 300mm wafers with a 28nm BEOL stack were dry-exposed at various processing levels using a 50kV variable shaped e-beam direct writer. The electrical parameters of exposed structures were compared to non-exposed structures. The data of line resistance, capacitance, and line to line leakage were found to be within the typical distributions of the standard process. The dielectric breakdown voltages were also comparable between the splits, suggesting no dramatic TDDB performance degradation. With respect to high-k metal gate transistor parameters, a decrease in threshold voltage shift sensitivity was observed as well as a reduced sensitivity to hot carrier injection. More detailed investigations are needed to determine how these findings need to be considered and whether they represent a risk for the introduction of maskless lithography into the process flow of advanced technology nodes.

  15. Harvesting the loss: surface plasmon-based hot electron photodetection

    NASA Astrophysics Data System (ADS)

    Li, Wei; Valentine, Jason G.

    2016-11-01

    Although the nonradiative decay of surface plasmons was once thought to be only a parasitic process within the plasmonic and metamaterial communities, hot carriers generated from nonradiative plasmon decay offer new opportunities for harnessing absorption loss. Hot carriers can be harnessed for applications ranging from chemical catalysis, photothermal heating, photovoltaics, and photodetection. Here, we present a review on the recent developments concerning photodetection based on hot electrons. The basic principles and recent progress on hot electron photodetectors are summarized. The challenges and potential future directions are also discussed.

  16. Harvesting the loss: surface plasmon-based hot electron photodetection

    NASA Astrophysics Data System (ADS)

    Li, Wei; Valentine, Jason G.

    2017-01-01

    Although the nonradiative decay of surface plasmons was once thought to be only a parasitic process within the plasmonic and metamaterial communities, hot carriers generated from nonradiative plasmon decay offer new opportunities for harnessing absorption loss. Hot carriers can be harnessed for applications ranging from chemical catalysis, photothermal heating, photovoltaics, and photodetection. Here, we present a review on the recent developments concerning photodetection based on hot electrons. The basic principles and recent progress on hot electron photodetectors are summarized. The challenges and potential future directions are also discussed.

  17. Ab initio study of hot electrons in GaAs

    PubMed Central

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron–phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron–phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron–phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287

  18. Analysis of AlGaN/GaN high electron mobility transistors failure mechanism under semi-on DC stress

    NASA Astrophysics Data System (ADS)

    Zhen, Yang; Jinyan, Wang; Zhe, Xu; Xiaoping, Li; Bo, Zhang; Maojun, Wang; Min, Yu; Jincheng, Zhang; Xiaohua, Ma; Yongbing, Li

    2014-01-01

    Semi-on DC stress experiments were conducted on AlGaN/GaN high electron mobility transistors (HEMTs) to find the degradation mechanisms during stress. A positive shift in threshold voltage (VT) and an increase in drain series resistance (RD) were observed after semi-on DC stress on the tested HEMTs. It was found that there exists a close correlation between the degree of drain current degradation and the variation in VT and RD. Our analysis shows that the variation in VT is the main factor leading to the degradation of saturation drain current (IDS), while the increase in RD results in the initial degradation of IDS in linear region in the initial several hours stress time and then the degradation of VT plays more important role. Based on brief analysis, the electron trapping effect induced by gate leakage and the hot electron effect are ascribed to the degradation of drain current during semi-on DC stress. We suggest that electrons in the gate current captured by the traps in the AlGaN layer under the gate metal result in the positive shift in VT and the trapping effect in the gate—drain access region induced by the hot electron effect accounts for the increase in RD.

  19. Influence of water vapor on the electronic property of MoS2 field effect transistors.

    PubMed

    Shu, Jiapei; Wu, Gongtao; Gao, Song; Liu, Bo; Wei, Xianlong; Chen, Qing

    2017-03-02

    The influence of water vapor on the electronic property of MoS2 field effect transistors (FETs) is studied through controlled experiments. We fabricate supported and suspended FETs on the same piece of MoS2 to figure out the role of SiO2 substrate on the water sensing property of MoS2. The two kinds devices show similar response to water vapor and to different treatments, such as pumping in the vacuum, annealing at 500K and current annealing, indicating the substrate do not play an important role in MoS2 water sensor. Water adsorption is found to decrease the carrier mobility probably through introducing scattering center on the surface of MoS2. The threshold voltage and subthreshold swing of the FETs do not change obviously after introducing water vapor, indicating there is not obvious doping and trap introducing effects. Long time pumping in high vacuum and 500 K annealing show negligible effects on removing the water adsorption on the devices. Current annealing at high source-drain bias is found to be able to remove the water adsorption and set the FETs to their initial states. The mechanism is proposed to be through the hot carriers at high bias.

  20. Temperature Dependence of Transistor Characteristics and Electronic Structure for Amorphous In-Ga-Zn-Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Godo, Hiromichi; Kawae, Daisuke; Yoshitomi, Shuhei; Sasaki, Toshinari; Ito, Shunichi; Ohara, Hiroki; Kishida, Hideyuki; Takahashi, Masahiro; Miyanaga, Akiharu; Yamazaki, Shunpei

    2010-03-01

    We fabricated an inverted-staggered amorphous In-Ga-Zn-oxide (a-IGZO) thin film transistor (TFT) and measured the temperature dependence of its characteristics. A threshold voltage (Vth) shift between 120 and 180 °C was as large as 4 V. In an analysis with two-dimensional (2D) numerical simulation, we reproduced the measured result by assuming two types of donor-like states as carrier generation sources. Furthermore, by ab initio molecular dynamics (MD) simulation, we determined the electronic structures of three types of a-IGZO structures, namely, “stoichiometric a-IGZO”, “oxygen deficiency”, and “hydrogen doping”.

  1. Revisiting hot electron generation in ignition-scale hohlraums

    NASA Astrophysics Data System (ADS)

    Kruer, William; Thomas, Cliff; Strozzi, David; Meezan, Nathan; Landen, Otto; Robey, Harry

    2014-10-01

    Recent work invoking hot electron preheat in NIC ignition experiments is motivating a fresh look at hot electron generation in ignition-scale hohlraums. Various mechanisms for high energy electron generation are considered, with particular attention to their time dependence and the potential role of the two plasmon decay instability in the main laser pulse. The energy at risk calculations are updated to include the effects of cross beam energy transfer on the time-dependent energy and intensity of the inner beams as well as improvements in the calculated plasma conditions. The generation of hot electrons by the Raman-scattered light driving the two plasmon decay instability and the effect of the Weibel instability on the propagation of the hot electrons are also briefly considered. Uncertainties in interpreting the energy in hot electrons from hard x-ray measurements and techniques to reduce hot electron generation are discussed. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract DE-AC52-07NA27344.

  2. Radiation defects studies on silicon bipolar junction transistor irradiated by Br ions and electrons

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-12-01

    Bipolar junction transistors are sensitive to both ionization and displacement damage due to charged particles from space radiation. Passivating oxides and the SiO2/Si interface are more sensitive to ionization damage whereas displacement damage may strongly influence the bulk properties of a device. Fast electrons with energies below a few MeV introduces exclusively target ionization while heavy ions at moderate energies (lower than 2 MeV/amu) results in displacement damage due to individual Frenkel-pairs generation. Although both kinds of radiation are basically independent an effective correlation was seen in the electronic characteristics of transistors. We report on the effects on current gain and current-voltage characteristics of bipolar junction transistors due to successive irradiation with 20 MeV Br ions and 110 keV electrons.

  3. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics

    PubMed Central

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-01-01

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT ~ 0.9 GHz, fMAX ~ 1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics. PMID:25295573

  4. Hot tail runaway electron generation in tokamak disruptions

    SciTech Connect

    Smith, H. M.; Verwichte, E.

    2008-07-15

    Hot tail runaway electron generation is caused by incomplete thermalization of the electron velocity distribution during rapid plasma cooling. It is an important runaway electron mechanism in tokamak disruptions if the thermal quench phase is sufficiently fast. Analytical estimates of the density of produced runaway electrons are derived for cases of exponential-like temperature decay with a cooling rate lower than the collision frequency. Numerical simulations, aided by the analytical results, are used to compare the strength of the hot tail runaway generation with the Dreicer mechanism for different disruption parameters (cooling rate, post-thermal quench temperature, and electron density) assuming that no losses of runaway electrons occur. It is seen that the hot tail runaway production is going to be the dominant of these two primary runaway mechanisms in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)].

  5. Charge trapping induced drain-induced-barrier-lowering in HfO2/TiN p-channel metal-oxide-semiconductor-field-effect-transistors under hot carrier stress

    NASA Astrophysics Data System (ADS)

    Lo, Wen-Hung; Chang, Ting-Chang; Tsai, Jyun-Yu; Dai, Chih-Hao; Chen, Ching-En; Ho, Szu-Han; Chen, Hua-Mao; Cheng, Osbert; Huang, Cheng-Tung

    2012-04-01

    This letter studies the channel hot carrier stress (CHCS) behaviors on high dielectric constant insulator and metal gate HfO2/TiN p-channel metal-oxide-semiconductor field effect transistors. It can be found that the degradation is associated with electron trapping, resulting in Gm decrease and positive Vth shift. However, Vth under saturation region shows an insignificant degradation during stress. To compare that, the CHC-induced electron trapping induced DIBL is proposed to demonstrate the different behavior of Vth between linear and saturation region. The devices with different channel length are used to evidence the trapping-induced DIBL behavior.

  6. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    SciTech Connect

    Bajaj, Sanyam Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  7. Cryogenic Preamplification of a Single-Electron-Transistor using a Silicon-Germanium Heterojunction-Bipolar-Transistor

    DOE PAGES

    Curry, Matthew J.; England, Troy Daniel; Bishop, Nathaniel; ...

    2015-05-21

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. Furthermore, the transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to withoutmore » the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. We found that the circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.« less

  8. Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor

    SciTech Connect

    Curry, M. J.; England, T. D.; Bishop, N. C.; Ten-Eyck, G.; Wendt, J. R.; Pluym, T.; Lilly, M. P.; Carroll, M. S.; Carr, S. M.

    2015-05-18

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.

  9. Cryogenic Preamplification of a Single-Electron-Transistor using a Silicon-Germanium Heterojunction-Bipolar-Transistor

    SciTech Connect

    Curry, Matthew J.; England, Troy Daniel; Bishop, Nathaniel; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael; Carr, Stephen M; Carroll, Malcolm S.

    2015-05-21

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. Furthermore, the transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. We found that the circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.

  10. Three-terminal graphene single-electron transistor fabricated using feedback-controlled electroburning

    SciTech Connect

    Puczkarski, Paweł; Gehring, Pascal Lau, Chit S.; Liu, Junjie; Warner, Jamie H.; Briggs, G. Andrew D.; Mol, Jan A.; Ardavan, Arzhang

    2015-09-28

    We report room-temperature Coulomb blockade in a single layer graphene three-terminal single-electron transistor fabricated using feedback-controlled electroburning. The small separation between the side gate electrode and the graphene quantum dot results in a gate coupling up to 3 times larger compared to the value found for the back gate electrode. This allows for an effective tuning between the conductive and Coulomb blocked state using a small side gate voltage of about 1 V. The technique can potentially be used in the future to fabricate all-graphene based room temperature single-electron transistors or three terminal single molecule transistors with enhanced gate coupling.

  11. Introduction to graphene electronics - a new era of digital transistors and devices

    NASA Astrophysics Data System (ADS)

    Yung, K. C.; Wu, W. M.; Pierpoint, M. P.; Kusmartsev, F. V.

    2013-09-01

    The speed of silicon-based transistors has reached an impasse in the recent decade, primarily due to scaling techniques and the short-channel effect. Conversely, graphene (a revolutionary new material possessing an atomic thickness) has been shown to exhibit a promising value for electrical conductivity. Graphene would thus appear to alleviate some of the drawbacks associated with silicon-based transistors. It is for this reason why such a material is considered one of the most prominent candidates to replace silicon within nano-scale transistors. The major crux here, is that graphene is intrinsically gapless, and yet, transistors require a band-gap pertaining to a well-defined ON/OFF logical state. Therefore, exactly as to how one would create this band-gap in graphene allotropes is an intensive area of growing research. Existing methods include nanoribbons, bilayer and multi-layer structures, carbon nanotubes, as well as the usage of the graphene substrates. Graphene transistors can generally be classified according to two working principles. The first is that a single graphene layer, nanoribbon or carbon nanotube can act as a transistor channel, with current being transported along the horizontal axis. The second mechanism is regarded as tunnelling, whether this be band-to-band on a single graphene layer, or vertically between adjacent graphene layers. The high-frequency graphene amplifier is another talking point in recent research, since it does not require a clear ON/OFF state, as with logical electronics. This paper reviews both the physical properties and manufacturing methodologies of graphene, as well as graphene-based electronic devices, transistors, and high-frequency amplifiers from past to present studies. Finally, we provide possible perspectives with regards to future developments.

  12. Reliable determination of the Cu/n-Si Schottky barrier height by using in-device hot-electron spectroscopy

    SciTech Connect

    Parui, Subir E-mail: l.hueso@nanogune.eu; Atxabal, Ainhoa; Ribeiro, Mário; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E. E-mail: l.hueso@nanogune.eu

    2015-11-02

    We show the operation of a Cu/Al{sub 2}O{sub 3}/Cu/n-Si hot-electron transistor for the straightforward determination of a metal/semiconductor energy barrier height even at temperatures below carrier-freeze out in the semiconductor. The hot-electron spectroscopy measurements return a fairly temperature independent value for the Cu/n-Si barrier of 0.66 ± 0.04 eV at temperatures below 180 K, in substantial accordance with mainstream methods based on complex fittings of either current-voltage (I-V) and capacitance-voltage (C-V) measurements. The Cu/n-Si hot-electron transistors exhibit an OFF current of ∼2 × 10{sup −13} A, an ON/OFF ratio of ∼10{sup 5}, and an equivalent subthreshold swing of ∼96 mV/dec at low temperatures, which are suitable values for potential high frequency devices.

  13. Ponderomotive Acceleration of Hot Electrons in Tenuous Plasmas

    SciTech Connect

    V. I. Geyko; Fraiman, G. M.; Dodin, I. Y.; Fisch, N. J.

    2009-02-01

    The oscillation-center Hamiltonian is derived for a relativistic electron injected with an arbitrary momentum in a linearly polarized laser pulse propagating in tenuous plasma, assuming that the pulse length is smaller than the plasma wavelength. For hot electrons generated at collisions with ions under intense laser drive, multiple regimes of ponderomotive acceleration are identified and the laser dispersion is shown to affect the process at plasma densities down to 1017 cm-3. Assuming a/Υg << 1, which prevents net acceleration of the cold plasma, it is also shown that the normalized energy Υ of hot electrons accelerated from the initial energy Υo < , Γ does not exceed Γ ~ aΥg, where a is the normalized laser field, and Υg is the group velocity Lorentz factor. Yet Υ ~ Γ is attained within a wide range of initial conditions; hence a cutoff in the hot electron distribution is predicted.

  14. Development of Cryogenic Enhancement-Mode Pseudomorphic High-Electron-Mobility Transistor Amplifier

    NASA Astrophysics Data System (ADS)

    Hirata, T.; Okazaki, T.; Obara, K.; Yano, H.; Ishikawa, O.

    2017-02-01

    This paper reports the technical details of the development of a low-temperature amplifier for nuclear magnetic resonance measurements of superfluid {}^3 He in very confined geometries. The amplifier consists of commercially available enhancement-mode pseudomorphic high-electron-mobility transistor devices and temperature-insensitive passive components with an operating frequency range of 0.2-6 MHz.

  15. Planar Hot-Electron Photodetection with Tamm Plasmons.

    PubMed

    Zhang, Cheng; Wu, Kai; Giannini, Vincenzo; Li, Xiaofeng

    2017-02-28

    There is an increasing interest in harvesting photoejected hot-electrons for sensitive photodetectors, which have highly tunable detection wavelengths controlled by structural engineering rather than the classic doped semiconductors. However, the widely employed metallic nanostructures that excite surface plasmons (SPs) to enhance the photoemission of hot-electrons are usually complex with a high fabrication challenge. Here, we present a purely planar hot-electron photodetector based on Tamm plasmons (TPs) by introducing a distributed Bragg reflector integrated with hot-electron collection layers in metal/semiconductor/metal configuration. Results show that the light incidence can be strongly confined in the localized region between the top metal and the adjacent dielectric layer due to the excitation of TP resonance so that more than 87% of the light incidence can be absorbed by the top metal layer. This enables a strong and unidirectional photocurrent and a photoresponsivity that can even be higher than that of the conventional nanostructured system. Moreover, the planar TP system shows a narrow-band resonance with high tunability, good resistance against the change of the incident angle, and the possibility for extended functionalities. The proposed TP-based planar configuration significantly simplifies the conventional SP-based systems and opens the pathway for high-performance, low-cost, hot-electron photodetection.

  16. Wavelength Division Multiplexing Scheme for Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We describe work on a wavelength division multiplexing scheme for radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. Using discrete components, we made a two-channel demonstration of this concept and successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  17. Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors

    SciTech Connect

    Li, Z. Q.; Podzorov, V.; Sai, N.; Martin, Michael C.; Gershenson, M. E.; Di Ventra, M.; Basov, D. N.

    2007-03-01

    We report on an infrared spectroscopy study of mobile holes in the accumulation layer of organic field-effect transistors based on rubrene single crystals. Our data indicate that both transport and infrared properties of these transistors at room temperature are governed by light quasiparticles in molecular orbital bands with the effective masses m[small star, filled]comparable to free electron mass. Furthermore, the m[small star, filled]values inferred from our experiments are in agreement with those determined from band structure calculations. These findings reveal no evidence for prominent polaronic effects, which is at variance with the common beliefs of polaron formation in molecular solids.

  18. A switch for epitaxial graphene electronics: Utilizing the silicon carbide substrate as transistor channel

    NASA Astrophysics Data System (ADS)

    Krach, F.; Hertel, S.; Waldmann, D.; Jobst, J.; Krieger, M.; Reshanov, S.; Schöner, A.; Weber, H. B.

    2012-03-01

    Due to the lack of graphene transistors with large on/off ratio, we propose a concept employing both epitaxial graphene and its underlying substrate silicon carbide (SiC) as electronic materials. We demonstrate a simple, robust, and scalable transistor, in which graphene serves as electrodes and SiC as a semiconducting channel. The common interface has to be chosen such that it provides favorable charge injection. The insulator and gate functionality is realized by an ionic liquid gate for convenience but could be taken over by a solid gate stack. On/off ratios exceeding 44000 at room temperature are found.

  19. Radiation damage testing of transistors for SSC front-end electronics

    SciTech Connect

    Dawson, J.; Ekenberg, T.; Stevens, A. ); Kraner, H.; Radeka, V.; Rescia, S. ); Kerns, S. . Dept. of Electrical Engineering)

    1990-01-01

    Over the ten year expected lifetime of a typical SSC detector operating at the design luminosity of 10{sup 33} cm{sup {minus}2}s{sup {minus}1}, the front-end electronics at large pseudorapidities may receive total doses as high as 20 MRad(Si) of ionizing radiation and 10{sup 16} neutrons/cm{sup 2}. Discrete JFETs and monolithic MOS and bipolar transistors have been irradiated at 10 MRad(Si) and 10{sup 14} neutrons/cm{sup 2}, and the effect on transfer characteristics and noise performance have been measured. All transistors were still functional after irradiation but suffered increased noise and the MOS transistors showed significant threshold shifts and increased leakage currents. 4 refs., 2 figs.

  20. Organic Power Electronics: Transistor Operation in the kA/cm2 Regime

    NASA Astrophysics Data System (ADS)

    Klinger, Markus P.; Fischer, Axel; Kaschura, Felix; Widmer, Johannes; Kheradmand-Boroujeni, Bahman; Ellinger, Frank; Leo, Karl

    2017-03-01

    In spite of interesting features as flexibility, organic thin-film transistors have commercially lagged behind due to the low mobilities of organic semiconductors associated with hopping transport. Furthermore, organic transistors usually have much larger channel lengths than their inorganic counterparts since high-resolution structuring is not available in low-cost production schemes. Here, we present an organic permeable-base transistor (OPBT) which, despite extremely simple processing without any high-resolution structuring, achieve a performance beyond what has so far been possible using organic semiconductors. With current densities above 1 kA cm‑2 and switching speeds towards 100 MHz, they open the field of organic power electronics. Finding the physical limits and an effective mobility of only 0.06 cm2 V‑1 s‑1, this OPBT device architecture has much more potential if new materials optimized for its geometry will be developed.

  1. Organic Power Electronics: Transistor Operation in the kA/cm(2) Regime.

    PubMed

    Klinger, Markus P; Fischer, Axel; Kaschura, Felix; Widmer, Johannes; Kheradmand-Boroujeni, Bahman; Ellinger, Frank; Leo, Karl

    2017-03-17

    In spite of interesting features as flexibility, organic thin-film transistors have commercially lagged behind due to the low mobilities of organic semiconductors associated with hopping transport. Furthermore, organic transistors usually have much larger channel lengths than their inorganic counterparts since high-resolution structuring is not available in low-cost production schemes. Here, we present an organic permeable-base transistor (OPBT) which, despite extremely simple processing without any high-resolution structuring, achieve a performance beyond what has so far been possible using organic semiconductors. With current densities above 1 kA cm(-2) and switching speeds towards 100 MHz, they open the field of organic power electronics. Finding the physical limits and an effective mobility of only 0.06 cm(2) V(-1) s(-1), this OPBT device architecture has much more potential if new materials optimized for its geometry will be developed.

  2. Organic Power Electronics: Transistor Operation in the kA/cm2 Regime

    PubMed Central

    Klinger, Markus P.; Fischer, Axel; Kaschura, Felix; Widmer, Johannes; Kheradmand-Boroujeni, Bahman; Ellinger, Frank; Leo, Karl

    2017-01-01

    In spite of interesting features as flexibility, organic thin-film transistors have commercially lagged behind due to the low mobilities of organic semiconductors associated with hopping transport. Furthermore, organic transistors usually have much larger channel lengths than their inorganic counterparts since high-resolution structuring is not available in low-cost production schemes. Here, we present an organic permeable-base transistor (OPBT) which, despite extremely simple processing without any high-resolution structuring, achieve a performance beyond what has so far been possible using organic semiconductors. With current densities above 1 kA cm−2 and switching speeds towards 100 MHz, they open the field of organic power electronics. Finding the physical limits and an effective mobility of only 0.06 cm2 V−1 s−1, this OPBT device architecture has much more potential if new materials optimized for its geometry will be developed. PMID:28303924

  3. High frequency conductivity of hot electrons in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac-dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons' source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  4. Plasmonic hot electron transport drives nano-localized chemistry

    PubMed Central

    Cortés, Emiliano; Xie, Wei; Cambiasso, Javier; Jermyn, Adam S.; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A.

    2017-01-01

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry. PMID:28348402

  5. Plasmonic hot electron transport drives nano-localized chemistry.

    PubMed

    Cortés, Emiliano; Xie, Wei; Cambiasso, Javier; Jermyn, Adam S; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A

    2017-03-28

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry.

  6. Electron acoustic wave driven vortices with non-Maxwellian hot electrons in magnetoplasmas

    SciTech Connect

    Haque, Q.; Mirza, Arshad M.; Zakir, U.

    2014-07-15

    Linear dispersion characteristics of the Electron Acoustic Wave (EAW) and the corresponding vortex structures are investigated in a magnetoplasma in the presence of non-Maxwellian hot electrons. In this regard, kappa and Cairns distributed hot electrons are considered. It is noticed that the nonthermal distributions affect the phase velocity of the EAW. Further, it is found that the phase velocity of EAW increases for Cairns and decreases for kappa distributed hot electrons. Nonlinear solutions in the form of dipolar vortices are also obtained for both stationary and non-stationary ions in the presence of kappa distributed hot electrons and dynamic cold electrons. It is found that the amplitude of the nonlinear vortex structures also reduces with kappa factor like the electron acoustic solitons.

  7. Hot electron dynamics and impurity scattering on gold nanoshell surfaces

    NASA Astrophysics Data System (ADS)

    Wolfgang, John Adam

    2000-10-01

    Recent ultrafast pump-probe experiments studying the relaxation rate of an optically excited hot electron distribution on Au/Au2S gold nanoshells indicate that this relaxation rate can be modified by the chemical environment surrounding the shell. This work will begin a theoretical investigation of the effect of chemical adsorbates---solvents and impurities---upon nanoshell hot electron dynamics. The effects of water, polyvinyl alcohol (PVA), sulfur, p-aminobenzoic acid, p-mercaptobenzoic acid and propylamine adsorbates are examined for their electronic interaction with a noble metal surface. p-Aminobenzoic acid is found to have a very large dipole moment when adsorbed to the metal surface, in contrast to p-mercaptobenzoic acid, propylamine and water. This correlates well to the experimentally observed results where nanoshells dispersed in an aqueous soulution with p-aminobenzoic acid display a faster relaxation rate compared to nanoshells dispersed in a pure water, aqueous propylamine or aqueous p-mercaptobenzoic acid environments. This thesis will also introduce a non-equilibrium Green's function approach, based on the formalism developed by Baym and Kadanoff, to model the dynamics of a hot electron distribution. The model will be discussed in terms of a simple potential scattering mechanism, which may in later work be expanded to include more complex electron-electron and electron-phonon interactions. Lastly acoustic oscillation modes are calculated for solid gold spheres and gold-silicon nanoshells. These modes describe an effect of electron-phonon coupling between the hot electron distribution and the nanoshell lattice, whereby the electronic energy is converted into mechanical energy.

  8. Effect of Electron-Beam Irradiation on Organic Semiconductor and Its Application for Transistor-Based Dosimeters.

    PubMed

    Kim, Jae Joon; Ha, Jun Mok; Lee, Hyeok Moo; Raza, Hamid Saeed; Park, Ji Won; Cho, Sung Oh

    2016-08-03

    The effects of electron-beam irradiation on the organic semiconductor rubrene and its application as a dosimeter was investigated. Through the measurements of photoluminescence and the ultraviolet photoelectron spectroscopy, we found that electron-beam irradiation induces n-doping of rubrene. Additionally, we fabricated rubrene thin-film transistors with pristine and irradiated rubrene, and discovered that the decrease in transistor properties originated from the irradiation of rubrene and that the threshold voltages are shifted to the opposite directions as the irradiated layers. Finally, a highly sensitive and air-stable electron dosimeter was fabricated based on a rubrene transistor.

  9. Hot-electron effects in metals

    SciTech Connect

    Wellstood, F.C.; Urbina, C.; Clarke, J. |

    1994-03-01

    When sufficient electrical power {ital P} is dissipated in a thin metal film at millikelvin temperatures, the electrons can be driven far out of thermal equilibrium with the phonons. For uniform power dissipation in a volume {Omega} we show that the electrons attain a steady-state temperature {ital T}{sub {ital e}}=({ital P}/{Sigma}{Omega}+{ital T}{sub {ital p}}{sup 5}){sup 1/5}, where {ital T}{sub {ital p}} is the phonon temperature and {Sigma} is a parameter involving the electron-phonon coupling. We have used a sensitive ammeter based on a dc superconducting quantum interference device (SQUID) to measure the Nyquist current noise in thin films of AuCu as a function of {ital P}, and thus inferred {ital T}{sub {ital e}}. We fitted our data to the theory with the single parameter {Sigma}, and found good agreement for {Sigma}=(2.4{plus_minus}0.6){times}10{sup 9} Wm{sup {minus}3} K{sup {minus}5}. When we increased the volume of the resistor by attaching a thin-film cooling fin, there was a much smaller increase in {ital T}{sub {ital e}} for a given power dissipation in the resistor, in qualitative agreement with a simple model for nonuniform heating. We also measured the flux noise in dc SQUIDs at low temperatures, and found that the white noise was limited by heating of the electrons in the resistive shunts of the Josephson junctions. We were able to reduce these effects substantially by attaching cooling fins to the shunts.

  10. Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies.

    PubMed

    Ryu, Yu Kyoung; Chiesa, Marco; Garcia, Ricardo

    2013-08-09

    Silicon nanowire (SiNW) field-effect transistors have been fabricated by oxidation scanning probes and electron beam lithographies. The analysis and comparison of the electron mobility and subthreshold swing shows that the device performance is not affected by the top-down fabrication method. The two methods produce silicon nanowire transistors with similar electrical features, although oxidation scanning probe lithography generates nanowires with smaller channel widths. The values of the electron mobility and the subthreshold swing, 200 cm(2) V(-1) s(-1) and 500 mV dec(-1), respectively, are similar to those obtained from bottom-up methods. The compatibility of top-down methods with CMOS (complementary metal-oxide-semiconductor) procedures, the good electrical properties of the nanowire devices and the potential for making sub-10 nanowires, in particular by using oxidation scanning probe lithography, make those methods attractive for device fabrication.

  11. Relation between degradation of electrical parameters of MOS transistors by hot carrier injection and their drift due to radiation for a new rad-hardened ACMOS technology

    NASA Astrophysics Data System (ADS)

    Frapreau, I.; Gagnard, X.

    2002-12-01

    Space environment induces degradations, which affect electrical performances of MOS transistors in satellites. It is very interesting to prevent such degradations, to be more competitive and to mainly satisfy customers in the best conditions. But the tests by ionizing radiations are long and expensive. That's why we would like to predict the effects of radiation by using tests with hot-carrier injection. Indeed the degradations induced with hot-carrier and radiations effects are similar. Oxide is damaged by charge trapping and interface states generation. Electrical parameters such as threshold voltage, linear current and transconductance are affected. Our study consists to find a correlation between the degradations of MOS transistors induced with hot-carrier and their damages due to gamma radiation environment.

  12. Effects of hot electron inertia on electron-acoustic solitons and double layers

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.

    2015-07-15

    The propagation of arbitrary amplitude electron-acoustic solitons and double layers is investigated in a plasma containing cold positive ions, cool adiabatic and hot isothermal electrons, with the retention of full inertial effects for all species. For analytical tractability, the resulting Sagdeev pseudopotential is expressed in terms of the hot electron density, rather than the electrostatic potential. The existence domains for Mach numbers and hot electron densities clearly show that both rarefactive and compressive solitons can exist. Soliton limitations come from the cool electron sonic point, followed by the hot electron sonic point, until a range of rarefactive double layers occurs. Increasing the relative cool electron density further yields a switch to compressive double layers, which ends when the model assumptions break down. These qualitative results are but little influenced by variations in compositional parameters. A comparison with a Boltzmann distribution for the hot electrons shows that only the cool electron sonic point limit remains, giving higher maximum Mach numbers but similar densities, and a restricted range in relative hot electron density before the model assumptions are exceeded. The Boltzmann distribution can reproduce neither the double layer solutions nor the switch in rarefactive/compressive character or negative/positive polarity.

  13. Atomically resolved real-space imaging of hot electron dynamics

    PubMed Central

    Lock, D.; Rusimova, K. R.; Pan, T. L.; Palmer, R. E.; Sloan, P. A.

    2015-01-01

    The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics. PMID:26387703

  14. Energy level control: toward an efficient hot electron transport.

    PubMed

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-08-07

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the 'excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells.

  15. Energy level control: toward an efficient hot electron transport

    PubMed Central

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-01-01

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the ‘excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells. PMID:25099864

  16. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks.

  17. Ultrafast demagnetization by hot electrons: Diffusion or super-diffusion?

    PubMed Central

    Salvatella, G.; Gort, R.; Bühlmann, K.; Däster, S.; Vaterlaus, A.; Acremann, Y.

    2016-01-01

    Ultrafast demagnetization of ferromagnetic metals can be achieved by a heat pulse propagating in the electron gas of a non-magnetic metal layer, which absorbs a pump laser pulse. Demagnetization by electronic heating is investigated on samples with different thicknesses of the absorber layer on nickel. This allows us to separate the contribution of thermalized hot electrons compared to non-thermal electrons. An analytical model describes the demagnetization amplitude as a function of the absorber thickness. The observed change of demagnetization time can be reproduced by diffusive heat transport through the absorber layer. PMID:27795975

  18. Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite

    NASA Astrophysics Data System (ADS)

    Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Taniuchi, T.; Kiss, T.; Nakajima, M.; Suemoto, T.; Shin, S.

    2011-08-01

    Investigation of the non-equilibrium dynamics after an impulsive impact provides insights into couplings among various excitations. A two-temperature model (TTM) is often a starting point to understand the coupled dynamics of electrons and lattice vibrations: the optical pulse primarily raises the electronic temperature Tel while leaving the lattice temperature Tl low; subsequently the hot electrons heat up the lattice until Tel = Tl is reached. This temporal hierarchy owes to the assumption that the electron-electron scattering rate is much larger than the electron-phonon scattering rate. We report herein that the TTM scheme is seriously invalidated in semimetal graphite. Time-resolved photoemission spectroscopy (TrPES) of graphite reveals that fingerprints of coupled optical phonons (COPs) occur from the initial moments where Tel is still not definable. Our study shows that ultrafast-and-efficient phonon generations occur beyond the TTM scheme, presumably associated to the long duration of the non-thermal electrons in graphite.

  19. Cylindrical and spherical electron acoustic solitary waves in the presence of superthermal hot electrons

    NASA Astrophysics Data System (ADS)

    Javidan, Kurosh; Pakzad, Hamid Reza

    2012-02-01

    Propagation of cylindrical and spherical electron-acoustic solitary waves in unmagnetized plasmas consisting of cold electron fluid, hot electrons obeying a superthermal distribution and stationary ions are investigated. The standard reductive perturbation method is employed to derive the cylindrical/spherical Korteweg-de-Vries equation which governs the dynamics of electron-acoustic solitons. The effects of nonplanar geometry and superthermal hot electrons on the behavior of cylindrical and spherical electron acoustic soliton and its structure are also studied using numerical simulations.

  20. Nature of Electronic States in Ultrathin MoS2 Field Effect Transistor

    NASA Astrophysics Data System (ADS)

    Ghatak, Subhamoy; Nath Pal, Atindra; Ghosh, Arindam

    2012-02-01

    Molybdenum disulphide (MoS2) is a layered transition metal dichalcogenide with a Mo layer sandwiched between two S layers (S-Mo-S), which forms its basic unit. Each basic unit is attached to other units only with weak Van der Waals force. This enables to make an atomically thin single layer of MoS2 with a bandgap 1.9 eV. The presence of bandgap has made it an interesting material in thin film transistors. It has been reported [1] recently that very high on/off ratio (˜10^8) can be obtained in single layer MoS2 transistor due to the presence of this bandgap. Though the on/off ration is very high, mobility in these transistors are considerably low. Here we have investigated the origin of such low mobility. From our temperature dependent study we find that atomically thin MoS2 layer becomes highly disordered in the presence of the substrate and electron got localised in the traps created by the charge impurities at substrate-MoS2 interface. We propose that high mobility can be obtained in these transistors by removing the charge impurity background. [4pt] [1] Radisavljevic, B. et al. Nature Nanotechnology 2011, 6, 147--150. [0pt] [2] Ghatak, S. et al. ACS Nano 2011, 5, 7707.

  1. Bias dependence of synergistic radiation effects induced by electrons and protons on silicon bipolar junction transistors

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Ma, Guoliang; Xiao, Liyi

    2015-06-01

    Bias dependence on synergistic radiation effects caused by 110 keV electrons and 170 keV protons on the current gain of 3DG130 NPN bipolar junction transistors (BJTs) is studied in this paper. Experimental results indicate that the influence induced by 170 keV protons is always enhancement effect during the sequential irradiation. However, the influence induced by 110 keV electrons on the BJT under various bias cases is different during the sequential irradiation. The transition fluence of 110 keV electrons is dependent on the bias case on the emitter-base junction of BJT.

  2. Hot Electron Instability in a Dipole Confined Plasma

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Mauel, M. E.

    2005-10-01

    In plasma containing energetic electrons, two interacting collective modes, an MHD-like mode and a hot electron interchange (HEI) modeootnotetextN. A. Krall, Phys. Fluids, 9, 820 (1966)., may be present. The linear stability of interchange modes in a z-pinch at arbitrary beta, including a bulk and hot electron species was recently studiedootnotetextN. Krasheninnikova, P. J. Catto, Phys. Plasmas, 12, 32101 (2005).. Using the dispersion relation derived in this reference we show that when necessary conditions are satisfied the two modes may be present or absent in a closed-field line magnetic confinement geometry such as a hard core z-pinch or a dipole. The HEI instability and the MHD-like centrifugally-driven mode have been studied previouslyootnotetextB. Levitt, et al., Phys. Plasmas, 9, 2507 (2002), and 12, 055703 (2005)., including a comparison between the measured mode structure and the predictions of a global low-beta simulation. The radial eigenmode is seen to effect the saturation level of the mode. In the Levitated Dipole Experimenthttp://psfcwww2.psfc.mit.edu/ldx/ electron cyclotron resonance heating produces high beta plasmas containing hot electrons, and instability observations will be discussed and compared with theoretical predictions.

  3. Dependence of magnetic field and electronic transport of Mn4 Single-molecule magnet in a Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alvar; Singh, Simranjeet; Haque, Firoze; Del Barco, Enrique; Nguyen, Tu; Christou, George

    2012-02-01

    Dependence of magnetic field and electronic transport of Mn4 Single-molecule magnet in a Single-Electron Transistor A. Rodriguez, S. Singh, F. Haque and E. del Barco Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 USA T. Nguyen and G. Christou Department of Chemistry, University of Florida, Gainesville, Florida 32611 USA Abstract We have performed single-electron transport measurements on a series of Mn-based low-nuclearity single-molecule magnets (SMM) observing Coulomb blockade. SMMs with well isolated and low ground spin states, i.e. S = 9/2 (Mn4) and S = 6 (Mn3) were chosen for these studies, such that the ground spin multiplet does not mix with levels of other excited spin states for the magnetic fields (H = 0-8 T) employed in the experiments. Different functionalization groups were employed to change the mechanical, geometrical and transport characteristics of the molecules when deposited from liquid solution on the transistors. Electromigration-broken three-terminal single-electron transistors were used. Results obtained at temperatures down to 240 mK and in the presence of high magnetic fields will be shown.

  4. High-Electron Mobility Graphene Channel Transistors for Millimeter-Wave Applications

    DTIC Science & Technology

    2010-08-31

    introducing this hydrogen treatment process. Figure 3. Change in surface morphology by lithography process: (a) as grown surface of graphenized SiC...characterized. In the FET process, the hydrogen treatment is adapted for the lift-off process in the ohmic contact on graphene . For the gate stack...1 AOARD Grant 09-4074 Final Report High-Electron Mobility Graphene Channel Transistors for Millimeter-Wave Applications Tetsuya Suemitsu

  5. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics

    NASA Astrophysics Data System (ADS)

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-10-01

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT~0.9 GHz, fMAX~1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics.

  6. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics.

    PubMed

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-10-08

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT~0.9 GHz, fMAX~1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics.

  7. Electronic stopping power for heavy ions in hot targets

    NASA Astrophysics Data System (ADS)

    Wang, You-Nian; Ma, Teng-Cai; Gong, Ye

    1993-03-01

    An investigation on the electronic stopping power and the effective charge for a heavy ion in a hot target is made using linear-response dielectric theory. The charge distribution of the electrons bound to a projectile is determined by the Brandt-Kitagawa (BK) model [Phys. Rev. B 25, 3631 (1982)]. Some analytical expressions of the electronic stopping power and the effective charge are obtained in the limits of the low and high velocities, respectively. The theoretical results are compared with the experimental data for high-velocity ions.

  8. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  9. Terahertz signal detection in a short gate length field-effect transistor with a two-dimensional electron gas

    SciTech Connect

    Vostokov, N. V. Shashkin, V. I.

    2015-11-28

    We consider the problem of non-resonant detection of terahertz signals in a short gate length field-effect transistor having a two-dimensional electron channel with zero external bias between the source and the drain. The channel resistance, gate-channel capacitance, and quadratic nonlinearity parameter of the transistor during detection as a function of the gate bias voltage are studied. Characteristics of detection of the transistor connected in an antenna with real impedance are analyzed. The consideration is based on both a simple one-dimensional model of the transistor and allowance for the two-dimensional distribution of the electric field in the transistor structure. The results given by the different models are discussed.

  10. Measurement of the hot electron mean free path and the momentum relaxation rate in GaN

    SciTech Connect

    Suntrup, Donald J.; Gupta, Geetak; Li, Haoran; Keller, Stacia; Mishra, Umesh K.

    2014-12-29

    We present a method for measuring the mean free path and extracting the momentum relaxation time of hot electrons in GaN using the hot electron transistor (HET). In this device, electrons are injected over a high energy emitter barrier into the base where they experience quasi-ballistic transport well above the conduction band edge. After traversing the base, high energy electrons either surmount the base-collector barrier and become collector current or reflect off the barrier and become base current. We fabricate HETs with various base thicknesses and measure the common emitter transfer ratio (α) for each device. The mean free path is extracted by fitting α to a decaying exponential as a function of base width and the relaxation time is computed using a suitable injection velocity. For devices with an injection energy of ∼1 eV, we measure a hot electron mean free path of 14 nm and calculate a momentum relaxation time of 16 fs. These values are in agreement with theoretical calculations where longitudinal optical phonon scattering is the dominant momentum relaxation mechanism.

  11. Back-action-induced excitation of electrons in a silicon quantum dot with a single-electron transistor charge sensor

    SciTech Connect

    Horibe, Kosuke; Oda, Shunri; Kodera, Tetsuo

    2015-02-02

    Back-action in the readout of quantum bits is an area that requires a great deal of attention in electron spin based-quantum bit architecture. We report here back-action measurements in a silicon device with quantum dots and a single-electron transistor (SET) charge sensor. We observe the back-action-induced excitation of electrons from the ground state to an excited state in a quantum dot. Our measurements and theoretical fitting to the data reveal conditions under which both suitable SET charge sensor sensitivity for qubit readout and low back-action-induced transition rates (less than 1 kHz) can be achieved.

  12. A Hot-electron Direct Detector for Radioastronomy

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McGrath, William R.; LeDuc, Henry G.; Gershenson, Michael E.

    1999-01-01

    A hot-electron transition-edge superconducting bolometer with adjustable thermal relaxation speed is proposed. The bolometer contacts are made from a superconductor with high critical temperature which blocks the thermal diffusion of hot carriers into the contacts. Thus electron-phonon interaction is the only mechanism for heat removal. The speed of thermal relaxation for hot electrons in a nanometer-size superconducting bolometer with T(sub c) = 100-300 mK is controlled by the elastic electron mean free path l. The relaxation rate behaves as T(sup 4)l at subkelvin temperatures and can be reduced by a factor of 10-100 by decreasing 1. Then an antenna- or wave guide-coupled bolometer with a time constant approx. = 10(exp -3) to 10(exp -4) s will exhibit photon-noise limited performance at millimeter and submillimeter wavelengths. The bolometer will have a figure-of-merit NEPtau = 10(exp -22) - 10(exp -21) W/Hz at 100 mK which is 10(exp 3) to 10(exp 4) times better (ie: smaller) than that of a state-of-the-art bolometer. A tremendous increase in speed and sensitivity will have a significant impact for observational mapping applications.

  13. Hot electron pump: a plasmonic rectifying antenna (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Yanik, Ahmet A.; Hossain, Golam I.

    2015-09-01

    Plasmonic nanostructures have been widely explored to improve absorption efficiency of conventional solar cells, either by employing them as a light scatterer, or as a source of local field enhancement. Unavoidable ohmic loss associated with the plasmonic metal nanostructures in visible spectrum, limits the efficiency improvement of photovoltaic devices by employing this local photon density of states (LDOS) engineering approach. Instead of using plasmonic structures as efficiency improving layer, recently, there has been a growing interest in exploring plasmoinc nanoparticle as the active medium for photovoltaic device. By extracting hot electrons that are created in metallic nanoparticles in a non-radiative Landau decay of surface plasmons, many novel plasmonic photovoltaic devices have been proposed. Moreover, these hot electrons in metal nanoparticles promises high efficiency with a spectral response that is not limited by the band gap of the semiconductors (active material of conventional solar cell). In this work, we will show a novel photovoltaic configuration of plasmonic nanoparticle that acts as an antenna by capturing free space ultrahigh frequency electromagnetic wave and rectify them through an ultrafast hot electron pump and eventually inject DC current in the contact of the device. We will introduce a bottom-up quantum mechanical approach model to explain fundamental physical processes involved in this hot electron pump rectifying antenna and it's ultrafast dynamics. Our model is based on non-equilibrium Green's function formalism, a robust theoretical framework to investigate transport and design nanoscale electronic devices. We will demonstrate some fundamental limitations that go the very foundations of quantum mechanics.

  14. Simulations of Electron Transport in Laser Hot Spots

    SciTech Connect

    S. Brunner; E. Valeo

    2001-08-30

    Simulations of electron transport are carried out by solving the Fokker-Planck equation in the diffusive approximation. The system of a single laser hot spot, with open boundary conditions, is systematically studied by performing a scan over a wide range of the two relevant parameters: (1) Ratio of the stopping length over the width of the hot spot. (2) Relative importance of the heating through inverse Bremsstrahlung compared to the thermalization through self-collisions. As for uniform illumination [J.P. Matte et al., Plasma Phys. Controlled Fusion 30 (1988) 1665], the bulk of the velocity distribution functions (VDFs) present a super-Gaussian dependence. However, as a result of spatial transport, the tails are observed to be well represented by a Maxwellian. A similar dependence of the distributions is also found for multiple hot spot systems. For its relevance with respect to stimulated Raman scattering, the linear Landau damping of the electron plasma wave is estimated for such VD Fs. Finally, the nonlinear Fokker-Planck simulations of the single laser hot spot system are also compared to the results obtained with the linear non-local hydrodynamic approach [A.V. Brantov et al., Phys. Plasmas 5 (1998) 2742], thus providing a quantitative limit to the latter method: The hydrodynamic approach presents more than 10% inaccuracy in the presence of temperature variations of the order delta T/T greater than or equal to 1%, and similar levels of deformation of the Gaussian shape of the Maxwellian background.

  15. Electron-Impurity Interactions in the Relaxation of Hot Electrons in Gold-Gold Sulfide Nanoshells

    NASA Astrophysics Data System (ADS)

    Westcott, Sarah; Wolfgang, John; Nordlander, Peter; Halas, Naomi

    2000-10-01

    Hot electron dynamics can be modified in metallic nanostructures compared to bulk metals. In this experiment, ultrafast pump-probe spectroscopy permits observation of the effects of the local environment on hot electron relaxation in gold nanoshell particles. These nanoparticles consist of spherical (40 nm diameter) gold sulfide cores surrounded by ultrathin (5 nm) gold shells and possess a structure-dependent plasmon resonance.^1 Following excitation by a pump pulse at the plasmon resonance, the relaxation of the hot electrons in the nanoparticle's shell layer was observed. When molecules were adsorbed onto the nanoshell surface, increased electronic relaxation rates were observed for those molecular species with the greatest induced dipole moments near the nanoparticle surface. The effect of impurity adsorbates on the nanoparticle's electron dynamics is attributed to a perturbation in the electronic potential in the metal by the presence of the nearby impurities. ^1 R. D. Averitt, D. Sarkar, and N. J. Halas, Phys. Rev. Lett. 78, 4217 (1997).

  16. Unsymmetrical hot electron heating in quasi-ballistic nanocontacts

    PubMed Central

    Tsutsui, Makusu; Kawai, Tomoji; Taniguchi, Masateru

    2012-01-01

    Electrons are allowed to pass through a single atom connected to two electrodes without being scattered as the characteristic size is much smaller than the inelastic mean free path. In this quasi-ballistic regime, it is difficult to predict where and how power dissipation occurs in such current-carrying atomic system. Here, we report direct assessment of electrical heating in a metallic nanocontact. We find asymmetric electrical heating effects in the essentially symmetric single-atom contact. We simultaneously identified the voltage polarity independent onset of the local heating by conducting the inelastic noise spectroscopy. As a result, we revealed significant heat dissipation by hot electrons transmitting ballistically through the junction that creates a hot spot at the current downstream. This technique can be used as a platform for studying heat dissipation and transport in atomic/molecular systems. PMID:22355731

  17. Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli.

    PubMed

    Wu, Hui; Tuli, Leepika; Bennett, George N; San, Ka-Yiu

    2015-03-01

    A novel strategy to finely control a large metabolic flux by using a "metabolic transistor" approach was established. In this approach a small change in the level or availability of an essential component for the process is controlled by adding a competitive reaction that affects a precursor or an intermediate in its biosynthetic pathway. The change of the basal level of the essential component, considered as a base current in a transistor, has a large effect on the flux through the major pathway. In this way, the fine-tuning of a large flux can be accomplished. The "metabolic transistor" strategy was applied to control electron transfer chain function by manipulation of the quinone synthesis pathway in Escherichia coli. The achievement of a theoretical yield of lactate production under aerobic conditions via this strategy upon manipulation of the biosynthetic pathway of the key participant, ubiquinone-8 (Q8), in an E. coli strain provides an in vivo, genetically tunable means to control the activity of the electron transfer chain and manipulate the production of reduced products while limiting consumption of oxygen to a defined amount.

