Hot-Fire Testing of a 1N AF-M315E Thruster
NASA Technical Reports Server (NTRS)
Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.
2015-01-01
This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.
Development and test of electromechanical actuators for thrust vector control
NASA Technical Reports Server (NTRS)
Weir, Rae A.; Cowan, John R.
1993-01-01
A road map of milestones toward the goal of a full scale Redesigned Solid Rocket Motor/Flight Support Motor (RSRM/FSM) hot fire test is discussed. These milestones include: component feasibility, full power system demonstration, SSME hot fire tests, and RSRM hot fire tests. The participation of the Marshall Space Flight Center is emphasized.
Video File - NASA Conducts 2nd RS-25 Engine Hot Fire of 2018 - 2018-02-01
2018-02-01
NASA Conducts 2nd RS-25 Engine Hot Fire of 2018. A 365-second hot fire test on Feb. 1, 2018, at NASA’s Stennis Space Center in Mississippi marks the completion of “green run” testing, or flight certification, for all new RS-25 engine flight controllers slated for Exploration Mission-2, the first Space Launch System mission with astronauts on board. In addition to the flight controller, the Feb. 1 hot fire also marked the third test of a 3D printed pogo accumulator assembly for the RS-25 engine.
NASA Technical Reports Server (NTRS)
Fikes, John C.
2014-01-01
The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.
Hot-Fire Testing of 5N and 22N HPGP Thrusters
NASA Technical Reports Server (NTRS)
Burnside, Christopher G.; Pedersen, Kevin W.; Pierce, Charles W.
2015-01-01
This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends.NASA completed hot-fire testing of 5N and 22N HPGP thrusters at the Marshall Space Flight Center’s Component Development Area altitude test stand in April 2015. Both thrusters are ground test articles and not flight ready units, but are representative of potential flight hardware with a known path towards flight application. The purpose of the 5N testing was to perform facility check-outs and generate a small set of data for comparison to ECAPS and Orbital ATK data sets. The 5N thruster performed as expected with thrust and propellant flow-rate data generated that are similar to previous testing at Orbital ATK. Immediately following the 5N testing, and using the same facility, the 22N testing was conducted on the same test stand with the purpose of demonstrating the 22N performance. The results of 22N testing indicate it performed as expected.The results of the hot-fire testing are presented in this paper and presentation.
NASA Conducts 2nd RS-25 Engine Hot Fire of 2018
2018-02-01
A 365-second hot fire test on Feb. 1, 2018, at NASA’s Stennis Space Center in Mississippi marks the completion of “green run” testing, or flight certification, for all new RS-25 engine flight controllers slated for Exploration Mission-2, the first Space Launch System mission with astronauts on board. In addition to the flight controller, the Feb. 1 hot fire also marked the third test of a 3D printed pogo accumulator assembly for the RS-25 engine.
Gas-Centered Swirl Coaxial Liquid Injector Evaluations
NASA Technical Reports Server (NTRS)
Cohn, A. K.; Strakey, P. A.; Talley, D. G.
2005-01-01
Development of Liquid Rocket Engines is expensive. Extensive testing at large scales usually required. In order to verify engine lifetime, large number of tests required. Limited Resources available for development. Sub-scale cold-flow and hot-fire testing is extremely cost effective. Could be a necessary (but not sufficient) condition for long engine lifetime. Reduces overall costs and risk of large scale testing. Goal: Determine knowledge that can be gained from sub-scale cold-flow and hot-fire evaluations of LRE injectors. Determine relationships between cold-flow and hot-fire data.
Hot-Fire Test Results of Liquid Oxygen/RP-2 Multi-Element Oxidizer-Rich Preburners
NASA Technical Reports Server (NTRS)
Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.; Hulka, J. R.
2016-01-01
As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. To supply the oxidizer-rich combustion products to the main injector of the integrated test article, existing subscale preburner injectors from a previous NASA-funded oxidizer-rich staged combustion engine development program were utilized. For the integrated test article, existing and newly designed and fabricated inter-connecting hot gas duct hardware were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. However, before one of the preburners was used in the integrated test article, it was first hot-fire tested at length to prove it could provide the hot exhaust gas mean temperature, thermal uniformity and combustion stability necessary to perform in the integrated test article experiment. This paper presents results from hot-fire testing of several preburner injectors in a representative combustion chamber with a sonic throat. Hydraulic, combustion performance, exhaust gas thermal uniformity, and combustion stability data are presented. Results from combustion stability modeling of these test results are described in a companion paper at this JANNAF conference, while hot-fire test results of the preburner injector in the integrated test article are described in another companion paper.
NASA Technical Reports Server (NTRS)
Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David
2006-01-01
The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.
NASA Astrophysics Data System (ADS)
Strunz, Richard; Herrmann, Jeffrey W.
2011-12-01
The hot fire test strategy for liquid rocket engines has always been a concern of space industry and agency alike because no recognized standard exists. Previous hot fire test plans focused on the verification of performance requirements but did not explicitly include reliability as a dimensioning variable. The stakeholders are, however, concerned about a hot fire test strategy that balances reliability, schedule, and affordability. A multiple criteria test planning model is presented that provides a framework to optimize the hot fire test strategy with respect to stakeholder concerns. The Staged Combustion Rocket Engine Demonstrator, a program of the European Space Agency, is used as example to provide the quantitative answer to the claim that a reduced thrust scale demonstrator is cost beneficial for a subsequent flight engine development. Scalability aspects of major subsystems are considered in the prior information definition inside the Bayesian framework. The model is also applied to assess the impact of an increase of the demonstrated reliability level on schedule and affordability.
Computational Pollutant Environment Assessment from Propulsion-System Testing
NASA Technical Reports Server (NTRS)
Wang, Ten-See; McConnaughey, Paul; Chen, Yen-Sen; Warsi, Saif
1996-01-01
An asymptotic plume growth method based on a time-accurate three-dimensional computational fluid dynamics formulation has been developed to assess the exhaust-plume pollutant environment from a simulated RD-170 engine hot-fire test on the F1 Test Stand at Marshall Space Flight Center. Researchers have long known that rocket-engine hot firing has the potential for forming thermal nitric oxides, as well as producing carbon monoxide when hydrocarbon fuels are used. Because of the complex physics involved, most attempts to predict the pollutant emissions from ground-based engine testing have used simplified methods, which may grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work has been to develop a computational fluid dynamics-based methodology that replicates the underlying test-stand flow physics to accurately and efficiently assess pollutant emissions from ground-based rocket-engine testing. A nominal RD-170 engine hot-fire test was computed, and pertinent test-stand flow physics was captured. The predicted total emission rates compared reasonably well with those of the existing hydrocarbon engine hot-firing test data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, B.; Lu, S. X.; Li, C. H.
In an atrium measured 120 m by 180 m by 36.5 m high, fire tests were conducted under 'natural filling' and 'mechanical exhaust' conditions by hot smoke test method. The fire size was 8 MW released by an ethanol pool of 3.6 m in diameter. The distribution of vertical temperature profiles above the fire source and the gas layer temperatures were measured. From these measurements, it was shown that the fans successfully exhausted hot smoke to control descending of hot smoke layer and temperature rising rate. The hot smoke layer can be maintained at about 30 m which was almostmore » 2 times of hot layer height in 'natural filling' condition. The temperature risings in both conditions were too low to cause thermal damage to the structure, only 18.6 K and 12 K. The centerline temperature above the fire source and the height of hot smoke layer were calculated using the plume models. The calculated results agreed well with the conclusions obtained from the experiment results.« less
Channel Wall Nozzle Hot-fire Tests
2018-03-16
A subscale channel wall nozzle is hot-fire tested in November 2017 at NASA's Marshall Space Flight Center. The nozzle was fabricated using three separate, state-of-the-art, advanced manufacturing technologies including a new process called Laser Wire Direct Closeout that was co-developed and advanced at Marshall.
Spring 2014 Internship Diffuser Data Analysis
NASA Technical Reports Server (NTRS)
Laigaie, Robert T.; Ryan, Harry M.
2014-01-01
J-2X engine testing on the A-2 test stand at the NASA John C. Stennis Space Center (SSC) has recently concluded. As part of that test campaign, the engine was operated at lower power levels in support of expanding the use of J-2X to other missions. However, the A-2 diffuser was not designed for engine testing at the proposed low power levels. To evaluate the risk of damage to the diffuser, computer simulations were created of the rocket engine exhaust plume inside the 50ft long, water-cooled, altitude-simulating diffuser. The simulations predicted that low power level testing would cause the plume to oscillate in the lower sections of the diffuser. This can possibly cause excessive vibrations, stress, and heat transfer from the plume to the diffuser walls. To understand and assess the performance of the diffuser during low power level engine testing, nine accelerometers and four strain gages were installed around the outer surface of the diffuser. The added instrumentation also allowed for the verification of the rocket exhaust plume computational model. Prior to engine hot-fire testing, a diffuser water-flow test was conducted to verify the proper operation of the newly installed instrumentation. Subsequently, two J-2X engine hot-fire tests were completed. Hot-Fire Test 1 was 11.5 seconds in duration, and accelerometer and strain data verified that the rocket engine plume oscillated in the lower sections of the diffuser. The accelerometers showed very different results dependent upon location. The diffuser consists of four sections, with Section 1 being closest to the engine nozzle and Section 4 being farthest from the engine nozzle. Section 1 accelerometers showed increased amplitudes at startup and shutdown, but low amplitudes while the diffuser was started. Section 3 accelerometers showed the opposite results with near zero G amplitudes prior to and after diffuser start and peak amplitudes to +/- 100G while the diffuser was started. Hot-Fire Test 1 strain gages showed different data dependent on section. Section 1 strains were small, and were in the range of 50 to 150 microstrain, which would result in stresses from 1.45 to 4.35 ksi. The yield stress of the material, A-285 Grade C Steel, is 29.7 ksi. Section 4 strain gages showed much higher values with strains peaking at 1600 microstrain. This strain corresponds to a stress of 46.41 ksi, which is in excess of the yield stress, but below the ultimate stress of 55 to 75 ksi. The decreased accelerations and strain in Section 1, and the increased accelerations and strain in Sections 3 and 4 verified the computer simulation prediction of increased plume oscillations in the lower sections of the diffuser. Hot-Fire Test 2 ran for a duration of 125 seconds. The engine operated at a slightly higher power level than Hot-Fire Test 1 for the initial 35 seconds of the test. After 35 seconds the power level was lowered to Hot-Fire Test 1 levels. The acceleration and strain data for Hot-Fire Test 2 was similar during the initial part of the test. However, just prior to the engine being lowered to the Hot-Fire Test 1 power level, the strain gage data in Section 4 showed a large decrease to strains near zero microstrain from their peak at 1500 microstrain. Future work includes further strain and acceleration data analysis and evaluation.
Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)
NASA Technical Reports Server (NTRS)
Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.
2010-01-01
In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.
Additively Manufactured Combustion Devices Components for LOX/Methane Applications
NASA Technical Reports Server (NTRS)
Greene, Sandra Elam; Protz, Christopher; Garcia, Chance; Goodman, Dwight; Baker, Kevin
2016-01-01
Marshall Space Flight Center (MSFC) has designed, fabricated, and hot-fire tested a variety of successful injectors, chambers, and igniters for potential liquid oxygen (LOX) and methane (CH4) systems since 2005. The most recent efforts have focused on components with additive manufacturing (AM) to include unique design features, minimize joints, and reduce final machining efforts. Inconel and copper alloys have been used with AM processes to produce a swirl coaxial injector and multiple methane cooled thrust chambers. The initial chambers included unique thermocouple ports for measuring local coolant channel temperatures along the length of the chamber. Results from hot-fire testing were used to anchor thermal models and generate a regeneratively cooled thruster for a 4,000 lbf LOX/CH4 engine. The completed thruster will be hot-fire tested in the summer of 2016 at MSFC. The thruster design can also be easily scaled and used on a 25,000 lbf engine. To further support the larger engine design, an AM gas generator injector has been designed. Hot-fire testing on this injector is planned for the summer of 2016 at MSFC.
Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing
NASA Technical Reports Server (NTRS)
Gradl, Paul R.
2016-01-01
Rocket engine hot-fire ground testing is necessary to understand component performance, reliability and engine system interactions during development. The J-2X upper stage engine completed a series of developmental hot-fire tests that derived performance of the engine and components, validated analytical models and provided the necessary data to identify where design changes, process improvements and technology development were needed. The J-2X development engines were heavily instrumented to provide the data necessary to support these activities which enabled the team to investigate any anomalies experienced during the test program. This paper describes the development of an optical digital image correlation technique to augment the data provided by traditional strain gauges which are prone to debonding at elevated temperatures and limited to localized measurements. The feasibility of this optical measurement system was demonstrated during full scale hot-fire testing of J-2X, during which a digital image correlation system, incorporating a pair of high speed cameras to measure three-dimensional, real-time displacements and strains was installed and operated under the extreme environments present on the test stand. The camera and facility setup, pre-test calibrations, data collection, hot-fire test data collection and post-test analysis and results are presented in this paper.
Thermal Characterization of Epoxy Adhesive by Hotfire Testing
NASA Technical Reports Server (NTRS)
Spomer, Ken A.; Haddock, M. Reed; McCool, Alex (Technical Monitor)
2001-01-01
This paper describes subscale solid-rocket motor hot-fire testing of epoxy adhesives in flame surface bondlines to evaluate heat-affected depth, char depth and ablation rate. Hot-fire testing is part of an adhesive down-selection program on the Space Shuttle Solid Rocket Motor Nozzle to provide additional confidence in the down-selected adhesives. The current nozzle structural adhesive bond system is being replaced due to obsolescence. Prior to hot-fire testing, adhesives were tested for chemical, physical and mechanical properties, which resulted in the selection of two potential replacement adhesives, Resin Technology Group's TIGA 321 and 3M's EC2615XLW. Hot-fire testing consisted of four forty-pound charge (FPC) motors fabricated in configurations that would allow side-by-side comparison testing of the candidate replacement adhesives with the current RSRM adhesives. Results of the FPC motor testing show that: 1) the phenolic char depths on radial bondlines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used, 2) the replacement candidate adhesive char depths are equivalent to the char depths of the current adhesives, 3) the heat-affected depths of the candidate and current adhesives are equivalent, and 4) the ablation rates for both replacement adhesives were equivalent to the current adhesives.
NASA Technical Reports Server (NTRS)
Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.
2016-01-01
A prototype cold helium active pressurization system was incorporated into an existing liquid oxygen (LOX) / liquid methane (LCH4) prototype planetary lander and hot-fire tested to collect vehicle-level performance data. Results from this hot-fire test series were used to validate integrated models of the vehicle helium and propulsion systems and demonstrate system effectiveness for a throttling lander. Pressurization systems vary greatly in complexity and efficiency between vehicles, so a pressurization performance metric was also developed as a means to compare different active pressurization schemes. This implementation of an active repress system is an initial sizing draft. Refined implementations will be tested in the future, improving the general knowledge base for a cryogenic lander-based cold helium system.
Summary of LOX/CH4 Thruster Technology Development at NASA/MSFC
NASA Technical Reports Server (NTRS)
Greene, Sandra Elam
2015-01-01
In recent years, a variety of injectors for liquid oxygen (LOX) and methane (CH4) propellant systems have been designed, fabricated, and demonstrated with hot-fire testing at Marshall Space Flight Center (MSFC). Successful designs for liquid methane (LCH4) and gaseous methane (GCH4) have been developed. A variety of chambers, including a transpiration cooled design, along with uncooled ablatives and refractory metals, have also been hot-fire tested by MSFC for use with LOX/LCH4 injectors. Hot-fire testing has also demonstrated multiple ignition source options. Heat flux data for selected injectors has been gathered by testing with a calorimeter chamber. High performance and stable combustion have been demonstrated, along with designs for thrust levels ranging from 500 to 7,000 lbf. The newest LOX/CH4 injector and chamber developed by MSFC have been fabricated with additive manufacturing techniques and include unique design features to investigate regenerative cooling with methane. This low cost and versatile hardware offers a design for 4,000 lbf thrust and will be hot-fire tested at MSFC in 2015. Its design and operation can easily be scaled for use in systems with thrust levels up to 25,000 lbf.
NASA Technical Reports Server (NTRS)
Barnett, Greg; Turpin, Jason; Nettles, Mindy
2015-01-01
This task is to hot-fire test an existing Space Launch Mission (SLM) injector that is applicable for all expander cycle engines being considered for the exploration upper stage. The work leverages investment made in FY 2013 that was used to additively manufacture three injectors (fig. 1) all by different vendors..
2008-01-31
The first hot-fire test of the J-2X power pack 1A gas generator was performed Jan. 31 on the A-1 Test Stand at Stennis Space Center. Initial indications are that all test objectives were met. The test was designed as a 3.42-second helium spin start with gas generator ignition and it went the full scheduled duration. Test conductors reported a smooth start with normal shutdown and described the event as a 'good test.' The test was part of the early component testing for the new J-2X engine being built by NASA to power the Ares I and Ares V rockets that will carry humans back to the moon and on to Mars. It was performed as one in a series of 12 scheduled tests. Those tests began last November at Stennis, but the January 31 event represented the first hot-fire test. The Stennis tests are a critical step in the successful development of the J-2X engine.
Green Monopropellant Status at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burnside, Christopher G.; Pierce, Charles W.; Pedersen, Kevin W.
2016-01-01
NASA Marshall Space Flight Center is continuing investigations into the use of green monopropellants as a replacement for hydrazine in spacecraft propulsion systems. Work to date has been to push technology development through multiple activities designed to understand the capabilities of these technologies. Future work will begin to transition to mission pull as these technologies are mature while still keeping a solid goal of pushing technology development as opportunities become available. The AF-M315E activities began with hot-fire demonstration testing of a 1N monopropellant thruster in FY 14 and FY15. Following successful completion of the preliminary campaign, changes to the test stand to accommodate propellant conditioning capability and better control of propellant operations was incorporated to make testing more streamlined. The goal is to conduct hot-fire testing with warm and cold propellants using the existing feed system and original thruster design. Following the 1N testing, a NASA owned 100 mN thruster will be hot-fire tested in the same facility to show feasibility of scaling to smaller thrusters for cubesat applications. The end goal is to conduct a hot-fire test of an integrated cubesat propulsion system using an SLM printed propellant tank, an MSFC designed propulsion system electronic controller and the 100 mN thruster. In addition to the AF-M315E testing, MSFC is pursuing hot-fire testing with LMP-103S. Following our successful hot-fire testing of the 22N thruster in April 2015, a test campaign was proposed for a 440N LMP-103S thruster with Orbital ATK and Plasma Processes. This activity was funded through the Space Technology Mission Directorate (STMD) ACO funding call in the last quarter of CY15. Under the same funding source a test activity with Busek and Glenn Research Center for testing of 5N AF-M315E thrusters was proposed and awarded. Both activities are in-work with expected completion of hot-fire testing by the end of FY17. MSFC is continuing to coordinate with the AF and academia on understanding the chemical reactions that occur in AF-M315E. An on-going investigation of the catalyst bed species using Raman Spectroscopy through the NASA Technology Research Fellowship Program (NSTRF) is looking for ways to minimize the amount of computation required by understanding the intermediate species created in the catalyst bed. The MSFC team is also working with commercial partners through Cooperative Agreement Notices (CAN's). Partnerships with commercial and academia include work in non-catalytic ignition of AF-M315, spark ignition of hybrid cubesat systems, printed SLM tanks, and dual-mode (electric and chemical) propulsion systems is continuing.
Transient Pressure Test Article (TPTA) 1.1 and 1.1A, volume 1
NASA Technical Reports Server (NTRS)
Rebells, Clarence A.
1988-01-01
This final test report presents the results obtained during the static hot firing and cold-gas high Q tests of the first Transient Pressure Test Article (TPTA) 1.1. The TPTA consisted of field test joints A and B, which were the original RSRM J-insulation configuration, with a metal capture feature. It also consisted of a flight configuration nozzle-to-case test joint (Joint D) with shorter vent slots. Fluorocarbon O-rings were used in all the test joints. The purpose of the TPTA tests is to evaluate and characterize the RSMR field and nozzle-to-case joints under the influence of ignition and strut loads during liftoff anf high Q. All objectives of the cold-gas high Q (TPTA 1.1A) test were met and all measurements were close to predicted values. During the static hot-firing test (TPTA 1.1), the motor was inadvertently plugged by the quench injector plug, making it a more severe test, although no strut loads were applied. The motor was depressurized after approximately 11 min using an auxiliary system, and no anomalies were noted. In the static hot-firing test, pressure was incident on the insulation and the test joint gaps were within the predicted range. During the static hot-firing test, no strut loads were applied because the loading system malfunctioned. For this test, all measurements were within range of similar tests performed without strut loads.
Single element injector testing for STME injector technology
NASA Technical Reports Server (NTRS)
Hulka, J.; Schneider, J. A.; Davis, J.
1992-01-01
An oxidizer-swirled coaxial element injector is being developed for application in the liquid oxygen/gaseous hydrogen Space Transportation Main Engine (STME) for the National Launch System (NLS) vehicle. This paper reports on the first two parts of a four part single injector element study for optimization of the STME injector design. Measurements of Rupe mixing efficiency and atomization characteristics are reported for single element versions of injection elements from two multielement injectors that have been recently hot fire tested. Rather than attempting to measure a definitive mixing efficiency or droplet size parameters of these injector elements, the purpose of these experiments was to provide a baseline comparison for evaluating future injector element design modifications. Hence, all the experiments reported here were conducted with cold flow simulants to nonflowing, ambient conditions. Mixing experiments were conducted with liquid/liquid simulants to provide economical trend data. Atomization experiments were conducted with liquid/gas simulants without backpressure. The results, despite significant differences from hot fire conditions, were found to relate to mixing and atomization parameters deduced from the hot fire testing, suggesting that these experiments are valid for trend analyses. Single element and subscale multielement hot fire testing will verify optimized designs before committing to fullscale fabrication.
A semiconductor bridge ignited hot gas piston ejector
NASA Technical Reports Server (NTRS)
Grubelich, M. C.; Bickes, Robert W., Jr.
1993-01-01
The topics are presented in viewgraph form and include the following: semiconductor bridge technology (SCB); SCB philosophy; technology transfer; simplified sketch of SCB; SCB processing; SCB design; SCB test assembly; 5 mJ SCB burst based on a polaroid photograph; micro-convective heat transfer hypothesis; SCB fire set; comparison of SCB and hot-wire actuators; satellite firing sets; logic fire set; SCB smart component; SCB smart firing set; semiconductor design considerations; and the adjustable actuator system.
NASA Technical Reports Server (NTRS)
Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.
2016-01-01
Hot-fire test demonstrations were successfully conducted using a cold helium pressurization system fully integrated into a liquid oxygen (LOX) / liquid methane (LCH4) propulsion system (Figure 1). Cold helium pressurant storage at near liquid nitrogen (LN2) temperatures (-275 F and colder) and used as a heated tank pressurant provides a substantial density advantage compared to ambient temperature storage. The increased storage density reduces helium pressurant tank size and mass, creating payload increases of 35% for small lunar-lander sized applications. This degree of mass reduction also enables pressure-fed propulsion systems for human-rated Mars ascent vehicle designs. Hot-fire test results from the highly-instrumented test bed will be used to demonstrate system performance and validate integrated models of the helium and propulsion systems. A pressurization performance metric will also be developed as a means to compare different active pressurization schemes.
Thermal Analysis of the Fastrac Chamber/Nozzle
NASA Technical Reports Server (NTRS)
Davis, Darrell
2001-01-01
This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the Fastrac 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.
Thermal Analysis of the MC-1 Chamber/Nozzle
NASA Technical Reports Server (NTRS)
Davis, Darrell W.; Phelps, Lisa H. (Technical Monitor)
2001-01-01
This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the MC-1 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.
2016-01-01
As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for combustion analysis model development. Hot-fire testing was conducted with main combustion chamber pressures ranging from 1400 to 2100 psia, and main combustion chamber mixture ratios ranging from 2.4 to 2.9. Different levels of fuel film cooling injected from the injector face were examined ranging from none to about 12% of the total fuel flow. This paper presents the hot-fire test results of the integrated test article. Combustion performance, stability, thermal, and compatibility characteristics of both the preburner and the thrust chamber are described. Another companion paper at this JANNAF meeting includes additional and more detailed test data regarding the combustion dynamics and stability characteristics.
46 CFR 115.710 - Inspection and testing prior to hot work.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection and testing prior to hot work. 115.710... AND CERTIFICATION Repairs and Alterations § 115.710 Inspection and testing prior to hot work. (a) An... involving riveting, welding, burning, or other fire producing actions may be made aboard a vessel: (1...
Space transportation booster engine thrust chamber technology, large scale injector
NASA Technical Reports Server (NTRS)
Schneider, J. A.
1993-01-01
The objective of the Large Scale Injector (LSI) program was to deliver a 21 inch diameter, 600,000 lbf thrust class injector to NASA/MSFC for hot fire testing. The hot fire test program would demonstrate the feasibility and integrity of the full scale injector, including combustion stability, chamber wall compatibility (thermal management), and injector performance. The 21 inch diameter injector was delivered in September of 1991.
Hot fire fatigue testing results for the compliant combustion chamber
NASA Technical Reports Server (NTRS)
Pavli, Albert J.; Kazaroff, John M.; Jankovsky, Robert S.
1992-01-01
A hydrogen-oxygen subscale rocket combustion chamber was designed incorporating an advanced design concept to reduce strain and increase life. The design permits unrestrained thermal expansion of a circumferential direction and, thereby, provides structural compliance during the thermal cycling of hot-fire testing. The chamber was built and test fired at a chamber pressure of 4137 kN/sq m (600 psia) and a hydrogen-oxygen mixture ratio of 6.0. Compared with a conventional milled-channel configuration, the new structurally compliant chamber had a 134 or 287 percent increase in fatigue life, depending on the life predicted for the conventional configuration.
Application of High Speed Digital Image Correlation in Rocket Engine Hot Fire Testing
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Schmidt, Tim
2016-01-01
Hot fire testing of rocket engine components and rocket engine systems is a critical aspect of the development process to understand performance, reliability and system interactions. Ground testing provides the opportunity for highly instrumented development testing to validate analytical model predictions and determine necessary design changes and process improvements. To properly obtain discrete measurements for model validation, instrumentation must survive in the highly dynamic and extreme temperature application of hot fire testing. Digital Image Correlation has been investigated and being evaluated as a technique to augment traditional instrumentation during component and engine testing providing further data for additional performance improvements and cost savings. The feasibility of digital image correlation techniques were demonstrated in subscale and full scale hotfire testing. This incorporated a pair of high speed cameras to measure three-dimensional, real-time displacements and strains installed and operated under the extreme environments present on the test stand. The development process, setup and calibrations, data collection, hotfire test data collection and post-test analysis and results are presented in this paper.
NASA Concludes Summer of RS-25 Testing
2017-08-30
NASA engineers closed a summer of hot fire testing Aug. 30 for flight controllers on RS-25 engines that will help power the new Space Launch System (SLS) rocket being built to carry astronauts to deep-space destinations, including Mars. The 500-second hot fire an RS-25 engine flight controller unit on the A-1 Test Stand at Stennis Space Center near Bay St. Louis, Mississippi marked another step toward the nation’s return to human deep-space exploration missions.
Video File - RS-25 Engine Test 2017-08-30
2017-08-30
NASA engineers closed a summer of hot fire testing Aug. 30 for flight controllers on RS-25 engines that will help power the new Space Launch System (SLS) rocket being built to carry astronauts to deep-space destinations, including Mars. The 500-second hot fire an RS-25 engine flight controller unit on the A-1 Test Stand at Stennis Space Center near Bay St. Louis, Mississippi marked another step toward the nation’s return to human deep-space exploration missions.
Video File - NASA on a Roll Testing Space Launch System Flight Engines
2017-08-09
Just two weeks after conducting another in a series of tests on new RS-25 rocket engine flight controllers for NASA’s Space Launch System (SLS) rocket, engineers at NASA’s Stennis Space Center in Mississippi completed one more hot-fire test of a flight controller on August 9, 2017. With the hot fire, NASA has moved a step closer in completing testing on the four RS-25 engines which will power the first integrated flight of the SLS rocket and Orion capsule known as Exploration Mission 1.
46 CFR 176.710 - Inspection and testing prior to hot work.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Inspection and testing prior to hot work. 176.710... testing prior to hot work. (a) An inspection for flammable or combustible gases must be conducted by a... operations involving riveting, welding, burning, or other fire producing actions may be made aboard a vessel...
Fastrac Nozzle Design, Performance and Development
NASA Technical Reports Server (NTRS)
Peters, Warren; Rogers, Pat; Lawrence, Tim; Davis, Darrell; DAgostino, Mark; Brown, Andy
2000-01-01
With the goal of lowering the cost of payload to orbit, NASA/MSFC (Marshall Space Flight Center) researched ways to decrease the complexity and cost of an engine system and its components for a small two-stage booster vehicle. The composite nozzle for this Fastrac Engine was designed, built and tested by MSFC with fabrication support and engineering from Thiokol-SEHO (Science and Engineering Huntsville Operation). The Fastrac nozzle uses materials, fabrication processes and design features that are inexpensive, simple and easily manufactured. As the low cost nozzle (and injector) design matured through the subscale tests and into full scale hot fire testing, X-34 chose the Fastrac engine for the propulsion plant for the X-34. Modifications were made to nozzle design in order to meet the new flight requirements. The nozzle design has evolved through subscale testing and manufacturing demonstrations to full CFD (Computational Fluid Dynamics), thermal, thermomechanical and dynamic analysis and the required component and engine system tests to validate the design. The Fastrac nozzle is now in final development hot fire testing and has successfully accumulated 66 hot fire tests and 1804 seconds on 18 different nozzles.
CFD assessment of the pollutant environment from RD-170 propulsion system testing
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Mcconnaughey, Paul; Warsi, Saif; Chen, Yen-Sen
1995-01-01
Computational Fluid Dynamics (CFD) technology has been used to assess the exhaust plume pollutant environment of the RD-170 engine hot-firing on the F1 Test Stand at Marshall Space Flight Center. Researchers know that rocket engine hot-firing has the potential for forming thermal nitric oxides (NO(x)), as well as producing carbon monoxide (CO) when hydrocarbon fuels are used. Because of the complicated physics involved, however, little attempt has been made to predict the pollutant emissions from ground-based engine testing, except for simplified methods which can grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work, therefore, has been to develop a technology using CFD to describe the underlying pollutant emission physics from ground-based rocket engine testing. This resultant technology is based on a three-dimensional (3D), viscous flow, pressure-based CFD formulation, where wet CO and thermal NO finite-rate chemistry mechanisms are solved with a Penalty Function method. A nominal hot-firing of a RD-170 engine on the F1 stand has been computed. Pertinent test stand flow physics such as the multiple-nozzle clustered engine plume interaction, air aspiration from base and aspirator, plume mixing with entrained air that resulted in contaminant dilution and afterburning, counter-afterburning due to flame bucket water-quenching, plume impingement on the flame bucket, and restricted multiple-plume expansion and turning have been captured. The predicted total emission rates compared reasonably well with those of the existing hydrocarbon engine hot-firing test data.
Aircraft Engine Sump Fire Mitigation
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1973-01-01
An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.
NASA Advances Technologies for Additive Manufacturing of GRCop-84 Copper Alloy
NASA Technical Reports Server (NTRS)
Gradl, Paul; Protz, Chris
2017-01-01
The Low Cost Upper Stage Propulsion project has successfully developed and matured Selective Laser Melting (SLM) Fabrication of the NASA developed GRCop-84 copper alloy. Several parts have been printed in house and at a commercial vendor, and these parts have been successfully machined and have undergone further fabrication steps to allow hot-fire testing. Hot-fire testing has demonstrated parts manufactured with this technique can survive and perform well in the relevant environments for liquid rocket propulsion systems.
NASA Technical Reports Server (NTRS)
Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam
2016-01-01
Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.
Power packs: A passive approach to extinguishing fire in combat vehicles
NASA Astrophysics Data System (ADS)
Finnerty, Anthony E.; Polyanski, Stanley
1991-01-01
Thin (12.7 and 6.4 mm) panels of fire extinguishing powder in a honeycomb matrix were tested for their ability to extinguish fires in the FAASV ammunition resupply vehicle. These powder packs were applied to the exterior of hydraulic fluid reservoirs and fuel cells for protection from hydrocarbon fires caused by shaped charge jets penetrating the fluid containers. It was found that a surround of 12.7-mm-thick panels was required to achieve a sub 250-ms fire-out time with no second-degree burns expected to personnel with hot hydraulic fluid reservoirs. Power packs as thin as 6.4 mm provided the same protection in the case of hot diesel fuel.
Orbital transfer vehicle 3000 LBF thrust chamber assembly hot fire test program
NASA Technical Reports Server (NTRS)
Schneider, Judy; Hayden, Warren R.
1988-01-01
The Aerojet Orbital Transfer Vehicle (OTV) Thrust Chamber Assembly (TCA) concept consists of a hydrogen cooled chamber, and annular injector, and an oxygen cooled centerbody. The hot fire testing of a heat sink version of the chamber with only the throat section using hydrogen cooling is documented. Hydraulic performance of the injector and cooled throat were verified by water flow testing prior to TCA assembly. The cooled throat was proof tested to 3000 psia to verify the integrity of the codeposited EF nickel-cobalt closeout. The first set of hot fire tests were conducted with a heat sink throat to obtain heat flux information. After demonstration of acceptable heat fluxes, the heat sink throat was replaced with the LH2 cooled throat section. Fourteen tests were conducted with a heat sink chamber and throat at chamber pressures of 85 to 359 psia. The injector face was modified at this time to add more face coolant flow. Ten tests were then conducted at chamber pressures of 197 to 620 psia. Actual heat fluxes at the higher chamber pressure range were 23 percent higher than the average of 10 Btu/in 2 predicted.
Booster Separation Motor (BSM) Test Fire
NASA Technical Reports Server (NTRS)
2007-01-01
This photograph depicts a hot fire test of the Shuttle Booster Separation Motor (BSM) at the Marshall Space Flight Center (MSFC) test stand 116. The objective of the test was to test the aft heat seal in flight configuration. The function of the motor is to separate the Shuttle vehicle from the boosters that carry it into space.
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Xiong, X.; Zhao, Z. W.; Xie, L.; Min, X. B.; Yan, J. H.; Xia, G. M.; Zheng, F.
2015-08-01
Tungsten nozzle was produced by plasma spray forming (PSF, relative density of 86 ± 2%) followed by hot isostatic pressing (HIPing, 97 ± 2%) at 2000 °C and 180 MPa for 180 min. Scanning electron microscope, x-ray diffractometer, Archimedes method, Vickers hardness, and tensile tests have been employed to study microstructure, phase composition, density, micro-hardness, and mechanical properties of the parts. Resistance of thermal shock and ablation behavior of W nozzle were investigated by hot-firing test on solid rocket motor (SRM). Comparing with PSF nozzle, less damage was observed for HIPed sample after SRM test. Linear ablation rate of nozzle made by PSF was (0.120 ± 0.048) mm/s, while that after HIPing reduced to (0.0075 ± 0.0025) mm/s. Three types of ablation mechanisms including mechanical erosion, thermophysical erosion, and thermochemical ablation took place during hot-firing test. The order of degree of ablation was nozzle throat > convergence > dilation inside W nozzle.
Testing of Twin Linear Aerospike XRS-2200 Engine
NASA Technical Reports Server (NTRS)
2001-01-01
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
Powder Extinguishants for Jet-Fuel Fires
NASA Technical Reports Server (NTRS)
Altman, R. L.; Mayer, L. A.; Ling, A. C.
1986-01-01
Mixtures of alkali metal dawsonite and metal halide show superior performance. In tests of new dry powder fire extinguishants, mixtures of potassium dawsonite with either stannous iodide or potassium iodide found effective for extinguishing jet-fuel fires on hot metal surfaces (up to 900 degrees C). Mixtures performed more effectively than either compound alone.
Liquid hydrogen turbopump ALS advanced development program. Volume 1: Hot fire unit
NASA Technical Reports Server (NTRS)
Lindley, Bruce
1990-01-01
The interface criteria for the Turbopump Test article (TPA) and the Component Test Facility located at NASA, Stennis Space Center is defined by this interface Control Document (ICD). TPA ICD Volume 2 is submitted for the Cold Gas Drive Turbopump Test Article, which is generally similar but incorporates certain changes, particularly in fluid requirements and in instrumentation needs. For the purposes of this ICD, the test article consists of the Hot Fire Drive Turbopump mounted on its test cart, readied for installation in the component test facility. It should be emphasized that the LH2 turbopump program is still in its early concept design phase. Design of the turbopump, test cart, and spools are subject to revisions until successful conclusion of the Detail Design Review (DDR).
Using Innovative Technologies for Manufacturing Rocket Engine Hardware
NASA Technical Reports Server (NTRS)
Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.
2011-01-01
Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.
2001-08-06
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
NASA Astrophysics Data System (ADS)
McCourt, M. L.; McMillan, W. W.; Ackerman, S.; Holz, R.; Revercomb, H. E.; Tobin, D.
2004-10-01
During several flights of the ER-2 while participating in the Southern African Regional Science Initiative (SAFARI 2000), the University of Wisconsin-Madison's Scanning High Resolution Interferometer Sounder (S-HIS) obtained spectra containing isolated fires within its field of view (FOV). These fire-laden FOVs contain a spectral feature caused by rotational hot band transitions of CO2 near 2400 cm-1. Because of its location on the blue side of the 4.3 μm band of CO2, this feature is commonly referred to as the "blue spike." Using this feature, we detected fires on four flights: 24 and 27 August and 6 and 7 September 2000. Fire locations are further verified by the ER-2 pilot's flight logs and elevated brightness temperatures in the thermal detectors of the MODIS Airborne Simulator (MAS) also on board the ER-2. Using line-by-line radiative transfer calculations (Genln2) with corrections for a fire's extreme high temperatures (HiTemp), we model S-HIS spectra for various scenes: background (cool surface and cool atmosphere), smoldering (warm surface and cool atmosphere), hot gas layer (cool surface and warm atmosphere), and fire (hot surface and hot atmosphere) cases. Using the controlled burn in the Timbavati Game Reserve on 7 September 2000 as a test case, we spectrally modeled the blue spike feature seen in the spectra obtained by S-HIS while the ER-2 flew over the fire. For this case, we found that ˜4.12 ± 0.05% of the FOV contained the hot gas layer while ˜0.23 ± 0.05% was actively burning. Originally viewed as a straightforward task of using the blue spike to characterize the fire temperature and size (fraction of S-HIS FOV), our analysis shows that numerous variables, including amount of carbon dioxide, amount of water vapor, and the temperature near the fire, play significant roles in the blue spike's shape and spectral position.
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Valentine, Peter G.
2017-01-01
Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures, increasing exhaust velocities. Due to the large size of such nozzles, and the related engine performance requirements, carbon-carbon (C-C) composite nozzle extensions are being considered to reduce weight impacts. Currently, the state-of-the-art is represented by the metallic and foreign composite nozzle extensions limited to approximately 2000 degrees F. used on the Atlas V, Delta IV, Falcon 9, and Ariane 5 launch vehicles. NASA and industry partners are working towards advancing the domestic supply chain for C-C composite nozzle extensions. These development efforts are primarily being conducted through the NASA Small Business Innovation Research (SBIR) program in addition to other low level internal research efforts. This has allowed for the initial material development and characterization, subscale hardware fabrication, and completion of hot-fire testing in relevant environments. NASA and industry partners have designed, fabricated and hot-fire tested several subscale domestically produced C-C extensions to advance the material and coatings fabrication technology for use with a variety of liquid rocket and scramjet engines. Testing at NASA's Marshall Space Flight Center (MSFC) evaluated heritage and state-of-the-art C-C materials and coatings, demonstrating the initial capabilities of the high temperature materials and their fabrication methods. This paper discusses the initial material development, design and fabrication of the subscale carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work. The follow on work includes the fabrication of ultra-high temperature materials, larger C-C nozzle extensions, material characterization, sub-element testing and hot-fire testing at larger scale.
Heavy hydrocarbon main injector technology program
NASA Technical Reports Server (NTRS)
Arbit, H. A.; Tuegel, L. M.; Dodd, F. E.
1991-01-01
The Heavy Hydrocarbon Main Injector Program was an analytical, design, and test program to demonstrate an injection concept applicable to an Isolated Combustion Compartment of a full-scale, high pressure, LOX/RP-1 engine. Several injector patterns were tested in a 3.4-in. combustor. Based on these results, features of the most promising injector design were incorporated into a 5.7-in. injector which was then hot-fire tested. In turn, a preliminary design of a 5-compartment 2D combustor was based on this pattern. Also the additional subscale injector testing and analysis was performed with an emphasis on improving analytical techniques and acoustic cavity design methodology. Several of the existing 3.5-in. diameter injectors were hot-fire tested with and without acoustic cavities for spontaneous and dynamic stability characteristics.
Final RS-25 Engine Test of the Summer
2017-08-30
On Aug. 30, engineers at our Stennis Space Center wrapped up a summer of hot fire testing for flight controllers on RS-25 engines that will help power the new Space Launch System rocket being built to carry astronauts to deep-space destinations, including Mars. The 500-second hot fire of a flight controller or “brain” of the engine marked another step toward the nation’s return to human deep-space exploration missions. Four RS-25 engines, equipped with flight-worthy controllers will help power the first integrated flight of our Space Launch System rocket with our Orion spacecraft, known as Exploration Mission One.
Thermal Analysis and Testing of Fastrac Gas Generator Design
NASA Technical Reports Server (NTRS)
Nguyen, H.
1998-01-01
The Fastrac Engine is being developed by the Marshall Space Flight Center (MSFC) to help meet the goal of substantially reducing the cost of access to space. This engine relies on a simple gas-generator cycle, which burns a small amount of RP-1 and oxygen to provide gas to drive the turbine and then exhausts the spent fuel. The Fastrac program envisions a combination of analysis, design and hot-fire evaluation testing. This paper provides the supporting thermal analysis of the gas generator design. In order to ensure that the design objectives were met, the evaluation tests have started on a component level and a total of 15 tests of different durations were completed to date at MSFC. The correlated thermal model results will also be compared against hot-fire thermocouple data gathered.
NASA Conducts First RS-25 Rocket Engine Test of 2015
2015-01-09
From the Press Release: The new year is off to a hot start for NASA's Space Launch System (SLS). The engine that will drive America's next great rocket to deep space blazed through its first successful test Jan. 9 at the agency's Stennis Space Center near Bay St. Louis, Mississippi. The RS-25, formerly the space shuttle main engine, fired up for 500 seconds on the A-1 test stand at Stennis, providing NASA engineers critical data on the engine controller unit and inlet pressure conditions. This is the first hot fire of an RS-25 engine since the end of space shuttle main engine testing in 2009. Four RS-25 engines will power SLS on future missions, including to an asteroid and Mars. "We’ve made modifications to the RS-25 to meet SLS specifications and will analyze and test a variety of conditions during the hot fire series,” said Steve Wofford, manager of the SLS Liquid Engines Office at NASA's Marshall Space Flight Center in Huntsville, Alabama, where the SLS Program is managed. "The engines for SLS will encounter colder liquid oxygen temperatures than shuttle; greater inlet pressure due to the taller core stage liquid oxygen tank and higher vehicle acceleration; and more nozzle heating due to the four-engine configuration and their position in-plane with the SLS booster exhaust nozzles.” The engine controller unit, the "brain" of the engine, allows communication between the vehicle and the engine, relaying commands to the engine and transmitting data back to the vehicle. The controller also provides closed-loop management of the engine by regulating the thrust and fuel mixture ratio while monitoring the engine's health and status. The new controller will use updated hardware and software configured to operate with the new SLS avionics architecture. "This first hot-fire test of the RS-25 engine represents a significant effort on behalf of Stennis Space Center’s A-1 test team," said Ronald Rigney, RS-25 project manager at Stennis. "Our technicians and engineers have been working diligently to design, modify and activate an extremely complex and capable facility in support of RS-25 engine testing." Testing will resume in April after upgrades are completed on the high pressure industrial water system, which provides cool water for the test facility during a hot fire test. Eight tests, totaling 3,500 seconds, are planned for the current development engine. Another development engine later will undergo 10 tests, totaling 4,500 seconds. The second test series includes the first test of new flight controllers, known as green running. The first flight test of the SLS will feature a configuration for a 70-metric-ton (77-ton) lift capacity and carry an uncrewed Orion spacecraft beyond low-Earth orbit to test the performance of the integrated system. As the SLS is upgraded, it will provide an unprecedented lift capability of 130 metric tons (143 tons) to enable missions even farther into our solar system.
2012-10-11
Two J-2X engines and a powerpack, developed for NASA by Pratt and Whitney Rocketdyne, sit side-by-side Oct. 11 at Stennis Space Center as work continues on the Space Launch System. Engine 10001 (far left) has been removed from the A-2 Test Stand after being hot-fire tested 21 times, for a total of 2,697 seconds. The engine is now undergoing a series of post-test inspections. A J-2X powerpack (center) has been removed from the A-1 Test Stand to receive additional instrumentation. So far, the powerpack been hot-fire tested 10 times, for a total of 4,162 seconds. Meanwhile, assembly on the second J-2X engine, known as Engine 10002 and located to the far right, has begun in earnest, with engine completion scheduled for this November. Engine 10002 is about 15 percent complete.
NASA Astrophysics Data System (ADS)
Su, Yun; Li, Jun
2016-12-01
Steam burns severely threaten the life of firefighters in the course of their fire-ground activities. The aim of this paper was to characterize thermal protective performance of flame-retardant fabrics exposed to hot steam and low-level thermal radiation. An improved testing apparatus based on ASTM F2731-11 was developed in order to simulate the routine fire-ground conditions by controlling steam pressure, flow rate and temperature of steam box. The thermal protective performance of single-layer and multi-layer fabric system with/without an air gap was studied based on the calibrated tester. It was indicated that the new testing apparatus effectively evaluated thermal properties of fabric in hot steam and thermal radiation. Hot steam significantly exacerbated the skin burn injuries while the condensed water on the skin’s surface contributed to cool down the skin tissues during the cooling. Also, the absorbed thermal energy during the exposure and the cooling was mainly determined by the fabric’s configuration, the air gap size, the exposure time and the existence of hot steam. The research provides a effective method to characterize the thermal protection of fabric in complex conditions, which will help in optimization of thermal protection performance of clothing and reduction of steam burn.
NASA Technical Reports Server (NTRS)
Altman, R. L.; Ling, A. C. (Editor); Mayer, L. A.; Myronik, D. J.
1979-01-01
The effectiveness of dry chemical in extinguishing and delaying reignition of fires resulting from hydrocarbon fuel leaking onto heated surfaces such as can occur in jet engine nacelles is studied. The commercial fire extinguishant dry chemical tried are sodium and potassium bicarbonate, carbonate, chloride, carbamate (Monnex), metal halogen, and metal hydroxycarbonate compounds. Synthetic and preparative procedures for new materials developed, a new concept of fire control by dry chemical agents, descriptions of experiment assemblages to test dry chemical fire extinguishant efficiencies in controlling fuel fires initiated by hot surfaces, comparative testing data for more than 25 chemical systems in a 'static' assemblage with no air flow across the heated surface, and similar comparative data for more than ten compounds in a dynamic system with air flows up to 350 ft/sec are presented.
Morpheus Lander Testing Campaign
NASA Technical Reports Server (NTRS)
Hart, Jeremy J.; Mitchell, Jennifer D.
2011-01-01
NASA s Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing designed to serve as a testbed for advanced spacecraft technologies. The Morpheus vehicle has successfully performed a set of integrated vehicle test flights including hot-fire and tether tests, ultimately culminating in an un-tethered "free-flight" This development and testing campaign was conducted on-site at the Johnson Space Center (JSC), less than one year after project start. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper documents the integrated testing campaign, including descriptions of test types (hot-fire, tether, and free-flight), test objectives, and the infrastructure of JSC testing facilities. A major focus of the paper will be the fast pace of the project, rapid prototyping, frequent testing, and lessons learned from this departure from the traditional engineering development process at NASA s Johnson Space Center.
NASA Technical Reports Server (NTRS)
Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.
2014-01-01
The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.
Using Innovative Techniques for Manufacturing Rocket Engine Hardware
NASA Technical Reports Server (NTRS)
Betts, Erin M.; Reynolds, David C.; Eddleman, David E.; Hardin, Andy
2011-01-01
Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using the Workhorse Gas Generator (WHGG) test setup at MSFC?s East Test Area test stand 116, the duct was subject to extreme J-2X gas generator environments and endured a total of 538 seconds of hot-fire time. The duct survived the testing and was inspected after the test. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.
Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments
NASA Technical Reports Server (NTRS)
Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana
2017-01-01
A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.
NASA Technical Reports Server (NTRS)
Sass, J. P.; Raines, N. G.; Ryan, H. M.
2004-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program recently achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in late 2004. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD Workhorse Preburner and the IPD Oxidizer Turbopump. In addition, some of the facility challenges encountered during the test project shall be addressed.
2014-04-21
1. ENGINEERS AND TECHNICIANS PREPARE FOR AN UPCOMING HOT-FIRE TEST OF A ROCKET INJECTOR MANUFACTURED USING ADDITIVE MANUFACTURING, OR 3-D PRINTING…RANDALL MCALLISTER, INFOPRO TECHNICIAN, FITS NOZZLE TO ROCKET INJECTOR
Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process
NASA Technical Reports Server (NTRS)
Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)
2001-01-01
Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with no apparent wear. Material physical properties and the hot firing tests are reviewed.
VPS Process for Copper Components in Thrust Chamber Assemblies
NASA Technical Reports Server (NTRS)
Elam, Sandra; Holmes, Richard; Hickman, Robert; McKechnie, Tim; Thom, George
2005-01-01
For several years, NASA's Marshall Space Flight Center (MSFC) has been working with Plasma Processes, Inc., (PPI) to fabricate thrust chamber liners with GRCop-84. Using the vacuum plasma spray (VPS) process, chamber liners of a variety of shapes and sizes have been created. Each has been formed as a functional gradient material (FGM) that creates a unique protective layer of NiCrAlY on the GRCop-84 liner s hot wall surface. Hot-fire testing was successfully conducted on a subscale unit to demonstrate the liner's durability and performance. Similar VPS technology has also been applied to create functional gradient coatings (FGC) on copper injector faceplates. Protective layers of NiCrAlY and zirconia were applied to both coaxial and impinging faceplate designs. Hot-fire testing is planned for these coated injectors in April 2005. The resulting material systems for both copper alloy components allows them to operate at higher temperatures with improved durability and operating margins.
A study of the durability of beryllium rocket engines. [space shuttle reaction control system
NASA Technical Reports Server (NTRS)
Paster, R. D.; French, G. C.
1974-01-01
An experimental test program was performed to demonstrate the durability of a beryllium INTEREGEN rocket engine when operating under conditions simulating the space shuttle reaction control system. A vibration simulator was exposed to the equivalent of 100 missions of X, Y, and Z axes random vibration to demonstrate the integrity of the recently developed injector-to-chamber braze joint. An off-limits engine was hot fired under extreme conditions of mixture ratio, chamber pressure, and orifice plugging. A durability engine was exposed to six environmental cycles interspersed with hot-fire tests without intermediate cleaning, service, or maintenance. Results from this program indicate the ability of the beryllium INTEREGEN engine concept to meet the operational requirements of the space shuttle reaction control system.
Future Directions for Space Transportation and Propulsion at NASA
NASA Technical Reports Server (NTRS)
Sackheim, Robert L.
2005-01-01
Contents include the following: Oxygen Compatible Materials. Manufacturing Technology Demonstrations. Turbopump Inducer Waterflow Test. Turbine Damping "Whirligig" Test. Single Element Preburner and Main Injector Test. 40K Multi-Element Preburner and MI. Full-Scale Battleship Preburner. Prototype Preburner Test Article. Full-Scale Prototype TCA. Turbopump Hot-Fire Test Article. Prototype Engine. Validated Analytical Models.
Boeing's CST-100 Launch Abort Engine Test
2016-10-10
Boeing and Aerojet Rocketdyne have begun a series of developmental hot-fire tests with two launch abort engines similar to the ones that will be part of Boeing’s CST-100 Starliner service module, in the Mojave Desert in California. The engines, designed to maximize thrust build-up, while minimizing overshoot during start up, will be fired between half a second and 3 seconds each during the test campaign. If the Starliner’s four launch abort engines were used during an abort scenario, they would fire between 3 and 5.5. seconds, with enough thrust to get the spacecraft and its crew away from the rocket, before splashing down in the ocean under parachutes.
NASA Technical Reports Server (NTRS)
Nurick, W. H.
1974-01-01
An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.
Parker, E M; Gielen, A C; McDonald, E M; Shields, W C; Trump, A R; Koon, K M; Jones, V
2013-08-01
While largely preventable, fire and hot water-related injuries are common in the United States. Measures recommended to reduce these injuries are smoke alarms (SAs) and lowered hot water temperatures. This study aims to: (i) describe the prevalence of working SAs and safe water temperatures among low-income, urban communities and (ii) explore the relationship between these behaviors and individuals' knowledge and beliefs about them. In this cross-sectional study, the Health Belief Model was used as a guide for understanding the safety behaviors. A total of 603 households had their SAs and hot tap water temperatures tested and were surveyed about their knowledge and beliefs related to these safety behaviors. We found that 40% of households had working SAs on every level and 57% had safe hot water temperatures. Perceived severity and self-efficacy were significantly associated with SA coverage, whereas perceived susceptibility and beliefs about benefits were significantly associated with safe hot water temperatures. This study demonstrates the need to increase the number of homes with working SAs and safe hot water temperatures. Messages focused on a safe home environment could communicate the ease and harm reduction features of SAs and benefits and risk reduction features of safe hot water temperatures.
Parker, E. M.; Gielen, A. C.; McDonald, E. M.; Shields, W. C.; Trump, A. R.; Koon, K. M.; Jones, V.
2013-01-01
While largely preventable, fire and hot water-related injuries are common in the United States. Measures recommended to reduce these injuries are smoke alarms (SAs) and lowered hot water temperatures. This study aims to: (i) describe the prevalence of working SAs and safe water temperatures among low-income, urban communities and (ii) explore the relationship between these behaviors and individuals’ knowledge and beliefs about them. In this cross-sectional study, the Health Belief Model was used as a guide for understanding the safety behaviors. A total of 603 households had their SAs and hot tap water temperatures tested and were surveyed about their knowledge and beliefs related to these safety behaviors. We found that 40% of households had working SAs on every level and 57% had safe hot water temperatures. Perceived severity and self-efficacy were significantly associated with SA coverage, whereas perceived susceptibility and beliefs about benefits were significantly associated with safe hot water temperatures. This study demonstrates the need to increase the number of homes with working SAs and safe hot water temperatures. Messages focused on a safe home environment could communicate the ease and harm reduction features of SAs and benefits and risk reduction features of safe hot water temperatures. PMID:23487557
Main Propulsion Test Article (MPTA)
NASA Technical Reports Server (NTRS)
Snoddy, Cynthia
2010-01-01
Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.
A3 Subscale Rocket Hot Fire Testing
NASA Technical Reports Server (NTRS)
Saunders, G. P.; Yen, J.
2009-01-01
This paper gives a description of the methodology and results of J2-X Subscale Simulator (JSS) hot fire testing supporting the A3 Subscale Diffuser Test (SDT) project at the E3 test facility at Stennis Space Center, MS (SSC). The A3 subscale diffuser is a geometrically accurate scale model of the A3 altitude simulating rocket test facility. This paper focuses on the methods used to operate the facility and obtain the data to support the aerodynamic verification of the A3 rocket diffuser design and experimental data quantifying the heat flux throughout the facility. The JSS was operated at both 80% and 100% power levels and at gimbal angle from 0 to 7 degrees to verify the simulated altitude produced by the rocket-rocket diffuser combination. This was done with various secondary GN purge loads to quantify the pumping performance of the rocket diffuser. Also, special tests were conducted to obtain detailed heat flux measurements in the rocket diffuser at various gimbal angles and in the facility elbow where the flow turns from vertical to horizontal upstream of the 2nd stage steam ejector.
LOX/Hydrocarbon Combustion Instability Investigation
NASA Technical Reports Server (NTRS)
Jensen, R. J.; Dodson, H. C.; Claflin, S. E.
1989-01-01
The LOX/Hydrocarbon Combustion Instability Investigation Program was structured to determine if the use of light hydrocarbon combustion fuels with liquid oxygen (LOX) produces combustion performance and stability behavior similar to the LOX/hydrogen propellant combination. In particular methane was investigated to determine if that fuel can be rated for combustion instability using the same techniques as previously used for LOX/hydrogen. These techniques included fuel temperature ramping and stability bomb tests. The hot fire program probed the combustion behavior of methane from ambient to subambient temperatures. Very interesting results were obtained from this program that have potential importance to future LOX/methane development programs. A very thorough and carefully reasoned documentation of the experimental data obtained is contained. The hot fire test logic and the associated tests are discussed. Subscale performance and stability rating testing was accomplished using 40,000 lb. thrust class hardware. Stability rating tests used both bombs and fuel temperature ramping techniques. The test program was successful in generating data for the evaluation of the methane stability characteristics relative to hydrogen and to anchor stability models. Data correlations, performance analysis, stability analyses, and key stability margin enhancement parameters are discussed.
2014-04-21
2. ENGINEERS AND TECHNICIANS PREPARE FOR AN UPCOMING HOT-FIRE TEST OF A ROCKET INJECTOR MANUFACTURED USING ADDITIVE MANUFACTURING, OR 3-D PRINTING…(L TO R) WILLIE PARKER, INFOPRO TECHNICIAN, BRAD BULLARD, NASA, NICK CASE, NASA, AND RANDALL MCALLISTER, INFOPRO TECHNICIAN
NASA Technical Reports Server (NTRS)
Gage, Mark; Dehoff, Ronald
1991-01-01
This system architecture task (1) analyzed the current process used to make an assessment of engine and component health after each test or flight firing of an SSME, (2) developed an approach and a specific set of objectives and requirements for automated diagnostics during post fire health assessment, and (3) listed and described the software applications required to implement this system. The diagnostic system described is a distributed system with a database management system to store diagnostic information and test data, a CAE package for visual data analysis and preparation of plots of hot-fire data, a set of procedural applications for routine anomaly detection, and an expert system for the advanced anomaly detection and evaluation.
The use of computer models to predict temperature and smoke movement in high bay spaces
NASA Technical Reports Server (NTRS)
Notarianni, Kathy A.; Davis, William D.
1993-01-01
The Building and Fire Research Laboratory (BFRL) was given the opportunity to make measurements during fire calibration tests of the heat detection system in an aircraft hangar with a nominal 30.4 (100 ft) ceiling height near Dallas, TX. Fire gas temperatures resulting from an approximately 8250 kW isopropyl alcohol pool fire were measured above the fire and along the ceiling. The results of the experiments were then compared to predictions from the computer fire models DETACT-QS, FPETOOL, and LAVENT. In section A of the analysis conducted, DETACT-QS AND FPETOOL significantly underpredicted the gas temperature. LAVENT at the position below the ceiling corresponding to maximum temperature and velocity provided better agreement with the data. For large spaces, hot gas transport time and an improved fire plume dynamics model should be incorporated into the computer fire model activation routines. A computational fluid dynamics (CFD) model, HARWELL FLOW3D, was then used to model the hot gas movement in the space. Reasonable agreement was found between the temperatures predicted from the CFD calculations and the temperatures measured in the aircraft hangar. In section B, an existing NASA high bay space was modeled using the CFD model. The NASA space was a clean room, 27.4 m (90 ft) high with forced horizontal laminar flow. The purpose of this analysis is to determine how the existing fire detection devices would respond to various size fires in the space. The analysis was conducted for 32 MW, 400 kW, and 40 kW fires.
Targeted Removal of Ant Colonies in Ecological Experiments, Using Hot Water
Tschinkel, Walter R.; King, Joshua R.
2007-01-01
Ecological experiments on fire ants cannot, or should not, use poison baits to eliminate the fire ants because such baits are not specific to fire ants, or even to ants. Hot water is an extremely effective and specific killing agent for fire ant colonies, but producing large amounts of hot water in the field, and making the production apparatus mobile have been problematical. The construction and use of a charcoal-fired kiln made from a 55-gal. oil drum lined with a sand-fireclay mixture is described. An automobile heater fan powered from a 12-v battery provided a draft. Dual bilge pumps pumped water from a large tank through a long coil of copper tubing within the kiln to produce 4 to 5 l. of hot water per min. The hot water was collected in 20 l. buckets and poured into fire ant nests previously opened by piercing with a stick. The entire assembly was transported in and operated from the back of a pickup truck. Five experimental plots containing 32 to 38 colonies of the fire ant, Solenopsis invicta, Buren (Hymenoptera: Formicidae), were treated with hot water over a period of two years. All colonies on the treatment plots were treated twice with hot water early in 2004, reducing their numbers to zero. However new colonies were formed, and mature colonies expanded into the plots. A third treatment was made in the spring of 2005, after which fire ant populations were suppressed for over a year. Whereas the 5 control plots contained a total of 166 mostly large colonies, the 5 treatment plots contained no live colonies at all. Averaged over a two-year period, a 70% reduction in total number of colonies was achieved (P < 0.001) on the treatment plots, and a 93% reduction of large, mature colonies. Over this same time span, the number of colonies in control plots remained stable. The reduction in colony numbers on the treatment plots was reflected in the pitfall trap samples that recorded a 60% reduction in fire ants. PMID:20233079
Targeted removal of ant colonies in ecological experiments, using hot water.
Tschinkel, Walter R; King, Joshua R
2007-01-01
Ecological experiments on fire ants cannot, or should not, use poison baits to eliminate the fire ants because such baits are not specific to fire ants, or even to ants. Hot water is an extremely effective and specific killing agent for fire ant colonies, but producing large amounts of hot water in the field, and making the production apparatus mobile have been problematical. The construction and use of a charcoal-fired kiln made from a 55-gal. oil drum lined with a sand-fireclay mixture is described. An automobile heater fan powered from a 12-v battery provided a draft. Dual bilge pumps pumped water from a large tank through a long coil of copper tubing within the kiln to produce 4 to 5 l. of hot water per min. The hot water was collected in 20 l. buckets and poured into fire ant nests previously opened by piercing with a stick. The entire assembly was transported in and operated from the back of a pickup truck. Five experimental plots containing 32 to 38 colonies of the fire ant, Solenopsis invicta, Buren (Hymenoptera: Formicidae), were treated with hot water over a period of two years. All colonies on the treatment plots were treated twice with hot water early in 2004, reducing their numbers to zero. However new colonies were formed, and mature colonies expanded into the plots. A third treatment was made in the spring of 2005, after which fire ant populations were suppressed for over a year. Whereas the 5 control plots contained a total of 166 mostly large colonies, the 5 treatment plots contained no live colonies at all. Averaged over a two-year period, a 70% reduction in total number of colonies was achieved (P < 0.001) on the treatment plots, and a 93% reduction of large, mature colonies. Over this same time span, the number of colonies in control plots remained stable. The reduction in colony numbers on the treatment plots was reflected in the pitfall trap samples that recorded a 60% reduction in fire ants.
NASA Technical Reports Server (NTRS)
Osborne, Robin; Wehrmeyer, Joseph; Farmer, Richard; Trinh, Huu; Dobson, Chris; Eskridge, Richard; Cramer, John; Hartfield, Roy; Turner, Jim (Technical Monitor)
2001-01-01
The objective of this project is to provide measurements of species concentrations and temperature for hot-fire test articles at Test Stand 115 at NASA Marshall Space Flight Center. Measurements can be useful for comparison to computational fluid dynamics simulations and help to evaluate combustion performance.
Space Storable Rocket Technology (SSRT) basic program
NASA Technical Reports Server (NTRS)
Chazen, M. L.; Mueller, T.; Casillas, A. R.; Huang, D.
1992-01-01
The Space Storable Rocket Technology Program (SSRT) was conducted to establish a technology for a new class of high performance and long life bipropellant engines using space storable propellants. The results are described. Task 1 evaluated several characteristics for a number of fuels to determine the best space storable fuel for use with LO2. The results indicated that LO2-N2H4 is the best propellant combination and provides the maximum mission/system capability maximum payload into GEO of satellites. Task 2 developed two models, performance and thermal. The performance model indicated the performance goal of specific impulse greater than or = 340 seconds (sigma = 204) could be achieved. The thermal model was developed and anchored to hot fire test data. Task 3 consisted of design, fabrication, and testing of a 200 lbf thrust test engine operating at a chamber pressure of 200 psia using LO2-N2H4. A total of 76 hot fire tests were conducted demonstrating performance greater than 340 (sigma = 204) which is a 25 second specific impulse improvement over the existing highest performance flight apogee type engines.
Laboratory investigation of fire protection coatings for creosote-treated timber railroad bridges
Carol A. Clausen; Robert H. White; James P. Wacker; Stan T. Lebow; Mark A. Dietenberger; Samuel L. Zelinka; Nicole M. Stark
2014-01-01
As the incidence of timber railroad bridge fires increases, so has the need to develop protective measures to reduce the risk from accidental ignitions primarily caused by hot metal objects. Of the six barrier treatments evaluated in the laboratory for their ability to protect timbers from fires sourced with ignition from hot metal objects only one intumescent coating...
Temperature Dependent Modal Test/Analysis Correlation of X-34 Fastrac Composite Rocket Nozzle
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Brunty, Joseph A. (Technical Monitor)
2001-01-01
A unique high temperature modal test and model correlation/update program has been performed on the composite nozzle of the FASTRAC engine for the NASA X-34 Reusable Launch Vehicle. The program was required to provide an accurate high temperature model of the nozzle for incorporation into the engine system structural dynamics model for loads calculation; this model is significantly different from the ambient case due to the large decrease in composite stiffness properties due to heating. The high-temperature modal test was performed during a hot-fire test of the nozzle. Previously, a series of high fidelity modal tests and finite element model correlation of the nozzle in a free-free configuration had been performed. This model was then attached to a modal-test verified model of the engine hot-fire test stand and the ambient system mode shapes were identified. A reduced set of accelerometers was then attached to the nozzle, the engine fired full-duration, and the frequency peaks corresponding to the ambient nozzle modes individually isolated and tracked as they decreased during the test. To update the finite-element model of the nozzle to these frequency curves, the percentage differences of the anisotropic composite moduli due to temperature variation from ambient, which had been used in the initial modeling and which were obtained by small sample coupon testing, were multiplied by an iteratively determined constant factor. These new properties were used to create high-temperature nozzle models corresponding to 10 second engine operation increments and tied into the engine system model for loads determination.
76 FR 12753 - Notice of Temporary Closures on Public Lands in Ada and Elmore Counties, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-08
... ( FNW4) and Hot Tea Fire ( FTF6) closures to motorized vehicle use are in effect on public lands... slickspot peppergrass plants and their associated habitat in this area. The Hot Tea closure affects public lands in Elmore County, Idaho, burned August 27-29, 2010, by the Hot Tea Fire, 12 miles northwest of...
Hot fire test results of subscale tubular combustion chambers
NASA Technical Reports Server (NTRS)
Kazaroff, John M.; Jankovsky, Robert S.; Pavli, Albert J.
1992-01-01
Advanced, subscale, tubular combustion chambers were built and test fired with hydrogen-oxygen propellants to assess the increase in fatigue life that can be obtained with this type of construction. Two chambers were tested: one ran for 637 cycles without failing, compared to a predicted life of 200 cycles for a comparable smooth-wall milled-channel liner configuration. The other chamber failed at 256 cycles, compared to a predicted life of 118 cycles for a comparable smooth-wall milled-channel liner configuration. Posttest metallographic analysis determined that the strain-relieving design (structural compliance) of the tubular configuration was the cause of this increase in life.
NARC Rayon Replacement Program for the RSRM Nozzle, Phase IV Qualification and Implementation Status
NASA Technical Reports Server (NTRS)
Haddock, M. Reed; Wendel, Gary M.; Cook, Roger V.
2005-01-01
The Space Shuttle NARC Rayon Replacement Program has down-selected Enka rayon as a replacement for the obsolete NARC rayon in the nozzle carbon cloth phenolic (CCP) ablative insulators. Full qualification testing of the Enka rayon-based carbon cloth phenolic is underway, including processing, thmal/structural properties, and hot-fire subscale tests. Required thermal-structural capabilities, together with confidence in erosio/char performance in simulated and subscale hot fire tests such as Wright-Patterson Air Force Base Laser Hardened Materials Evaluation Laboratory testing, NASA-MSFC 24-inch motor tests, NASA-MSFC Solid Fuel Torch - Super Sonic Blast Tube, NASA-MSFC Plasma Torch Test Bed, ATK Thiokol Forty Pound Charge and NASA-MSFC MNASA justified the testing of the new Enka-rayon candidate on full-scale static test motors. The first RSRM full-scale static test motor nozzle, fabricated using the new Enka rayon-based CCP, was successfully demonstrated in June 2004. Two additional static test motors are planned with the new Enka rayon in the next two years along with additional A-basis property characterization. Process variation or "corner-of-the-box" testing together with cured and uncured aging studies are also planned as some of the pre-flight implementation activities with 5-year cured aging studies over-lapping flight hardware fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, H.K.; Staggs, K.J.; Doughty, S.M.
1992-12-01
As a result of a DOE (Tiger Team) Technical Safety Appraisal (November 1990) of the Radiochemical Engineering Development Center (REDC), ORNL Building 7920, a number of fire protection concerns were identified. The primary concern was the perceived loss of ventilation system containment due to the thermal destruction and/or breaching of the prefilters and/or high-efficiency particulate air filters (HEPA `s) and the resultant radioactive release to the external environment. The following report describes the results of an extensive fire test program performed by the Fire Research Discipline (FRD) of the Special Projects Division of Lawrence Livermore National Lab (LLNL) and fundedmore » by ORNL to address these concerns. Full scale mock-ups of a REDC hot cell tank pit, adjacent cubicle pit, and associated ventilation system were constructed at LLNL and 13 fire experiments were conducted to specifically answer the questions raised by the Tiger Team. Our primary test plan was to characterize the burning of a catastrophic solvent spill (kerosene) of 40 liters and its effect on the containment ventilation system prefilters and HEPA filters. In conjunction with ORNL and Lockwood Greene we developed a test matrix that assessed the fire performance of the prefilters and HEPA filters; evaluated the fire response of the fiber reinforced plastic (FRP) epoxy ventilation duct work; the response and effectiveness of the fire protection system, the effect of fire in a cubicle on the vessel off-gas (VOG) elbow, and other fire safety questions.« less
RS-88 Pad Abort Demonstrator Thrust Chamber Assembly Testing at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Farr, Rebecca A.; Sanders, Timothy M.
1990-01-01
This paper documents the effort conducted to collect hot-tire dynamic and acoustics environments data during 50,000-lb thrust lox-ethanol hot-fire rocket testing at NASA Marshall Space Flight Center (MSFC) in November-December 2003. This test program was conducted during development testing of the Boeing Rocketdyne RS-88 development engine thrust chamber assembly (TCA) in support of the Orbital Space Plane (OSP) Crew Escape System Propulsion (CESP) Program Pad Abort Demonstrator (PAD). In addition to numerous internal TCA and nozzle measurements, induced acoustics environments data were also collected. Provided here is an overview of test parameters, a discussion of the measurements, test facility systems and test operations, and a quality assessment of the data collected during this test program.
Fire Signatures of Materials Used in Spacecraft Construction
NASA Technical Reports Server (NTRS)
Taylor, Christina
2003-01-01
The focus of my work this summer was fire safety, specifically determining fire signatures from the combustion of materials commonly found in the construction of spacecraft. This project was undertaken with the aim of addressing concerns for health and safety onboard spacecraft. Under certain conditions, burning electronics produce surprisingly large amounts of acrid smoke, release fine airborne particles and expel condensable aerosols. Similarly, some wire insulation and packing material evolves smoke when in contact with a hot surface. In the limited, enclosed space available on spacecraft, these combustion products may pose a nuisance at the very least - at worst, a hazard to health or equipment. There is also a concern for fire safety in early detection on spacecraft. Our goal for the summer was to determine the most effective methods to test the materials, develop a protocol for sampling, and generate samples for analysis. We restricted our testing to electronic components, packaging and insulation materials, and wire insulation materials.
NASA Conducts Final RS-25 Rocket Engine Test of 2017
2017-12-13
NASA engineers at Stennis Space Center capped a year of Space Launch System testing with a final RS-25 rocket engine hot fire on Dec. 13. The 470-second test on the A-1 Test Stand was a “green run” test of an RS-25 flight controller. The engine tested also included a large 3-D-printed part, a pogo accumulator assembly, scheduled for use on future RS-25 flight engines.
An Overview of Propulsion Concept Studies and Risk Reduction Activities for Robotic Lunar Landers
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Story, George; Burnside, Chris; Kudlach, Al
2010-01-01
In support of designing robotic lunar lander concepts, the propulsion team at NASA Marshall Space Flight Center (MSFC) and the Johns Hopkins University Applied Physics Laboratory (APL), with participation from industry, conducted a series of trade studies on propulsion concepts with an emphasis on light-weight, advanced technology components. The results suggest a high-pressure propulsion system may offer some benefits in weight savings and system packaging. As part of the propulsion system, a solid rocket motor was selected to provide a large impulse to reduce the spacecraft s velocity prior to the lunar descent. In parallel to this study effort, the team also began technology risk reduction testing on a high thrust-to-weight descent thruster and a high-pressure regulator. A series of hot-fire tests was completed on the descent thruster in vacuum conditions at NASA White Sands Test Facility (WSTF) in New Mexico in 2009. Preparations for a hot-fire test series on the attitude control thruster at WSTF and for pressure regulator testing are now underway. This paper will provide an overview of the concept trade study results along with insight into the risk mitigation activities conducted to date.
MHD generator electrode development. Summary report, July 1, 1981-September 30, 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossing, B.R.; Buckman, R.W. Jr.; Pouchot, W.D.