  18. Dual-gated bilayer graphene hot-electron bolometer.

    PubMed

    Yan, Jun; Kim, M-H; Elle, J A; Sushkov, A B; Jenkins, G S; Milchberg, H M; Fuhrer, M S; Drew, H D

    2012-06-03

    Graphene is an attractive material for use in optical detectors because it absorbs light from mid-infrared to ultraviolet wavelengths with nearly equal strength. Graphene is particularly well suited for bolometers-devices that detect temperature-induced changes in electrical conductivity caused by the absorption of light-because its small electron heat capacity and weak electron-phonon coupling lead to large light-induced changes in electron temperature. Here, we demonstrate a hot-electron bolometer made of bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The bolometer exhibits a noise-equivalent power (33 fW Hz(-1/2) at 5 K) that is several times lower, and intrinsic speed (>1 GHz at 10 K) three to five orders of magnitude higher than commercial silicon bolometers and superconducting transition-edge sensors at similar temperatures.

  19. Mechanically Controlled Electron Transfer in a Single-Polypeptide Transistor

    NASA Astrophysics Data System (ADS)

    Sheu, Sheh-Yi; Yang, Dah-Yen

    2017-01-01

    Proteins are of interest in nano-bio electronic devices due to their versatile structures, exquisite functionality and specificity. However, quantum transport measurements produce conflicting results due to technical limitations whereby it is difficult to precisely determine molecular orientation, the nature of the moieties, the presence of the surroundings and the temperature; in such circumstances a better understanding of the protein electron transfer (ET) pathway and the mechanism remains a considerable challenge. Here, we report an approach to mechanically drive polypeptide flip-flop motion to achieve a logic gate with ON and OFF states during protein ET. We have calculated the transmission spectra of the peptide-based molecular junctions and observed the hallmarks of electrical current and conductance. The results indicate that peptide ET follows an NC asymmetric process and depends on the amino acid chirality and α-helical handedness. Electron transmission decreases as the number of water molecules increases, and the ET efficiency and its pathway depend on the type of water-bridged H-bonds. Our results provide a rational mechanism for peptide ET and new perspectives on polypeptides as potential candidates in logic nano devices.

  20. Mechanically Controlled Electron Transfer in a Single-Polypeptide Transistor

    PubMed Central

    Sheu, Sheh-Yi; Yang, Dah-Yen

    2017-01-01

    Proteins are of interest in nano-bio electronic devices due to their versatile structures, exquisite functionality and specificity. However, quantum transport measurements produce conflicting results due to technical limitations whereby it is difficult to precisely determine molecular orientation, the nature of the moieties, the presence of the surroundings and the temperature; in such circumstances a better understanding of the protein electron transfer (ET) pathway and the mechanism remains a considerable challenge. Here, we report an approach to mechanically drive polypeptide flip-flop motion to achieve a logic gate with ON and OFF states during protein ET. We have calculated the transmission spectra of the peptide-based molecular junctions and observed the hallmarks of electrical current and conductance. The results indicate that peptide ET follows an NC asymmetric process and depends on the amino acid chirality and α-helical handedness. Electron transmission decreases as the number of water molecules increases, and the ET efficiency and its pathway depend on the type of water-bridged H-bonds. Our results provide a rational mechanism for peptide ET and new perspectives on polypeptides as potential candidates in logic nano devices. PMID:28051140

  1. Hot electron injector Gunn diode for advanced driver assistance systems

    NASA Astrophysics Data System (ADS)

    Förster, A.; Lepsa, M. I.; Freundt, D.; Stock, J.; Montanari, S.

    2007-06-01

    This paper reviews the main aspects of the design, fabrication and characterization of GaAs Gunn diodes intended to be used in advanced driver assistance systems. The corresponding Gunn diode based oscillators operate at the microwave frequency of 77 GHz and deliver an output power up to 19.2 dBm (83.2 mW). To fulfill the high demands of the automotive industry, temperature stability and a high grade of frequency purity, the Gunn diode structure includes a hot electron injector. This is based on the heteroepitaxy of a graded gap AlxGa1-xAs layer and an adjacent thin highly doped GaAs layer. The hot electron injector properties are investigated using dc and rf electrical measurements, including the temperature influence as well. Specific production related data of the cavity oscillators using our Gunn diodes are presented. New alternatives, such as the resonant tunneling emitter as a hot electron injector and the Gunn diode based MMIC as oscillator, are introduced.

  2. A Heteroepitaxial Perovskite Metal-Base Transistor

    SciTech Connect

    Yajima, T.; Hikita, Y.; Hwang, H.Y.; /Tokyo U. /JST, PRESTO /SLAC

    2011-08-11

    'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.

  3. A heteroepitaxial perovskite metal-base transistor.

    PubMed

    Yajima, Takeaki; Hikita, Yasuyuki; Hwang, Harold Y

    2011-03-01

    'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.

  4. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics.

    PubMed

    Wei, Jian; Olaya, David; Karasik, Boris S; Pereverzev, Sergey V; Sergeev, Andrei V; Gershenson, Michael E

    2008-08-01

    The submillimetre or terahertz region of the electromagnetic spectrum contains approximately half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang. This radiation is strongly absorbed in the Earth's atmosphere, so space-based terahertz telescopes are crucial for exploring the evolution of the Universe. Thermal emission from the primary mirrors in these telescopes can be reduced below the level of the cosmic background by active cooling, which expands the range of faint objects that can be observed. However, it will also be necessary to develop bolometers-devices for measuring the energy of electromagnetic radiation-with sensitivities that are at least two orders of magnitude better than the present state of the art. To achieve this sensitivity without sacrificing operating speed, two conditions are required. First, the bolometer should be exceptionally well thermally isolated from the environment; second, its heat capacity should be sufficiently small. Here we demonstrate that these goals can be achieved by building a superconducting hot-electron nanobolometer. Its design eliminates the energy exchange between hot electrons and the leads by blocking electron outdiffusion and photon emission. The thermal conductance between hot electrons and the thermal bath, controlled by electron-phonon interactions, becomes very small at low temperatures ( approximately 1 x 10-16 W K-1 at 40 mK). These devices, with a heat capacity of approximately 1 x 10-19 J K-1, are sufficiently sensitive to detect single terahertz photons in submillimetre astronomy and other applications based on quantum calorimetry and photon counting.

  5. Determination of Defect Densities in High Electron Mobility Transistors Using Current Transient DLTS

    NASA Astrophysics Data System (ADS)

    Palma, John; Mil'shtein, Samson

    2011-12-01

    Since its introduction, Deep Level Transient Spectroscopy (DLTS) has become the preferred tool for investigating semiconductor defects. The limitations of measuring the small changes in gate capacitance in transistors led to the advent of current transient DLTS where the defects manifest themselves as a small change in drain current. However, this method was introduced at a time when heterostructure devices, such as High Electron Mobility Transistors (HEMTs), were non-existent and fails in determining defect concentrations in these modern devices. This study establishes a method by which defect concentrations can be determined in HEMT structures using current transient DLTS. First, the relationship between the change in the trap charge and the transistor drain current is established. Then, a computer aided technique is described which determines the volume within the device where the Fermi level crosses the trap energy. The result is that trap densities and their locations can be determined. DLTS measurements revealed two traps with ET = 0.43 and Nt = 1.1×1017cm-3, and ET = 0.19 and Nt = 3.1×1017 cm-3 for a tested HEMT.

  6. Strain-induced modulation on phonon and electronic properties of suspended black phosphorus field effect transistor

    NASA Astrophysics Data System (ADS)

    Zheng, Bo; Si, Naichao; Xie, Guoxin; Wang, Quan

    2017-02-01

    Black phosphorus has recently appeared as a promising two-dimensional material for applications in high performance nanoelectronics. Its single- and few-atomic layer forms in field-effect transistors have attracted a lot of attention due to the tunable bandgap (0.3-2.0 eV), high carrier mobility (1000 cm2 V-1 s-1) and decent on-off ratios (105). Here, we demonstrate a suspended black phosphorus field effect transistor (BP-FET) and utilize Raman spectroscope to characterize the strain on the effects of Raman phonon. We find that red shifts appear in all the three vibrational modes (Ag1 , B2g and Ag2) in different degrees. Among them, Ag1 mode is most sensitive to the tensile strain. We further investigate the electronic properties with a Cascade semi-automatic probe station. The linear relationships in the output curves indicate the contacts between black phosphorus and electrodes are ohmic contacts. The transfer characteristic curves declare the drain current modulation is ∼ 7.6 ×103 for the hole conduction and ∼57 for the electron conduction. Mobility of this device is found to be 347.5 cm2 V-1 s-1 and 4.9 cm2 V-1 s-1 for the hole and electron conduction, respectively. These results provide a theoretical basis for the coordination of high-performance black phosphorus electronic components.

  7. Current Analysis and Modeling of Fullerene Single-Electron Transistor at Room Temperature

    NASA Astrophysics Data System (ADS)

    Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Afrang, Saeid; Ismail, Razali

    2017-02-01

    Single-electron transistors (SETs) are interesting electronic devices that have become key elements in modern nanoelectronic systems. SETs operate quickly because they use individual electrons, with the number transferred playing a key role in their switching behavior. However, rapid transmission of electrons can cause their accumulation at the island, affecting the I-V characteristic. Selection of fullerene as a nanoscale zero-dimensional material with high stability, and controllable size in the fabrication process, can overcome this charge accumulation issue and improve the reliability of SETs. Herein, the current in a fullerene SET is modeled and compared with experimental data for a silicon SET. Furthermore, a weaker Coulomb staircase and improved reliability are reported. Moreover, the applied gate voltage and fullerene diameter are found to be directly associated with the I-V curve, enabling the desired current to be achieved by controlling the fullerene diameter.

  8. Tunable surface electron spin splitting with electric double-layer transistors based on InN.

    PubMed

    Yin, Chunming; Yuan, Hongtao; Wang, Xinqiang; Liu, Shitao; Zhang, Shan; Tang, Ning; Xu, Fujun; Chen, Zhuoyu; Shimotani, Hidekazu; Iwasa, Yoshihiro; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2013-05-08

    Electrically manipulating electron spins based on Rashba spin-orbit coupling (SOC) is a key pathway for applications of spintronics and spin-based quantum computation. Two-dimensional electron systems (2DESs) offer a particularly important SOC platform, where spin polarization can be tuned with an electric field perpendicular to the 2DES. Here, by measuring the tunable circular photogalvanic effect (CPGE), we present a room-temperature electric-field-modulated spin splitting of surface electrons on InN epitaxial thin films that is a good candidate to realize spin injection. The surface band bending and resulting CPGE current are successfully modulated by ionic liquid gating within an electric double-layer transistor configuration. The clear gate voltage dependence of CPGE current indicates that the spin splitting of the surface electron accumulation layer is effectively tuned, providing a way to modulate the injected spin polarization in potential spintronic devices.

  9. Multiscale modeling and computation of nano-electronic transistors and transmembrane proton channels

    NASA Astrophysics Data System (ADS)

    Chen, Duan

    The miniaturization of nano-scale electronic transistors, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. In biology, proton dynamics and transport across membrane proteins are of paramount importance to the normal function of living cells. Similar physical characteristics are behind the two subjects, and model simulations share common mathematical interests/challenges. In this thesis work, multiscale and multiphysical models are proposed to study the mechanisms of nanotransistors and proton transport in transmembrane at the atomic level. For nano-electronic transistors, we introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential. This framework enables us to put microscopic and macroscopic descriptions on an equal footing at nano-scale. Additionally, this model includes layered structures and random doping effect of nano-transistors. For transmembrane proton channels, we describe proton dynamics quantum mechanically via a density functional approach while implicitly treat numerous solvent molecules as a dielectric continuum. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered in atomic details. We formulate a total free energy functional to include kinetic and potential energies of protons, as well as electrostatic energy of all other ions on an equal footing. For both nano-transistors and proton channels systems, the variational principle is employed to derive nonlinear governing equations. The Poisson-Kohn-Sham equations are derived for nano-transistors while the generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained for proton channels. Related numerical

  10. Electron conductivity in warm and hot dense matter

    NASA Astrophysics Data System (ADS)

    Starrett, Charles; Charest, Marc; Feinblum, David; Burrill, Daniel

    2015-11-01

    The electronic conductivity of warm and hot dense matter is investigated by combining the Ziman-Evans approach with the recently developed pseudo-atom molecular dynamics (PAMD) method. PAMD gives an accurate description of the electronic and ionic structure of the plasma. The Ziman-Evans approach to conductivity, which takes the electronic and ionic structures as inputs, has been widely used but with numerous different assumptions on these inputs. Here we present a systematic study of these assumptions by comparing results to gold-standard QMD results that are thought to be accurate but are very expensive to produce. The study reveals that some assumptions yield very inaccurate results and should not be used, while others give consistently reasonable results. Finally, we show that the Thomas-Fermi version of PAMD can also be used to give accurate conductivities very rapidly, taking a few minutes per point on a single processor.

  11. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    SciTech Connect

    Shervin, Shahab; Asadirad, Mojtaba; Kim, Seung-Hwan; Ravipati, Srikanth; Lee, Keon-Hwa; Bulashevich, Kirill; Ryou, Jae-Hyun

    2015-11-09

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strain in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.

  12. Advances in the modeling of single electron transistors for the design of integrated circuit.

    PubMed

    Chi, Yaqing; Sui, Bingcai; Yi, Xun; Fang, Liang; Zhou, Hailiang

    2010-09-01

    Single electron transistor (SET) has become a promising candidate for the key device of logic circuit in the near future. The advances of recent 5 years in the modeling of SETs are reviewed for the simulation of SET/hybrid CMOS-SET integrated circuit. Three dominating SET models, Monte Carlo model, master equation model and macro model, are analyzed, tested and compared on their principles, characteristics, applicability and development trend. The Monte Carlo model is suitable for SET structure research and simulation of small scale SET circuit, while the analytical model based on combination with master equation and macro model is suitable to simulate the SET circuit at balanceable efficiency and accuracy.

  13. Cryogenic, low-noise high electron mobility transistor amplifiers for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.

    1993-01-01

    The rapid advances recently achieved by cryogenically cooled high electron mobility transistor (HEMT) low-noise amplifiers (LNA's) in the 1- to 10-GHz range are making them extremely competitive with maser amplifiers. In order to address future spacecraft navigation, telemetry, radar, and radio science needs, the Deep Space Network is investing both maser and HEMT amplifiers for its Ka-band (32-GHz) downlink capability. This article describes the current state cryogenic HEMT LNA development at Ka-band for the DSN. Noise performance results at S-band (2.3 GHz) and X-band (8.5 GHz) for HEMT's and masers are included for completeness.

  14. The operation cutoff frequency of high electron mobility transistor measured by terahertz method

    SciTech Connect

    Zhu, Y. M. Zhuang, S. L.

    2014-07-07

    Commonly, the cutoff frequency of high electron mobility transistor (HEMT) can be measured by vector network analyzer (VNA), which can only measure the sample exactly in low frequency region. In this paper, we propose a method to evaluate the cutoff frequency of HEMT by terahertz (THz) technique. One example shows the cutoff frequency of our HEMT is measured at ∼95.30 GHz, which is reasonable agreement with that estimated by VNA. It is proved THz technology a potential candidate for the substitution of VNA for the measurement of high-speed devices even up to several THz.

  15. (AASERT-93) Field-Effect-Controlled, Coulomb-BlocKage Single-Electron Transistor in Silicon.

    DTIC Science & Technology

    2007-11-02

    imludCigdibei m , f lei reviewingI Ifistrctflnfl iiv thing~ rIUrmg Ol a m"su’e. gi~wr~ng LrIs fl Ifanil fbe data needed, and c~fO atingbl aw~d...AASERT-93) Field-Effect-Controlled, Coulomb -Blockage Single-Electron Transistor in Silicon .61103D 1-. AUTHO-R(S) 3484/TS Professor Dimitri.Antoniadis...limits of X-ray nanolithography for real devices was found. Novel I coulomb -blockade devices have been fabricated using this modified process

  16. Vanishing quasiparticle density in a hybrid Al/Cu/Al single-electron transistor

    NASA Astrophysics Data System (ADS)

    Saira, O.-P.; Kemppinen, A.; Maisi, V. F.; Pekola, J. P.

    2012-01-01

    The achievable fidelity of many nanoelectronic devices based on superconducting aluminum is limited by either the density of residual nonequilibrium quasiparticles nqp or the density of quasiparticle states in the gap, characterized by Dynes parameter γ. We infer upper bounds nqp<0.033μm-3 and γ<1.6×10-7 from transport measurements performed on Al/Cu/Al single-electron transistors, improving previous results by an order of magnitude. Owing to efficient microwave shielding and quasiparticle relaxation, a typical number of quasiparticles in the superconducting leads is zero.

  17. Integration of colloidal silicon nanocrystals on metal electrodes in single-electron transistor

    NASA Astrophysics Data System (ADS)

    Higashikawa, Yasuhiro; Azuma, Yasuo; Majima, Yutaka; Kano, Shinya; Fujii, Minoru

    2016-11-01

    We develop a facile process to integrate colloidal silicon nanocrystals (Si NCs) with metal electrodes in a single-electron transistor by self-assembly. Gold (Au) surface is modified by an amine-terminated self-assembled monolayer to have a positive potential. All-inorganic boron (B) and phosphorus (P) codoped Si NCs, with a negative surface potential and size-controllability, are selectively adsorbed on an amine-terminated Au surface by electrostatic attraction. We demonstrate the fabrication of SETs consisting of electroless-plated Au nanogap electrodes and codoped Si NCs using this process and observation of clear Coulomb diamonds at 9 K.

  18. Characterization methodology for pseudomorphic high electron mobility transistors using surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Solodky, S.; Leibovitch, M.; Ashkenasy, N.; Hallakoun, I.; Rosenwaks, Y.; Shapira, Yoram

    2000-12-01

    Pseudomorphic high electron mobility transistor structures have been characterized using surface photovoltage spectroscopy and numerical simulations. According to the effect of the electric fields in different regions of the device on the surface photovoltage spectra, a simple empirical model that correlates the spectral parameters and electrical parameters of the structure has been developed. The spectra and their analysis are shown to provide values for the electrical parameters of the structure. The sensitivity of the technique to the device electrical parameters is shown by three different examples. In these examples, the differences in doping level and surface charge have been monitored as well as the nonuniformity of doping level across the wafer.

  19. Room temperature operational single electron transistor fabricated by focused ion beam deposition

    NASA Astrophysics Data System (ADS)

    Karre, P. Santosh Kumar; Bergstrom, Paul L.; Mallick, Govind; Karna, Shashi P.

    2007-07-01

    We present the fabrication and room temperature operation of single electron transistors using 8nm tungsten islands deposited by focused ion beam deposition technique. The tunnel junctions are fabricated using oxidation of tungsten in peracetic acid. Clear Coulomb oscillations, showing charging and discharging of the nanoislands, are seen at room temperature. The device consists of an array of tunnel junctions; the tunnel resistance of individual tunnel junction of the device is calculated to be as high as 25.13GΩ. The effective capacitance of the array of tunnel junctions was found to be 0.499aF, giving a charging energy of 160.6meV.

  20. Vertical Graphene-base transistor on GaN substrate

    NASA Astrophysics Data System (ADS)

    Zubair, Ahmad; Saadat, Omair; Song, Yi; Kong, Jing; Dresselhaus, Mildred; Palacios, Tomas

    2014-03-01

    The high carrier mobility, saturation velocity and thermal conductivity make graphene an attractive candidate for RF electronics. In addition to conventional lateral transistors, several alternative vertical device structures like hot electron transistors have been demonstrated to be promising for RF applications. The unique combination of sub-nanometer thickness and high conductivity makes graphene an excellent base material for hot electron transistors by lowering the base transit time in these vertical devices. The demonstrated graphene-base hot electron transistor performance is limited by low current density and low common-base current gain. In this work, we fabricated a graphene-base transistor on GaN/AlGaN heterostructure. We studied the tunneling from GaN/AlGaN heterojunction to graphene and compared with other demonstrated vertical graphene-base devices. We also investigated the effect of AlGaN thickness and different filtering barriers on both room temperature and low temperature transport characteristics of the fabricated devices. With careful design and optimization of the structure, graphene-base transistors on GaN substrate can be a potential candidate for future graphene RF electronics.

  1. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Ji Heon; Kim, Tae Ho; Lee, Hyunjea; Park, Young Ran; Choi, Woong; Lee, Cheol Jin

    2016-06-01

    We investigated the dependence of electron mobility on the thickness of MoS2 nanosheets by fabricating bottom-gate single and few-layer MoS2 thin-film transistors with SiO2 gate dielectrics and Au electrodes. All the fabricated MoS2 transistors showed on/off-current ratio of ˜107 and saturated output characteristics without high-k capping layers. As the MoS2 thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS2 transistors increased from ˜10 to ˜18 cm2V-1s-1. The increased subthreshold swing of the fabricated transistors with MoS2 thickness suggests that the increase of MoS2 mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS2 layer on its thickness.

  2. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    SciTech Connect

    Fukuhara, M.; Kawarada, H.

    2015-02-28

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The I{sub d}-V{sub g} characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} FETs were measured at a gate-drain bias voltage of 0–60 μV in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28 mV, Fabry-Perot interference with a period of 2.35 μV under nonmagnetic conditions, and a Fano effect with a period of 0.26 mV for Vg and 0.2 T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics.

  3. Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions

    SciTech Connect

    Li, Wei; Zhang, Qin; Kirillov, Oleg A.; Levin, Igor; Richter, Curt A.; Gundlach, David J.; Nguyen, N. V. E-mail: liangxl@pku.edu.cn; Bijesh, R.; Datta, S.; Liang, Yiran; Peng, Lian-Mao; Liang, Xuelei E-mail: liangxl@pku.edu.cn

    2014-11-24

    We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al{sub 2}O{sub 3}/InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al{sub 2}O{sub 3} conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al{sub 2}O{sub 3} valence band to the bottom of the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance.

  4. Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Liu-Hong, Ma; Wei-Hua, Han; Hao, Wang; Qi-feng, Lyu; Wang, Zhang; Xiang, Yang; Fu-Hua, Yang

    2016-06-01

    Silicon junctionless nanowire transistor (JNT) is fabricated by femtosecond laser direct writing on a heavily n-doped SOI substrate. The performances of the transistor, i.e., current drive, threshold voltage, subthreshold swing (SS), and electron mobility are evaluated. The device shows good gate control ability and low-temperature instability in a temperature range from 10 K to 300 K. The drain currents increasing by steps with the gate voltage are clearly observed from 10 K to 50 K, which is attributed to the electron transport through one-dimensional (1D) subbands formed in the nanowire. Besides, the device exhibits a better low-field electron mobility of 290 cm2·V-1·s-1, implying that the silicon nanowires fabricated by femtosecond laser have good electrical properties. This approach provides a potential application for nanoscale device patterning. Project supported by the National Natural Science Foundation of China (Grant Nos. 61376096, 61327813, and 61404126) and the National Basic Research Program of China (Grant No. 2010CB934104).

  5. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect

    Li, Baikui; Tang, Xi; Chen, Kevin J.; Wang, Jiannong

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  6. Record Low NEP in the Hot-Electron Titanium Nanobolometers

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Olaya, David; Wei, Jian; Pereverzev, Sergey; Gershenson, Michael E.; Kawamura, Jonathan H.; McGrath, William R.; Sergeev, Andrei V.

    2006-01-01

    We are developing hot-electron superconducting transition-edge sensors (TES) capable of counting THz photons and operating at T = 0.3K. We fabricated superconducting Ti nanosensors with Nb contacts with a volume of approx. 3x10(exp -3) cu microns on planar Si substrate and have measured the thermal conductance due to the weak electron-phonon coupling in the material G = 4x10(exp -14) W/K at 0.3 K. The corresponding phonon-noise NEP = 3x10(exp -19) W/Hz(sup 1/2). Detection of single optical photons (1550nm and 670nm wavelength) has been demonstrated for larger devices and yielded the thermal time constants of 30 microsec at 145 mK and of 25 microsec at 190 mK. This Hot-Electron Direct Detector (HEDD) is expected to have a sufficient energy resolution for detecting individual photons with (nu) > 1 THz where NEP approx. 3x10(exp -20) W/Hz(sup 1/2) is needed for spectroscopy in space.

  7. Surface and bulk hot electron dynamics in silicon

    NASA Astrophysics Data System (ADS)

    Jeong, Seongtae; Bokor, Jeffrey

    1997-03-01

    The direct time domain study of hot electron dynamics on the silicon surface has been an active area of research. Dynamics in Si(100) surface states was observed(M.W. Rowe, H. Liu, G. P. Williams, Jr., and R. T. Williams, Phys. Rev. B 47, 2048 (1993)) as well as cooling of a hot but thermal distribution of carriers in bulk silicon(J. R. Goldman, and J. A. Prybyla, Phys. Rev. Lett. 72, 1364 (1994)). In this work, a time-resolved photoemission study on the Si(100)2x1 surface with 1.55 eV pump and 4.66 eV probe with 0.2 psec time resolution is reported. It is observed that two-photon absorption is responsible for high kinetic energy electrons above the conduction band minimum (CBM) but direct single-photon excitation into surface states and conduction band states followed by the surface recombination dominates the dynamics. Also observed are an early nonthermal electronic distribution in silicon and its transition into a thermal one followed by a rapid cooling.

  8. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  9. Hot Electron Effects of Importance for Micron and Submicron Devices.

    DTIC Science & Technology

    1981-09-01

    AD-AI05 616 ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB F/ B 20/5 HOT ELECTRON EFFECTS OF IMPORTANCE FOR MICRON AND SUBMICRON OEV--ETC(U) SEP BI K...transport in heterolayers which was also treated and partly expanded by B . K. Ridley and P. Price. 2. Transport at Extremely High Electric Fields and Impact...467-469 (19"’)). 4. M. Keever, H. Shichijo, K. Hess, !. P°n-"rje. L. Witkowsi, :. rko; and B . a. Streetman, Measurements of !f{? E].e"’-ron C

  10. Graphene single-electron transistor as a spin sensor for magnetic adsorbates

    NASA Astrophysics Data System (ADS)

    González, J. W.; Delgado, F.; Fernández-Rossier, J.

    2013-02-01

    We study single-electron transport through a graphene quantum dot with magnetic adsorbates. We focus on the relation between the spin order of the adsorbates and the linear conductance of the device. The electronic structure of the graphene dot with magnetic adsorbates is modeled through numerical diagonalization of a tight-binding model with an exchange potential. We consider several mechanisms by which the adsorbate magnetic state can influence transport in a single-electron transistor: tuning the addition energy, changing the tunneling rate, and in the case of spin-polarized electrodes, through magnetoresistive effects. Whereas the first mechanism is always present, the others require that the electrode has to have either an energy- or spin-dependent density of states. We find that graphene dots are optimal systems to detect the spin state of a few magnetic centers.

  11. High Electron Mobility Transistor Structures on Sapphire Substrates Using CMOS Compatible Processing Techniques

    NASA Technical Reports Server (NTRS)

    Mueller, Carl; Alterovitz, Samuel; Croke, Edward; Ponchak, George

    2004-01-01

    System-on-a-chip (SOC) processes are under intense development for high-speed, high frequency transceiver circuitry. As frequencies, data rates, and circuit complexity increases, the need for substrates that enable high-speed analog operation, low-power digital circuitry, and excellent isolation between devices becomes increasingly critical. SiGe/Si modulation doped field effect transistors (MODFETs) with high carrier mobilities are currently under development to meet the active RF device needs. However, as the substrate normally used is Si, the low-to-modest substrate resistivity causes large losses in the passive elements required for a complete high frequency circuit. These losses are projected to become increasingly troublesome as device frequencies progress to the Ku-band (12 - 18 GHz) and beyond. Sapphire is an excellent substrate for high frequency SOC designs because it supports excellent both active and passive RF device performance, as well as low-power digital operations. We are developing high electron mobility SiGe/Si transistor structures on r-plane sapphire, using either in-situ grown n-MODFET structures or ion-implanted high electron mobility transistor (HEMT) structures. Advantages of the MODFET structures include high electron mobilities at all temperatures (relative to ion-implanted HEMT structures), with mobility continuously improving to cryogenic temperatures. We have measured electron mobilities over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively in MODFET structures. The electron carrier densities were 1.6 and 1.33 x 10(exp 12)/sq cm at room and liquid helium temperature, respectively, denoting excellent carrier confinement. Using this technique, we have observed electron mobilities as high as 900 sq cm/V-sec at room temperature at a carrier density of 1.3 x 10(exp 12)/sq cm. The temperature dependence of mobility for both the MODFET and HEMT structures provides insights into the mechanisms that allow for enhanced

  12. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics.

    PubMed

    Zhang, Jialu; Wang, Chuan; Zhou, Chongwu

    2012-08-28

    Transparent electronics has attracted numerous research efforts in recent years because of its promising commercial impact in a wide variety of areas such as transparent displays. High optical transparency as well as good electrical performance is required for transparent electronics. Preseparated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose due to their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report fully transparent transistors based on separated carbon nanotube networks. Using a very thin metal layer together with indium tin oxide as source and drain contacts, excellent electrical performance as well as high transparency (~82%) has been achieved (350-800 nm). Also, devices on flexible substrates are fabricated, and only a very small variation in electric characteristics is observed during a flexibility test. Furthermore, an organic light-emitting diode control circuit with significant output light intensity modulation has been demonstrated with transparent, separated nanotube thin-film transistors. Our results suggest the promising future of separated carbon nanotube based transparent electronics, which can serve as the critical foundation for next-generation transparent display applications.

  13. Effect of hot implantation on ON-current enhancement utilizing isoelectronic trap in Si-based tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Mizubayashi, Wataru; Morita, Yukinori; Migita, Shinji; Fukuda, Koichi; Miyata, Noriyuki; Yasuda, Tetsuji; Masahara, Meishoku; Ota, Hiroyuki

    2015-03-01

    A tunneling-current enhancement technology for Si-based tunnel field-effect transistors (TFETs) utilizing an Al-N isoelectronic trap (IET) has been proposed recently. In this study, we investigate hot implantation as a doping technique for Al-N isoelectronic impurity. Hot implantation reduces the damage induced by Al and N implantation processes, resulting in performance improvement of IET-assisted TFETs, e.g., a 12-fold enhancement in the driving current at an operation voltage of 0.5 V and an approximately one-third reduction in the subthreshold slope. By hot implantation, we can achieve a higher driving current in Si-based TFETs using the IET technology.

  14. Electrical NEP in Hot-Electron Titanium Superconducting Bolometers

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Pereverzev, Sergey V.; Olaya, David; Wei, Jian; Gershenson, Michael E.; Sergeev, Andrei V.

    2008-01-01

    We are presenting the current progress on the titanium (Ti) hot-electron transition-edge devices. The ultimate goal of this work is to develop a submillimeter Hot-Electron Direct Detector (HEDD) with the noise equivalent power NEP = 10(sup -1) - 10(sup -20) W/Hz(sup 1/2) for the moderate resolution spectroscopy and Cosmic Microwave Background (CMB) studies on future space telescope (e.g., SPICA, SAFIR, SPECS, CMBPol) with cryogenically cooled (approximately 4-5 K) mirrors. Recently, we have achieved the extremely low thermal conductance (approximately 20 fW/K at 300 mK and approximately 0.1 fW/K at 40 mK) due to the electron-phonon decoupling in Ti nanodevices with niobium (Nb) Andreev contacts. This thermal conductance translates into the "phonon-noise" NEP approximately equal to 3 x 10(sup -21) W/Hz(sup 1/2) at 40 mK and NEP approximately equal to 3 x 10(sup -19) W/Hz(sup 1/2) at 300 mK. These record data indicate the great potential of the hot-electron detector for meeting many application needs. Beside the extremely low phonon-noise NEP, the nanobolometers have a very low electron heat capacitance that makes them promising as detectors of single THz photons. As the next step towards the practical demonstration of the HEDD, we fabricated and tested somewhat larger than in Ref.1 devices (approximately 6 micrometers x 0.35 micrometers x 40 nm) whose critical temperature is well reproduced in the range 300-350 mK. The output electrical noise measured in these devices with a low-noise dc SQUID is dominated by the thermal energy fluctuations (ETF) aka "phonon noise". This indicates the high electrothermal loop gain that effectively suppresses the contributions of the Johnson noise and the amplifier (SQUID) noise. The electrical NEP = 6.7 x 10(sup -18) W/Hz(sup 1/2) derived from these measurements is in good agreement with the predictions based on the thermal conductance data. The very low NEP and the high speed (approximately microns) are a unique combination not

  15. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    SciTech Connect

    Deen, David A. Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C.; Gougousi, Theodosia; Evans, Keith R.

    2014-09-01

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5–6 nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700 cm{sup 2}/V s and sheet resistance of 130 Ω/□ for a 3 nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  16. High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.

    2003-01-01

    SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony, concentration was approximately 4 x 10(exp19) per cubic cm. The electron mobility was over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per sq cm, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V(sub DS)) range, with (V(sub DS)) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.

  17. Excited states and quantum confinement in room temperature few nanometre scale silicon single electron transistors.

    PubMed

    Durrani, Zahid A K; Jones, Mervyn E; Wang, Chen; Liu, Dixi; Griffiths, Jonathan

    2017-03-24

    Single nanometre scale quantum dots (QDs) have significant potential for many 'beyond CMOS' nanoelectronics and quantum computation applications. The fabrication and measurement of few nanometre silicon point-contact QD single-electron transistors are reported, which both operate at room temperature (RT) and are fabricated using standard processes. By combining thin silicon-on-insulator wafers, specific device geometry, and controlled oxidation, <10 nm nanoscale point-contact channels are defined. In this limit of the point-contact approach, ultra-small, few nanometre scale QDs are formed, enabling RT measurement of the full QD characteristics, including excited states to be made. A remarkably large QD electron addition energy ∼0.8 eV, and a quantum confinement energy ∼0.3 eV, are observed, implying a QD only ∼1.6 nm in size. In measurements of 19 RT devices, the extracted QD radius lies within a narrow band, from 0.8 to 2.35 nm, emphasising the single-nanometre scale of the QDs. These results demonstrate that with careful control, 'beyond CMOS' RT QD transistors can be produced using current 'conventional' semiconductor device fabrication techniques.

  18. Excited states and quantum confinement in room temperature few nanometre scale silicon single electron transistors

    NASA Astrophysics Data System (ADS)

    Durrani, Zahid A. K.; Jones, Mervyn E.; Wang, Chen; Liu, Dixi; Griffiths, Jonathan

    2017-03-01

    Single nanometre scale quantum dots (QDs) have significant potential for many ‘beyond CMOS’ nanoelectronics and quantum computation applications. The fabrication and measurement of few nanometre silicon point-contact QD single-electron transistors are reported, which both operate at room temperature (RT) and are fabricated using standard processes. By combining thin silicon-on-insulator wafers, specific device geometry, and controlled oxidation, <10 nm nanoscale point-contact channels are defined. In this limit of the point-contact approach, ultra-small, few nanometre scale QDs are formed, enabling RT measurement of the full QD characteristics, including excited states to be made. A remarkably large QD electron addition energy ∼0.8 eV, and a quantum confinement energy ∼0.3 eV, are observed, implying a QD only ∼1.6 nm in size. In measurements of 19 RT devices, the extracted QD radius lies within a narrow band, from 0.8 to 2.35 nm, emphasising the single-nanometre scale of the QDs. These results demonstrate that with careful control, ‘beyond CMOS’ RT QD transistors can be produced using current ‘conventional’ semiconductor device fabrication techniques.

  19. Planar microcavity-integrated hot-electron photodetector

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wu, Kai; Zhan, Yaohui; Giannini, Vincenzo; Li, Xiaofeng

    2016-05-01

    Hot-electron photodetectors are attracting increasing interest due to their capability in below-bandgap photodetection without employing classic semiconductor junctions. Despite the high absorption in metallic nanostructures via plasmonic resonance, the fabrication of such devices is challenging and costly due to the use of high-dimensional sub-wavelength nanostructures. In this study, we propose a planar microcavity-integrated hot-electron photodetector (MC-HE PD), in which the TCO/semiconductor/metal (TCO: transparent conductive oxide) structure is sandwiched between two asymmetrically distributed Bragg reflectors (DBRs) and a lossless buffer layer. Finite-element simulations demonstrate that the resonant wavelength and the absorption efficiency of the device can be manipulated conveniently by tailoring the buffer layer thickness and the number of top DBR pairs. By benefitting from the largely increased electric field at the resonance frequency, the absorption in the metal can reach 92%, which is a 21-fold enhancement compared to the reference without a microcavity. Analytical probability-based electrical calculations further show that the unbiased responsivity can be up to 239 nA mW-1, which is more than an order of magnitude larger than that of the reference. Furthermore, the MC-HE PD not only exhibits a superior photoelectron conversion ability compared to the approach with corrugated metal, but also achieves the ability to tune the near infrared multiband by employing a thicker buffer layer.

  20. AlGaN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources

    NASA Astrophysics Data System (ADS)

    El Fatimy, A.; Dyakonova, N.; Meziani, Y.; Otsuji, T.; Knap, W.; Vandenbrouk, S.; Madjour, K.; Théron, D.; Gaquiere, C.; Poisson, M. A.; Delage, S.; Prystawko, P.; Skierbiszewski, C.

    2010-01-01

    We report on room temperature terahertz generation by a submicron size AlGaN/GaN-based high electron mobility transistors. The emission peak is found to be tunable by the gate voltage between 0.75 and 2.1 THz. Radiation frequencies correspond to the lowest fundamental plasma mode in the gated region of the transistor channel. Emission appears at a certain drain bias in a thresholdlike manner. Observed emission is interpreted as a result of Dyakonov-Shur plasma wave instability in the gated two-dimensional electron gas.

  1. Graphene transistors.

    PubMed

    Schwierz, Frank

    2010-07-01

    Graphene has changed from being the exclusive domain of condensed-matter physicists to being explored by those in the electron-device community. In particular, graphene-based transistors have developed rapidly and are now considered an option for post-silicon electronics. However, many details about the potential performance of graphene transistors in real applications remain unclear. Here I review the properties of graphene that are relevant to electron devices, discuss the trade-offs among these properties and examine their effects on the performance of graphene transistors in both logic and radiofrequency applications. I conclude that the excellent mobility of graphene may not, as is often assumed, be its most compelling feature from a device perspective. Rather, it may be the possibility of making devices with channels that are extremely thin that will allow graphene field-effect transistors to be scaled to shorter channel lengths and higher speeds without encountering the adverse short-channel effects that restrict the performance of existing devices. Outstanding challenges for graphene transistors include opening a sizeable and well-defined bandgap in graphene, making large-area graphene transistors that operate in the current-saturation regime and fabricating graphene nanoribbons with well-defined widths and clean edges.

  2. {open_quotes}Hot{close_quotes} - Electron laser using a Bragg reflection of electrons

    SciTech Connect

    Malov, Yu.A.; Babadzhan, E.I.

    1995-12-31

    Authors of paper (1) have suggested developing FEL which uses hot ballistic electrons in a superlattices under the assumption that the superlattices is short, equivalently, one would be dealing with the motion of electrons within a single band. The single-band model is valid if the reflection coefficient of the superlattices less unit. In the present paper analyze a {open_quote}hot{close_quotes}-ballistic-electron laser under the condition that there is a Bragg reflection of electrons from the superlattices or, equivalently, under the condition that the energy of a hot electron is close to the bottom of one of the quasibands of the superlattices. In this case the interaction of the electron with the superlattices is not weak and the reflection coefficient is approximately unit. If the photon energy is greater than the width of the quasigap {open_quotes}vertical{close_quotes} transitions can occur between the edges of neighboring quasibands, corresponding to a stimulated emission. If the lower quasiband is not filled, there would be essentially no absorption. The IR gain in the area 0.1-0.4 eV is approximately 100 %. The possibility of experimentally observing the effect is discussed for realistic values of the parameters of the superlattices and of the injected electron beam.

  3. Semiconducting Polythiophenes for Field-Effect Transistor Devices in Flexible Electronics: Synthesis and Structure Property Relationships

    NASA Astrophysics Data System (ADS)

    Heeney, Martin; McCulloch, Iain

    Interest in the field of organic electronics has burgeoned over the last 10 years, as the continuing improvement in performance has transitioned the technology from an academic curiosity to the focus of intense industrial and academic research. Much of this interest is driven by the belief that organic materials will be readily amenable to low-cost, large-area deposition techniques, enabling both significant cost savings and the ability to pattern flexible substrates with active electronics. Potential applications include thin-film transistor (TFT) backplanes for a variety of display modes including active matrix liquid crystal displays (AMLCDs), flexible displays such as e-paper, disposable item level radio frequency identity (RFID) tags, flexible solar cells, and cheap and disposable sensors.

  4. In situ electrical characterization of palladium-based single electron transistors made by electromigration technique

    SciTech Connect

    Arzubiaga, L.; Llopis, R.; Golmar, F.; Casanova, F.; Hueso, L. E.

    2014-11-15

    We report the fabrication of single electron transistors (SETs) by feedback-controlled electromigration of palladium and palladium-nickel alloy nanowires. We have optimized a gradual electromigration process for obtaining devices consisting of three terminals (source, drain and gate electrodes), which are capacitively coupled to a metallic cluster of nanometric dimensions. This metal nanocluster forms into the inter-electrode channel during the electromigration process and constitutes the active element of each device, acting as a quantum dot that rules the electron flow between source and drain electrodes. The charge transport of the as-fabricated devices shows Coulomb blockade characteristics and the source to drain conductance can be modulated by electrostatic gating. We have thus achieved the fabrication and in situ measurement of palladium-based SETs inside a liquid helium cryostat chamber.

  5. Towards parallel, CMOS-compatible fabrication of carbon nanotube single electron transistors

    NASA Astrophysics Data System (ADS)

    Islam, Muhammad; Joung, Daeha; Khondaker, Saiful

    2014-03-01

    We demonstrate an approach for the parallel fabrication of single electron transistor (SET) using single-walled carbon nanotube (SWNT). The approach is based on the integration of individual SWNT via dielectrophoresis (DEP) and deposition of metal top contact. We fabricate SWNT devices with a channel length of 100 nm and study their electron transport properties. We observe a connection between the SET performance and room temperature resistance (RT) of the devices. Majority (90%) of the devices with 100 K Ω 1M Ω) , devices show multiple QD behaviors, while QD was not formed for low RT (<100 K Ω) devices. This easy, simple and CMOS-compatible fabrication process will provide a much desired insight towards the wide spread application and commercialization of SWNT SET devices.

  6. Frequency Regimes of Kondo Dynamics in a Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Hemingway, Bryan; Kogan, Andrei; Herbert, Stephen; Melloch, Michael

    2013-03-01

    It has been theoretically predicted that the Kondo temperature, TK, serves as the intrinsic timescale for the formation of Kondo correlations between conduction electrons and local spin moments. To probe this timescale, we have measured the time averaged differential conductance, =d /dVds, of a single electron transistor in the spin 1/2 Kondo regime in presence of an oscillating bias voltage, V(t)=Vds+VAC sin(2 πft). We present the amplitude dependent conductance over select frequencies spanning several orders of magnitude below TK to twice TK (TK ~ 16GHz). At frequencies above TK, we find good agreement with theory [Kaminski, et al. Phys. Rev. B 62, 8154 (2000)] in both the low (VAC ~ TK/10) and high (VAC ~ 10TK) amplitude regimes. The onset of non-adiabatic conductance behavior occurs well below prediction, f ~ TK, and becomes more apparent as the frequency nears TK. Supported by NSF DMR award Nos. 0804199 and 1206784.

  7. Botulinum toxin detection using AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Tseng, Y.; Pearton, S. J.; Ramage, J.; Hooten, D.; Dabiran, A.; Chow, P. P.; Ren, F.

    2008-12-01

    Antibody-functionalized, Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect botulinum toxin. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when the target toxin in a buffer was added to the antibody-immobilized surface. We could detect a range of concentrations from 1to10ng/ml. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN /GaN HEMTs for botulinum toxin detection.

  8. Memory operations in Au nanoparticle single-electron transistors with floating gate electrodes

    NASA Astrophysics Data System (ADS)

    Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2016-11-01

    Floating gate memory operations are demonstrated in a single-electron transistor (SET) fabricated by a chemical assembly using the Au nanogap electrodes and the chemisorbed Au nanoparticles. By applying pulse voltages to the control gate, phase shifts were clearly and stably observed both in the Coulomb oscillations and in the Coulomb diamonds. Writing and erasing operations on the floating gate memory were reproducibly observed, and the charges on the floating gate electrodes were maintained for at least 12 h. By considering the capacitance of the floating gate electrode, the number of electrons in the floating gate electrode was estimated as 260. Owing to the stability of the fabricated SET, these writing and erasing operations on the floating gate memory can be applied to reconfigurable SET circuits fabricated by a chemically assembled technique.

  9. An Evaluation of Bipolar Junction Transistors as Dosimeter for Megavoltage Electron Beams

    SciTech Connect

    Passos, Renan Garcia de; Vidal da Silva, Rogerio Matias; Silva, Malana Marcelina Almeida; Souza, Divanizia do Nascimento; Pereira dos Santos, Luiz Antonio

    2015-07-01

    Dosimetry is an extremely important field in medical applications of radiation and nowadays, electron beam is a good option for superficial tumor radiotherapy. Normally, the applied dose to the patient both in diagnostic and therapy must be monitored to prevent injuries and ensure the success of the treatment, therefore, we should always look for improving of the dosimetric methods. Accordingly, the aim of this work is about the use of a bipolar junction transistor (BJT) for electron beam dosimetry. After previous studies, such an electronic device can work as a dosimeter when submitted to ionizing radiation of photon beam. Actually, a typical BJT consists of two PN semiconductor junctions resulting in the NPN structure device, for while, and each semiconductor is named as collector (C), base (B) and emitter (E), respectively. Although the transistor effect, which corresponds to the current amplification, be accurately described by the quantum physics, one can utilize a simple concept from the circuit theory: the base current IB (input signal) is amplified by a factor of β resulting in the collector current IC (output signal) at least one hundred times greater the IB. In fact, the BJT is commonly used as a current amplifier with gain β=I{sub C}/I{sub B}, therefore, it was noticed that this parameter is altered when the device is exposed to ionizing radiation. The current gain alteration can be explained by the trap creation and the positive charges build up, beside the degradation of the lattice structure. Then, variations of the gain of irradiated transistors may justify their use as a dosimeter. Actually, the methodology is based on the measurements of the I{sub C} variations whereas I{sub B} is maintained constant. BC846 BJT type was used for dose monitoring from passive-mode measurements: evaluation of its electrical characteristic before and after irradiation procedure. Thus, IC readings were plotted as a function of the applied dose in 6 MeV electron beam

  10. Specific detection of mercury(II) irons using AlGaAs/InGaAs high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Chengyan; Zhang, Yang; Guan, Min; Cui, Lijie; Ding, Kai; Zhang, Bintian; Lin, Zhang; Huang, Feng; Zeng, Yiping

    2015-09-01

    As one of the most environmentally important cations, mercury(II) iron has the biological toxicity which impacts wild life ecology and human health heavily. A Hg2+ biosensor based on AlGaAs/InGaAs high electron mobility transistors with high sensitivity and short response time is demonstrated experimentally. To achieve highly specific detection of Hg2+, an one-end thiol-modified ssDNA with lots of T thymine is immobilized to the Au-coated gate area of the high electron mobility transistors by a covalent modification method. The introduction of Hg2+ to the gate of the high electron mobility transistors affects surface charges, which leads to a change in the concentration of the two-dimensional electron gas in the AlGaAs/InGaAs high electron mobility transistors. Thus, the saturation current curves can be shifted with the modification of the gate areas and varied concentrations of Hg2+. Under the bias of 100 mV, a detection limit for the Hg2+ as low as10 nM is achieved. Successful detection with minute quantity of the sample indicates that the sensor has great potential in practical screening for a wide population. In addition, the dimension of the active area of the sensor is 20×50 μm2 and that of the entire sensor chip is 1×2 mm2, which make the Hg2+ biosensor portable.

  11. Black Phosphorus N-Type Field-Effect Transistor with Ultrahigh Electron Mobility via Aluminum Adatoms Doping.

    PubMed

    Prakash, Amit; Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei; Ang, Kah-Wee

    2017-02-01

    High-performance black phosphorus n-type field-effect transistors are realized using Al adatoms as effective electron donors, which achieved a record high mobility of >1495 cm(2) V(-1) s(-1) at 260 K. The electron mobility is corroborated to charged-impurity scattering at low temperature, whilst metallic-like conduction is observed at high gate bias with increased carrier density due to enhanced electron-phonon interactions at high temperature.

  12. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring

    NASA Astrophysics Data System (ADS)

    Schwartz, Gregor; Tee, Benjamin C.-K.; Mei, Jianguo; Appleton, Anthony L.; Kim, Do Hwan; Wang, Huiliang; Bao, Zhenan

    2013-05-01

    Flexible pressure sensors are essential parts of an electronic skin to allow future biomedical prostheses and robots to naturally interact with humans and the environment. Mobile biomonitoring in long-term medical diagnostics is another attractive application for these sensors. Here we report the fabrication of flexible pressure-sensitive organic thin film transistors with a maximum sensitivity of 8.4 kPa-1, a fast response time of <10 ms, high stability over >15,000 cycles and a low power consumption of <1 mW. The combination of a microstructured polydimethylsiloxane dielectric and the high-mobility semiconducting polyisoindigobithiophene-siloxane in a monolithic transistor design enabled us to operate the devices in the subthreshold regime, where the capacitance change upon compression of the dielectric is strongly amplified. We demonstrate that our sensors can be used for non-invasive, high fidelity, continuous radial artery pulse wave monitoring, which may lead to the use of flexible pressure sensors in mobile health monitoring and remote diagnostics in cardiovascular medicine.