Emphasis on this program was the development of and understanding wastage mechanism(s) of metallic electrodes which may be suitable alternatives to platinum anode material for use in long-term open cycle, coal-fired MHD generator operations. The laboratory tests simulate both modes of material wastage observed in MHD electrode operation; i.e., arc erosion (melting/vaporization) and electrochemical corrosion. Based on experimental results from the electrochemical tests at 1473/sup 0/K, the rank order listing of the materials tested for anode applications were platinum, E-Brite 26-1 modified with a five percent addition of platinum, chromium, IN 601, E-Brite 26-1, and 330 stainless steel ranked inmore » decreasing order. The rank order listing based on the arc erosion test was platinum, chromium, E-Brite 26-1, 330 stainless steel, and IN 601. The relative arc erosion resistance of materials based on the AVCO Mark VII generator test results gave a rank order of platinum, 330 stainless steel, IN 601, and E-Brite 26-1. Engineering tests under simulated open-cycle coal-fired MHD operating conditions were performed in the 500 kW Westinghouse Electrode System Test Facility (WESTF). Tests were conducted on candidate metallic anode materials (cold wall) and ceramic anode (hot wall) materials. A ten-hour duration cold wall slagging test was conducted on platinum, E-Brite 26-1, 330 stainless steel and IN 601 and the results were similar to those obtained for those materials in the AVCO Mark VII generator tests. Non-slagging, super hot (>1700/sup 0/C) wall hafnia-rare earth oxide electrodes were tested in a sulfurous, western coal-fired MHD environment. All four ceramic electrode pairs were destroyed. 20 references.« less
Luo, Shengfeng; Xie, Qiyuan; Tang, Xinyi; Qiu, Rong; Yang, Yun
2017-05-05
The objective of this work is to investigate the distinctive mechanisms of downward flame spread for XPS foam. It was physically considered as a moving down of narrow pool fire instead of downward surface flame spread for normal solids. A method was developed to quantitatively analyze the accumulated liquid fuel based on the experimental measurement of locations of flame tips and burning rates. The results surprisingly showed that about 80% of the generated hot liquid fuel remained in the pool fire during a certain period. Most of the consumed solid XPS foam didn't really burn away but transformed as the liquid fuel in the downward moving pool fire, which might be an important promotion for the fast fire development. The results also indicated that the dripping propensity of the hot liquid fuel depends on the total amount of the hot liquid accumulated in the pool fire. The leading point of the flame front curve might be the breach of the accumulated hot liquid fuel if it is enough for dripping. Finally, it is suggested that horizontal noncombustible barriers for preventing the accumulation and dripping of liquid fuel are helpful for vertical confining of XPS fire. Copyright © 2017 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to, inspection, testing, and employment as a watchman. (n) The term hazardous substance means a..., quarters, and machinery and boiler spaces. (r) The term hot work means riveting, welding, burning or other... riveting, welding, burning or other fire or spark producing operations. (t) The term portable unfired...
Commerical Crew Program - SpaceX
2014-05-21
A SpaceX SuperDraco engine is hot-fired at the company's test facility in McGregor, Texas. SpaceX is developing its Crew Dragon spacecraft and Falcon 9 rocket in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the International Space Station.
Bruce-Low, S S; Cotterrell, D; Jones, G E
2007-01-15
Fire fighter breathing apparatus instructors (BAIs) must possess the ability to respond to both the extrinsic stress of a high temperature environment and the intrinsic stress from wearing personal protective equipment (PPE) and self-contained breathing apparatus (SCBA), repeatedly and regularly, whilst training recruits in live fire training exercises (LFTEs). There are few previous investigations on BAIs in hot environments such as LFTEs, since the main research focus has been on regular fire fighters undertaking exercises in temperate or fire conditions at a moderate to high exercise intensity. In this study, the intrinsic cardiovascular stress effects of wearing PPE + SCBA were first investigated using a step test whilst wearing gym kit (control), weighted gym kit (a rucksack weighted to the equivalent of PPE + SCBA) and full PPE + SCBA (weight plus the effects of protective clothing). The extrinsic effects of the very hot environment were investigated in BIAs in LFTEs compared to mock fire training exercises (MFTEs), where the fire was not ignited. There was an increase in heart rate due to the modest workload imposed on the BAIs through carrying out the MFTEs (25.0 (18.7)%) compared to resting. However, when exposed to fire during the LFTEs, heat storage appears to be significant as the heart rate increased by up to 39.8 (+/-20.1)% over that of the mock LFTEs at temperate conditions. Thus, being able to dissipate heat from the PPE is particularly important in reducing the cardiovascular responses for BAIs during LFTEs.
Space Storable Propellant Performance Gas/Liquid Like-Doublet Injector Characterization
NASA Technical Reports Server (NTRS)
Falk, A. Y.
1972-01-01
A 30-month applied research program was conducted, encompassing an analytical, design, and experimental effort to relate injector design parameters to simultaneous attainment of high performance and component (injector/thrust chamber) compatibility for gas/liquid space-storable propellants. The gas/liquid propellant combination selected for study was FLOX (82.6% F2)/ambient temperature gaseous methane. The injector pattern characterized was the like-(self)-impinging doublet. Program effort was apportioned into four basic technical tasks: injector and thrust chamber design, injector and thrust chamber fabrication, performance evaluation testing, and data evaluation and reporting. Analytical parametric combustion analyses and cold flow distribution and atomization experiments were conducted with injector segment models to support design of injector/thrust chamber combinations for hot fire evaluation. Hot fire tests were conducted to: (1) optimize performance of the injector core elements, and (2) provide design criteria for the outer zone elements so that injector/thrust chamber compatibility could be achieved with only minimal performance losses.
1993-02-11
aged for 14 days at 120OF and 95% relative humidity (hot and humid ). After... aging tests indicate, Uralane 5774-A/B is not adversely affected by hot and humid environments . In fact, in many cases, mechanical strengths improved...Presently included in these industrially important thermoplastics are the poly (arylene ether ketone )s (PEKs) and poly (arylene ether sulfone)s (PESs). Poly
NASA Fastrac Engine Gas Generator Component Test Program and Results
NASA Technical Reports Server (NTRS)
Dennis, Henry J., Jr.; Sanders, T.
2000-01-01
Low cost access to space has been a long-time goal of the National Aeronautics and Space Administration (NASA). The Fastrac engine program was begun at NASA's Marshall Space Flight Center to develop a 60,000-pound (60K) thrust, liquid oxygen/hydrocarbon (LOX/RP), gas generator-cycle booster engine for a fraction of the cost of similar engines in existence. To achieve this goal, off-the-shelf components and readily available materials and processes would have to be used. This paper will present the Fastrac gas generator (GG) design and the component level hot-fire test program and results. The Fastrac GG is a simple, 4-piece design that uses well-defined materials and processes for fabrication. Thirty-seven component level hot-fire tests were conducted at MSFC's component test stand #116 (TS116) during 1997 and 1998. The GG was operated at all expected operating ranges of the Fastrac engine. Some minor design changes were required to successfully complete the test program as development issues arose during the testing. The test program data results and conclusions determined that the Fastrac GG design was well on the way to meeting the requirements of NASA's X-34 Pathfinder Program that chose the Fastrac engine as its main propulsion system.
The 260: The Largest Solid Rocket Motor Ever Tested
NASA Technical Reports Server (NTRS)
Crimmins, P.; Cousineau, M.; Rogers, C.; Shell, V.
1999-01-01
Aerojet in the mid 1960s, under contract to NASA, built and static hot fire tested the largest solid rocket motor (SRM) in history for the purpose of demonstrating the feasibility of utilizing large SRMs for space exploration. This program successfully fabricated two high strength steel chambers, loaded each with approximately 1,68 million pounds of propellant, and static test fired these giants with their nozzles up from an underground silo located adjacent to the Florida everglades. Maximum thrust and total impulse in excess of 5,000,000 lbf and 3,470,000,000 lbf-sec were achieved. Flames from the second firing, conducted at night, were seen over eighty miles away. For comparative purposes: the thrust developed was nearly 100 times that of a Minuteman III second stage and the 260 in.-dia cross-section was over 3 times that of the Space Shuttle SRM.
Video File - NASA Conducts Final RS-25 Rocket Engine Test of 2017
2017-12-13
NASA engineers at Stennis Space Center capped a year of Space Launch System testing with a final RS-25 rocket engine hot fire on Dec. 13. The 470-second test on the A-1 Test Stand was a “green run” test of an RS-25 flight controller. The engine tested also included a large 3-D-printed part, a pogo accumulator assembly, scheduled for use on future RS-25 flight engines.
ERIC Educational Resources Information Center
School Science Review, 1981
1981-01-01
Presents a variety of laboratory procedures, discussions, and demonstrations including centripedal force apparatus, model ear drum, hot air balloons, air as a real substance, centering a ball, simple test tube rack, demonstration fire extinguisher, pin-hole camera, and guidelines for early primary science education (5-10 years) concepts and lesson…
Test Report for NASA MSFC Support of the Linear Aerospike SR-71 Experiment (LASRE)
NASA Technical Reports Server (NTRS)
Elam, S. K.
2000-01-01
The Linear Aerospike SR-71 Experiment (LASRE) was performed in support of the Reusable Launch Vehicle (RLV) program to help develop a linear aerospike engine. The objective of this program was to operate a small aerospike engine at various speeds and altitudes to determine how slipstreams affect the engine's performance. The joint program between government and industry included NASA!s Dryden Flight Research Center, The Air Force's Phillips Laboratory, NASA's Marshall Space Flight Center, Lockheed Martin Skunkworks, Lockheed-Martin Astronautics, and Rocketdyne Division of Boeing North American. Ground testing of the LASRE engine produced two successful hot-fire tests, along with numerous cold flows to verify sequencing and operation before mounting the assembly on the SR-71. Once installed on the aircraft, flight testing performed several cold flows on the engine system at altitudes ranging from 30,000 to 50,000 feet and Mach numbers ranging from 0.9 to 1.5. The program was terminated before conducting hot-fires in flight because excessive leaks in the propellant supply systems could not be fixed to meet required safety levels without significant program cost and schedule impacts.
Prevalence of risk factors for residential fire and burn injuries in an American Indian community.
Mobley, C; Sugarman, J R; Deam, C; Giles, L
1994-01-01
Fatality rates from residential fires are high among American Indians. Contact burns and scalds are also among the leading types of thermal injuries. Information about the prevalence of risk factors for burn injuries is required to design interventions aimed at reducing residential fire and burn injuries. The authors conducted a survey in July and August 1992 of 68 households located in a small American Indian community in Washington State to ascertain the prevalence of selected risk factors for residential fire and burn injuries. Nearly all households (96 percent) in the study had a smoke detector, and 95 percent of those tested were functioning. However, a high prevalence of other household characteristics associated with excess risk of residential fire and burn injuries was identified: 59 percent of households had at least one member who smoked, 25 percent had a member who smoked in bed, 38 percent had a member who drank alcohol and smoked at the same time, 46 percent used wood stoves as a heat source, and 15 percent of households were mobile homes. Thirteen percent of households had at least one fire during the previous 3 years, and the incidence of burns due to all causes and requiring medical treatment was 1.5 per 100 persons per year. Hot water temperature was measured to determine the potential risk for scald burns, and 48 percent of households had a maximum hot water temperature of 130 degrees or more Fahrenheit. Such surveys can guide intervention strategies to reduce residential fire and burn injuries in American Indian communities. PMID:7938394
Development of Advanced Hydrocarbon Fuels at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Bai, S. D.; Dumbacher, P.; Cole, J. W.
2002-01-01
This was a small-scale, hot-fire test series to make initial measurements of performance differences of five new liquid fuels relative to rocket propellant-1 (RP-1). The program was part of a high-energy-density materials development at Marshall Space Flight Center (MSFC), and the fuels tested were quadricyclane, 1-7 octodiyne, AFRL-1, biclopropylidene, and competitive impulse noncarcinogenic hypergol (CINCH) (di-methyl-aminoethyl-azide). All tests were conducted at MSFC. The first four fuels were provided by the U.S. Air Force Research Laboratory (AFRL), Edwards Air Force Base, CA. The U.S. Army, Redstone Arsenal, Huntsville, AL, provided the CINCH. The data recorded in all hot-fire tests were used to calculate specific impulse and characteristic exhaust velocity for each fuel, then compared to RP-1 at the same conditions. This was not an exhaustive study, comparing each fuel to RP-1 at an array of mixture ratios, nor did it include important fuel parameters, such as fuel handling or long-term storage. The test hardware was designed for liquid oxygen (lox)/RP-1, then modified for gaseous oxygen/RP-1 to avoid two-phase lox at very small flow rates. All fuels were tested using the same thruster/injector combination designed for RP-1. The results of this test will be used to determine which fuels will be tested in future test programs.
Analysis of the Influence of Construction Insulation Systems on Public Safety in China
Zhang, Guowei; Zhu, Guoqing; Zhao, Guoxiang
2016-01-01
With the Government of China’s proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies. PMID:27589774
Analysis of the Influence of Construction Insulation Systems on Public Safety in China.
Zhang, Guowei; Zhu, Guoqing; Zhao, Guoxiang
2016-08-30
With the Government of China's proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies.
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
NASA Technical Reports Server (NTRS)
1979-01-01
Tests, test results, examination and evaluation by Underwriters Laboratory, Inc., of a single family solar heating and hot water system consisting of collector, storage, control, transport, and data acquisition are presented. The structural characteristics of the solar flat plate collectors were evaluated according to snow and wind loads indicated in various building codes to determine their suitability for use both Michigan and Pennsylvania where prototype systems were installed. The flame spread classification of the thermal insulation is discussed and the fire tests conducted on components are described. The operation and dielectrics withstand tests of the energy transport module indicate the module is capable of rated air delivery. Tests of the control panel indicate the relay coil temperatures exceed the temperature limits allowed for the insulating materials involved.
Reusable Solid Rocket Motor Nozzle Joint-4 Thermal Analysis
NASA Technical Reports Server (NTRS)
Clayton, J. Louie
2001-01-01
This study provides for development and test verification of a thermal model used for prediction of joint heating environments, structural temperatures and seal erosions in the Space Shuttle Reusable Solid Rocket Motor (RSRM) Nozzle Joint-4. The heating environments are a result of rapid pressurization of the joint free volume assuming a leak path has occurred in the filler material used for assembly gap close out. Combustion gases flow along the leak path from nozzle environment to joint O-ring gland resulting in local heating to the metal housing and erosion of seal materials. Analysis of this condition was based on usage of the NASA Joint Pressurization Routine (JPR) for environment determination and the Systems Improved Numerical Differencing Analyzer (SINDA) for structural temperature prediction. Model generated temperatures, pressures and seal erosions are compared to hot fire test data for several different leak path situations. Investigated in the hot fire test program were nozzle joint-4 O-ring erosion sensitivities to leak path width in both open and confined joint geometries. Model predictions were in generally good agreement with the test data for the confined leak path cases. Worst case flight predictions are provided using the test-calibrated model. Analysis issues are discussed based on model calibration procedures.
Gas Emission Measurements from the RD 180 Rocket Engine
NASA Technical Reports Server (NTRS)
Ross, H. R.
2001-01-01
The Science Laboratory operated by GB Tech was tasked by the Environmental Office at the NASA Marshall Space Flight Center (MSFC) to collect rocket plume samples and to measure gaseous components and airborne particulates from the hot test firings of the Atlas III/RD 180 test article at MSFC. This data will be used to validate plume prediction codes and to assess environmental air quality issues.
NASA Tests RS-25 Flight Engine for Space Launch System
2017-10-19
Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans.
2016-08-18
The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.
2016-08-18
The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch. The tests also support the development of a new controller, or “brain,” for the engine, which monitors engine status and communicates between the rocket and the engine, relaying commands to the engine and transmitting data back to the rocket.
SSME environment database development
NASA Technical Reports Server (NTRS)
Reardon, John
1987-01-01
The internal environment of the Space Shuttle Main Engine (SSME) is being determined from hot firings of the prototype engines and from model tests using either air or water as the test fluid. The objectives are to develop a database system to facilitate management and analysis of test measurements and results, to enter available data into the the database, and to analyze available data to establish conventions and procedures to provide consistency in data normalization and configuration geometry references.
Design verification test matrix development for the STME thrust chamber assembly
NASA Technical Reports Server (NTRS)
Dexter, Carol E.; Elam, Sandra K.; Sparks, David L.
1993-01-01
This report presents the results of the test matrix development for design verification at the component level for the National Launch System (NLS) space transportation main engine (STME) thrust chamber assembly (TCA) components including the following: injector, combustion chamber, and nozzle. A systematic approach was used in the development of the minimum recommended TCA matrix resulting in a minimum number of hardware units and a minimum number of hot fire tests.
Boundary cooled rocket engines for space storable propellants
NASA Technical Reports Server (NTRS)
Kesselring, R. C.; Mcfarland, B. L.; Knight, R. M.; Gurnitz, R. N.
1972-01-01
An evaluation of an existing analytical heat transfer model was made to develop the technology of boundary film/conduction cooled rocket thrust chambers to the space storable propellant combination oxygen difluoride/diborane. Critical design parameters were identified and their importance determined. Test reduction methods were developed to enable data obtained from short duration hot firings with a thin walled (calorimeter) chamber to be used quantitatively evaluate the heat absorbing capability of the vapor film. The modification of the existing like-doublet injector was based on the results obtained from the calorimeter firings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-07-01
This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heatmore » exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.« less
NASA Technical Reports Server (NTRS)
Casiano, M. J.; Kenny, R. J.; Protz, C. S.; Garcia, C. P.; Simpson, S. P.; Elmore, J. L.; Fischbach, S. R.; Giacomoni, C. B.; Hulka, J. R.
2016-01-01
The Combustion Stability Tool Development (CSTD) project, funded by the Air Force Space and Missile Systems Center, began in March 2015 supporting a renewed interest in the development of a liquid oxygen/hydrocarbon, oxygen-rich combustion engine. The project encompasses the design, assembly, and hot-fire testing of the NASA Marshall Space Flight Center 40-klbf Integrated Test Rig (MITR). The test rig models a staged-combustion configuration by combining an oxygen-rich preburner (ORPB), to generate hot gas, with a thrust chamber assembly (TCA) using gas-centered swirl coaxial injector elements. There are five separately designed interchangeable injectors in the TCA that each contain 19- or 27- injector elements. A companion paper in this JANNAF conference describes the design characteristics, rationale, and fabrication issues for all the injectors. The data acquired from a heavily instrumented rig encompasses several injectors, several operating points, and stability bomb tests. Another companion paper in this JANNAF conference describes this test program in detail. In this paper, dynamic data from the hot-fire testing is characterized and used to identify the responses in the ORPB and TCA. A brief review of damping metrics are discussed and applied as a measure of stability margin for damped acoustic modes. Chug and longitudinal combustion stability models and predictions are described which includes new dynamic models for compressible flow through an orifice and a modification to incorporate a third feed line for inclusion of the fuel-film coolant. Flow-acoustics finite element modeling is used to investigate the anticipated TCA acoustics, the effects of injector element length on stability margin, and the potential use of an ORPB orifice trip ring for improving longitudinal stability margin.
Big data integration shows Australian bush-fire frequency is increasing significantly.
Dutta, Ritaban; Das, Aruneema; Aryal, Jagannath
2016-02-01
Increasing Australian bush-fire frequencies over the last decade has indicated a major climatic change in coming future. Understanding such climatic change for Australian bush-fire is limited and there is an urgent need of scientific research, which is capable enough to contribute to Australian society. Frequency of bush-fire carries information on spatial, temporal and climatic aspects of bush-fire events and provides contextual information to model various climate data for accurately predicting future bush-fire hot spots. In this study, we develop an ensemble method based on a two-layered machine learning model to establish relationship between fire incidence and climatic data. In a 336 week data trial, we demonstrate that the model provides highly accurate bush-fire incidence hot-spot estimation (91% global accuracy) from the weekly climatic surfaces. Our analysis also indicates that Australian weekly bush-fire frequencies increased by 40% over the last 5 years, particularly during summer months, implicating a serious climatic shift.
Big data integration shows Australian bush-fire frequency is increasing significantly
Dutta, Ritaban; Das, Aruneema; Aryal, Jagannath
2016-01-01
Increasing Australian bush-fire frequencies over the last decade has indicated a major climatic change in coming future. Understanding such climatic change for Australian bush-fire is limited and there is an urgent need of scientific research, which is capable enough to contribute to Australian society. Frequency of bush-fire carries information on spatial, temporal and climatic aspects of bush-fire events and provides contextual information to model various climate data for accurately predicting future bush-fire hot spots. In this study, we develop an ensemble method based on a two-layered machine learning model to establish relationship between fire incidence and climatic data. In a 336 week data trial, we demonstrate that the model provides highly accurate bush-fire incidence hot-spot estimation (91% global accuracy) from the weekly climatic surfaces. Our analysis also indicates that Australian weekly bush-fire frequencies increased by 40% over the last 5 years, particularly during summer months, implicating a serious climatic shift. PMID:26998312
2014-10-08
NASA’s newest spacecraft, Orion, will be launching into space for the first time in December 2014, on a flight that will take it farther than any spacecraft built to carry humans has gone in more than 40 years and through temperatures twice as hot as molten lava to put its critical systems to the test.
The Jeffcott equations in nonlinear rotordynamics
NASA Technical Reports Server (NTRS)
Zalik, R. A.
1987-01-01
The Jeffcott equations are a system of coupled differential equations representing the behavior of a rotating shaft. This is a simple model which allows investigation of the basic dynamic behavior of rotating machinery. Nolinearities can be introduced by taking into consideration deadband, side force, and rubbing, among others. The properties of the solutions of the Jeffcott equations with deadband are studied. In particular, it is shown how bounds for the solution of these equations can be obtained from bounds for the solutions of the linearized equations. By studying the behavior of the Fourier transforms of the solutions, we are also able to predict the onset of destructive vibrations. These conclusions are verified by means of numerical solutions of the equations, and of power spectrum density (PSD) plots. This study offers insight into a possible detection method to determine pump stability margins during flight and hot fire tests, and was motivated by the need to explain a phenomenon observed in the development phase of the cryogenic pumps of the Space Shuttle, during hot fire ground testing; namely, the appearance of vibrations at frequencies that could not be accounted for by means of linear models.
NASA Technical Reports Server (NTRS)
Struzenberg, L. L.; West, J. S.
2011-01-01
This paper describes the use of targeted Loci/CHEM CFD simulations to evaluate the effects of a dual-engine first-stage hot-fire test on an evolving integrated launch pad/test article design. This effort was undertaken as a part of the NESC Independent Assessment of the Taurus II Stage Test Series. The underlying conceptual model included development of a series of computational models and simulations to analyze the plume induced environments on the pad, facility structures and test article. A pathfinder simulation was first developed, capable of providing quick-turn around evaluation of plume impingement pressures on the flame deflector. Results from this simulation were available in time to provide data for an ongoing structural assessment of the deflector. The resulting recommendation was available in a timely manner and was incorporated into construction schedule for the new launch stand under construction at Wallops Flight Facility. A series of Reynolds-Averaged Navier-Stokes (RANS) quasi-steady simulations representative of various key elements of the test profile was performed to identify potential concerns with the test configuration and test profile. As required, unsteady Hybrid-RANS/LES simulations were performed, to provide additional insight into critical aspects of the test sequence. Modifications to the test-specific hardware and facility structures thermal protection as well as modifications to the planned hot-fire test profile were implemented based on these simulation results.
Biodiversity and fire in shortgrass steppe
P. L. (Paulette) Ford
2001-01-01
Effects of fire at two levels of intensity on beetle diversity in shortgrass steppe were examined. The experimental design was completely randomized, with 3 treatments and 4 replicates per treatment. Treatments were two levels of fire 1) dormant-season fire (relatively hot), and 2) growing-season fire (relatively cool), and unburned plots. The response variables were...
Using weather in forest management
Michael A. Fosberg
1986-01-01
The summer of 1933 in northwest Oregon had been exceptionally hot and dry. When in mid-August, hot, dry winds blew in from the east, all the fire crews were ready. But there were not enough of them. Scattered fires that started in the coast range merged into what became known as the Tillamook Bum. In 1986, the Forest Service is researching procedures to forecast...
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Van, Luong
1992-01-01
The objective of this paper are to develop a multidisciplinary computational methodology to predict the hot-gas-side and coolant-side heat transfer and to use it in parametric studies to recommend optimized design of the coolant channels for a regeneratively cooled liquid rocket engine combustor. An integrated numerical model which incorporates CFD for the hot-gas thermal environment, and thermal analysis for the liner and coolant channels, was developed. This integrated CFD/thermal model was validated by comparing predicted heat fluxes with those of hot-firing test and industrial design methods for a 40 k calorimeter thrust chamber and the Space Shuttle Main Engine Main Combustion Chamber. Parametric studies were performed for the Advanced Main Combustion Chamber to find a strategy for a proposed combustion chamber coolant channel design.
Diagnostic developments for velocity and temperature measurements in uni-element rocket environments
NASA Astrophysics Data System (ADS)
Philippart, Kenneth D.
1995-08-01
Velocity and temperature measurements were taken within a uni-element rocket combustion chamber for hydrogen-oxygen propellants using laser Doppler velocimetry, thermocouples, and a thermocouple-based temperature rake developed for this effort. Velocity and turbulence profiles were obtained for firings with a gaseous oxygen (GO2)/gaseous hydrogen (GH2) coaxial shear injector at axial locations of 1.6 mm (0.063 in.), 6.4 mm (0.25 in.), 12.7 mm (0.5 in.), 25.4 mm (1 in.) and 50.8 mm (2 in.). Aluminum oxide particles of various sizes seeded the flow in an attempt to explain the discrepancies. While cold-flow simulations were promising, hot-fire results for the various particles were virtually identical and still lower than earlier data. The hot-firings were self-consistent and question the reproducibility of the previous data. Velocity measurements were made closer to the injector than the preceding work. Asymmetries were noted in all profiles. The shear layer displayed high turbulence levels. The central flow near the injector resembled turbulent pipe flow. Recirculation zones existed at the chamber walls and became smaller as the flow evolved downstream. The combusting flow region expanded with increasing axial distance. A thermocouple-instrumented coaxial injector was fired with GO2/GH2 propellants. The injector exit plane boundary conditions were determined. The feasibility of a thermocouple-based temperature rake was established. Tests at three axial positions for air/GM2 firings revealed asymmetric profiles. Temperatures increased with increasing axial distance.
A high-resolution modelling approach on spatial wildfire distribution in the Tyrolean Alps
NASA Astrophysics Data System (ADS)
Malowerschnig, Bodo; Sass, Oliver
2013-04-01
Global warming will cause increasing danger of wildfires in Austria, which can have long-lasting consequences on woodland ecosystems. The protective effect of forest can be severely diminished, leading to natural hazards like avalanches and rockfall. However, data on wildfire frequency and distribution have been sparse and incomplete for Austria. Long-lasting postfire degradation under adverse preconditions (steep slopes, limestone) was a common phenomenon in parts of the Tyrolean Alps several decades ago and should become relevant again under a changing fire frequency. The FIRIA project compiles historical wildfire data, information on fuel loads, fire weather indices (FWI) and vegetation recovery patterns. The governing climatic, topographic and socio-economic factors of forest fire distribution were assessed to trigger a distribution model of currently fire-prone areas in Tyrol. By collecting data from different sources like old newspapers archives and fire-fighter databases, we were able to build up a fire database of wildfire occurrences containing more than 1400 forest fires since the 15th century in Tyrol. For the period from 1993 to 2011, the database is widely complete and covers 482 fires. Using a non-parametrical statistical method it was possible to select the best suited fire weather index (FWI) for the prediction. The testing of 19 FWI's shows that it is necessary to use two discriminative indices to differentiate between summer and winter season. Together with compiled topographic, socio-economic, infrastructure and forest maps, the dataset was the base for a multifactorial analysis, performed by comparing the maximum entropy approach (Maxent) with an ensemble classifier (Random Forests). Both approaches have their background in the spatial habitat distribution and are easy to adapt to the requirements of a wildfire ignition model. The aim of this modelling approach was to determine areas which are particularly prone to wildfire. Due to the pronounced relief curvature we based our model on 100 x 100 m cells to identify individual slopes and their topography. The first provisional result is a map of fire probability under current climate conditions (fire hot-spots). Our modelling approach indicates the fire weather index as the main driver, which is followed closely by socioeconomic (population density) and infrastructure factors (roads density, aerial railways, building density). The leverage of the forest community or its management is rather low; the same applies to topographic influences like aspect or sea level. The derived fire hot-spots are either placed close to the valley ground or around touristic infrastructure, with an overall preference for inner alpine areas and south-facing slopes. In the next step, the impact of climate change on the distribution and frequency of fires will be assessed by calculating a climate change model adapted to the 1x1km INCA dataset and based on different regional climate change models. Finally, a selection of fire-hot-spots from the previous modelling steps will be used for enhanced 3D-modelling approaches of natural hazards after wildfire-driven deforestation.
Fire risk in east-side forests.
Valerie. Rapp
2002-01-01
Wildfire was a natural part of ecosystems in east-side Oregon and Washington before the 20th century. The fire regimes, or characteristic patterns of firehow often, how hot, how big, what time of yearhelped create and maintain various types of forests.Forests are dynamic, and fire interacts with other ecological processes. Fires, forests...
Boeing's CST-100 Launch Abort Engine Test
2016-10-20
A launch abort engine built by Aerojet Rocketdyne is hot-fired during tests in the Mojave Desert in California. The engine produces up to 40,000 pounds of thrust and burns hypergolic propellants. The engines have been designed and built for use on Boeing’s CST-100 Starliner spacecraft in sets of four. In an emergency at the pad or during ascent, the engines would ignite to push the Starliner and its crew out of danger.
Boeing's CST-100 Launch Abort Engine Test
2016-10-17
A launch abort engine built by Aerojet Rocketdyne is hot-fired during tests in the Mojave Desert in California. The engine produces up to 40,000 pounds of thrust and burns hypergolic propellants. The engines have been designed and built for use on Boeing’s CST-100 Starliner spacecraft in sets of four. In an emergency at the pad or during ascent, the engines would ignite to push the Starliner and its crew out of danger.
NASA Tests 2nd RS-25 Flight Engine for Space Launch System
2017-10-19
Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.
NASA Tests 2nd RS-25 Flight Engine For Space Launch System
2017-10-19
Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.
Video File - NASA Tests 2nd RS-25 Flight Engine for Space Launch System
2017-10-19
Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.
Pressure fed thrust chamber technology program
NASA Technical Reports Server (NTRS)
Dunn, Glenn M.
1992-01-01
This is the final report for the Pressure Fed Technology Program. It details the design, fabrication and testing of subscale hardware which successfully characterized LOX/RP combustion for a low cost pressure fed design. The innovative modular injector design is described in detail as well as hot-fire test results which showed excellent performance. The program summary identifies critical LOX/RP design issues that have been resolved by this testing, and details the low risk development requirements for a low cost engine for future Expendable Launch Vehicles (ELVi).
VPS GRCop-84 Liner Development Efforts
NASA Technical Reports Server (NTRS)
Elam, Sandra K.; Holmes, Richard; McKechnie, Tim; Hickman, Robert; Pickens, Tim
2003-01-01
For the past several years, NASA's Marshall Space Flight Center (MSFC) has been working with Plasma Processes, Inc. (PPI) to fabricate combustion chamber liners using the Vacuum Plasma Spray (VPS) process. Multiple liners of a variety of shapes and sizes have been created. Each liner has been fabricated with GRCop-84 (a copper alloy with chromium and niobium) and a functional gradient coating (FGC) on the hot wall. While the VPS process offers versatility and a reduced fabrication schedule, the material system created with VPS allows the liners to operate at higher temperatures, with maximum blanch resistance and improved cycle life. A subscal unit (5K lbf thrust class) is being cycle tested in a LOX/Hydrogen thrust chamber assembly at MSFC. To date, over 75 hot-fire tests have been accumulated on this article. Tests include conditions normally detrimental to conventional materials, yet the VPS GRCop-84 liner has yet to show any signs of degradation. A larger chamber (15K lbf thrust class) has also been fabricated and is being prepared for hot-fire testing at MSFC near the end of 2003. Linear liners have been successfully created to further demonstrate the versatility of the process. Finally, scale up issues for the VPS process are being tackled with efforts to fabricate a full size, engine class liner. Specifically, a liner for the SSME's Main Combustion Chamber (MCC) has recently been attempted. The SSME size was chosen for convenience, since its design was readily available and its size was sufficient to tackle specific issues. Efforts to fabricate these large liners have already provided valuable lessons for using this process for engine programs. The material quality for these large units is being evaluated with destructive analysis and these results will be available by the end of 2003.
Weather, fuels, fire behavior, plumes, and smoke - the nexus of fire meteorology
Scott L. Goodrick; Timothy J. Brown; W. Matt Jolly
2017-01-01
In a pair of review papers, Potter (2012a, 2012b) summarized the significant fire weather research findings over about the past hundred years. Our scientific understanding of wildland fire-atmosphere interactions has evolved: from simple correlations supporting the notion that hot, dry, and windy conditions lead to more intense fires, we have moved towards more...
30 CFR 75.1103-5 - Automatic fire warning devices; actions and response.
Code of Federal Regulations, 2012 CFR
2012-07-01
... hours after the belt is stopped, unless an examination for hot rollers and fire is made as prescribed in... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire warning devices; actions and... OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire...
30 CFR 75.1103-5 - Automatic fire warning devices; actions and response.
Code of Federal Regulations, 2014 CFR
2014-07-01
... hours after the belt is stopped, unless an examination for hot rollers and fire is made as prescribed in... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire warning devices; actions and... OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire...
Lv, Yong-Gang; Liu, Jing; Zhang, Jun
2006-06-01
A transient two-dimensional mathematical model for heat and water vapor transport across the respiratory tract of human body was established and applied to predict the thermal impact of inhaled hot gas to the nasal tissues during the early stage of fires. Influences of individual's physiological status and environment variables were comprehensively investigated through numerical calculations. Burn evaluation was performed using the classical Henriques model to predict the time for thermal injury to occur. It was shown that decreasing the air velocity and increasing the respiratory rate is helpful to minimize the burn over the respiratory tract. The effect of relative humidity of surrounding dry hot air could be ignored in predicting burns for short duration exposures. Due to evaporation cooling on the mucousal membrane, the burn often occurs at certain positions underneath the skin of the tract near the inlet of the respiratory tract. Most of the tissues near the surface suffer injury immediately after exposure to fire, while in the deeper tissues, serious damage occurs after a relatively longer time period. The method presented in this paper may suggest a valuable approach to theoretically evaluate the injury of hot air to the human respiratory tract under various fire situations.
Effects of gas temperature on nozzle damping experiments on cold-flow rocket motors
NASA Astrophysics Data System (ADS)
Sun, Bing-bing; Li, Shi-peng; Su, Wan-xing; Li, Jun-wei; Wang, Ning-fei
2016-09-01
In order to explore the impact of gas temperature on the nozzle damping characteristics of solid rocket motor, numerical simulations were carried out by an experimental motor in Naval Ordnance Test Station of China Lake in California. Using the pulse decay method, different cases were numerically studied via Fluent along with UDF (User Defined Functions). Firstly, mesh sensitivity analysis and monitor position-independent analysis were carried out for the computer code validation. Then, the numerical method was further validated by comparing the calculated results and experimental data. Finally, the effects of gas temperature on the nozzle damping characteristics were studied in this paper. The results indicated that the gas temperature had cooperative effects on the nozzle damping and there had great differences between cold flow and hot fire test. By discussion and analysis, it was found that the changing of mainstream velocity and the natural acoustic frequency resulted from gas temperature were the key factors that affected the nozzle damping, while the alteration of the mean pressure had little effect. Thus, the high pressure condition could be replaced by low pressure to reduce the difficulty of the test. Finally, the relation of the coefficients "alpha" between the cold flow and hot fire was got.
Seasonal Fluctuation in Moisture Content of Pine Foliage
Von J. Johnson
1966-01-01
Green or living fuels, particularly pine crowns, are commonly consumed by forest fires burning hot, windy weather. In some cases the pine crown fire has been known to burn ahead of surface-burning fire for some distance before dropping to the ground.
Low-Cost, High-Performance Combustion Chamber
NASA Technical Reports Server (NTRS)
Fortini, Arthur J.
2015-01-01
Ultramet designed and fabricated a lightweight, high-temperature combustion chamber for use with cryogenic LOX/CH4 propellants that can deliver a specific impulse of approx.355 seconds. This increase over the current 320-second baseline of nitrogen tetroxide/monomethylhydrazine (NTO/MMH) will result in a propellant mass decrease of 55 lb for a typical lunar mission. The material system was based on Ultramet's proven oxide-iridium/rhenium architecture, which has been hot-fire tested with stoichiometric oxygen/hydrogen for hours. Instead of rhenium, however, the structural material was a niobium or tantalum alloy that has excellent yield strength at both ambient and elevated temperatures. Phase I demonstrated alloys with yield strength-to-weight ratios more than three times that of rhenium, which will significantly reduce chamber weight. The starting materials were also two orders of magnitude less expensive than rhenium and were less expensive than the C103 niobium alloy commonly used in low-performance engines. Phase II focused on the design, fabrication, and hot-fire testing of a 12-lbf thrust class chamber with LOX/CH4, and a 100-lbf chamber for LOX/CH4. A 5-lbf chamber for NTO/MMH also was designed and fabricated.
Local Heat Flux Measurements with Single and Small Multi-element Coaxial Element-Injectors
NASA Technical Reports Server (NTRS)
Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James
2006-01-01
To support NASA's Vision for Space Exploration mission, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines with regeneratively cooled chamber walls, as well as in small thrust chambers with few elements in the injector. In this program, single and three-element injectors were hot-fire tested with liquid oxygen and gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges, Injector configurations were tested with both shear coaxial elements and swirl coaxial elements. Both a straight and a scarfed single element swirl injector were tested. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three coaxial shear and swirl elements. Detailed geometry and test results the for shear coax elements has already been published. Detailed test result for the remaining 6 swirl coax element for the will be published in a future JANNAF presentation to provide well-defined data sets for development and model validation.
Powdered aluminum and oxygen rocket propellants: Subscale combustion experiments
NASA Technical Reports Server (NTRS)
Meyer, Mike L.
1993-01-01
Aluminum combined with oxygen has been proposed as a potential lunar in situ propellant for ascent/descent and return missions for future lunar exploration. Engine concepts proposed to use this propellant have not previously been demonstrated, and the impact on performance from combustion and two-phase flow losses could only be estimated. Therefore, combustion tests were performed for aluminum and aluminum/magnesium alloy powders with oxygen in subscale heat-sink rocket engine hardware. The metal powder was pneumatically injected, with a small amount of nitrogen, through the center orifice of a single element O-F-O triplet injector. Gaseous oxygen impinged on the fuel stream. Hot-fire tests of aluminum/oxygen were performed over a mixture ratio range of 0.5 to 3.0, and at a chamber pressure of approximately 480 kPa (70 psia). The theoretical performance of the propellants was analyzed over a mixture ratio range of 0.5 to 5.0. In the theoretical predictions the ideal one-dimensional equilibrium rocket performance was reduced by loss mechanisms including finite rate kinetics, two-dimensional divergence losses, and boundary layer losses. Lower than predicted characteristic velocity and specific impulse performance efficiencies were achieved in the hot-fire tests, and this was attributed to poor mixing of the propellants and two-phase flow effects. Several tests with aluminum/9.8 percent magnesium alloy powder did not indicate any advantage over the pure aluminum fuel.
NASA Technical Reports Server (NTRS)
Davis, William D.; Notarianni, Kathy A.; Tapper, Phillip Z.
1998-01-01
The experiments were designed to provide insight into the behavior of jet fuel fires in aircraft hangars and to study the impact of these fires on the design and operation of a variety of fire protection systems. As a result, the test series included small fires designed to investigate the operation of UV/IR detectors and smoke detectors as well as large fires which were used to investigate the operation of ceiling mounted heat detectors and sprinklers. The impact of the presence or absence of draft curtains was also studied in the 15 m hangar. It is shown that in order to predict the plume centerline temperature within experimental uncertainty, the entrainment of the upper layer gas must be modeled. For large fires, the impact of a changing radiation fraction must also be included in the calculation. The dependence of the radial temperature profile of the ceiling jet as a function of layer development is demonstrated and a ceiling jet temperature algorithm which includes the impact of a growing layer is developed.
A Response Surface Methodology for Mitigating Hot Gasses in Enclosed Car Park
NASA Astrophysics Data System (ADS)
Faiz Tharima, Ahmad; Zamri Yusoff, Mohd; Mujibur Rahman, Md
2017-12-01
A hot gas rise towards ceiling due to fire buoyancy will cause severe damage to the building structure. The temperature rises need to be controlled as among the elements of compliance in performance-based design. The channel flow between beams has used in this study to mitigate hot gases out of the enclosure by mean of response surface methodology. Fire Dynamic Simulator was employed as a simulation tool while the result was statistically examined using analysis of variance via Minitab application. It was found that the result was linear with predicted R2 (93.25%) and within the permissible R2 (98.13%). The ceiling height has been identified not affect in controlling hot gases while four control parameters which are beam spacing, transversal beam, extraction rate and longitudinal beam with p-values of 0.00, 0.000, 0.023 and 0.000 respectively, have been found to have the significant effect on the smoke temperature control. This study contributes a good input to the fire safety community in providing the initial design of enclosed car park with better condition.
Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Sambamurthi, Jay K.
1995-01-01
Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.
Facility Activation and Characterization for IPD Turbopump Testing at NASA Stennis Space Center
NASA Technical Reports Server (NTRS)
Sass, J. P.; Pace, J. S.; Raines, N. G.; Meredith, T. O.; Taylor, S. A.; Ryan, H. M.
2005-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is, in part, supported by NASA. IPD is also supported through the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today's state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The IPD Program recently achieved two major milestones. The first was the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The second major milestone was the successful completion of the IPD Fuel Turbopump (FTP) cold-flow test project at the NASA SSC E-1 test facility in November 2003. A total of six IPD FTP cold-flow tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in early 2005. Following and overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD oxidizer and fuel turbopumps. In addition, some of the facility challenges encountered and the lessons learned during the test projects shall be detailed.
SSME main combustion chamber life prediction
NASA Technical Reports Server (NTRS)
Cook, R. T.; Fryk, E. E.; Newell, J. F.
1983-01-01
Typically, low cycle fatigue life is a function of the cyclic strain range, the material properties, and the operating temperature. The reusable life is normally defined by the number of strain cycles that can be accrued before severe material degradation occurs. Reusable life is normally signified by the initiation or propagation of surface cracks. Hot-fire testing of channel wall combustors has shown significant mid-channel wall thinning or deformation during accrued cyclic testing. This phenomenon is termed cyclic-creep and appears to be significantly accelerated at elevated surface temperatures. This failure mode was analytically modelled. The cyclic life of the baseline SSME-MCC based on measured calorimeter heat transfer data, and the life sensitivity of local hot spots caused by injector effects were determined. Four life enhanced designs were assessed.
Pressure fed thrust chamber technology program
NASA Technical Reports Server (NTRS)
Dunn, Glen M.
1992-01-01
This is the final report for the Pressure Fed Technology Program. It details the design, fabrication, and testing of subscale hardware which successfully characterized Liquid Oxygen Rocket Propulsion (LOX/RP) combustion for low cost pressure fed design. The innovative modular injector design is described in detail as well as hot-fire test results which showed excellent performance. The program summary identifies critical LOX/RP design issues that have been resolved in this testing, and details the low risk development requirements for low cost engines for future Expandable Launch Vehicles (ELV).
NASA Technical Reports Server (NTRS)
Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F. I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R. A.; Kontoes, C.
2015-01-01
A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002e2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface.
How Hot Can a Fire Piston Get?
ERIC Educational Resources Information Center
Scott-Brown, J. A.; Cunningham, O. A.; Goad, B. C.
2010-01-01
The fire piston is just a sealed syringe containing a small amount of tinder. When the plunger is forced downwards, the air inside is compressed and heats up, setting fire to the tinder. It has been used as a convenient and portable way of starting fires "over a wide area from northern Burma and Siam through the Malay Peninsula and the Malayan…
Influence of rubbing on rotor dynamics, part 2
NASA Technical Reports Server (NTRS)
Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Hayashida, Robert D.; Kingsley, Lori M.; Curry, Arthur E.
1989-01-01
Rotor dynamic behavior depends considerably on how much the specific physical phenomena accompanying rotor rubbing against the stator is involved. The experimental results of rotor-to-stator rubbing contact are analyzed. The computer code is described for obtaining numerical calculations of rotor-to-stator rubbing system dynamic responses. Computer generated results are provided. The reduced dynamic data from High Pressure Fuel Turbo Pump (HPFTP) hot fire test are given. The results provide some significant conclusions. Information is provided on the electronic instrumentation used in the experimental testing.
NASA Technical Reports Server (NTRS)
Coffin, T.
1986-01-01
A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is presented. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level.
Acoustic cavity technology for high performance injectors
NASA Technical Reports Server (NTRS)
1976-01-01
The feasibility of damping more than one mode of rocket engine combustion instability by means of differently tuned acoustic cavities sharing a common entrance was shown. Analytical procedures and acoustic modeling techniques for predicting the stability behavior of acoustic cavity designs in hot firings were developed. Full scale testing of various common entrance, dual cavity configurations, and subscale testing for the purpose of obtaining motion pictures of the cavity entrance region, to aid in determining the mechanism of cavity damping were the two major aspects of the program.
29 CFR 1915.504 - Fire watches.
Code of Federal Regulations, 2014 CFR
2014-07-01
... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...
29 CFR 1915.504 - Fire watches.
Code of Federal Regulations, 2013 CFR
2013-07-01
... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...
29 CFR 1915.504 - Fire watches.
Code of Federal Regulations, 2011 CFR
2011-07-01
... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...
29 CFR 1915.504 - Fire watches.
Code of Federal Regulations, 2012 CFR
2012-07-01
... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...
29 CFR 1915.504 - Fire watches.
Code of Federal Regulations, 2010 CFR
2010-07-01
... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...
Laser Schlieren and ultraviolet diagnostics of rocket combustion
NASA Technical Reports Server (NTRS)
Fisher, S. C.
1985-01-01
A low pressure oxygen/hydrogen turbine drive combustor hot-fire test series was conducted on the Turbine Drive Combustor Technology Program. The first objective was to gather data on an axisymmetric combustion system to support anchoring of a new combustion/fluid dynamics computer code under development on the same contract. The second objective was to gain insight into low mixture ratio combustion characteristics of coaxial injector elements.
2003-12-01
This photo gives an overhead look at an RS-88 development rocket engine being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.
2003-12-01
In this photo, an RS-88 development rocket engine is being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.
Radiant energy dosimeter for field use
A. Broido; A.W. McMasters
1967-01-01
Thermal radiation measurements in Project Flambeau fires involved a limited number of conventional radiometers located outside the fire periphery. A simple, cheap, easily-fabricated, light-weight, self-contained, rugged dosimeter was desired to withstand a hot fire environment, including a specific energy input of 5,000 cal cm -2, and to record...
In-Space Engine (ISE-100) Development - Design Verification Test
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Popp, Chris; Bullard, Brad
2017-01-01
In the past decade, NASA has formulated science mission concepts with an anticipation of landing spacecraft on the lunar surface, meteoroids, and other planets. Advancing thruster technology for spacecraft propulsion systems has been considered for maximizing science payload. Starting in 2010, development of In-Space Engine (designated as ISE-100) has been carried out. ISE-100 thruster is designed based on heritage Missile Defense Agency (MDA) technology aimed for a lightweight and efficient system in terms volume and packaging. It runs with a hypergolic bi-propellant system: MON-25 (nitrogen tetroxide, N2O4, with 25% of nitric oxide, NO) and MMH (monomethylhydrazine, CH6N2) for NASA spacecraft applications. The utilization of this propellant system will provide a propulsion system capable of operating at wide range of temperatures, from 50 C (122 F) down to -30 C (-22 F) to drastically reduce heater power. The thruster is designed to deliver 100 lb(sub f) of thrust with the capability of a pulse mode operation for a wide range of mission duty cycles (MDCs). Two thrusters were fabricated. As part of the engine development, this test campaign is dedicated for the design verification of the thruster. This presentation will report the efforts of the design verification hot-fire test program of the ISE-100 thruster in collaboration between NASA Marshall Space Flight Center (MSFC) and Aerojet Rocketdyne (AR) test teams. The hot-fire tests were conducted at Advance Mobile Propulsion Test (AMPT) facility in Durango, Colorado, from May 13 to June 10, 2016. This presentation will also provide a summary of key points from the test results.
Highly Sensitive Sensors Based on Metal-Oxide Nanocolumns for Fire Detection.
Lee, Kwangjae; Shim, Young-Seok; Song, Young Geun; Han, Soo Deok; Lee, Youn-Sung; Kang, Chong-Yun
2017-02-07
A fire detector is the most important component in a fire alarm system. Herein, we present the feasibility of a highly sensitive and rapid response gas sensor based on metal oxides as a high performance fire detector. The glancing angle deposition (GLAD) technique is used to make the highly porous structure such as nanocolumns (NCs) of various metal oxides for enhancing the gas-sensing performance. To measure the fire detection, the interface circuitry for our sensors (NiO, SnO₂, WO₃ and In₂O₃ NCs) is designed. When all the sensors with various metal-oxide NCs are exposed to fire environment, they entirely react with the target gases emitted from Poly(vinyl chlorides) (PVC) decomposed at high temperature. Before the emission of smoke from the PVC (a hot-plate temperature of 200 °C), the resistances of the metal-oxide NCs are abruptly changed and SnO₂ NCs show the highest response of 2.1. However, a commercial smoke detector did not inform any warning. Interestingly, although the NiO NCs are a p -type semiconductor, they show the highest response of 577.1 after the emission of smoke from the PVC (a hot-plate temperature of 350 °C). The response time of SnO₂ NCs is much faster than that of a commercial smoke detector at the hot-plate temperature of 350 °C. In addition, we investigated the selectivity of our sensors by analyzing the responses of all sensors. Our results show the high potential of a gas sensor based on metal-oxide NCs for early fire detection.
Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments
NASA Technical Reports Server (NTRS)
Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana
2017-01-01
A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.
Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.
Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D
2016-05-01
After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires.
Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot
Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D
2016-01-01
After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires. PMID:26473720
Orbit transfer rocket engine technology program enhanced heat transfer combustor technology
NASA Technical Reports Server (NTRS)
Brown, William S.
1991-01-01
In order to increase the performance of a high performance, advanced expander-cycle engine combustor, higher chamber pressures are required. In order to increase chamber pressure, more heat energy is required to be transferred to the combustor coolant circuit fluid which drives the turbomachinery. This requirement was fulfilled by increasing the area exposed to the hot-gas by using combustor ribs. A previous technology task conducted 2-d hot air and cold flow tests to determine an optimum rib height and configuration. In task C.5 a combustor calorimeter was fabricated with the optimum rib configuration, 0.040 in. high ribs, in order to determine their enhancing capability. A secondary objective was to determine the effects of mixture ratio changers on the enhancement during hot-fire testing. The program used the Rocketdyne Integrated Component Evaluator (ICE) reconfigured into a thrust chamber only mode. The test results were extrapolated to give a projected enhancement from the ribs for a 16 in. long cylindrical combustor at 15 Klb nominal thrust level. The hot-gas wall ribs resulted in a 58 percent increase in heat transfer. When projected to a full size 15K combustor, it becomes a 46 percent increase. The results of those tests, a comparison with previous 2-d results, the effects of mixture ratio and combustion gas flow on the ribs and the potential ramifications for expander cycle combustors are detailed.
Slag processing system for direct coal-fired gas turbines
Pillsbury, Paul W.
1990-01-01
Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.
Human and biophysical influences on fire occurrence in the United States
Hawbaker, Todd J.; Radeloff, Volker C.; Stewart, Susan I.; Hammer, Roger B.; Keuler, Nicholas S.; Clayton, Murray K.
2013-01-01
National-scale analyses of fire occurrence are needed to prioritize fire policy and management activities across the United States. However, the drivers of national-scale patterns of fire occurrence are not well understood, and how the relative importance of human or biophysical factors varies across the country is unclear. Our research goal was to model the drivers of fire occurrence within ecoregions across the conterminous United States. We used generalized linear models to compare the relative influence of human, vegetation, climate, and topographic variables on fire occurrence in the United States, as measured by MODIS active fire detections collected between 2000 and 2006. We constructed models for all fires and for large fires only and generated predictive maps to quantify fire occurrence probabilities. Areas with high fire occurrence probabilities were widespread in the Southeast, and localized in the Mountain West, particularly in southern California, Arizona, and New Mexico. Probabilities for large-fire occurrence were generally lower, but hot spots existed in the western and south-central United States The probability of fire occurrence is a critical component of fire risk assessments, in addition to vegetation type, fire behavior, and the values at risk. Many of the hot spots we identified have extensive development in the wildland–urban interface and are near large metropolitan areas. Our results demonstrated that human variables were important predictors of both all fires and large fires and frequently exhibited nonlinear relationships. However, vegetation, climate, and topography were also significant variables in most ecoregions. If recent housing growth trends and fire occurrence patterns continue, these areas will continue to challenge policies and management efforts seeking to balance the risks generated by wildfires with the ecological benefits of fire.
Enhanced heat transfer combustor technology, subtasks 1 and 2, tast C.1
NASA Technical Reports Server (NTRS)
Baily, R. D.
1986-01-01
Analytical and experimental studies are being conducted for NASA to evaluate means of increasing the heat extraction capability and service life of a liquid rocket combustor. This effort is being conducted in conjunction with other tasks to develop technologies for an advanced, expander cycle, oxygen/hydrogen engine planned for upper stage propulsion applications. Increased heat extraction, needed to raise available turbine drive energy for higher chamber pressure, is derived from combustion chamber hot gas wall ribs that increase the heat transfer surface area. Life improvement is obtained through channel designs that enhance cooling and maintain the wall temperature at an accepatable level. Laboratory test programs were conducted to evaluate the heat transfer characteristics of hot gas rib and coolant channel geometries selected through an analytical screening process. Detailed velocity profile maps, previously unavailable for rib and channel geometries, were obtained for the candidate designs using a cold flow laser velocimeter facility. Boundary layer behavior and heat transfer characteristics were determined from the velocity maps. Rib results were substantiated by hot air calorimeter testing. The flow data were analytically scaled to hot fire conditions and the results used to select two rib and three enhanced coolant channel configurations for further evaluation.
Global Fire Trends from Satellite ATSR Instrument Series
NASA Astrophysics Data System (ADS)
Arino, Olivier; Casadio, Stefano; Serpe, Danilo
2010-12-01
Global night-time fire counts for the years from 1995 to 2009 have been obtained by using the latest version of Along Track Scanning Radiometer TOA radiance products (level 1), and related trends have been estimated. Possible biases due to cloud coverage variations have been assumed to be negligible. The sampling number (acquisition frequency) has also been analysed and proved not to influence our results. Global night-time fire trends have been evaluated by inspecting the time series of hot spots aggregated a) at 2°x2° scale; b) at district/country/region/continent scales, and c) globally. The statistical significance of the estimated trend parameters has been verified by means of the Mann-Kendal test. Results indicate that no trends in the absolute number of spots can be identified at the global scale, that there has been no appreciable shift in the fire season during the last fourteen years, and that statistically significant positive and negative trends are only found when data are aggregated at smaller scales.
NASA Astrophysics Data System (ADS)
Bao, Yi; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda
2017-10-01
In this study, Brillouin scattering-based distributed fiber optic sensor is implemented to measure temperature distributions and detect cracks in concrete structures subjected to fire for the first time. A telecommunication-grade optical fiber is characterized as a high temperature sensor with pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA), and implemented to measure spatially-distributed temperatures in reinforced concrete beams in fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9%. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.
78 FR 48826 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... could cause a fuel leak near an ignition source (e.g., hot brakes or engine exhaust nozzle... could cause a fuel leak near an ignition source (e.g., hot brakes or engine nozzle), consequently... ignition source (e.g., hot brakes or engine nozzle), consequently leading to a fuel-fed fire. (f...
Solar-Heated and Cooled Office Building--Columbus, Ohio
NASA Technical Reports Server (NTRS)
1982-01-01
Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.
NASA Technical Reports Server (NTRS)
Busch, Arthur M.; Campbell, John A.
1959-01-01
A crash-fire protection system to suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbopropeller engine is described. This system includes means for rapidly extinguishing the combustor flame and means for cooling and inerting with water the hot engine parts likely to ignite engine-ingested fuel. Combustion-chamber flames were extinguished in 0.07 second at the engine fuel manifold. Hot engine parts were inerted and cooled by 52 pounds of water discharged at ten engine stations. Performance trials of the crash-fire prevention system were conducted by bringing the engine up to takeoff temperature, stopping the normal fuel flow to the engine, starting the water discharge, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
Local Heat Flux Measurements with Single Element Coaxial Injectors
NASA Technical Reports Server (NTRS)
Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James
2006-01-01
To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.
Mars Flyer Rocket Propulsion Risk Assessment Kaiser Marquardt Testing
NASA Technical Reports Server (NTRS)
Marquardt, Kaiser
2001-01-01
This report describes the investigation of a 10-N, bipropellant thruster, operating at -40 C, with monomethylhydrazine (MMH) and 25% nitric oxide in nitrogen tetroxide (MON-25). The thruster testing was conducted as part of a risk reduction activity for the Mars Flyer, a proposed mission to fly a miniature airplane in the Martian atmosphere. Testing was conducted using an existing thruster, designed for MMH and MON-3 propellants. The nitric oxide content of MON-3 was increased to 25%, to lower its freezing point to -55 C. The thruster was conditioned, along with the propellants, to temperature prior to hot firing. Thruster operating parameters included oxidizer-to-fuel mixture ratios of 1.6 to 2.7 and inlet pressure ranging from 689 to 2070 kPa. The test matrix consisted of many 10-second firings and several 60-, 300-, 600-, and 1200-second firings, as well as pulse testing. The thruster successfully accumulated nearly 10,000 seconds of operation without failure, at temperatures ranging from -40 C to 22 C. At nominal inlet pressures, the ignition delay was comparable to MMH/MON-3 operation. The optimal performance for the 8.9-N thruster was determined to be at a mixture ratio of 1.93 with an average specific impulse of 298 sec.
Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire
Solbrig, Charles W.; Warmann, Stephen A.
2016-01-01
This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wallmore » allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.« less
Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solbrig, Charles W.; Warmann, Stephen A.
This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wallmore » allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.« less
Dual Nozzle Aerodynamic and Cooling Analysis Study.
1981-02-27
program and to the aerodynamic model computer program. This pro - cedure was used to define two secondary nozzle contours for the baseline con - figuration...both the dual-throat and dual-expander con - cepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow...preliminary heat transfer analysis of both con - cepts, and (5) engineering analysis of data from the NASA/MSFC hot-fire testing of a dual-throat
NASA Astrophysics Data System (ADS)
Howard, R. G.
The active solar energy system for a recreation hall for senior citizens in Wisconsin, is equipped with 1290 square feet of evacuated tube collectors, 3000 gallons of water in a tank, and a natural gas fired furnace for auxiliary space heating and a natural gas fired domestic water heater. The solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance are given as well as performance data for the collector, storage, domestic hot water, and space heating subsystems, operating energy, energy savings, and weather conditions. Predicted performance data are also given for comparison with the measured data.
An algorithm to detect fire activity using Meteosat: fine tuning and quality assesment
NASA Astrophysics Data System (ADS)
Amraoui, M.; DaCamara, C. C.; Ermida, S. L.
2012-04-01
Hot spot detection by means of sensors on-board geostationary satellites allows studying wildfire activity at hourly and even sub-hourly intervals, an advantage that cannot be met by polar orbiters. Since 1997, the Satellite Application Facility for Land Surface Analysis has been running an operational procedure that allows detecting active fires based on information from Meteosat-8/SEVIRI. This is the so-called Fire Detection and Monitoring (FD&M) product and the procedure takes advantage of the temporal resolution of SEVIRI (one image every 15 min), and relies on information from SEVIRI channels (namely 0.6, 0.8, 3.9, 10.8 and 12.0 μm) together with information on illumination angles. The method is based on heritage from contextual algorithms designed for polar, sun-synchronous instruments, namely NOAA/AVHRR and MODIS/TERRAAQUA. A potential fire pixel is compared with the neighboring ones and the decision is made based on relative thresholds as derived from the pixels in the neighborhood. Generally speaking, the observed fire incidence compares well against hot spots extracted from the global daily active fire product developed by the MODIS Fire Team. However, values of probability of detection (POD) tend to be quite low, a result that may be partially expected by the finer resolution of MODIS. The aim of the present study is to make a systematic assessment of the impacts on POD and False Alarm Ratio (FAR) of the several parameters that are set in the algorithms. Such parameters range from the threshold values of brightness temperature in the IR3.9 and 10.8 channels that are used to select potential fire pixels up to the extent of the background grid and thresholds used to statistically characterize the radiometric departures of a potential pixel from the respective background. The impact of different criteria to identify pixels contaminated by clouds, smoke and sun glint is also evaluated. Finally, the advantages that may be brought to the algorithm by adding contextual tests in the time domain are discussed. The study lays the grounds to the development of improved quality flags that will be integrated in the FD&M product in the nearby future.
Reforestation after the Fountain fire in northern California: an untold success story
Jianwei Zhang; Jeff Webster; Robert F. Powers; John Mills
2008-01-01
Forest fires have been burning âhotâ across the United States and particularly in the West recent years. So, too, will the debate on post-fire management strategies. In this paper, we present a successful reforestation project after a catastrophic fire in 1992. Sixteen years later, most lands are covered with vigorous young forest stands. These regenerated stands have...
72. ARAII. Interior view in ARA602 support building showing oilfired ...
72. ARA-II. Interior view in ARA-602 support building showing oil-fired hot air furnace and hot water boiler in foreground; hot water tank and diesel generator in background. December 12, 1957. Ineel photo no. 57-6099. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Bao, Yi; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda
2017-10-01
In this study, distributed fiber optic sensors based on pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA) are characterized and deployed to measure spatially-distributed temperatures in reinforced concrete specimens exposed to fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9 %. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.
3. HOT BED FOR SALEMBROSIUS CONTINUOUS GASFIRED HEAT TREATING LINE ...
3. HOT BED FOR SALEM-BROSIUS CONTINUOUS GAS-FIRED HEAT TREATING LINE AT THE HEAT TREATMENT PLANT OF THE DUQUESNE WORKS. - U.S. Steel Duquesne Works, Heat Treatment Plant, Along Monongahela River, Duquesne, Allegheny County, PA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. Hence this findingmore » offers a major hope that large cyclones employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. The separative efficiencies of the Aerodyne cyclone separator were found from both the cold flow and the hot flow tests to be disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones. (LTN)« less
Hot Spot Detection System Using Landsat 8/OLI Data
NASA Astrophysics Data System (ADS)
Kato, S.; Nakamura, R.; Oda, A.; Iijima, A.; Kouyama, T.; Iwata, T.
2015-12-01
We developed a simple algorithm and a Web-based visualizing system to detect hot spots using Landsat 8 OLI multispectral data as one of the applications of the real-time processing of Landsat 8 data. An empirical equation and radiometric and reflective thresholds were derived to detect hot spots using the OLI data at band 5 (0.865 μm) and band 7 (2.200 μm) based on the increase in spectral radiance at shortwave infrared (SWIR) region due to the emission from objects with high surface temperature. We surveyed typical patterns of surface spectra using the ASTER spectral library to delineate a threshold to distinguish hot spots from background surfaces. To adjust the empirical coefficients of our detection algorithm, we visually inspected the detected hot spots using 6593 Landsat 8 scenes, which cover eastern part of East Asia, taken from January 1, 2014 to December 31, 2014, displayed on a dedicated Web GIS system. Eventually we determined threshold equations which can theoretically detect hot spots at temperatures above 230 °C over isothermal pixels and hot spots as small as 1 m2 at temperatures of 1000 °C as the lowest temperature and the smallest subpixel coverage, respectively, for daytime scenes. The algorithm detected hot spots including wildfires, volcanos, open burnings and factories. 30-m spatial resolution of Landsat 8 enabled to detect wild fires and open burnings accompanied by clearer shapes of fire front lines than MODIS and VIIRS fire products. Although the 16-day revisit cycle of Landsat 8 is too long to effectively find unexpected wildfire or outbreak of eruption, the revisit cycle is enough to monitor temporally stable heat sources, such as continually erupting volcanos and factories. False detection was found over building rooftops, which have relatively smooth surfaces at longer wavelengths, when specular reflection occurred at the satellite overpass.
NASA Technical Reports Server (NTRS)
Farr, Rebecca A.; Wiley, John T.; Vitarius, Patrick
2005-01-01
This paper documents acoustics environments data collected during liquid oxygen- ethanol hot-fire rocket testing at NASA Marshall Space Flight Center in November- December 2003. The test program was conducted during development testing of the RS-88 development engine thrust chamber assembly in support of the Orbital Space Plane Crew Escape System Propulsion Program Pad Abort Demonstrator. In addition to induced environments analysis support, coincident data collected using other sensors and methods has allowed benchmarking of specific acoustics test measurement methodologies during propulsion tests. Qualitative effects on data characteristics caused by using tygon sense lines of various lengths in pressure transducer measurements is discussed here.
Analysis of thermal radiation in coal-fired furnaces
NASA Astrophysics Data System (ADS)
Miles, Jonathan J.; Hammaker, Robert G.; Madding, Robert P.; Sunderland, J. E.
1997-04-01
Many utilities throughout the United States have added infrared scanning to their arsenal of techniques for inspection and predictive maintenance programs. Commercial infrared scanners are not designed, however, to withstand the searing interiors of boilers, which can exceed 2500 degrees Fahrenheit. Two high-temperature lenses designed to withstand the hostile environment inside a boiler for extended periods of time were developed by the EPRI M&D Center, thus permitting real-time measurement of steam tube temperatures and subsequent analysis of tube condition, inspection of burners, and identification of hot spots. A study was conducted by Sunderland Engineering, Inc. and EPRI M&D in order to characterize the radiative interactions that affect infrared measurements made inside a commercial, coal- fired, water-tube boiler. A comprehensive literature search exploring the existing record of results pertaining to analytical and experimental determination of radiative properties of coal-combustion byproducts was performed. An experimental component intended to provide data for characterization of the optical properties of hot combustion byproducts inside a coal-fired furnace was carried out. The results of the study indicate that hot gases, carbon particles, and fly ash, which together compose the medium inside a boiler, affect to varying degrees the transport of infrared radiation across a furnace. Techniques for improved infrared measurement across a coal-fired furnace are under development.
A Combined Water-Bromotrifluoromethane Crash-Fire Protection System for a T-56 Turbopropeller Engine
NASA Technical Reports Server (NTRS)
Campbell, John A.; Busch, Arthur M.
1959-01-01
A crash-fire protection system is described which will suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbo-propeller engine. This system includes means for rapidly extinguishing the combustor flame, means for cooling and inerting with water the hot engine parts likely to ignite engine ingested fuel, and means for blanketing with bromotrifluoromethane massive metal parts that may reheat after the engine stops rotating. Combustion-chamber flames were rapidly extinguished at the engine fuel nozzles by a fuel shutoff and drain valve. Hot engine parts were inerted and cooled by 42 pounds of water discharged at seven engine stations. Massive metal parts that could reheat were inerted with 10 pounds of bromotrifluoromethane discharged at two engine stations. Performance trials of the crash-fire protection system were conducted by bringing the engine up to takeoff temperature, actuating the crash-fire protection system, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
Spatial and temporal characteristics of wildfire activity over the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Calado, Teresa; DaCamara, Carlos C.; Ermida, Sofia; Trigo, Isabel.
2013-04-01
According to the official reports of the European Commission, during the period 1980-2010 the Iberian Peninsula has contributed to 60% of the total burned area of 14 620 968 ha, which was recorded in the five Southern Member States with higher wildfire activity (Portugal, Spain, France, Italy and Greece). The aim of the present study is to assess fire activity over the Iberian Peninsula based on time series of hot spots extracted from the MODIS global daily active fire product (MOD14A1 and MYD14A1). This dataset, which contains the coordinates of MODIS pixels where fire events were identified together with the respective date and quality indicators, covers the period from July 2002 to August 2012. It is first shown that overall hot spot activity exhibits power law behaviour. A spatial analysis is then undertaken based on land cover information as obtained from Globcover - an ESA initiative relying on observations from the 300m MERIS on board the ENVISAT. Temporal analysis of hot spot activity is also performed based on daily information about meteorological conditions provided by the European Centre for Medium-Range Weather Forecasts. Results obtained allow defining a set of fire regions over the Iberian Peninsula determined essentially by the respective land cover type, which present coherent statistical behaviour in space and time. Finally, models of fire risk are developed for each region and their potential operational use by forest and civil protection services is discussed.
Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K.
2011-01-01
Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297
Risk and Protective Factors for Fires, Burns, and Carbon Monoxide Poisoning in U.S. Households
Runyan, Carol W.; Johnson, Renee M.; Yang, Jingzhen; Waller, Anna E.; Perkis, David; Marshall, Stephen W.; Coyne-Beasley, Tamera; McGee, Kara S.
2011-01-01
Background More needs to be known about the prevalence of risk and protective factors for fires, burns, and carbon monoxide poisoning in U.S. households. Methods A random-digit-dial survey was conducted about home safety with 1003 respondents representing households in the continental United States. Descriptive statistics assess the prevalence of risk and protective factors for fires, burns, and carbon monoxide overall, and by demographic characteristics, household structure, region, and residential tenure. The data were weighted to adjust for nonresponse and to reflect the U.S. population. Results Although most respondents reported having a smoke alarm (97%), and 80% reported having one on each level of their home, <20% reported checking the alarm at least every 3 months. Seventy-one percent reported having a fire extinguisher, 29% had a carbon monoxide detector, and 51% of those living with at least one other person had a fire escape plan. Few could report the temperature of their hot water at the tap (9%), or the setting on the hot water heater (25%). Only 6% had an antiscald device. Conclusions Results suggest that there is much room for improvement regarding adoption of measures to prevent fires, burns, and carbon monoxide poisoning. Further investigations of the efficacy of carbon monoxide detectors, fire extinguishers, and escape plans, as well as effectiveness studies of fire and burn-prevention efforts are needed. PMID:15626564
Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K
2011-08-01
Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.
Risk and protective factors for fires, burns, and carbon monoxide poisoning in U.S. households.
Runyan, Carol W; Johnson, Renee M; Yang, Jingzhen; Waller, Anna E; Perkis, David; Marshall, Stephen W; Coyne-Beasley, Tamera; McGee, Kara S
2005-01-01
More needs to be known about the prevalence of risk and protective factors for fires, burns, and carbon monoxide poisoning in U.S. households. A random-digit-dial survey was conducted about home safety with 1003 respondents representing households in the continental United States. Descriptive statistics assess the prevalence of risk and protective factors for fires, burns, and carbon monoxide overall, and by demographic characteristics, household structure, region, and residential tenure. The data were weighted to adjust for nonresponse and to reflect the U.S. population. Although most respondents reported having a smoke alarm (97%), and 80% reported having one on each level of their home, <20% reported checking the alarm at least every 3 months. Seventy-one percent reported having a fire extinguisher, 29% had a carbon monoxide detector, and 51% of those living with at least one other person had a fire escape plan. Few could report the temperature of their hot water at the tap (9%), or the setting on the hot water heater (25%). Only 6% had an antiscald device. Results suggest that there is much room for improvement regarding adoption of measures to prevent fires, burns, and carbon monoxide poisoning. Further investigations of the efficacy of carbon monoxide detectors, fire extinguishers, and escape plans, as well as effectiveness studies of fire and burn-prevention efforts are needed.
FireWire: Hot New Multimedia Interface or Flash in the Pan?
ERIC Educational Resources Information Center
Learn, Larry L., Ed.
1995-01-01
Examines potential solutions to the problem of personal computer cabling and configuration and serial port performance, namely "FireWire" (P1394) and "Universal Serial Bus" (USB). Discusses interface design, technical capabilities, user friendliness, compatibility, costs, and future perspectives. (AEF)
Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility
NASA Astrophysics Data System (ADS)
Kobak, J. A.; Rollbuhler, R. J.
1981-10-01
A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.
Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility
NASA Technical Reports Server (NTRS)
Kobak, J. A.; Rollbuhler, R. J.
1981-01-01
A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.
High Thermal Conductivity NARloy-Z-Diamond Composite Liner for Advanced Rocket Engines
NASA Technical Reports Server (NTRS)
Bhat, Biliyar; Greene, Sandra
2015-01-01
NARloy-Z (Cu-3Ag-0.5Zr) alloy is state-of-the-art combustion chamber liner material used in liquid propulsion engines such as the RS-68 and RS-25. The performance of future liquid propulsion systems can be improved significantly by increasing the heat transfer through the combustion chamber liner. Prior work1 done at NASA Marshall Space Flight Center (MSFC) has shown that the thermal conductivity of NARloy-Z alloy can be improved significantly by embedding high thermal conductivity diamond particles in the alloy matrix to form NARloy-Z-diamond composite (fig. 1). NARloy-Z-diamond composite containing 40vol% diamond showed 69% higher thermal conductivity than NARloy-Z. It is 24% lighter than NARloy-Z and hence the density normalized thermal conductivity is 120% better. These attributes will improve the performance and life of the advanced rocket engines significantly. The research work consists of (a) developing design properties (thermal and mechanical) of NARloy-Z-D composite, (b) fabrication of net shape subscale combustion chamber liner, and (c) hot-fire testing of the liner to test performance. Initially, NARloy-Z-D composite slabs were made using the Field Assisted Sintering Technology (FAST) for the purpose of determining design properties. In the next step, a cylindrical shape was fabricated to demonstrate feasibility (fig. 3). The liner consists of six cylinders which are sintered separately and then stacked and diffusion bonded to make the liner (fig. 4). The liner will be heat treated, finish-machined, and assembled into a combustion chamber and hot-fire tested in the MSFC test facility (TF 115) to determine perform.
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Greene, Sandy Elam; Protz, Christopher S.; Ellis, David L.; Lerch, Bradley A.; Locci, Ivan E.