  13. Research Update: Molecular electronics: The single-molecule switch and transistor

    SciTech Connect

    Sotthewes, Kai; Heimbuch, René Kumar, Avijit; Zandvliet, Harold J. W.; Geskin, Victor

    2014-01-01

    In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

  14. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring.

    PubMed

    Schwartz, Gregor; Tee, Benjamin C-K; Mei, Jianguo; Appleton, Anthony L; Kim, Do Hwan; Wang, Huiliang; Bao, Zhenan

    2013-01-01

    Flexible pressure sensors are essential parts of an electronic skin to allow future biomedical prostheses and robots to naturally interact with humans and the environment. Mobile biomonitoring in long-term medical diagnostics is another attractive application for these sensors. Here we report the fabrication of flexible pressure-sensitive organic thin film transistors with a maximum sensitivity of 8.4 kPa(-1), a fast response time of <10 ms, high stability over >15,000 cycles and a low power consumption of <1 mW. The combination of a microstructured polydimethylsiloxane dielectric and the high-mobility semiconducting polyisoindigobithiophene-siloxane in a monolithic transistor design enabled us to operate the devices in the subthreshold regime, where the capacitance change upon compression of the dielectric is strongly amplified. We demonstrate that our sensors can be used for non-invasive, high fidelity, continuous radial artery pulse wave monitoring, which may lead to the use of flexible pressure sensors in mobile health monitoring and remote diagnostics in cardiovascular medicine.

  15. Superconducting single electron transistor for charge sensing in Si/SiGe-based quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Zhen

    Si-based quantum devices, including Si/SiGe quantum dots (QD), are promising candidates for spin-based quantum bits (quits), which are a potential platform for quantum information processing. Meanwhile, qubit readout remains a challenging task related to semiconductor-based quantum computation. This thesis describes two readout devices for Si/SiGe QDs and the techniques for developing them from a traditional single electron transistor (SET). By embedding an SET in a tank circuit and operating it in the radio-frequency (RF) regime, a superconducting RF-SET has quick response as well as ultra high charge sensitivity and can be an excellent charge sensor for the QDs. We demonstrate such RF-SETs for QDs in a Si/SiGe heterostructure. Characterization of the SET in magnetic fields is studied for future exploration of advanced techniques such as spin detection and spin state manipulation. By replacing the tank circuit with a high-quality-factor microwave cavity, the embedded SET will be operated in the supercurrent regime as a single Cooper pair transistor (CPT) to further increase the charge sensitivity and reduce any dissipation. The operating principle and implementation of the cavity-embedded CPT (cCPT) will be introduced.

  16. High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.

    2004-01-01

    SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony concentration was approximately 4 x 10(exp 19) per cubic centimeter. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per square centimeter, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V (sub DS)) range, with V (sub DS) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.

  17. Hot-electron effect in spin relaxation of electrically injected electrons in intrinsic Germanium.

    PubMed

    Yu, T; Wu, M W

    2015-07-01

    The hot-electron effect in the spin relaxation of electrically injected electrons in intrinsic germanium is investigated by the kinetic spin Bloch equations both analytically and numerically. It is shown that in the weak-electric-field regime with E ≲ 0.5 kV cm(-1), our calculations have reasonable agreement with the recent transport experiment in the hot-electron spin-injection configuration (2013 Phys. Rev. Lett. 111 257204). We reveal that the spin relaxation is significantly enhanced at low temperature in the presence of weak electric field E ≲ 50 V cm(-1), which originates from the obvious center-of-mass drift effect due to the weak electron-phonon interaction, whereas the hot-electron effect is demonstrated to be less important. This can explain the discrepancy between the experimental observation and the previous theoretical calculation (2012 Phys. Rev. B 86 085202), which deviates from the experimental results by about two orders of magnitude at low temperature. It is further shown that in the strong-electric-field regime with 0.5 ≲ E ≲ 2 kV cm(-1), the spin relaxation is enhanced due to the hot-electron effect, whereas the drift effect is demonstrated to be marginal. Finally, we find that when 1.4 ≲ E ≲ 2 kV cm(-1) which lies in the strong-electric-field regime, a small fraction of electrons (≲5%) can be driven from the L to Γ valley, and the spin relaxation rates are the same for the Γ and L valleys in the intrinsic sample without impurity. With the negligible influence of the spin dynamics in the Γ valley to the whole system, the spin dynamics in the L valley can be measured from the Γ valley by the standard direct optical transition method.

  18. Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence

    SciTech Connect

    Sun, Huarui Bajo, Miguel Montes; Uren, Michael J.; Kuball, Martin

    2015-01-26

    Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage “hot spots” at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7–0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which is consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.

  19. Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility.

    PubMed

    Dewald, E L; Thomas, C; Hunter, S; Divol, L; Meezan, N; Glenzer, S H; Suter, L J; Bond, E; Kline, J L; Celeste, J; Bradley, D; Bell, P; Kauffman, R L; Kilkenny, J; Landen, O L

    2010-10-01

    On the National Ignition Facility (NIF), hot electrons generated in laser heated Hohlraums are inferred from the >20 keV bremsstrahlung emission measured with the time integrated FFLEX broadband spectrometer. New high energy (>200 keV) time resolved channels were added to infer the generated >170 keV hot electrons that can cause ignition capsule preheat. First hot electron measurements in near ignition scaled Hohlraums heated by 96-192 NIF laser beams are presented.

  20. Hot Electron Generation and Transport Using K(alpha) Emission

    SciTech Connect

    Akli, K U; Stephens, R B; Key, M H; Bartal, T; Beg, F N; Chawla, S; Chen, C D; Fedosejevs, R; Freeman, R R; Friesen, H; Giraldez, E; Green, J S; Hey, D S; Higginson, D P; Hund, J; Jarrott, L C; Kemp, G E; King, J A; Kryger, A; Lancaster, K; LePape, S; Link, A; Ma, T; Mackinnon, A J; MacPhee, A G; McLean, H S; Murphy, C; Norreys, P A; Ovchinnikov, V; Patel, P K; Ping, Y; Sawada, H; Schumacher, D; Theobald, W; Tsui, Y Y; Van Woerkom, L D; Wei, M S; Westover, B; Yabuuchi, T

    2009-10-15

    We have conducted experiments on both the Vulcan and Titan laser facilities to study hot electron generation and transport in the context of fast ignition. Cu wires attached to Al cones were used to investigate the effect on coupling efficiency of plasma surround and the pre-formed plasma inside the cone. We found that with thin cones 15% of laser energy is coupled to the 40{micro}m diameter wire emulating a 40{micro}m fast ignition spot. Thick cone walls, simulating plasma in fast ignition, reduce coupling by x4. An increase of prepulse level inside the cone by a factor of 50 reduces coupling by a factor of 3.

  1. Hot electron induced NIR detection in CdS films

    PubMed Central

    Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir

    2016-01-01

    We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm2. The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications. PMID:26965055

  2. Hot electron dominated rapid transverse ionization growth in liquid water.

    PubMed

    Brown, Michael S; Erickson, Thomas; Frische, Kyle; Roquemore, William M

    2011-06-20

    Pump/probe optical-transmission measurements are used to monitor in space and time the ionization of a liquid column of water following impact of an 800-nm, 45-fs pump pulse. The pump pulse strikes the 53-μm-diameter column normal to its axis with intensities up to 2 × 10(15) W/cm2. After the initial photoinization and for probe delay times < 500 fs, the neutral water surrounding the beam is rapidly ionized in the transverse direction, presumably by hot electrons with initial velocities of 0.55 times the speed of light (relativistic kinetic energy of ~100 keV). Such velocities are unusual for condensed-matter excitation at the stated laser intensities.

  3. Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells

    DOEpatents

    Jenekhe, Samson A; Subramaniyan, Selvam; Ahmed, Eilaf; Xin, Hao; Kim, Felix Sunjoo

    2014-10-28

    The inventions disclosed, described, and/or claimed herein relate to copolymers comprising copolymers comprising electron accepting A subunits that comprise thiazolothiazole, benzobisthiazole, or benzobisoxazoles rings, and electron donating subunits that comprise certain heterocyclic groups. The copolymers are useful for manufacturing organic electronic devices, including transistors and solar cells. The invention also relates to certain synthetic precursors of the copolymers. Methods for making the copolymers and the derivative electronic devices are also described.

  4. A Hot-Electron Far-Infrared Direct Detector

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.

    2000-01-01

    A new approach is proposed to improve the sensitivity of direct-detection bolometers at millimeter, submillimeter and far-infrared wavelengths. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or super-conductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature (Nb, Pb etc.) then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as T(sup 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10-100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant about 10(exp -3) to 10(exp -5) s at T approximately equals 0.1-0.3 K will exhibit photon-noise limited performance in millimeter and submillimeter range. The choice of the bolometer material is a tradeoff between a low electron heat capacity and fabrication. A state-of-the-art bolometer currently offers NEP = 10(exp -17) W(Square root of (Hz)) at 100 mK along with a approximately equals 2 msec time constant. The bolometer we propose will have a figure-of-merit, NEP(square root (r)), which is 10(exp 3) times smaller. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity. This device can significantly increase a science return and reduce the cost for future observational missions. This research was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by NASA, Office of Space Science.

  5. Novel method for measurement of transistor gate length using energy-filtered transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Sungho; Kim, Tae-Hoon; Kang, Jonghyuk; Yang, Cheol-Woong

    2016-12-01

    As the feature size of devices continues to decrease, transmission electron microscopy (TEM) is becoming indispensable for measuring the critical dimension (CD) of structures. Semiconductors consist primarily of silicon-based materials such as silicon, silicon dioxide, and silicon nitride, and the electrons transmitted through a plan-view TEM sample provide diverse information about various overlapped silicon-based materials. This information is exceedingly complex, which makes it difficult to clarify the boundary to be measured. Therefore, we propose a simple measurement method using energy-filtered TEM (EF-TEM). A precise and effective measurement condition was obtained by determining the maximum value of the integrated area ratio of the electron energy loss spectrum at the boundary to be measured. This method employs an adjustable slit allowing only electrons with a certain energy range to pass. EF-TEM imaging showed a sharp transition at the boundary when the energy-filter’s passband centre was set at 90 eV, with a slit width of 40 eV. This was the optimum condition for the CD measurement of silicon-based materials involving silicon nitride. Electron energy loss spectroscopy (EELS) and EF-TEM images were used to verify this method, which makes it possible to measure the transistor gate length in a dynamic random access memory manufactured using 35 nm process technology. This method can be adapted to measure the CD of other non-silicon-based materials using the EELS area ratio of the boundary materials.

  6. A comparison of radiation damage in transistors from cobalt-60 gamma rays and 2.2 MeV electrons

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Price, W. E.; Gauthier, M. K.

    1982-01-01

    The total ionizing dose response of ten bipolar transistor types has been measured using Co-60 gamma rays and 2.2 MeV electrons from exposure levels of 750, 1500, and 3000 Gy(Si). Gain measurements were made for a range of collector-emitter voltages and collector currents.

  7. High Electron Mobility Thin‐Film Transistors Based on Solution‐Processed Semiconducting Metal Oxide Heterojunctions and Quasi‐Superlattices

    PubMed Central

    Lin, Yen‐Hung; Faber, Hendrik; Labram, John G.; Stratakis, Emmanuel; Sygellou, Labrini; Kymakis, Emmanuel; Hastas, Nikolaos A.; Li, Ruipeng; Zhao, Kui; Amassian, Aram; Treat, Neil D.; McLachlan, Martyn

    2015-01-01

    High mobility thin‐film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin‐film transistors is reported that exploits the enhanced electron transport properties of low‐dimensional polycrystalline heterojunctions and quasi‐superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band‐like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature‐dependent electron transport and capacitance‐voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas‐like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll‐to‐roll, etc.) and can be seen as an extremely promising technology for application in next‐generation large area optoelectronics such as ultrahigh definition optical displays and large‐area microelectronics where high performance is a key requirement. PMID:27660741

  8. Protonic/electronic hybrid oxide transistor gated by chitosan and its full-swing low voltage inverter applications

    SciTech Connect

    Chao, Jin Yu; Zhu, Li Qiang Xiao, Hui; Yuan, Zhi Guo

    2015-12-21

    Modulation of charge carrier density in condensed materials based on ionic/electronic interaction has attracted much attention. Here, protonic/electronic hybrid indium-zinc-oxide (IZO) transistors gated by chitosan based electrolyte were obtained. The chitosan-based electrolyte illustrates a high proton conductivity and an extremely strong proton gating behavior. The transistor illustrates good electrical performances at a low operating voltage of ∼1.0 V such as on/off ratio of ∼3 × 10{sup 7}, subthreshold swing of ∼65 mV/dec, threshold voltage of ∼0.3 V, and mobility of ∼7 cm{sup 2}/V s. Good positive gate bias stress stabilities are obtained. Furthermore, a low voltage driven resistor-loaded inverter was built by using an IZO transistor in series with a load resistor, exhibiting a linear relationship between the voltage gain and the supplied voltage. The inverter is also used for decreasing noises of input signals. The protonic/electronic hybrid IZO transistors have potential applications in biochemical sensors and portable electronics.

  9. Quantum Interference Phenomena and Novel Switching in Split Gate High Electron Mobility Transistors.

    NASA Astrophysics Data System (ADS)

    Wu, Jong-Ching

    Nanometer scales electronic channels with and without a discontinuity were made in modulation-doped AlGaAs/GaAs heterojunctions using a split-gate technique. Quantum interference phenomena in an electron cavity, and fast switching behavior due to hot electron effects in a lateral double potential barrier structure were explored. First, one-dimensional channels with a double bend discontinuity were examined in the mK temperature range. Low-field ac-conductance measurements have evidenced quantum wave guide effects: resonant features were observed in the one-dimensional conductance plateaus in which the number of peaks was directly related to the geometry of the double bend. Temperature and magnetic field studies, along with a standing wave model have provided a better understanding of quantum interference phenomena in electron wave guide and cavity structures. Secondly, a structure containing two cascaded double bend discontinuities was studied. The structure behaves as a constricted cavity coupling two point-contacts, in which the depletion by the split gate was used to form and control the lateral double potential barriers. The low temperature source-drain characteristics exhibited a pronounced S-shaped negative differential conductance that can be attributed to a nonlinear electron temperature effect along the conducting path. The data presented show two types of conducting state: electron tunneling in the off state and hot electron conduction (thermionic emission) in the on state. The estimated switching speed of the device could be as fast as 5 ps due to short transit time.

  10. Quantum interference phenomena and novel switching in split gate high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wu, Jong-Ching

    Nanometer scale electronic channels with and without a discontinuity were made in modulation-doped AlGaAs/GaAs heterojunctions using a split gate technique. Quantum interference phenomena in an electron cavity and fast switching behavior due to hot electron effects in a lateral double potential barrier structure were explored. First, one dimensional channels with a double bend discontinuity were examined in the mK temperature range. Low-field ac-conductance measurements have evidenced quantum waveguide effects: resonant features were observed in the one dimensional conductance plateaus in which the number of peaks was directly related to the geometry of the double bend. Temperature and magnetic field studies, along with a standing wave model, have provided a better understanding of quantum interference phenomena in electron wave guide and cavity structures. Secondly, a structure containing two cascaded double bend discontinuities was studied. The structure behaves as a constricted cavity coupling two point-contacts, in which the depletion by the split gate was used to form and control the lateral double potential barriers. The low temperature source-drain characteristics exhibited a pronounced S-shaped negative differential conductance that can be attributed to a nonlinear electron temperature effect along the conducting path. The data presented show two types of conducting state: electron tunneling in the off state and hot electron conduction (thermionic emission) in the on state. The estimated switching speed of the device could be as fast as 5 ps due to short transit time.

  11. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas.

    PubMed

    Buret, Mickael; Uskov, Alexander V; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V; Protsenko, Igor E; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-09-09

    Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale.

  12. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas

    NASA Astrophysics Data System (ADS)

    Buret, Mickael; Uskov, Alexander V.; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V.; Protsenko, Igor E.; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-09-01

    Nanoscale electronics and photonics are among the most promising research areas providing functional nano-components for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically-driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale.

  13. An analytical model for bio-electronic organic field-effect transistor sensors

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Giordano, Francesco; Magliulo, Maria; Palazzo, Gerardo; Torsi, Luisa

    2013-09-01

    A model for the electrical characteristics of Functional-Bio-Interlayer Organic Field-Effect Transistors (FBI-OFETs) electronic sensors is here proposed. Specifically, the output current-voltage characteristics of a streptavidin (SA) embedding FBI-OFET are modeled by means of the analytical equations of an enhancement mode p-channel OFET modified according to an ad hoc designed equivalent circuit that is also independently simulated with pspice. An excellent agreement between the model and the experimental current-voltage output characteristics has been found upon exposure to 5 nM of biotin. A good agreement is also found with the SA OFET parameters graphically extracted from the device transfer I-V curves.

  14. InAlN/AlN/GaN heterostructures for high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Usov, S. O.; Sakharov, A. V.; Tsatsulnikov, A. F.; Lundin, V. W.; Zavarin, E. E.; Nikolaev, A. E.; Yagovkina, M. A.; Zemlyakov, V. E.; Egorkin, V. I.; Ustinov, V. M.

    2016-08-01

    The results of development of InAlN/AlN/GaN heterostructures, grown on sapphire substrates by metal-organic chemical vapour deposition, and high electron mobility transistors (HEMTs) based on them are presented. The dependencies of the InAlN/AlN/GaN heterostructure properties on epitaxial growth conditions were investigated. The optimal indium content and InAlN barrier layer thicknesses of the heterostructures for HEMT s were determined. The possibility to improve the characteristics of HEMTs by in-situ passivation by Si3N4 thin protective layer deposited in the same epitaxial process was demonstrated. The InAlN/AlN/GaN heterostructure grown on sapphire substrate with diameter of 100 mm were obtained with sufficiently uniform distribution of sheet resistance. The HEMTs with saturation current of 1600 mA/mm and transconductance of 230 mS/mm are demonstrated.

  15. Ultrawide electrical tuning of light matter interaction in a high electron mobility transistor structure

    PubMed Central

    Pal, Shovon; Nong, Hanond; Markmann, Sergej; Kukharchyk, Nadezhda; Valentin, Sascha R.; Scholz, Sven; Ludwig, Arne; Bock, Claudia; Kunze, Ulrich; Wieck, Andreas D.; Jukam, Nathan

    2015-01-01

    The interaction between intersubband resonances (ISRs) and metamaterial microcavities constitutes a strongly coupled system where new resonances form that depend on the coupling strength. Here we present experimental evidence of strong coupling between the cavity resonance of a terahertz metamaterial and the ISR in a high electron mobility transistor (HEMT) structure. The device is electrically switched from an uncoupled to a strongly coupled regime by tuning the ISR with epitaxially grown transparent gate. The asymmetric potential in the HEMT structure enables ultrawide electrical tuning of ISR, which is an order of magnitude higher as compared to an equivalent square well. For a single heterojunction with a triangular confinement, we achieve an avoided splitting of 0.52 THz, which is a significant fraction of the bare intersubband resonance at 2 THz. PMID:26578287

  16. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    NASA Astrophysics Data System (ADS)

    Hanyu, Yuichiro; Domen, Kay; Nomura, Kenji; Hiramatsu, Hidenori; Kumomi, Hideya; Hosono, Hideo; Kamiya, Toshio

    2013-11-01

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H2O indicate that this threshold annealing temperature corresponds to depletion of H2O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300-430 °C. A plausible structural model is suggested.

  17. Temperature dependence of ballistic mobility in a metamorphic InGaAs/InAlAs high electron mobility transistor

    SciTech Connect

    Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang Im, Hyunsik

    2014-07-28

    We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable to the carrier's mean free path in the channel.

  18. Modeling and simulation of single electron transistor with master equation approach

    NASA Astrophysics Data System (ADS)

    Willy, Frans; Darma, Yudi

    2016-08-01

    In this paper, we discuss modeling and simulation of single dot Single Electron Transistor (SET) using master equation approximation. For SET modeling and simulation, master equation method treats the electron tunneling and its transition probabilistically. The probability of electron tunneling is used to determine the current density in accordance with selected input parameters. The calculation results show fairly accurate electrical characteristics of SET as compared with experimental data. Staircase pattern from I-V are clearly obtained as the main role of coulomb blockade effect in SET system. We also extend our calculation by introduce some additional parameters such as; the effect of working temperature, gate voltage dependent, and the influence of resistance to the device characteristic. We found that increasing operational temperature will promote higher current density, both in forward and reverse bias region. In the case of using single dot with 30 nm × 80 nm × 125 nm dimension, coulomb blockade effect could be reduced by applying gate voltage higher than 3V and setting drain resistance higher than source's. Our studies show an alternative approach in modeling and simulation of electronic devices and could be potential for development of novel nanoelectronic devices.

  19. Polymer Thin Film Transistors: High Electron Mobility and Ambipolar Charge Transport

    NASA Astrophysics Data System (ADS)

    Jenekhe, Samson; Babel, Amit

    2004-03-01

    Along with high performance unipolar FETs, knowledge of ambipolar charge transport in conjugated polymers and organic semiconductors is important to realize the ultimate vision of all-plastic complementary integrated circuits for logic and memory applications. We present herein studies of electron transport in n-type conjugated ladder polymer, poly(benzobisimidazobenzophenanthroline) (BBL) in which we observed field-effect electron mobilities as high as 0.05-0.1 cm^2/Vs.^[1] We have also developed new ambipolar thin film transistors based on blends of BBL and copper phthalocyanine (CuPc). Ambipolar hole mobilities were as high as 2.0 × 10-4 cm^2/Vs while electron mobilities were up to 3.0 × 10-5 cm^2/Vs. Transmission electron microscopy showed crystallization of CuPc in the α -crystal form within the semicrystalline BBL matrix. On prolonged treatment of the blend FETs in methanol, unipolar hole mobilities as high as 2.0 × 10-3 cm^2/Vs were observed, comparable to hole mobilities in thermally evaporated CuPc FETs. [1] Babel, A.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13656.

  20. Dielectric Response of a Quantum Dot Measured with an Aluminum Single Electron Transistor

    NASA Astrophysics Data System (ADS)

    Berman, D.; Zhitenev, N. B.; Ashoori, R. C.; Melloch, M. R.

    1997-03-01

    We demonstrate the first use of an aluminum single electron transistor (SET) as a charge sensor coupled to a semiconductor structure. A quantum dot is electrostatically defined with metal gates on top of a GaAs/AlGaAs heterostructure. The SET functions both as one of the defining gates for the quantum dot and as an electrometer. The quantum dot acts as a dielectric between two capacitor plates, one of which is the SET, and the other is an opposing gate to which we apply an ac excitation and a dc voltage V_g. We vary the conductance of a single tunnel barrier (resistances in the range of 10^3-10^12 Ω) which connects the dot to a charge reservoir and measure the capacitance C between the opposing gate and the SET. Due to the effect of screening, C(V_g) displays periodically occurring dips for those Vg at which a single electron can move in and out of the dot. The oscillations are gradually washed out as the coupling strength to the lead increases beyond 2e^2/h. For sufficiently small couplings, electrons do not tunnel into the dot during one cycle of ac excitation. Surprisingly, the capacitance of such an effectively sealed dot also displays oscillations with electron number. These however are opposite in sign to the oscillations seen for moderate coupling.

  1. Strong suppression of shot noise in a feedback-controlled single-electron transistor.

    PubMed

    Wagner, Timo; Strasberg, Philipp; Bayer, Johannes C; Rugeramigabo, Eddy P; Brandes, Tobias; Haug, Rolf J

    2017-03-01

    Feedback control of quantum mechanical systems is rapidly attracting attention not only due to fundamental questions about quantum measurements, but also because of its novel applications in many fields in physics. Quantum control has been studied intensively in quantum optics but progress has recently been made in the control of solid-state qubits as well. In quantum transport only a few active and passive feedback experiments have been realized on the level of single electrons, although theoretical proposals exist. Here we demonstrate the suppression of shot noise in a single-electron transistor using an exclusively electronic closed-loop feedback to monitor and adjust the counting statistics. With increasing feedback response we observe a stronger suppression and faster freezing of charge current fluctuations. Our technique is analogous to the generation of squeezed light with in-loop photodetection as used in quantum optics. Sub-Poisson single-electron sources will pave the way for high-precision measurements in quantum transport similar to optical or optomechanical equivalents.

  2. Gate controlled electronic transport in monolayer MoS{sub 2} field effect transistor

    SciTech Connect

    Zhou, Y. F.; Wang, B.; Yu, Y. J.; Wei, Y. D. E-mail: jianwang@hku.hk; Xian, H. M.; Wang, J. E-mail: jianwang@hku.hk

    2015-03-14

    The electronic spin and valley transport properties of a monolayer MoS{sub 2} are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Due to the presence of strong Rashba spin orbit interaction (RSOI), the electronic valence bands of monolayer MoS{sub 2} are split into spin up and spin down Zeeman-like texture near the two inequivalent vertices K and K′ of the first Brillouin zone. When the gate voltage is applied in the scattering region, an additional strong RSOI is induced which generates an effective magnetic field. As a result, electron spin precession occurs along the effective magnetic field, which is controlled by the gate voltage. This, in turn, causes the oscillation of conductance as a function of the magnitude of the gate voltage and the length of the gate region. This current modulation due to the spin precession shows the essential feature of the long sought Datta-Das field effect transistor (FET). From our results, the oscillation periods for the gate voltage and gate length are found to be approximately 2.2 V and 20.03a{sub B} (a{sub B} is Bohr radius), respectively. These observations can be understood by a simple spin precessing model and indicate that the electron behaviors in monolayer MoS{sub 2} FET are both spin and valley related and can easily be controlled by the gate.

  3. Single shot spin readout with a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    DOE PAGES

    Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.; ...

    2016-02-08

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 103 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies above 300more » kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less

  4. Single shot spin readout with a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    SciTech Connect

    Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.; Bishop, Nathaniel C.; Ten Eyck, Gregory A.; Pluym, Tammy; Wendt, Joel R.; Lilly, Michael P.; Carroll, Malcolm S.

    2016-02-08

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 103 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies above 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.

  5. Lateral protonic/electronic hybrid oxide thin-film transistor gated by SiO{sub 2} nanogranular films

    SciTech Connect

    Zhu, Li Qiang Chao, Jin Yu; Xiao, Hui

    2014-12-15

    Ionic/electronic interaction offers an additional dimension in the recent advancements of condensed materials. Here, lateral gate control of conductivities of indium-zinc-oxide (IZO) films is reported. An electric-double-layer (EDL) transistor configuration was utilized with a phosphorous-doped SiO{sub 2} nanogranular film to provide a strong lateral electric field. Due to the strong lateral protonic/electronic interfacial coupling effect, the IZO EDL transistor could operate at a low-voltage of 1 V. A resistor-loaded inverter is built, showing a high voltage gain of ∼8 at a low supply voltage of 1 V. The lateral ionic/electronic coupling effects are interesting for bioelectronics and portable electronics.

  6. Effect of annealing on electronic carrier transport properties of gamma-irradiated AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Yadav, Anupama; Schwarz, Casey; Shatkhin, Max; Wang, Luther; Flitsiyan, Elena; Chernyak, Leonid; Liu, Lu; Hwang, Ya; Ren, Fan; Pearton, Stephen; Department of Physics, University of Central Florida Collaboration; Department of Chemical Engineering, University of Florida Collaboration; Department of Materials Science; Engineering, University of Florida Collaboration

    2014-03-01

    AlGaN/GaN High Electron Mobility Transistors were irradiated with 60Co gamma-ray doses from 100Gy to 1000Gy, in order to analyze the effects of irradiation on the devices' transport properties. Temperature dependent Electron Beam Induced Current (EBIC) measurements, conducted on the devices before and after exposure to gamma-irradiation, allowed for the obtaining of activation energy related to radiation-induced defects due to nitrogen vacancies. Later, the devices were annealed at 200o C for 25 minutes. All the measurements were performed again to study the effect of annealing on the gamma-irradiated devices. Annealing of gamma-irradiated transistors shows that partial recovery of device performance is possible at this temperature. DC current-voltage measurements were also conducted on the transistors to assess the impact of gamma-irradiation and annealing on transfer, gate and drain characteristics.

  7. Theory and experiments of electron-hole recombination at silicon/silicon dioxide interface traps and tunneling in thin oxide MOS transistors

    NASA Astrophysics Data System (ADS)

    Cai, Jin

    2000-10-01

    Surface recombination and channel have dominated the electrical characteristics, performance and reliability of p/n junction diodes and transistors. This dissertation uses a sensitive direct-current current voltage (DCIV) method to measure base terminal currents (IB) modulated by the gate bias (VGB) and forward p/n junction bias (VPN) in a MOS transistor (MOST). Base terminal currents originate from electron-hole recombination at Si/SiO2 interface traps. Fundamental theories which relate DCIV characteristics to device and material parameters are presented. Three theory-based applications are demonstrated on both the unstressed as well as hot-carrier-stressed MOSTs: (1) determination of interface trap density and energy levels, (2) spatial profile of interface traps in the drain/base junction-space-charge region and in the channel region, and (3) determination of gate oxide thickness and impurity doping concentrations. The results show that interface trap energy levels are discrete, which is consistent with those from silicon dangling bonds; in unstressed MOS transistors interface trap density in the channel region rises sharply toward source and drain, and after channel-hot-carrier stress, interface trap density increases mostly in the junction space-charge region. As the gate oxide thins below 3 nm, the gate oxide leakage current via quantum mechanical tunneling becomes significant. A gate oxide tunneling theory which refined the traditional WKB tunneling probability is developed for modeling tunneling currents at low electric fields through a trapezoidal SiO2 barrier. Correlation with experimental data on thin oxide MOSTs reveals two new results: (1) hole tunneling dominates over electron tunneling in p+gate p-channel MOSTs, and (2) the small gate/drain overlap region passes higher tunneling currents than the channel region under depletion to flatband gate voltages. The good theory-experimental correlation enables the extraction of impurity doping concentrations

  8. Comparison between hot spot modeling and measurement of a superconducting hot electron bolometer mixer at submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Miao, Wei; Delorme, Yan; Feret, Alexandre; Lefevre, Rolland; Lecomte, Benoit; Dauplay, Fred; Krieg, Jean-Michel; Beaudin, Gerard; Zhang, Wen; Ren, Yuan; Shi, Sheng-Cai

    2009-11-01

    This paper presents the modeling and measurement of a quasioptical niobium nitride superconducting hot electron bolometer mixer at submillimeter wavelengths. The modeling is performed with a distributed hot spot model which is based on solving a heat balance equation for electron temperature along the superconducting microbridge. Particular care has been taken during the modeling concerning the temperature-dependent resistance and the bias current dependence of the critical temperature of the device. The dc and mixing characteristics of this mixer have been computed and we have observed a quite good match between the predicted and the measured results for both dc characteristics and mixing performances at submillimeter wavelengths.

  9. Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction

    SciTech Connect

    Yeluri, Ramya Lu, Jing; Keller, Stacia; Mishra, Umesh K.; Hurni, Christophe A.; Browne, David A.; Speck, James S.; Chowdhury, Srabanti

    2015-05-04

    The Current Aperture Vertical Electron Transistor (CAVET) combines the high conductivity of the two dimensional electron gas channel at the AlGaN/GaN heterojunction with better field distribution offered by a vertical design. In this work, CAVETs with buried, conductive p-GaN layers as the current blocking layer are reported. The p-GaN layer was regrown by metalorganic chemical vapor deposition and the subsequent channel regrowth was done by ammonia molecular beam epitaxy to maintain the p-GaN conductivity. Transistors with high ON current (10.9 kA/cm{sup 2}) and low ON-resistance (0.4 mΩ cm{sup 2}) are demonstrated. Non-planar selective area regrowth is identified as the limiting factor to transistor breakdown, using planar and non-planar n/p/n structures. Planar n/p/n structures recorded an estimated electric field of 3.1 MV/cm, while non-planar structures showed a much lower breakdown voltage. Lowering the p-GaN regrowth temperature improved breakdown in the non-planar n/p/n structure. Combining high breakdown voltage with high current will enable GaN vertical transistors with high power densities.

  10. The effect of hot electrons and surface plasmons on heterogeneous catalysis.

    PubMed

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-29

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal-semiconductor, and metal-insulator-metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles.

  11. The effect of hot electrons and surface plasmons on heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-01

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal-semiconductor, and metal-insulator-metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles.

  12. Drift Velocity of Electrons in Hot and Moist Air mixtures

    NASA Astrophysics Data System (ADS)

    Abner, Douglas

    1999-10-01

    The drift velocity of electrons in hot and moist air is presented. The apparatus consisted of a pulsed Townsend-type drift tube with an oil-free vacuum system and employed a temperature controller and heating system to regulate the temperature of the gas mixture and chamber to within 0.1 deg. C. over a range of ambient to 200 deg C. The drift tube is equipped with a movable anode allowing the anode-cathode separation to be varied from 0.8 to 7.4 cm. Water vapor concentration in the air mixture ranged from 0.7510.0Temperature was varied from ambient to 150 deg C. E/N (electric field normalized to gas density) ranged from 1.0 to 16 Td (1 Td = 10-17 V-cm2). Comparisons of data collected at elevated temperature, data collected at ambient temperature, and Boltzmann transport equation calculations show the effects of enhanced rotational and vibrational populations on the drift velocity.

  13. Characterization of MgB2 Superconducting Hot Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Cunnane, D.; Kawamura, J. H.; Wolak, M. A.; Acharya, N.; Tan, T.; Xi, X. X.; Karasik, B. S.

    2014-01-01

    Hot-Electron Bolometer (HEB) mixers have proven to be the best tool for high-resolution spectroscopy at the Terahertz frequencies. However, the current state of the art NbN mixers suffer from a small intermediate frequency (IF) bandwidth as well as a low operating temperature. MgB2 is a promising material for HEB mixer technology in view of its high critical temperature and fast thermal relaxation allowing for a large IF bandwidth. In this work, we have fabricated and characterized thin-film (approximately 15 nanometers) MgB2-based spiral antenna-coupled HEB mixers on SiC substrate. We achieved the IF bandwidth greater than 8 gigahertz at 25 degrees Kelvin and the device noise temperature less than 4000 degrees Kelvin at 9 degrees Kelvin using a 600 gigahertz source. Using temperature dependencies of the radiation power dissipated in the device we have identified the optical loss in the integrated microantenna responsible as a cause of the limited sensitivity of the current mixer devices. From the analysis of the current-voltage (IV) characteristics, we have derived the effective thermal conductance of the mixer device and estimated the required local oscillator power in an optimized device to be approximately 1 microwatts.

  14. Multiplexing of Hot-Electron Nanobolometers Using Microwave SQUIDs

    NASA Astrophysics Data System (ADS)

    Karasik, Boris S.; Day, Peter K.; Kawamura, Jonathan H.; Bumble, Bruce; LeDuc, Henry G.

    2009-12-01

    We have obtained the first data on the multiplexed operation of titanium hot-electron bolometers (HEB). Because of their low thermal conductance and small electron heat capacity nanobolometers are particularly interesting as sensors for far-infrared spectroscopy and mid- and near-IR calorimetry. However, the short time constant of these devices (˜μs at 300-400 mK) makes time domain or audio-frequency domain multiplexing impractical. The Microwave SQUID (MSQUID) approach pursued in this work uses dc SQUIDs coupled to X-band microresonators which are, in turn, coupled to a transmission line. We used a 4-element array of Ti HEBs operated at 415 mK in a He3 dewar with an optical fiber access. The microwave signal exhibited 10-MHz wide resonances at individual MSQUD frequencies between 9 GHz and 10 GHz. The resonance depth is modulated by the current through the bolometer via a change of the SQUID flux state. The transmitted signal was amplified by a cryogenic amplifier and downconverted to baseband using an IQ mixer. A 1-dB per Ω0/2 responsivity was sufficient for keeping the system noise at the level of ˜2 pA/Hz1/2. This is more than an order of magnitude smaller than phonon noise in the HEB. The devices were able to detect single near-IR photons (1550 nm) with a time constant of 3.5 μs. Follow-on work will scale the array to larger size and will address the microwave frequency signal generation and processing using a digital transceiver.

  15. Multiplexing of Hot-Electron Nanobolometers Using Microwave SQUIDs

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Day, Peter K.; Kawamura, Jonathan H.; Bumble, Bruce; LeDuc, Henry G.

    2009-01-01

    We have obtained the first data on the multiplexed operation of titanium hot-electron bolometers (HEB). Because of their low thermal conductance and small electron heat capacity nanobolometers are particularly interesting as sensors for far-infrared spectroscopy and mid- and near-IR calorimetry. However, the short time constant of these devices (approximately microseconds at 300-400 mK) makes time domain or audio-frequency domain multiplexing impractical. The Microwave SQUID (MSQUID) approach pursued in this work uses dc SQUIDs coupled to X-band microresonators which are, in turn, coupled to a transmission line. We used a 4-element array of Ti HEBs operated at 415 mK in a He3 dewar with an optical fiber access. The microwave signal exhibited 10-MHz wide resonances at individual MSQUD frequencies between 9 GHz and 10 GHz. The resonance depth is modulated by the current through the bolometer via a change of the SQUID flux state. The transmitted signal was amplified by a cryogenic amplifier and downconverted to baseband using an IQ mixer. A 1-dB per ??/2 responsivity was sufficient for keeping the system noise at the level of 2 pA/Hz1/2. This is more than an order of magnitude smaller than phonon noise in the HEB. The devices were able to detect single near- IR photons (1550 nm) with a time constant of 3.5 ?s. Follow-on work will scale the array to larger size and will address the microwave frequency signal generation and processing using a digital transceiver.

  16. Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.

    PubMed

    Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee

    2016-11-09

    The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm(2)) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.

  17. Size and temperature dependence of the electron-phonon scattering by donors in nanowire transistors

    NASA Astrophysics Data System (ADS)

    Bescond, M.; Carrillo-Nuñez, H.; Berrada, S.; Cavassilas, N.; Lannoo, M.

    2016-08-01

    Due to the constant size reduction, single-donor-based nanowire transistors receive an increasing interest from the semi-conductor industry. In this work we theoretically investigate the coupled influence of electron-phonon scattering, temperature and size (cross-section and channel length) on the properties of such systems. The aim is to determine under what conditions the localized character of the donor has a remarkable impact on the current characteristics. We use a quantum non-equilibrium Green's function approach in which the acoustic electron-phonon scattering is treated through local self-energies. We first show how this widely used approach, valid at high temperatures, can be extended to lower temperatures. Our simulations predict a hysteresis in the current when reducing the temperature down to 150 K. We also find that acoustic phonons degrade the current characteristics while their optical counterparts might have a beneficial impact with an increase of the ON-current. Finally we discuss the influence of nanowire length and cross-section and emphasize the complexity of precisely controlling the dopant level at room temperature.

  18. Performance Enhancement of Organic Thin-Film Transistors Using Bathophenanthroline:Cs Electron Injection Layer

    NASA Astrophysics Data System (ADS)

    Kim, Myunghwan; Kim, Jeongsoo; Son, Heegeun; Jang, Ji-Hyang; Yi, Moonsuk

    2010-10-01

    In this study, we fabricated an organic thin-film transistor (OTFT) with a bathophenanthroline (Bphen):Cs electron injection layer between an organic semiconductor (C60) and a metal electrode. We compared the electrical characteristics of OTFTs with and without Bphen:Cs insertion layer which depend on the insertion layer thickness. We found that the Bphen:Cs layer inserted between the active layer (C60) and the metal electrode played an important role in improving the electrical characteristics of the devices. When the OTFT with 5-Å-thick Bphen:Cs was compared with that without Bphen:Cs, the mobility and the output current were determined to increase from 0.029 cm2 V-1 s-1 and 4.32×10-7 A to 0.127 cm2 V-1 s-1 and 1.67×10-6 A, respectively. This improvement was attributed to the reduction in contact resistance between C60 and the Al electrode layer when a Bphen:Cs electron injection layer of optimum thickness was applied.

  19. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    SciTech Connect

    Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace; Rajan, Siddharth; Volakis, John L.

    2016-01-07

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. It is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.

  20. Basic Equations for the Modeling of Gallium Nitride (gan) High Electron Mobility Transistors (hemts)

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2003-01-01

    Gallium nitride (GaN) is a most promising wide band-gap semiconductor for use in high-power microwave devices. It has functioned at 320 C, and higher values are well within theoretical limits. By combining four devices, 20 W has been developed at X-band. GaN High Electron Mobility Transistors (HEMTs) are unique in that the two-dimensional electron gas (2DEG) is supported not by intentional doping, but instead by polarization charge developed at the interface between the bulk GaN region and the AlGaN epitaxial layer. The polarization charge is composed of two parts: spontaneous and piezoelectric. This behavior is unlike other semiconductors, and for that reason, no commercially available modeling software exists. The theme of this document is to develop a self-consistent approach to developing the pertinent equations to be solved. A Space Act Agreement, "Effects in AlGaN/GaN HEMT Semiconductors" with Silvaco Data Systems to implement this approach into their existing software for III-V semiconductors, is in place (summer of 2002).

  1. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace; Rajan, Siddharth; Volakis, John L.

    2016-01-01

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. It is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.

  2. Tunneling Current of Electron in Armchair Graphene Nanoribbon Bipolar Transistor Model Using Transfer Matrix Method

    NASA Astrophysics Data System (ADS)

    Fahmi, A. K.; Hasanah, L.; Rusdiana, D.; Aminudin, A.; Suhendi, E.

    2017-03-01

    The tunneling current of n-p-n bipolar junction transistor AGNR-based is modeled with semi-numerical method. The exponential solution from Schrödinger equation is used and solved analytically. The potential profile of n-p-n BJT divided into several segments in the numerical method. Then, the solved analytical result is used in the numerical method to compute the electron transmittance. Transfer Matrix Method (TMM) is the numerical method used to compute the electron transmittance. From the calculated transmittance the tunneling current can be computed by using Landauer formula with aid of Gauss-Legendre Quadrature (GLQ). Next, the tunneling current is computed with several change of variables which are base-emitter voltage (VBE), base-collector voltage (VBC), temperature and the AGNR’s width. The computed tunneling current shows that the larger value of applied voltage for both VBE and VBC results in larger value of tunneling current. At the lower temperature, the current is larger. The computed tunneling current shows that at wider width of AGNR, the current is also larger. This is due to the decreased band-gap energy (Eg) because of the wider width of AGNR.

  3. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Wang, H. T.; Ren, F.; Pearton, S. J.

    2008-08-01

    Chemical sensors can be used to analyze a wide variety of environmental and biological gases and liquids and may need to be able to selectively detect a target analyte. Different methods, including gas chromatography, chemiluminescence, selected ion flow tube, and mass spectroscopy, have been used to measure biomarkers. These methods show variable results in terms of sensitivity for some applications and may not meet the requirements for a handheld biosensor. A promising sensing technology utilizes AlGaN/GaN high electron mobility transistors (HEMTs). HEMT structures have been developed for use in microwave power amplifiers due to their high two dimensional electron gas (2DEG) mobility and saturation velocity. The conducting 2DEG channel of AlGaN/GaN HEMTs is very close to the surface and extremely sensitive to adsorption of analytes. HEMT sensors can be used for detecting gases, ions, pH values, proteins, and DNA. In this paper we review recent progress on functionalizing the surface of HEMTs for specific detection of glucose, kidney marker injury molecules, prostate cancer, and other common substances of interest in the biomedical field.

  4. Helicity sensitive terahertz radiation detection by dual-grating-gate high electron mobility transistors

    SciTech Connect

    Faltermeier, P.; Olbrich, P.; Probst, W.; Schell, L.; Ganichev, S. D.; Watanabe, T.; Boubanga-Tombet, S. A.; Otsuji, T.

    2015-08-28

    We report on the observation of a radiation helicity sensitive photocurrent excited by terahertz (THz) radiation in dual-grating-gate (DGG) InAlAs/InGaAs/InAlAs/InP high electron mobility transistors (HEMT). For a circular polarization, the current measured between source and drain contacts changes its sign with the inversion of the radiation helicity. For elliptically polarized radiation, the total current is described by superposition of the Stokes parameters with different weights. Moreover, by variation of gate voltages applied to individual gratings, the photocurrent can be defined either by the Stokes parameter defining the radiation helicity or those for linear polarization. We show that artificial non-centrosymmetric microperiodic structures with a two-dimensional electron system excited by THz radiation exhibit a dc photocurrent caused by the combined action of a spatially periodic in-plane potential and spatially modulated light. The results provide a proof of principle for the application of DGG HEMT for all-electric detection of the radiation's polarization state.

  5. Harmonic and intermodulation performance of carbon nanotube field-effect transistor-based and single-electron tunnelling transistor-based inverting amplifiers

    NASA Astrophysics Data System (ADS)

    Taher Abuelma'atti, Muhammad

    2011-07-01

    This article presents a simple mathematical model for the output-voltage/input-voltage characteristics of the carbon nanotube field-effect transistor (CNTFET)-based and the single-electron tunnelling transistor (SET)-based inverting amplifiers. The model, basically a Fourier-series, yields closed-form expressions for the amplitudes of the harmonic and intermodulation components of the output voltage resulting from a multisinusoidal input voltage. The special case of a two-tone equal-amplitude input signal is considered in detail. The results show that the harmonic and intermodulation performance of the CNTFET-based and SET-based inverting amplifiers is strongly dependent on the values of the bias voltage and the amplitudes of the input tones. Moreover, the results show that for the CNTFET-based inverting amplifier, either the relative second-order or the relative third-order intermodulation component is dominant, while for the SET-based inverting amplifier, the relative third-order intermodulation is always dominant. The results also show that all the harmonics and intermodulation products may exhibit minima at different values of the input bias voltages and tone amplitudes.

  6. Too Hot for Photon-Assisted Transport: Hot-Electrons Dominate Conductance Enhancement in Illuminated Single-Molecule Junctions.

    PubMed

    Fung, E-Dean; Adak, Olgun; Lovat, Giacomo; Scarabelli, Diego; Venkataraman, Latha

    2017-02-08

    We investigate light-induced conductance enhancement in single-molecule junctions via photon-assisted transport and hot-electron transport. Using 4,4'-bipyridine bound to Au electrodes as a prototypical single-molecule junction, we report a 20-40% enhancement in conductance under illumination with 980 nm wavelength radiation. We probe the effects of subtle changes in the transmission function on light-enhanced current and show that discrete variations in the binding geometry result in a 10% change in enhancement. Importantly, we prove theoretically that the steady-state behavior of photon-assisted transport and hot-electron transport is identical but that hot-electron transport is the dominant mechanism for optically induced conductance enhancement in single-molecule junctions when the wavelength used is absorbed by the electrodes and the hot-electron relaxation time is long. We confirm this experimentally by performing polarization-dependent conductance measurements of illuminated 4,4'-bipyridine junctions. Finally, we perform lock-in type measurements of optical current and conclude that currents due to laser-induced thermal expansion mask optical currents. This work provides a robust experimental framework for studying mechanisms of light-enhanced transport in single-molecule junctions and offers tools for tuning the performance of organic optoelectronic devices by analyzing detailed transport properties of the molecules involved.

  7. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions.

    PubMed

    Tan, Shijing; Liu, Liming; Dai, Yanan; Ren, Jindong; Zhao, Jin; Petek, Hrvoje

    2017-04-12

    Hot electron processes at metallic heterojunctions are central to optical-to-chemical or electrical energy transduction. Ultrafast nonlinear photoexcitation of graphite has been shown to create hot thermalized electrons at temperatures corresponding to the solar photosphere in less than 25 fs. Plasmonic resonances in metallic nanoparticles are also known to efficiently generate hot electrons. Here we combine Ag nanoparticles with graphite (Gr) to study the ultrafast hot electron generation and dynamics in their plasmonic heterojunctions by means of time-resolved two-photon photoemission (2PP) spectroscopy. Tuning the wavelength of p-polarized femtosecond excitation pulses we find enhancement of 2PP yields by two orders-of-magnitude, which we attribute to excitation of a surface normal Mie plasmon mode of Ag/Gr heterojunctions at 3.6 eV. The 2PP spectra include contributions from: i) coherent two-photon absorption of an occupied interface state 0.2 eV below Fermi level, which electronic structure calculations assign to chemisorption-induced charge transfer; and ii) hot electrons in the π*-band of graphite, which are excited through the coherent screening response of the substrate. Ultrafast pump-probe measurements show that the interface state photoemission occurs via virtual intermediate states, whereas the characteristic lifetimes attribute the hot electrons to the population of the π*-band of Gr via the plasmon dephasing. Our study directly probes the mechanisms for enhanced hot electron generation and decay in a model plasmonic heterojunction.

  8. Nanoscale-Barrier Formation Induced by Low-Dose Electron-Beam Exposure in Ultrathin MoS2 Transistors.

    PubMed

    Matsunaga, Masahiro; Higuchi, Ayaka; He, Guanchen; Yamada, Tetsushi; Krüger, Peter; Ochiai, Yuichi; Gong, Yongji; Vajtai, Robert; Ajayan, Pulickel M; Bird, Jonathan P; Aoki, Nobuyuki

    2016-10-05

    Utilizing an innovative combination of scanning-probe and spectroscopic techniques, supported by first-principles calculations, we demonstrate how electron-beam exposure of field-effect transistors, implemented from ultrathin molybdenum disulfide (MoS2), may cause nanoscale structural modifications that in turn significantly modify the electrical operation of these devices. Quite surprisingly, these modifications are induced by even the relatively low electron doses used in conventional electron-beam lithography, which are found to induce compressive strain in the atomically thin MoS2. Likely arising from sulfur-vacancy formation in the exposed regions, the strain gives rise to a local widening of the MoS2 bandgap, an idea that is supported both by our experiment and by the results of first-principles calculations. A nanoscale potential barrier develops at the boundary between exposed and unexposed regions and may cause extrinsic variations in the resulting electrical characteristics exhibited by the transistor. The widespread use of electron-beam lithography in nanofabrication implies that the presence of such strain must be carefully considered when seeking to harness the potential of atomically thin transistors. At the same time, this work also promises the possibility of exploiting the strain as a means to achieve "bandstructure engineering" in such devices.

  9. Hot-electron-transfer enhancement for the efficient energy conversion of visible light.

    PubMed

    Yu, Sungju; Kim, Yong Hwa; Lee, Su Young; Song, Hyeon Don; Yi, Jongheop

    2014-10-13

    Great strides have been made in enhancing solar energy conversion by utilizing plasmonic nanostructures in semiconductors. However, current generation with plasmonic nanostructures is still somewhat inefficient owing to the ultrafast decay of plasmon-induced hot electrons. It is now shown that the ultrafast decay of hot electrons across Au nanoparticles can be significantly reduced by strong coupling with CdS quantum dots and by a Schottky junction with perovskite SrTiO3 nanoparticles. The designed plasmonic nanostructure with three distinct components enables a hot-electron-assisted energy cascade for electron transfer, CdS→Au→SrTiO3, as demonstrated by steady-state and time-resolved photoluminescence spectroscopy. Consequently, hot-electron transfer enabled the efficient production of H2 from water as well as significant electron harvesting under irradiation with visible light of various wavelengths. These findings provide a new approach for overcoming the low efficiency that is typically associated with plasmonic nanostructures.

  10. InAs Nanowire with Epitaxial Aluminum as a Single-Electron Transistor with Fixed Tunnel Barriers

    NASA Astrophysics Data System (ADS)

    Taupin, M.; Mannila, E.; Krogstrup, P.; Maisi, V. F.; Nguyen, H.; Albrecht, S. M.; Nygârd, J.; Marcus, C. M.; Pekola, J. P.

    2016-11-01

    We report on the fabrication of single-electron transistors using InAs nanowires with epitaxial aluminum with fixed tunnel barriers made of aluminum oxide. The devices exhibit a hard superconducting gap induced by the proximized aluminum cover shell, and they behave as metallic single-electron transistors. In contrast to the typical few-channel contacts in semiconducting devices, our approach forms opaque multichannel contacts to a semiconducting wire and, thus, provides a complementary way to study them. In addition, we confirm that unwanted extra quantum dots can appear at the surface of the nanowire. Their presence is prevented in our devices and also by inserting a protective layer of GaAs between the InAs and Al, the latter being suitable for standard measurement methods.

  11. Hot carrier and hot phonon coupling during ultrafast relaxation of photoexcited electrons in graphene

    SciTech Connect

    Iglesias, J. M.; Martín, M. J.; Pascual, E.; Rengel, R.

    2016-01-25

    We study, by means of a Monte Carlo simulator, the hot phonon effect on the relaxation dynamics in photoexcited graphene and its quantitative impact as compared with considering an equilibrium phonon distribution. Our multi-particle approach indicates that neglecting the hot phonon effect significantly underestimates the relaxation times in photoexcited graphene. The hot phonon effect is more important for a higher energy of the excitation pulse and photocarrier densities between 1 and 3 × 10{sup 12 }cm{sup −2}. Acoustic intervalley phonons play a non-negligible role, and emitted phonons with wavelengths limited up by a maximum (determined by the carrier concentration) induce a slower carrier cooling rate. Intrinsic phonon heating is damped in graphene on a substrate due to the additional cooling pathways, with the hot phonon effect showing a strong inverse dependence with the carrier density.

  12. Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission.

    PubMed

    O'Donnell, Kane M; Edmonds, Mark T; Ristein, Jürgen; Rietwyk, Kevin J; Tadich, Anton; Thomsen, Lars; Pakes, Christopher I; Ley, Lothar

    2014-10-01

    In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.

  13. DC and small-signal physical models for the AlGaAs/GaAs high electron mobility transistor

    NASA Technical Reports Server (NTRS)

    Sarker, J. C.; Purviance, J. E.

    1991-01-01

    Analytical and numerical models are developed for the microwave small-signal performance, such as transconductance, gate-to-source capacitance, current gain cut-off frequency and the optimum cut-off frequency of the AlGaAs/GaAs High Electron Mobility Transistor (HEMT), in both normal and compressed transconductance regions. The validated I-V characteristics and the small-signal performances of four HeMT's are presented.

  14. Superconducting Hot-Electron Submillimeter-Wave Detector

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    A superconducting hot-electron bolometer has been built and tested as a prototype of high-sensitivity, rapid-response detectors of submillimeter-wavelength radiation. There are diverse potential applications for such detectors, a few examples being submillimeter spectroscopy for scientific research; detection of leaking gases; detection of explosive, chemical, and biological weapons; and medical imaging. This detector is a superconducting-transition- edge device. Like other such devices, it includes a superconducting bridge that has a low heat capacity and is maintained at a critical temperature (T(sub c)) at the lower end of its superconducting-transition temperature range. Incident photons cause transient increases in electron temperature through the superconducting-transition range, thereby yielding measurable increases in electrical resistance. In this case, T(sub c) = 6 K, which is approximately the upper limit of the operating-temperature range of silicon-based bolometers heretofore used routinely in many laboratories. However, whereas the response speed of a typical silicon- based laboratory bolometer is characterized by a frequency of the order of a kilohertz, the response speed of the present device is much higher characterized by a frequency of the order of 100 MHz. For this or any bolometer, a useful figure of merit that one seeks to minimize is (NEP)(tau exp 1/2), where NEP denotes the noise-equivalent power (NEP) and the response time. This figure of merit depends primarily on the heat capacity and, for a given heat capacity, is approximately invariant. As a consequence of this approximate invariance, in designing a device having a given heat capacity to be more sensitive (to have lower NEP), one must accept longer response time (slower response) or, conversely, in designing it to respond faster, one must accept lower sensitivity. Hence, further, in order to increase both the speed of response and the sensitivity, one must make the device very small in

  15. A steep-slope transistor based on abrupt electronic phase transition.

    PubMed

    Shukla, Nikhil; Thathachary, Arun V; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-08-07

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep ('sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

  16. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.

    PubMed

    Sokolov, Anatoliy N; Tee, Benjamin C-K; Bettinger, Christopher J; Tok, Jeffrey B-H; Bao, Zhenan

    2012-03-20

    Skin is the body's largest organ and is responsible for the transduction of a vast amount of information. This conformable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of an electronic material, inspired by the complexity of this organ is a tremendous, unrealized engineering challenge. However, the advent of carbon-based electronics may offer a potential solution to this long-standing problem. In this Account, we describe the use of an organic field-effect transistor (OFET) architecture to transduce mechanical and chemical stimuli into electrical signals. In developing this mimic of human skin, we thought of the sensory elements of the OFET as analogous to the various layers and constituents of skin. In this fashion, each layer of the OFET can be optimized to carry out a specific recognition function. The separation of multimodal sensing among the components of the OFET may be considered a "divide and conquer" approach, where the electronic skin (e-skin) can take advantage of the optimized chemistry and materials properties of each layer. This design of a novel microstructured gate dielectric has led to unprecedented sensitivity for tactile pressure events. Typically, pressure-sensitive components within electronic configurations have suffered from a lack of sensitivity or long mechanical relaxation times often associated with elastomeric materials. Within our method, these components are directly compatible with OFETs and have achieved the highest reported sensitivity to date. Moreover, the tactile sensors operate on a time scale comparable with human skin, making them ideal candidates for integration as synthetic skin devices. The methodology is compatible with large-scale fabrication and employs simple, commercially available elastomers. The design of materials within the semiconductor layer has led to the incorporation of selectivity and sensitivity within

  17. Current fluctuation of electron and hole carriers in multilayer WSe{sub 2} field effect transistors

    SciTech Connect

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho-Kyun; Jin, Jun Eon; Kim, Gyu-Tae; Kim, Yong Jin; Kim, Young Keun; Shin, Minju

    2015-12-14

    Two-dimensional materials have outstanding scalability due to their structural and electrical properties for the logic devices. Here, we report the current fluctuation in multilayer WSe{sub 2} field effect transistors (FETs). In order to demonstrate the impact on carrier types, n-type and p-type WSe{sub 2} FETs are fabricated with different work function metals. Each device has similar electrical characteristics except for the threshold voltage. In the low frequency noise analysis, drain current power spectral density (S{sub I}) is inversely proportional to frequency, indicating typical 1/f noise behaviors. The curves of the normalized drain current power spectral density (NS{sub I}) as a function of drain current at the 10 Hz of frequency indicate that our devices follow the carrier number fluctuation with correlated mobility fluctuation model. This means that current fluctuation depends on the trapping-detrapping motion of the charge carriers near the channel interface. No significant difference is observed in the current fluctuation according to the charge carrier type, electrons and holes that occurred in the junction and channel region.

  18. Probing Majorana bound states via counting statistics of a single electron transistor

    NASA Astrophysics Data System (ADS)

    Li, Zeng-Zhao; Lam, Chi-Hang; You, J. Q.

    2015-06-01

    We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs.

  19. Localized Tail States and Electron Mobility in Amorphous ZnON Thin Film Transistors

    PubMed Central

    Lee, Sungsik; Nathan, Arokia; Ye, Yan; Guo, Yuzheng; Robertson, John

    2015-01-01

    The density of localized tail states in amorphous ZnON (a-ZnON) thin film transistors (TFTs) is deduced from the measured current-voltage characteristics. The extracted values of tail state density at the conduction band minima (Ntc) and its characteristic energy (kTt) are about 2 × 1020 cm−3eV−1 and 29 meV, respectively, suggesting trap-limited conduction prevails at room temperature. Based on trap-limited conduction theory where these tail state parameters are considered, electron mobility is accurately retrieved using a self-consistent extraction method along with the scaling factor ‘1/(α + 1)’ associated with trapping events at the localized tail states. Additionally, it is found that defects, e.g. oxygen and/or nitrogen vacancies, can be ionized under illumination with hv ≫ Eg, leading to very mild persistent photoconductivity (PPC) in a-ZnON TFTs. PMID:26304606

  20. The RFET—a reconfigurable nanowire transistor and its application to novel electronic circuits and systems

    NASA Astrophysics Data System (ADS)

    Mikolajick, T.; Heinzig, A.; Trommer, J.; Baldauf, T.; Weber, W. M.

    2017-04-01

    With CMOS scaling reaching physical limits in the next decade, new approaches are required to enhance the functionality of electronic systems. Reconfigurability on the device level promises to realize more complex systems with a lower device count. In the last five years a number of interesting concepts have been proposed to realize such a device level reconfiguration. Among these the reconfigurable field effect transistor (RFET), a device that can be configured between an n-channel and p-channel behavior by applying an electrical signal, can be considered as an end-of-roadmap extension of current technology with only small modifications and even simplifications to the process flow. This article gives a review on the RFET basics and current status. In the first sections state-of-the-art of reconfigurable devices will be summarized and the RFET will be introduced together with related devices based on silicon nanowire technology. The device optimization with respect to device symmetry and performance will be discussed next. The potential of the RFET device technology will then be shown by discussing selected circuit implementations making use of the unique advantages of this device concept. The basic device concept was also extended towards applications in flexible devices and sensors, also extending the capabilities towards so-called More-than-Moore applications where new functionalities are implemented in CMOS-based processes. Finally, the prospects of RFET device technology will be discussed.

  1. AlN/GaN high electron mobility transistors on sapphire substrates for Ka band applications

    NASA Astrophysics Data System (ADS)

    Xubo, Song; Yuanjie, Lü; Guodong, Gu; Yuangang, Wang; Xin, Tan; Xingye, Zhou; Shaobo, Dun; Peng, Xu; Jiayun, Yin; Bihua, Wei; Zhihong, Feng; Shujun, Cai

    2016-04-01

    We report the DC and RF characteristics of AlN/GaN high electron mobility transistors (HEMTs) with the gate length of 100 nm on sapphire substrates. The device exhibits a maximum drain current density of 1.29 A/mm and a peak transconductance of 440 mS/mm. A current gain cutoff frequency and a maximum oscillation frequency of 119 GHz and 155 GHz have been obtained, respectively. Furthermore, the large signal load pull characteristics of the AlN/GaN HEMTs were measured at 29 GHz. An output power density of 429 mW/mm has been demonstrated at a drain bias of 10 V. To the authors' best knowledge, this is the earliest demonstration of power density at the Ka band for AlN/GaN HEMTs in the domestic, and also a high frequency of load-pull measurements for AlN/GaN HEMTs. Project supported by the National Natural Science Foundation of China (No. 61306113).

  2. Conductance of a single electron transistor with a retarded dielectric layer in the gate capacitor

    NASA Astrophysics Data System (ADS)

    Udalov, O. G.; Chtchelkatchev, N. M.; Fedorov, S. A.; Beloborodov, I. S.

    2015-11-01

    We study the conductance of a single electron transistor (SET) with a ferroelectric (or dielectric) layer placed in the gate capacitor. We assume that the ferroelectric (FE) has a retarded response with arbitrary relaxation time. We show that in the case of "fast" but still retarded response of the FE (dielectric) layer an additional contribution to the Coulomb blockade effect appears leading to the suppression of the SET conductance. We take into account fluctuations of the FE (dielectric) polarization using Monte Carlo simulations. For "fast" FE, these fluctuations partially suppress the additional Coulomb blockade effect. Using Monte Carlo simulations, we study the transition from "fast" to "slow" FE. For high temperatures, the peak value of the SET conductance is almost independent of the FE relaxation time. For temperatures close to the FE Curie temperature, the conductance peak value nonmonotonically depends on the FE relaxation time. A maximum appears when the FE relaxation time is of the order of the SET discharging time. Below the Curie point the conductance peak value decreases with increasing the FE relaxation time. The conductance shows the hysteresis behavior for any FE relaxation time at temperatures below the FE transition point. We show that conductance hysteresis is robust against FE internal fluctuations.

  3. Isolated Photosystem I Reaction Centers on a Functionalized Gated High Electron Mobility Transistor

    SciTech Connect

    Eliza, Sazia A.; Lee, Ida; Tulip, Fahmida S; Islam, Syed K; Mostafa, Salwa; Greenbaum, Elias; Ericson, Milton Nance

    2011-01-01

    In oxygenic plants, photons are captured with high quantum efficiency by two specialized reaction centers (RC) called Photosystem I (PS I) and Photosystem II (PS II). The captured photon triggers rapid charge separation and the photon energy is converted into an electrostatic potential across the nanometer-scale nm reaction centers. The exogenous photovoltages from a single PS I RC have been previously measured using the technique of Kelvin force probe microscopy (KFM). However, biomolecular photovoltaic applications require two-terminal devices. This paper presents for the first time, a micro-device for detection and characterization of isolated PS I RCs. The device is based on an AlGaN/GaN high electron mobility transistor (HEMT) structure. AlGaN/GaN HEMTs show high current throughputs and greater sensitivity to surface charges compared to other field-effect devices. PS I complexes immobilized on the floating gate of AlGaN/GaN HEMTs resulted in significant changes in the device characteristics under illumination. An analytical model has been developed to estimate the RCs of a major orientation on the functionalized gate surface of the HEMTs.

  4. Effect of buffer structures on AlGaN/GaN high electron mobility transistor reliability

    SciTech Connect

    Liu, L.; Xi, Y. Y.; Ren, F.; Pearton, S. J.; Laboutin, O.; Cao, Yu; Johnson, Wayne J.; Kravchenko, Ivan I

    2012-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) with three different types of buffer layers, including a GaN/AlGaN composite layer, or 1 or 2 lm GaN thick layers, were fabricated and their reliability compared. The HEMTs with the thick GaN buffer layer showed the lowest critical voltage (Vcri) during off-state drain step-stress, but this was increased by around 50% and 100% for devices with the composite AlGaN/GaN buffer layers or thinner GaN buffers, respectively. The Voff - state for HEMTs with thin GaN and composite buffers were 100 V, however, this degraded to 50 60V for devices with thick GaN buffers due to the difference in peak electric field near the gate edge. A similar trend was observed in the isolation breakdown voltage measurements, with the highest Viso achieved based on thin GaN or composite buffer designs (600 700 V), while a much smaller Viso of 200V was measured on HEMTs with the thick GaN buffer layers. These results demonstrate the strong influence of buffer structure and defect density on AlGaN/GaN HEMT performance and reliability.

  5. Intrinsic noise measurement of an ultra-sensitive radio-frequency single electron transistor

    NASA Astrophysics Data System (ADS)

    Xue, W. W.; Ji, Z.; Pan, Feng; Rimberg, A. J.

    2008-03-01

    The radio-frequency single electron transistor (rf-SET) has been the focus of intense interest since its invention in 1998[1]. Using cryogenic ultra-thin film evaporation techniques [2] and an improved on-chip superconducting matching network [3], we have consistently fabricated rf-SETs with charge sensitivity of 1.7--5μe/√Hz and uncoupled energy sensitivity 1.1--5. Using our 1GHz resonant circuit, intrinsic noise in the SET arising from a dc voltage bias was measured in the white noise limit. We measured the offset charge dependence of the intrinsic noise in the vicinity of the Josephson-quasiparticle and double Josephson-quasiparticle transport cycles. In regions for which the offset charge and resistance noise are strongly suppressed, we can determine the SET shot noise in the sup-gap regime. We discuss the effects of correlations between charge carriers on the measured Fano factor. [1] R.J.Schoelkopf et al., Science 280,1238 (1998); [2] N.A.Court et al., Cond-mat 0706.4150 (2007); [3] W.W.Xue et al., Appl.Phys.Lett. 91, 093511 (2007).

  6. A sensitive charge scanning probe based on silicon single electron transistor

    NASA Astrophysics Data System (ADS)

    Lina, Su; Xinxing, Li; Hua, Qin; Xiaofeng, Gu

    2016-04-01

    Single electron transistors (SETs) are known to be extremely sensitive electrometers owing to their high charge sensitivity. In this work, we report the design, fabrication, and characterization of a silicon-on-insulator-based SET scanning probe. The fabricated SET is located about 10 μm away from the probe tip. The SET with a quantum dot of about 70 nm in diameter exhibits an obvious Coulomb blockade effect measured at 4.1 K. The Coulomb blockade energy is about 18 meV, and the charge sensitivity is in the order of 10-5-10-3 e/Hz1/2. This SET scanning probe can be used to map charge distribution and sense dynamic charge fluctuation in nanodevices or circuits under test, realizing high sensitivity and high spatial resolution charge detection. Project supported by the Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201152), the National Natural Science Foundation of China (No. 11403084), the Fundamental Research Funds for Central Universities (Nos. JUSRP51510, JUDCF12032), and the Graduate Student Innovation Program for Universities of Jiangsu Province (No. CXLX12_0724).

  7. Electronic properties of organic thin film transistors with nanoscale tapered electrodes

    NASA Astrophysics Data System (ADS)

    Park, Jeongwon

    2008-10-01

    Organic thin-film transistors (OTFTs) have received increasing attention because of their potential applications in displays, optoelectronics, logic circuits, and sensors. Ultrathin OTFTs are of technical interest as a possible route toward reduced bias stress in standard OTFTs and enhanced sensitivity in chemical field-effect transistors (ChemFETs). ChemFETs are OTFTs whose output characteristics are sensitive to the presence of analytes via changes in the channel mobility and/or threshold voltage induced by analyte chemisorption onto the channel materials. The fundamental understanding of charge transport properties of organic thin-films is critical for the applications. OTFT has been demonstrated by many groups; however, there has been much less progress towards more reliable contact structure between organic materials and electrodes. This thesis investigates the electrical properties of metal phthalocyanine thin-film devices. In chapter 1, the basic electrical properties in OTFTs are reviewed. In chapter 2, we have investigated the microfabrication process of OTFTs to control the contact morphology and the charge transport properties of phthalocyanine thin-film devices. In chapter 3, the channel thickness dependence of the mobility was investigated in bottom-contact copper phthalocyanine (CuPc) OTFTs. The current-voltage characteristics of bottom contact CuPc OTFTs with low contact resistance fabricated by the bilayer photoresist lift-off process were analyzed to determine the mobility, threshold voltage and contact resistance. The independence of measured electronic properties from channel thickness is due to the contact resistance being negligible for all channel thicknesses. For practical applications, the aging and recovery process in CuPc OTFTs were investigated in chapter 4. An origin of the aging process on CuPc OTFTs has been investigated based on the responses of thick 1000ML CuPc OTFTs under a controlled atmosphere. The recovery process under 30

  8. Characterization and reliability of aluminum gallium nitride/gallium nitride high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Douglas, Erica Ann

    Compound semiconductor devices, particularly those based on GaN, have found significant use in military and civilian systems for both microwave and optoelectronic applications. Future uses in ultra-high power radar systems will require the use of GaN transistors operated at very high voltages, currents and temperatures. GaN-based high electron mobility transistors (HEMTs) have proven power handling capability that overshadows all other wide band gap semiconductor devices for high frequency and high-power applications. Little conclusive research has been reported in order to determine the dominating degradation mechanisms of the devices that result in failure under standard operating conditions in the field. Therefore, it is imperative that further reliability testing be carried out to determine the failure mechanisms present in GaN HEMTs in order to improve device performance, and thus further the ability for future technologies to be developed. In order to obtain a better understanding of the true reliability of AlGaN/GaN HEMTs and determine the MTTF under standard operating conditions, it is crucial to investigate the interaction effects between thermal and electrical degradation. This research spans device characterization, device reliability, and device simulation in order to obtain an all-encompassing picture of the device physics. Initially, finite element thermal simulations were performed to investigate the effect of device design on self-heating under high power operation. This was then followed by a study of reliability of HEMTs and other tests structures during high power dc operation. Test structures without Schottky contacts showed high stability as compared to HEMTs, indicating that degradation of the gate is the reason for permanent device degradation. High reverse bias of the gate has been shown to induce the inverse piezoelectric effect, resulting in a sharp increase in gate leakage current due to crack formation. The introduction of elevated

  9. Interface Charge Transport in Organic Transistors as Investigated by Field-Induced Electron Spin Resonance

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tatsuo

    2013-03-01

    Most of high-performance organic thin-film transistors (OTFTs) as recently developed is attainable with non-doped, single-component π-conjugated materials that exhibit high layer crystallinity both for small-molecules and polymers. The layer crystallinity is quite suitable to compose channel transport layers of the OTFTs, although the main origin to hinder the charge transport or the intrinsic carrier mobility is still controversial; intra- or intermolecular electron-phonon coupling, polarization effects by the gate-dielectrics, or thermal or extrinsic disorder effects. Here we discuss the interface charge transport in the OTFTs, as investigated by field-induced electron spin resonance (FESR) technique that probes 1/2 spin of carriers induced by gate voltage. It is shown that the FESR technique is extremely useful especially for OTFTs, because of the fairly small spin-orbit interactions in organic materials as well as of the high layer crystallinity and the anisotropy. The following important aspects of the interface charge transport are presented and discussed: (1) Carrier motion in OTFTs can be understood in terms of the multiple trap-and-release (MTR) transport. The analyses of the motional narrowing effects allow us to estimate the average trap residence time that reaches about 1 ns. (2) Carriers are frozen at the respective trap sites at low temperature. The low-temperature spectral analyses allow us to obtain the distribution of trapped carriers over their degree of localization. (3) We also developed a unique technique to investigate the intra- and inter-domain transport in polycrystalline OTFTs by using anisotropic FESR measurements. The method allows us to evaluate the potential barrier height at the domain boundaries within the films.

  10. Electron-Deficient Dihydroindaceno-Dithiophene Regioisomers for n-Type Organic Field-Effect Transistors.

    PubMed

    Peltier, Jean-David; Heinrich, Benoît; Donnio, Bertrand; Rault-Berthelot, Joëlle; Jacques, Emmanuel; Poriel, Cyril

    2017-03-08

    In this work, we wish to report the first member of a new family of organic semiconductors constructed on a meta dihydroindacenodithiophene core, that is, 2,2'-(2,8-dihexyl-4,6-dihydro-s-indaceno[1,2-b:7,6-b']dithiophene-4,6-diylidene)dimalononitrile (called meta-IDT(═C(CN)2)2). The properties of this molecule were studied in detail through a structure-properties relationship study with its regioisomer, that is, 2,2'-(2,7-dihexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-4,9-diylidene)dimalononitrile (para-IDT(═C(CN)2)2) (see isomer structures in blue in Chart 2). The influence of the bridge functionalization was also investigated by comparison with their diketone analogues meta-IDT(═O)2 and para-IDT(═O)2. This study sheds light on the impact of regioisomerism on the electronic properties at the molecular level (electrochemistry, absorption spectroscopy, molecular modeling) and also on the supramolecular arrangement, and finally on the organic field-effect transistors (OFET) performances and stabilities. The significant effect of self-assembled monolayers of 4-(dimethylamino)benzenethiol grafted on the gold drain and source electrodes or of the use of flexible substrate (polyethylene naphtalate) instead of glass on the OFET performances and stabilities are also reported. In the light of these results (maximum mobility reaching 7.1 × 10(-2) cm(2) V(-1) cm(-1), high IDon/IDoff of 2.3 × 10(7), and subthreshold swing of 1.2 V/dec), we believe that the present OFETs can be further used to construct electronic circuits.

  11. Measurements of hot-electron temperature in laser-irradiated plasmas

    SciTech Connect

    Solodov, A. A.; Yaakobi, B.; Edgell, D. H.; Follett, R. K.; Myatt, J. F.; Sorce, C.; Froula, D. H.

    2016-10-26

    In a recently published work1–3 we reported on measuring the total energy of hot electrons produced by the interaction of a nanosecond laser with planar CH-coated molybdenum targets, using the Mo Kα emission. The temperature of the hot electrons in that work was determined by the high-energy bremsstrahlung [hard x-ray (HXR)] spectrum measured by a three-channel fluorescence-photomultiplier detector (HXRD). In the present work, we replaced the HXRD with a nine-channel image-plate (IP)–based detector (HXIP). For the same conditions (irradiance of the order of 1014 W/cm2; 2-ns pulses) the measured temperatures are consistently lower than those measured by the HXRD (by a factor ~1.5 to 1.7). In addition, we supplemented this measurement with three experiments that measure the hot-electron temperature using Kα line-intensity ratios from high-Z target layers, independent of the HXR emission. These experiments yielded temperatures that were consistent with those measured by the HXIP. We showed that the thermal x-ray radiation must be included in the derivation of total energy in hot electrons (Ehot), and that this makes Ehot only weakly dependent on hot-electron temperature. For a given x-ray emission in inertial confinement fusion compression experiments, this result would lead to a higher total energy in hot electrons, but the preheat of the compressed fuel may be lower because of the reduced hot-electron range.

  12. Observation and coherent control of interface-induced electronic resonances in a field-effect transistor.

    PubMed

    Tenorio-Pearl, J O; Herbschleb, E D; Fleming, S; Creatore, C; Oda, S; Milne, W I; Chin, A W

    2017-02-01

    Electronic defect states at material interfaces provide highly deleterious sources of noise in solid-state nanostructures, and even a single trapped charge can qualitatively alter the properties of short one-dimensional nanowire field-effect transistors (FET) and quantum bit (qubit) devices. Understanding the dynamics of trapped charge is thus essential for future nanotechnologies, but their direct detection and manipulation is rather challenging. Here, a transistor-based set-up is used to create and probe individual electronic defect states that can be coherently driven with microwave (MW) pulses. Strikingly, we resolve a large number of very high quality (Q ∼ 1 × 10(5)) resonances in the transistor current as a function of MW frequency and demonstrate both long decoherence times (∼1 μs-40 μs) and coherent control of the defect-induced dynamics. Efficiently characterizing over 800 individually addressable resonances across two separate defect-hosting materials, we propose that their properties are consistent with weakly driven two-level systems.

  13. Electronic properties and transistors of the NbS2-MoS2-NbS2 nanoribbon heterostructure.

    PubMed

    Liu, Qi; OuYang, Fangping; Yang, Zhixiong; Peng, Shenglin; Zhou, Wenzhe; Zou, Hui; Long, Mengqiu; Pan, Jiangling

    2016-12-13

    Based on density function theory(DFT) and nonequilibrium Green's functions(NEGF), we construct a NbS2-MoS2-NbS2 nanoribbon inplane heterostructure. The effects of the channel length, width, chirality and vacancy of the heterostructure on the transport properties are systematically investigated. The electron transport of the armchair-edge heterostructure device shows ballistic transport properties, while the zigzag-edge heterostructure device exhibits resonance tunneling transport properties. Further study indicates the NbS2-MoS2-NbS2 field effect transistors(FETs) to be excellent ambipolar transistors. The FETs have high performances with current on/off ratio 4.7×10(5) and subthreshold swing 90mV/decade with the channel length m=16 and width n=6. The increase of the channel length will sharply reduce the off-state current and enhance the performances of the devices significantly.

  14. Ultraviolet Photodetectors Using Transparent Gate AlGaN/GaN High Electron Mobility Transistor on Silicon Substrate

    NASA Astrophysics Data System (ADS)

    Narita, Tomotaka; Wakejima, Akio; Egawa, Takashi

    2013-01-01

    In this paper, UV photoconductivity of a transparent gate AlGaN/GaN high electron mobility transistor (HEMT) on a Si substrate is demonstrated. The transparent gate enables the HEMT to standby under pinch-off conditions for operation as a photodetector. Therefore, the device can overcome the drawback of high standby-current in conventional metal gate field-effect transistor (FET)-based photodetectors without sacrificing its high responsivity. A negative threshold-voltage shift of -0.25 V and a significant drain-current increase over two orders of magnitude were observed under UV-light irradiation condition from the surface-side. A high responsivity of 2.0×105 A/W at 360 nm with a low leakage current of 3×10-6 A/mm was simultaneously achieved. These experimental results were in agreement with the models for generation of a photo carrier and its transportation in a heterostructure.

  15. Electronic properties and transistors of the NbS2-MoS2-NbS2 NR heterostructure

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Ouyang, Fangping; Yang, Zhixiong; Peng, Shenglin; Zhou, Wenzhe; Zou, Hui; Long, Mengqiu; Pan, Jiangling

    2017-02-01

    Based on density function theory and nonequilibrium Green’s functions, we construct a NbS2-MoS2-NbS2 NR inplane heterostructure. The effects of channel length, width, chirality and vacancy of the heterostructure on transport properties are systematically investigated. The electron transport of the armchair-edge heterostructure device shows ballistic transport properties, while the zigzag-edge heterostructure device exhibits resonance tunneling transport properties. Further study indicates NbS2-MoS2-NbS2 field effect transistors (FETs) to be excellent ambipolar transistors. The FETs have high performances with current on/off ratio 4.7 × 105 and subthreshold swing 90 mV/decade with channel length m = 16 and width n = 6. Increases in the channel length sharply reduce the off-state current and enhance the performance of the devices significantly.

  16. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics

    SciTech Connect

    Jin, Sung Hun E-mail: jhl@snu.ac.kr Shin, Jongmin; Cho, In-Tak; Lee, Jong-Ho E-mail: jhl@snu.ac.kr; Han, Sang Youn; Lee, Dong Joon; Lee, Chi Hwan; Rogers, John A. E-mail: jhl@snu.ac.kr

    2014-07-07

    This paper presents materials, device designs, and physical/electrical characteristics of a form of nanotube electronics that is physically transient, in the sense that all constituent elements dissolve and/or disperse upon immersion into water. Studies of contact effects illustrate the ability to use water soluble metals such as magnesium for source/drain contacts in nanotube based field effect transistors. High mobilities and on/off ratios in transistors that use molybdenum, silicon nitride, and silicon oxide enable full swing characteristics for inverters at low voltages (∼5 V) and with high gains (∼30). Dissolution/disintegration tests of such systems on water soluble sheets of polyvinyl alcohol demonstrate physical transience within 30 min.

  17. Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Papadi, G.; Coleman, J. K.; Sheppard, B. J.; Dungen, C. F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.; Ren, F.

    2009-06-01

    Antibody-functionalized, Au-gated AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect Perkinsus marinus. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN/GaN HEMT drain-source current showed a rapid response of less than 5 s when the infected solution was added to the antibody-immobilized surface. The sensor can be recycled with a phosphate buffered saline wash. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN/GaN HEMTs for Perkinsus marinus detection.

  18. A Terahertz Detector Based on AlGaN/GaN High Electron Mobility Transistor with Bowtie Antennas

    NASA Astrophysics Data System (ADS)

    Sun, J. D.; Sun, Y. F.; Zhou, Y.; Zhang, Z. P.; Lin, W. K.; Zen, C. H.; Wu, D. M.; Zhang, B. S.; Qin, H.; Li, L. L.; Xu, W.

    2011-12-01

    We report on the characterization of room temperature terahertz (THz) based on a GaN/AlGaN high electron mobility transistor(HEMT) including bowtie antennas. Under THz irradiation around 1 THz, strong photocurrent is observed when the electron channel is strongly modulated by the gate voltage. Both experimental and simulation data support the validity of self-mixing model. The equivalent noise power (NEP) and responsivity are estimated to be 1nW/√Hz and 42 mA/W at 300 K, respectively.

  19. Hot Electron-Based Near-Infrared Photodetection Using Bilayer MoS2.

    PubMed

    Wang, Wenyi; Klots, Andrey; Prasai, Dhiraj; Yang, Yuanmu; Bolotin, Kirill I; Valentine, Jason

    2015-11-11

    Recently, there has been much interest in the extraction of hot electrons generated from surface plasmon decay, as this process can be used to achieve additional bandwidth for both photodetectors and photovoltaics. Hot electrons are typically injected into semiconductors over a Schottky barrier between the metal and semiconductor, enabling generation of photocurrent with below bandgap photon illumination. As a two-dimensional semiconductor single and few layer molybdenum disulfide (MoS2) has been demonstrated to exhibit internal photogain and therefore becomes an attractive hot electron acceptor. Here, we investigate hot electron-based photodetection in a device consisting of bilayer MoS2 integrated with a plasmonic antenna array. We demonstrate sub-bandgap photocurrent originating from the injection of hot electrons into MoS2 as well as photoamplification that yields a photogain of 10(5). The large photogain results in a photoresponsivity of 5.2 A/W at 1070 nm, which is far above similar silicon-based hot electron photodetectors in which no photoamplification is present. This technique is expected to have potential use in future ultracompact near-infrared photodetection and optical memory devices.

  20. Modeling SRS and its Hot Electrons as they occur within Ignition Scale Hohlraums

    NASA Astrophysics Data System (ADS)

    Rosen, Mordecai; Harte, Judy; Hinkel, Denise; Town, Richard; Scott, Howard; Zimmerman, George; Williams, Ed; Callahan, Debra; Michel, Pierre; Thomas, Cliff; Bailey, David

    2012-10-01

    We utilize a package within the Lasnex code that can generate Stimulated Raman Back Scatter (SRS) light within the hohlraum. The user can specify the amount of SRS backward propagating light, its frequency, and the density at which the process occurs. In addition, the user can specify how the remaining energy, which in reality resides initially within the electron plasma wave (EPW), is to be modeled. Choices include a) ignoring the EPW and simply continuing to propagate the rest of the laser energy forward, b) local thermal energy deposition, or c) putting it into a super-thermal hot electron distribution. The level and spectrum of these hot electrons can also be chosen. Thus, we can model either the main SRS component of ˜ 100 kJ at ˜ 20 keV, or the super-hots of ˜ 1 kJ and 80 keV. The hot electrons are transported in a diffusive, quasi isotropic manner. We present preliminary results using these various deposition models, reporting on capsule implosion symmetry and on the x-ray spectrum emitted from the Au excited by the hot electrons. The need to model the hot electron transport more as beaming along the direction of the EPW is raised.

  1. Hard X-ray and Hot Electron Environment in Vacuum Hohlraums at NIF

    SciTech Connect

    McDonald, J W; . Suter, L J; Landen, O L; Foster, J M; Celeste, J R; Holder, J P; Dewald, E L; Schneider, M B; Hinkel, D E; Kauffman, R L; Atherton, L J; Bonanno, R E; Dixit, S N; Eder, D C; Haynam, C A; Kalantar, D H; Koniges, A E; Lee, F D; MacGowan, B J; Manes, K R; Munro, D H; Murray, J R; Shaw, M J; Stevenson, R M; Parham, T G; Van Wonterghem, B M; Wallace, R J; Wegner, P J; Whitman, P K; Young, B K; Hammel, B A; Moses, E I

    2005-09-22

    Time resolved hard x-ray images (hv > 9 keV) and time integrated hard x-ray spectra (hv = 18-150 keV) from vacuum hohlraums irradiated with four 351 nm wavelength NIF laser beams are presented as a function of hohlraum size and laser power and duration. The hard x-ray images and spectra provide insight into the time evolution of the hohlraum plasma filling and the production of hot electrons. The fraction of laser energy detected as hot electrons (f{sub hot}) and a comparison to a filling model are presented.

  2. Transport of charge carriers through the thin base of a heterobipolar transistor under the impact of radiation

    SciTech Connect

    Puzanov, A. S. Obolenskii, S. V. Kozlov, V. A.

    2015-01-15

    The transport of electrons in heterobipolar transistors with radiation defects is studied under conditions where the characteristic sizes of defect clusters and the distances between them can be comparable or can even exceed the sizes of the device base. It is shown that, under some levels of irradiation, neutron radiation can bring about a decrease in the time of flight of hot electrons through the base, which retards the degradation of the transistor parameters.

  3. Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Oleg; Manfra, Michael

    2003-07-01

    The presence of electronic traps in GaN-based transistors limits device performance and reliability. It is believed that material defects and electronic states on GaN surface act as the trapping centers. In spite of extensive investigation of trapping phenomena, the physics of the active defects is not completely understood. Charge trapping in the device structure is reflected in gate lag, a delayed response of the channel current to modulation of the gate potential. Gate lag studies provide essential information about the traps allowing identification of the active defects. In this paper we review gate lag in GaN-based high electron mobility transistors (HEMTs). Current transient spectroscopy, a characterization method based on gate lag measurements, is applied for trap identification in AlGaN/GaN HEMTs grown by plasma-assisted molecular beam epitaxy. In particular we focus on the processes of electron capture and emission from the traps. Probing the charge transfer mechanisms leading to gate lag allows us to extract the trap characteristics including the trapping potential, the binding energy of an electron on the trap, and the physical location of the active centers in the device.

  4. Devices using ballistic transport of two dimensional electron gas in delta doped gallium arsenide high electron mobility transistor structures

    NASA Astrophysics Data System (ADS)

    Kang, Sungmu

    In this thesis, devices using the ballistic transport of two dimensional electron gas (2DEG) in GaAs High Electron Mobility Transistor(HEMT) structure is fabricated and their dc and ac properties are characterized. This study gives insight on operation and applications of modern submicron devices with ever reduced gate length comparable to electron mean free path. The ballistic transport is achieved using both temporal and spatial limits in this thesis. In temporal limit, when frequency is higher than the scattering frequency (1/(2pitau)), ballistic transport can be achieved. At room temperature, generally the scattering frequency is around 500 GHz but at cryogenic temperature (≤4K) with high mobility GaAs HEMT structure, the frequency is much lower than 2 GHz. On this temporal ballistic transport regime, effect of contact impedance and different dc mobility on device operation is characterized with the ungated 2DEG of HEMT structure. In this ballistic regime, impedance and responsivity of plasma wave detector are investigated using the gated 2DEG of HEMT at different ac boundary conditions. Plasma wave is generated at asymmetric ac boundary conditions of HEMTs, where source is short to ground and drain is open while rf power is applied to gate. The wave velocity can be tuned by gate bias voltage and induced drain to source voltage(Vds ) shows the resonant peak at odd number of fundamental frequency. Quantitative power coupling to plasma wave detector leads to experimental characterization of resonant response of plasma wave detector as a function of frequency. Because plasma wave resonance is not limited by transit time, the physics learned in this study can be directly converted to room temperature terahertz detection by simply reducing gate length(Lgate) to submicron for the terahertz application such as non destructive test, bio medical analysis, homeland security, defense and space. In same HEMT structure, the dc and rf characterization on device is also

  5. Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors

    NASA Astrophysics Data System (ADS)

    Martins, R.; Barquinha, P.; Ferreira, I.; Pereira, L.; Gonçalves, G.; Fortunato, E.

    2007-02-01

    The role of order and disorder on the electronic performances of n-type ionic oxides such as zinc oxide, gallium zinc oxide, and indium zinc oxide used as active (channel) or passive (drain/source) layers in thin film transistors (TFTs) processed at room temperature are discussed, taking as reference the known behavior observed in conventional covalent semiconductors such as silicon. The work performed shows that while in the oxide semiconductors the Fermi level can be pinned up within the conduction band, independent of the state of order, the same does not happen with silicon. Besides, in the oxide semiconductors the carrier mobility is not bandtail limited and so disorder does not affect so strongly the mobility as it happens in covalent semiconductors. The electrical properties of the oxide films (resistivity, carrier concentration, and mobility) are highly dependent on the oxygen vacancies (source of free carriers), which can be controlled by changing the oxygen partial pressure during the deposition process and/or by adding other metal ions to the matrix. In this case, we make the oxide matrix less sensitive to the presence of oxygen, widening the range of oxygen partial pressures that can be used and thus improving the process control of the film resistivity. The results obtained in fully transparent TFT using polycrystalline ZnO or amorphous indium zinc oxide (IZO) as channel layers and highly conductive poly/nanocrystalline ZGO films or amorphous IZO as drain/source layers show that both devices work in the enhancement mode, but the TFT with the highest electronic saturation mobility and on/off ratio 49.9cm2/Vs and 4.3×108, respectively, are the ones in which the active and passive layers are amorphous. The ZnO TFT whose channel is based on polycrystalline ZnO, the mobility and on/off ratio are, respectively, 26cm2/Vs and 3×106. This behavior is attributed to the fact that the electronic transport is governed by the s-like metal cation conduction bands

  6. Proton beam shaped by "particle lens" formed by laser-driven hot electrons

    NASA Astrophysics Data System (ADS)

    Zhai, S. H.; Shen, B. F.; Wang, W. P.; Zhang, H.; He, S. K.; Lu, F.; Zhang, F. Q.; Deng, Z. G.; Dong, K. G.; Wang, S. Y.; Zhou, K. N.; Xie, N.; Wang, X. D.; Zhang, L. G.; Huang, S.; Liu, H. J.; Zhao, Z. Q.; Gu, Y. Q.; Zhang, B. H.; Xu, Z. Z.

    2016-05-01

    Two-dimensional tailoring of a proton beam is realized by a "particle lens" in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a "fountain-like" pattern when these hot electrons diffuse after propagating a distance.

  7. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer

    DOEpatents

    Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng

    2005-02-01

    A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.

  8. Hot electron temperature and coupling efficiency scaling with prepulse for cone-guided fast ignition.

    PubMed

    Ma, T; Sawada, H; Patel, P K; Chen, C D; Divol, L; Higginson, D P; Kemp, A J; Key, M H; Larson, D J; Le Pape, S; Link, A; MacPhee, A G; McLean, H S; Ping, Y; Stephens, R B; Wilks, S C; Beg, F N

    2012-03-16

    The effect of increasing prepulse energy levels on the energy spectrum and coupling into forward-going electrons is evaluated in a cone-guided fast-ignition relevant geometry using cone-wire targets irradiated with a high intensity (10(20) W/cm(2)) laser pulse. Hot electron temperature and flux are inferred from Kα images and yields using hybrid particle-in-cell simulations. A two-temperature distribution of hot electrons was required to fit the full profile, with the ratio of energy in a higher energy (MeV) component increasing with a larger prepulse. As prepulse energies were increased from 8 mJ to 1 J, overall coupling from laser to all hot electrons entering the wire was found to fall from 8.4% to 2.5% while coupling into only the 1-3 MeV electrons dropped from 0.57% to 0.03%.

  9. Electrical Detection of Quantum Dot Hot Electrons Generated via a Mn(2+)-Enhanced Auger Process.

    PubMed

    Barrows, Charles J; Rinehart, Jeffrey D; Nagaoka, Hirokazu; deQuilettes, Dane W; Salvador, Michael; Chen, Jennifer I L; Ginger, David S; Gamelin, Daniel R

    2017-01-05

    An all-solid-state quantum-dot-based photon-to-current conversion device is demonstrated that selectively detects the generation of hot electrons. Photoexcitation of Mn(2+)-doped CdS quantum dots embedded in the device is followed by efficient picosecond energy transfer to Mn(2+) with a long-lived (millisecond) excited-state lifetime. Electrons injected into the QDs under applied bias then capture this energy via Auger de-excitation, generating hot electrons that possess sufficient energy to escape over a ZnS blocking layer, thereby producing current. This electrically detected hot-electron generation is correlated with a quench in the steady-state Mn(2+) luminescence and the introduction of a new nonradiative excited-state decay process, consistent with electron-dopant Auger cross-relaxation. The device's efficiency at detecting hot-electron generation provides a model platform for the study of hot-electron ionization relevant to the development of novel photodetectors and alternative energy-conversion devices.

  10. Line-tying of interchange modes in a hot electron plasma

    SciTech Connect

    Gerver, M.J.; Lane, B.G.

    1986-07-01

    The dispersion relation of low-frequency (..omega..<<..omega../sub c/i) electrostatic flute-like interchange modes in a mirror cell with a fraction ..cap alpha.. of hot bi-Maxwellian electrons, with bulk line-tying to cold (nonemitting) end walls, has been solved using a slab model and the local approximation. In the absence of line-tying, hot-electron interchange modes are never completely stabilized (in contrast to the conventional theory (Phys. Fluids 9, 820 (1966); Phys. Fluids 19, 1255 (1976)), which assumes monoenergetic hot electrons and has little relevance to real plasmas). In the presence of line-tying, hot-electron interchange modes are more effectively stabilized than magnetohydrodynamic (MHD) interchange modes, because (1) the line-tying is enhanced by a factor of (..omega../..nu../sub e/)/sup 1//sup ///sup 2/ when the wave frequency ..omega.. is greater than the cold-electron collision frequency ..nu../sub e/; and (2) hot-electron interchange modes can be completely stabilized, rather than merely having their growth rates reduced, if there is a spread of hot-electron-curvature drift velocities. Predictions of the minimum ..cap alpha.. needed for instability and of the first azimuthal mode number m to go unstable, and of the scaling of these quantities with neutral gas pressure, are in good quantitative agreement with observations of hot-electron interchange instabilities in the Tara tendem mirror experiment (Bull. Am. Phys. Soc. 30, 1581 (1985)), provided a correction is made for the fact that the modes in Tara are not flute-like, but should have higher amplitudes in the plug than in the central cell.

  11. Hot electron transport in a strongly correlated transition-metal oxide

    PubMed Central

    Rana, Kumari Gaurav; Yajima, Takeaki; Parui, Subir; Kemper, Alexander F.; Devereaux, Thomas P.; Hikita, Yasuyuki; Hwang, Harold Y.; Banerjee, Tamalika

    2013-01-01

    Oxide heterointerfaces are ideal for investigating strong correlation effects to electron transport, relevant for oxide-electronics. Using hot-electrons, we probe electron transport perpendicular to the La0.7Sr0.3MnO3 (LSMO)- Nb-doped SrTiO3 (Nb:STO) interface and find the characteristic hot-electron attenuation length in LSMO to be 1.48 ± 0.10 unit cells (u.c.) at −1.9 V, increasing to 2.02 ± 0.16 u.c. at −1.3 V at room temperature. Theoretical analysis of this energy dispersion reveals the dominance of electron-electron and polaron scattering. Direct visualization of the local electron transport shows different transmission at the terraces and at the step-edges. PMID:23429420

  12. Infrared light emission from nano hot electron gas created in atomic point contacts

    NASA Astrophysics Data System (ADS)

    Malinowski, T.; Klein, H. R.; Iazykov, M.; Dumas, Ph.

    2016-06-01

    Gold atomic point contacts are prototype systems to evidence ballistic electron transport. The typical dimension of the nanojunction being smaller than the electron-phonon interaction length, even at room temperature, electrons transfer their excess energy to the lattice only far from the contact. At the contact however, favored by huge current densities, electron-electron interactions result in a nano hot electron gas acting as a source of photons. Using a home built Mechanically Controlled Break Junction, it is reported here, for the first time, that this nano hot electron gas also radiates in the infrared range (0.2 eV to 1.2 eV). Moreover, following the description introduced by Tomchuk et al. (Sov. Phys.-Solid State, 8 (1966) 2510), we show that this radiation is compatible with a black-body-like spectrum emitted from an electron gas at temperatures of several thousands of kelvins.

  13. Ab initio simulation of single- and few-layer MoS2 transistors: Effect of electron-phonon scattering

    NASA Astrophysics Data System (ADS)

    Szabó, Áron; Rhyner, Reto; Luisier, Mathieu

    2015-07-01

    In this paper, we present full-band atomistic quantum transport simulations of single- and few-layer MoS2 field-effect transistors (FETs) including electron-phonon scattering. The Hamiltonian and the electron-phonon coupling constants are determined from ab initio density-functional-theory calculations. It is observed that the phonon-limited electron mobility is enhanced with increasing layer thicknesses and decreases at high charge concentrations. The electrostatic control is found to be crucial even for a single-layer MoS2 device. With a single-gate configuration, the double-layer MoS2 FET shows the best intrinsic performance with an ON current, ION=685 μ A /μ m , but with a double-gate contact the transistor with a triple-layer channel delivers the highest current with ION=1850 μ A /μ m . The charge in the channel is almost independent of the number of MoS2 layers, but the injection velocity increases significantly with the channel thickness in the double-gate devices due to the reduced electron-phonon scattering rates in multilayer structures. We demonstrate further that the ballistic limit of transport is not suitable for the simulation of MX 2 FETs because of the artificial negative differential resistance it predicts.