2017-01-01
NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder-bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. NASA's efforts include a 4K lbf thrust liquid oxygen/methane (LOX/CH4) combustion chamber and subscale thrust chambers for 1.2K lbf LOX/hydrogen (H2) applications that have been designed and fabricated with SLM GRCop-84. The same technologies for these lower thrust applications are being applied to 25-35K lbf main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.
Smoke from wildfires and prescribed burning in Australia: effects on human health and ecosystems
Tina Bell; Mark Adams
2009-01-01
Much of Australia is seasonally hot and dry, and fuel beds can become very flammable. Biomass burning ranges from annual savanna fires in the north to sporadic but extensive forest fires in the south. In addition, prescribed burning (the controlled application of fire) is being used more frequently as a means of reducing fuel loads, for maintenance of plant and animal...
Slag processing system for direct coal-fired gas turbines
Pillsbury, Paul W.
1990-01-01
Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.
This protocol describes the Environmental Technology Verification Program's considerations and requirements for verification of emissions reduction provided by cleaner outdoor wood-fired hydronic heaters. Outdoor wood-burning units provide heat and hot water for homes and other b...
2004-10-05
KENNEDY SPACE CENTER, FLA. - Inside the KSC Engine Shop, Boeing-Rocketdyne technicians attach an overhead crane to the container enclosing the third Space Shuttle Main Engine for Discovery’s Return to Flight mission STS-114 arrives at the KSC Engine Shop aboard a trailer. The engine is returning from NASA’s Stennis Space Center in Mississippi where it underwent a hot fire acceptance test. Typically, the engines are installed on an orbiter in the Orbiter Processing Facility approximately five months before launch.
NASA Technical Reports Server (NTRS)
Pearlman, Howard; Chapek, Richard
2001-01-01
Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism, following the work on diffusion-controlled cool flames by Fairlie et,al., 2000.
Emergency sacrificial sealing method in filters, equipment, or systems
Brown, Erik P
2014-09-30
A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.
Morpheus: Advancing Technologies for Human Exploration
NASA Technical Reports Server (NTRS)
Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.; Baine, Michael
2012-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. Designed to serve as a vertical testbed (VTB) for advanced spacecraft technologies, the vehicle provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. This allows individual technologies to mature into capabilities that can be incorporated into human exploration missions. The Morpheus vehicle is propelled by a LOX/Methane engine and sized to carry a payload of 1100 lb to the lunar surface. In addition to VTB vehicles, the Project s major elements include ground support systems and an operations facility. Initial testing will demonstrate technologies used to perform autonomous hazard avoidance and precision landing on a lunar or other planetary surface. The Morpheus vehicle successfully performed a set of integrated vehicle test flights including hot-fire and tethered hover tests, leading up to un-tethered free-flights. The initial phase of this development and testing campaign is being conducted on-site at the Johnson Space Center (JSC), with the first fully integrated vehicle firing its engine less than one year after project initiation. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs that traditionally require longer, more expensive development lifecycles and testing at remote, dedicated testing facilities. Morpheus testing includes three major types of integrated tests. A hot-fire (HF) is a static vehicle test of the LOX/Methane propulsion system. Tether tests (TT) have the vehicle suspended above the ground using a crane, which allows testing of the propulsion and integrated Guidance, Navigation, and Control (GN&C) in hovering flight without the risk of a vehicle departure or crash. Morpheus free-flights (FF) test the complete Morpheus system without the additional safeguards provided during tether. A variety of free-flight trajectories are planned to incrementally build up to a fully functional Morpheus lander capable of flying planetary landing trajectories. In FY12, these tests will culminate with autonomous flights simulating a 1 km lunar approach trajectory, hazard avoidance maneuvers and precision landing in a prepared hazard field at the Kennedy Space Center (KSC). This paper describes Morpheus integrated testing campaign, infrastructure, and facilities, and the payloads being incorporated on the vehicle. The Project s fast pace, rapid prototyping, frequent testing, and lessons learned depart from traditional engineering development at JSC. The Morpheus team employs lean, agile development with a guiding belief that technologies offer promise, but capabilities offer solutions, achievable without astronomical costs and timelines.
Engine System Loads Analysis Compared to Hot-Fire Data
NASA Technical Reports Server (NTRS)
Frady, Gregory P.; Jennings, John M.; Mims, Katherine; Brunty, Joseph; Christensen, Eric R.; McConnaughey, Paul R. (Technical Monitor)
2002-01-01
Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the NASA MC-1 engine program, the focus was to reduce the cost-to-weight ratio. The techniques for structural dynamics analysis practices, were tailored in this program to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of MC-1 load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are important during the design and integration of a new engine system. During the final stages of development, it is important to verify the results of an engine system model to determine the validity of the results. During the final stages of the MC-1 program, hot-fire test results were obtained and compared to the structural design loads calculated by the engine system model. These comparisons are presented in this paper.
Kerosene-Fuel Engine Testing Under Way
2003-11-17
NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.
Kerosene-Fuel Engine Testing Under Way
NASA Technical Reports Server (NTRS)
2003-01-01
NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.
NASA Technical Reports Server (NTRS)
Coffin, T.
1986-01-01
A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.
NASA Astrophysics Data System (ADS)
Sheng, Haibo; Zhang, Yan; Wang, Bibo; Yu, Bin; Shi, Yongqian; Song, Lei; Kundu, Chanchal Kumar; Tao, Youji; Jie, Ganxin; Feng, Hao; Hu, Yuan
2017-04-01
Microencapsulated ammonium polyphosphate (MCAPP) in combination with polyester polyurethane (TPU) was used to flame retardant ethylene-vinyl acetate copolymer (EVA). The EVA composites with different irradiation doses were immersed in hot water (80 °C) to accelerate ageing process. The microencapsulation and irradiation dose ensured positive impacts on the properties of the EVA composites in terms of better dimensional stability and flame retardant performance. The microencapsulation of APP could lower its solubility in water and the higher irradiation dose led to the more MCAPP immobilized in three dimensional crosslinked structure of the EVA matrix which could jointly enhance the flame retardant and electrical insulation properties of the EVA composites. So, the EVA composites with 180 kGy irradiation dose exhibited better dimensional stability than the EVA composites with 120 kGy due to the higher crosslinking degree. Moreover, the higher irradiation dose lead to the more MCAPP immobilizated in crosslinked three-dimensional structure of EVA, enhancing the flame retardancy and electrical insulation properties of the EVA composites. After ageing test in hot water at 80 °C for 2 weeks, the EVA/TPU/MCAPP composite with 180 kGy could still maintain the UL-94 V-0 rating and the limiting oxygen index (LOI) value was as high as 30%. This investigation indicated the flame retardant EVA cable containing MCAPP could achieve stable properties and lower electrical fire hazard risk during long-term hot water ageing test.
Watcharapong Tachajapong; Jesse Lozano; Shankar Mahalingam; Xiangyang Zhou; David R. Weise
2008-01-01
Crown fire initiation is studied by using a simple experimental and detailed physical modeling based on Large Eddy Simulation (LES). Experiments conducted thus far reveal that crown fuel ignition via surface fire occurs when the crown base is within the continuous flame region and does not occur when the crown base is located in the hot plume gas region of the surface...
Wanting Wang; John J. Qu; Xianjun Hao; Yongqiang Liu; William T. Sommers
2006-01-01
Traditional fire detection algorithms mainly rely on hot spot detection using thermal infrared (TIR) channels with fixed or contextual thresholds. Three solar reflectance channels (0.65 μm, 0.86 μm, and 2.1 μm) were recently adopted into the MODIS version 4 contextual algorithm to improve the active fire detection. In the southeastern United...
Using Computational Fluid Dynamics in the forensic analysis of a prison fire.
Jahn, Wolfram; Gonzalez, Orelvis; de Dios Rivera, Juan; Torero, José Luis
2015-08-01
On the 8th of December of 2010 a fire killed 81 inmates in a Chilean prison. While the collected evidence (including eye witness' accounts) indicated an intentional fire, started by a group of inmates who were fighting against another group and who ignited a mattress and threw it over a bunk bed inside the cell, it could not be established how fast the fire grew and whether the prison guards acted promptly enough to prevent the tragedy. In this context, the public defender office in charge of the case requested an independent investigation in order to determine the approximated time the fire started, and the temperature evolution of the padlocks at the cell doors during the initial stage, based on the construction characteristics of the prison, the existing materials and the evidence collected during the investigation. Computational Fluid Dynamics (CFD) were used to analyse the movement of the smoke and to match the first appearance of smoke on CCTV recordings at locations away from the fire, allowing for the estimation of the time-line of events. The padlock temperatures as a result of hot gases from the fire was also simulated. It was shown that the fire grew quickly and became uncontrollable before the guards could intervene. By the time the guards arrived at the cells' door, the padlocks were shown to be too hot to be handled without protection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1980-01-01
The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.
2010-01-01
As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop technology and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Three series of demonstrator engine tests, the first in April-May 2006, the second in March-April 2007 and the third in November-December 2008, have demonstrated up to 13:1 throttling (104% to 8% thrust range) of the hydrogen/oxygen expander cycle engine. The first two test series explored a propellant feed system instability ("chug") environment at low throttled power levels. Lessons learned from these two tests were successfully applied to the third test series, resulting in stable operation throughout the 13:1 throttling range. The first three tests have provided an early demonstration of an enabling cryogenic propulsion concept, accumulating over 5,000 seconds of hot fire time over 27 hot fire tests, and have provided invaluable system-level technology data toward design and development risk mitigation for the NASA Altair and future lander propulsion system applications. This paper describes the results obtained from the highly successful third test series as well as the test objectives and early results obtained from a fourth test series conducted over March-May 2010
Space shuttle Production Verification Motor 1 (PV-1) static fire
NASA Technical Reports Server (NTRS)
1989-01-01
All inspection and instrumentation data indicate that the PV-1 static test firing conducted 18 Aug. 1988 was successful. With the exception of the intentionally flawed joints and static test modifications, PV-1 was flight configuration. Fail-safe flaws guaranteeing pressure to test the sealing capability of primary O-rings were included in the aft field joint, case-to-nozzle joint, and nozzle internal Joint 5. The test was conducted at ambient conditions, with the exception of the field joints and case/nozzle joints which were maintained at a minimum of 75 F. Ballistics performance values were within specification requirements. The PV-1 motor exhibited chamber pressure oscillations similar to previously tested Space Shuttle redesigned solid rocket motors, particularly QM-7. The first longitudinal mode oscillations experienced by PV-1 were the strongest ever measured in a Space Shuttle motor. Investigation into this observation is being conducted. Joint insulation performed as designed with no evidence of gas flow within unflawed forward field joints. The intentionally flawed center and aft case field joint insulation performance was excellent. There was no evidence of hot gas past the center field joint capture feature O-ring, the case-to-nozzle joint primary O-ring, or the aft field joint primary O-ring. O-ring seals and barriers with assured pressure at the flaws showed erosion and heat effect, but all sealed against passage of hot gases with the exception of the aft field joint capture feature O-ring. There was no evidence of erosion, heat effect, or blowby on any O-ring seals or barriers at the unflawed joints. Nozzle performance was nominal with typical erosion. Post-test examination revealed that the forward nose ring was of the old high performance motor design configuration with the 150-deg ply angle. All nozzle components remained intact for post-test evaluation. The thrust vector control system operated correctly. The water deluge system, CO2 quench, and other test equipment performed as planned during all required test operations.
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled... the energy assessment. Electric utility steam generating unit (EGU) means a fossil fuel-fired... for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled... the energy assessment. Electric utility steam generating unit (EGU) means a fossil fuel-fired... for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one...
78 FR 72550 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-03
... (e.g., hot brakes or engine exhaust nozzle), consequently leading to a fuel-fed fire. DATES: This AD... brakes or engine exhaust nozzle), consequently leading to a fuel-fed fire. (f) Compliance Comply with... 3532, dated January 12, 2012. (1) Do either a general visual inspection or ultrasonic non- destructive...
Technology Innovations from NASA's Next Generation Launch Technology Program
NASA Technical Reports Server (NTRS)
Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.
2004-01-01
NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.
Dual nozzle aerodynamic and cooling analysis study. [dual throat and dual expander nozzles
NASA Technical Reports Server (NTRS)
Meagher, G. M.
1980-01-01
Geometric, aerodynamic flow field, performance prediction, and heat transfer analyses are considered for two advanced chamber nozzle concepts applicable to Earth-to-orbit engine systems. Topics covered include improvements to the dual throat aerodynamic and performance prediction program; geometric and flow field analyses of the dual expander concept; heat transfer analysis of both concepts, and engineering analysis of data from the NASA/MSFC hot-fire testing of a dual throat thruster model thrust chamber assembly. Preliminary results obtained are presented in graphs.
Simulations of Flow Through the SSME LH2 Feed Line and LPFP Inducer
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Rothermel, Jeffry
2003-01-01
During a post-flight inspection of the liquid hydrogen feed lines leading the Space Shuttle main engines cracks were discover in slots on a flow liner just upstream of the low pressure fuel pump inducer. Numerical simulations have been performed for the feed line, the flow liner (including the slots and backing cavity) and the inducer. The predicted results have been compared with experimental data taken during hot-fire tests at NASA Stennis Space Center.
Modelling wildland fire propagation by tracking random fronts
NASA Astrophysics Data System (ADS)
Pagnini, G.; Mentrelli, A.
2013-11-01
Wildland fire propagation is studied in literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternative each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay and an infinite support, while the level-set method, which is a front tracking technique, generates a sharp function with a finite support. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random character that are extremely important in wildland fire propagation. As a consequence the fire front gets a random character, too. Hence a tracking method for random fronts is needed. In particular, the level-set contourn is here randomized accordingly to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterizing role proper to the level-set approach. The resulting model emerges to be suitable to simulate effects due to turbulent convection as fire flank and backing fire, the faster fire spread because of the actions by hot air pre-heating and by ember landing, and also the fire overcoming a firebreak zone that is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation it follows a correction for the rate of spread formula due to the mean jump-length of firebrands in the downwind direction for the leeward sector of the fireline contour.
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.
2010-01-01
As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future lander descent main engines.
Frederick D. Euphrat; Charles Williams; Judy Rosales
2017-01-01
During a period of unusually hot, dry weather in 1972, the Creighton Ridge fire burned 4,452 ha (11,000 ac) of forest and intermixed grasslands, as well as many residences on the recently-subdivided 16 ha (40 ac) ranch holdings in the Cazadero â Fort Ross area, north of San Francisco. In response to the fire, local work crews planted and thinned trees from...
Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong
2016-06-06
We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.
Emergency sacrificial sealing method in filters, equipment, or systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Erik P.
A system seals a filter or equipment component to abase and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment componentmore » to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.« less
Thermal Injuries in Veterinary Forensic Pathology.
Wohlsein, P; Peters, M; Schulze, C; Baumgärtner, W
2016-09-01
Localized thermal injuries in animals may be caused by exposure to fire and radiant heat, contact with hot items including hot liquids or steam, inhalation of hot air, and exposure to cold temperatures. In addition, animal fire victims may have intoxications caused by smoke gas. This article reviews the causes, pathogenetic aspects, morphological findings, additional investigations, differential diagnoses, and causes of death in various forms of thermal injuries. Since these cases do not occur frequently in diagnostic pathology, they represent a challenging task in general but also with respect to forensic or criminal aspects, such as whether a lesion represents an accidental or nonaccidental effect. Besides detailed information about the circumstances at the location, thermal injuries in animals require a thorough morphological evaluation, including additional investigations in conjunction with a profound knowledge about the possible lesion spectrum and suitable additional investigations. © The Author(s) 2016.
Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan,T.; Adams,J.; Bender, M.
2008-02-01
The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots ofmore » mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study found the following: (1) There was some correlation between the prevailing wind direction and measured soil and oak leaf concentrations. This correlation was not statistically significant, but higher soil concentrations were generally found in the east and southeast from the plants and lower soil concentrations were found west/southwest from the plants. The prevailing winds are to the east. The Conemaugh plant which was the most southeast of the three plants did have the highest average oak leaf and soil mercury concentrations. Based on emissions, the Keystone plant would be expected to see the highest concentrations as it emitted about 25% more mercury than the other two plants. (2) The results of this study did not turn up strong evidence for large areas (several square miles) of elevated mercury concentrations around the three coal-fired power plants that were tested. This does not mean that there is no effect, there was some evidence of increasing mercury content to the east and south of these plants, however, the trends were not statistically significant suggesting that if the effects exist, they are small.« less
Fire behavior and risk analysis in spacecraft
NASA Technical Reports Server (NTRS)
Friedman, Robert; Sacksteder, Kurt R.
1988-01-01
Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft.
[Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite].
Yu, Chao; Chen, Liang-fu; Li, Shen-shen; Tao, Jin-hua; Su, Lin
2015-03-01
Biomass burning makes up an important part of both trace gases and particulate matter emissions, which can efficiently degrade air quality and reduce visibility, destabilize the global climate system at regional to global scales. Burned area is one of the primary parameters necessary to estimate emissions, and considered to be the largest source of error in the emission inventory. Satellite-based fire observations can offer a reliable source of fire occurrence data on regional and global scales, a variety of sensors have been used to detect and map fires in two general approaches: burn scar mapping and active fire detection. However, both of the two approaches have limitations. In this article, we explore the relationship between hotspot data and burned area for the Southeastern United States, where a significant amount of biomass burnings from both prescribed and wild fire took place. MODIS (Moderate resolution imaging spectrometer) data, which has high temporal-resolution, can be used to monitor ground biomass. burning in time and provided hot spot data in this study. However, pixel size of MODIS hot spot can't stand for the real ground burned area. Through analysis of the variation of vegetation band reflectance between pre- and post-burn, we extracted the burned area from Landsat-5 TM (Thematic Mapper) images by using the differential normalized burn ratio (dNBR) which is based on TM band4 (0.84 μm) and TM band 7(2.22 μm) data. We combined MODIS fire hot spot data and Landsat-5 TM burned scars data to build the burned area estimation model, results showed that the linear correlation coefficient is 0.63 and the relationships vary as a function of vegetation cover. Based on the National Land Cover Database (NLCD), we built burned area estimation model over different vegetation cover, and got effective burned area per fire pixel, values for forest, grassland, shrub, cropland and wetland are 0.69, 1.27, 0.86, 0.72 and 0.94 km2 respectively. We validated the burned area estimates by using the ground survey data from National interagency Fire Center (NIFC), our results are more close to the ground survey data than burned area from Global Fire Emissions Database (GFED) and MODIS burned area product (MCD45), which omitted many small prescribed fires. We concluded that our model can provide more accurate burned area parameters for developing fire emission inventory, and be better for estimating emissions from biomass burning.
RL10A-3-3B high mixture ratio qualification program
NASA Technical Reports Server (NTRS)
Vogel, T.; Varella, D.; Smith, C.
1987-01-01
The results of the high mixture ratio qualification testing of the RL10 engine for the Shuttle/Centaur program are presented. The objective of the engine qualification test was to demonstrate the suitability of the RL10A-3-3B engine for space vehicle flight by subjecting it to the testing specified in RL10A-3-3B Model Specification Number 2295 dated February 1986. The applicable section of the specification is presented. Due to payload volume advantages which can be achieved by increasing the operating mixture ratio of the RL10, a decision was made to qualify the engine to run at a higher mixture ratio. A program was created to qualify the RL10 engine for operation at 15,000 pounds thrust and a nominal 6.0 to 1 mixture ratio. This model of the engine was designated the RL10A-3-3B. The qualification program included three test series as follows: (1) hardware durability and limits test in which the engine completed 23 firings and 4605.7 seconds with 1588.7 seconds at less than 6.6 mixture ratio; (2) preliminary qualification test in which the engine completed 26 firings and 5750 seconds; and (3) qualification test in which the engine completed 26 hot firings and 5693.4 seconds with 905.9 seconds at 6.7 mixture ratio. Several changes in engine hardware were required for operation of the RL10A-3-3B engine in the Space Shuttle which include a duel pressure switch ignition, an oxidizer flow control, and helium plumbing changes.
78 FR 49237 - Airworthiness Directives; the Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-13
... could cause a fuel leak near an ignition source (e.g., hot brakes or engine exhaust nozzle..., which could cause a fuel leak near an ignition source (e.g., hot brakes or engine exhaust nozzle... brakes or engine exhaust nozzle), consequently leading to a fuel-fed fire. (f) Compliance Comply with...
Demonstration Extension: Copper-to-Silver-to-Gold Penny Demonstration
ERIC Educational Resources Information Center
Vitz, Ed
2008-01-01
This demonstration, if done in the original way, can lead to fires in waste containers (sometimes in the middle of the night after the experiment has been conducted), because pyrophoric zinc is generated by suspending powdered zinc in hot sodium hydroxide. This is avoided by using hot ZnSO[subscript 4].
Performance characteristics of LOX-H2, tangential-entry, swirl-coaxial, rocket injectors
NASA Technical Reports Server (NTRS)
Howell, Doug; Petersen, Eric; Clark, Jim
1993-01-01
Development of a high performing swirl-coaxial injector requires an understanding of fundamental performance characteristics. This paper addresses the findings of studies on cold flow atomic characterizations which provided information on the influence of fluid properties and element operating conditions on the produced droplet sprays. These findings are applied to actual rocket conditions. The performance characteristics of swirl-coaxial injection elements under multi-element hot-fire conditions were obtained by analysis of combustion performance data from three separate test series. The injection elements are described and test results are analyzed using multi-variable linear regression. A direct comparison of test results indicated that reduced fuel injection velocity improved injection element performance through improved propellant mixing.
100-lbf LO2/CH4 RCS Thruster Testing and Validation
NASA Technical Reports Server (NTRS)
Barnes, Frank; Cannella, Matthew; Gomez, Carlos; Hand, Jeffrey; Rosenberg, David
2009-01-01
100 pound thrust liquid Oxygen-Methane thruster sized for RCS (Reaction Control System) applications. Innovative Design Characteristics include: a) Simple compact design with minimal part count; b) Gaseous or Liquid propellant operation; c) Affordable and Reusable; d) Greater flexibility than existing systems; e) Part of NASA'S study of "Green Propellants." Hot-fire testing validated performance and functionality of thruster. Thruster's dependence on mixture ratio has been evaluated. Data has been used to calculate performance parameters such as thrust and Isp. Data has been compared with previous test results to verify reliability and repeatability. Thruster was found to have an Isp of 131 s and 82 lbf thrust at a mixture ratio of 1.62.
Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine
NASA Technical Reports Server (NTRS)
Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.
2016-01-01
The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.
Engineering evaluation of SSME dynamic data from engine tests and SSV flights
NASA Technical Reports Server (NTRS)
1986-01-01
An engineering evaluation of dynamic data from SSME hot firing tests and SSV flights is summarized. The basic objective of the study is to provide analyses of vibration, strain and dynamic pressure measurements in support of MSFC performance and reliability improvement programs. A brief description of the SSME test program is given and a typical test evaluation cycle reviewed. Data banks generated to characterize SSME component dynamic characteristics are described and statistical analyses performed on these data base measurements are discussed. Analytical models applied to define the dynamic behavior of SSME components (such as turbopump bearing elements and the flight accelerometer safety cut-off system) are also summarized. Appendices are included to illustrate some typical tasks performed under this study.
Simulating fire regimes in the Amazon in response to climate change and deforestation.
Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato
2011-07-01
Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change and deforestation would boost fire occurrence outside PAs by half during this period. Our modeling results, therefore, confirm the synergy between the two Ds of REDD (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries).
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.
2013-01-01
A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.
Ignition of combustible fluids by heated surfaces
NASA Astrophysics Data System (ADS)
Bennett, Joseph Michael
The ignition of flammable fluids leaking onto hot machinery components is a common cause of fires and property loss to society. For example, the U.S. Air Force has over 100 engine fires per year. There is a comparable number in the civilian air fleet. Many of these fires are due to ruptured fuel, oil or hydraulic lines impinging on hot engine components. Also, over 500,000 vehicle fires occur each year on U.S. roads. Many of these are due to leaking fluids onto hot exhaust manifolds or other exhaust components. The design of fire protection systems for aircraft and road vehicles must take into account the problems of hot surface ignition as well as re-ignition that can occur once the fire is initially extinguished. The lack of understanding of ignition and re-ignition results in heavy, high-capacity fire extinguishers to address the fire threat. It is desired to better understand the mechanisms that control this phenomenon, and exploit this understanding in producing machinery designs that can mitigate this threat. The purpose of this effort is to gain a fundamental understanding of ignition by heated surfaces. This is done by performing experimental measurements on the impingement of vertical streams of combustible fluids onto horizontal heated surfaces, and then determine the mechanisms that control the process, in terms of physical, controllable parameters (such as fuel type, flow rate and surface temperature). An initial exhaustive review of the literature revealed a small sample of pertinent findings of previous investigators, focused on droplet ignition. Boiling modes present during contact with the heated surface were also shown to control evaporation rates and ignition delays, in addition to surface temperatures and fluid properties. An experimental apparatus was designed and constructed to create the scenario of interest in a controllable fashion, with a 20 cm horizontal heated plate with variable heating supply. Fuels were applied as streams ranging from 0.67 ml/sec to 9.5 ml/sec. Heptane, hexadecane, dodecane and kerosene were the fuels investigated in the study, and experiments were performed over a range of surface temperatures. Of the 388 fuel impingement experiments performed, 226 resulted in ignition events. Of these, 124 were classified as "airborne" ignitions, where spontaneous ignition occurred up to 60 cm above the surface. A model was derived as a predictor of ignition delays observed in these experiments, based upon a fuel evaporation rate-dominated process. This model, which utilized information derived from prior Nusselt number heat transfer correlations and simple plume models, exhibited a high degree of successful correlation with experimental data. This model was sufficiently robust to be applied to all the fuels studied, and all boiling modes (nucleate, transition and boiling) and flow rates. This facilitated a means of predicting ignition delay times based upon fundamental operating parameters of fuel type, flow rate and surface temperature, and assist in the design of fire-safe systems.
Djarwanto; Tachibana, S
2010-06-15
This research was conducted in the aim of preventing wild fire through reducing potential energy source to become in situ fertilizer. To prevent forest fires by reducing wood waste using lignocellulose-degrading fungi, six fungal isolates were tested for lignin and cellulose-degrading activity with Acacia mangium leaves and twigs over a period of 1 to 3 months. The fungi degraded 8.9-27.1% of the lignin and 14-31% of the holocellulose. The degradation rate varied depending on the fungal species. An increase in incubation time tended to decrease the amounts of holocellulose and lignin. However, the hot water soluble tended to increase following a longer incubation period. From the results obtained here, more time was needed to degrade lignin rather than other components in the sample.
Video System Highlights Hydrogen Fires
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Gleman, Stuart M.; Moerk, John S.
1992-01-01
Video system combines images from visible spectrum and from three bands in infrared spectrum to produce color-coded display in which hydrogen fires distinguished from other sources of heat. Includes linear array of 64 discrete lead selenide mid-infrared detectors operating at room temperature. Images overlaid on black and white image of same scene from standard commercial video camera. In final image, hydrogen fires appear red; carbon-based fires, blue; and other hot objects, mainly green and combinations of green and red. Where no thermal source present, image remains in black and white. System enables high degree of discrimination between hydrogen flames and other thermal emitters.
NASA Technical Reports Server (NTRS)
1980-01-01
Installation procedures for the single family residential solar heating system at the William O'Brien State Park, Stillwater, Minnesota, are presented. The system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Installer guidelines are provided for each subsystem and includes testing and filling the system. Information is also given on the operating procedures, controls, caution requirements and routine and schedule maintenance.
30 CFR 57.4660 - Work in shafts, raises, or winzes and other activities involving hazard areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Welding/cutting/compressed Gases § 57.4660... noncombustible material. (3) Shield the activity so that hot metal and sparks cannot cause a fire. (4) Provide a...
Modelling wildland fire propagation by tracking random fronts
NASA Astrophysics Data System (ADS)
Pagnini, G.; Mentrelli, A.
2014-08-01
Wildland fire propagation is studied in the literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternatives to each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay, and it is not zero in an infinite domain, while the level-set method, which is a front tracking technique, generates a sharp function that is not zero inside a compact domain. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random nature and they are extremely important in wildland fire propagation. Consequently, the fire front gets a random character, too; hence, a tracking method for random fronts is needed. In particular, the level-set contour is randomised here according to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterising role that is typical of the level-set approach. The resulting model emerges to be suitable for simulating effects due to turbulent convection, such as fire flank and backing fire, the faster fire spread being because of the actions by hot-air pre-heating and by ember landing, and also due to the fire overcoming a fire-break zone, which is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation, a correction follows for the formula of the rate of spread which is due to the mean jump length of firebrands in the downwind direction for the leeward sector of the fireline contour. The presented study constitutes a proof of concept, and it needs to be subjected to a future validation.
NASA Astrophysics Data System (ADS)
Ellis, Devon S.
Owing to their corrosion resistance and superior strength to weight ratio, there has been, over the past two decades, increased interest in the use of fiber-reinforced polymer (FRP) reinforcing bars in reinforced concrete structural members. The mechanical behavior of FRP reinforcement differs from that of steel reinforcement. For example, FRP reinforcement exhibit a linear stress-strain behavior until the bar ruptures and the strength, stiffness and bond properties of FRP reinforcement are affected more adversely by elevated temperatures. All structures are subject to the risk of damage by fire and fires continue to be a significant cause of damage to structures. Many structures do not collapse after being exposed to fire. The safety of the structure for any future use is dependent on the ability to accurately estimate the post-fire load capacity of the structure. Assuming that the changes, due to fire exposure, in the mechanical behavior of the GFRP reinforcing bar and concrete, and the bond between the reinforcing bar and the concrete are understood, an analytical procedure for estimating the post-fire strength of GFRP reinforced concrete flexural elements can be developed. This thesis investigates the changes in: a) tensile properties and bond of GFRP bars; and b) the flexural behavior of GFRP reinforced concrete beams flexural after being exposed to elevated temperatures up to 400°C and cooled to ambient temperature. To this end, twelve tensile tests, twelve pullout bond tests and ten four-point beam tests were performed. The data from the tests were used to formulate analytical procedures for evaluating the post-fire strength of GFRP reinforced concrete beams. The procedure produced conservative results when compared with the experimental data. In general, the residual tensile strength and modulus of elasticity of GFRP bars decrease as the exposure temperature increases. The loss in properties is however, smaller than that observed by other researchers when similar bars were tested while hot. The residual bond strength was also found to decrease with increase in exposure temperature. Residual bond mechanism and flexural behavior were found to be influenced, in complex ways, by the exposure to elevated temperatures. Additionally, an apparent "yielding plateau" and an apparent increase in bar ductility was observed in the post-heat behavior of some of the tensile specimens. This points to a potential for heat treatment of FRP bars to achieve higher ductility.
Capability and flight record of the versatile space shuttle OMS engine
NASA Astrophysics Data System (ADS)
Judd, D. Craig
The development contract for Aerojet's Orbital Manuevering Subsystem (OMS) engine was awarded in February 1974. This paper provides a description of the OMS subcomponents along with a summary of the OMS development program and subsequent flight record. The major subcomponents include the platelet injector, regeneratively cooled chamber, radiation cooled nozzle extension, bipropellant valve, thrust mount, gimbal actuator assembly, and propellant feedlines. The OMS engine underwent an extensive development program between 1974 and 1978 that included approximately 3680 tests performed on 21 separate engines on components for a total duration of more than 19,000 seconds. This was followed with qualification testing of two engines with another 521 tests and 18,504 seconds of hot fire testing. The Space Shuttle system has completed 45 orbital flights with the OMS engines having fired a total of 356 times with a cumulative duration of 38,094 seconds. In all cases, the OMS engine has performed as required because of its maturity, simplicity, and built-in redundancy. Also described are the results of studies performed to increase the performance of the OMS engine either by using LOX/hydrocarbon propellants or by converting to a pump fed system to increase chamber pressure and area ratio.
Stator Blade with Thermal Barrier Testing on Hot Gas Rig
1975-04-21
A 1-foot long stator blade with a thermal coating subjected to intense heat in order to test its strength at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers sought to determine optimal types of ceramic coatings to increase the durability of metals. The research was primarily intended to support the design of stator blades for high-performance axial-flow compressor and turbofan engines. The coatings reduced the temperature of the metal and the amount of required cooling. As engines became more and more sophisticated, compressor blades were required to withstand higher and higher temperatures. Lewis researchers developed a dual-layer thermal-barrier coating that could be applied to turbine vanes and blades and combustion liners. This new sprayable thermal-barrier coating was evaluated for its durability, strength, fatigue, and aerodynamic penalties. This hot-gas rig fired the scorching gas at the leading edge of a test blade. The blade was cooled by an internal air flow. The blades were heated at two different velocities during the program. When using Mach 0.3 gases the entire heating and cooling cycle only lasted 30 seconds. The cycle lasted 60 minutes during tests at Mach 1.
Results of Large-Scale Spacecraft Flammability Tests
NASA Technical Reports Server (NTRS)
Ferkul, Paul; Olson, Sandra; Urban, David L.; Ruff, Gary A.; Easton, John; T'ien, James S.; Liao, Ta-Ting T.; Fernandez-Pello, A. Carlos; Torero, Jose L.; Eigenbrand, Christian;
2017-01-01
For the first time, a large-scale fire was intentionally set inside a spacecraft while in orbit. Testing in low gravity aboard spacecraft had been limited to samples of modest size: for thin fuels the longest samples burned were around 15 cm in length and thick fuel samples have been even smaller. This is despite the fact that fire is a catastrophic hazard for spaceflight and the spread and growth of a fire, combined with its interactions with the vehicle cannot be expected to scale linearly. While every type of occupied structure on earth has been the subject of full scale fire testing, this had never been attempted in space owing to the complexity, cost, risk and absence of a safe location. Thus, there is a gap in knowledge of fire behavior in spacecraft. The recent utilization of large, unmanned, resupply craft has provided the needed capability: a habitable but unoccupied spacecraft in low earth orbit. One such vehicle was used to study the flame spread over a 94 x 40.6 cm thin charring solid (fiberglasscotton fabric). The sample was an order of magnitude larger than anything studied to date in microgravity and was of sufficient scale that it consumed 1.5 of the available oxygen. The experiment which is called Saffire consisted of two tests, forward or concurrent flame spread (with the direction of flow) and opposed flame spread (against the direction of flow). The average forced air speed was 20 cms. For the concurrent flame spread test, the flame size remained constrained after the ignition transient, which is not the case in 1-g. These results were qualitatively different from those on earth where an upward-spreading flame on a sample of this size accelerates and grows. In addition, a curious effect of the chamber size is noted. Compared to previous microgravity work in smaller tunnels, the flame in the larger tunnel spread more slowly, even for a wider sample. This is attributed to the effect of flow acceleration in the smaller tunnels as a result of hot gas expansion. These results clearly demonstrate the unique features of purely forced flow in microgravity on flame spread, the dependence of flame behavior on the scale of the experiment, and the importance of full-scale testing for spacecraft fire safety.
Detection and analysis of high-temperature events in the BIRD mission
NASA Astrophysics Data System (ADS)
Zhukov, Boris; Briess, Klaus; Lorenz, Eckehard; Oertel, Dieter; Skrbek, Wolfgang
2005-01-01
The primary mission objective of a new small Bi-spectral InfraRed Detection (BIRD) satellite is detection and quantitative analysis of high-temperature events like fires and volcanoes. An absence of saturation in the BIRD infrared channels makes it possible to improve false alarm rejection as well as to retrieve quantitative characteristics of hot targets, including their effective fire temperature, area and the radiative energy release. Examples are given of detection and analysis of wild and coal seam fires, of volcanic activity as well as of oil fires in Iraq. The smallest fires detected by BIRD, which were verified on ground, had an area of 12m2 at daytime and 4m2 at night.
NASA Astrophysics Data System (ADS)
Arca, B.; Salis, M.; Bacciu, V.; Duce, P.; Pellizzaro, G.; Ventura, A.; Spano, D.
2009-04-01
Although in many countries lightning is the main cause of ignition, in the Mediterranean Basin the forest fires are predominantly ignited by arson, or by human negligence. The fire season peaks coincide with extreme weather conditions (mainly strong winds, hot temperatures, low atmospheric water vapour content) and high tourist presence. Many works reported that in the Mediterranean Basin the projected impacts of climate change will cause greater weather variability and extreme weather conditions, with drier and hotter summers and heat waves. At long-term scale, climate changes could affect the fuel load and the dead/live fuel ratio, and therefore could change the vegetation flammability. At short-time scale, the increase of extreme weather events could directly affect fuel water status, and it could increase large fire occurrence. In this context, detecting the areas characterized by both high probability of large fire occurrence and high fire severity could represent an important component of the fire management planning. In this work we compared several fire probability and severity maps (fire occurrence, rate of spread, fireline intensity, flame length) obtained for a study area located in North Sardinia, Italy, using FlamMap simulator (USDA Forest Service, Missoula). FlamMap computes the potential fire behaviour characteristics over a defined landscape for given weather, wind and fuel moisture data. Different weather and fuel moisture scenarios were tested to predict the potential impact of climate changes on fire parameters. The study area, characterized by a mosaic of urban areas, protected areas, and other areas subject to anthropogenic disturbances, is mainly composed by fire-prone Mediterranean maquis. The input themes needed to run FlamMap were input as grid of 10 meters; the wind data, obtained using a computational fluid-dynamic model, were inserted as gridded file, with a resolution of 50 m. The analysis revealed high fire probability and severity in most of the areas, and therefore a high potential danger. The FlamMap outputs and the derived fire probability maps can be used in decision support systems for fire spread and behaviour and for fire danger assessment with actual and future fire regimes.