  14. Effects of traps and polarization charges on device performance of AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Hussein, A. SH.; Ghazai, Alaa J.; Salman, Emad A.; Hassan, Z.

    2013-11-01

    This paper presents the simulated electrical characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) by using ISE TCAD software. The effects of interface traps, bulk traps and polarization charges are investigated. It was observed that the role and dynamic of traps affect the device performance which requires a precondition to calculate the DC characteristics that are in agreement with the experimental data. On the other hand, polarization charges lead to quantum confinement of the electrons in the channel and form two-dimensional electron gas. The electron quantization leads to increasing the drain current and shift in the threshold voltage. The device performance can be improved by optimizing the fixed interface charge and thus reducing the bulk traps to enhance the DC characteristics.

  15. Characteristics of light-induced electron transport from P3HT to ZnO-nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Choe, Minhyeok; Hoon Lee, Byoung; Park, Woojin; Kang, Jang-Won; Jeong, Sehee; Cho, Kyungjune; Hong, Woong-Ki; Hun Lee, Byoung; Lee, Kwanghee; Park, Seong-Ju; Lee, Takhee

    2013-11-01

    We fabricated ZnO-nanowire (NW) field-effect transistors (FETs) coated with poly(3-hexylthiophene) (P3HT) and characterized the electron-transfer characteristics from the P3HT to the ZnO NWs. Under irradiation by laser light with a wavelength of 532 nm, photo-induced electrons were created in the P3HT and then transported to the ZnO NWs, constituting a source-drain current in the initially enhancement-mode P3HT-coated ZnO-NW FETs. As the intensity of the light increased, the current increased, and its threshold voltage shifted to the negative gate-bias direction. We estimated the photo-induced electron density and the electron-transfer characteristics, which will be helpful for understanding organic-inorganic hybrid optoelectronic devices.

  16. Strongly Metallic Electron and Hole 2D Transport in an Ambipolar Si-Vacuum Field Effect Transistor.

    PubMed

    Hu, Binhui; Yazdanpanah, M M; Kane, B E; Hwang, E H; Das Sarma, S

    2015-07-17

    We report experiment and theory on an ambipolar gate-controlled Si(111)-vacuum field effect transistor where we study electron and hole (low-temperature 2D) transport in the same device simply by changing the external gate voltage to tune the system from being a 2D electron system at positive gate voltage to a 2D hole system at negative gate voltage. The electron (hole) conductivity manifests strong (moderate) metallic temperature dependence with the conductivity decreasing by a factor of 8 (2) between 0.3 K and 4.2 K with the peak electron mobility (∼18  m2/V s) being roughly 20 times larger than the peak hole mobility (in the same sample). Our theory explains the data well using random phase approximation screening of background Coulomb disorder, establishing that the observed metallicity is a direct consequence of the strong temperature dependence of the effective screened disorder.

  17. Thermal conduction by electrons in hot dense plasmas

    SciTech Connect

    Khalfaoui, A.H.; Bennaceur, D.

    1997-03-01

    Based on a quantum collective approach, electron conduction opacity is analyzed, taking into account several nonideality effects such as electron-electron (e-e) collisions in addition to electron-ion collisions, dynamic shielding, electron partial degeneracy, and ion coupling. The collision process is based on electron wave functions interacting with the continuum oscillations (plasma waves). The e-e collisions, the main nonideal effect, contribute to the thermal conductivity calculation in the intermediate coupling regime. Hence, the extensively used Lorentz gas approximation cannot be justified for plasma of astrophysical interest. The present results are compared to existing theories of electron conduction in stellar matter. {copyright} {ital 1997} {ital The American Astronomical Society}

  18. Measurements of hot-electron temperature in laser-irradiated plasmas

    DOE PAGES

    Solodov, A. A.; Yaakobi, B.; Edgell, D. H.; ...

    2016-10-26

    In a recently published work1–3 we reported on measuring the total energy of hot electrons produced by the interaction of a nanosecond laser with planar CH-coated molybdenum targets, using the Mo Kα emission. The temperature of the hot electrons in that work was determined by the high-energy bremsstrahlung [hard x-ray (HXR)] spectrum measured by a three-channel fluorescence-photomultiplier detector (HXRD). In the present work, we replaced the HXRD with a nine-channel image-plate (IP)–based detector (HXIP). For the same conditions (irradiance of the order of 1014 W/cm2; 2-ns pulses) the measured temperatures are consistently lower than those measured by the HXRD (bymore » a factor ~1.5 to 1.7). In addition, we supplemented this measurement with three experiments that measure the hot-electron temperature using Kα line-intensity ratios from high-Z target layers, independent of the HXR emission. These experiments yielded temperatures that were consistent with those measured by the HXIP. We showed that the thermal x-ray radiation must be included in the derivation of total energy in hot electrons (Ehot), and that this makes Ehot only weakly dependent on hot-electron temperature. For a given x-ray emission in inertial confinement fusion compression experiments, this result would lead to a higher total energy in hot electrons, but the preheat of the compressed fuel may be lower because of the reduced hot-electron range.« less

  19. Measurements of hot-electron temperature in laser-irradiated plasmas

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Yaakobi, B.; Edgell, D. H.; Follett, R. K.; Myatt, J. F.; Sorce, C.; Froula, D. H.

    2016-10-01

    In a recently published work [Yaakobi et al., Phys. Plasmas 19, 012704 (2012)] we reported on measuring the total energy of hot electrons produced by the interaction of a nanosecond laser with planar CH-coated molybdenum targets, using the Mo Kα emission. The temperature of the hot electrons in that work was determined by the high-energy bremsstrahlung [hard X-ray (HXR)] spectrum measured by a three-channel fluorescence-photomultiplier HXR detector (HXRD). In the present work, we replaced the HXRD with a nine-channel image-plate (IP)-based detector (HXIP). For the same conditions (irradiance of the order of 1014 W/cm2; 2-ns pulses), the measured temperatures are consistently lower than those measured by the HXRD (by a factor ˜1.5 to 1.7). We supplemented this measurement with three experiments that measure the hot-electron temperature using Kα line-intensity ratios from high-Z target layers, independent of the HXR emission. These experiments yielded temperatures that were consistent with those measured by the HXIP. We showed that the thermal X-ray radiation must be included in the derivation of total energy in hot electrons (Ehot), and that this makes Ehot only weakly dependent on hot-electron temperature. For a given X-ray emission in the inertial confinement fusion compression experiments, this result would lead to a higher total energy in hot electrons, but preheating of the compressed fuel may be lower because of the reduced hot-electron range.

  20. Early hot electrons generation and beaming in ICF gas filled hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard; Michel, Pierre; Hartemann, Fred; Milovich, Jose; Hohenberger, Matthias; Divol, Laurent; Landen, Otto; Pak, Arthur; Thomas, Cliff; Doeppner, Tilo; Bachmann, Benjamin; Meezan, Nathan; MacKinnon, Andrew; Hurricane, Omar; Callahan, Debbie; Hinkel, Denise; Edwards, John

    2015-11-01

    In laser driven hohlraum capsule implosions on the National Ignition Facility, supra-thermal hot electrons generated by laser plasma instabilities can preheat the capsule. Time resolved hot electron Bremsstrahlung spectra combined with 30 keV x-ray imaging uncover for the first time the directionality of hot electrons onto a high-Z surrogate capsule located at the hohlraum center. In the most extreme case, we observed a collimated beaming of hot electrons onto the capsule poles, reaching 50x higher localized energy deposition than for isotropic electrons. A collective SRS model where all laser beams in a cone drive a common plasma wave provides a physical interpretation for the observed beaming. Imaging data are used to distinguish between this mechanism and 2ωp instability. The amount of hot electrons generated can be controlled by the laser pulse shape and hohlraum plasma conditions. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  1. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Operation Mechanism of Double-Walled Carbon Nanotubes Transistors Investigated By ab initio Calculations

    NASA Astrophysics Data System (ADS)

    Lan, Hai-Ping; Zhang, Shuang

    2009-11-01

    Recently, a new switching characteristic of double-walled carbon nanotubes (DWNTs) transistors is found in during experiments. We carry out a series of ab intio calculations on DWNTs' electronic properities, together with verification on the electronic response under the electric field. Our results reveal that the peculiar energy states relation in DWNTs and related contact modes should account for the distinct switching behavior of DWNT transistors. We believe these results have important implications in the fabrication and understanding of electronic devices with DWNTs.

  2. Line-tying of interchange modes in a hot electron plasma

    NASA Astrophysics Data System (ADS)

    Gerver, M. J.; Lane, B. G.

    1986-07-01

    The dispersion relation of low-frequency (ω≪ωci) electrostatic flute-like interchange modes in a mirror cell with a fraction α of hot bi-Maxwellian electrons, with bulk line-tying to cold (nonemitting) end walls, has been solved using a slab model and the local approximation. In the absence of line-tying, hot-electron interchange modes are never completely stabilized (in contrast to the conventional theory [Phys. Fluids 9, 820 (1966); Phys. Fluids 19, 1255 (1976)], which assumes monoenergetic hot electrons and has little relevance to real plasmas). In the presence of line-tying, hot-electron interchange modes are more effectively stabilized than magnetohydrodynamic (MHD) interchange modes, because (1) the line-tying is enhanced by a factor of (ω/νe)1/2 when the wave frequency ω is greater than the cold-electron collision frequency νe; and (2) hot-electron interchange modes can be completely stabilized, rather than merely having their growth rates reduced, if there is a spread of hot-electron-curvature drift velocities. Predictions of the minimum α needed for instability and of the first azimuthal mode number m to go unstable, and of the scaling of these quantities with neutral gas pressure, are in good quantitative agreement with observations of hot-electron interchange instabilities in the Tara tendem mirror experiment [Bull. Am. Phys. Soc. 30, 1581 (1985)], provided a correction is made for the fact that the modes in Tara are not flute-like, but should have higher amplitudes in the plug than in the central cell. The theory may also explain observations in other experiments [Phys. Fluids 27, 1019 (1984); Phys. Fluids 19, 1203 (1976)]. Increasing the ion temperature Ti should have a modest stabilizing effect. In addition to the hot-electron interchange modes, there are also ion-driven interchange modes, which are unstable even in the absence of hot electrons, but generally have low growth rates, much less than MHD growth rates. Even these modes may be

  3. Antenna-Coupled Superconducting Tunnel Junctions with Single-Electron Transistor Readout for Detection of Sub-mm Radiation

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Teufel, J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    Antenna-coupled superconducting tunnel junction detectors have the potential for photon-counting sensitivity at sub-mm wavelengths. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  4. Characteristics control of room-temperature operating single electron transistor with floating gate by charge pump circuit

    NASA Astrophysics Data System (ADS)

    Nozue, Motoki; Suzuki, Ryota; Nomura, Hirotoshi; Saraya, Takuya; Hiramoto, Toshiro

    2013-10-01

    A single electron transistor (SET) with floating gate, which has a non-volatile memory effect, is successfully integrated with a charge pump circuit that consists of conventional MOS circuits on the same chip. By applying high voltage generated by the charge pump circuit to SET with floating gate, characteristics control of the Coulomb blockade oscillation is demonstrated at room temperature for the first time. This attempt will open a new path of adding new functionality to conventional MOS circuits by integration with so-called "Beyond CMOS" devices.

  5. Observation of ambipolar switching in a silver nanoparticle single-electron transistor with multiple molecular floating gates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Shinohara, Shuhei; Tamada, Kaoru; Ishii, Hisao; Noguchi, Yutaka

    2016-03-01

    Ambipolar switching behavior was observed in a silver nanoparticle (AgNP)-based single-electron transistor (SET) with tetra-tert-butyl copper phthalocyanine (ttbCuPc) as a molecular floating gate. Depending on the wavelength of the incident light, the stability diagram shifted to the negative and positive directions along the gate voltage axis. These results were explained by the photoinduced charging of ttbCuPc molecules in the vicinity of AgNPs. Moreover, multiple device states were induced by the light irradiation at a wavelength of 600 nm, suggesting that multiple ttbCuPc molecules individually worked as a floating gate.

  6. Liquid-phase catalytic reactor combined with measurement of hot electron flux and chemiluminescence

    NASA Astrophysics Data System (ADS)

    Nedrygailov, Ievgen I.; Lee, Changhwan; Moon, Song Yi; Lee, Hyosun; Park, Jeong Young

    2016-11-01

    Understanding the role of electronically nonadiabatic interactions during chemical reactions on metal surfaces in liquid media is of great importance for a variety of applications including catalysis, electrochemistry, and environmental science. Here, we report the design of an experimental apparatus for detection of the highly excited (hot) electrons created as a result of nonadiabatic energy transfer during the catalytic decomposition of hydrogen peroxide on thin-film metal-semiconductor nanodiodes. The apparatus enables the measurement of hot electron flows and related phenomena (e.g., surface chemiluminescence) as well as the corresponding reaction rates at different temperatures. The products of the chemical reaction can be characterized in the gaseous phase by means of gas chromatography. The combined measurement of hot electron flux, catalytic activity, and light emission can lead to a fundamental understanding of the elementary processes occurring during the heterogeneous catalytic reaction.

  7. Hot electron production using the Texas Petawatt Laser irradiating thick gold targets

    NASA Astrophysics Data System (ADS)

    Taylor, Devin; Liang, Edison; Clarke, Taylor; Henderson, Alexander; Chaguine, Petr; Wang, Xin; Dyer, Gilliss; Serratto, Kristina; Riley, Nathan; Donovan, Michael; Ditmire, Todd

    2013-06-01

    We present data for relativistic hot electron production by the Texas Petawatt Laser irradiating solid Au targets with thickness between 1 and 4 mm. The experiment was performed at the short focus target chamber TC1 in July 2011, with intensities on the order of several ×1019 W/cm2 and laser energies around 50 J. We discuss the design of an electron-positron magnetic spectrometer to record the lepton energy spectra ejected from the Au targets and present a deconvolution algorithm to extract the lepton energy spectra. We measured hot electron spectra out to ˜50 MeV, which show a narrow peak around 10-20 MeV, plus high energy exponential tail. The hot electron spectral shapes appear significantly different from those reported for other PW lasers.

  8. Collisionless microtearing modes in hot tokamaks: Effect of trapped electrons

    SciTech Connect

    Swamy, Aditya K.; Ganesh, R.; Brunner, S.; Vaclavik, J.; Villard, L.

    2015-07-15

    Collisionless microtearing modes have recently been found linearly unstable in sharp temperature gradient regions of large aspect ratio tokamaks. The magnetic drift resonance of passing electrons has been found to be sufficient to destabilise these modes above a threshold plasma β. A global gyrokinetic study, including both passing electrons as well as trapped electrons, shows that the non-adiabatic contribution of the trapped electrons provides a resonant destabilization, especially at large toroidal mode numbers, for a given aspect ratio. The global 2D mode structures show important changes to the destabilising electrostatic potential. The β threshold for the onset of the instability is found to be generally downshifted by the inclusion of trapped electrons. A scan in the aspect ratio of the tokamak configuration, from medium to large but finite values, clearly indicates a significant destabilizing contribution from trapped electrons at small aspect ratio, with a diminishing role at larger aspect ratios.

  9. Contact Resistance and Channel Conductance of Graphene Field-Effect Transistors under Low-Energy Electron Irradiation

    PubMed Central

    Giubileo, Filippo; Di Bartolomeo, Antonio; Martucciello, Nadia; Romeo, Francesco; Iemmo, Laura; Romano, Paola; Passacantando, Maurizio

    2016-01-01

    We studied the effects of low-energy electron beam irradiation up to 10 keV on graphene-based field effect transistors. We fabricated metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO2, obtaining specific contact resistivity ρc≈19 kΩ·µm2 and carrier mobility as high as 4000 cm2·V−1·s−1. By using a highly doped p-Si/SiO2 substrate as the back gate, we analyzed the transport properties of the device and the dependence on the pressure and on the electron bombardment. We demonstrate herein that low energy irradiation is detrimental to the transistor current capability, resulting in an increase in contact resistance and a reduction in carrier mobility, even at electron doses as low as 30 e−/nm2. We also show that irradiated devices recover their pristine state after few repeated electrical measurements. PMID:28335335

  10. Chemically assembled double-dot single-electron transistor analyzed by the orthodox model considering offset charge

    SciTech Connect

    Kano, Shinya; Maeda, Kosuke; Majima, Yutaka; Tanaka, Daisuke; Sakamoto, Masanori; Teranishi, Toshiharu

    2015-10-07

    We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge), respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.

  11. Production Engineering Measure for an Electron-Beam Machine and Microwave Transistors.

    DTIC Science & Technology

    the instrument and are functioning to specifications. Major modifications were made to the pattern generation and auto-align software to take advantage...transistor lots were initiated during the sixth quarter because of the instrument upgrading effort. E-beam delineation was limited to pattern generation, auto-align, and resist process testing. (Author)

  12. Hot-Electron Gallium Nitride Two Dimensional Electron Gas Nano-bolometers For Advanced THz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rahul

    Two-dimensional electron gas (2DEG) in semiconductor heterostructures was identified as a promising medium for hot-electron bolometers (HEB) in the early 90s. Up until now all research based on 2DEG HEBs is done using high mobility AlGaAs/GaAs heterostructures. These systems have demonstrated very good performance, but only in the sub terahertz (THz) range. However, above ˜0.5 THz the performance of AlGaAs/GaAs detectors drastically deteriorates. It is currently understood, that detectors fabricated from standard AlGaAs/GaAs heterostructures do not allow for reasonable coupling to THz radiation while maintaining high conversion efficiency. In this work we have developed 2DEG HEBs based on disordered Gallium Nitride (GaN) semiconductor, that operate at frequencies beyond 1THz at room temperature. We observe strong free carrier absorption at THz frequencies in our disordered 2DEG film due to Drude absorption. We show the design and fabrication procedures of novel micro-bolometers having ultra-low heat capacities. In this work the mechanism of 2DEG response to THz radiation is clearly identified as bolometric effect through our direct detection measurements. With optimal doping and detector geometry, impedances of 10--100 O have been achieved, which allow integration of these devices with standard THz antennas. We also demonstrate performance of the antennas used in this work in effectively coupling THz radiation to the micro-bolometers through polarization dependence and far field measurements. Finally heterodyne mixing due to hot electrons in the 2DEG micro-bolometer has been performed at sub terahertz frequencies and a mixing bandwidth greater than 3GHz has been achieved. This indicates that the characteristic cooling time in our detectors is fast, less than 50ps. Due to the ultra-low heat capacity; these detectors can be used in a heterodyne system with a quantum cascade laser (QCL) as a local oscillator (LO) which typically provides output powers in the micro

  13. Gate-defined Single Electron Transistor in a Graphene-MoS2 van der Waals Heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip

    We report experimental demonstration of fabrication of laterally confined single electron transistor (SET) on MoS2 transition metal dichalcogenide (TMDC) semiconductor. A few atomic layers of MoS2 single crystals are encapsulated in hBN layers in order to improve mobility of 2-dimensional (2D) electron channel. Graphene layers are employed to provide Ohmic contact to the TMDC channels. The laterally confined quantum dots are formed by electrostatically depleting the near-by 2D channel employing local gate fabricated by electron lithography. Typical SET transport signatures such as gate-tunable Coulomb blockade have been observed. We have demonstrated the quantum confinement can be sensitively tuned to adjust the dot-reservoir coupling. The work paves way for more complicated device structure such as valley-spin filter and vertically coupled quantum dots in Coulomb drag devices.

  14. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    SciTech Connect

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin E-mail: chilf@suda.edu.cn Chi, Li-Feng E-mail: chilf@suda.edu.cn Wang, Sui-Dong E-mail: chilf@suda.edu.cn

    2015-03-23

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  15. Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas

    NASA Astrophysics Data System (ADS)

    Fein, J. R.; Holloway, J. P.; Trantham, M. R.; Keiter, P. A.; Edgell, D. H.; Froula, D. H.; Haberberger, D.; Frank, Y.; Fraenkel, M.; Raicher, E.; Shvarts, D.; Drake, R. P.

    2017-03-01

    Hard x-ray measurements are used to infer production of hot electrons in laser-irradiated planar foils of materials ranging from low- to high-Z. The fraction of laser energy converted to hot electrons, fhot , was reduced by a factor of 103 going from low-Z CH to high-Z Au, and hot electron temperatures were reduced from 40 to ˜20 keV. The reduction in fhot correlates with steepening electron density gradient length-scales inferred from plasma refraction measurements. Radiation hydrodynamic simulations predicted electron density profiles in reasonable agreement with those from measurements. Both multi-beam two-plasmon decay (TPD) and multi-beam stimulated Raman scattering (SRS) were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased electron plasma wave collisional and Landau damping. The results add to the evidence that SRS may play a comparable or a greater role relative to TPD in generating hot electrons in multi-beam experiments.

  16. Direct Measurements of Hot-Electron Preheat in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Christopherson, A. R.; Betti, R.; Howard, J.; Bose, A.; Forrest, C. J.; Theobald, W.; Campbell, E. M.; Delettrez, J. A.; Stoeckl, C.; Edgell, D. H.; Seka, W.; Davis, A. K.; Michel, D. T.; Glebov, V. Yu.; Wei, M. S.

    2016-10-01

    In laser-driven inertial confinement fusion, a spherical capsule of cryogenic DT with a low- Z (CH, Be) ablator is accelerated inward on low entropy to achieve high hot-spot pressures at stagnation with minimal driver energy. Hot electrons generated from laser-plasma instabilities can compromise this performance by preheating the DT fuel, which results in early decompression of the imploding shell and lower hot-spot pressures. The hot-electron energy deposited into the DT for direct-drive implosions is routinely inferred by subtracting hard x-ray signals between a cryogenic implosion and its mass-equivalent, all-CH implosion. However, this technique does not measure the energy deposited into the unablated DT, which fundamentally determines the final degradation in hot-spot pressure. In this work, we report on experiments conducted with high- Z payloads of varying thicknesses to determine the hot-electron energy deposited into a payload that is mass equivalent to the amount of unablated DT present in typical DT layered implosions on OMEGA. These are the first measurements to directly probe the effect of preheat on performance degradation. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Young's double-slit interference observation of hot electrons in semiconductors.

    PubMed

    Furuya, Kazuhito; Ninomiya, Yasunori; Machida, Nobuya; Miyamoto, Yasuyuki

    2003-11-21

    We have carried out Young's double-slit experiment for the hot-electron wave in man-made semiconductor structures with a 25-nm-space double slit in an InP layer buried within GaInAs, a 190-nm-thick GaInAsP hot-electron wave propagation layer, and a collector array of 80 nm pitch. At 4.2 K, dependences of the collector current on the magnetic field were measured and found to agree clearly with the double-slit interference theory. The present results show evidence for the wave front spread of hot electrons using the three-dimensional state in materials, for the first time, and the possibility of using top-down fabrication techniques to achieve quantum wave front control in materials.

  18. Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection

    SciTech Connect

    Zhan, Yaohui; Li, Xiaofeng Wu, Kai; Wu, Shaolong; Deng, Jiajia

    2015-02-23

    Single-nanowire photodetectors (SNPDs) are mostly propelled by p-n junctions, where the detection wavelength is constrained by the band-gap width. Here, we present a simple doping-free metal/semiconductor/metal SNPD, which shows strong detection tunability without such a material constraint. The proposed hot-electron SNPD exhibits superior optical and electrical advantages, i.e., optically the coaxial design leads to a strong asymmetrical photoabsorption and results in a high unidirectional photocurrent, as desired by the hot-electron collection; electrically the hot-electrons are generated in the region very close to the barrier, facilitating the electrical transport. Rigorous calculations predict an unbiased photoresponsivity of ∼200 nA/mW.

  19. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers

    PubMed Central

    Lee, Young Keun; Lee, Hyosun; Park, Jeong Young

    2014-01-01

    We demonstrate a tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. The tandem-structured, hot electron based photovoltaic cell is composed of two metal/semiconductor interfaces. Two types of tandem cells were fabricated using TiO2/Au/Si and TiO2/Au/TiO2, and photocurrent enhancement was detected. The double Schottky barriers lead to an additional pathway for harvesting hot electrons, which is enhanced through multiple reflections between the two barriers with different energy ranges. In addition, light absorption is improved by the band-to-band excitation of both semiconductors with different band gaps. Short-circuit current and energy conversion efficiency of the tandem-structured TiO2/Au/Si increased by 86% and 70%, respectively, compared with Au/Si metal/semiconductor nanodiodes, showing an overall solar energy conversion efficiency of 5.3%. PMID:24694838

  20. HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

    SciTech Connect

    Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

    2008-10-08

    Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

  1. Hot electron generation and energy coupling in planar experiments with shock ignition high intensity lasers

    NASA Astrophysics Data System (ADS)

    Wei, M. S.; Krauland, C.; Alexander, N.; Zhang, S.; Peebles, J.; Beg, F. N.; Theobald, W.; Borwick, E.; Ren, C.; Yan, R.; Haberberger, D.; Betti, R.; Campbell, E. M.

    2016-10-01

    Hot electrons produced in nonlinear laser plasma interactions are critical issues for shock ignition (SI) laser fusion. We conducted planar target experiments to characterize hot electron and energy coupling using the high energy OMEGA EP laser system at SI high intensities. Targets were multilayered foils consisting of an ablator (either plastic or lithium) and a Cu layer to facilitate hot electron detection via fluorescence and bremsstrahlung measurements. The target was first irradiated by multi-kJ, low-intensity UV beams to produce a SI-relevant mm-scale hot ( 1 keV) preformed plasma. The main interaction pulse, either a kJ 1-ns UV pulse with intensity 1.6x1016 Wcm-2 or a kJ 0.1-ns IR pulse with intensity up to 2x1017 Wcm-2was injected at varied timing delays. The high intensity IR beam was found to strongly interact with underdense plasmas breaking into many filaments near the quarter critical density region followed by propagation of those filaments to critical density, producing hot electrons with Thot 70 keV in a well-contained beam. While the high intensity UV beam showed poor energy coupling. Details of the experiments and the complementary PIC modeling results will be presented. Work supported by U.S. DOE under contracts DE-NA0002730 (NLUF) and DE-SC0014666 (HEDLP).

  2. Measurements of hot electrons in the Extrap T1 reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Welander, A.; Bergsåker, H.

    1998-02-01

    The presence of an anisotropic energetic electron population in the edge region is a characteristic feature of reversed-field pinch (RFP) plasmas. In the Extrap T1 RFP, the anisotropic, parallel heat flux in the edge region measured by calorimetry was typically several hundred 0741-3335/40/2/011/img1. To gain more insight into the origin of the hot electron component and to achieve time resolution of the hot electron flow during the discharge, a target probe with a soft x-ray monitor was designed, calibrated and implemented. The x-ray emission from the target was measured with a surface barrier detector covered with a set of different x-ray filters to achieve energy resolution. A calibration in the range 0.5-2 keV electron energy was performed on the same target and detector assembly using a 0741-3335/40/2/011/img2 cathode electron gun. The calibration data are interpolated and extrapolated numerically. A directional asymmetry of more than a factor of 100 for the higher energy electrons is observed. The hot electrons are estimated to constitute 10% of the total electron density at the edge and their energy distribution is approximated by a half-Maxwellian with a temperature slightly higher than the central electron temperature. Scalings with plasma current, as well as correlations with local 0741-3335/40/2/011/img3 measurements and radial dependences, are presented.

  3. Characterization of the hot electron population with bremsstrahlung and backscatter measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Albert, Felicie; Hohenberger, Matthias; Michel, Pierre; Divol, Laurent; Doeppner, Tilo; Dewald, Edward; Bachmann, Benjamin; Ralph, Joseph; Turnbull, David; Goyon, Clement; Thomas, Cliff; Landen, Otto; Moody, John

    2016-10-01

    In indirect-drive ignition experiments, the hot electron population, produced by laser-plasma interactions, can be inferred from the bremsstrahlung generated by the interaction of the hot electrons with the target. At the National Ignition Facility (NIF), the upgraded filter-fluorescer x-ray diagnostic (FFLEX), a 10-channel, time-resolved hard x-ray spectrometer operating in the 20- to 500-keV range, provides measurements of the bremsstrahlung spectrum. It typically shows a two-temperature distribution of the hot electron population inside the hohlraum. In SRS, where the laser is coupled to an electron plasma wave, the backscattered spectrum, measured with the NIF full-aperture backscatter system (FABS), is used to infer the plasma wave phase velocity. We will present FFLEX time-integrated and time-resolved measurements of the hot electron population low-temperature component. We will correlate them with electron plasma wave phase velocities inferred from FABS spectra for a range of recent shots performed at the National Ignition Facility. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Precipitation of electrons into the upper atmosphere of a hot-jupiter exoplanet

    NASA Astrophysics Data System (ADS)

    Bisikalo, D. V.; Shematovich, V. I.

    2015-09-01

    A kinetic model enabling investigation of the penetration and degradation of a flux of electrons into high-latitude regions of the hydrogen-dominant upper atmosphere of an exoplanet by means of numerical solution of the Boltzmann equation has been developed. It is shown for the case of a dipolar magnetic field that a one-dimensional model makes it possible to obtain a correct solution to this problem. Computations of the precipitation of a flux of electrons from the magnetosphere into the atmosphere of a typical hot Jupiter and the atmosphere of the planet Jupiter in our Solar system have been carried out. The computations assume a Maxwellian velocity distribution for electrons with three characteristic energies, E 0 = 1, 10, and 100 keV. The efficiency of heating the atmosphere of a typical hot Jupiter and the planet Jupiter are considered. The heating efficiency displays only a weak dependence on the characteristic energy of the precipitating electrons. The heating efficiency for the upper atmosphere of Jupiter is also independent of the height, and lies in the range 7-9%. The heating efficiency for the atmosphere of a hot Jupiter depends appreciably on height, and varies from 7 to 18%. In the case of a hot Jupiter, the energy-absorption peaks for electrons with low kinetic energies lie in the region of higher heating efficiencies, substantially strengthening the contribution from precipitating electrons to the total heating of the atmosphere.

  5. Hot-electron energy relaxation time in Ga-doped ZnO films

    SciTech Connect

    Šermukšnis, E. Liberis, J.; Ramonas, M.; Matulionis, A.; Toporkov, M.; Liu, H. Y.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-02-14

    Hot-electron energy relaxation time is deduced for Ga-doped ZnO epitaxial layers from pulsed hot-electron noise measurements at room temperature. The relaxation time increases from ∼0.17 ps to ∼1.8 ps when the electron density increases from 1.4 × 10{sup 17 }cm{sup −3} to 1.3 × 10{sup 20 }cm{sup −3}. A local minimum is resolved near an electron density of 1.4 × 10{sup 19 }cm{sup −3}. The longest energy relaxation time (1.8 ps), observed at the highest electron density, is in good agreement with the published values obtained by optical time-resolved luminescence and absorption experiments. Monte Carlo simulations provide a qualitative interpretation of our observations if hot-phonon accumulation is taken into account. The local minimum of the electron energy relaxation time is explained by the ultrafast plasmon-assisted decay of hot phonons in the vicinity of the plasmon–LO-phonon resonance.

  6. Hot electron production in laser solid interactions with a controlled pre-pulse

    SciTech Connect

    Culfa, O.; Tallents, G. J.; Wagenaars, E.; Ridgers, C. P.; Dance, R. J.; Rossall, A. K.; Woolsey, N. C.; Gray, R. J.; McKenna, P.; Brown, C. D. R.; James, S. F.; Hoarty, D. J.; Booth, N.; Robinson, A. P. L.; Lancaster, K. L.; Pikuz, S. A.; Faenov, A. Ya.; Kampfer, T.; Schulze, K. S.; Uschmann, I.

    2014-04-15

    Hot electron generation plays an important role in the fast ignition approach to inertial confinement fusion (ICF) and other applications with ultra-intense lasers. Hot electrons of temperature up to 10–20 MeV have been produced by high contrast picosecond duration laser pulses focussed to intensities of ∼10{sup 20} W cm{sup −2} with a deliberate pre-pulse on solid targets using the Vulcan Petawatt Laser facility. We present measurements of the number and temperature of hot electrons obtained using an electron spectrometer. The results are correlated to the density scale length of the plasma produced by a controlled pre-pulse measured using an optical probe diagnostic. 1D simulations predict electron temperature variations with plasma density scale length in agreement with the experiment at shorter plasma scale lengths (<7.5μm), but with the experimental temperatures (13–17 MeV) dropping below the simulation values (20–25 MeV) at longer scale lengths. The experimental results show that longer interaction plasmas produced by pre-pulses enable significantly greater number of hot electrons to be produced.

  7. The Current Collapse in AlGaN/GaN High-Electron Mobility Transistors Can Originate from the Energy Relaxation of Channel Electrons?

    PubMed Central

    Mao, Ling-Feng; Ning, Huan-Sheng; Wang, Jin-Yan

    2015-01-01

    Influence of the energy relaxation of the channel electrons on the performance of AlGaN/GaN high-electron mobility transistors (HEMTs) has been investigated using self-consistent solution to the coupled Schrödinger equation and Poisson equation. The first quantized energy level in the inversion layer rises and the average channel electron density decreases when the channel electric field increases from 20 kV/cm to 120 kV/cm. This research also demonstrates that the energy relaxation of the channel electrons can lead to current collapse and suggests that the energy relaxation should be considered in modeling the performance of AlGaN/GaN HEMTs such as, the gate leakage current, threshold voltage, source-drain current, capacitance-voltage curve, etc. PMID:26039589

  8. The Current Collapse in AlGaN/GaN High-Electron Mobility Transistors Can Originate from the Energy Relaxation of Channel Electrons?

    PubMed

    Mao, Ling-Feng; Ning, Huan-Sheng; Wang, Jin-Yan

    2015-01-01

    Influence of the energy relaxation of the channel electrons on the performance of AlGaN/GaN high-electron mobility transistors (HEMTs) has been investigated using self-consistent solution to the coupled Schrödinger equation and Poisson equation. The first quantized energy level in the inversion layer rises and the average channel electron density decreases when the channel electric field increases from 20 kV/cm to 120 kV/cm. This research also demonstrates that the energy relaxation of the channel electrons can lead to current collapse and suggests that the energy relaxation should be considered in modeling the performance of AlGaN/GaN HEMTs such as, the gate leakage current, threshold voltage, source-drain current, capacitance-voltage curve, etc.

  9. Tunnel field-effect transistors as energy-efficient electronic switches.

    PubMed

    Ionescu, Adrian M; Riel, Heike

    2011-11-16

    Power dissipation is a fundamental problem for nanoelectronic circuits. Scaling the supply voltage reduces the energy needed for switching, but the field-effect transistors (FETs) in today's integrated circuits require at least 60 mV of gate voltage to increase the current by one order of magnitude at room temperature. Tunnel FETs avoid this limit by using quantum-mechanical band-to-band tunnelling, rather than thermal injection, to inject charge carriers into the device channel. Tunnel FETs based on ultrathin semiconducting films or nanowires could achieve a 100-fold power reduction over complementary metal-oxide-semiconductor (CMOS) transistors, so integrating tunnel FETs with CMOS technology could improve low-power integrated circuits.

  10. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    SciTech Connect

    Kemp, Gregory Elijah

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  11. Effect of re-heating on the hot electron temperature

    SciTech Connect

    Estabrook, K.; Rosen, M.

    1980-06-17

    Resonant absorption is the direct conversion of the transverse laser light to longitudinal electron plasma waves (epw) at the critical density (10/sup 21/ (1.06 ..mu..m/lambda/sub 0/)/sup 2/ cm/sup -3/). The oscillating longitudinal electric field of the epw heats the electrons by accelerating them down the density gradient to a temperature of approximately 21T/sub e//sup 0/ /sup 25/ ((I(W/cm/sup 2/)/10/sup 16/)(lambda/sub 0//1.06 ..mu..m)/sup 2/)/sup 0/ /sup 4/. This section extends the previous work by studying the effects of magnetic fields and collisions (albedo) which return the heated electrons for further heating. A magnetic field increases their temperature and collisions do not.

  12. Hot electrons transverse refluxing in ultraintense laser-solid interactions.

    PubMed

    Buffechoux, S; Psikal, J; Nakatsutsumi, M; Romagnani, L; Andreev, A; Zeil, K; Amin, M; Antici, P; Burris-Mog, T; Compant-La-Fontaine, A; d'Humières, E; Fourmaux, S; Gaillard, S; Gobet, F; Hannachi, F; Kraft, S; Mancic, A; Plaisir, C; Sarri, G; Tarisien, M; Toncian, T; Schramm, U; Tampo, M; Audebert, P; Willi, O; Cowan, T E; Pépin, H; Tikhonchuk, V; Borghesi, M; Fuchs, J

    2010-07-02

    We have analyzed the coupling of ultraintense lasers (at ∼2×10{19}  W/cm{2}) with solid foils of limited transverse extent (∼10  s of μm) by monitoring the electrons and ions emitted from the target. We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time. Consequently, when transverse refluxing takes places within the acceleration time of associated ions, we observe increased maximum proton energies (up to threefold), increased laser-to-ion conversion efficiency (up to a factor 30), and reduced divergence which bodes well for a number of applications.

  13. Absolute negative conductivity and spontaneous current generation in semiconductor superlattices with hot electrons

    PubMed

    Cannon; Kusmartsev; Alekseev; Campbell

    2000-08-07

    We study transport through a semiconductor superlattice with an electric field parallel to and a magnetic field perpendicular to the growth axis. Using a semiclassical balance equation model with elastic and inelastic scattering, we find that (1) the current-voltage characteristic becomes multistable in a large magnetic field and (2) "hot" electrons display novel features in their current-voltage characteristics, including absolute negative conductivity and a spontaneous dc current at zero bias. We discuss experimental situations providing hot electrons to observe these effects.

  14. Hydrogen Oxidation-Driven Hot Electron Flow Detected by Catalytic Nanodiodes

    SciTech Connect

    Hervier, Antoine; Renzas, J. Russell; Park, Jeong Y.; Somorjai, Gabor A.

    2009-07-20

    Hydrogen oxidation on platinum is shown to be a surface catalytic chemical reaction that generates a steady state flux of hot (>1 eV) conduction electrons. These hot electrons are detected as a steady-state chemicurrent across Pt/TiO{sub 2} Schottky diodes whose Pt surface is exposed to hydrogen and oxygen. Kinetic studies establish that the chemicurrent is proportional to turnover frequency for temperatures ranging from 298 to 373 K for P{sub H2} between 1 and 8 Torr and P{sub O2} at 760 Torr. Both chemicurrent and turnover frequency exhibit a first order dependence on P{sub H2}.

  15. Electronic system for data acquisition to study radiation effects on operating MOSFET transistors

    SciTech Connect

    Alves de Oliveira, Juliano; Assis de Melo, Marco Antônio; Guazzelli da Silveira, Marcilei A.; Medina, Nilberto H.

    2014-11-11

    In this work we present the development of an acquisition system for characterizing transistors under X-ray radiation. The system is able to carry out the acquisition and to storage characteristic transistor curves. To test the acquisition system we have submitted polarized P channel MOS transistors under continuous 10-keV X-ray doses up to 1500 krad. The characterization system can operate in the saturation region or in the linear region in order to observe the behavior of the currents or voltages involved during the irradiation process. Initial tests consisted of placing the device under test (DUT) in front of the X-ray beam direction, while its drain current was constantly monitored through the prototype generated in this work, the data are stored continuously and system behavior was monitored during the test. In order to observe the behavior of the DUT during the radiation tests, we used an acquisition system that consists of an ultra-low consumption16-bit Texas Instruments MSP430 microprocessor. Preliminary results indicate linear behavior of the voltage as a function of the exposure time and fast recovery. These features may be favorable to use this device as a radiation dosimeter to monitor low rate X-ray.

  16. Electron transport behaviors through donor-induced quantum dot array in heavily n-doped junctionless nanowire transistors

    SciTech Connect

    Ma, Liuhong; Han, Weihua Wang, Hao; Hong, Wenting; Lyu, Qifeng; Yang, Xiang; Yang, Fuhua

    2015-01-21

    We investigated single electron tunneling through a phosphorus donor-induced quantum dot array in heavily n-doped junctionless nanowire transistor. Seven subpeaks splitting in current oscillations are clearly observed due to the coupling of quantum dot array under the bias voltage below 1.0 mV at the temperature of 6 K. The conduction system can be well described by a two-band Hubbard model. The activation energy of phosphorus donors is tuned by the gate voltage to be 7.0 meV for the lower Hubbard band and 4.4 meV for the upper Hubbard band due to the localization effects below threshold voltage. The evolution of electron behaviors in the quantum dots is identified by adjusting the gate voltage from quantum-dot regime to one-dimensional regime.

  17. New electron beam facility for irradiated plasma facing materials testing in hot cell

    SciTech Connect

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  18. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums

    NASA Astrophysics Data System (ADS)

    Dewald, E. L.; Hartemann, F.; Michel, P.; Milovich, J.; Hohenberger, M.; Pak, A.; Landen, O. L.; Divol, L.; Robey, H. F.; Hurricane, O. A.; Döppner, T.; Albert, F.; Bachmann, B.; Meezan, N. B.; MacKinnon, A. J.; Callahan, D.; Edwards, M. J.

    2016-02-01

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10 × higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma.

  19. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums.

    PubMed

    Dewald, E L; Hartemann, F; Michel, P; Milovich, J; Hohenberger, M; Pak, A; Landen, O L; Divol, L; Robey, H F; Hurricane, O A; Döppner, T; Albert, F; Bachmann, B; Meezan, N B; MacKinnon, A J; Callahan, D; Edwards, M J

    2016-02-19

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10× higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma.

  20. Hot electron detectors and energy conversion in the UV and IR

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Krayer, Lisa; Munday, Jeremy N.

    2015-09-01

    Semiconductor materials are well suited for power conversion when the incident photon energy is slightly larger than the bandgap energy of the semiconductor. However, for photons with energy significantly greater than the bandgap energy, power conversion efficiencies are low. Further, for photons with energy below the bandgap energy, the absence of absorption results in no power conversion. Here we describe photon detection and power conversion of both high energy and sub-bandgap photons using hot carrier effects. For the absorption of high-energy photons, excited electrons and holes have excess kinetic energy, which results in the generation of hot electrons and holes. Energy is typically lost through a thermalization process between the carriers and the lattice. However, collection of carriers before thermalization allows for reduced power loss. Devices consisting of a three-layer stack (transparent conductor - insulator - metal) can be used to generate and collect these hot carriers. Alternatively, when a semiconductor is used, photons with energy below the semiconductor bandgap energy generally do not generate electrons and holes; however, hot carrier collection is still possible in semiconductor devices with a metal layer when a Schottky junction is formed at the semiconductor-metal interface. Such structures enable IR detection based on sub-bandgap photon absorption. Combining these concepts, hot carrier generation and collection and be exploited over a large range of incident wavelengths spanning the UV, visible, and IR.

  1. Photovoltaic conversion via hot electron induced thermionic emission from quantum dots

    NASA Astrophysics Data System (ADS)

    Sergeev, Andrei; Sablon, Kimberly

    Quantum dot (QD) nanomaterials provide numerous possibilities for nanoscale engineering of photoelectron processes for specific applications, such as lighting, sensing, and energy conversion. It has been found that QDs may increase the photovoltaic conversion efficiency due to enhanced coupling with electromagnetic radiation, multiple exciton generation, and two-step light absorption. The hot electron induced thermionic emission from QDs is a novel mechanism, which may be significantly enhanced due to optimization of QD parameters. In this two-step process the photoelectrons excited from the valence band to localized quantum dot states are extracted from QDs via thermionic emission, which may be initiated by thermal phonons, hot phonons, and hot electrons. Strong interaction between the localized quantum dot electrons and hot photoelectrons excited by high energy photons substantially increases the conversion efficiency due to use of energy of sub-bandgap photons and energy of hot photoelectrons, which otherwise would be lost in relaxation processes. Here we present the theoretical model of the conversion via thermionic emission from quantum dots, results of optimization of photoelectron processes, and experimental data, which evidence in favor of this mechanism.

  2. Polymer dielectric materials for organic thin-film transistors: Interfacial control and development for printable electronics

    NASA Astrophysics Data System (ADS)

    Kim, Choongik

    Organic thin-film transistors (OTFTs) have been extensively studied for organic electronics. In these devices, organic semiconductor-dielectric interface characteristics play a critical role in influencing OTFT operation and performance. This study begins with exploring how the physicochemical characteristics of the polymer gate dielectric affects the thin-film growth mode, microstructure, and OTFT performance parameters of pentacene films deposited on bilayer polymer (top)-SiO2 (bottom) dielectrics. Pentacene growth mode varies considerably with dielectric substrate, and correlations are established between pentacene film deposition temperature, the thin-film to bulk microstructural phase transition, and OTFT device performance. Furthermore, the primary influence of the polymer dielectric layer glass transition temperature on pentacene film microstructure and OTFT response is shown for the first time. Following the first study, the influence of the polymer gate dielectric viscoelastic properties on overlying organic semiconductor film growth, film microstructure, and TFT response are investigated in detail. From the knowledge that nanoscopically-confined thin polymer films exhibit glass transition temperatures that deviate substantially from those of the corresponding bulk materials, pentacene (p-channel) and cyanoperylene (n-channel) films grown on polymer gate dielectrics at temperatures well-below their bulk glass transition temperatures (Tg(b)) have been shown to exhibit morphological/microstructural transitions and dramatic OTFT performance discontinuities at well-defined temperatures (defined as the polymer "surface glass transition temperature," or Tg(s)). These transitions are characteristic of the particular polymer architecture and independent of film thickness or overall film cooperative chain dynamics. Furthermore, by analyzing the pentacene films grown on UV-curable polymer dielectrics with different curing times (hence, different degrees of

  3. Plasmon Field Effect Transistor for Plasmon to Electric Conversion and Amplification.

    PubMed

    Shokri Kojori, Hossein; Yun, Ju-Hyung; Paik, Younghun; Kim, Joondong; Anderson, Wayne A; Kim, Sung Jin

    2016-01-13

    Direct coupling of electronic excitations of optical energy via plasmon resonances opens the door to improving gain and selectivity in various optoelectronic applications. We report a new device structure and working mechanisms for plasmon resonance energy detection and electric conversion based on a thin film transistor device with a metal nanostructure incorporated in it. This plasmon field effect transistor collects the plasmonically induced hot electrons from the physically isolated metal nanostructures. These hot electrons contribute to the amplification of the drain current. The internal electric field and quantum tunneling effect at the metal-semiconductor junction enable highly efficient hot electron collection and amplification. Combined with the versatility of plasmonic nanostructures in wavelength tunability, this device architecture offers an ultrawide spectral range that can be used in various applications.

  4. Hard x-ray and hot electron environment in vacuum hohlraums at the National Ignition Facility

    SciTech Connect

    McDonald, J.W.; Suter, L.J.; Landen, O.L.; Foster, J.M.; Celeste, J.R.; Holder, J.P.; Dewald, E.L.; Schneider, M.B.; Hinkel, D.E.; Kauffman, R.L.; Atherton, L.J.; Bonanno, R.E.; Dixit, S.N.; Eder, D.C.; Haynam, C.A.; Kalantar, D.H.; Koniges, A.E.; Lee, F.D.; MacGowan, B.J.; Manes, K.R.

    2006-03-15

    Time resolved hard x-ray images (hv>9 keV) and time integrated hard x-ray spectra (hv=18-150 keV) from vacuum hohlraums irradiated with four 351 nm wavelength National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] laser beams are presented as a function of hohlraum size, laser power, and duration. The hard x-ray images and spectra provide insight into the time evolution of the hohlraum plasma filling and the production of hot electrons. The fraction of laser energy detected as hot electrons (F{sub hot}) shows a correlation with laser intensity and with an empirical hohlraum plasma filling model. In addition, the significance of Au K-alpha emission and Au K-shell reabsorption observed in some of the bremsstrahlung dominated spectra is discussed.

  5. The hot electrons in the innermost Saturn's magnetosphere from the HF radio measurements on Cassini

    NASA Astrophysics Data System (ADS)

    Schippers, P.; Moncuquet, M.

    2013-12-01

    We analyze the large-scale structure of the hot electrons in Saturn's innermost magnetosphere obtained from the HF radio measurements acquired with the Cassini/RPWS electric dipole antenna. The temperatures are deduced by two different ways (Moncuquet et al., 2005) from: 1) the quasi-thermal noise (QTN) maximum level identified in the electric power spectra and 2) the QTN in Bernstein waves, which are electrostatic waves propagating perpendicularly to the magnetic field and enhanced at frequencies between the electron cyclotron frequency harmonics. These waves are observed in strong magnetized environment where the thermal noise is dominated by the gyro-motion of the particles. We compare the results with the hot electron measurements acquired by the Cassini electron spectrometer CAPS/ELS.

  6. Analysis of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applications

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.

    1996-01-01

    The prospects of a YBa2Cu3O7(delta)(YBCO) hot-electron bolometer (HEB) mixer for a THz heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate.