1951-09-15
ended. O^J’’" ’•» >i- feud .**■ J ’. I’ /fi ’. . f ■ ^ Conclusions and Recommendations The work reported herein shows that...the chromium-iron alloy plating process is not yet ready for full-scale application to gun tubes. The need for additional beaker-scale work on the...additional work is needed to allow production of uniform good plates each plating trial. The firing-test results showed that adhesion of the plate is not
NASA Technical Reports Server (NTRS)
Lorenzo, C. F.
1974-01-01
Tests were conducted to determine the dynamic characteristics of the Centaur/RL-10 oxygen and hydrogen feedlines. The fundamental-mode resonant frequencies were determined by applying power spectral methods to noise-generated data from hot firings of the RL-10 engine. The effect of net positive suction pressure of the main feed pumps on resonant frequency characteristics was determined to be a straight-line relation. Power spectral methods were also used to determine the dynamic characteristics of the boost pumps.
Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increasemore » from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.« less
Aragão, Luiz Eduardo O C; Malhi, Yadvinder; Barbier, Nicolas; Lima, Andre; Shimabukuro, Yosio; Anderson, Liana; Saatchi, Sassan
2008-05-27
Understanding the interplay between climate and land-use dynamics is a fundamental concern for assessing the vulnerability of Amazonia to climate change. In this study, we analyse satellite-derived monthly and annual time series of rainfall, fires and deforestation to explicitly quantify the seasonal patterns and relationships between these three variables, with a particular focus on the Amazonian drought of 2005. Our results demonstrate a marked seasonality with one peak per year for all variables analysed, except deforestation. For the annual cycle, we found correlations above 90% with a time lag between variables. Deforestation and fires reach the highest values three and six months, respectively, after the peak of the rainy season. The cumulative number of hot pixels was linearly related to the size of the area deforested annually from 1998 to 2004 (r2=0.84, p=0.004). During the 2005 drought, the number of hot pixels increased 43% in relation to the expected value for a similar deforested area (approx. 19000km2). We demonstrated that anthropogenic forcing, such as land-use change, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region even with decreased deforestation rates. We may expect that the ongoing deforestation, currently based on slash and burn procedures, and the use of fires for land management in Amazonia will intensify the impact of droughts associated with natural climate variability or human-induced climate change and, therefore, a large area of forest edge will be under increased risk of fires.
NASA Astrophysics Data System (ADS)
Tamm, Gunnar; Jaluria, Yogesh
2003-11-01
An experimental investigation has been carried out on the buoyancy and pressure induced flow of hot gases in vertical shafts, in order to simulate the propagation of combustion products in elevator shafts due to fire in multilevel buildings. Various geometrical configurations are studied, with regard to natural and forced ventilation imposed at the top or bottom of the vertical shaft. The aspect ratio is taken at a fixed value of 6 and the inflow conditions for the hot gases, at a vent near the bottom, are varied in terms of the Reynolds and Grashof numbers. Temperature measurements within the shaft allow a detailed study of the steady state thermal fields, from which optimal means for smoke alleviation in high-rise building fires may be developed. Flow visualization is also used to study the flow characteristics. The results obtained indicate a wall plume as the primary transport mechanism. Flow recirculation dominates at high Grashof number flows, while increased Reynolds numbers gives rise to greater mixing in the shaft. The development and stability of the flow and its effect on the spread of smoke and hot gases are assessed for the different shaft configurations and inlet conditions. It is found that the fastest smoke removal and lowest shaft temperatures occur for a configuration with natural ventilation at the top and forced ventilation up from the shaft bottom. It is also shown that forced ventilation can be used to arrest smoke spread, as well as to dilute the effects of the fire.
Reserves Protect against Deforestation Fires in the Amazon
Adeney, J. Marion; Christensen, Norman L.; Pimm, Stuart L.
2009-01-01
Background Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. Methodology/Principal Findings Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. Conclusions/Significance Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon. PMID:19352423
78 FR 20135 - Notice of Temporary Closure on Public Lands in Boise County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... Land Management (BLM). DATES: The Springs Fire closure will be in effect from April 3, 2013 through... public around the hot springs due to fire damage, as a result of the loss of stabilizing vegetation... DEPARTMENT OF THE INTERIOR Bureau of Land Management [13X LLIDB00200 LF2200000.JS0000 LFESG40D0000...
Survival of northern red oak acorns after fall burning
L.R. Auchmoody; H. Clay Smith; H. Clay Smith
1993-01-01
Survival of recently fallen northern red oak acorns after exposure to a cool fall burn was evaluated in northwestern Pennsylvania. Although no acorns were consumed by the fire, some were charred. Between 40 and 49 percent of the acorns in the litter were destroyed. The fire was not hot enough to kill Curculio larvae within the acorns. Burned acorns infested with...
Thermal conductivity and combustion properties of wheat gluten foams.
Blomfeldt, Thomas O J; Nilsson, Fritjof; Holgate, Tim; Xu, Jianxiao; Johansson, Eva; Hedenqvist, Mikael S
2012-03-01
Freeze-dried wheat gluten foams were evaluated with respect to their thermal and fire-retardant properties, which are important for insulation applications. The thermal properties were assessed by differential scanning calorimetry, the laser flash method and a hot plate method. The unplasticised foam showed a similar specific heat capacity, a lower thermal diffusivity and a slightly higher thermal conductivity than conventional rigid polystyrene and polyurethane insulation foams. Interestingly, the thermal conductivity was similar to that of closed cell polyethylene and glass-wool insulation materials. Cone calorimetry showed that, compared to a polyurethane foam, both unplasticised and glycerol-plasticised foams had a significantly longer time to ignition, a lower effective heat of combustion and a higher char content. Overall, the unplasticised foam showed better fire-proof properties than the plasticized foam. The UL 94 test revealed that the unplasticised foam did not drip (form droplets of low viscous material) and, although the burning times varied, self-extinguished after flame removal. To conclude both the insulation and fire-retardant properties were very promising for the wheat gluten foam. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Poudyal, Neelam C.; Johnson-Gaither, Cassandra; Goodrick, Scott; Bowker, J. M.; Gan, Jianbang
2012-03-01
Wildland fire in the South commands considerable attention, given the expanding wildland urban interface (WUI) across the region. Much of this growth is propelled by higher income retirees and others desiring natural amenity residential settings. However, population growth in the WUI increases the likelihood of wildfire fire ignition caused by people, as humans account for 93% of all wildfires fires in the South. Coexisting with newly arrived, affluent WUI populations are working class, poor or otherwise socially vulnerable populations. The latter groups typically experience greater losses from environmental disasters such as wildfire because lower income residents are less likely to have established mitigation programs in place to help absorb loss. We use geographically weighted regression to examine spatial variation in the association between social vulnerability (SOVUL) and wildfire risk. In doing so, we identify "hot spots" or geographical clusters where SOVUL varies positively with wildfire risk across six Southern states—Alabama, Arkansas, Florida, Georgia, Mississippi, and South Carolina. These clusters may or may not be located in the WUI. These hot spots are most prevalent in South Carolina and Florida. Identification of these population clusters can aid wildfire managers in deciding which communities to prioritize for mitigation programming.
2007-09-20
Core components of the J-2X engine being designed for NASA's Constellation Program recently were installed on the A-1 Test Stand at NASA's Stennis Space Center near Bay St. Louis, Miss. Tests of the components, known as Powerpack 1A, will be conducted from November 2007 through February 2008. The Powerpack 1A test article consists of a gas generator and engine turbopumps originally developed for the Apollo Program that put Americans on the moon in the late 1960s and early 1970s. Engineers are testing these heritage components to obtain data that will help them modify the turbomachinery to meet the higher performance requirements of the Ares I and Ares V launch vehicles. The upcoming tests will simulate inlet and outlet conditions that would be present on the turbomachinery during a full-up engine hot-fire test.
Susan L. Stout; Matthew B. Dickinson; Gregory J. Nowacki
2012-01-01
The Hot Continental Division is one of the larger ecoregions within the continental United States (McNab and Avers 1994), incorporating portions of 19 States and extending from the eastern seacoast to areas west of the Mississippi River (chapter 1). The Division includes the Eastern (Oceanic) and Eastern (Continental) Broadleaf Forest Provinces and two Mountain...
NASA Astrophysics Data System (ADS)
Goudarzi, A. M.; Mazandarani, P.; Panahi, R.; Behsaz, H.; Rezania, A.; Rosendahl, L. A.
2013-07-01
Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is augmented by two devices. An electric fan can increase the air-to-fuel ratio in order to increase the system's efficiency and decrease air pollution by providing complete combustion of wood. In addition, thermoelectric generators (TEGs) produce power that can be used to satisfy all basic needs. In this study, a water-based cooling system is designed to increase the efficiency of the TEGs and also produce hot water for residential use. Through a range of tests, an average of 7.9 W was achieved by a commercial TEG with substrate area of 56 mm × 56 mm, which can produce 14.7 W output power at the maximum matched load. The total power generated by the stove is 166 W. Also, in this study a reasonable ratio of fuel to time is described for residential use. The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water, and essential heat for warming the room and cooking.
Flow Separation Side Loads Excitation of Rocket Nozzle FEM
NASA Technical Reports Server (NTRS)
Smalley, Kurt B.; Brown, Andrew; Ruf, Joseph; Gilbert, John
2007-01-01
Modern rocket nozzles are designed to operate over a wide range of altitudes, and are also built with large aspect ratios to enable high efficiencies. Nozzles designed to operate over specific regions of a trajectory are being replaced in modern launch vehicles by those that are designed to operate from earth to orbit. This is happening in parallel with modern manufacturing and wall cooling techniques allowing for larger aspect ratio nozzles to be produced. Such nozzles, though operating over a large range of altitudes and ambient pressures, are typically designed for one specific altitude. Above that altitude the nozzle flow is 'underexpanded' and below that altitude, the nozzle flow is 'overexpanded'. In both conditions the nozzle produces less than the maximum possible thrust at that altitude. Usually the nozzle design altitude is well above sea level, leaving the nozzle flow in an overexpanded state for its start up as well as for its ground testing where, if it is a reusable nozzle such as the Space Shuttle Main Engine (SSME), the nozzle will operate for the majority of its life. Overexpansion in a rocket nozzle presents the critical, and sometimes design driving, problem of flow separation induced side loads. To increase their understanding of nozzle side loads, engineers at MSFC began an investigation in 2000 into the phenomenon through a task entitled "Characterization and Accurate Modeling of Rocket Engine Nozzle Side Loads", led by A. Brown. The stated objective of this study was to develop a methodology to accurately predict the character and magnitude of nozzle side loads. The study included further hot-fire testing of the MC-l engine, cold flow testing of subscale nozzles, CFD analyses of both hot-fire and cold flow nozzle testing, and finite element (fe.) analysis of the MC-1 engine and cold flow tested nozzles. A follow on task included an effort to formulate a simplified methodology for modeling a side load during a two nodal diameter fluid/structure interaction for a single moment in time.
Atmospheric Science Data Center
2015-11-25
... Hot-Wire MCRW Refractometer Platinum Resistance Pressure Transducer RT-4 Pyranometer Pyrgeometer Radiometer Wind ... Parameters: Dew/Frost Point Temperature Liquid Water Content Humidity Temperature Pressure Irradiance ...
Experimental thermal characterization of concrete to be used in CP5.2 packaging system
NASA Astrophysics Data System (ADS)
Lo Frano, R.; Maggini, A.; Aquaro, D.
2017-01-01
This work deals with the experimental evaluation of the thermal conductivity of a concrete matrix to be used for embedding LILW bituminised Wastes into the packaging system. Such a type of packaging, identified with the acronym CP5.2, has been also qualified by executing at the Lab. Scalbatraio of Dep. of Civil and Industrial Engineering of the University of Pisa, an experimental test campaign accordingly to the IAEA regulations. In particular, the knowledge of the thermal conductivity is important because of the fire or furnace test to carry out in oven at 800 °C for 30 minutes. These data allowed to simulate pre-test conditions and to set up safety and operational fire test procedures. The concrete thermal conductivity was obtained by performing hot wire tests on cylindrical concrete samples for temperatures ranging from 100° to about 800°C. Thermal conductivity is determined at steady state condition. Results indicate a monotonically reduction of the thermal conductivity as the temperature increases. The comparison with concrete thermal conductivity data available in literature indicates a quite good agreement. Finally, visual and X-ray inspection of sample did not highlight the presence of micro/macro damages that would have affected the thermal performance of the concrete under study.
Atmospheric Science Data Center
2015-11-25
... Hot-Wire Hygrometer RMS Pressure Var Platinum Resistance Pyranometer Radiometer Reverse Flow Spatial ... Parameters: Condensation Nuclei Dew/Frost Point Temperature Droplet Concentration Humidity Irradiance Liquid Water ...
Xie, Qiyuan; Tu, Ran; Wang, Nan; Ma, Xin; Jiang, Xi
2014-02-28
The objective of this work is to quantitatively investigate the dripping-burning and flowing fire of thermoplastics. A new experimental setup is developed with a heating vessel and a T-trough. Hot thermoplastic liquids are generated in the vessel by electric heating. N2 gas is continuously injected into the vessel to avoid a sudden ignition of fuel in it. The detailed flowing burning behaviors of pool fire in the T-trough are analyzed through the measurements of the mass, heat flux and temperatures etc. The experimental results suggest that a continuous dripping of melted thermoplastic liquids in a nearly constant mass rate can be successfully made in the new setup. It also shows that the mass dripping rate of melted PS liquid is smaller than PP and PE since its large viscosity. In addition, the flame spread velocities of hot liquids of PS in the T-trough are also smaller than that of PP and PE because of its large viscosity. The mass burning rate of the PP and PE pool fire in T-trough are smaller than PS. Finally, considering the heating, melting, dripping and flowing burning behaviors of these polymers, it is suggested that the fire hazard of PE and PP are obviously higher than PS for their faster flowing burning. Copyright © 2013 Elsevier B.V. All rights reserved.
Scaling study of the combustion performance of gas—gas rocket injectors
NASA Astrophysics Data System (ADS)
Wang, Xiao-Wei; Cai, Guo-Biao; Jin, Ping
2011-10-01
To obtain the key subelements that may influence the scaling of gas—gas injector combustor performance, the combustion performance subelements in a liquid propellant rocket engine combustor are initially analysed based on the results of a previous study on the scaling of a gas—gas combustion flowfield. Analysis indicates that inner wall friction loss and heat-flux loss are two key issues in gaining the scaling criterion of the combustion performance. The similarity conditions of the inner wall friction loss and heat-flux loss in a gas—gas combustion chamber are obtained by theoretical analyses. Then the theoretical scaling criterion was obtained for the combustion performance, but it proved to be impractical. The criterion conditions, the wall friction and the heat flux are further analysed in detail to obtain the specific engineering scaling criterion of the combustion performance. The results indicate that when the inner flowfields in the combustors are similar, the combustor wall shear stress will have similar distributions qualitatively and will be directly proportional to pc0.8dt-0.2 quantitatively. In addition, the combustion peformance will remain unchanged. Furthermore, multi-element injector chambers with different geometric sizes and at different pressures are numerically simulated and the wall shear stress and combustion efficiencies are solved and compared with each other. A multielement injector chamber is designed and hot-fire tested at several chamber pressures and the combustion performances are measured in a total of nine hot-fire tests. The numerical and experimental results verified the similarities among combustor wall shear stress and combustion performances at different chamber pressures and geometries, with the criterion applied.
Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems
NASA Astrophysics Data System (ADS)
Moritz, Max A.; Moody, Tadashi J.; Krawchuk, Meg A.; Hughes, Mimi; Hall, Alex
2010-02-01
Fire plays a crucial role in many ecosystems, and a better understanding of different controls on fire activity is needed. Here we analyze spatial variation in fire danger during episodic wind events in coastal southern California, a densely populated Mediterranean-climate region. By reconstructing almost a decade of fire weather patterns through detailed simulations of Santa Ana winds, we produced the first high-resolution map of where these hot, dry winds are consistently most severe and which areas are relatively sheltered. We also analyzed over half a century of mapped fire history in chaparral ecosystems of the region, finding that our models successfully predict where the largest wildfires are most likely to occur. There is a surprising lack of information about extreme wind patterns worldwide, and more quantitative analyses of their spatial variation will be important for effective fire management and sustainable long-term urban development on fire-prone landscapes.
Mark E. Smith; Kenneth A. Wright
1989-01-01
The Blake Fire burned about 730 ha of mature timber on the west slope of South Fork Mountain in northwestern California. Many steep innergorge and landslide headwall areas burned very hot, killing most large trees and consuming much of the large organic debris in unstable drainages. This created a potential for adverse effects on downstream fisheries from landsliding...
Characterization of the large fire regime in SE France
Anne Ganteaume; Marielle Jappiot
2015-01-01
Southeastern France is the most wildfire prone region of the country, covering 14.7 percent of its land area-entire country, is the region most affected by wildfires, with 55 percent of the total number of fires recorded in the whole country from 2006 to 2008. It is a typical Mediterranean climate with hot and dry summers, often with strong NW wind, and includes plant...
Increase of efficiency and reliability of liquid fuel combustion in small-sized boilers
NASA Astrophysics Data System (ADS)
Roslyakov, P. V.; Proskurin, Yu V.; Ionkin, I. L.
2017-11-01
One of the ways to increase the efficiency of using fuels is to create highly efficient domestic energy equipment, in particular small-sized hot-water boilers in autonomous heating systems. Increasing the efficiency of the boiler requires a reduction in the temperature of the flue gases leaving, which, in turn, can be achieved by installing additional heating surfaces. The purpose of this work was to determine the principal design solutions and to develop a draft design for a high-efficiency 3-MW hot-water boiler using crude oil as its main fuel. Ensuring a high efficiency of the boiler is realized through the use of an external remote economizer, which makes it possible to reduce the dimensions of the boiler, facilitate the layout of equipment in a limited size block-modular boiler house and virtually eliminate low-temperature corrosion of boiler heat exchange surfaces. In the article the variants of execution of the water boiler and remote economizer are considered and the preliminary design calculations of the remote economizer for various schemes of the boiler layout in the Boiler Designer software package are made. Based on the results of the studies, a scheme was chosen with a three-way boiler and a two-way remote economizer. The design of a three-way fire tube hot water boiler and an external economizer with an internal arrangement of the collectors, providing for its location above the boiler in a block-modular boiler house and providing access for servicing both a remote economizer and a hot water boiler, is proposed. Its mass-dimensional and design parameters are determined. In the software package Boiler Designer thermal, hydraulic and aerodynamic calculations of the developed fire tube boiler have been performed. Optimization of the boiler design was performed, providing the required 94% efficiency value for crude oil combustion. The description of the developed flue and fire-tube hot water boiler and the value of the main design and technical and economic parameters are given.
Scaled Rocket Testing in Hypersonic Flow
NASA Technical Reports Server (NTRS)
Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish
2015-01-01
NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.
Test Results of the RS-44 Integrated Component Evaluator Liquid Oxygen/Hydrogen Rocket Engine
NASA Technical Reports Server (NTRS)
Sutton, R. F.; Lariviere, B. W.
1993-01-01
An advanced LOX/LH2 expander cycle rocket engine, producing 15,000 lbf thrust for Orbital Transfer Vehicle missions, was tested to determine ignition, transition, and main stage characteristics. Detail design and fabrication of the pump fed RS44 integrated component evaluator (ICE) was accomplished using company discretionary resources and was tested under this contracted effort. Successful demonstrations were completed to about the 50 percent fuel turbopump power level (87,000 RPM), but during this last test, a high pressure fuel turbopump (HPFTP) bearing failed curtailing the test program. No other hardware were affected by the HPFTP premature shutdown. The ICE operations matched well with the predicted start transient simulations. The tests demonstrated the feasibility of a high performance advanced expander cycle engine. All engine components operated nominally, except for the HPFTP, during the engine hot-fire tests. A failure investigation was completed using company discretionary resources.
Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle
NASA Astrophysics Data System (ADS)
Wang, Ten-See
2009-07-01
The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.
Atmospheric Science Data Center
2015-11-25
... Flow Angle Sensors Hot-Wire Icing Rate Detector Pressure Transducer Reverse Flow Temperature Probes Spatial ... Condensation Nuclei Dew/Frost Point Temperature Liquid Water Content Nitrogen Dioxide Ozone Pressure Supercooled ...
Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles
NASA Technical Reports Server (NTRS)
Gradl, Paul; Brandsmeier, Will
2016-01-01
Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.
NASA Astrophysics Data System (ADS)
Ochoa, C. G.; Cram, D.; Hatch, C. E.; Tyler, S. W.
2014-12-01
Distributed temperature sensing (DTS) technology offers a viable alternative for accurately measuring wildland fire intensity and distribution in real time applications. We conducted an experiment to test the use of DTS as an alternative technology to monitor prescribed fire temperatures in real time and across a broad spatial scale. The custom fiber-optic cable consisted of three fiber optic lines buffered by polyamide, copper, and polyvinyl chloride, respectively, each armored in a stainless steel tube backfilled with Nitrogen gas. The 150 m long cable was deployed in three different 20 by 26 m experimental plots of short-grass rangeland in central New Mexico. Cable was arranged to maximize coverage of the experimental plots and allow cross-comparison between two main parallel straight-line sections approximately 8 m apart. A DTS system recorded fire temperatures every three seconds and integrated every one meter. A series of five thermocouples attached to a datalogger were placed at selected locations along the cable and also recorded temperature data every three seconds on each fiber. Results indicate that in general there is good agreement between thermocouple-measured and DTS-measured temperatures. A close match in temperature between DTS and thermocouples was particularly observed during the rising limb but not so much during the decline. The metal armoring of the fiber-optic cable remained hot longer than the thermocouples after the flames had passed. The relatively short-duration, high-intensity, prescribed burn fire in each plot resulted in temperatures reaching up to 450 degrees Celsius. In addition, DTS data allow for illustration of the irregular nature of flame speed and travel path across the rangeland grasses, a phenomenon that was impossible to quantify without the use of this tool. This study adds to the understanding of using DTS as a new alternative tool for better characterizing wildland fire intensity, distribution and travel patterns, and establishes the baseline for expanding these test plot results to larger spatial scales.
Atmospheric Science Data Center
2015-11-25
... FSSP Gust Probe Hot-Wire Hygrometer Platinum Resistance PMS 2D-C Probe PRT-4 Pyranometer Pyrgeometer ... Parameters: Barometric Altitude Cloud Top Temperature Deiced Temperature Dew/Frost Point Temperature Droplet ...
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Ellis, David; Singh, Jogender
2014-01-01
Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion chamber liner. Properties of optimized NARloy-Z-D composite material will also be presented.
Solar process water heat for the IRIS images custom color photo lab
NASA Technical Reports Server (NTRS)
1980-01-01
The solar facility located at a custom photo laboratory in Mill Valley, California is described. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100 F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxillary back up system is a conventional gas-fired water heater. Site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are presented.
Combined fuel and air staged power generation system
Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri
2014-05-27
A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.
SSME HPFTP/AT Turbine Blade Platform Featherseal Damper Design
NASA Technical Reports Server (NTRS)
Montgomery, S. K.
1999-01-01
During the Space Shuttle Main Engines (SSM) HPFtP/AT development program, engine hot fire testing resulted in turbine blade fatigue cracks. The cracks were noted after only a few tests and a several hundred seconds versus the design goal of 60 tests and >30,000 seconds. Subsequent investigation attributed the distress to excessive steady and dynamic loads. To address these excessive turbine blade loads, Pratt & Whitney Liquid Space Propulsion engineers designed and developed retrofitable turbine blade to blade platform featherseal dampers. Since incorporation of these dampers, along with other turbine blade system improvements, there has been no observed SSME HPFTP/AT turbine blade fatigue cracking. The high time HPFTP/AT blade now has accumulated 32 starts and 19,200 seconds hot fire test time. Figure #1 illustrates the HPFTP/AT turbine blade platform featherseal dampers. The approached selected was to improve the turbine blade structural capability while simultaneously reducing loads. To achieve this goal, the featherseal dampers were designed to seal the blade to blade platform gap and damp the dynamic motions. Sealing improves the steady stress margins by increasing turbine efficiency and improving turbine blade attachment thermal conditioning. Load reduction was achieved through damping. Thin Haynes 188 sheet metal was selected based on its material properties (hydrogen resistance, elongation, tensile strengths, etc.). The 36,000 rpm wheel speed of the rotor result in a normal load of 120#/blade. The featherseals then act as micro-slip dampers during actual SSME operation. After initial design and analysis (prior to full engine testing), the featherseal dampers were tested in P&W's spin rig facility in West Palm Beach, Florida. Both dynamic strain gages and turbine blade tip displacement measurements were utilized to quantify the featherseal damper effectiveness. Full speed (36,000 rpm), room temperature rig testing verified the elimination of fundamental mode (i.e, modes 1 & 2) resonant response. The reduction in turbine blade dynamic response is shown for a typical turbine blade. This paper discusses the design and verification of these dampers. The numerous benefits associated with this design concept warrants consideration in existing and future turbomachinery applications.
Advanced small rocket chambers: Option 1, 14 lbf Ir-Re rocket
NASA Technical Reports Server (NTRS)
Jassowski, Donald M.; Gage, Mark L.
1992-01-01
A high performance Ir-Re 14 lbf (62 N) chamber and nozzle which can be a direct replacement for a production engine was designed, built, hot fired and vibration acceptance tested. It passed all acceptance tests satisfactorily and demonstrated a 20 sec increase in specific impulse (Is) over the conventional 14 lbf silicide coated Cb chamber. The high performance engine uses the production valve and injector without modification. Incorporation of a secondary mixing device or Boundary Layer Trip within the combustion chamber results in elimination of the fuel film coolant, improvement in flow uniformity, the 20 sec performance increase, and reduction of a potential source of spacecraft contamination. Measured Is was 305 sec at 75:1 area ratio, with monomenthylhydrazine and nitrogen tetroxide propellants. Qualification tests remain to be done.
High-pressure LOX/hydrocarbon preburners and gas generators
NASA Technical Reports Server (NTRS)
Huebner, A. W.
1981-01-01
The objective of the program was to conduct a small scale hardware test program to establish the technology base required for LOX/hydrocarbon preburners and gas generators. The program consisted of six major tasks; Task I reviewed and assessed the performance prediction models and defined a subscale test program. Task II designed and fabricated this subscale hardware. Task III tested and analyzed the data from this hardware. Task IV analyzed the hot fire results and formulated a preliminary design for 40K preburner assemblies. Task V took the preliminary design and detailed and fabricated three 40K size preburner assemblies, one each fuel-rich LOX/CH, and LOX/RP-1 and one oxidizer rich LOX/CH4. Task VI delivered these preburner assemblies to MSFC for subsequent evaluation.
Williams-Bell, F Michael; Aisbett, Brad; Murphy, Bernadette A; Larsen, Brianna
2017-01-01
Background: The severity of wildland fires is increasing due to continually hotter and drier summers. Firefighters are required to make life altering decisions on the fireground, which requires analytical thinking, problem solving, and situational awareness. This study aimed to determine the effects of very hot (45°C; HOT) conditions on cognitive function following periods of simulated wildfire suppression work when compared to a temperate environment (18°C; CON). Methods: Ten male volunteer firefighters intermittently performed a simulated fireground task for 3 h in both the CON and HOT environments, with cognitive function tests (paired associates learning and spatial span) assessed at baseline (cog 1) and during the final 20-min of each hour (cog 2, 3, and 4). Reaction time was also assessed at cog 1 and cog 4. Pre- and post- body mass were recorded, and core and skin temperature were measured continuously throughout the protocol. Results: There were no differences between the CON and HOT trials for any of the cognitive assessments, regardless of complexity. While core temperature reached 38.7°C in the HOT (compared to only 37.5°C in the CON; p < 0.01), core temperature declined during the cognitive assessments in both conditions (at a rate of -0.15 ± 0.20°C·hr -1 and -0.63 ± 0.12°C·hr -1 in the HOT and CON trial respectively). Firefighters also maintained their pre-exercise body mass in both conditions, indicating euhydration. Conclusions: It is likely that this maintenance of euhydration and the relative drop in core temperature experienced between physical work bouts was responsible for the preservation of firefighters' cognitive function in the present study.
Williams-Bell, F. Michael; Aisbett, Brad; Murphy, Bernadette A.; Larsen, Brianna
2017-01-01
Background: The severity of wildland fires is increasing due to continually hotter and drier summers. Firefighters are required to make life altering decisions on the fireground, which requires analytical thinking, problem solving, and situational awareness. This study aimed to determine the effects of very hot (45°C; HOT) conditions on cognitive function following periods of simulated wildfire suppression work when compared to a temperate environment (18°C; CON). Methods: Ten male volunteer firefighters intermittently performed a simulated fireground task for 3 h in both the CON and HOT environments, with cognitive function tests (paired associates learning and spatial span) assessed at baseline (cog 1) and during the final 20-min of each hour (cog 2, 3, and 4). Reaction time was also assessed at cog 1 and cog 4. Pre- and post- body mass were recorded, and core and skin temperature were measured continuously throughout the protocol. Results: There were no differences between the CON and HOT trials for any of the cognitive assessments, regardless of complexity. While core temperature reached 38.7°C in the HOT (compared to only 37.5°C in the CON; p < 0.01), core temperature declined during the cognitive assessments in both conditions (at a rate of −0.15 ± 0.20°C·hr−1 and −0.63 ± 0.12°C·hr−1 in the HOT and CON trial respectively). Firefighters also maintained their pre-exercise body mass in both conditions, indicating euhydration. Conclusions: It is likely that this maintenance of euhydration and the relative drop in core temperature experienced between physical work bouts was responsible for the preservation of firefighters' cognitive function in the present study. PMID:29114230
NASA Technical Reports Server (NTRS)
Coffin, T.
1986-01-01
A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is described. The data base represents dynamic pressure measurements obtained during single engine hot firing tesets of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level. Flow dynamic environments in high performance rocket engines are discussed.
NASA Technical Reports Server (NTRS)
1998-01-01
On this ninth day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, spend a good part of their day checking out important spacecraft systems for entry and landing. The commander and pilot begin the flight control system checkout by powering up one auxiliary power unit and evaluating the performance of aerodynamic surfaces and flight controls. The flight crew conducts a reaction control system hot fire, followed by a test of the communications system.
Engine performance with a hydrogenated safety fuel
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Young, Alfred W
1933-01-01
This report presents the results of an investigation to determine the engine performance obtained with a hydrogenated safety fuel developed to eliminate fire hazard. The tests were made on a single-cylinder universal test engine at compression ratios of 5.0, 5.5, and 6.0. Most of the tests were made with a fuel-injection system, although one set of runs was made with a carburetor when using gasoline to establish comparative performance. The tests show that the b.m.e.p. obtained with safety fuel when using a fuel-injection system is slightly higher than that obtained with gasoline when using a carburetor, although the fuel consumption with safety fuel is higher. When the fuel-injection system is used with each fuel and with normal engine temperatures the b.m.e.p. with safety fuel is from 2 to 4 percent lower than with gasoline and the fuel consumption about 25 to 30 percent higher. However, a few tests at an engine coolant temperature of 250 F have shown a specific fuel consumption approximating that obtained with gasoline with only a slight reduction in power. The idling of the test engine was satisfactory with the safety fuel. Starting was difficult with a cold engine but could be readily accomplished when the jacket water was hot. It is believed that the use of the safety fuel would practically eliminate crash fires.
Aerospace Test Facilities at NASA LeRC Plumbrook
NASA Technical Reports Server (NTRS)
1992-01-01
An overview of the facilities and research being conducted at LeRC's Plumbrook field station is given. The video highlights four main structures and explains their uses. The Space Power Facility is the world's largest space environment simulation chamber, where spacebound hardware is tested in simulations of the vacuum and extreme heat and cold of the space plasma environment. This facility was used to prepare Atlas 1 rockets to ferry CRRES into orbit; it will also be used to test space nuclear electric power generation systems. The Spacecraft Propulsion Research Facility allows rocket vehicles to be hot fired in a simulated space environment. In the Cryogenic Propellant Tank Facility, researchers are developing technology for storing and transferring liquid hydrogen in space. There is also a Hypersonic Wind Tunnel which can perform flow tests with winds up to Mach 7.
Aerospace test facilities at NASA LERC Plumbrook
NASA Astrophysics Data System (ADS)
1992-10-01
An overview of the facilities and research being conducted at LeRC's Plumbrook field station is given. The video highlights four main structures and explains their uses. The Space Power Facility is the worlds largest space environment simulation chamber, where spacebound hardware is tested in simulations of the vacuum and extreme heat and cold of the space plasma environment. This facility was used to prepare Atlas 1 rockets to ferry CRRES into orbit; it will also be used to test space nuclear electric power generation systems. The Spacecraft Propulsion Research Facility allows rocket vehicles to be hot fired in a simulated space environment. In the Cryogenic Propellant Tank Facility, researchers are developing technology for storing and transferring liquid hydrogen in space. There is also a Hypersonic Wind Tunnel which can perform flow tests with winds up to Mach 7.
Space shuttle development Motor No. 9 (DM-9), volume 1
NASA Technical Reports Server (NTRS)
Garecht, Diane M.
1990-01-01
The results obtained during the December 23, 1987 static firing of the DM-9 test article are presented. The DM-9 full-scale static test article employed redesigned solid rocket motor (RSRM) field joint capture feature hardware with J-seal insulation configuration, and nozzle-to-case joint radial bolt design with bonded insulation configuration. The nozzle incorporated RSRM components, including a thicker cowl with involuted outer boot ring. The nozzle employed redundant and verifiable seals in all five joints, and room temperature vulcanization backfill in three joints. With very few exceptions, the DM-9 test article was flight configuration. The test was conducted under extreme weather conditions: temperature of 25 F and wind at 15 to 20 mph. Ballistics performance values were within specification requirements. The RSRM field joint (J-seal) insulation configuration functioned as predicted with no indication of hot gases reaching the capture feature O-rings. There was a blowhole in the polysulfide adhesive in the nozzle-to-case joint, but no evidence of hot gases past the wiper O-ring. Nozzle design changes appeared to perform nominally, with the exception of the outer boot ring, which suffered partial structural breakup late in the test. Field joint heaters maintained the controlling resistance temperature device temperature within the specified requirements during heater operation. The thrust vector control system operated properly. The redesigned water deluge system, temperature conditioning equipment, and other test support equipment performed as planned.
Aircraft Engine Sump Fire Mitigation, Phase 2
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1978-01-01
The effect of changes in the input parameters (air leakage flow rate and temperature and lubricating oil inlet flow rate and temperature) over a specified range on the flammability conditions within an aircraft engine bearing sump was investigated. An analytical study was performed to determine the effect of various parameters on the generation rate of oil vapor from oil droplets in a hot air stream flowing in a cylindrical tube. The ignition of the vapor-air mixture by an ignition source was considered. The experimental investigation demonstrated that fires would be ignited by a spark ignitor over the full range of air and oil flow rates and air temperatures evaluated. However, no fires could be ignited when the oil inlet temperature was maintained below 41.7 K (290 F). The severity of the fires ignited were found to be directly proportional to the hot air flow rate. Reasonably good correlation was found between the mixture temperature in the sump at the ignitor location and the flammability limits as defined by flammability theory; thus a fairly reliable experimental method of determining flammable conditions within a sump was demonstrated. The computerized mathematical model shows that oil droplet size and air temperature have the greatest influence on the generation rate of oil vapor.
Dependence of drivers affects risks associated with compound events
NASA Astrophysics Data System (ADS)
Zscheischler, Jakob; Seneviratne, Sonia I.
2017-04-01
Compound climate extremes are receiving increasing attention because of their disproportionate impacts on humans and ecosystems. Risks assessments, however, generally focus on univariate statistics even when multiple stressors are considered. Concurrent extreme droughts and heatwaves have been observed to cause a suite of extreme impacts on natural and human systems alike. For example, they can substantially affect vegetation health, prompting tree mortality, and thereby facilitating insect outbreaks and fires. In addition, hot droughts have the potential to trigger and intensify fires and can cause severe economical damage. By promoting disease spread, extremely hot and dry conditions also strongly affect human health. We analyse the co-occurrence of dry and hot summers and show that these are strongly correlated for many regions, inducing a much higher frequency of concurrent hot and dry summers than what would be assumed from the independent combination of the univariate statistics. Our results demonstrate how the dependence structure between variables affects the occurrence frequency of multivariate extremes. Assessments based on univariate statistics can thus strongly underestimate risks associated with given extremes, if impacts depend on multiple (dependent) variables. We conclude that a multivariate perspective is necessary in order to appropriately assess changes in climate extremes and their impacts, and to design adaptation strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. This finding suggestsmore » that large cyclones with natural or augmented electrostatic forces employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. This is of special importance since the use of many small cyclones in parallel, or multicyclones, commonly suffers from fouling and this approach is not recommended in the CFCC application. The original objective of this investigation was to assess the relative merits of the Aerodyne cyclone separator. It was found from both the cold flow and the hot flow tests that its separative efficiencies are disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones.« less
FireBird - a small satellite fire monitoring mission: Status and first results
NASA Astrophysics Data System (ADS)
Lorenz, Eckehard; Rücker, Gernot; Terzibaschian, Thomas; Klein, Doris; Tiemann, Joachim
2014-05-01
The scientific mission FireBird is operated by the German Aerospace Center (DLR) and consists of two small satellites. The first satellite - TET-1 - was successfully launched from Baikonur, Russia in July 2012. Its first year in orbit was dedicated to a number of experiments within the framework of the DLR On Orbit Verification (OOV) program which is dedicated to technology testing in space. After successful completion of its OOV phase, TET-1 was handed over to the DLR FireBird mission and is now a dedicated Earth Observation mission. Its primary goal is sensing of hot phenomena such as wildfires, volcanoes, gas flares and industrial hotspots. The second satellite, BiROS is scheduled for launch in the second or third quarter of 2015. The satellite builds on the heritage of the DLR BIRD (BIspectral Infrared Detection) mission and delivers quantitative information (such as Fire Radiative Power, FRP) at a spatial resolution of 350 m, superior to any current fire enabled satellite system such as NPP VIIRS, MODIS or Meteosat SEVIRI. The satellite is undergoing a four month validation phase during which satellite operations are adapted to the new mission goals of FireBIRD and processing capacities are established to guarantee swift processing and delivery of high quality data. The validation phase started with an informal Operational Readiness Review and will be completed with a formal review, covering all aspects of the space and ground segments. The satellite is equipped with a camera with a 42 m ground pixel size in the red, green and near infrared spectral range, and a 370 m ground pixel size camera in the mid and thermal infrared with a swath of 185 km. The satellite can be pointed towards a target in order to enhance observation frequency. First results of the FireBird mission include a ground validation experiment and acquisitions over fires across the world. Once the validation phase is finished the data will be made available to a wide scientific community.
Traditional fire-use, landscape transition, and the legacies of social theory past.
Coughlan, Michael R
2015-12-01
Fire-use and the scale and character of its effects on landscapes remain hotly debated in the paleo- and historical-fire literature. Since the second half of the nineteenth century, anthropology and geography have played important roles in providing theoretical propositions and testable hypotheses for advancing understandings of the ecological role of human-fire-use in landscape histories. This article reviews some of the most salient and persistent theoretical propositions and hypotheses concerning the role of humans in historical fire ecology. The review discusses this history in light of current research agendas, such as those offered by pyrogeography. The review suggests that a more theoretically cognizant historical fire ecology should strive to operationalize transdisciplinary theory capable of addressing the role of human variability in the evolutionary history of landscapes. To facilitate this process, researchers should focus attention on integrating more current human ecology theory into transdisciplinary research agendas.
Animation of Sequoia Forest Fire
NASA Technical Reports Server (NTRS)
2002-01-01
Continued hot, dry weather in the American west contributed to the spread of numerous fires over the weekend of July 29-30, 2000. This is the most active fire season in the United States since 1988, when large portions of Yellowstone National Park burned. One of the largest fires currently burning has consumed more than 63,000 acres in Sequoia National Forest. This NOAA Geostationary Operational Environmental Satellite (GOES) image shows the fire on the afternoon of July 30, 2000. Note the clouds above the smoke plume. These often form during large fires because updrafts lift warm air near the ground high into the atmosphere, cooling the air and causing the water vapor it contains to condense into droplets. The soot particles in the smoke also act as condensation nuclei for the droplets. View the animation of GOES data to see the smoke forming clouds. Image and Animation by Robert Simmon and Marit-Jentoft Nilsen, NASA GSFC, based on data from NOAA.
Atmospheric Science Data Center
2016-01-27
... Probe Hot-Wire Hygrometer Photometer Platinium Resistance PMS 2D-C Probe PMS 2D-P Probe PRT-5 Pyranometer ... Ice Irradiance Liquid Water Content Mixing Ratio Temperature Wind Direction Wind Speed Order Data: ...
Atmospheric Science Data Center
2015-11-25
... Probe Hot-Wire Hygrometer Photometer Platinum Resistance PMS 2D-C Probe PMS 2D-P Probe PRT-5 Pyranometer ... Ice Irradiance Liquid Water Content Mixing Ratio Temperature Wind Direction Wind Speed Order Data: ...
NASA Technical Reports Server (NTRS)
Barkhoudarian, Sarkis; Kittinger, Scott
2006-01-01
Optical spectrometry can provide means to characterize rocket engine exhaust plume impurities due to eroded materials, as well as combustion mixture ratio without any interference with plume. Fiberoptic probes and cables were designed, fabricated and installed on Space Shuttle Main Engines (SSME), allowing monitoring of the plume spectra in real time with a Commercial of the Shelf (COTS) fiberoptic spectrometer, located in a test-stand control room. The probes and the cables survived the harsh engine environments for numerous hot-fire tests. When the plume was seeded with a nickel alloy powder, the spectrometer was able to successfully detect all the metallic and OH radical spectra from 300 to 800 nanometers.
Liquid Methane/Liquid Oxygen Injectors for Potential Future Mars Ascent Engines
NASA Technical Reports Server (NTRS)
Trinh, Huu Phuoc
1999-01-01
Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of launch vehicles. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission would decrease. NASA/Johnson Space Center has initiated several concept studies of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This paper will address the results of the liquid methane/LOX injector study conducted at MSFC. A total of four impinging injector configurations were tested under combustion conditions in a modular combustor test article (MCTA), equipped with optically accessible windows. A series of forty hot-fire tests, which covered a wide range of engine operating conditions with the chamber pressure varied from 320 to 510 and the mixture ratio from 1.5 to 3.5, were performed. The test matrix also included a variation in the combustion chamber length for the purpose of investigating its effects on the combustion performance and stability.
Space Launch System Base Heating Test: Environments and Base Flow Physics
NASA Technical Reports Server (NTRS)
Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.
2016-01-01
The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen-hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during flight. Due to the complex nature of rocket plume-induced flows within the launch vehicle base during ascent and a new vehicle configuration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot-fire test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate flight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative effort that has not been attempted in 40+ years for a NASA vehicle. This paper discusses the various trends of base convective heat flux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base flow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi-empirical numerical models to determine exceedance and conservatism of the flight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.
Web-GIS platform for forest fire danger prediction in Ukraine: prospects of RS technologies
NASA Astrophysics Data System (ADS)
Baranovskiy, N. V.; Zharikova, M. V.
2016-10-01
There are many different statistical and empirical methods of forest fire danger use at present time. All systems have not physical basis. Last decade deterministic-probabilistic method is rapidly developed in Tomsk Polytechnic University. Forest sites classification is one way to estimate forest fire danger. We used this method in present work. Forest fire danger estimation depends on forest vegetation condition, forest fire retrospective, precipitation and air temperature. In fact, we use modified Nesterov Criterion. Lightning activity is under consideration as a high temperature source in present work. We use Web-GIS platform for program realization of this method. The program realization of the fire danger assessment system is the Web-oriented geoinformation system developed by the Django platform in the programming language Python. The GeoDjango framework was used for realization of cartographic functions. We suggest using of Terra/Aqua MODIS products for hot spot monitoring. Typical territory for forest fire danger estimation is Proletarskoe forestry of Kherson region (Ukraine).
RSRM Nozzle Anomalous Throat Erosion Investigation Overview
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Wendel, Gary M.
1998-01-01
In September, 1996, anomalous pocketing erosion was observed in the aft end of the throat ring of the nozzle of one of the reusable solid rocket motors (RSRM 56B) used on NASA's space transportation system (STS) mission 79. The RSRM throat ring is constructed of bias tape-wrapped carbon cloth/ phenolic (CCP) ablative material. A comprehensive investigation revealed necessary and sufficient conditions for occurrence of the pocketing event and provided rationale that the solid rocket motors for the subsequent mission, STS-80, were safe to fly. The nozzles of both of these motors also exhibited anomalous erosion similar to, but less extensive than that observed on STS-79. Subsequent to this flight, the investigation to identify both the specific causes and the corrective actions for elimination of the necessary and sufficient conditions for the pocketing erosion was intensified. A detailed fault tree approach was utilized to examine potential material and process contributors to the anomalous performance. The investigation involved extensive constituent and component material property testing, pedigree assessments, supplier audits, process audits, full scale processing test article fabrication and evaluation, thermal and thermostructural analyses, nondestructive evaluation, and material performance tests conducted using hot fire simulation in laboratory test beds and subscale and full scale solid rocket motor static test firings. This presentation will provide an over-view of the observed anomalous nozzle erosion and the comprehensive, fault-tree based investigation conducted to resolve this issue.
Burning Issue: Handling Household Burns
... hot objects or liquid, fire, friction, the sun, electricity, or certain chemicals. Each year, about a half- ... infant or elderly. the burn was caused by electricity, which can lead to “invisible” burns. Links Burns ...
Safety for Older Consumers: Home Safety Checklist
... 3 Keep ashtrays, smoking materi- als, candles, hot plates and other potential fire sources away from curtains, ... A ll electrical outlets and switches have cover plates installed so no wiring is exposed. U nused ...
... and direct flame PROTECTION: overshoes or boots of fire-resistant materials with wooden soles HAZARD: high voltage PROTECTION: shoes with rubber or cork heels and soles, and no exposed metal parts HAZARD: hot surfaces PROTECTION: safety shoes with ...
Application of fire and evacuation models in evaluation of fire safety in railway tunnels
NASA Astrophysics Data System (ADS)
Cábová, Kamila; Apeltauer, Tomáš; Okřinová, Petra; Wald, František
2017-09-01
The paper describes an application of numerical simulation of fire dynamics and evacuation of people in a tunnel. The software tool Fire Dynamics Simulator is used to simulate temperature resolution and development of smoke in a railway tunnel. Comparing to temperature curves which are usually used in the design stage results of the model show that the numerical model gives lower temperature of hot smoke layer. Outputs of the numerical simulation of fire also enable to improve models of evacuation of people during fires in tunnels. In the presented study the calculated high of smoke layer in the tunnel is in 10 min after the fire ignition lower than the level of 2.2 m which is considered as the maximal limit for safe evacuation. Simulation of the evacuation process in bigger scale together with fire dynamics can provide very valuable information about important security conditions like Available Safe Evacuation Time (ASET) vs Required Safe Evacuation Time (RSET). On given example in software EXODUS the paper summarizes selected results of evacuation model which should be in mind of a designer when preparing an evacuation plan.
Failure Control Techniques for the SSME
NASA Technical Reports Server (NTRS)
Taniguchi, M. H.
1987-01-01
Since ground testing of the Space Shuttle Main Engine (SSME) began in 1975, the detection of engine anomalies and the prevention of major damage have been achieved by a multi-faceted detection/shutdown system. The system continues the monitoring task today and consists of the following: sensors, automatic redline and other limit logic, redundant sensors and controller voting logic, conditional decision logic, and human monitoring. Typically, on the order of 300 to 500 measurements are sensed and recorded for each test, while on the order of 100 are used for control and monitoring. Despite extensive monitoring by the current detection system, twenty-seven (27) major incidents have occurred. This number would appear insignificant compared with over 1200 hot-fire tests which have taken place since 1976. However, the number suggests the requirement for and future benefits of a more advanced failure detection system.
Experimental Evaluation of a Subscale Gaseous Hydrogen/gaseous Oxygen Coaxial Rocket Injector
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert
2002-01-01
The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.
Fire Monitoring from the New Generation of US Polar and Geostationary Satellites
NASA Astrophysics Data System (ADS)
Csiszar, I.; Justice, C. O.; Prins, E.; Schroeder, W.; Schmidt, C.; Giglio, L.
2012-04-01
Sensors on the new generation of US operational environmental satellites will provide measurements suitable for active fire detection and characterization. The NPOESS Preparatory Project (NPP) satellite, launched on October 28, 2011, carries the Visible Infrared Imager Radiometer Suite (VIIRS), which is expected to continue the active fire data record from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System Terra and Aqua Satellites. Early evaluation of the VIIRS active fire product, including comparison to near-simultaneous MODIS data, is underway. The new generation of Geostationary Operational Environmental Satellite (GOES) series, starting with GOES-R to be launched in 2015, will carry the Advanced Baseline Imager (ABI), providing higher spatial and temporal resolution than the current GOES imager. The ABI will also include a dedicated band to provide radiance observations over a wider dynamic range to detect and characterize hot targets. In this presentation we discuss details of the monitoring capabilities from both VIIRS and ABI and the current status of the corresponding algorithm development and testing efforts. An integral part of this activity is explicit product validation, utilizing high resolution satellite and airborne imagery as reference data. The new capabilities also represent challenges to establish continuity with data records from heritage missions, and to coordinate compatible international missions towards a global multi-platform fire monitoring system. These objectives are pursued by the Fire Mapping and Monitoring Implementation Team of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) program, which also provides coordinated contribution to relevant initiatives by the Committee on Earth Observation Satellites (CEOS), the Coordination Group for Meteorological Satellites (CGMS) and the Global Climate Observing System (GCOS).
Synoptic-scale fire weather conditions in Alaska
NASA Astrophysics Data System (ADS)
Hayasaka, Hiroshi; Tanaka, Hiroshi L.; Bieniek, Peter A.
2016-09-01
Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by considering the number of daily hotspots and their continuity. Fire weather conditions during the top six periods of high fire activity in the fire years of 2004, 2005, 2009, and 2015 were analyzed using upper level (500 hPa) and near surface level (1000 hPa) atmospheric reanalysis data. The top four fire-periods occurred under similar unique high-pressure fire weather conditions related to Rossby wave breaking (RWB). Following the ignition of wildfires, fire weather conditions related to RWB events typically result in two hotspot peaks occurring before and after high-pressure systems move from south to north across Alaska. A ridge in the Gulf of Alaska resulted in southwesterly wind during the first hotspot peak. After the high-pressure system moved north under RWB conditions, the Beaufort Sea High developed and resulted in relatively strong easterly wind in Interior Alaska and a second (largest) hotspot peak during each fire period. Low-pressure-related fire weather conditions occurring under cyclogenesis in the Arctic also resulted in high fire activity under southwesterly wind with a single large hot-spot peak.
10 CFR 431.110 - Energy conservation standards and their effective dates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... heaters ≤155,000 Btu/hr>155,000 Btu/hr 80%80% Q/800 + 110(Vr) 1/2 (Btu/hr)Q/800 + 110(Vr) 1/2 (Btu/hr) Oil-fired storage water heaters ≤155,000 Btu/hr>155,000 Btu/hr 78%78% Q/800 + 110(Vr) 1/2 (Btu/hr)Q/800 + 110(Vr) 1/2 (Btu/hr) Gas-fired instantaneous water heaters and hot water supply boilers <10 gal≥10 gal...
10 CFR 431.110 - Energy conservation standards and their effective dates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... heaters ≤155,000 Btu/hr>155,000 Btu/hr 80%80% Q/800 + 110(Vr) 1/2 (Btu/hr)Q/800 + 110(Vr) 1/2 (Btu/hr) Oil-fired storage water heaters ≤155,000 Btu/hr>155,000 Btu/hr 78%78% Q/800 + 110(Vr) 1/2 (Btu/hr)Q/800 + 110(Vr) 1/2 (Btu/hr) Gas-fired instantaneous water heaters and hot water supply boilers <10 gal≥10 gal...
Structural wood panels with improved fire resistance
NASA Technical Reports Server (NTRS)
Sawko, P. M. (Inventor)
1980-01-01
Structural wood paneling or other molded wood compositions consisting of finely divided wood chips, flour, or strands are bound together and hot pressed with a modified novolac resin which is the cured product of a prepolymer made from an aralkyl ether or halide with a phenol and a hardening agent such as hexamethylene tetramine. The fire resistance of these articles is further improved by incorporating in the binder certain inorganic fillers, especially a mixture of ammonium oxalate and ammonium phosphate.
Seven years later: effects of wildfire in a young stand of Virginia pine and hardwoods
Richard H. Fenton
1960-01-01
In November 1952 a hot surface fire burned through part of a 30-year-old Virginia pine-hardwood stand near Beltsville, Md. Observations were made for the next 2 years to evaluate the effects of this type of fire under these stand conditions. The main direct effects during the 2 years, as reported by Church in 1955, were: 45 percent mortality of trees 1 inch d.b.h. and...
Defense Infrastructure: DOD’s 2013 Facilities Corrosion Study Addressed Reporting Elements
2014-03-27
the coating system to metal structures helped prevent corrosion and provided resistance to fire . For the second element, to review a sampling of...noted, was to apply an epoxy coating system to metal structures to prevent corrosion and provide fire resistance. In 2006, DOD applied an epoxy... heat exchange Fuel distribution Plumbing Bridge Fuel storage Roof Building exterior—paint Generator Signage Compressor Hot water
NASA Technical Reports Server (NTRS)
2002-01-01
Hot, dry weather has contributed to a string of fires that burned in Greece during the first two weeks of July 2000. Smoke from one of these fires is streaming across Greece and out into the Aegean Sea in this image taken July 13, 2000, by the Sea-viewing Wide Field of view Sensor (SeaWiFS). For more about SeaWiFS, visit the SeaWiFS home page. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
2011-01-01
we propose that hot-spot mitigation using thermoelectric coolers can be used as a power management mechanism to allow global coolers to be provi...sioned for a better worst case temperature leading to substan- tial savings in cooling power. In order to quantify the potential power savings from us- ing...energy density inside a processor to maximally tolerable levels, modern microprocessors make ex- tensive use of hardware structures such as the load
Structurally compliant rocket engine combustion chamber: Experimental and analytical validation
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.
1994-01-01
A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.
Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar
Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.
2015-01-01
Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632
Factors controlling vegetation fires in protected and non-protected areas of myanmar.
Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O
2015-01-01
Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.
Space Propulsion Research Facility (B-2): An Innovative, Multi-Purpose Test Facility
NASA Technical Reports Server (NTRS)
Hill, Gerald M.; Weaver, Harold F.; Kudlac, Maureen T.; Maloney, Christian T.; Evans, Richard K.
2011-01-01
The Space Propulsion Research Facility, commonly referred to as B-2, is designed to hot fire rocket engines or upper stage launch vehicles with up to 890,000 N force (200,000 lb force), after environmental conditioning of the test article in simulated thermal vacuum space environment. As NASA s third largest thermal vacuum facility, and the largest designed to store and transfer large quantities of propellant, it is uniquely suited to support developmental testing associated with large lightweight structures and Cryogenic Fluid Management (CFM) systems, as well as non-traditional propulsion test programs such as Electric and In-Space propulsion. B-2 has undergone refurbishment of key subsystems to support the NASA s future test needs, including data acquisition and controls, vacuum, and propellant systems. This paper details the modernization efforts at B-2 to support the Nation s thermal vacuum/propellant test capabilities, the unique design considerations implemented for efficient operations and maintenance, and ultimately to reduce test costs.
Space station propulsion test bed
NASA Technical Reports Server (NTRS)
Briley, G. L.; Evans, S. A.
1989-01-01
A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.
NASA Technical Reports Server (NTRS)
Misencik, J. A.
1982-01-01
Alloy tubes filled with hydrogen doped with various amounts of carbon monoxide, carbon dioxide, ethane, ethylene, methane, ammonia, or water were heated in a diesel fuel-fired Stirling engine simulator materials test rig for 100 hours at 21 MPa and 760 or 820 C to determine the effectiveness of the dopants in reducing hydrogen permeation through the hot tube walls. Ultra high purity (UHP) hydrogen was used for comparison. The tube alloys were N-155, A-286, Incoloy 800, Nitronic 40, 19-9DL, 316 stainless steel, Inconel 718, and HS-188. Carbon dioxide and carbon monoxide in the concentration range 0.2 to 5 vol % were most effective in reducing hydrogen permeation through the hot tube walls for all alloys. Ethane, ethylene, methane, ammonia, and water at the concentrations investigated were not effective in reducing the permeation below that achieved with UHP hydrogen. One series of tests were conducted with UHP hydrogen in carburized tubes. Carburization of the tubes prior to exposure reduced permeation to values similar to those for carbon monoxide; however, carbon dioxide was the most effective dopant.
Assessing the home fire safety of urban older adults: a case study.
Twyman, Stephanie; Fahey, Erin; Lehna, Carlee
2014-01-01
Older adults are at a higher risk for fatal house fire injury due to decreased mobility, chronic illness, and lack of smoke alarms. The purpose of this illustrative case study is to describe the home fire safety (HFS) status of an urban older adult who participated in a large study funded by the Federal Emergency Management Agency (FEMA). During a home visit with the participant, HFS data were collected from documents, observation, physical artifacts, reflective logs, and interviews. Numerous HFS hazards were identified including non-working smoke alarms, inadequate number and inappropriate placement of smoke alarms, lack of carbon monoxide (CO) alarms, inability to identify a home fire escape plan, hot water heater temperature set too high, and cooking hazards. Identification of HFS risk factors will assist in the development of educational materials that can be tailored to the older adult population to decrease their risk of fire-related injuries and death.
40 CFR 52.2070 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fuel fired steam or hot water generating units 10/5/1982 3/29/1983, 48 FR 13026 Air Pollution Control... organic solvent emissions from six paper coating lines. (A) Letter from the RIDEM dated November 5, 1985...
Estimating Canopy Water Content of Chaparral Shrubs Using Optical Methods
NASA Technical Reports Server (NTRS)
Ustin, Susan L.; Scheer, George; Castaneda, Claudia M.; Jacquemoud, Stephane; Roberts, Dar; Green, Robert O.
1996-01-01
California chaparral ecosystems are exceptionally fire adapted and typically are subject to wildfire at decadal to century frequencies. The hot dry Mediterranean climate summers and the chaparral communities of the Santa Monica Mountains make wildfire one of the most serious economic and life-threatening natural disasters faced by the region. Additionally, the steep fire-burned hillsides are subject to erosion, slumpage, and mud slides during the winter rains. The Santa Monica Mountain Zone (SMMZ) is a 104,000 ha eastwest trending range with 607 m of vertical relief and located in the center of the greater Los Angeles region. A series of fires in the fall of 1993 burned from Simi Valley to Santa Monica within a few hours. Developing techniques to monitor fire hazard and predict the spread of fire is of major concern to the region. One key factor in the susceptibility to fire is the water content of the vegetation canopy. The development of imaging spectrometry and remote sensing techniques may constitute a tool to provide this information.
Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean
NASA Astrophysics Data System (ADS)
Ruffault, Julien; Curt, Thomas; Martin-StPaul, Nicolas K.; Moron, Vincent; Trigo, Ricardo M.
2018-03-01
Increasing drought conditions under global warming are expected to alter the frequency and distribution of large and high-intensity wildfires. However, our understanding of the impact of increasing drought on extreme wildfires events remains incomplete. Here, we analyzed the weather conditions associated with the extreme wildfires events that occurred in Mediterranean France during the exceptionally dry summers of 2003 and 2016. We identified that these fires were related to two distinct shifts in the fire weather space towards fire weather conditions that had not been explored before and resulting from specific interactions between different types of drought and different fire weather types. In 2016, a long-lasting press drought
intensified wind-driven fires. In 2003, a hot drought
combining a heat wave with a press drought intensified heat-induced fires. Our findings highlight that increasing drought conditions projected by climate change scenarios might affect the dryness of fuel compartments and lead to a higher frequency of extremes wildfires events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xingbo
The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studiedmore » at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.« less
Dry Conditions and Lightning Strikes Make for a Long California Fire Season
2014-09-16
The fire season in California has been anything but cooperative this year. Hot conditions combined with a state-wide drought and dry lightning makes for unpleasant conditions and leads to an abundance of forest fires. On August 12, lightning struck and started the fire that grew into the Happy Camp Complex. Currently over 113,000 acres have been affected and the fire is only 55% contained as of today. Strong winds tested fire lines yesterday (8/15), and are expected to do so again today. Despite the high winds, existing fire lines held with no spotting or expansion outside current containment lines. The south end of the fire continued backing slowly toward Elk Creek in the Marble Mountain Wilderness. The Man Fire joined with the Happy Camp Complex yesterday and will be managed by California Interagency Incident Management Team 4 as of 6:00am on Wednesday, September 17, 2014. Nearby the Happy Camp Complex, near Mt. Shasta and the town of Weed, another fire erupted that fire officials said quickly damaged or destroyed 100 structures Monday (8/15). Hundreds of firefighters were trying to contain that fire. A California Fire spokesman said more than 300 acres were scorched and more than 100 structures damaged or destroyed in just a few hours. The blaze, dubbed the Boles Fire, also led to the closure of Interstate 5 and U.S. 97. Weed is in Siskiyou County, about 50 miles south of the California-Oregon border. With strong winds, the fire was able to rage into the community before firefighters could get equipment to the blaze. About 1,500 to 2,000 residents were being evacuated to the Siskiyou County fairgrounds. An evacuation center was set up at the county fairgrounds in Yreka. NASA's Aqua satellite collected this natural-color image with the Moderate Resolution Imaging Spectroradiometer, MODIS, instrument on September 15, 2014. Actively burning areas, detected by MODIS’s thermal bands, are outlined in red. NASA image courtesy Jeff Schmaltz LANCE/EOSDIS MODIS Rapid Response Team, GSFC. Caption by Lynn Jenner with information from Inciweb and California Department of Forestry and Fire Protection. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy
NASA Technical Reports Server (NTRS)
Parker, Ron; Carr, Zak; MacLean, Matthew; Dufrene, Aaron; Mehta, Manish
2016-01-01
This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.
NASA Technical Reports Server (NTRS)
VonMeerwall, Ernst D.
1994-01-01
The project involved the impact testing of a kevlar-like woven polymer material, PBO. The purpose was to determine whether this material showed any promise as a lightweight replacement material for jet engine fan containment. The currently used metal fan containment designs carry a high drag penalty due to their weight. Projectiles were fired at samples of PBO by means of a 0.5 inch diameter Helium powered gun. The Initial plan was to encase the samples inside a purpose-built steel "hot box" for heating and ricochet containment. The research associate's responsibility was to develop the data acquisition programs and techniques necessary to determine accurately the impacting projectile's velocity. Beyond this, the Research Associate's duties include any physical computations, experimental design, and data analysis necessary.
Launchers and Improved Components for 4.5 in. Rockets
1946-02-09
Engagements 132 Loading 133 Release 133 "Dig In" Characteristic 133 Cushioning 134 TABLE OF CONTENTS (Conttd) PAGE *Overshooting" in Loading 134 Effect on... loaded for a cold climate and used in a hot climate without removing some of the propellent powder there will be danger of its bursting. Conversely, if...it is loaded for use in a hot climate, there vwill not be sufficient powder for firing at low temperature. A regulating pressure device that would
Instrumentation at the Decade 80 solar house in Tucson, Arizona
NASA Technical Reports Server (NTRS)
1978-01-01
Modifications, problems and solutions for the instrumentation system that occurred during the period from May through September, 1978, are described. The solar house was built to show the use of copper in home building and to demonstrate the use of solar energy to provide space heating and cooling and domestic hot water. The auxiliary energy sources are electrical resistance heating for the domestic hot water and a gas-fired boiler for space heating and operation of the adsorption air conditioning units.
Space Launch System Base Heating Test: Experimental Operations & Results
NASA Technical Reports Server (NTRS)
Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael
2016-01-01
NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.
Exploratory spatial data analysis of global MODIS active fire data
NASA Astrophysics Data System (ADS)
Oom, D.; Pereira, J. M. C.
2013-04-01
We performed an exploratory spatial data analysis (ESDA) of autocorrelation patterns in the NASA MODIS MCD14ML Collection 5 active fire dataset, for the period 2001-2009, at the global scale. The dataset was screened, resulting in an annual rate of false alarms and non-vegetation fires ranging from a minimum of 3.1% in 2003 to a maximum of 4.4% in 2001. Hot bare soils and gas flares were the major sources of false alarms and non-vegetation fires. The data were aggregated at 0.5° resolution for the global and local spatial autocorrelation Fire counts were found to be positively correlated up to distances of around 200 km, and negatively for larger distances. A value of 0.80 (p = 0.001, α = 0.05) for Moran's I indicates strong spatial autocorrelation between fires at global scale, with 60% of all cells displaying significant positive or negative spatial correlation. Different types of spatial autocorrelation were mapped and regression diagnostics allowed for the identification of spatial outlier cells, with fire counts much higher or lower than expected, considering their spatial context.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
... decrease the probability that a fire-induced hot short will cause equipment malfunctions. The current...-stamps the document and sends the submitter an email notice confirming receipt of the document. The E...
Fire patterns in the Amazonian biome
NASA Astrophysics Data System (ADS)
Aragao, Luiz E. O. C.; Shimabukuro, Yosio E.; Lima, Andre; Anderson, Liana O.; Barbier, Nicolas; Saatchi, Sassan
2010-05-01
This paper aims to provide an overview of our recent findings on the interplay between climate and land use dynamics in defining fire patterns in Amazonia. Understanding these relationships is currently a fundamental concern for assessing the vulnerability of Amazonia to climate change and its potential for mitigating current increases in atmospheric greenhouse gases. Reducing carbon emissions from tropical deforestation and forest degradation (REDD), for instance, could contribute to a cumulative emission reduction of 13-50 billion tons of carbon (GtC) by 2100. In Amazonia, though, forest fires can release similar quantities of carbon to the atmosphere (~0.2 GtC yr-1) as deforestation alone. Therefore, to achieve carbon savings through REDD mechanism there is an urgent need of understanding and subsequently restraining related Amazonian fire drivers. In this study, we analyze satellite-derived monthly and annual time-series of fires, rainfall and deforestation in Amazonia to: (1) quantify the seasonal patterns and relationships between these variables; (2) quantify fire and rainfall anomalies to evaluate the impact of recent drought on fire patterns; (3) quantify recent trends in fire and deforestation to understand how land use affects fire patterns in Amazonia. Our results demonstrate a marked seasonality of fires. The majority of fires occurs along the Arc of Deforestation, the expanding agricultural frontier in southern and eastern Amazonia, indicating humans are the major ignition sources determining fire seasonality, spatial distribution and long-term patterns. There is a marked seasonality of fires, which is highly correlated (p<0.05) with monthly rainfall and deforestation rates. Deforestation and fires reach their highest values three and six months, respectively, after the peak of the rainy season. This result clearly describes the impact of major human activities on fire incidence, which is generally characterized by the slash-and-burn of Amazonian vegetation for implementation of pastures and agricultural fields. The cumulative number of hot pixels is exponentially related to the monthly rainfall, which ultimately defines where and when fire can potentially strike. During the 2005 Amazonian drought, the number of hot pixels increased 33% in relation to mean 1998-2005. However, even with a large fraction of the basin experiencing considerable water deficits, fires have only affect areas with extensive human activity. Our spatially explicit trend analysis on deforestation and fire data revealed that more than half of the area experiencing increased fire occurrence have reduced deforestation rates. This reverse pattern is likely to be associated with the slash-and-burn of secondary forests and the increase of fragmentation and forest edges, favouring the leakage of fires from deforested lands into forests. Finally, our analysis points towards a reduction of fire incidence due to land use intensification in this region. In this study, we demonstrated that anthropogenic forcing, such as deforestation rates, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region exacerbating human impacts in Amazonia. Due to ongoing deforestation and the predicted intensification of climate change induced droughts, it is anticipated that a large area of forest edge will be under increased risk of fires and carbon savings from REDD may be partially offset by increased emissions following fire events. Improved fire-free land management practices may provide a sustainable solution for reducing emissions from the world's largest rainforest. Acknowledges The first author would like to thank the financial support of the Natural Environment Research Council (NERC-UK/grant NE/F015356/1).
Development of Thermal Barriers for Solid Rocket Motor Nozzle Joints
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dunlap, Patrick H., Jr.
1999-01-01
The Space Shuttle solid rocket motor case assembly joints are sealed using conventional 0-ring seals. The 5500+F combustion gases are kept a safe distance away from the seals by thick layers of insulation. Special joint-fill compounds are used to fill the joints in the insulation to prevent a direct flowpath to the seals. On a number of occasions. NASA has observed in several of the rocket nozzle assembly joints hot gas penetration through defects in the joint- fill compound. The current nozzle-to-case joint design incorporates primary, secondary and wiper (inner-most) 0-rings and polysulfide joint-fill compound. In the current design, 1 out of 7 motors experience hot gas to the wiper 0-ring. Though the condition does not threaten motor safety, evidence of hot gas to the wiper 0-ring results in extensive reviews before resuming flight. NASA and solid rocket motor manufacturer Thiokol are working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design and a thermal barrier, This paper presents burn-resistance, temperature drop, flow and resiliency test results for several types of NASA braided carbon-fiber thermal barriers. Burn tests were performed to determine the time to burn through each of the thermal barriers when exposed to the flame of an oxy-acetylene torch (5500 F), representative of the 5500 F solid rocket motor combustion temperatures. Thermal barriers braided out of carbon fibers endured the flame for over 6 minutes, three times longer than solid rocket motor burn time. Tests were performed on two thermal barrier braid architectures, denoted Carbon-3 and Carbon-6, to measure the temperature drop across and along the barrier in a compressed state when subjected to the flame of an oxyacetylene torch. Carbon-3 and Carbon-6 thermal barriers were excellent insulators causing temperature drops through their diameter of up to a 2800 and 2560 F. respectively. Gas temperature 1/4" downstream of the thermal barrier were within the downstream Viton 0-ring temperature limit of 600 F. Carbon-6 performed extremely well in subscale rocket "char" motor tests when subjected to hot gas at 3200 F for an 11 second rocket firing, simulating the maximum downstream joint cavity fill time. The thermal barrier reduced the incoming hot gas temperature by 2200 F in an intentionally oversized gap defect, spread the incoming jet flow, and blocked hot slag, thereby offering protection to the downstream 0-rings.
Wildfire Danger Potential in California
NASA Astrophysics Data System (ADS)
Kafatos, M.; Myoung, B.; Kim, S. H.; Fujioka, F. M.; Kim, J.
2015-12-01
Wildfires are an important concern in California (CA) which is characterized by the semi-arid to arid climate and vegetation types. Highly variable winter precipitation and extended hot and dry warm season in the region challenge an effective strategic fire management. Climatologically, the fire season which is based on live fuel moisture (LFM) of generally below 80% in Los Angeles County spans 4 months from mid-July to mid-November, but it has lasted over 7 months in the past several years. This behavior is primarily due to the ongoing drought in CA during the last decade, which is responsible for frequent outbreaks of severe wildfires in the region. Despite their importance, scientific advances for the recent changes in wildfire risk and effective assessments of wildfire risk are lacking. In the present study, we show impacts of large-scale atmospheric circulations on an early start and then extended length of fire seasons. For example, the strong relationships of North Atlantic Oscillation (NAO) with springtime temperature and precipitation in the SWUS that was recently revealed by our team members have led to an examination of the possible impact of NAO on wildfire danger in the spring. Our results show that the abnormally warm and dry spring conditions associated with positive NAO phases can cause an early start of a fire season and high fire risks throughout the summer and fall. For an effective fire danger assessment, we have tested the capability of satellite vegetation indices (VIs) in replicating in situ LFM of Southern CA chaparral ecosystems by 1) comparing seasonal/interannual characteristics of in-situ LFM with VIs and 2) developing an empirical model function of LFM. Unlike previous studies attempting a point-to-point comparison, we attempt to examine the LFM relationship with VIs averaged over different areal coverage with chamise-dominant grids (i.e., 0.5 km to 25 km radius circles). Lastly, we discuss implications of the results for fire danger assessment and prediction.
Test Report - Fault Current Through Graphite Filament Reinforced Plastic
NASA Technical Reports Server (NTRS)
Evans, R. W.
1997-01-01
Tests were performed to determine the damage to samples of composite material when a current carrying wire is shorted to the surface of the composite material, and to determine whether enough current can flow through the material to blow a fuse before damage can occur. Fault current tests were performed on samples of graphite epoxy materials. Samples consisted of six layers of IM7 graphite fiber mat in Hercules 8552 epoxy resin. A variable power supply provided up to 35 amps of current. The high voltage side of the power supply was attached to a wire at the end of a hinged arm, and the low side was attached to the edge of the sample. To test joints, the return was connected to the edge of one sample, and the high side was shorted to the top of the other sample. Tests show that when current exceeds approximately 5 amps, the graphite glows, and the epoxy melts out at the shorted contact. At higher current levels the epoxy burns. At voltages above 15 volts the epoxy outer coat is easily broken, and fire, flame, and a rise in current occur suddenly. When joints are introduced, resistance is increased, and the maximum current resulting from a short circuit to the graphite epoxy is reduced. This condition can easily result in fault current lower than the circuit breaker limit and higher than the 5 amp ignition level. The shorting contact and the joint become hot spots with melting epoxy, smoke, and fire.