  7. Hot electrons injection in carbon nanotubes under the influence of quasi-static ac-field

    NASA Astrophysics Data System (ADS)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-07-01

    The theory of hot electrons injection in carbon nanotubes (CNTs) where both dc electric field (Ez), and a quasi-static ac field exist simultaneously (i.e. when the frequency ω of ac field is much less than the scattering frequency v (ω ≪ v or ωτ ≪ 1, v =τ-1) where τ is relaxation time) is studied. The investigation is done theoretically by solving semi-classical Boltzmann transport equation with and without the presence of the hot electrons source to derive the current densities. Plots of the normalized current density versus dc field (Ez) applied along the axis of the CNTs in the presence and absence of hot electrons reveal ohmic conductivity initially and finally negative differential conductivity (NDC) provided ωτ ≪ 1 (i.e. quasi- static case). With strong enough axial injection of the hot electrons, there is a switch from NDC to positive differential conductivity (PDC) about Ez ≥ 75 kV / cm and Ez ≥ 140 kV / cm for a zigzag CNT and an armchair CNT respectively. Thus, the most important tough problem for NDC region which is the space charge instabilities can be suppressed due to the switch from the NDC behaviour to the PDC behaviour predicting a potential generation of terahertz radiations whose applications are relevance in current-day technology, industry, and research.

  8. Hot-Electron and Strong-Shock Generation at Shock-Ignition-Relevant Laser Intensities

    NASA Astrophysics Data System (ADS)

    Theobald, W.; Betti, R.; Nora, R.; Seka, W.; Lafon, M.; Michel, D. T.; Stoeckl, C.; Casner, A.; Peebles, J.; Beg, F. N.; Ribeyre, X.; Vallet, A.; Wei, M. S.

    2015-11-01

    The effect of hot electrons on the formation of spherical shocks in solid targets was studied in direct-illumination experiments on OMEGA at incident laser intensities of up to 6 ×1015 W/cm2. The experiments investigated the interaction physics in various ablator materials (Be, C, CH, and SiO2) and under various beam-focusing conditions, which are relevant to developing a shock-ignition target design for the National Ignition Facility. The hot-electron production and the temperature of the distribution varied with the focal spot and beam overlap with values between 40 to 90 keV and instantaneous conversion efficiencies of laser power into hot-electron power of up to ~ 15%. A significant increase in hot-electron population was observed with CH ablators that was correlated with higher shock strength, exceeding 400 Mbar in the ablation layer and reaching Gbars upon convergence in the center of the spherical target. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  9. Operation of a novel hot-electron vertical-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Balkan, Naci; O'Brien-Davies, Angela; Thoms, A. B.; Potter, Richard J.; Poolton, Nigel; Adams, Michael J.; Masum, J.; Bek, Alpan; Serpenguzel, Ali; Aydinli, Atilla; Roberts, John S.

    1998-07-01

    The hot Electron Light Emission and Lasing in Semiconductor Heterostructures devices (HELLISH-1) is novel surface emitter consisting of a GaAs quantum well, within the depletion region, on the n side of Ga1-xAlxAs p- n junction. It utilizes hot electron transport parallel to the layers and injection of hot electron hole pairs into the quantum well through a combination of mechanisms including tunnelling, thermionic emission and diffusion of `lucky' carriers. Super Radiant HELLISH-1 is an advanced structure incorporating a lower distributed Bragg reflector (DBR). Combined with the finite reflectivity of the upper semiconductor-air interface reflectivity it defines a quasi- resonant cavity enabling emission output from the top surface with a higher spectral purity. The output power has increased by two orders of magnitude and reduced the full width at half maximum (FWHM) to 20 nm. An upper DBR added to the structure defines HELLISH-VCSEL which is currently the first operational hot electron surface emitting laser and lases at room temperature with a 1.5 nm FWHM. In this work we demonstrate and compare the operation of UB-HELLISH-1 and HELLISH-VCSEL using experimental and theoretical reflectivity spectra over an extensive temperature range.

  10. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    NASA Astrophysics Data System (ADS)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  11. Fokker-Planck simulation of runaway electron generation in disruptions with the hot-tail effect

    NASA Astrophysics Data System (ADS)

    Nuga, H.; Yagi, M.; Fukuyama, A.

    2016-06-01

    To study runaway electron generation in disruptions, we have extended the three-dimensional (two-dimensional in momentum space; one-dimensional in the radial direction) Fokker-Planck code, which describes the evolution of the relativistic momentum distribution function of electrons and the induced toroidal electric field in a self-consistent manner. A particular focus is placed on the hot-tail effect in two-dimensional momentum space. The effect appears if the drop of the background plasma temperature is sufficiently rapid compared with the electron-electron slowing down time for a few times of the pre-quench thermal velocity. It contributes to not only the enhancement of the primary runaway electron generation but also the broadening of the runaway electron distribution in the pitch angle direction. If the thermal energy loss during the major disruption is assumed to be isotropic, there are hot-tail electrons that have sufficiently large perpendicular momentum, and the runaway electron distribution becomes broader in the pitch angle direction. In addition, the pitch angle scattering also yields the broadening. Since the electric field is reduced due to the burst of runaway electron generation, the time required for accelerating electrons to the runaway region becomes longer. The longer acceleration period makes the pitch-angle scattering more effective.

  12. Experimental observation of hot tail runaway electron generation in TEXTOR disruptions

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Koslowski, H. R.; Liang, Y.; Lvovskiy, A.; Lehnen, M.; Nicolai, D.; Pearson, J.; Rack, M.; Denner, P.; Finken, K. H.; Wongrach, K.; Wongrach

    2015-08-01

    Experimental evidence supporting the theory of hot tail runaway electron (RE) generation has been identified in TEXTOR disruptions. With higher temperature, more REs are generated during the thermal quench. Increasing the RE generation by increasing the temperature, an obvious RE plateau is observed even with low toroidal magnetic field (1.7 T). These results explain the previously found electron density threshold for RE generation.

  13. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Study on the degradation of NMOSFETs with ultra-thin gate oxide under channel hot electron stress at high temperature

    NASA Astrophysics Data System (ADS)

    Hu, Shi-Gang; Hao, Yue; Ma, Xiao-Hua; Cao, Yan-Rong; Chen, Chi; Wu, Xiao-Feng

    2009-12-01

    This paper studies the degradation of device parameters and that of stress induced leakage current (SILC) of thin tunnel gate oxide under channel hot electron (CHE) stress at high temperature by using n-channel metal oxide semiconductor field effect transistors (NMOSFETs) with 1.4-nm gate oxides. The degradation of device parameters under CHE stress exhibits saturating time dependence at high temperature. The emphasis of this paper is on SILC of an ultra-thin-gate-oxide under CHE stress at high temperature. Based on the experimental results, it is found that there is a linear correlation between SILC degradation and Vh degradation in NMOSFETs during CHE stress. A model of the combined effect of oxide trapped negative charges and interface traps is developed to explain the origin of SILC during CHE stress.

  14. Study of hot electron spatial energy deposition in spherical targets relevant to shock ignition

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Wei, M. S.; Krauland, C.; Reynolds, H.; Hoppe, M.; Peebles, J.; Beg, F. N.; Theobald, W.; Borwick, E.; Li, J.; Ren, C.; Stoeckl, C.; Seka, W.; Betti, R.; Campbell, M.

    2016-10-01

    Understanding hot electron generation and coupling is important for the high-intensity shock ignition (SI) inertial confinement fusion concept. Recent hard x-ray experimental data from a SI-relevant platform on OMEGA-60 suggest that <100 keV hot electrons may augment shock pressure by depositing their energy in the solid density region behind the ablation front. These results deduced from simulation are convincing support for electron assisted SI. To further investigate beneficial hot electron characteristics from both high intensity UV and IR lasers in this relevant regime, we performed a joint OMEGA-60/OMEGA EP experiment in the spherical geometry. 60 UV laser beams (18 kJ, 1.8 ns, up to 1015 W/cm2) irradiated a low-density Cu foam ball target with a CH ablator followed by a single IR short pulse laser (2.6 kJ, 100 ps, 1017 W/cm2) at various delays. The electron spatial energy deposition was diagnosed via imaging Cu K α emission with a spherical crystal imager; total K α photon yield and bremsstrahlung radiation were also measured to infer electron spectra. Experimental results are compared with radiation hydrodynamic modeling and will be presented at the meeting. Work supported by the U.S. DOE under contracts DE-NA0002730 (NLUF) and DE-SC0014666.

  15. Electron distribution functions and transport in laser-produced hot spots

    NASA Astrophysics Data System (ADS)

    Rozmus, Wojciech; Batishchev, Oleg; Brantov, A. V.; Bychenkov, V. Yu.; Capjack, C. E.; Sydora, R.

    2002-11-01

    The geometry of a laser hot spot is fundamental to the randomized laser beams and several single beam interaction experiments. Localized inverse Bremsstrahlung (IB) heating of the plasma and heat transport away from a hot spot produce nonequilibrium electron distribution functions (EDF) [1,2]. We have performed series of Fokker-Planck (FP) simulations and analytical studies to characterize EDF for a wide range of laser intensities and hot spot sizes. The FP code includes variations on the fast time scale of electromagnetic wave oscillations, self-consistent ambipolar electric field, nonlinear electron-electron and electron-ion collisions. Plasma inhomogeneity is described in one spatial dimension. Nonequilibrium EDF evolve due to competing effects of IB heating which flattens the bulk of the EDF, electron-electron collisions which drive the system towards equilibrium and nonlocal spatial transport which enhances high energy tails in the EDF. We have investigated anisotropy of EDF and threshold conditions for the excitation of return current ion wave instability. [1] S. Brunner and E. Valeo, Phys. Plasmas 9, 923 (2002). [2] O. V. Batishchev, et al. Phys. Plasmas 9, 2302 (2002).

  16. Femtosecond energy relaxation of nonthermal electrons injected in p-doped GaAs base of a heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Prabhu, S. S.; Vengurlekar, A. S.

    2001-07-01

    We study femtosecond relaxation of minority carriers (electrons) injected into a heavily p-doped base of a heterojunction bipolar transistor (HBT). Here, we consider the case of p-doped GaAs, to be specific. The electrons are assumed to have a peaked energy distribution at t=0, with kinetic energies a few hundred meV above the conduction band threshold. We solve the time dependent Boltzmann equation governing the dynamics of these electrons. The main feature of this work is a detailed calculation of the time dependent nonthermal, nonequilibrium electron energy distribution, that relaxes due to single particle excitations via electron-hole scattering and interaction with coupled optical phonon-hole plasmon modes in the sub and picosecond time domains. We highlight the significant role that the electron-hole scattering plays in this relaxation. The majority carriers (holes) are assumed to remain in quasiequilibrium with the lattice, taken to be at room temperature (or at 77 K). We present calculations of electron energy relaxation with the hole density varied from 1×1018 to 1×1020cm-3. In the initial, subpicosecond stages of the relaxation, the energy distribution evolves into two major components: a quasiballistic but broad component, at energies near the injection energy, and an energy relaxed component near E=0. The latter becomes dominant in a picosecond or so. The electrons with an initial mean velocity of ˜1.5×108cm/s attain a cooler distribution with a mean velocity of ˜4×107 cm/s within about 1 ps for p doping in excess of 1×1019 cm-3. The temporal evolution of average velocity of the electrons should be useful in obtaining values of the base width suitable for effective operation of HBTs.

  17. Energy relaxation of hot electrons in lattice-matched AlInN/AlN/GaN heterostructures

    SciTech Connect

    Zhang, J.-Z.; Dyson, A.; Ridley, B. K.

    2013-12-04

    Using the dielectric continuum model, hot-electron power dissipation and energy relaxation times are calculated for a typical lattice-matched AlInN/AlN/GaN heterostructure, including effects of hot phonons and screening from the mobile electrons. The calculated power dissipation and energy relaxation times are very close to the experimental data.

  18. Inverter Circuits Using ZnO Nanoparticle Based Thin-Film Transistors for Flexible Electronic Applications

    PubMed Central

    Vidor, Fábio F.; Meyers, Thorsten; Hilleringmann, Ulrich

    2016-01-01

    Innovative systems exploring the flexibility and the transparency of modern semiconducting materials are being widely researched by the scientific community and by several companies. For a low-cost production and large surface area applications, thin-film transistors (TFTs) are the key elements driving the system currents. In order to maintain a cost efficient integration process, solution based materials are used as they show an outstanding tradeoff between cost and system complexity. In this paper, we discuss the integration process of ZnO nanoparticle TFTs using a high-k resin as gate dielectric. The performance in dependence on the transistor structure has been investigated, and inverted staggered setups depict an improved performance over the coplanar device increasing both the field-effect mobility and the ION/IOFF ratio. Aiming at the evaluation of the TFT characteristics for digital circuit applications, inverter circuits using a load TFT in the pull-up network and an active TFT in the pull-down network were integrated. The inverters show reasonable switching characteristics and V/V gains. Conjointly, the influence of the geometry ratio and the supply voltage on the devices have been analyzed. Moreover, as all integration steps are suitable to polymeric templates, the fabrication process is fully compatible to flexible substrates. PMID:28335282

  19. An AlN/Al0.85Ga0.15N high electron mobility transistor

    DOE PAGES

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; ...

    2016-07-22

    An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al0.85Ga0.15N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high Ion/Ioff current ratio greater than 107 and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. In conclusion, the room temperature voltage-dependent 3-terminalmore » off-state drain current was adequately modeled with Frenkel-Poole emission.« less

  20. An AlN/Al0.85Ga0.15N high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; Douglas, Erica A.; Sanchez, Carlos A.; King, Michael P.; Coltrin, Michael E.; Fortune, Torben R.; Kaplar, Robert J.

    2016-07-01

    An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al0.85Ga0.15N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high Ion/Ioff current ratio greater than 107 and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. The room temperature voltage-dependent 3-terminal off-state drain current was adequately modeled with Frenkel-Poole emission.

  1. Equivalent ambipolar carrier injection of electrons and holes with Au electrodes in air-stable field effect transistors

    SciTech Connect

    Kanagasekaran, Thangavel E-mail: Shimotani@m.tohoku.ac.jp Ikeda, Susumu; Kumashiro, Ryotaro; Shimotani, Hidekazu E-mail: Shimotani@m.tohoku.ac.jp Shang, Hui; Tanigaki, Katsumi E-mail: Shimotani@m.tohoku.ac.jp

    2015-07-27

    Carrier injection from Au electrodes to organic thin-film active layers can be greatly improved for both electrons and holes by nano-structural surface control of organic semiconducting thin films using long-chain aliphatic molecules on a SiO{sub 2} gate insulator. In this paper, we demonstrate a stark contrast for a 2,5-bis(4-biphenylyl)bithiophene (BP2T) active semiconducting layer grown on a modified SiO{sub 2} dielectric gate insulator between two different modifications of tetratetracontane and poly(methyl methacrylate) thin films. Important evidence that the field effect transistor (FET) characteristics are independent of electrode metals with different work functions is given by the observation of a conversion of the metal-semiconductor contact from the Schottky limit to the Bardeen limit. An air-stable light emitting FET with an Au electrode is demonstrated.

  2. SnO2-gated AlGaN/GaN high electron mobility transistors based oxygen sensors

    SciTech Connect

    Hung, S.T.; Chung, Chi-Jung; Chen, Chin Ching; Lo, C. F.; Ren, F.; Pearton, S. J.; Kravchenko, Ivan I

    2012-01-01

    Hydrothermally grown SnO2 was integrated with AlGaN/GaN high electron mobility transistor (HEMT) sensor as the gate electrode for oxygen detection. The crystalline of the SnO2 was improved after annealing at 400 C. The grain growth kinetics of the SnO2 nanomaterials, together with the O2 gas sensing properties and sensing mechanism of the SnO2 gated HEMT sensors were investigated. Detection of 1% oxygen in nitrogen at 100 C was possible. A low operation temperature and low power consumption oxygen sensor can be achieved by combining the SnO2 films with the AlGaN/GaN HEMT structure

  3. Influence of Boron Substitution on Conductance of Pyridine- and Pentane-Based Molecular Single Electron Transistors: First-Principles Analysis

    NASA Astrophysics Data System (ADS)

    Srivastava, Anurag; Santhibhushan, B.; Sharma, Vikash; Kaur, Kamalpreet; Shahzad Khan, Md.; Marathe, Madura; De Sarkar, Abir; Shahid Khan, Mohd.

    2016-04-01

    We have investigated the modeling of boron-substituted molecular single-electron transistor (SET), under the influence of a weak coupling regime of Coulomb blockade between source and drain metal electrodes. The SET consists of a single organic molecule (pyridine/pentane/1,2-azaborine/butylborane) placed over the dielectric, with boron (B) as a substituent. The impact of B-substitution on pyridine and pentane molecules in isolated, as well as SET, environments has been analyzed by using density functional theory-based ab initio packages Atomistix toolkit-Virtual NanoLab and Gaussian03. The performance of proposed SETs was analyzed through charging energies, total energy as a function of gate potential and charge stability diagrams. The analysis confirms that the B-substituted pentane (butylborane) and the boron-substituted pyridine (1,2-azaborine) show remarkably improved conductance in SET environment in comparison to simple pyridine and pentane molecules.

  4. Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xi, Xiao-Wen; Chai, Chang-Chun; Liu, Yang; Yang, Yin-Tang; Fan, Qing-Yang; Shi, Chun-Lei

    2016-08-01

    An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  5. Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Jiqiang, Niu; Yang, Zhang; Min, Guan; Chengyan, Wang; Lijie, Cui; Qiumin, Yang; Yiyang, Li; Yiping, Zeng

    2016-11-01

    Lead poisoning is a serious environmental concern, which is a health threat. Existing technologies always have some drawbacks, which restrict their application ranges, such as real time monitoring. To solve this problem, glutathione was functionalized on the Au-coated gate area of the pseudomorphic high electron mobility transistor (pHEMT) to detect trace amounts of Pb2+. The positive charge of lead ions will cause a positive potential on the Au gate of the pHEMT sensor, which will increase the current between the source and the drain. The response range for Pb2+ detection has been determined in the concentrations from 0.1 pmol/L to 10 pmol/L. To our knowledge, this is currently the best result for detecting lead ions. Project supported by the National Natural Science Foundation of China (Nos. 61204012, 61274049, 61376058), the Beijing Natural Science Foundation (Nos. 4142053, 4132070), and the Beijing Nova Program (Nos. 2010B056, xxhz201503).

  6. Small-signal modeling with direct parameter extraction for impact ionization effect in high-electron-mobility transistors

    SciTech Connect

    Guan, He; Lv, Hongliang; Guo, Hui Zhang, Yuming

    2015-11-21

    Impact ionization affects the radio-frequency (RF) behavior of high-electron-mobility transistors (HEMTs), which have narrow-bandgap semiconductor channels, and this necessitates complex parameter extraction procedures for HEMT modeling. In this paper, an enhanced small-signal equivalent circuit model is developed to investigate the impact ionization, and an improved method is presented in detail for direct extraction of intrinsic parameters using two-step measurements in low-frequency and high-frequency regimes. The practicability of the enhanced model and the proposed direct parameter extraction method are verified by comparing the simulated S-parameters with published experimental data from an InAs/AlSb HEMT operating over a wide frequency range. The results demonstrate that the enhanced model with optimal intrinsic parameter values that were obtained by the direct extraction approach can effectively characterize the effects of impact ionization on the RF performance of HEMTs.

  7. A sub-terahertz broadband detector based on a GaN high-electron-mobility transistor with nanoantennas

    NASA Astrophysics Data System (ADS)

    Hou, Haowen; Liu, Zhihong; Teng, Jinghua; Palacios, Tomás; Chua, Soo-Jin

    2017-01-01

    We report a sub-terahertz (THz) detector based on a 0.25-µm-gate-length AlGaN/GaN high-electron-mobility transistor (HEMT) on a Si substrate with nanoantennas. The fabricated device shows excellent performance with a maximum responsivity (R v) of 15 kV/W and a minimal noise equivalent power (NEP) of 0.58 pW/Hz0.5 for 0.14 THz radiation at room temperature. We consider these excellent results as due to the design of asymmetric nanoantennas. From simulation, we show that indeed such nanoantennas can effectively enhance the local electric field induced by sub-THz radiation and thereby improve the detection response. The excellent results indicate that GaN HEMTs with nanoantennas are future competitive detectors for sub-THz and THz imaging applications.

  8. Electrical detection of kidney injury molecule-1 with AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Wang, H. T.; Kang, B. S.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-11-26

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect kidney injury molecule-1 (KIM-1), an important biomarker for early kidney injury detection. The gate region consisted of 5 nm gold deposited onto the AlGaN surface. The gold was conjugated to highly specific KIM-1 antibodies through a self-assembled monolayer of thioglycolic acid. The HEMT source-drain current showed a clear dependence on the KIM-1 concentration in phosphate-buffered saline solution. The limit of detection was 1 ng/ml using a 20x50 {mu}m{sup 2} gate sensing area. This approach shows potential for both preclinical and clinical kidney injury diagnosis with accurate, rapid, noninvasive, and high throughput capabilities.

  9. Electrical detection of kidney injury molecule-1 with AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, H. T.; Kang, B. S.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-11-01

    AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect kidney injury molecule-1 (KIM-1), an important biomarker for early kidney injury detection. The gate region consisted of 5nm gold deposited onto the AlGaN surface. The gold was conjugated to highly specific KIM-1 antibodies through a self-assembled monolayer of thioglycolic acid. The HEMT source-drain current showed a clear dependence on the KIM-1 concentration in phosphate-buffered saline solution. The limit of detection was 1ng/ml using a 20×50μm2 gate sensing area. This approach shows potential for both preclinical and clinical kidney injury diagnosis with accurate, rapid, noninvasive, and high throughput capabilities.

  10. CMOS Integrated Single Electron Transistor Electrometry (CMOS-SET) circuit design for nanosecond quantum-bit read-out.

    SciTech Connect

    Gurrieri, Thomas M.; Lilly, Michael Patrick; Carroll, Malcolm S.; Levy, James E.

    2008-08-01

    Novel single electron transistor (SET) read-out circuit designs are described. The circuits use a silicon SET interfaced to a CMOS voltage mode or current mode comparator to obtain a digital read-out of the state of the qubit. The design assumes standard submicron (0.35 um) CMOS SOI technology using room temperature SPICE models. Implications and uncertainties related to the temperature scaling of these models to 100mK operation are discussed. Using this technology, the simulations predict a read-out operation speed of approximately Ins and a power dissipation per cell as low as 2nW for single-shot read-out, which is a significant advantage over currently used radio frequency SET (RF-SET) approaches.

  11. Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well

    SciTech Connect

    Huang, H. J. E-mail: hhjhuangkimo@gmail.com; Liu, B. H.; Lin, C. T.; Su, W. S.

    2015-11-15

    The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC), or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt) thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles) is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.

  12. Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well

    NASA Astrophysics Data System (ADS)

    Huang, H. J.; Liu, B.-H.; Lin, C.-T.; Su, W. S.

    2015-11-01

    The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC), or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt) thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles) is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.

  13. Hot electron dynamics at semiconductor surfaces: Implications for quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Tisdale, William A., III

    Finding a viable supply of clean, renewable energy is one of the most daunting challenges facing the world today. Solar cells have had limited impact in meeting this challenge because of their high cost and low power conversion efficiencies. Semiconductor nanocrystals, or quantum dots, are promising materials for use in novel solar cells because they can be processed with potentially inexpensive solution-based techniques and because they are predicted to have novel optoelectronic properties that could enable the realization of ultra-efficient solar power converters. However, there is a lack of fundamental understanding regarding the behavior of highly-excited, or "hot," charge carriers near quantum-dot and semiconductor interfaces, which is of paramount importance to the rational design of high-efficiency devices. The elucidation of these ultrafast hot electron dynamics is the central aim of this Dissertation. I present a theoretical framework for treating the electronic interactions between quantum dots and bulk semiconductor surfaces and propose a novel experimental technique, time-resolved surface second harmonic generation (TR-SHG), for probing these interactions. I then describe a series of experimental investigations into hot electron dynamics in specific quantum-dot/semiconductor systems. A two-photon photoelectron spectroscopy (2PPE) study of the technologically-relevant ZnO(1010) surface reveals ultrafast (sub-30fs) cooling of hot electrons in the bulk conduction band, which is due to strong electron-phonon coupling in this highly polar material. The presence of a continuum of defect states near the conduction band edge results in Fermi-level pinning and upward (n-type) band-bending at the (1010) surface and provides an alternate route for electronic relaxation. In monolayer films of colloidal PbSe quantum dots, chemical treatment with either hydrazine or 1,2-ethanedithiol results in strong and tunable electronic coupling between neighboring quantum dots

  14. Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications.

    PubMed

    Van Hoang, Nguyen; Kumar, Sanjeev; Kim, Gil-Ho

    2009-03-25

    The growth of multisegment nanorods comprising gold (Au) and sacrificial silver (Ag) segments (Au-Ag-Au or Au-Ag-Au-Ag-Au) using the electrochemical wet etching method is reported. The nanorods were fabricated using an alumina template of thickness 100 microm and pore size of 200 nm. A variety of nanorods from single to seven segments comprising alternate Au and Ag segments were fabricated with better control of growth rate. The multisegment nanorods were selectively etched by removing the Ag segments to create gaps in the fabricated nanorods. A careful investigation led to the creation of a wide variety of nanogaps in the fabricated multisegment nanorods. The size of the nanogap was controlled by the passage of current through the electrochemical process, and size below 10 nm was achievable at exchanged charges of approximately 1 mC. A further lowering in the size of nanogaps was achieved by diluting the silver plating solution and a segmented nanorod with nanogap (Au-nanogap-Au) of 3.8 nm at exchanged charges of 0.2 mC was successfully created. In addition, segmented nanorods with two or more nanogaps (Au-nanogap-Au-nanogap-Ag) placed symmetrically and asymmetrically on either side of the central Au segments were also created. A prototype of a single-electron transistor device based on segmented nanorods with two nanogaps is proposed. The results obtained could form the basis for the realization of quantum tunneling devices where the barrier thickness is very critical and demands values less than 5 nm. The encouraging results show the promise of multisegment nanorods for fabricating devices working at the de Broglie wavelength such as single-electron transistors.

  15. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    SciTech Connect

    Lisenkov, V. V.; Shklyaev, V. A.

    2015-11-15

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  16. Hot electron generation in a dense plasma by femtosecond laser pulses of subrelativistic intensity

    SciTech Connect

    Bolshakov, V V; Vorob'ev, A A; Uryupina, D S; Ivanov, K A; Morshedian, Nader; Volkov, Roman V; Savel'ev, Andrei B

    2009-07-31

    We report a study of hot electron generation via the interaction of femtosecond laser pulses of subrelativistic intensity (10{sup 15} to 2x10{sup 17} W cm{sup -2}), having different linear polarisations and nanosecond-scale contrasts, with the surface of 'transparent' (quartz glass) and 'absorbing' (silicon) targets. As the incident pulse intensity increases from 10{sup 15} to 10{sup 17} W cm{sup -2}, the difference in hard X-ray yield and average hot electron energy between s- and p-polarised beams rapidly decreases. This effect can be understood in terms of relativistic electron acceleration mechanisms. (special issue devoted to the 80th birthday of S.A. Akhmanov)

  17. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    NASA Astrophysics Data System (ADS)

    Lisenkov, V. V.; Shklyaev, V. A.

    2015-11-01

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  18. Nonresonant detection of terahertz radiation in high-electron-mobility transistor structure using InAIAs/InGaAs/InP material systems at room temperature.

    PubMed

    El Moutaouakil, A; Suemitsu, T; Otsuji, T; Coquillat, D; Knap, W

    2012-08-01

    In this paper, we report on nonresonant detection of terahertz radiation using the rectification mechanism of two-dimensional plasmons in high-electron-mobility transistors using InAIAs/InGaAs/InP material systems. The experiments were performed at room temperature using a Gunn diode operating at 0.30 THz as the THz source. The measured response was dependent on the polarization of the incident THz wave; The device exhibited higher response when the electric-field vector of the incident radiation was directed in the source-drain direction. The 2D spatial distribution image of the transistor responsivity extracted from the measured response shows a clear beam focus centered on the transistor position, which ensures the appropriate coupling of the terahertz radiation to the device. The device also demonstrated excellent sensitivity/noise performances of approximately 125 V/W and approximately 10(-11) W/Hz(0.5) under 0.30 THz radiation.

  19. Aerosol jet printed p- and n-type electrolyte-gated transistors with a variety of electrode materials: exploring practical routes to printed electronics.

    PubMed

    Hong, Kihyon; Kim, Se Hyun; Mahajan, Ankit; Frisbie, C Daniel

    2014-11-12

    Printing electrically functional liquid inks is a promising approach for achieving low-cost, large-area, additive manufacturing of flexible electronic circuits. To print thin-film transistors, a basic building block of thin-film electronics, it is important to have several options for printable electrode materials that exhibit high conductivity, high stability, and low-cost. Here we report completely aerosol jet printed (AJP) p- and n-type electrolyte-gated transistors (EGTs) using a variety of different electrode materials including highly conductive metal nanoparticles (Ag), conducting polymers (polystyrenesulfonate doped poly(3,4-ethylendedioxythiophene, PEDOT:PSS), transparent conducting oxides (indium tin oxide), and carbon-based materials (reduced graphene oxide). Using these source-drain electrode materials and a PEDOT:PSS/ion gel gate stack, we demonstrated all-printed p- and n-type EGTs in combination with poly(3-hexythiophene) and ZnO semiconductors. All transistor components (including electrodes, semiconductors, and gate insulators) were printed by AJP. Both kinds of devices showed typical p- and n-type transistor characteristics, and exhibited both low-threshold voltages (<2 V) and high hole and electron mobilities. Our assessment suggests Ag electrodes may be the best option in terms of overall performance for both types of EGTs.

  20. Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, K.; Dharmarasu, N.; Sun, Z.; Arulkumaran, S.; Ng, G. I.

    2010-12-01

    AlGaN/GaN high-electron-mobility transistor structures grown on 100 mm high-resistivity Si(111) substrates using plasma-assisted molecular beam epitaxy are reported. The two-dimensional electron gas (2DEG) formation in the heterostructures was realized by the growth optimization of two-step low temperature and high temperature AlN layers and GaN buffer layer. High-electron mobility of 1100 cm2/V s with a sheet carrier density of 9×1012 cm-2 was achieved. The presence of 2DEG in the AlGaN/GaN interface was confirmed by temperature dependent Hall measurements and capacitance-voltage carrier profiling. The fabricated 1.5 μm gate length high electron mobility transistor exhibited a maximum drain current density of 530 mA/mm and a peak extrinsic transconductance of 156 mS/mm.

  1. Highly sensitive hBN/graphene hot electron bolometers with a Johnson noise readout

    NASA Astrophysics Data System (ADS)

    Efetov, Dmitri; Gao, Yuanda; Walsh, Evan; Shiue, Ren-Jye; Grosso, Gabriele; Peng, Cheng; Hone, James; Fong, Kin Chun; Englund, Dirk

    Graphene has remarkable opto-electronic and thermo-electric properties that make it an exciting functional material for various photo-detection applications. In particular, owed to graphenes unique combination of an exceedingly low electronic heat capacity and a strongly suppressed electron-phonon thermal conductivity Gth, the electronic and phononic temperatures are highly decoupled allowing an operation principle as a hot electron bolometer (HEB). Here we demonstrate highly sensitive HEBs made of high quality hBN/graphene/hBN stacks and employ a direct electronic temperature read out scheme via Johnson noise thermometry (JNT). We perform combined pump-probe and JNT measurements to demonstrate strongly damped Ce and Gth in the ultra-low impurity σi = 109 cm-2 hBN/G/hBN stacks, which result in unprecedented photo-detection sensitivity and noise equivalent power for graphene HEBs.

  2. Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.

    PubMed

    Bae, Jong-Ho; Lee, Jong-Ho

    2016-05-01

    A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.

  3. Reversible electron-hole separation in a hot carrier solar cell

    NASA Astrophysics Data System (ADS)

    Linke, Heiner

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron-hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron-hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. To achieve this, we consider a highly selective energy filter such as a quantum dot embedded into a one-dimensional conductor. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. In addition this theoretical analysis, I will also report on first experimental results in a nanowire-based energy filter device. Ref: S Limpert, S Bremner, and H Linke, New J. Phys 17, 095004 (2015)

  4. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.

    PubMed

    Somorjai, Gabor A; Bratlie, Kaitlin M; Montano, Max O; Park, Jeong Y

    2006-10-12

    The mechanism that controls bond breaking at transition metal surfaces has been studied with sum frequency generation (SFG), scanning tunneling microscopy (STM), and catalytic nanodiodes operating under the high-pressure conditions. The combination of these techniques permits us to understand the role of surface defects, surface diffusion, and hot electrons in dynamics of surface catalyzed reactions. Sum frequency generation vibrational spectroscopy and kinetic measurements were performed under 1.5 Torr of cyclohexene hydrogenation/dehydrogenation in the presence and absence of H(2) and over the temperature range 300-500 K on the Pt(100) and Pt(111) surfaces. The structure specificity of the Pt(100) and Pt(111) surfaces is exhibited by the surface species present during reaction. On Pt(100), pi-allyl c-C6H9, cyclohexyl (C6H11), and 1,4-cyclohexadiene are identified adsorbates, while on the Pt(111) surface, pi-allyl c-C6H9, 1,4-cyclohexadiene, and 1,3-cyclohexadiene are present. A scanning tunneling microscope that can be operated at high pressures and temperatures was used to study the Pt(111) surface during the catalytic hydrogenation/dehydrogenation of cyclohexene and its poisoning with CO. It was found that catalytically active surfaces were always disordered, while ordered surface were always catalytically deactivated. Only in the case of the CO poisoning at 350 K was a surface with a mobile adsorbed monolayer not catalytically active. From these results, a CO-dominated mobile overlayer that prevents reactant adsorption was proposed. By using the catalytic nanodiode, we detected the continuous flow of hot electron currents that is induced by the exothermic catalytic reaction. During the platinum-catalyzed oxidation of carbon monoxide, we monitored the flow of hot electrons over several hours using a metal-semiconductor Schottky diode composed of Pt and TiO2. The thickness of the Pt film used as the catalyst was 5 nm, less than the electron mean free path

  5. Laser-plasma interactions and hot electron generation in shock ignition

    NASA Astrophysics Data System (ADS)

    Ren, Chuang; Yan, Rui; Li, Jun

    2013-10-01

    We present 2D Particle-in-cell (PIC) simulations, including electron-ion collisions and lasting more than 10 ps, on laser-plasma interactions for two sets of shock ignition (SI) parameters. The first is for conditions relevant to the Omega laser facility with a spike intensity of I = 2 ×1015 W/cm2 and the density scale length at the quarter critical surface of L ~ 170microns. The second is relevant to NIF conditions with I = 5 ×1015 W/cm2 and L ~400 microns. Under the Omega conditions, the simulations show a bursting pattern in both plasma waves and hot electron fluxes, which is attributed to the interplay between stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities. The observed hot electron temperatures compare favorably to those measured in the 40 +20 spherical SI experiments (Theobald et al. 2012). SRS is the main source for hot electrons but TPD can produce >100 keV ones. Similar bursting patterns are also observed in the NIF-relevant simulations. However, these simulations show strong SBS in rather low density region (~ 0.1ncr) . This work was supported by the U.S. Department of Energy under under Grant No. DE-FC02-04ER54789 and Cooperate Agreement No. DE-FC52- 08NA28302, by NSF under Grant No. PHY-0903797, and by NSFC under Grant No. 11129503. The research used resources of NERSC.

  6. Boosting Hot-Electron Generation: Exciton Dissociation at the Order-Disorder Interfaces in Polymeric Photocatalysts.

    PubMed

    Wang, Hui; Sun, Xianshun; Li, Dandan; Zhang, Xiaodong; Chen, Shichuan; Shao, Wei; Tian, Yupeng; Xie, Yi

    2017-02-15

    Excitonic effects, arising from the Coulomb interactions between photogenerated electrons and holes, dominate the optical excitation properties of semiconductors, whereas their influences on photocatalytic processes have seldom been discussed. In view of the competitive generation of excitons and hot carriers, exciton dissociation is proposed as an alternative strategy for hot-carrier harvesting in photocatalysts. Herein, by taking heptazine-based melon as an example, we verified that enhanced hot-carrier generation could be obtained in semicrystalline polymeric photocatalysts, which is ascribed to the accelerated exciton dissociation at the abundant order-disorder interfaces. Moreover, driven by the accompanying electron injection toward ordered chains and hole blocking in disordered chains, semicrystalline heptazine-based melon showed an ∼7-fold promotion in electron concentration with respect to its pristine counterpart. Benefiting from these, the semicrystalline sample exhibited dramatic enhancements in electron-involved photocatalytic processes, such as superoxide radical production and selective alcohol oxidation. This work brightens excitonic aspects for the design of advanced photocatalysts.

  7. Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

    NASA Astrophysics Data System (ADS)

    Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; Larson, D. J.; Koning, J. M.; Logan, B. G.

    2015-12-01

    > . The field's main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or `hot', electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium-tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. The effect of the field on deuterium-tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.

  8. Thermal-noise suppression in nano-scale Si field-effect transistors by feedback control based on single-electron detection

    NASA Astrophysics Data System (ADS)

    Chida, Kensaku; Nishiguchi, Katsuhiko; Yamahata, Gento; Tanaka, Hirotaka; Fujiwara, Akira

    2015-08-01

    We perform feedback (FB) control for suppressing thermal fluctuation in the number of electrons in a silicon single-electron (SE) device composed of a small transistor and capacitor. SEs enter and leave the capacitor via the transistor randomly at thermal equilibrium, which is monitored in real time using a high-charge-sensitivity detector. In order to suppress such random motion or thermal fluctuation of the electrons, SEs are injected and removed using the transistor according to the monitored change in the number of electrons in the capacitor, which is exactly the FB control. As a result, thermal fluctuation in the number of electrons in a SE device is suppressed by 60%, which corresponds to the so-called FB cooling from 300 to 110 K. Moreover, a thermodynamics analysis of this FB cooling reveals that entropy in the capacitor is reduced and the device is at non-equilibrium; i.e., the free energy of the device increases. Since this entropy reduction originates from information about the electrons' motion monitored by the detector, our results by the FB control represent one type of information-to-energy conversion.

  9. Thermal-noise suppression in nano-scale Si field-effect transistors by feedback control based on single-electron detection

    SciTech Connect

    Chida, Kensaku Nishiguchi, Katsuhiko; Yamahata, Gento; Tanaka, Hirotaka; Fujiwara, Akira

    2015-08-17

    We perform feedback (FB) control for suppressing thermal fluctuation in the number of electrons in a silicon single-electron (SE) device composed of a small transistor and capacitor. SEs enter and leave the capacitor via the transistor randomly at thermal equilibrium, which is monitored in real time using a high-charge-sensitivity detector. In order to suppress such random motion or thermal fluctuation of the electrons, SEs are injected and removed using the transistor according to the monitored change in the number of electrons in the capacitor, which is exactly the FB control. As a result, thermal fluctuation in the number of electrons in a SE device is suppressed by 60%, which corresponds to the so-called FB cooling from 300 to 110 K. Moreover, a thermodynamics analysis of this FB cooling reveals that entropy in the capacitor is reduced and the device is at non-equilibrium; i.e., the free energy of the device increases. Since this entropy reduction originates from information about the electrons' motion monitored by the detector, our results by the FB control represent one type of information-to-energy conversion.

  10. Transport of high intensity laser-generated hot electrons in cone coupled wire targets

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2008-04-01

    In this talk, we present results from a series of experiments where cone-wire targets were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Experiments were performed on the petawatt laser at the Rutherford Appleton Laboratory. A 500J, 1ps laser (I ˜ 4 x 10^20 W/cm-2) was focused by an f/3 off-axis parabolic mirror into hollow aluminum cones joined at their tip to Cu wires of diameters from 10 to 40 μm. The three main diagnostics fielded were a copper Kalpha Bragg crystal imager, a single hit CCD camera spectrometer and a Highly Oriented Pyrolytic Graphite (HOPG) spectrometer. The resulting data were cross-calibrated to obtain the absolute Kalpha yield. Comparison of the axially diminishing absolute Cu Kα intensity with modeling shows that the penetration of the hot electrons is consistent with one dimensional ohmic potential limited transport (1/e length ˜ 100 μm). The laser coupling efficiency to electron energy within the wire is shown to be proportional to the cross sectional area of the wire, reaching 15% for 40 μm wires. We find that the hot electron temperature within the wire was <=750 keV, significantly lower than that predicted by the ponderomotive scaling. A comparison of the experimental results with 2D hybrid PIC simulations using e-PLAS code will be presented and relevance to Fast Ignition will be discussed at the meeting. *In collaboration with J.A. King, M.H. Key, K.U. Akli, R.R. Freeman, J. Green, S. P. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, T. Ma, A.J. MacKinnon, A. MacPhee, R. Mason, P.A. Norreys, P.K Patel, T. Phillips, R. Stephens, W. Theobald, R.P.J. Town, M. Wei, L. Van Woerkom, B. Zhang.

  11. Integrating AlGaN/GaN high electron mobility transistor with Si: A comparative study of integration schemes

    SciTech Connect

    Mohan, Nagaboopathy; Raghavan, Srinivasan; Manikant,; Soman, Rohith

    2015-10-07

    AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 10{sup 9}/cm{sup 2} and <1 nm surface roughness. The 2-D electron gas channels formed at an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600–1900 cm{sup 2}/V s at a carrier concentration of 0.7–0.9 × 10{sup 13}/cm{sup 2}. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.

  12. Current status and scope of gallium nitride-based vertical transistors for high-power electronics application

    NASA Astrophysics Data System (ADS)

    Chowdhury, Srabanti; Swenson, Brian L.; Hoi Wong, Man; Mishra, Umesh K.

    2013-07-01

    Gallium nitride (GaN) is becoming the material of choice for power electronics to enable the roadmap of increasing power density by simultaneously enabling high-power conversion efficiency and reduced form factor. This is because the low switching losses of GaN enable high-frequency operation which reduces bulky passive components with negligible change in efficiency. Commercialization of GaN-on-Si materials for power electronics has led to the entry of GaN devices into the medium-power market since the performance-over-cost of even first-generation products looks very attractive compared to today's mature Si-based solutions. On the other hand, the high-power market still remains unaddressed by lateral GaN devices. The current and voltage demand for high-power conversion application makes the chip area in a lateral topology so large that it becomes difficult to manufacture. Vertical GaN devices would play a big role alongside silicon carbide (SiC) to address the high-power conversion needs. In this paper vertical GaN devices are discussed with emphasis on current aperture vertical electron transistors (CAVETs) which have shown promising performance. The fabrication-related challenges and the future possibilities enabled by the availability of good-quality, cost-competitive bulk GaN material are also evaluated for CAVETs. This work was done at Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.

  13. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    SciTech Connect

    Padilla, J. L. Alper, C.; Ionescu, A. M.; Medina-Bailón, C.; Gámiz, F.

    2015-06-29

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I{sub ON} levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures.

  14. Single-Shot Charge Readout Using a Cryogenic Heterojunction Bipolar Transistor Preamplifier Inline with a Silicon Single Electron Transistor at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; England, Troy; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carr, Stephen; Carroll, Malcolm

    Single-shot readout is a requirement for many implementations of quantum information processing. The single-shot readout fidelity is dependent on the signal-to-noise-ratio (SNR) and bandwidth of the readout detection technique. Several different approaches are being pursued to enhance read-out including RF-reflectometry, RF-transmission, parametric amplification, and transistor-based cryogenic preamplification. The transistor-based cryogenic preamplifier is attractive in part because of the reduced experimental complexity compared with the RF techniques. Here we present single-shot charge readout using a cryogenic Heterojunction-Bipolar-Transistor (HBT) inline with a silicon SET charge-sensor at millikelvin temperatures. For the relevant range of HBT DC-biasing, the current gain is 100 to 2000 and the power dissipation is 50 nW to 5 μW, with the microfabricated SET and discrete HBT in an integrated package mounted to the mixing chamber stage of a dilution refrigerator. We experimentally demonstrate a SNR of up to 10 with a bandwidth of 1 MHz, corresponding to a single-shot time-domain charge-sensitivity of approximately 10-4 e / √Hz. This measured charge-sensitivity is comparable to the values reported using the RF techniques. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  15. Controlling Hot Electrons by Wave Amplification and Decay in Compressing Plasma

    SciTech Connect

    Schmit, P. F.; Dodin, I. Y.; Fisch, N. J.

    2010-10-22

    Through particle-in-cell simulations, it is demonstrated that a part of the mechanical energy of compressing plasma can be controllably transferred to hot electrons by preseeding the plasma with a Langmuir wave that is compressed together with the medium. Initially, a wave is undamped, so it is amplified under compression due to plasmon conservation. Later, as the phase velocity also changes under compression, Landau damping can be induced at a predetermined instant of time. Then the wave energy is transferred to hot electrons, shaping the particle distribution over a controllable velocity interval, which is wider than that in stationary plasma. For multiple excited modes, the transition between the adiabatic amplification and the damping occurs at different moments; thus, individual modes can deposit their energy independently, each at its own prescribed time.

  16. Direct detection of a transport-blocking trap in a nanoscaled silicon single-electron transistor by radio-frequency reflectometry

    SciTech Connect

    Villis, B. J.; Sanquer, M.; Jehl, X.; Orlov, A. O.; Barraud, S.; Vinet, M.; Fay, P.; Snider, G.

    2014-06-09

    The continuous downscaling of transistors results in nanoscale devices which require fewer and fewer charged carriers for their operation. The ultimate charge controlled device, the single-electron transistor (SET), controls the transfer of individual electrons. It is also the most sensitive electrometer, and as a result the electron transport through it can be dramatically affected by nearby charges. Standard direct-current characterization techniques, however, are often unable to unambiguously detect and resolve the origin of the observed changes in SET behavior arising from changes in the charge state of a capacitively coupled trap. Using a radio-frequency (RF) reflectometry technique, we are able to unequivocally detect this process, in very close agreement with modeling of the trap's occupation probability.

  17. ELECTRON HEATING AND ACCELERATION BY MAGNETIC RECONNECTION IN HOT ACCRETION FLOWS

    SciTech Connect

    Ding Jian; Yuan Feng; Liang, Edison

    2010-01-10

    Both analytical and numerical works show that magnetic reconnection must occur in hot accretion flows. This process will effectively heat and accelerate electrons. In this paper, we use the numerical hybrid simulation of magnetic reconnection plus the test-electron method to investigate the electron acceleration and heating due to magnetic reconnection in hot accretion flows. We consider fiducial values of density, temperature, and magnetic parameter beta{sub e} (defined as the ratio of the electron pressure to the magnetic pressure) of the accretion flow as n{sub 0} approx 10{sup 6} cm{sup -3}, T {sup 0}{sub e} approx 2 x 10{sup 9} K, and beta{sub e} = 1. We find that electrons are heated to a higher temperature T{sub e} = 5 x 10{sup 9} K, and a fraction eta approx 8% of electrons are accelerated into a broken power-law distribution, dN(gamma) propor to gamma{sup -p}, with p approx 1.5 and 4 below and above approx1 MeV, respectively. We also investigate the effect of varying beta and n{sub 0}. We find that when beta{sub e} is smaller or n{sub 0} is larger, i.e., the magnetic field is stronger, T{sub e} , eta, and p all become larger.

  18. Electrical characterization of electron beam induced damage on sub-10 nm n-channel MOS transistors using nano-probing technique

    NASA Astrophysics Data System (ADS)

    Kang, Jonghyuk; Lee, Sungho; Choi, Byoungdeog

    2016-11-01

    Electron beam induced damage on sub-10 nm n-channel MOS transistors was evaluated using an atomic force microscopy-based nano-probing technique. After electron beam irradiation, all the device parameters shifted including threshold voltage (V th), saturation current, sub-threshold slope and transistor leakage current. A negative shift in V th occurred at low electron beam acceleration voltage (V acc) because of the increase in oxide trapped holes generated by excited plasmons. At high V acc, however, a positive V th shift was observed because of an increased contribution of interface trap generation caused by the deeper electron penetration depth. In addition, interface trap generation not only degraded the sub-threshold slope due to the additional capacitance from the generated interface traps, but also increased transistor leakage current due to changes in junction characteristics. Our studies show that it is critical to avoid electron beam exposure before electrical characterization on sub-10 nm devices even in the range of less than 1.0 kV of V acc using nano-probe systems.

  19. Electron - polar acoustical phonon interactions in nitride based diluted magnetic semiconductor quantum well via hot electron magnetotransport

    SciTech Connect

    Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.

    2015-05-15

    In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering.

  20. Hot Spot Electron Temperature from X-Ray Continuum Measurements on the NIF

    NASA Astrophysics Data System (ADS)

    Jarrott, Leonard; Chen, Hui; Izumi, Nobuhiko; Khan, Shahab; Ma, Tammy; Nagel, Sabrina; Pak, Arthur; Patel, Pravesh; Schneider, Marilyn; Scott, Howard

    2015-11-01

    We report on direct measurements of the electron temperature within the hot spot of inertially confined, layered, spherical implosions on the National Ignition Facility using a new differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which may produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we discuss a new electron temperature measurement using the high energy (>15 keV) emitted continuum from the hotspot that can escape with minimal attenuation from the compressed fuel/shell. We will discuss the physics considerations for design of this new large-pinhole, hard x-ray imaging technique, and show preliminary data acquired from symcaps and DT-layered implosions. Validation of this technique against simulations and other diagnostics is performed to estimate the accuracy of the measurement. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Surface-plasmon enhanced photodetection at communication band based on hot electrons

    SciTech Connect

    Wu, Kai; Zhan, Yaohui E-mail: xfli@suda.edu.cn; Wu, Shaolong; Deng, Jiajia; Li, Xiaofeng E-mail: xfli@suda.edu.cn

    2015-08-14

    Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-step electrical simulation, the optimized device exhibits an unbiased responsivity of ∼0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.

  2. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates

    SciTech Connect

    Leenheer, Andrew J.; Narang, Prineha; Atwater, Harry A.; Lewis, Nathan S.

    2014-04-07

    Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%–10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.

  3. Measurement of the relaxation time of hot electrons in laser-solid interaction at relativistic laser intensities

    SciTech Connect

    Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B; Hansen, S B; Hunter, J; Kemp, A; Pikuz, T; Ping, Y; Widmann, K; Wilks, S C; Beiersdorfer, P

    2006-08-22

    The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.

  4. Ar plasma treated ZnON transistor for future thin film electronics

    SciTech Connect

    Lee, Eunha E-mail: jeonsh@korea.ac.kr; Benayad, Anass; Kim, HeeGoo; Park, Gyeong-Su; Kim, Taeho; Jeon, Sanghun E-mail: jeonsh@korea.ac.kr

    2015-09-21

    To achieve high-mobility and high-reliability oxide thin film transistors (TFTs), ZnON has been investigated following an anion control strategy based on the substitution of oxygen with nitrogen in ZnO. However, as nitrogen possesses, compared to oxygen, a low reactivity with Zn, the chemical composition of ZnON changes easily, causing in turn a degradation of both the performance and the stability. Here, we have solved the issues of long-time stability and composition non-uniformity while maintaining a high channel mobility by adopting the argon plasma process, which can delay the reaction of oxygen with Zn–O–N; as a result, owing to the formation of very fine nano-crystalline structure in stable glassy phase without changes in the chemical composition, the material properties and stability under e-radiation have significantly improved. In particular, the channel mobility of the ZnON TFTs extracted from the pulsed I−V method was measured to be 138 cm{sup 2}/V s.

  5. Effect of laser wavelength and intensity on the divergence of hot electrons in fast ignition

    NASA Astrophysics Data System (ADS)

    Li, Boyuan; Tian, Chao; Zhang, Zhimeng; Zhang, Feng; Shan, Lianqiang; Zhang, Bo; Zhou, Weimin; Zhang, Baohan; Gu, Yuqiu

    2016-09-01

    Recently, the short wavelength laser is believed to have a promising prospect in fast ignition for reducing the conflict between laser energy requirement and electron stopping range. Here we investigate the influence of laser wavelength and intensity in the angular dispersion of hot electrons. Both our theoretical model and numerical simulations show that the angular dispersion would increase rapidly with the shortening of laser wavelength due to the Weibel instability, while the laser intensity has little effect on it. These results have important implications for fast ignition.

  6. Femtosecond energy relaxation of nonthermal electrons injected in p-doped GaAs base of a heterojunction bipolar transistor

    SciTech Connect

    Prabhu, S. S.; Vengurlekar, A. S.

    2001-07-01

    We study femtosecond relaxation of minority carriers (electrons) injected into a heavily p-doped base of a heterojunction bipolar transistor (HBT). Here, we consider the case of p-doped GaAs, to be specific. The electrons are assumed to have a peaked energy distribution at t=0, with kinetic energies a few hundred meV above the conduction band threshold. We solve the time dependent Boltzmann equation governing the dynamics of these electrons. The main feature of this work is a detailed calculation of the time dependent nonthermal, nonequilibrium electron energy distribution, that relaxes due to single particle excitations via electron{endash}hole scattering and interaction with coupled optical phonon-hole plasmon modes in the sub and picosecond time domains. We highlight the significant role that the electron-hole scattering plays in this relaxation. The majority carriers (holes) are assumed to remain in quasiequilibrium with the lattice, taken to be at room temperature (or at 77 K). We present calculations of electron energy relaxation with the hole density varied from 1{times}10{sup 18} to 1{times}10{sup 20}cm{sup {minus}3}. In the initial, subpicosecond stages of the relaxation, the energy distribution evolves into two major components: a quasiballistic but broad component, at energies near the injection energy, and an energy relaxed component near E=0. The latter becomes dominant in a picosecond or so. The electrons with an initial mean velocity of {similar_to}1.5{times}10{sup 8}cm/s attain a cooler distribution with a mean velocity of {similar_to}4{times}10{sup 7}cm/s within about 1 ps for p doping in excess of 1{times}10{sup 19}cm{sup {minus}3}. The temporal evolution of average velocity {l_angle}v{r_angle} of the electrons should be useful in obtaining values of the base width suitable for effective operation of HBTs. {copyright} 2001 American Institute of Physics.

  7. Evaluation of titanium disilicide/copper Schottky gate for AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Yoon, Seonno; Lee, Seung Min; Kim, Jeyoung; Lee, Hi-Deok; Cha, Ho-Young; Oh, Jungwoo

    2017-03-01

    Titanium disilicide/copper (TiSi2/Cu) gate AlGaN/GaN high electron mobility transistors (HEMTs) with low gate leakage current are demonstrated. The TiSi2/Cu gate devices demonstrate electrical characteristics that are comparable to those of conventional Ni/Au gate devices. At gate voltage of ‑20 V, typical gate leakage current for a TiSi2/Cu gate device with a gate length of 5 μm and width of 200 μm is found to be as low as 5.15 × 10‑7 mA mm‑1, which is three orders lower than that of the Ni/Au gate device. The lower gate leakage current is primarily caused by the higher Schottky barrier height of TiSi2/Cu on AlGaN/GaN HEMTs than that of Ni/Au by 0.36 eV. The threshold voltages of the TiSi2/Cu gate HEMTs were maintained to be equivalent to that of the Ni/Au gate device. No Cu diffusion was found at the metal and AlGaN interface by secondary ion mass spectrometry and scanning transmission electron microscopy. These results indicate that TiSi2 is a good barrier layer of Cu diffusion, and titanium disilicide/copper is a promising candidate for high-performance AlGaN/GaN HEMTs.

  8. A CMOS application-specified-integrated-circuit for 40 GHz high-electron-mobility-transistors automatic biasing.

    PubMed

    De Matteis, M; De Blasi, M; Vallicelli, E A; Zannoni, M; Gervasi, M; Bau, A; Passerini, A; Baschirotto, A

    2017-02-01

    This paper presents the design and the experimental results of a CMOS Automatic Control System (ACS) for the biasing of High-Electron-Mobility-Transistors (HEMT). The ACS is the first low-power mixed-signal Application-Specified-Integrated-Circuit (ASIC) able to automatically set and regulate the operating point of an off-chip 6 HEMT Low-Noise-Amplifiers (LNAs), hence it composes a two-chip system (the ACS+LNAs) to be used in the Large Scale Polarization Explorer (LSPE) stratospheric balloon for Cosmic Microwave Background (CMB) signal observation. The hereby presented ACS ASIC provides a reliable instrumentation for gradual and very stable LNAs characterization, switching-on, and operating point (<4 mV accuracy). Moreover, it simplifies the electronic instrumentation needed for biasing the LNAs, since it replaces several off-the-shelf and digital programmable device components. The ASIC prototype has been implemented in a CMOS 0.35 μm technology (12 mm(2) area occupancy). It operates at 4 kHz clock frequency. The power consumption of one-channel ASIC (biasing one LNA) is 3.6 mW, whereas 30 mW are consumed by a single LNA device.

  9. Unusual impact of electron-phonon scattering in Si nanowire field-effect-transistors: A possible route for energy harvesting

    NASA Astrophysics Data System (ADS)

    Nag Chowdhury, Basudev; Chattopadhyay, Sanatan

    2016-09-01

    In the current work, the impact of electron-phonon scattering phenomena on the transport behaviour of silicon nanowire field-effect-transistors with sub-mean free path channel length has been investigated by developing a theoretical model that incorporates the responses of carrier effective mass mismatch between the channel and source/drain. For this purpose, a set of relevant quantum field equations has been solved by non-equilibrium Green's function formalism. The obtained device current for a particular set of biases is found to decrease due to phonon scattering below a certain doping level of source/drain, above which it is observed to enhance anomalously. Analyses of the quantified scattering lifetime and power dissipation at various confinement modes of the device indicates that such unusual enhancement of current is originated from the power served by phonons instead of associated decay processes. The power generation has been observed to improve by using high-k materials as gate insulator. Such results may contribute significantly to the future nano-electronic applications for energy harvesting.

  10. A CMOS application-specified-integrated-circuit for 40 GHz high-electron-mobility-transistors automatic biasing

    NASA Astrophysics Data System (ADS)

    De Matteis, M.; De Blasi, M.; Vallicelli, E. A.; Zannoni, M.; Gervasi, M.; Bau, A.; Passerini, A.; Baschirotto, A.

    2017-02-01

    This paper presents the design and the experimental results of a CMOS Automatic Control System (ACS) for the biasing of High-Electron-Mobility-Transistors (HEMT). The ACS is the first low-power mixed-signal Application-Specified-Integrated-Circuit (ASIC) able to automatically set and regulate the operating point of an off-chip 6 HEMT Low-Noise-Amplifiers (LNAs), hence it composes a two-chip system (the ACS+LNAs) to be used in the Large Scale Polarization Explorer (LSPE) stratospheric balloon for Cosmic Microwave Background (CMB) signal observation. The hereby presented ACS ASIC provides a reliable instrumentation for gradual and very stable LNAs characterization, switching-on, and operating point (<4 mV accuracy). Moreover, it simplifies the electronic instrumentation needed for biasing the LNAs, since it replaces several off-the-shelf and digital programmable device components. The ASIC prototype has been implemented in a CMOS 0.35 μ m technology (12 mm2 area occupancy). It operates at 4 kHz clock frequency. The power consumption of one-channel ASIC (biasing one LNA) is 3.6 mW, whereas 30 mW are consumed by a single LNA device.

  11. Observation of charge transport through CdSe/ZnS quantum dots in a single-electron transistor structure

    NASA Astrophysics Data System (ADS)

    Kobo, Masanori; Yamamoto, Makoto; Ishii, Hisao; Noguchi, Yutaka

    2016-10-01

    We fabricated single-electron transistors (SETs) having CdSe/ZnS core-shell-type quantum dots (CdSe/ZnS-QDs) as a Coulomb island using a wet chemistry technique. The CdSe/ZnS-QDs were deposited onto Au electrodes with or without the assistance of a self-assembled monolayer of octane(di)thiols. The CdSe/ZnS-QDs were adsorbed onto the Au electrodes even without the interlayer of thiol molecules depending on the concentration of the CdSe/ZnS-QD solution. The electron-transport characteristics through the CdSe/ZnS-QDs were examined in an SET structure at 13 K. Coulomb blockade behavior with typical gate voltage dependence was clearly observed. The estimated charge addition energies of a CdSe/ZnS-QD ranged from 70 to 280 meV. Moreover, additional structures, including negative differential conductance, appeared in the stability diagram in the source-drain bias region beyond 100 mV; these structures are specific to single-charge transport through the discrete energy levels in the Coulomb island.

  12. Pseudopotential-based electron quantum transport: Theoretical formulation and application to nanometer-scale silicon nanowire transistors

    SciTech Connect

    Fang, Jingtian Vandenberghe, William G.; Fu, Bo; Fischetti, Massimo V.

    2016-01-21

    We present a formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials. This formalism offers explicit atomistic wavefunctions and an accurate band structure, enabling a detailed study of the characteristics of devices with a nanometer-scale channel and body. Assuming externally applied potentials that change slowly along the electron-transport direction, we invoke the envelope-wavefunction approximation to apply the open boundary conditions and to develop the transport equations. We construct the full-band open boundary conditions (self-energies of device contacts) from the complex band structure of the contacts. We solve the transport equations and present the expressions required to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gate-all-around (GAA) silicon nanowire field-effect transistor with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of ∼66 mV/decade and a drain-induced barrier-lowering of ∼2.5 mV/V. Our theoretical calculations predict that low-dimensionality channels in a 3D GAA architecture are able to meet the performance requirements of future devices in terms of SS swing and electrostatic control.

  13. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics.

    PubMed

    Heo, Jinseong; Byun, Kyung-Eun; Lee, Jaeho; Chung, Hyun-Jong; Jeon, Sanghun; Park, Seongjun; Hwang, Sungwoo

    2013-01-01

    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene-thin-film-semiconductor-metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene-In-Ga-Zn-O (IGZO)-metal asymmetric junctions on a transparent 150 × 150 mm(2) glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (Ion/Ioff) up to 10(6) with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V.

  14. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    SciTech Connect

    Rufai, O. R. Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  15. Dynamics of a beam of hot electrons propagating through a plasma in the presence of nonthermal electrons

    SciTech Connect

    Khalilpour, H.; Moslehi-Fard, M.; Foroutan, G.; Li, B.; Robinson, P. A.

    2009-07-15

    The dynamics of a beam of hot electrons traveling through a cold plasma and the generation of Langmuir waves are investigated in the presence of a nonthermal tail of electrons in the background distribution function. Using quasilinear simulations, it is shown that in the presence of the nonthermal electrons, the relaxation of the beam distribution function in velocity space is retarded and the Langmuir waves are strongly damped at low velocities. The average velocity of beam propagation is almost constant but its magnitude is larger in the presence of nonthermal electrons than their absence. It is found that the self-similarity of the system is preserved in the presence of nonthermal electrons. The effects of nonthermal electrons on the evolution of gas-dynamical parameters of the beam, including the height of plateau in the beam distribution function, its upper and lower velocity boundaries, and beam velocity width, are also studied. It is found that initially the values of the upper and lower velocity boundaries are almost unaltered, but at large times the lower (upper) boundary velocity is larger (smaller) in the presence of nonthermal electrons than without the nonthermal electrons.

  16. Nyquist noise as probe of hot-electron effects in the ferromagnetic insulating state of manganites

    NASA Astrophysics Data System (ADS)

    Samanta, Sudeshna; Raychaudhuri, Arup K.

    2009-03-01

    Hole-doped rare-earth manganites (like La1-xCaxMnO3) in the ferromagnetic insulating (FMI) state show large non-linear conductance. Such non-linear conductance can arise due to hot-electron effect which originates from decoupling of the electron and lattice temperatures at high power level. The non-linear conductance manifests as electro-resistance or current induced resistance change. We report here low frequency temperature dependent noise measurement which allows us to estimate the electronic temperature by measuring Nyquist noise (``white noise'' in contrast to 1/f noise) in La0.8Ca0.2MnO3 single crystals which has a distinct FMI state below 100K. The measurement was performed with low ac biasing current which was mixed with a high current density d.c that leads to electron heating. We observed that in the insulating state, above a certain input d.c power, the Nyquist noise increases by a large extent and this is coupled to the onset of non-linear conduction as signalled by the power dependence of the differential conductance. The experiment establishes a direct link between hot-electron effect and non-linear conductance.

  17. Solitary, explosive and periodic solutions for electron acoustic solitary waves with non-thermal hot ions

    NASA Astrophysics Data System (ADS)

    Elwakil, S. A.; Abulwafa, E. M.; El-Shewy, E. K.; Abd-El-Hamid, H. M.

    2011-11-01

    A theoretical investigation has been made for electron acoustic waves propagating in a system of unmagnetized collisionless plasma consists of a cold electron fluid and ions with two different temperatures in which the hot ions obey the non-thermal distribution. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude electrostatic waves. It is found that the presence of the energetic population of non-thermal hot ions δ, initial normalized equilibrium density of low temperature ions μ and the ratio of temperatures of low temperature ions to high temperature ions β do not only significantly modify the basic properties of solitary structure, but also change the polarity of the solitary profiles. At the critical hot ions density, the KdV equation is not appropriate for describing the system. Hence, a new set of stretched coordinates is considered to derive the modified KdV equation. In the vicinity of the critical hot ions density, neither KdV nor modified KdV equation is appropriate for describing the electron acoustic waves. Therefore, a further modified KdV equation is derived. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the various KdV-type equations, is used here. Numerical studies have been reveals different solutions e.g., bell-shaped solitary pulses, singular solitary "blowup" solutions, Jacobi elliptic doubly periodic wave, Weierstrass elliptic doubly periodic type solutions, in addition to explosive pulses. The results of the present investigation may be applicable to some plasma environments, such as Earth's magnetotail region.

  18. Effect of ultrathin AlN spacer on electronic properties of GaN/SiC heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Miyake, Hiroki; Kimoto, Tsunenobu; Suda, Jun

    2014-03-01

    GaN/SiC heterojunction bipolar transistors (HBTs) with an ultrathin AlN spacer layer at the n-GaN/p-SiC emitter junction are proposed for the control of the electronic properties of GaN/SiC heterojunctions. The insertion of an AlN spacer is found to be promising in terms of improving electron injection efficiency owing to the reduced potential barrier (0.54 eV) to electron injection and reduced recombination via interface traps. We also investigated the effect of pre-irradiation of active nitrogen atoms (N*) prior to AlN growth for the control of the electronic properties of GaN/AlN/SiC heterojunctions. We found that the potential barrier was further reduced to 0.46 eV by N* pre-irradiation. The HBT structure was successfully fabricated using our newly developed process featuring ion implantation and Pd ohmic contacts to obtain a low contact resistivity to a p-SiC base at a temperature as low as 600 °C. A fabricated HBT without an AlN layer showed a low current gain (α ˜ 0.001), whereas the GaN/AlN/SiC HBT showed improved current gains of 0.1 in the case of using a 1-nm-thick AlN spacer without N* pre-irradiation and 0.2 in the case of using a 2-nm-thick AlN spacer with N* pre-irradiation.

  19. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    NASA Technical Reports Server (NTRS)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  20. High Performance Organic Transistors: Percolating Arrays of Nanotubes Functionalized with an Electron Deficient Olefin

    DTIC Science & Technology

    2011-04-03

    electronics. In the present work, we have extended carbon nanotube functionalization via a 2-2 cycloaddition to electron withdrawing non-fluorinated...have extended carbon nanotube functionalization via a 2-2 cycloaddition to electron withdrawing non-fluorinated olefins as well. Our results show...Moyon et Al. 27 work on cycloaddition of azomenthine suggests preferential functionalization of the semiconducting tubes. In contrast, Kamaras et al

  1. Collisionless absorption, hot electron generation, and energy scaling in intense laser-target interaction

    SciTech Connect

    Liseykina, T.; Mulser, P.; Murakami, M.

    2015-03-15

    Among the various attempts to understand collisionless absorption of intense and superintense ultrashort laser pulses, a whole variety of models and hypotheses has been invented to describe the laser beam target interaction. In terms of basic physics, collisionless absorption is understood now as the interplay of the oscillating laser field with the space charge field produced by it in the plasma. A first approach to this idea is realized in Brunel's model the essence of which consists in the formation of an oscillating charge cloud in the vacuum in front of the target, therefore frequently addressed by the vague term “vacuum heating.” The investigation of statistical ensembles of orbits shows that the absorption process is localized at the ion-vacuum interface and in the skin layer: Single electrons enter into resonance with the laser field thereby undergoing a phase shift which causes orbit crossing and braking of Brunel's laminar flow. This anharmonic resonance acts like an attractor for the electrons and leads to the formation of a Maxwellian tail in the electron energy spectrum. Most remarkable results of our investigations are the Brunel like spectral hot electron distribution at the relativistic threshold, the minimum of absorption at Iλ{sup 2}≅(0.3−1.2)×10{sup 21} Wcm{sup −2}μm{sup 2} in the plasma target with the electron density of n{sub e}λ{sup 2}∼10{sup 23}cm{sup −3}μm{sup 2}, the drastic reduction of the number of hot electrons in this domain and their reappearance in the highly relativistic domain, and strong coupling, beyond expectation, of the fast electron jets with the return current through Cherenkov emission of plasmons. The hot electron energy scaling shows a strong dependence on intensity in the moderately relativistic domain Iλ{sup 2}≅(10{sup 18}−10{sup 20}) Wcm{sup −2}μm{sup 2}, a scaling in vague accordance with current published estimates in the range Iλ{sup 2}≅(0.14−3.5)×10{sup 21} Wcm{sup −2}

  2. Energy relaxation of hot electrons in Si-doped GaN

    NASA Astrophysics Data System (ADS)

    Zhang, J.-Z.

    2014-05-01

    Energy relaxation of the hot electrons in Si-doped bulk GaN is studied theoretically, taking into account non-equilibrium polar optical phonons, electron degeneracy, and screening from the mobile electrons. The electron power dissipation and energy relaxation time are calculated as functions of the electron temperature Te, the hot-phonon effect (HPE) is examined by varying the optical phonon lifetime values, and the results are compared with previous calculations for typical GaN-based heterostructures. Particular attention is paid to the distinct temperature Te dependences of the power loss and the energy relaxation time τE at the low and high electron temperatures. At low electron temperatures (Te<500 K), the exponential rise of phonon generation number, fast weakened screening and HPE result in a rapid increase of power loss and sharp drop of relaxation time with Te. At high electron temperatures (Te>1500 K), the power loss increases slowly with Te due to the decrease in phonon generation rate, and the temperature-dependence of the energy relaxation time depends on the polar optical phonon lifetime—saturation in energy relaxation occurs when the phonon lifetime increases or varies little with Te. Our calculated temperature dependences of the energy relaxation time are in good agreement with experimental findings [Liberis et al., Appl. Phys. Lett. 89, 202117 (2006); Matulionis et al., Phys. Status Solidi C 2, 2585 (2005)]. With no HPE, the electron energy relaxation is much faster in bulk GaN (τE˜ several tens femtoseconds) than in the GaN-based heterostructures. However, stronger hot-phonon re-absorption occurs in bulk GaN due to rapid polar-optical phonon emission compared to phonon decay. Therefore, including HPE yields very close power loss and energy relaxation times in bulk and heterostructures with similar densities of electrons (τE˜ several tenths of a picosecond). Transparent expressions for energy relaxation are obtained in the Boltzmann

  3. Collisionless absorption, hot electron generation, and energy scaling in intense laser-target interaction

    NASA Astrophysics Data System (ADS)

    Liseykina, T.; Mulser, P.; Murakami, M.

    2015-03-01

    Among the various attempts to understand collisionless absorption of intense and superintense ultrashort laser pulses, a whole variety of models and hypotheses has been invented to describe the laser beam target interaction. In terms of basic physics, collisionless absorption is understood now as the interplay of the oscillating laser field with the space charge field produced by it in the plasma. A first approach to this idea is realized in Brunel's model the essence of which consists in the formation of an oscillating charge cloud in the vacuum in front of the target, therefore frequently addressed by the vague term "vacuum heating." The investigation of statistical ensembles of orbits shows that the absorption process is localized at the ion-vacuum interface and in the skin layer: Single electrons enter into resonance with the laser field thereby undergoing a phase shift which causes orbit crossing and braking of Brunel's laminar flow. This anharmonic resonance acts like an attractor for the electrons and leads to the formation of a Maxwellian tail in the electron energy spectrum. Most remarkable results of our investigations are the Brunel like spectral hot electron distribution at the relativistic threshold, the minimum of absorption at I λ 2 ≅ ( 0.3 - 1.2 ) × 10 21 Wcm - 2 μ m 2 in the plasma target with the electron density of n e λ 2 ˜ 10 23 cm - 3 μ m 2 , the drastic reduction of the number of hot electrons in this domain and their reappearance in the highly relativistic domain, and strong coupling, beyond expectation, of the fast electron jets with the return current through Cherenkov emission of plasmons. The hot electron energy scaling shows a strong dependence on intensity in the moderately relativistic domain I λ 2 ≅ ( 10 18 - 10 20 ) Wcm - 2 μ m 2 , a scaling in vague accordance with current published estimates in the range I λ 2 ≅ ( 0.14 - 3.5 ) × 10 21 Wcm - 2 μ m 2 , and again a distinct power increase beyond I = 3.5 × 10 21 Wcm

  4. Energy relaxation of hot electrons in Si-doped GaN

    SciTech Connect

    Zhang, J.-Z. E-mail: jian-zhong.zhang@hull.ac.uk

    2014-05-28

    Energy relaxation of the hot electrons in Si-doped bulk GaN is studied theoretically, taking into account non-equilibrium polar optical phonons, electron degeneracy, and screening from the mobile electrons. The electron power dissipation and energy relaxation time are calculated as functions of the electron temperature T{sub e}, the hot-phonon effect (HPE) is examined by varying the optical phonon lifetime values, and the results are compared with previous calculations for typical GaN-based heterostructures. Particular attention is paid to the distinct temperature T{sub e} dependences of the power loss and the energy relaxation time τ{sub E} at the low and high electron temperatures. At low electron temperatures (T{sub e}<500 K), the exponential rise of phonon generation number, fast weakened screening and HPE result in a rapid increase of power loss and sharp drop of relaxation time with T{sub e}. At high electron temperatures (T{sub e}>1500 K), the power loss increases slowly with T{sub e} due to the decrease in phonon generation rate, and the temperature-dependence of the energy relaxation time depends on the polar optical phonon lifetime—saturation in energy relaxation occurs when the phonon lifetime increases or varies little with T{sub e}. Our calculated temperature dependences of the energy relaxation time are in good agreement with experimental findings [Liberis et al., Appl. Phys. Lett. 89, 202117 (2006); Matulionis et al., Phys. Status Solidi C 2, 2585 (2005)]. With no HPE, the electron energy relaxation is much faster in bulk GaN (τ{sub E}∼ several tens femtoseconds) than in the GaN-based heterostructures. However, stronger hot-phonon re-absorption occurs in bulk GaN due to rapid polar-optical phonon emission compared to phonon decay. Therefore, including HPE yields very close power loss and energy relaxation times in bulk and heterostructures with similar densities of electrons (τ{sub E}∼ several tenths of a picosecond). Transparent

  5. Studies on the reliability of ni-gate aluminum gallium nitride / gallium nitride high electron mobility transistors using chemical deprocessing

    NASA Astrophysics Data System (ADS)

    Whiting, Patrick Guzek

    Aluminum Gallium Nitride / Gallium Nitride High Electron Mobility Transistors are becoming the technology of choice for applications where hundreds of volts need to be applied in a circuit at frequencies in the hundreds of gigahertz, such as microwave communications. However, because these devices are very new, their reliability in the field is not well understood, partly because of the stochastic nature of the defects which form as a result of their operation. Many analytical techniques are not well suited to the analysis of these defects because they sample regions of the device which are either too small or too large for accurate observation. The use of chemical deprocessing in addition to surface-sensitive analysis techniques such as Scanning Electron Microscopy and Scanning Probe Microscopy can be utilized in the analysis of defect formation in devices formed with nickel gates. Hydrofluoric acid is used to etch the passivation nitride which covers the semiconducting layer of the transistor. A metal etch utilizing FeCN/KI is used to etch the ohmic and gate contacts of the device and a long exposure in various solvent solutions is used to remove organic contaminants, exposing the surface of the semiconducting layer for analysis. Deprocessing was used in conjunction with a variety of metrology techniques to analyze three different defects. One of these defects is a nanoscale crack which emanates from metal inclusions formed during alloying of the ohmic contacts of the device prior to use in the field, could impact the yield of production-level manufacturing of these devices. This defect also appears to grow, in some cases, during electrostatic stressing. Another defect, a native oxide at the surface of the semiconducting layer which appears to react in the presence of an electric field, has not been observed before during post-mortem analysis of degraded devices. It could play a major part in the degredation of the gate contact during high-field, off

  6. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation Using Superconducting Tunnel Junctions with Integrated Radio Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Prober, D. E.; Rhee, K. W.; Schoelkopf, R. J.; Stahle, C. M.; Teufel, J.; Wollack, E. J.

    2004-01-01

    For high resolution imaging and spectroscopy in the FIR and submillimeter, space observatories will demand sensitive, fast, compact, low-power detector arrays with 104 pixels and sensitivity less than 10(exp -20) W/Hz(sup 0.5). Antenna-coupled superconducting tunnel junctions with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique. The device consists of an antenna to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure current through junctions contacting the absorber. We describe optimization of device parameters, and results on fabrication techniques for producing devices with high yield for detector arrays. We also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  7. High Electron Mobility Ge n-Channel Metal-Insulator-Semiconductor Field-Effect Transistors Fabricated by the Gate-Last Process with the Solid Source Diffusion Technique

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsuro; Morita, Yukinori; Takagi, Shinichi

    2010-06-01

    We fabricate high-k/Ge n-channel metal-insulator-semiconductor field-effect transistors (MISFETs) by the gate-last process with the thermal solid source diffusion to achieve both of high quality source/drain (S/D) and gate stack. The n+/p junction formed by solid source diffusion technique of Sb dopant shows the excellent diode characteristics of ˜1.5×105 on/off ratio between +1 and -1 V and the quite low reverse current density of ˜4.1×10-4 A/cm2 at +1 V after the fabrication of high-k/Ge n-channel MISFETs that enable us to observe well-behaved transistor performances. The extracted electron mobility with the peak of 891 cm2/(V.s) is high enough to be superior to the Si universal electron mobility especially in low Eeff.

  8. High electron mobility thin-film transistors based on Ga{sub 2}O{sub 3} grown by atmospheric ultrasonic spray pyrolysis at low temperatures

    SciTech Connect

    Thomas, Stuart R. E-mail: thomas.anthopoulos@imperial.ac.uk; Lin, Yen-Hung; Faber, Hendrik; Anthopoulos, Thomas D. E-mail: thomas.anthopoulos@imperial.ac.uk; Adamopoulos, George; Sygellou, Labrini; Stratakis, Emmanuel; Pliatsikas, Nikos; Patsalas, Panos A.

    2014-09-01

    We report on thin-film transistors based on Ga{sub 2}O{sub 3} films grown by ultrasonic spray pyrolysis in ambient atmosphere at 400–450 °C. The elemental, electronic, optical, morphological, structural, and electrical properties of the films and devices were investigated using a range of complementary characterisation techniques, whilst the effects of post deposition annealing at higher temperature (700 °C) were also investigated. Both as-grown and post-deposition annealed Ga{sub 2}O{sub 3} films are found to be slightly oxygen deficient, exceptionally smooth and exhibit a wide energy bandgap of ∼4.9 eV. Transistors based on as-deposited Ga{sub 2}O{sub 3} films show n-type conductivity with the maximum electron mobility of ∼2 cm{sup 2}/V s.

  9. Enhancement of terahertz coupling efficiency by improved antenna design in GaN/AlGaN high electron mobility transistor detectors

    NASA Astrophysics Data System (ADS)

    Sun, Yun-Fei; Sun, Jan-Dong; Zhang, Xiao-Yu; Qin, Hua; Zhang, Bao-Shun; Wu, Dong-Min

    2012-10-01

    An optimized micro-gated terahertz detector with novel triple resonant antenna is presented. The novel resonant antenna operates at room temperature and shows more than a 700% increase in photocurrent response compared to the conventional bowtie antenna. In finite-difference-time-domain simulations, we found the performance of the self-mixing GaN/AlGaN high electron mobility transistor detector is mainly dependent on the parameters Lgs (the gap between the gate and the source/drain antenna) and Lw (the gap between the source and drain antenna). With the improved triple resonant antenna, an optimized micrometer-sized AlGaN/GaN high electron mobility transistor detector can achieve a high responsivity of 9.45 × 102 V/W at a frequency of 903 GHz at room temperature.

  10. Ultrafast scattering processes of hot electrons in InSb studied by time- and angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Tanimura, H.; Kanasaki, J.; Tanimura, K.

    2015-01-01

    Ultrafast scattering processes of hot electrons photoinjected into the conduction band of InSb have been studied using time- and angle-resolved photoemission spectroscopy. The nascent distributions of hot-electron packets are captured directly in energy and momentum spaces, and their ultrafast scattering processes are traced at femtosecond temporal resolution on a state-resolved basis. Hot electrons injected in the Γ valley with excess energies above the minimum of the L valley show ultrafast intervalley scattering, with transition times of the order of 40 fs. The relaxation processes in the L valley are resolved in energy and momentum spaces, including their backscattering into the Γ valley during relaxation. In contrast, relaxation of hot electrons with excess energy below the minimum of the L valley is governed by the direct impact ionization (IMP). We reveal state-selective features of the IMP process, and we have determined the direct IMP rate to be 7 ×1012s-1 for hot electrons with excess energy in the range of 0.35 to 0.6 eV. The direct IMP process results in a rapid increase, within 300 fs after excitation, of the electron density at the conduction band minimum (CBM), and phonon-assisted IMP by hot electrons scattered in the L valley and those backscattered into the Γ valley persistently enhances the electron density up to 8 ps after excitation. By analyzing correlations between the IMP rates of hot electrons and the electron densities near the CBM, an important role of a transient Auger recombination is proposed to quantify the yield of low-energy electrons generated in the IMP process.

  11. Electrogenerated chemiluminescence induced by sequential hot electron and hole injection into aqueous electrolyte solution.

    PubMed

    Salminen, Kalle; Kuosmanen, Päivi; Pusa, Matti; Kulmala, Oskari; Håkansson, Markus; Kulmala, Sakari

    2016-03-17

    Hole injection into aqueous electrolyte solution is proposed to occur when oxide-coated aluminum electrode is anodically pulse-polarized by a voltage pulse train containing sufficiently high-voltage anodic pulses. The effects of anodic pulses are studied by using an aromatic Tb(III) chelate as a probe known to produce intensive hot electron-induced electrochemiluminescence (HECL) with plain cathodic pulses and preoxidized electrodes. The presently studied system allows injection of hot electrons and holes successively into aqueous electrolyte solutions and can be utilized in detecting electrochemiluminescent labels in fully aqueous solutions, and actually, the system is suggested to be quite close to a pulse radiolysis system providing hydrated electrons and hydroxyl radicals as the primary radicals in aqueous solution without the problems and hazards of ionizing radiation. The analytical power of the present excitation waveforms are that they allow detection of electrochemiluminescent labels at very low detection limits in bioaffinity assays such as in immunoassays or DNA probe assays. The two important properties of the present waveforms are: (i) they provide in situ oxidation of the electrode surface resulting in the desired oxide film thickness and (ii) they can provide one-electron oxidants for the system by hole injection either via F- and F(+)-center band of the oxide or by direct hole injection to valence band of water at highly anodic pulse amplitudes.

  12. Temporal characterization of hot-electron thermoelectric effect in monolayer graphene devices

    NASA Astrophysics Data System (ADS)

    Suess, Ryan J.; Cai, Xinghan; Sushkov, Andrei; Jenkins, Greg; Kim, M.-H.; Yan, Jun; Drew, H. Dennis; Murphy, Thomas E.; Fuhrer, Michael S.

    2013-03-01

    Graphene's unique electronic and optical properties have made it an attractive candidate material for photonics applications such as broadband optical detection. We report the temporal response of a monolayer graphene device with dissimilar metal electrodes in which optically induced hot-electrons are detected via a thermoelectric voltage induced between the electrodes. Measurements are carried out with a pulsed laser system (60 fs pulse width) at the telecom wavelength of 1.5 μm using an asynchronous optical sampling pulse coincidence technique. Graphene's weak electron-phonon coupling and our compact device geometry (comparable to the thermal diffusion length) result in a fast 10 - 20 ps non-linear thermal response that is nearly independent of temperature over the measured range of 15 - 150 K. Sensitivity of the devices response to optical power will also be discussed. These results are a follow-on to other talks reported by our group at this conference in which the fabrication, operating principal, and broad wavelength (THz to near IR) response of the graphene-based hot-electron bolometer are described. Supported by IARPA and ONR-MURI

  13. Project of a Large Superconductor Detector Involving Directed Diffusion of Hot Electrons and Microcalorimeter

    SciTech Connect

    Shpinel, V.S.

    2005-12-01

    In recent years, radically new detectors for soft x rays and gamma rays were developed on the basis of superconducting tunnel junctions. These detectors made it possible to attain a very high resolution, but their largest area is overly small for employing them in nuclear spectroscopy. This study is devoted to the problem of designing a superconductor detector whose dimensions are sufficiently large for detecting gamma rays and which is suitable for applications in various fields of science. The detector consists of three units: an absorber, a hot-electron calorimeter, and a tunnel-junction (normal metal-insulator-superconductor) thermometer. The absorber has a multilayer structure consisting of thin superconductor layers arranged in the order of variation of the superconductor energy gap. This structure specifies the direction of hot-electron diffusion. Since quasiparticles diffuse in a specific direction, the diffusion time becomes shorter than that in the case of conventional diffusion. It is necessary that this time be shorter than the time of electron-phonon interaction. Calculations of the diffusion time for the particular structure in question and data from the literature on electron-phonon interaction show that the operating area of the detector can be about 3 to 4 mm{sup 2} and that its thickness can be about 1 mm. These dimensions can be considerably increased in the case of especially pure superconductors.

  14. The role of hot electron refluxing in laser-generated K-alpha sources

    SciTech Connect

    Neumayer, P.; Aurand, B.; Basko, M.; Ecker, B.; Gibbon, P.; Karmakar, A.; Hochhaus, D. C.; Kazakov, E.; Kuehl, T.; Labaune, C.; Rosmej, O.; Tauschwitz, An.

    2010-10-15

    A study of the contribution of refluxing electrons in the production of K-alpha radiation from high-intensity laser irradiated thin targets has been performed. Thin copper foils both freestanding, and backed by a thick substrate were irradiated with laser pulses of energies around 100 J at intensities ranging from below 10{sup 17} to above 10{sup 19} W/cm{sup 2}. At high laser intensities we find a strong reduction in the K-alpha yield from targets backed by the substrate. The observed yield reduction is in good agreement with a simple model using hot electron spectra from particle-in-cell simulations or directly inferred from the measured bremsstrahlung emission and can therefore be interpreted as due to the suppression of hot electron refluxing. The study shows that refluxing electrons play a dominant role in high-intensity laser driven K- alpha generation and have to be taken into account in designing targets for laser driven high-flux K-alpha sources.

  15. The Effects of Temperature and Electron Radiation on the Electrical Properties of AlGaN/GaN Heterostructure Field Effect Transistors

    DTIC Science & Technology

    2009-03-01

    electron irradiation and temperature on drain current, gate leakage current, threshold voltage shifts, and gate- channel capacitance . Measurements...were taken of transistor current and gate-channel capacitance at LNT and room temperature (RT) and gate leakage current vs. gate bias at 4 K...irradiation values after RT anneal periods. Gate-channel capacitance levels showed little post-irradiation change and negligible temperature

  16. Measurement of hot electron preheat during capsule implosions on the NIF with hard x-ray imaging

    NASA Astrophysics Data System (ADS)

    Doeppner, Tilo; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Izumi, N.; Thomas, C. A.; Lacaille, G.; Landen, O. L.; McNaney, J. M.; Meezan, N. B.; Salmonson, J. D.; Kline, J. L.

    2011-10-01

    Hot electrons of energies between 170 and 250 keV can penetrate the capsule ablator and preheat the DT fuel in indirect-drive ICF implosions, reducing the final compressed fuel area density and ignition margin. We have fielded a high aspect ratio pinhole imager with 400 μm resolution, 0.9x magnification viewing through a Laser Entrance Hole to measure the 50 - 125 keV hard x-ray Bremsstrahlung emission from hot electrons slowing in the capsule. The absolutely calibrated, time-integrating image plate detector allows inferring an upper limit of 150 J in hot electrons with E > 170 keV impinging on the fusion capsule in a 1.3 MJ experiment with a 20 ns laser drive. Time-resolved, spatially integrated hard x-ray measurements confirm that these hot electrons are generated close to the end of the laser pulse. Based on measured hot-electron energy and time history, simulations predict a degradation of implosion performance by < 10% due to hot electron preheat. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Temperature dependence of the threshold voltage of AlGaN/GaN/SiC high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Rezazadeh, Ali A.; Gaquiere, Christophe

    2016-12-01

    Shifts in the threshold voltage V T subject to temperature in AlGaN/GaN-based high-electron-mobility transistors (HEMTs) grown on silicon carbide substrate are reported. Variation of V T with drain-source voltage and temperature is investigated, including experimental characterization, modelling and analysis. Possible parameters that affect V T are Schottky barrier height of the device, along with trap-assisted phenomena, aluminium concentration and polarization fields depending on the dielectric, were studied. The threshold voltage and Schottky barrier height shift positively with temperature, and a zero temperature coefficient point in the transfer curve was found before the threshold voltage. An analytical model for threshold voltage V T based on lattice-mismatched Al x Ga1-x N/GaN HEMTs is presented based on aluminium mole concentration, and it is found that V T shifts towards more negative values with increasing aluminium concentration. The model correctly predicts device performance and is found to be consistent with the measured results. These results are valuable for understanding the underlying physics of GaN/SiC HEMTs and their optimization with temperature.

  18. Plasma-assisted Molecular Beam Epitaxy of N-polar InAlN-barrier High-electron-mobility Transistors.

    PubMed

    Hardy, Matthew T; Storm, David F; Katzer, D Scott; Downey, Brian P; Nepal, Neeraj; Meyer, David J

    2016-11-24

    Plasma-assisted molecular beam epitaxy is well suited for the epitaxial growth of III-nitride thin films and heterostructures with smooth, abrupt interfaces required for high-quality high-electron-mobility transistors (HEMTs). A procedure is presented for the growth of N-polar InAlN HEMTs, including wafer preparation and growth of buffer layers, the InAlN barrier layer, AlN and GaN interlayers and the GaN channel. Critical issues at each step of the process are identified, such as avoiding Ga accumulation in the GaN buffer, the role of temperature on InAlN compositional homogeneity, and the use of Ga flux during the AlN interlayer and the interrupt prior to GaN channel growth. Compositionally homogeneous N-polar InAlN thin films are demonstrated with surface root-mean-squared roughness as low as 0.19 nm and InAlN-based HEMT structures are reported having mobility as high as 1,750 cm(2)/V∙sec for devices with a sheet charge density of 1.7 x 10(13) cm(-2).

  19. Effect of gate length on breakdown voltage in AlGaN/GaN high-electron-mobility transistor

    NASA Astrophysics Data System (ADS)

    Jun, Luo; Sheng-Lei, Zhao; Min-Han, Mi; Wei-Wei, Chen; Bin, Hou; Jin-Cheng, Zhang; Xiao-Hua, Ma; Yue, Hao

    2016-02-01

    The effects of gate length LG on breakdown voltage VBR are investigated in AlGaN/GaN high-electron-mobility transistors (HEMTs) with LG = 1 μm˜ 20 μm. With the increase of LG, VBR is first increased, and then saturated at LG = 3 μm. For the HEMT with LG = 1 μm, breakdown voltage VBR is 117 V, and it can be enhanced to 148 V for the HEMT with LG = 3 μm. The gate length of 3 μm can alleviate the buffer-leakage-induced impact ionization compared with the gate length of 1 μm, and the suppression of the impact ionization is the reason for improving the breakdown voltage. A similar suppression of the impact ionization exists in the HEMTs with LG > 3 μm. As a result, there is no obvious difference in breakdown voltage among the HEMTs with LG = 3 μm˜20 μm, and their breakdown voltages are in a range of 140 V-156 V. Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002, 61106106, and 61204085).

  20. Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu

    2016-04-01

    The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  1. Dependence on proton energy of degradation of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Liu, L.; Xi, Y. Y.; Wang, Y.l.; Ren, F.; Pearton, S. J.; Kim, H.-Y.; Kim, J.; Fitch, Robert C; Walker, Dennis E; Chabak, Kelson D; Gillespie, James k; Tetlak, Stephen E; Via, Glen D; Crespo, Antonio; Kravchenko, Ivan I

    2013-01-01

    The effects of proton irradiation energy on dc, small signal, and large signal rf characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) were investigated. AlGaN/GaN HEMTs were irradiated with protons at fixed fluence of 51015/cm2 and energies of 5, 10, and 15 MeV. Both dc and rf characteristics revealed more degradation at lower irradiation energy, with reductions of maximum transconductance of 11%, 22%, and 38%, and decreases in drain saturation current of 10%, 24%, and 46% for HEMTs exposed to 15, 10, and 5MeV protons, respectively. The increase in device degradation with decreasing proton energy is due to the increase in linear energy transfer and corresponding increase in nonionizing energy loss with decreasing proton energy in the active region of the HEMTs. After irradiation, both subthreshold drain leakage current and reverse gate current decreased more than 1 order of magnitude for all samples. The carrier removal rate was in the range 121 336 cm1 over the range of proton energies employed in this study

  2. RF Single Electron Transistor Readout Amplifiers for Superconducting Astronomical Detectors for X-Ray to Sub-mm Wavelengths

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; Aassime, Abdelhanin; Delsing, Per; Frunzio, Luigi; Li, Li-Qun; Prober, Daniel; Schoelkopf, Robert; Segall, Ken; Wilson, Chris; Stahle, Carl

    2000-01-01

    We report progress on using a new type of amplifier, the Radio-Frequency Single-Electron Transistor (RF-SET), to develop multi-channel sensor readout systems for fast and sensitive readout of high impedance cryogenic photodetectors such as Superconducting Tunnel Junctions and Single Quasiparticle Photon Counters. Although cryogenic, these detectors are desirable because of capabilities not other-wise attainable. However, high impedances and low output levels make low-noise, high-speed readouts challenging, and large format arrays would be facilitated by compact, low-power, on-chip integrated amplifiers. Well-suited for this application are RF-SETs, very high performance electrometers which use an rf readout technique to provide 100 MHz bandwidth. Small size, low power, and cryogenic operation allow direct integration with detectors, and using multiple rf carrier frequencies permits simultaneous readout of 20-50 amplifiers with a common electrical connection. We describe both the first 2-channel demonstration of this wavelength division multiplexing technique for RF-SETs, and Charge-Locked-Loop operation with 100 kHz of closed-loop bandwidth.

  3. Monte Carlo study of kink effect in isolated-gate InAs/AlSb high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Vasallo, B. G.; Rodilla, H.; González, T.; Moschetti, G.; Grahn, J.; Mateos, J.

    2010-11-01

    A semiclassical two-dimensional ensemble Monte Carlo simulator is used to perform a physical analysis of the kink effect in InAs/AlSb high electron mobility transistors (HEMTs). Kink effect, this is, an anomalous increase in the drain current ID when increasing the drain-to-source voltage VDS, leads to a reduction in the gain and a rise in the level of noise, thus limiting the utility of these devices for microwave applications. Due to the small band gap of InAs, InAs/AlSb HEMTs are very susceptible to suffer from impact ionization processes, with the subsequent hole transport through the structure, both implicated in the kink effect. The results indicate that, when VDS is high enough for the onset of impact ionization, holes thus generated tend to pile up in the buffer (at the gate-drain side) due to the valence-band energy barrier between the buffer and the channel. Due to this accumulation of positive charge the channel is further opened and ID increases, leading to the kink effect in the I-V characteristics and eventually to the device electrical breakdown. The understanding of this phenomenon provides useful information for the development of kink-effect-free InAs/AlSb HEMTs.

  4. High Current Responsivity and Wide Modulation Bandwidth Terahertz Detector Using High-Electron-Mobility Transistor for Wireless Communication

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Nukariya, T.; Ueda, Y.; Otsuka, T.; Asada, M.

    2016-07-01

    A high-current-responsivity terahertz (THz) detector was fabricated using a broadband bow-tie antenna and an InAlAs/InGaAs high-electron-mobility transistor (HEMT) with a short gate length. High-current responsivity can be achieved by using a short gate length; the resulting high transconductance exhibited ballistic transport in the channel. We fabricated the HEMT detector with a 50-nm-long channel; the transconductance was 1.2 S/mm and the subthreshold slope was 120 mV/dec, yielding a high-current responsivity (˜5 A/W) and a cutoff frequency of 460 GHz. We also measured the modulation bandwidth of the THz detector using a heterodyne mixing technique with a uni-traveling carrier photodiode (UTC-PD) for providing the radio frequency (RF) and a frequency multiplier as a local oscillator. The intensity of the intermediate signal (IF) was measured by changing the frequency of the UTC-PD; very high bandwidths of up to 26 GHz were obtained. The experimental results agree well with electromagnetic simulations, which indicate that the bandwidth is determined by the external circuit. The conversion gain from RF to IF was -2 dB in the heterodyne mixing by using the HEMT detector.

  5. Time evolution of off-state degradation of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Bajo, M. Montes E-mail: Martin.Kuball@bristol.ac.uk; Sun, H.; Uren, M. J.; Kuball, M. E-mail: Martin.Kuball@bristol.ac.uk

    2014-06-02

    The evolution of AlGaN/GaN high electron mobility transistors under off-state stress conditions is studied by gate leakage current (I{sub g}) monitoring, electroluminescence (EL), and atomic force microscope (AFM) imaging at room temperature. It is found that the number of off-state failure sites as identified by EL increases over time during stress until it reaches a saturation value. I{sub g} increases accordingly during stress until this saturation number of failure sites is reached. AFM scanning of the device surface stripped of metal contacts and passivation reveals surface pits corresponding to the location of the EL spots. These pits have an elongated shape oriented towards the drain contact whose length is correlated with the distance to the adjacent pits and with the time since their appearance during the stress experiment. A model for the generation and evolution of the off-state stress-related failure sites is proposed consistent with the experimental results, bringing together surface migration of electrochemical species with trap-based leakage mechanisms and resulting in the formation of an exclusion zone around each failure site.

  6. Flip-Chip Packaging of Low-Noise Metamorphic High Electron Mobility Transistors on Low-Cost Organic Substrate

    NASA Astrophysics Data System (ADS)

    Wang, Chin-Te; Kuo, Chien-I.; Hsu, Heng-Tung; Chang, Edward Yi; Hsu, Li-Han; Lim, Wee-Chin; Miyamoto, Yasuyuki

    2011-09-01

    The rapid growth of high-frequency wireless communication demands high-performance packaging structures at low cost. A flip-chip interconnect is one of the most promising technologies owing to its low parasitic effect and high performance at high frequencies. In this study, the in-house fabricated In0.6Ga0.4As metamorphic high electron mobility transistor (mHEMT) device was flip-chip-assembled using a commercially available low-cost organic substrate. The packaged device with the optimal flip-chip structure exhibited almost similar DC and RF results to the bare die. An exopy-based underfill was applied to the improvement of reliability with almost no degradation of the electrical characteristics. Measurement results revealed that the proposed packaging structure maintained a low minimum noise figure of 3 dB with 6 dB associated gain at 62 GHz. Such a superior performance after flip-chip packaging demonstrates the feasibility of the proposed low-cost organic substrate for commercial high-frequency applications up to the W-band.

  7. Viscosity-dependent drain current noise of AlGaN/GaN high electron mobility transistor in polar liquids

    SciTech Connect

    Fang, J. Y.; Hsu, C. P.; Kang, Y. W.; Fang, K. C.; Kao, W. L.; Yao, D. J.; Chen, C. C.; Li, S. S.; Yeh, J. A.; Wang, Y. L.; Lee, G. Y.; Chyi, J. I.; Hsu, C. H.; Huang, Y. F.; Ren, F.

    2013-11-28

    The drain current fluctuation of ungated AlGaN/GaN high electron mobility transistors (HEMTs) measured in different fluids at a drain-source voltage of 0.5 V was investigated. The HEMTs with metal on the gate region showed good current stability in deionized water, while a large fluctuation in drain current was observed for HEMTs without gate metal. The fluctuation in drain current for the HEMTs without gate metal was observed and calculated as standard deviation from a real-time measurement in air, deionized water, ethanol, dimethyl sulfoxide, ethylene glycol, 1,2-butanediol, and glycerol. At room temperature, the fluctuation in drain current for the HEMTs without gate metal was found to be relevant to the dipole moment and the viscosity of the liquids. A liquid with a larger viscosity showed a smaller fluctuation in drain current. The viscosity-dependent fluctuation of the drain current was ascribed to the Brownian motions of the liquid molecules, which induced a variation in the surface dipole of the gate region. This study uncovers the causes of the fluctuation in drain current of HEMTs in fluids. The results show that the AlGaN/GaN HEMTs may be used as sensors to measure the viscosity of liquids within a certain range of viscosity.

  8. Influence of electron-beam lithography exposure current level on the transport characteristics of graphene field effect transistors

    NASA Astrophysics Data System (ADS)

    Kang, Sangwoo; Movva, Hema C. P.; Sanne, Atresh; Rai, Amritesh; Banerjee, Sanjay K.

    2016-03-01

    Many factors have been identified to influence the electrical transport characteristics of graphene field-effect transistors. In this report, we examine the influence of the exposure current level used during electron beam lithography (EBL) for active region patterning. In the presence of a self-assembled hydrophobic residual layer generated by oxygen plasma etching covering the top surface of the graphene channel, we show that the use of low EBL current level results in higher mobility, lower residual carrier density, and charge neutrality point closer to 0 V, with reduced device-to-device variations. We show that this correlation originates from the resist heating dependent release of radicals from the resist material, near its interface with graphene, and its subsequent trapping by the hydrophobic polymer layer. Using a general model for resist heating, we calculate the difference in resist heating for different EBL current levels. We further corroborate our argument through control experiments, where radicals are either intentionally added or removed by other processes. We also utilize this finding to obtain mobilities in excess of 18 000 cm2/V s on silicon dioxide substrates. We believe these results are applicable to other 2D materials such as transition metal dichalcogenides and nanoscale devices in general.

  9. AlGaN/GaN high electron mobility transistors with selective area grown p-GaN gates

    NASA Astrophysics Data System (ADS)

    Yuliang, Huang; Lian, Zhang; Zhe, Cheng; Yun, Zhang; Yujie, Ai; Yongbing, Zhao; Hongxi, Lu; Junxi, Wang; Jinmin, Li

    2016-11-01

    We report a selective area growth (SAG) method to define the p-GaN gate of AlGaN/GaN high electron mobility transistors (HEMTs) by metal-organic chemical vapor deposition. Compared with Schottky gate HEMTs, the SAG p-GaN gate HEMTs show more positive threshold voltage (V th) and better gate control ability. The influence of Cp2Mg flux of SAG p-GaN gate on the AlGaN/GaN HEMTs has also been studied. With the increasing Cp2Mg from 0.16 μmol/min to 0.20 μmol/min, the V th raises from -0.67 V to -0.37 V. The maximum transconductance of the SAG HEMT at a drain voltage of 10 V is 113.9 mS/mm while that value of the Schottky HEMT is 51.6 mS/mm. The SAG method paves a promising way for achieving p-GaN gate normally-off AlGaN/GaN HEMTs without dry etching damage. Project supported by the National Natural Sciences Foundation of China (Nos. 61376090, 61306008) and the National High Technology Program of China (No. 2014AA032606).

  10. Probing Electronic, Structural, and Charge Transfer Properties of Organic Semiconductor/Inorganic Oxide Interfaces Using Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Spalenka, Josef Wade

    Interfaces between organic semiconductors and inorganic oxides provide the functionality for devices including field-effect transistors (FETs) and organic photovoltaics. Organic FETs are sensitive to the physical structure and electronic properties of the few molecular layers of material at the interface between the semiconducting channel and the gate dielectric, and provide quantitative information such as the field-effect mobility of charge carriers and the concentration of trapped charge. In this thesis, FET interfaces between organic small-molecule semiconductors and SiO2, and donor/acceptor interfaces between organic small-molecules and the wide bandgap semiconductor ZnO are studied using electrical measurements of field-effect transistor devices. Monolayer-scale films of dihexyl sexithiophene are shown to have higher hole mobility than other monolayer organic semiconductors, and the origin of the high mobility is discussed. Studies of the crystal structure of the monolayer using X-ray structural probes and atomic force microscopy reveal the crystal structure is different in the monolayer regime compared to thicker films and bulk crystals. Progress and remaining challenges are discussed for in situ X-ray diffraction studies of the dynamic changes in the local crystal structure in organic monolayers due to charge carriers generated during the application of electric fields from the gate electrode in working FETs. Studies were conducted of light sensitive organic/inorganic interfaces that are modified with organic molecules grafted to the surface of ZnO nanoparticles and thin films. These interfaces are models for donor/acceptor interfaces in photovoltaics. The process of exciton dissociation at the donor/acceptor interface was sensitive to the insulating or semiconducting molecules grafted to the ZnO, and the photoinduced charge transfer process is measured by the threshold voltage shift of FETs during illumination. Charge transfer between light sensitive donor

  11. Momentum-resolved hot electron dynamics at the 2 H -MoS2 surface

    NASA Astrophysics Data System (ADS)

    Hein, P.; Stange, A.; Hanff, K.; Yang, L. X.; Rohde, G.; Rossnagel, K.; Bauer, M.

    2016-11-01

    Time- and angle-resolved photoelectron spectroscopy (trARPES) is employed to study hot electron dynamics in the conduction band of photoexcited 2 H -MoS2. Momentum-dependent rise times of up to 150 fs after near-ultraviolet photoexcitation and decay times of the order of several-hundred fs allow us to locate areas of light absorption in the conduction-band energy landscape as well as to track the relaxation of hot electrons into the lowest-energy states. The conduction-band minima are finally depopulated within ≈1 ps, although a residual population remains up to the maximum investigated pump-probe delay of 15 ps. The presence of the fast depopulation channel differs from the results of experiments of bulk MoS2 performed with all-optical methods. It conforms, however, with recent findings for monolayer MoS2. We attribute this similarity to defect and surface states being of considerable relevance for the near-surface electron dynamics of bulk MoS2, as probed in a trARPES experiment.

  12. Capacitance-Voltage Study on the Effects of Low Energy Electron Radiation on Al(0.27)Ga(0.73)N/GaN High Electron Mobility Transistors

    DTIC Science & Technology

    2005-03-01

    grown and electron-irradiated n-GaN,” IEEE, 35-42 (2000). [27] D. C. Look, et al. “On the Nitrogen Vacancy in GaN,” Applied Physics Letters , Vol...Al0.27Ga0.73N/GaN HIGH ELECTRON MOBILITY TRANSISTORS THESIS Presented to the Faculty Department of Engineering Physics Graduate School of...of Tables Table Page 1. Physical properties of wide band gap semiconductors [10]...................................14 2. Competitive

  13. On-chip Hot Spot Remediation with Miniaturized Thermoelectric Coolers

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Avram; Wang, Peng

    2009-08-01

    The rapid emergence of nanoelectronics, with the consequent rise in transistor density and switching speed, has led to a steep increase in chip heat flux and growing concern over the emergence of on-chip "hot spots" in microprocessors, along with such high flux regions in power electronic chips and LED's. Miniaturized thermoelectric coolers (μ-TEC's) are a most promising cooling technique for the remediation of such hot spots. This paper presents a comprehensive review of recent advances in novel applications of superlattice, mini-contact, and silicon-based miniaturized thermoelectric coolers in reducing the severity of on-chip hot spots.

  14. Multicharacterization approach for studying InAl(Ga)N/Al(Ga)N/GaN heterostructures for high electron mobility transistors

    SciTech Connect

    Naresh-Kumar, G. Trager-Cowan, C.; Vilalta-Clemente, A.; Morales, M.; Ruterana, P.; Pandey, S.; Cavallini, A.; Cavalcoli, D.; Skuridina, D.; Vogt, P.; Kneissl, M.; Behmenburg, H.; Giesen, C.; Heuken, M.; Gamarra, P.; Di Forte-Poisson, M. A.; Patriarche, G.; Vickridge, I.

    2014-12-15

    We report on our multi–pronged approach to understand the structural and electrical properties of an InAl(Ga)N(33nm barrier)/Al(Ga)N(1nm interlayer)/GaN(3μm)/ AlN(100nm)/Al{sub 2}O{sub 3} high electron mobility transistor (HEMT) heterostructure grown by metal organic vapor phase epitaxy (MOVPE). In particular we reveal and discuss the role of unintentional Ga incorporation in the barrier and also in the interlayer. The observation of unintentional Ga incorporation by using energy dispersive X–ray spectroscopy analysis in a scanning transmission electron microscope is supported with results obtained for samples with a range of AlN interlayer thicknesses grown under both the showerhead as well as the horizontal type MOVPE reactors. Poisson–Schrödinger simulations show that for high Ga incorporation in the Al(Ga)N interlayer, an additional triangular well with very small depth may be exhibited in parallel to the main 2–DEG channel. The presence of this additional channel may cause parasitic conduction and severe issues in device characteristics and processing. Producing a HEMT structure with InAlGaN as the barrier and AlGaN as the interlayer with appropriate alloy composition may be a possible route to optimization, as it might be difficult to avoid Ga incorporation while continuously depositing the layers using the MOVPE growth method. Our present work shows the necessity of a multicharacterization approach to correlate structural and electrical properties to understand device structures and their performance.

  15. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    SciTech Connect

    Li, X.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Janzén, E.; Forsberg, U.; Bergsten, J.; Rorsman, N.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  16. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu

    2016-12-01

    Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).

  17. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    NASA Astrophysics Data System (ADS)

    Li, X.; Bergsten, J.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Rorsman, N.; Janzén, E.; Forsberg, U.

    2015-12-01

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 1018 cm-3) epitaxial layer closest to the substrate and a lower doped layer (3 × 1016 cm-3) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 1018 cm-3) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  18. Origin of fine oscillations in the photoluminescence spectrum of 2-dimensional electron gas formed in AlGaN/GaN high electron mobility transistor structures

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Porwal, S.; Jain, Anubha; Oak, S. M.; Sharma, T. K.

    2015-10-01

    An unambiguous identification of the fine oscillations observed in the low temperature photoluminescence (PL) spectra of AlGaN/GaN based high electron mobility transistor (HEMT) structures is carried out. In literature, such oscillations have been erroneously identified as the sub-levels of 2-dimensional electron gas (2DEG) formed at AlGaN/GaN heterointerface. Here, the origin of these oscillations is probed by performing the angle dependent PL and reflectivity measurements under identical conditions. Contrary to the reports available in literature, we find that the fine oscillations are not related to 2DEG sub-levels. The optical characteristics of these oscillations are mainly governed by an interference phenomenon. In particular, peculiar temperature dependent redshift and excitation intensity dependent blueshift, which have been interpreted as the characteristics of 2DEG sub-levels in HEMT structures by other researchers, are understood by invoking the wavelength and temperature dependence of the refractive index of GaN within the framework of interference phenomenon. The results of other researchers are also consistently explained by considering the fine oscillatory features as the interference oscillations.

  19. Comparison between theoretical and experimental results for energy states of two-dimensional electron gas in pseudomorphically strained InAs high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Nishio, Yui; Tange, Takahiro; Hirayama, Naomi; Iida, Tsutomu; Takanashi, Yoshifumi

    2014-01-01

    The energy states of a two-dimensional electron gas (2DEG) in high-electron-mobility transistors with a pseudomorphically strained InAs channel (PHEMTs) were analyzed rigorously using a recently established theory that takes into account the nonparabolicity of the conduction band of the channel layer. The sheet density of the 2DEG in InxGa1-xAs-PHEMTs and the drain I-V characteristics of those devices were calculated theoretically and compared with the density and characteristics obtained experimentally. Not only the calculated threshold voltage (VTH) but also the calculated transconductance agreed fairly well with the corresponding values obtained experimentally. When the effects of the compositions of the InxGa1-xAs subchannel layer in the composite channel and the channel layer on energy states of 2DEG were investigated in order to establish a guiding principle for a design of the channel structure in PHEMTs, it was found that VTH is determined by the effective conduction-band offset energy ΔEC between the InAlAs barrier and the channel layers.

  20. Origin of fine oscillations in the photoluminescence spectrum of 2-dimensional electron gas formed in AlGaN/GaN high electron mobility transistor structures

    SciTech Connect

    Jana, Dipankar Porwal, S.; Oak, S. M.; Sharma, T. K.; Jain, Anubha

    2015-10-28

    An unambiguous identification of the fine oscillations observed in the low temperature photoluminescence (PL) spectra of AlGaN/GaN based high electron mobility transistor (HEMT) structures is carried out. In literature, such oscillations have been erroneously identified as the sub-levels of 2-dimensional electron gas (2DEG) formed at AlGaN/GaN heterointerface. Here, the origin of these oscillations is probed by performing the angle dependent PL and reflectivity measurements under identical conditions. Contrary to the reports available in literature, we find that the fine oscillations are not related to 2DEG sub-levels. The optical characteristics of these oscillations are mainly governed by an interference phenomenon. In particular, peculiar temperature dependent redshift and excitation intensity dependent blueshift, which have been interpreted as the characteristics of 2DEG sub-levels in HEMT structures by other researchers, are understood by invoking the wavelength and temperature dependence of the refractive index of GaN within the framework of interference phenomenon. The results of other researchers are also consistently explained by considering the fine oscillatory features as the interference oscillations.

  1. Studies of Electron Beam Evaporated SiO2/AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Arulkumaran, Subramaniam; Egawa, Takashi; Ishikawa, Hiroyasu

    2005-06-01

    The metal-oxide-semiconductor high-electron-mobility transistors (MOSHEMTs) have been demonstrated and its dc characteristics were examined and compared with the conventional AlGaN/GaN HEMTs. The electron beam (EB) evaporated SiO2 layers were used as a gate-insulator. Capacitance-voltage plot of MOS contacts revealed the existence of injection type complete accumulation up to +4.0 V. The fabricated MOSHEMTs have exhibited better dc characteristics when compared with the conventional AlGaN/GaN HEMTs. The MOSHEMTs could operate at positive gate-biases as high as +4.0 V. The 2.0-μm-gate-length EB-SiO2 MOSHEMTs exhibited higher drain current density and extrinsic transconductance of 856 mA/mm and 145 mS/mm when compared to the conventional AlGaN/GaN HEMTs. The gate leakage current (IgLeak) was three orders of magnitude lower than that of the conventional AlGaN/GaN HEMTs. The stable device operations at high operating voltages with low IgLeak and high gmmax values leads to the occurrence of low trap density at EB-SiO2/AlGaN interface.

  2. Fabrication and characterization of InAlN/GaN-based double-channel high electron mobility transistors for electronic applications

    NASA Astrophysics Data System (ADS)

    Xue, JunShuai; Zhang, JinCheng; Zhang, Kai; Zhao, Yi; Zhang, LinXia; Ma, XiaoHua; Li, XiaoGang; Meng, FanNa; Hao, Yue

    2012-06-01

    In our previous work [J. S. Xue et al., Appl. Phys. Lett. 100, 013507 (2012)], superior electron-transport properties are obtained in InAlN/GaN/InAlN/GaN double-channel (DC) heterostructures grown by pulsed metal organic chemical vapor deposition (PMOCVD). In this paper, we present a detailed fabrication and systematic characterization of high electron mobility transistors (HEMTs) fabricated on these heterostructures. The device exhibits distinct DC behavior concerning with both static-output and small-signal performance, demonstrating an improved maximum drain current density of 1059 mA/mm and an enhanced transconductance of 223 mS/mm. Such enhancement of device performance is attributed to the achieved low Ohmic contact resistance as low as 0.33 ± 0.05 Ω.mm. Moreover, very low gate diode reverse leakage current is observed due to the high quality of InAlN barrier layer deposited by PMOCVD. A current gain frequency of 10 GHz and a maximum oscillation frequency 21 GHz are also observed, which are comparable to the state-of-the-art AlGaN/GaN-based DC HEMT found in the literature. The results demonstrate the great potential of PMOCVD for application in InAlN-related device's epitaxy.

  3. InAlN high electron mobility transistor Ti/Al/Ni/Au Ohmic contact optimisation assisted by in-situ high temperature transmission electron microscopy

    SciTech Connect

    Smith, M. D.; Parbrook, P. J.; O'Mahony, D.; Conroy, M.; Schmidt, M.

    2015-09-14

    This paper correlates the micro-structural and electrical characteristics associated with annealing of metallic multi-layers typically used in the formation of Ohmic contacts to InAlN high electron mobility transistors. The multi-layers comprised Ti/Al/Ni/Au and were annealed via rapid thermal processing at temperatures up to 925 °C with electrical current-voltage analysis establishing the onset of Ohmic (linear IV) behaviour at 750–800 °C. In-situ temperature dependent transmission electron microscopy established that metallic diffusion and inter-mixing were initiated near a temperature of 500 °C. Around 800 °C, inter-diffusion of the metal and semiconductor (nitride) was observed, correlating with the onset of Ohmic electrical behaviour. The sheet resistance associated with the InAlN/AlN/GaN interface is highly sensitive to the anneal temperature, with the range depending on the Ti layer thickness. The relationship between contact resistivity and measurement temperature follow that predicted by thermionic field emission for contacts annealed below 850 °C, but deviated above this due to excessive metal-semiconductor inter-diffusion.

  4. Degradation mechanisms of electron mobility in metal-oxide-semiconductor field-effect transistors with LaAlO{sub 3} gate dielectric

    SciTech Connect

    Chang, Ingram Yin-ku; You Shengwen; Chen Maingwo; Chen Chunheng; Lee, Joseph Yamin; Juan, Pichun

    2009-05-15

    LaAlO{sub 3} is a promising candidate of gate dielectric for future very large scale integration devices. In this work, metal-oxide-semiconductor capacitors and transistors with LaAlO{sub 3} gate dielectric were fabricated and the electron mobility degradation mechanisms were studied. The LaAlO{sub 3} films were deposited by radio frequency magnetron sputtering. The LaAlO{sub 3} films were examined by x-ray diffraction, secondary ion mass spectroscopy, and x-ray photoelectron spectroscopy. The temperature dependence of metal-oxide-semiconductor field-effect transistors characteristics was studied from 11 K to 400 K. The rate of threshold voltage change with temperature (DELTAV{sub T}/DELTAT) is -1.51 mV/K. The electron mobility limited by surface roughness is proportional to E{sub eff}{sup -0.66} in the electric field of 0.93 MV/cmtransistors.

  5. Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

    SciTech Connect

    Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; Larson, D. J.; Koning, J. M.; Logan, B. G.

    2015-12-02

    The effects of an imposed, axial magnetic field $B_{z0}$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $B_{z0}=70~\\text{T}$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.

  6. Monte Carlo simulations of Kα source generated by hot electrons-nanobrush target interactions

    NASA Astrophysics Data System (ADS)

    Zhao, Jincui; Zheng, Jianhua; Cao, Lihua; Zhao, Zongqing; Li, Shu; Gu, Yuqiu; Liu, Jie

    2016-09-01

    We focus on the transport processes from hot electrons to Kα x-ray emission in a copper nanobrush target. The physics on the enhancement of Kα photon yield and conversion efficiency from laser to Kα x-ray ηL→Kα is studied by combining Monte Carlo simulations and previous particle-in-cell simulation results. Simulation results show that Kα photon yield and electron- Kα photon conversion efficiency ηe-→Kα from nanobrush targets rise gradually and then stay nearly constant. Kα photon yield from the structured nanobrush target increases with peak number density n0, but the yield is a little less than that from the same-size planar target when the electron temperature T =400 keV and n0=1021 cm-3 . It is because the number density of atoms and ions in the nanobrush target is almost one half of the foil target. Compared to the planar target, Kα photons after the nanobrush target are more than those before the target. Because it is easier for the electrons to enter the structured target surface, and Kα x-ray source is produced in the deeper position of the structured nanobrush target. Considering the realistic number of hot electrons produced by laser-nanobrush and -planar targets interaction, Kα photon yield in nanobrush targets has a significant enhancement of over 2-6 folds relative to laser-foil irradiation. The yield and ηL→K α from the nanobrush target are, respectively, 5.42 ×109 sr-1 and 7.32 ×10-5 when laser strength I λ2≈2 ×1018 W cm-2 μm2 . The yield and ηL→Kα decrease gradually with the laser strength, but the values are always higher than that from the planar target. Therefore, the laser-nanobrush target interaction can produce brighter and smaller-size Kα photon source, compared to a planar target.

  7. Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

    DOE PAGES

    Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; ...

    2015-12-02

    The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less

  8. Ultrasensitive detection of Hg{sup 2+} using oligonucleotide-functionalized AlGaN/GaN high electron mobility transistor

    SciTech Connect

    Cheng, Junjie; Li, Jiadong; Miao, Bin; Wu, Dongmin; Wang, Jine; Pei, Renjun; Wu, Zhengyan

    2014-08-25

    An oligonucleotide-functionalized ion sensitive AlGaN/GaN high electron mobility transistor (HEMT) was fabricated to detect trace amounts of Hg{sup 2+}. The advantages of ion sensitive AlGaN/GaN HEMT and highly specific binding interaction between Hg{sup 2+} and thymines were combined. The current response of this Hg{sup 2+} ultrasensitive transistor was characterized. The current increased due to the accumulation of Hg{sup 2+} ions on the surface by the highly specific thymine-Hg{sup 2+}-thymine recognition. The dynamic linear range for Hg{sup 2+} detection has been determined in the concentrations from 10{sup −14} to 10{sup −8} M and a detection limit below 10{sup −14} M level was estimated, which is the best result of AlGaN/GaN HEMT biosensors for Hg{sup 2+} detection till now.

  9. Contactless Mobility, Carrier Density, and Sheet Resistance Measurements on Si, GaN, and AlGaN/GaN High Electron Mobility Transistor (HEMT) Wafers

    DTIC Science & Technology

    2015-02-01

    structures grown on SiC substrates; and an unintentionally doped (UID) GaN on sapphire template. 15. SUBJECT TERMS Hall effect, high electron mobility...2. Experiment 2 3. Results 4 3.1 Standard n-type Si Sample 4 3.2 AlGaN/GaN HEMTs on SiC Sample Series 5 3.3 Si and UID GaN on Sapphire Pieces 12...AlGaN/GaN high electron mobility transistors (HEMTs) grown on SiC substrates, an unintentionally doped (UID) GaN epi layer on a sapphire substrate

  10. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    SciTech Connect

    Bairamis, A.; Zervos, Ch.; Georgakilas, A.; Adikimenakis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as the AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.

  11. Modeling and Optimization of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applicaitons

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.; Burns, M. J.; Kleinsasser, A. W.; Delin, K. A.; Vasquez, R. P.

    1996-01-01

    The development of a YBa(sub 2)Cu(sub 3)O(sub 7-(kronecker delta))(YBCO) hot-electron bolometer (HEB) quasioptical mixer for a 2.5 heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate. The mixer performance expected for this device is analyzed in the framework of a two-temperature model which includes heating both of the electrons and the lattice. Also, the contribution of heat diffusion from the film through the substrate and from the film to the normal metal contacts is evaluated....a single sideband temperature of less than 2000k is predicted.

  12. Frequency-Domain Analysis of Diffusion-Cooled Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.

    1998-01-01

    A new theoretical model is introduced to describe heterodyne mixer conversion efficiency and noise (from thermal fluctuation effects) in diffusion-cooled superconducting hot-electron bolometers. The model takes into account the non-uniform internal electron temperature distribution generated by Wiedemann-Franz heat conduction, and accepts for input an arbitrary (analytical or experimental) superconducting resistance-versus- temperature curve. A non-linear large-signal solution is solved iteratively to calculate the temperature distribution, and a linear frequency-domain small-signal formulation is used to calculate conversion efficiency and noise. In the small-signal solution the device is discretized into segments, and matrix algebra is used to relate the heating modulation in the segments to temperature and resistance modulations. Matrix expressions are derived that allow single-sideband mixer conversion efficiency and coupled noise power to be directly calculated. The model accounts for self-heating and electrothermal feedback from the surrounding bias circuit.

  13. Fabrication of high-Tc superconducting hot electron bolometers for terahertz mixer applications

    NASA Astrophysics Data System (ADS)

    Villegier, Jean-Claude; Degardin, Annick F.; Guillet, Bruno; Houze, Frederic; Kreisler, Alain J.; Chaubet, Michel

    2005-03-01

    Superconducting Hot Electron Bolometer (HEB) mixers are a competitive alternative to Schottky diode mixers or other conventional superconducting receiver technologies in the terahertz frequency range because of their ultrawide bandwidth (from millimeter waves to the visible), high conversion gain, and low intrinsic noise level, even at 77 K. A new technological process has been developed to realize HEB mixers based on high temperature superconducting materials, using 15 to 40 nm thick layers of YBa2Cu3O7-δ (YBCO), sputtered on MgO (100) substrates by hollow cathode magnetron sputtering. Critical temperature values of YBCO films were found in the 85 to 91 K range. Sub-micron HEB bridges (0.8 μm x 0.8 μm) were obtained by combining electronic and UV lithography followed by selective etching techniques. Realization of YBCO HEB coupling to planar integrated gold antennas was also considered.

  14. Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction

    SciTech Connect

    Golubev, Dmitri; Kuzmin, Leonid

    2001-06-01

    The operation of the hot-electron bolometer with normal metal-insulator-superconductor (NIS) tunnel junction as a temperature sensor is analyzed theoretically. The responsivity and the noise equivalent power (NEP) of the bolometer are obtained numerically for typical experimental parameters. Relatively simple approximate analytical expressions for these values are derived. The time constant of the device is also found. We demonstrate that the effect of the electron cooling by the NIS junction, which serves as a thermometer, can improve the sensitivity. This effect is also useful in the presence of the finite background power load. We discuss the effect of the correlation of the shot noise and the heat flow noise in the NIS junction. {copyright} 2001 American Institute of Physics.

  15. Hot-electron luminescence in aged electrodeposited CdSe liquid-junction solar cell

    SciTech Connect

    Silberstein, R.P.; Tomkiewicz, M.

    1983-01-01

    We have utilized Raman spectroscopy and scanning Auger electron spectroscopy (AES) to probe the surface of polycrystalline, electrodeposited CdSe photoelectrodes which have been aged in a polysulfide electrolyte under illumination and in darkness. We have observed characteristic ''hot-electron'' luminescence at multiples of ..omega../sub LO/ (CdS) = 305 cm/sup -1/ in the light-aged electrode, indicating that a surface layer of CdS has been formed. AES profiling shows that extensive substitution of S for Se has occurred, in the light-aged electrode alone, to a depth of approx.600 A. Measurements at 300 K suggest that Raman scattering can be a useful, in situ, contactless, nondestructive probe of CdS formation.

  16. Effect of energetic electrons on dust charging in hot cathode filament discharge

    NASA Astrophysics Data System (ADS)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-03-01

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  17. Effect of energetic electrons on dust charging in hot cathode filament discharge

    SciTech Connect

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-03-15

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  18. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    SciTech Connect

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650 nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO{sub 2} exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500 nA/W and 11 × 10{sup −6} for 445 nm illumination.

  19. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation

    NASA Astrophysics Data System (ADS)

    Lu, Yuhua; Dong, Wen; Chen, Zhuo; Pors, Anders; Wang, Zhenlin; Bozhevolnyi, Sergey I.

    2016-07-01

    Plasmonic hot-electron generation has recently come into focus as a new scheme for solar energy conversion. So far, however, due to the relatively narrow bandwidth of the surface plasmon resonances and the insufficient resonant light absorption, most of plasmonic photocatalysts show narrow-band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demonstrate that a three-layered nanostructure, consisting of a monolayer gold-nanoparticles and a gold film separated by a TiO2 gap layer (Au-NPs/TiO2/Au-film), is capable of near-completely absorbing light within the whole visible region. We show that the Au-NPs/TiO2/Au-film device can take advantage of such strong and broadband light absorption to enhance the generation of hot electrons and thus the photocurrent under visible irradiation. As compared to conventional plasmonic photocatalysts such as Au-NPs/TiO2 nanostructures, a 5-fold-enhanced incident photon-to-current conversion efficiency is achieved within the entire wavelength range 450–850 nm in the Au-NPs/TiO2/Au-film device. Simulations show good agreements with the experimental results, demonstrating that only the plasmon-induced losses contribute to the enhanced photocurrent generation of the Au-NPs/TiO2/Au-film device.

  20. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation

    PubMed Central

    Lu, Yuhua; Dong, Wen; Chen, Zhuo; Pors, Anders; Wang, Zhenlin; Bozhevolnyi, Sergey I.

    2016-01-01

    Plasmonic hot-electron generation has recently come into focus as a new scheme for solar energy conversion. So far, however, due to the relatively narrow bandwidth of the surface plasmon resonances and the insufficient resonant light absorption, most of plasmonic photocatalysts show narrow-band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demonstrate that a three-layered nanostructure, consisting of a monolayer gold-nanoparticles and a gold film separated by a TiO2 gap layer (Au-NPs/TiO2/Au-film), is capable of near-completely absorbing light within the whole visible region. We show that the Au-NPs/TiO2/Au-film device can take advantage of such strong and broadband light absorption to enhance the generation of hot electrons and thus the photocurrent under visible irradiation. As compared to conventional plasmonic photocatalysts such as Au-NPs/TiO2 nanostructures, a 5-fold-enhanced incident photon-to-current conversion efficiency is achieved within the entire wavelength range 450–850 nm in the Au-NPs/TiO2/Au-film device. Simulations show good agreements with the experimental results, demonstrating that only the plasmon-induced losses contribute to the enhanced photocurrent generation of the Au-NPs/TiO2/Au-film device. PMID:27470207

  1. Sources of hot electrons in laser-plasma interaction with emphasis on Raman and turbulence absorption

    SciTech Connect

    Estabrook, K.; Kruer, W.L.; Phillion, D.W.; Turner, R.E.; Campbell, E.M.

    1982-04-06

    Heating targets with high power lasers results in a sizable fraction of the absorbed energy going into electrons of temperature much greater than thermal which can pre-heat the pellet core and accelerate fast ion blowoff which results in poor momentum transfer and hence poor compression efficiency. The present emphasis is to build lasers of higher frequency, ..omega../sub 0/, which at the same W/cm/sup 2/ results in more absorption into cooler electrons. Two physical reasons are that the laser can propagate to a higher electron density, n, infinity..omega../sub 0//sup 2/ resulting in more collisional inverse bremsstrahlung absorption proportional to n, and because the hot temperatures from some plasma absorption processes increase as the oscillatory velocity of an electron in the laser electric field v/sub 0//c = eE/(m/sub e/..omega../sub 0/). The heated electron temperatures from other plasma processes (Raman for example approx.(m/sub e//2)v/sup 2//sub phase/ and the higher laser frequency helps by increasing the competing collisional absorption and decreasing the Raman gain.

  2. Nature of sonoluminescence: noble gas radiation excited by hot electrons in cold water

    PubMed

    Garcia; Levanyuk; Osipov

    2000-08-01

    It was proposed before that single bubble sonoluminescence (SBSL) may be caused by strong electric fields occurring in water near the surface of collapsing gas bubbles because of the flexoelectric effect involving polarization resulting from a gradient of pressure. Here we show that these fields can indeed provoke dynamic electric breakdown in a micron-size region near the bubble and consider the scenario of the SBSL. The scenario is (i) at the last stage of incomplete collapse of the bubble, the gradient of pressure in water near the bubble surface has such a value and a sign that the electric field arising from the flexoelectric effect exceeds the threshold field of the dynamic electrical breakdown of water and is directed to the bubble center; (ii) mobile electrons are generated because of thermal ionization of water molecules near the bubble surface; (iii) these electrons are accelerated in "cold" water by the strong electric fields; (iv) these hot electrons transfer noble gas atoms dissolved in water to high-energy excited states and optical transitions between these states produce SBSL UV flashes in the transparency window of water; (v) the breakdown can be repeated several times and the power and duration of the UV flash are determined by the multiplicity of the breakdowns. The SBSL spectrum is found to resemble a black-body spectrum where temperature is given by the effective temperature of the hot electrons. The pulse energy and some other characteristics of the SBSL are found to be in agreement with the experimental data when realistic estimates are made.

  3. Single-electron transistors based on self-assembled silicon-on-insulator quantum dots

    NASA Astrophysics Data System (ADS)

    Wolf, Conrad R.; Thonke, Klaus; Sauer, Rolf

    2010-04-01

    We present an approach to fabricate single-electron devices consisting of a silicon quantum dot (QD) between metallic leads. Silicon QDs are obtained by reactive ion etching into a silicon-on-insulator substrate partially protected by a self-assembled etch mask. Electrodes are fabricated and aligned to the QDs by an electromigration process whereby their native oxide serves as tunneling barrier. The devices show Coulomb blockade corresponding to a charging energy of 19.4 meV and can be switched from the nonconducting to a conducting state giving rise to Coulomb diamonds. The behavior is well reproduced by a numerical orthodox theory calculation.

  4. Simulation of the generation of the characteristic X-ray emission by hot electrons in a foil

    SciTech Connect

    Kostenko, O F; Andreev, N E

    2013-03-31

    We have developed a model to calculate the yield of the characteristic X-ray radiation from a foil, taking into account the dependence of the average energy and the number of hot electrons on the intensity of the laser pulse, the self-absorption of X-rays and the effect of refluxing of hot electrons. The yield of K{sub {alpha}} radiation from a silver foil is optimised at relativistic intensities. A method is proposed for diagnosing the effect of electron refluxing, which greatly increases the yield of K{sub {alpha}} radiation. (extreme light fields and their applications)

  5. High-impedance wire grid method to study spatiotemporal behavior of hot electron clump generated in a plasma

    SciTech Connect

    Terasaka, K. Kato, Y.; Tanaka, M. Y.; Yoshimura, S.; Morisaki, T.; Furuta, K.; Aramaki, M.

    2014-11-15

    High-impedance Wire Grid (HIWG) detector has been developed to study spatiotemporal behavior of a hot electron clump generated in an electron cyclotron resonance (ECR) plasma. By measuring the floating potentials of the wire electrodes, and generating structure matrix made of geometrical means of the floating potentials, the HIWG detector reconstructs the spatial distribution of high-temperature electron clump at an arbitrary instant of time. Time slices of the spike event in floating potential revealed the growth and decay process of a hot spot occurs in an ECR plasma.

  6. High-impedance wire grid method to study spatiotemporal behavior of hot electron clump generated in a plasma.

    PubMed

    Terasaka, K; Yoshimura, S; Kato, Y; Furuta, K; Aramaki, M; Morisaki, T; Tanaka, M Y

    2014-11-01

    High-impedance Wire Grid (HIWG) detector has been developed to study spatiotemporal behavior of a hot electron clump generated in an electron cyclotron resonance (ECR) plasma. By measuring the floating potentials of the wire electrodes, and generating structure matrix made of geometrical means of the floating potentials, the HIWG detector reconstructs the spatial distribution of high-temperature electron clump at an arbitrary instant of time. Time slices of the spike event in floating potential revealed the growth and decay process of a hot spot occurs in an ECR plasma.

  7. An Ultrasensitive Hot-Electron Bolometer for Low-Background SMM Applications

    NASA Technical Reports Server (NTRS)

    Olayaa, David; Wei, Jian; Pereverzev, Sergei; Karasik, Boris S.; Kawamura, Jonathan H.; McGrath, William R.; Sergeev, Andrei V.; Gershenson, Michael E.

    2006-01-01

    We are developing a hot-electron superconducting transition-edge sensor (TES) that is capable of counting THz photons and operates at T = 0.3K. The main driver for this work is moderate resolution spectroscopy (R approx. 1000) on the future space telescopes with cryogenically cooled (approx. 4 K) mirrors. The detectors for these telescopes must be background-limited with a noise equivalent power (NEP) approx. 10(exp -19)-10(exp -20) W/Hz(sup 1/2) over the range v = 0.3-10 THz. Above about 1 THz, the background photon arrival rate is expected to be approx. 10-100/s), and photon counting detectors may be preferable to an integrating type. We fabricated superconducting Ti nanosensors with a volume of approx. 3x10(exp -3) cubic microns on planar substrate and have measured the thermal conductance G to the thermal bath. A very low G = 4x10(exp -14) W/K, measured at 0.3 K, is due to the weak electron-phonon coupling in the material and the thermal isolation provided by superconducting Nb contacts. This low G corresponds to NEP(0.3K) = 3x10(exp -19) W/Hz(sup 1/2). This Hot-Electron Direct Detector (HEDD) is expected to have a sufficient energy resolution for detecting individual photons with v > 0.3 THz at 0.3 K. With the sensor time constant of a few microseconds, the dynamic range is approx. 50 dB.

  8. Generation and Transport of Hot Electrons in Cone-Wire Targets

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2009-11-01

    We present results from a series of experiments where cone-wire targets in various configurations were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Initial experiments were performed on the Vulcan petawatt laser at the Rutherford Appleton Laboratory and Titan laser at the Lawrence Livermore National Laboratory. Results with aluminum cones joined to Cu wires of diameters from 10 to 40 μm show that the laser coupling efficiency to electron energy within the wire is proportional to the cross sectional area of the wire. In addition, coupling into the wire was observed to decrease with the laser prepulse and cone-wall thickness. More recently, this study was extended, using the OMEGA EP laser. The resulting changes in coupling energy give indications of the scaling as we approach FI-relevant conditions. Requirements for FI scale fast ignition cone parameters: tip thickness, wall thickness, laser prepulse and laser pulse length, will be discussed. In collaboration with T. Yabuuchi, T. Ma, D. Higginson, H. Sawada, J. King, M.H. Key, K.U. Akli, Al Elsholz, D. Batani, H. Chen, R.R. Freeman, L. Gizzi, J. Green, S. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, D.Larson, A.J. MacKinnon, H. McLean, A. MacPhee, P.A. Norreys, P.K Patel, R. B. Stephens, W. Theobald, R. Town, M. Wei, S. Wilks, Roger Van Maren, B. Westover and L. VanWoerkom.

  9. Identification of parameters through which surface chemistry determines the lifetimes of hot electrons in small Au nanoparticles.

    PubMed

    Aruda, Kenneth O; Tagliazucchi, Mario; Sweeney, Christina M; Hannah, Daniel C; Schatz, George C; Weiss, Emily A

    2013-03-12

    This paper describes measurements of the dynamics of hot electron cooling in photoexcited gold nanoparticles (Au NPs) with diameters of ∼3.5 nm, and passivated with either a hexadecylamine or hexadecanethiolate adlayer, using ultrafast transient absorption spectroscopy. Fits of these dynamics with temperature-dependent Mie theory reveal that both the electronic heat capacity and the electron-phonon coupling constant are larger for the thiolated NPs than for the aminated NPs, by 40% and 30%, respectively. Density functional theory calculations on ligand-functionalized Au slabs show that the increase in these quantities is due to an increased electronic density of states near the Fermi level upon ligand exchange from amines to thiolates. The lifetime of hot electrons, which have thermalized from the initial plasmon excitation, increases with increasing electronic heat capacity, but decreases with increasing electron-phonon coupling, so the effects of changing surface chemistry on these two quantities partially cancel to yield a hot electron lifetime of thiolated NPs that is only 20% longer than that of aminated NPs. This analysis also reveals that incorporation of a temperature-dependent electron-phonon coupling constant is necessary to adequately fit the dynamics of electron cooling.

  10. Electron detachment and fragmentation of laser-excited rotationally hot Al4-

    NASA Astrophysics Data System (ADS)

    Kafle, B.; Aviv, O.; Chandrasekaran, V.; Heber, O.; Rappaport, M. L.; Rubinstein, H.; Schwalm, D.; Strasser, D.; Zajfman, D.

    2015-11-01

    Absolute photoabsorption cross sections of negatively charged tetra-atomic aluminum clusters have been measured for photon energies between 1.8 and 2.7 eV. The experiment used the depletion technique in combination with an electrostatic ion-beam trap, in which Al4- ions produced in a sputter ion source were stored for 90 ms before being subjected to a short laser pulse. Moreover, the competition between one-atom fragmentation and electron emission of the laser-excited Al4- has been measured. These measurements show that fragmentation dominates electron emission at all photon energies below the electron attachment energy of ˜2.2 eV, even though the fragmentation energy is expected to be 10%-20% higher than the electron attachment energy. These findings, when taken together with the delayed-electron and fragmentation yields observed in a previous measurement [O. Aviv et al., Phys. Rev. A 83, 023201 (2011), 10.1103/PhysRevA.83.023201], can be well explained within the statistical phase-space theory for unimolecular decays assuming the Al4- ions to be rotationally hot. The analysis permits the determination of the adiabatic electron detachment energy of Al4- to be Ead=(2.18 ±0.02 ) eV and the one-atom fragmentation energy to be D0=(2.34 ±0.05 ) eV. Moreover, two direct s -wave ionization channels are observed with threshold energies of (2.18 ±0.02 ) eV and (2.45 ±0.02 ) eV.

  11. Quantum Thermal Transistor.

    PubMed

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-20

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

  12. Quantum Thermal Transistor

    NASA Astrophysics Data System (ADS)

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-01

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

  13. Transparent metal oxide nanowire transistors

    NASA Astrophysics Data System (ADS)

    Chen, Di; Liu, Zhe; Liang, Bo; Wang, Xianfu; Shen, Guozhen

    2012-05-01

    With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive review of the state-of-the-art research activities that focus on transparent metal oxide nanowire transistors. It begins with the brief introduction to the synthetic methods for high quality metal oxide nanowires, and the typical nanowire transfer and printing techniques with emphasis on the simple contact printing methodology. High performance transparent transistors built on both single nanowires and nanowire thin films are then highlighted. The final section deals with the applications of transparent metal oxide nanowire transistors in the field of transparent displays and concludes with an outlook on the current perspectives and future directions of transparent metal oxide nanowire transistors.

  14. Transparent metal oxide nanowire transistors.

    PubMed

    Chen, Di; Liu, Zhe; Liang, Bo; Wang, Xianfu; Shen, Guozhen

    2012-05-21

    With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive review of the state-of-the-art research activities that focus on transparent metal oxide nanowire transistors. It begins with the brief introduction to the synthetic methods for high quality metal oxide nanowires, and the typical nanowire transfer and printing techniques with emphasis on the simple contact printing methodology. High performance transparent transistors built on both single nanowires and nanowire thin films are then highlighted. The final section deals with the applications of transparent metal oxide nanowire transistors in the field of transparent displays and concludes with an outlook on the current perspectives and future directions of transparent metal oxide nanowire transistors.

  15. Measuring the hot-electron population using time-resolved hard x-ray detectors on the NIF

    NASA Astrophysics Data System (ADS)

    Hohenberger, M.; Palmer, N. E.; LaCaille, G.; Dewald, E. L.; Divol, L.; Bond, E. J.; Döppner, T.; Lee, J. J.; Kauffman, R. L.; Salmonson, J. D.; Thomas, C. A.; Bradley, D. K.; Stoeckl, C.; Sangster, T. C.

    2013-09-01

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent compression of the capsule to ignition conditions. Measuring the hot-electron population in these high-intensity, laser-driven experiments is key to understanding the laser-plasma interaction and the resulting target evolution. This can be inferred from the bremsstrahlung generated by the interaction of the hot electrons with the target. At the National Ignition Facility (NIF), the filter-fluorescer x-ray diagnostic (FFLEX), a multichannel, hard x-ray spectrometer operating in the 20- to 500-keV range, was recently upgraded to provide time-resolved measurements of the bremsstrahlung spectrum. Characterization data is presented for the upgraded setup, as well as recent results from ignition-scale experiments.

  16. Non-local Lateral electron heat transport from one or more hot spots.

    NASA Astrophysics Data System (ADS)

    Matte, Jean-Pierre; Alouani-Bibi, Fathallah

    2000-10-01

    Fokker-Planck simulations of collisional absorption and transport in long scale length, preformed, underdense plasmas heated by intense and narrow laser hot spots, as in certain recent LANL experiments [1], are presented. The temperature profiles compared with those obtained from flux limited or delocalized heat flow models. For the former, the temperature peaks can be matched only if a very low flux limiter is used, and even then, the scale length of the temperature profile is always overestimated. The electron distribution function will be characterized, and compared to the "DLM" shape, exp(-(v/u)^m), [2] and the best fit for m will be compared to older formulas for uniform plasmas [2]. Hydrodynamic effects are also addressed with simulations which include ion motion; both with and without the ponderomotive force. The enhancement of sound velocity due to the "DLM" shape [3] inside the hot spot will be quantified. [1] J.A. Cobble et al., Phys. Plasmas, 7, 323 (2000) [2] J.P. Matte et al., Plasma Phys. and Contr. Fusion, 30, 1665, (1988) [3] B. B. Afeyan et al., PRL 81, 2322 (1998).

  17. Effect of Long-Range Polar Electron-Phonon Interaction on the Hot Carrier Dynamics of GaAs

    NASA Astrophysics Data System (ADS)

    Ong, Chin Shen; Bernadi, Marco; Louie, Steven G.

    Hot carrier dynamics plays an important role in the functionality of electronic and photovoltaic devices. Recent interest in harvesting the energy of hot electrons before it is lost through thermalization has led to renewed interest in the microscopic details of hot electron energy loss mechanisms. Gallium arsenide (GaAs) is of particular interest because amongst its many advantages, it is a direct-gap semiconductor, has high electron mobility and is a high-performing candidate for electronic and photovoltaic applications. GaAs is a polar material, and long-range polar (Frölich) electron-phonon interaction has non-trivial effects on the carrier dynamics in the material. In this work, we investigate the effect of this interaction on the hot carrier dynamics of GaAs. This work is supported by NSF Grant No. DMR15-1508412 and the DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility.

  18. Broadband MgB2 Hot-Electron Bolometer THz Mixers Operating up to 20 K

    NASA Astrophysics Data System (ADS)

    Novoselov, Evgenii; Cherednichenko, Sergey

    2017-01-01

    We discuss performance of submicron size hot-electron bolometer mixers made from thin MgB2 superconducting films. With a superconducting transition temperature of ∼30 K, such terahertz (THz) mixers can operate with high sensitivity at temperatures up to 20 K. Due to very small dimensions local oscillator power requirements are rather low. In the intermediate frequency band of 1-3 GHz, the double sideband receiver noise temperature is 1600 K at 10 K operation temperature, 2000 K at 15 K, 2500-3000 K at 20 K. The gain bandwidth of such devices is 6 GHz and the noise bandwidth is estimated to be 6-8 GHz.

  19. Appropriate microwave frequency selection for biasing superconducting hot electron bolometers as terahertz direct detectors

    NASA Astrophysics Data System (ADS)

    Jiang, S. L.; Li, X. F.; Jia, X. Q.; Kang, L.; Jin, B. B.; Xu, W. W.; Chen, J.; Wu, P. H.

    2017-04-01

    Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) and biased by a simple microwave (MW) source have been studied. The frequency and power of the MW are selected by measuring the MW responses of the current–voltage (I–V) curves and resistance–temperature (R–T) curves of the NbN HEBs. The non-uniform absorption theory is used to explain the current jumps in the I–V curves and the resistance jumps in the R–T curves. Compared to the thermal biasing, the MW biasing method can improve the sensitivity, make the readout system much easier and consumes less liquid helium, which is important for long lasting experiments. The noise equivalent power (NEP) of 1.6 pW Hz‑1/2 and the response time of 86 ps are obtained for the detectors working at 4.2 K and 0.65 THz.

  20. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials

    PubMed Central

    Li, Wei; Coppens, Zachary J.; Besteiro, Lucas V.; Wang, Wenyi; Govorov, Alexander O.; Valentine, Jason

    2015-01-01

    Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform. PMID:26391292