Volcano early warning system based on MSG-SEVIRI multispectral data
NASA Astrophysics Data System (ADS)
Ganci, Gaetana; Vicari, Annamaria; Del Negro, Ciro
2010-05-01
Spaceborne remote sensing of high-temperature volcanic features offers an excellent opportunity to monitor the onset and development of new eruptive activity. Particularly, images with lower spatial but higher temporal resolution from meteorological satellites have been proved to be a sound instrument for continuous monitoring of volcanic activity, even though the relevant volcanic characteristics are much smaller than the nominal pixel size. The launch of Spinning Enhanced Visible and Infrared Imager (SEVIRI), on August 2002, onboard the geosynchronous platforms MSG1 and MSG2, has opened a new perspective for near real-time volcano monitoring by providing images at 15 minutes interval. Indeed, in spite of the low spatial resolution (3 km2 at nadir), the high frequency of observations afforded by the MSG SEVIRI was recently applied both for forest fire detection and for the monitoring of effusive volcanoes in Europe and Africa. Our Laboratory of Technologies (TecnoLab) at INGV-CT has been developing methods and know-how for the automated acquisition and management of MSG SEVIRI data. To provide a basis for real-time response during eruptive events, we designed and developed the automated system called HOTSAT. Our algorithm takes advantages from both spectral and spatial comparisons. Firstly, we use an adaptive thresholding procedure based on the computation of the spatial standard deviation derived from the immediately neighboring of each pixel to detect "potential" hot pixels. Secondly, it is required to further assess as true or false hotspot detections base on other thresholds test derived from the SEVIRI middle infrared (MIR, 3.9 μm) brightness temperatures taking into account its statistic behavior. Following these procedures, all the computations are based on dynamic thresholds reducing the number of false alarm due to atmospheric conditions. Our algorithm allows also the derivation of radiative power at all "hot" pixels. This is carried out using the MIR radiance method introduced by Wooster et al. [2003] for forest fires. It's based on an approximation of the Plank's Law as a power law. No assumption is made on the thermal structure of the pixel. The radiant flux, i.e. the fire radiative power, is proportional to the calibrated radiance associated to the hot part of the pixel computed as the difference between the observed hotspot pixel radiance in the SEVIRI MIR channel and the background radiance that would have been observed at the same location in the absence of thermal anomalies. The HOTSAT early warning system based on SEVIRI multispectral data is now suitable to be employed in an operational system of volcano monitoring. To validate and test the system some real cases on Mt Etna are presented.
NASA Technical Reports Server (NTRS)
1997-01-01
The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at NASA Dryden Flight Research Center, Edwards, California, in November 1998. The experiment's goal was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds of up to approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 and a maximum altitude of 33,000 feet before landing at Edwards, California, at 10:21 a.m. PST, successfully validating the SR-71/pod configuration. Five follow-on flights focused on the experiment; two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to check engine operation characteristics. The first of these flights occurred March 4, 1998. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards, California, at 12:13 p.m. PST. During further flights in the spring and summer of 1998, liquid oxygen was cycled through the engine. In addition, two engine hot firings were conducted on the ground. It was decided not to do a final hot-fire flight test as a result of the liquid oxygen leaks in the test apparatus. The ground firings and the airborne cryogenic gas flow tests provided enough information to predict the hot gas effects of an aerospike engine firing during flight. The experiment itself was a small, half-span model that contained eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium and instrumentation. The model, engine and canoe together were called the 'pod.' The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on NASA's SR-71, on loan to NASA from the U.S. Air Force. Lockheed Martin may use information gained from LASRE and the X-33 Advanced Technology Demonstrator to develop a potential future reusable launch vehicle. NASA and Lockheed Martin are partners in the X-33 program through a cooperative agreement.The goal of the X-33 program, and a major goal for NASA's Office of Aero-Space Technology, has been to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. The program implements the National Space Transportation Policy, which was designed to accelerate the development of new launch technologies and concepts that contribute to the continuing commercialization of the national space launch industry. Both the flagship X-33 and the smaller X-34 technology testbed demonstrator fall under the Space Transportation Program Offices at NASA Marshall Space Flight Center, Huntsville, Alabama. The air-launched, winged X-34 also will demonstrate technologies applicable to future-generation reusable launch vehicles designed to dramatically lower the cost of access to space. The following 19-second clip shows one of two 'hot firings' of the Linear Aerospike engine on it's SR-71 test aircraft while on the ground at NASA Dryden Flight Research Center.
Extended temperature range ACPS thruster investigation
NASA Technical Reports Server (NTRS)
Blubaugh, A. L.; Schoenman, L.
1974-01-01
The successful hot fire demonstration of a pulsing liquid hydrogen/liquid oxygen and gaseous hydrogen/liquid oxygen attitude control propulsion system thruster is described. The test was the result of research to develop a simple, lightweight, and high performance reaction control system without the traditional requirements for extensive periods of engine thermal conditioning, or the use of complex equipment to convert both liquid propellants to gas prior to delivery to the engine. Significant departures from conventional injector design practice were employed to achieve an operable design. The work discussed includes thermal and injector manifold priming analyses, subscale injector chilldown tests, and 168 full scale and 550 N (1250 lbF) rocket engine tests. Ignition experiments, at propellant temperatures ranging from cryogenic to ambient, led to the generation of a universal spark ignition system which can reliably ignite an engine when supplied with liquid, two phase, or gaseous propellants. Electrical power requirements for spark igniter are very low.
Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.
2012-01-01
The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.
NASA Propulsion Concept Studies and Risk Reduction Activities for Resource Prospector Lander
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Williams, Hunter; Burnside, Chris
2015-01-01
The Resource Prospector mission is to investigate the Moon's polar regions in search of volatiles. The government-version lander concept for the mission is composed of a braking stage and a liquid-propulsion lander stage. A propulsion trade study concluded with a solid rocket motor for the braking stage while using the 4th-stage Peacekeeper (PK) propulsion components for the lander stage. The mechanical design of the liquid propulsion system was conducted in concert with the lander structure design. A propulsion cold-flow test article was fabricated and integrated into a lander development structure, and a series of cold flow tests were conducted to characterize the fluid transient behavior and to collect data for validating analytical models. In parallel, RS-34 PK thrusters to be used on the lander stage were hot-fire tested in vacuum conditions as part of risk reduction activities.
Lorz, C; Fürst, C; Galic, Z; Matijasic, D; Podrazky, V; Potocic, N; Simoncic, P; Strauch, M; Vacik, H; Makeschin, F
2010-12-01
We assessed the probability of three major natural hazards--windthrow, drought, and forest fire--for Central and South-Eastern European forests which are major threats for the provision of forest goods and ecosystem services. In addition, we analyzed spatial distribution and implications for a future oriented management of forested landscapes. For estimating the probability of windthrow, we used rooting depth and average wind speed. Probabilities of drought and fire were calculated from climatic and total water balance during growing season. As an approximation to climate change scenarios, we used a simplified approach with a general increase of pET by 20%. Monitoring data from the pan-European forests crown condition program and observed burnt areas and hot spots from the European Forest Fire Information System were used to test the plausibility of probability maps. Regions with high probabilities of natural hazard are identified and management strategies to minimize probability of natural hazards are discussed. We suggest future research should focus on (i) estimating probabilities using process based models (including sensitivity analysis), (ii) defining probability in terms of economic loss, (iii) including biotic hazards, (iv) using more detailed data sets on natural hazards, forest inventories and climate change scenarios, and (v) developing a framework of adaptive risk management.
Resistance to invasion and resilience to fire in desert shrublands of North America
Brooks, Matthew L.; Chambers, Jeanne C.
2011-01-01
Settlement by Anglo-Americans in the desert shrublands of North America resulted in the introduction and subsequent invasion of multiple nonnative grass species. These invasions have altered presettlement fire regimes, resulted in conversion of native perennial shrublands to nonnative annual grasslands, and placed many native desert species at risk. Effective management of these ecosystems requires an understanding of their ecological resistance to invasion and resilience to fire. Resistance and resilience differ among the cold and hot desert shrublands of the Great Basin, Mojave, Sonoran, and Chihuahuan deserts in North America. These differences are largely determined by spatial and temporal patterns of productivity but also are affected by ecological memory, severity and frequency of disturbance, and feedbacks among invasive species and disturbance regimes. Strategies for preventing or managing invasive plant/fire regimes cycles in desert shrublands include: 1) conducting periodic resource assessments to evaluate the probability of establishment of an altered fire regime; 2) developing an understanding of ecological thresholds associate within invasion resistance and fire resilience that characterize transitions from desirable to undesirable fire regimes; and 3) prioritizing management activities based on resistance of areas to invasion and resilience to fire.
Support Services for Ceramic Fiber-Ceramic Matrix Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, JP
2001-08-16
To increase national energy self-sufficiency for the near future, power systems will be required to fire low-grade fuels more efficiently than is currently possible. The typical coal-fired steam cycle used at present is limited to a maximum steam temperature of 540 C and a conversion efficiency of 35%. Higher working-fluid temperatures are required to boost efficiency, exposing subsystems to very damaging conditions. Issues of special concern to materials developers are corrosion and warping of hot-gas particulate filters and corrosion and erosion of high-temperature heat exchangers. The University of North Dakota Energy and Environmental Research Center (EERC) is working with themore » National Energy Technology Laboratory in conjunction with NCC Engineering, Inc., to provide technical assistance and coal by-products to the Fossil Energy Materials Advanced Research and Technology Development Materials Program investigating materials failure in fossil energy systems. The main activities of the EERC are to assemble coal slag and hot-gas filter ash samples for use by materials researchers, to assist in providing opportunities for realistic tests of advanced materials in pilot-scale fossil energy systems, and to provide analytical support in determining corrosion mechanisms of the exposed materials. In this final report for the project year of September 2000 through August 2001, the facilities at the EERC that can be used by researchers for realistic testing of materials are described. Researchers can include sample coupons in each of these facilities at no cost since they are being operated under separate funding. In addition, two pilot-scale coal combustion tests are described in which material sample coupons were included from researchers involved in the development of fossil energy materials. The results of scanning electron microscopy (SEM) energy dispersive x-ray analyses of the corrosion products and interactions between the surface scales of the coupons and the products of coal combustion found on the coupons exposed during those tests are reported. Finally, a relative comparison of ceramic and alloy material performance based on the SEM results is presented.« less
Studies of FAUNA at Eglin Air Force Base
2006-07-01
occasionally resulted in fires that were hot enough to kill mature pines, including the old growth pines upon which RCWs depend for cavity excavation...cardinalis NOCA Northern flicker* Colaptes auratus NOFL Northern mockingbird Mimus polyglottos NOMO Northern rough-winged swallow Stelgidopteryx
Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Goldberg, Benjamin E.; Cook, Jerry
1993-01-01
The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.
NASA Astrophysics Data System (ADS)
Chanton, Jeffrey P.; Rutkowski, Christine M.; Schwartz, Candace C.; Ward, Darold E.; Boring, Lindsay
2000-01-01
Factors controlling the δ13C of methane released by combustion include the combustion efficiency of the fire and the δ13C of the fuel. Smoldering fires produced 13C-depleted methane relative to hot, flaming fires in controlled forest and grassland burns and within a wood stove. Pine forest burns in the southeastern United States produced methane which ranged from -21 to -30‰, while African grassland burns varied from -17 to -26‰, depending upon combustion phase. African woodland burns produced methane at -30‰. In forest burns in the southeastern United States, the δ13C of methane released with smoldering was significantly 13C depleted relative to methane released under hot flaming conditions. Methane released with smoldering was depleted by 2-3‰ relative to the fuel δ13C, but this difference was not significant. The δ13C of methane produced in a variety of wood stove conditions varied from -9 to -25‰ and also depended upon combustion efficiency. Similar results were found for methane produced by gasoline automobile engines, where the δ13C of methane varied from -9 to -22‰. For combustion occurring within the confining chamber of a wood stove or engine the δ13C of methane was clearly 13C enriched relative to the δ13C of the fuel, possibly because of preferential combustion of 12CH4 in the gas phase. Significant quantities of ethylene (up to 25 to 50% of methane concentrations) were produced in southeastern U.S. forest fires, which may have consequences for physiological and reproductive responses of plants in the ecosystem. Methane production in these fires varied from 0.2 to 8.5% of the carbon dioxide production.
2007-09-13
Tests begun at Stennis Space Center's E Complex Sept. 13 evaluated a liquid oxygen lead for engine start performance, part of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at SSC's E-3 Test Facility. Phase 1 of the subscale diffuser project, completed Sept. 24, was a series of 18 hot-fire tests using a 1,000-pound liquid oxygen and gaseous hydrogen thruster to verify maximum duration and repeatability for steam generation supporting the A-3 Test Stand project. The thruster is a stand-in for NASA's developing J-2X engine, to validate a 6 percent scale version of A-3's exhaust diffuser. Testing the J-2X at altitude conditions requires an enormous diffuser. Engineers will generate nearly 4,600 pounds per second of steam to reduce pressure inside A-3's test cell to simulate altitude conditions. A-3's exhaust diffuser has to be able to withstand regulated pressure, temperatures and the safe discharge of the steam produced during those tests. Before the real thing is built, engineers hope to work out any issues on the miniature version. Phase 2 testing is scheduled to begin this month.
Development and Testing of a Novel Green Propellant Piston Tank
NASA Technical Reports Server (NTRS)
Diaz, C. E.; Cavender, D. P.; Higdon, K.; Abrams, J.; Duchek, M. E.; Mader, H.
2017-01-01
Analytical Mechanics Associates (AMA), in cooperation with NASA Marshall Space Flight Center's (MSFC's) Spacecraft Propulsion Systems Branch, developed and tested a novel propellant tank design that employs an internal piston pressurized with an inert gas to expel propellant to thrusters. During the course of this activity, AMA designed, oversaw fabrication, and delivered to MSFC for testing, a piston propellant tank sized for 3U or larger CubeSats. MSFC conducted liquid expulsion testing using ethylene glycol as a referee fluid to map the tank's performance at different pressures and piston positions. Following the expulsion test campaign, the tank is planned to be integrated into a propulsion system test bed for hot fire tests with a 100mN monopropellant thruster to evaluate the tank's influence on thruster performance when operated in a flight like manner. Described in this paper is a comprehensive summary of how the tanks were designed, built, and tested. The fundamental knowledge gained through the fabrication and testing of these tanks gives evidence that the piston tank design may be scalable to meet the requirements and constraints of other small satellites.
Rapid prototype fabrication processes for high-performance thrust cells
NASA Technical Reports Server (NTRS)
Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.
1994-01-01
The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.
Space shuttle aps propellant thermal conditioner study
NASA Technical Reports Server (NTRS)
Fulton, D. L.
1973-01-01
An analytical and experimental effort was completed to evaluate a baffle type thermal conditioner for superheating O2 and H2 at supercritical pressures. The thermal conditioner consisted of a heat exchanger and an integral reactor (gas generator) operating on O2/H2 propellants. Primary emphasis was placed on the hydrogen conditioner with some effort on the oxygen conditioner and a study completed of alternate concepts for use in conditioning oxygen. A hydrogen conditioner was hot fire tested under a range of conditions to establish ignition, heat exchange and response parameters. A parallel technology task was completed to further evaluate the integral reactor and heat exchanger with the side mounted electrical spark igniter.
NASA Technical Reports Server (NTRS)
Mcconnaughey, P. K.; Garcia, R.; Dejong, F. J.; Sabnis, J. S.; Pribik, D. A.
1989-01-01
An analysis of Space Shuttle Main Engine high-pressure oxygen turbopump nozzle plug trajectories has been performed, using a Lagrangian method to track nozzle plug particles expelled from a turbine through a high Reynolds number flow in a turnaround duct with turning vanes. Axisymmetric and parametric analyses reveal that if nozzle plugs exited the turbine they would probably impact the LOX heat exchanger with impact velocities which are significantly less than the penetration velocity. The finding that only slight to moderate damage will result from nozzle plug failure in flight is supported by the results of a hot-fire engine test with induced nozzle plug failures.
High Temperature Materials for Chemical Propulsion Applications
NASA Technical Reports Server (NTRS)
Elam, Sandra; Hickman, Robert; O'Dell, Scott
2007-01-01
Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.
Wildfires in California, August 17, 2015
2017-12-08
Very hot, dry and unstable conditions in California and across the Pacific Northwest add to the challenges facing firefighters as they battle blazes around the region. Cal Fire is urging Californians to be extremely cautious, especially for the next few days, as the current conditions increase the dangers authorities face. This image was taken by NASA-NOAA's Suomi NPP satellite's VIIRS instrument around 2145 UTC (5:45 p.m. EDT) on August 17, 2015. Northern California is seeing smoke from the River Complex, Route Complex, South Complex, Fork Complex and Mad River Complex fires combine over a large area of the Shasta-Trinity National Forest west of Redding, California, while the Rough Fire in Fresno County is spreading toward the Black Rock Reservoir, causing evacuations and road closures. Fires across the Pacific Northwest aren't limited to California. Please see the Suomi NPP VIIRS composites in NOAA View to see the growth and extent of fires over the past weeks. Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory
King, Joshua R; Tschinkel, Walter R
2006-11-01
1. The fire ant, Solenopsis invicta, is a globally distributed invasive ant that is largely restricted to disturbed habitats in its introduced range. For more than half a century, biologists have believed its success results from superior competitive abilities relative to native ant species, as well as an escape from their natural enemies. 2. We used large volumes of hot water to kill fire ant colonies, and only fire ant colonies, on experimental plots in pastures, and found that populations and diversity of co-occurring ants did not subsequently increase. 3. These results are contrary to classical predictions and indicate that S. invicta is not a superior competitor that suppresses native ants, and that the low diversity and abundance of native ants in degraded ecosystems does not result from interaction with fire ants. Instead, other factors such as prior disturbance and recruitment limitation may be the primary limiting factors for native species in these habitats.
Flammability as an ecological and evolutionary driver
Pausas, Juli G.; Keeley, Jon E.; Schwilk, Dylan W.
2017-01-01
We live on a flammable planet yet there is little consensus on the origin and evolution of flammability in our flora.We argue that part of the problem lies in the concept of flammability, which should not be viewed as a single quantitative trait or metric. Rather, we propose that flammability has three major dimensions that are not necessarily correlated: ignitability, heat release and fire spread rate. These major axes of variation are controlled by different plant traits and have differing ecological impacts during fire.At the individual plant scale, these traits define three flammability strategies observed in fire-prone ecosystems: the non-flammable, the fast-flammable and the hot-flammable strategy (with low ignitability, high flame spread rate and high heat release, respectively). These strategies increase the survival or reproduction under recurrent fires, and thus, plants in fire-prone ecosystems benefit from acquiring one of them; they represent different (alternative) ways to live under recurrent fires.Synthesis. This novel framework based on different flammability strategies helps us to understand variability in flammability across scales, and provides a basis for further research.
White, Scott C; Hostler, David
2017-08-01
Fire suppression wearing thermal protective clothing (TPC) and self-contained breathing apparatus (SCBA) challenges a firefighter's balance and may explain firefighter falls. Postural control based on force plate centre of pressure (COP) was compared for healthy subjects wearing TPC and SCBA before and after 20 min of heavy physical exertion in hot conditions. Baseline measures with and without TPC and SCBA (two different SCBA cylinder masses) were compared before and after exertion that included elements of fire suppression activities in an environmental chamber. COP excursion and variability increased with exertion for TPC and SCBA conditions compared to non-stressed conditions. The two different cylinder masses had no significant effect. Wearing TPC and SCBA when physically stressed in a hot environment increases postural sway and exacerbates postural control. Subjects compensated for the extra mass and adjusted to control postural sway with the addition of TPC and SCBA, but the stress protocol amplified these adjustments. Practitioner Summary: Firefighters wear thermal protective clothing (TPC) and self-contained breathing apparatus (SCBA) when heat-stressed and fatigued. Wearing TPC and SCBA was found to negatively impact balance when stressed, but not for non-stressed or two different sized SCBA tanks. Simulating fire-ground conditions wearing TPC and SCBA should be considered for improving balance.
NASA Technical Reports Server (NTRS)
Hair, L. M.
1975-01-01
The aerodynamic effects of plumes from hot combustion gases in the presence of a transonic external flow field were measured to advance plumes simulation technology, extend a previously acquired data base, and provide data to compare with the effects observed using cold gas plumes. A variety of underexpanded plumes issuing from the base of a strut-mounted ogive-cylinder body were produced by combusting solid propellant gas generators. The gas generator fired in a short-duration mode (200 to 300 msec). Propellants containing 16 percent and 2 percent A1 were used, with chamber pressures from 400 to 1800 psia. Conical nozzles of 15 deg half-angle were tested with area ratios of 4 and 8. Pressures were measured in the gas generator combustion chamber, along the nozzle wall, on the base, and along the body rear exterior. Schlieren photographs were taken for all tests. Test data are presented along with a description of the test setup and procedures.
Tests of Flammability of Cotton Fabrics and Expected Skin Burns in Microgravity
NASA Technical Reports Server (NTRS)
Cavanagh, Jane M.; Torvi, David A.; Gabriel, Kamiel S.; Ruff, Gary A.
2004-01-01
During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth s gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth s gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA s KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns.
Subterranean Fire. Changing theories of the earth during the Renaissance.
Vermij, R
1998-11-01
Aristotle described the earth as a cold and dry body and paid no attention to the phenomenon of terrestrial heat. Renaissance physicians, by contrast, when seeking to understand the origin of hot springs in the context of their balneological studies, came to defend a theory of subterranean fires. This tradition, which started in Italy, became widely known through the works of Georgius Agricola. But although it had implications for the explanation of further natural phenomena, it remained almost exclusively confined to medical circles. As far as physics as an academic discipline was concerned, the ideas concerning subterranean fire were hardly taken note of. Only with the collapse of Aristotelian philosophy in the seventeenth century could these by then "old innovations" obtain a wider significance.
Code of Federal Regulations, 2013 CFR
2013-01-01
... vapors outside the shroud. (h) If significant traps exist, each turbine engine exhaust system must have... exhaust gases without fire hazard or carbon monoxide contamination in any personnel compartment. (b) Each... exhaust system. (c) Each component upon which hot exhaust gases could impinge, or that could be subjected...
Code of Federal Regulations, 2011 CFR
2011-01-01
... vapors outside the shroud. (h) If significant traps exist, each turbine engine exhaust system must have... exhaust gases without fire hazard or carbon monoxide contamination in any personnel compartment. (b) Each... exhaust system. (c) Each component upon which hot exhaust gases could impinge, or that could be subjected...
Code of Federal Regulations, 2014 CFR
2014-01-01
... vapors outside the shroud. (h) If significant traps exist, each turbine engine exhaust system must have... exhaust gases without fire hazard or carbon monoxide contamination in any personnel compartment. (b) Each... exhaust system. (c) Each component upon which hot exhaust gases could impinge, or that could be subjected...
Code of Federal Regulations, 2012 CFR
2012-01-01
... vapors outside the shroud. (h) If significant traps exist, each turbine engine exhaust system must have... exhaust gases without fire hazard or carbon monoxide contamination in any personnel compartment. (b) Each... exhaust system. (c) Each component upon which hot exhaust gases could impinge, or that could be subjected...
ERIC Educational Resources Information Center
Sabo, Sandra A.
1996-01-01
This article offers suggestions to alumni affairs offices who are dealing with increasing numbers of outspoken or angry alumni. Advice includes responding promptly, listening carefully, getting the facts ahead of time, keeping alumni informed, and monitoring the hot spots. Examples of how various colleges and universities handle alumni complaints…
Spatial patterns and fire response of recent Amazonian droughts
NASA Astrophysics Data System (ADS)
Aragão, Luiz Eduardo O. C.; Malhi, Yadvinder; Roman-Cuesta, Rosa Maria; Saatchi, Sassan; Anderson, Liana O.; Shimabukuro, Yosio Edemir
2007-04-01
There has been an increasing awareness of the possibility of climate change causing increased drought frequency in Amazonia, with ensuing impacts on ecosystems and human populations. This debate has been brought into focus by the 1997/1998 and 2005 Amazonian droughts. We analysed the spatial extent of these droughts and fire response to the 2005 drought with TRMM and NOAA-12 data, respectively. Both droughts had distinct fingerprints. The 2005 drought was characterized by its intensification throughout the dry season in south-western Amazonia. During 2005 the annual cumulative number of hot pixels in Amazonia increased 33% in relation to the 1999-2005 mean. In the Brazilian state of Acre, at the epicentre of the 2005 drought, the area of leakage forest fires was more than five times greater than the area directly deforested. Fire leakage into flammable forests may be the major agent of biome transformation in the event of increasing drought frequency.
Regeneratively Cooled Liquid Oxygen/Methane Technology Development
NASA Technical Reports Server (NTRS)
Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey
2012-01-01
The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.
NASA Astrophysics Data System (ADS)
Wuttke, M. W.; Kessels, W.; Wessling, S.; Han, J.
2007-05-01
Spontaneous combustion is a world wide problem for technical operations in mining, waste disposal and power plant facilities. The principle driving the combustion is every where the same independent of the different reactive materials: Fresh air with the common oxygen content is getting in contact with the reactive material by human operations. The following reaction process produces heat at a usually low but constant rate. The reactive material in operating or abandoned coal mines, heaps of coal, waste or reactive minerals is most times strongly broken or fractured, such that the atmospheric oxygen can deeply penetrate into the porous or fractured media. Because the strongly broken or fractured medium with air filled pores and fractures is often combined with a low thermal conductivity of the bulk material the produced heat accumulates and the temperature increases with time. If the reactivity strongly increases with temperature, the temperature rise accelerates up to the "combustion temperature". Once the temperature is high enough the combustion process is determined by the oxygen transport to the combustion center rather than the chemical reactivity. Spontaneous combustion is thus a self- amplifying process where an initial small variation in the parameters and the starting conditions can create exploding combustion hot spots in an apparently homogenous material. The phenomenon will be discussed by various examples in the context of the German - Sino coal fire project. A temperature monitoring in hot fracture systems documents the strong influence of the weather conditions on the combustion process. Numerical calculations show the sensitivity of the combustion to the model geometries, the boundary conditions and mainly the permeability. The most used fire fighting operations like covering and water injection are discussed. A new method of using saltwater for fire fighting is presented and discussed. References: Kessels, W., Wessling, S., Li, X., and Wuttke, M. W. Numerical element distinction for reactive transport modeling regarding reaction rate. In Proceedings of MODFLOW and MORE 2006: Managing Groundwater Systems, May 21 - 24, 2006, Golden, CO USA (2006). Kessels, W., Wuttke, M. W., Wessling, S., and Li, X. Coal fires between self ignition and fire fighting: Numerical modeling and basic geophysical measurements. In ERSEC Ecological Book Series - 4 on Coal Fire Research (2007). Wessling, S., Litschke, T., Wiegand, J., Schlömer, S., and Kessels, W. Simulating dynamic subsurface coal fires and its applications. In ERSEC Ecological Book Series - 4 on Coal Fire Reserach (2007). Wessling, S., Kessels, W., Schmidt, M., and Krause, U. Investigating dynamic underground coal fires by means of numerical simulation. Geophys. J. Int. (submitted).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Steven; Rapp, Robert
A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zonemore » and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., “Active Sulfidation Corrosion Mechanism,” has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., “Active Sulfide-to-Oxide Corrosion Mechanism,” has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 “acidic” fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by “basic” fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.« less
Prediction of the Thrust Performance and the Flowfield of Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Wang, T.-S.
1990-01-01
In an effort to improve the current solutions in the design and analysis of liquid propulsive engines, a computational fluid dynamics (CFD) model capable of calculating the reacting flows from the combustion chamber, through the nozzle to the external plume, was developed. The Space Shuttle Main Engine (SSME) fired at sea level, was investigated as a sample case. The CFD model, FDNS, is a pressure based, non-staggered grid, viscous/inviscid, ideal gas/real gas, reactive code. An adaptive upwinding differencing scheme is employed for the spatial discretization. The upwind scheme is based on fourth order central differencing with fourth order damping for smooth regions, and second order central differencing with second order damping for shock capturing. It is equipped with a CHMQGM equilibrium chemistry algorithm and a PARASOL finite rate chemistry algorithm using the point implicit method. The computed flow results and performance compared well with those of other standard codes and engine hot fire test data. In addition, the transient nozzle flowfield calculation was also performed to demonstrate the ability of FDNS in capturing the flow separation during the startup process.
Photographic combustion characterization of LOX/hydrocarbon type propellants
NASA Technical Reports Server (NTRS)
Judd, D. C.
1979-01-01
Single element injectors and two fuels were tested with the aim of photographically characterizing observed combustion phenomena. The three injectors tested were the O-F-O triplet, the transverse like on like (TLOL), and the rectangular unlike doublet (RUD). The fuels tested were RP-1 and propane. The hot firings were conducted in a specifically constructed chamber fitted with quartz windows for photographically viewing the impingement spray field. All LOX/HC testing demonstrated coking with the RP-1 fuel leaving far more soot than the propane fuel. No fuel freezing or popping was experienced under the test conditions evaluated. Carbon particle emission and combustion light brilliance increased with Pc for both fuels although RP-1 was far more energetic in this respect. The RSS phenomena appear to be present in the high Pc tests as evidenced by striations in the spray pattern and by separate fuel rich and oxidizer rich areas. The RUD element was also tested as a fuel rich gas generator element by switching the propellant circuits. Excessive sooting occurred at this low mixture ratio (0.55), precluding photographic data.
Full-scale aircraft cabin flammability tests of improved fire-resistant materials, test series 2
NASA Technical Reports Server (NTRS)
Stuckey, R. N.; Bricker, R. W.; Kuminecz, J. F.; Supkis, D. E.
1976-01-01
Full-scale aircraft flammability tests in which the effectiveness of new fire-resistant materials was evaluated by comparing their burning characteristics with those of other fire-resistant aircraft materials were described. New-fire-resistant materials that are more economical and better suited for aircraft use than the previously tested fire-resistant materials were tested. The fuel ignition source for one test was JP-4; a smokeless fuel was used for the other test. Test objectives, methods, materials, and results are presented and discussed. The results indicate that, similar to the fire-resistant materials tested previously, the new materials decompose rather than ignite and do not support fire propagation. Furthermore, the new materials did not produce a flash fire.
Primary atomization of liquid jets issuing from rocket engine coaxial injectors
NASA Astrophysics Data System (ADS)
Woodward, Roger D.
1993-01-01
The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid-propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their optical opacity. This work focuses on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact liquid core. The specific application considered is that of shear-coaxial type rocket engine injectors. Real-time x-ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, has been used to make the measurements. Nitrogen and helium were employed as the fuel simulants while an x-ray absorbing potassium iodide aqueous solution was used as the liquid oxygen (LOX) simulant. The intact-liquid-core length data have been obtained and interpreted to illustrate the effects of chamber pressure (gas density), injected-gas and liquid velocities, and cavitation. The results clearly show that the effect of cavitation must be considered at low chamber pressures since it can be the dominant breakup mechanism. A correlation of intact core length in terms of gas-to-liquid density ratio, liquid jet Reynolds number, and Weber number is suggested. The gas-to-liquid density ratio appears to be the key parameter for aerodynamic shear breakup in this study. A small number of hot-fire, LOX/hydrogen tests were also conducted to attempt intact-LOX-core measurements under realistic conditions in a single-coaxial-element rocket engine. The tests were not successful in terms of measuring the intact core, but instantaneous imaging of LOX jets suggests that LOX jet breakup is qualitatively similar to that of cold-flow, propellant-simulant jets. The liquid oxygen jets survived in the hot-fire environment much longer than expected, and LOX was even visualized exiting the chamber nozzle under some conditions. This may be an effect of the single element configuration.
24 CFR 3280.209 - Fire testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Fire testing. 3280.209 Section 3280... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.209 Fire testing. All fire testing conducted in accordance with this subpart shall be performed by nationally recognized testing...
24 CFR 3280.209 - Fire testing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Fire testing. 3280.209 Section 3280... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.209 Fire testing. All fire testing conducted in accordance with this subpart shall be performed by nationally recognized testing...
24 CFR 3280.209 - Fire testing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Fire testing. 3280.209 Section 3280... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.209 Fire testing. All fire testing conducted in accordance with this subpart shall be performed by nationally recognized testing...
24 CFR 3280.209 - Fire testing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Fire testing. 3280.209 Section 3280... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.209 Fire testing. All fire testing conducted in accordance with this subpart shall be performed by nationally recognized testing...
Droplet Evaporator For High-Capacity Heat Transfer
NASA Technical Reports Server (NTRS)
Valenzuela, Javier A.
1993-01-01
Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.
Concept of Heat Recovery from Exhaust Gases
NASA Astrophysics Data System (ADS)
Bukowska, Maria; Nowak, Krzysztof; Proszak-Miąsik, Danuta; Rabczak, Sławomir
2017-10-01
The theme of the article is to determine the possibility of waste heat recovery and use it to prepare hot water. The scope includes a description of the existing sample of coal-fired boiler plant, the analysis of working condition and heat recovery proposals. For this purpose, a series of calculations necessary to identify the energy effect of exhaust temperature decreasing and transferring recovery heat to hot water processing. Heat recover solutions from the exhaust gases channel between boiler and chimney section were proposed. Estimation for the cost-effectiveness of such a solution was made. All calculations and analysis were performed for typical Polish conditions, for coal-fired boiler plant. Typicality of this solution is manifested by the volatility of the load during the year, due to distribution of heat for heating and hot water, determining the load variation during the day. Analysed system of three boilers in case of load variation allows to operational flexibility and adaptation of the boilers load to the current heat demand. This adaptation requires changes in the operating conditions of boilers and in particular assurance of properly conditions for the combustion of fuel. These conditions have an impact on the existing thermal loss and the overall efficiency of the boiler plant. On the boiler plant efficiency affects particularly exhaust gas temperature and the excess air factor. Increasing the efficiency of boilers plant is possible to reach by following actions: limiting the excess air factor in coal combustion process in boilers and using an additional heat exchanger in the exhaust gas channel outside of boilers (economizer) intended to preheat the hot water.
Testing Method for External Cladding Systems - Incerc Romania
NASA Astrophysics Data System (ADS)
Simion, A.; Dragne, H.
2017-06-01
This research presents a new testing method in a natural scale for external cladding systems tested on buildings with minimum than 3 floors [1]. The testing method is unique in Romania and it is similar about many fire testing current methods from European Union states. Also, presents the fire propagation and the effect of fire smoke on the building façade composed of thermal insulation. Laboratory of testing and research for building fire safety from National Institute INCERC Bucharest, provides a test method for determining the fire performance characteristics of non-loadbearing external cladding systems and external wall insulation systems when applied to the face of a building and exposed to an external fire under controlled conditions [2]. The fire exposure is representative of an external fire source or a fully-developed (post-flashover) fire in a room, venting through an opening such as a window aperture that exposes the cladding to the effects of external flames, or an external fire source. On the future, fire tests will be experimented for answer demande a number of high-profile fires where the external facade of tall buildings provided a route for vertical fire spread.
30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...
30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...
30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...
30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...
30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...
NASA Astrophysics Data System (ADS)
Olson, Jennifer R.; Baum, Bryan A.; Cahoon, Donald R.; Crawford, James H.
1999-03-01
Advanced very high resolution radiometer 1.1 km resolution satellite radiance data were used to locate active fires throughout much of the tropical region during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics (PEM-Tropics A) aircraft campaign, held in September and October 1996. The spatial and temporal distributions of the fires in Australia, southern Africa, and South America are presented here. The number of fires over northern Australia, central Africa, and South America appeared to decrease toward the end of the mission period. Fire over eastern Australia was widespread, and temporal patterns showed a somewhat consistent amount of burning with periodic episodes of enhanced fire counts observed. At least one episode of enhanced fire counts corresponded to the passage of a frontal system which brought conditions conducive to fire to the region, with strong westerlies originating over the hot, dry interior continent. Regions that were affected by lower than normal rainfall during the previous wet season (e.g., northern Australia and southwestern Africa) showed relatively few fires during this period. This is consistent with a drought-induced decrease in vegetation and therefore a decreased availability of fuel for burning. Alternatively, a heavier than normal previous wet season along the southeastern coast of South Africa may have contributed to high fuel loading and an associated relatively heavy amount of burning compared to data from previous years.
Amorphous-silicon module hot-spot testing
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.
1985-01-01
Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.
Evolution of human-driven fire regimes in Africa
Archibald, Sally; Staver, A. Carla; Levin, Simon A.
2012-01-01
Human ability to manipulate fire and the landscape has increased over evolutionary time, but the impact of this on fire regimes and consequences for biodiversity and biogeochemistry are hotly debated. Reconstructing historical changes in human-derived fire regimes empirically is challenging, but information is available on the timing of key human innovations and on current human impacts on fire; here we incorporate this knowledge into a spatially explicit fire propagation model. We explore how changes in population density, the ability to create fire, and the expansion of agropastoralism altered the extent and seasonal distribution of fire as modern humans arose and spread through Africa. Much emphasis has been placed on the positive effect of population density on ignition frequency, but our model suggests this is less important than changes in fire spread and connectivity that would have occurred as humans learned to light fires in the dry season and to transform the landscape through grazing and cultivation. Different landscapes show different limitations; we show that substantial human impacts on burned area would only have started ∼4,000 B.P. in open landscapes, whereas they could have altered fire regimes in closed/dissected landscapes by ∼40,000 B.P. Dry season fires have been the norm for the past 200–300 ky across all landscapes. The annual area burned in Africa probably peaked between 4 and 40 kya. These results agree with recent paleocarbon studies that suggest that the biomass burned today is less than in the recent past in subtropical countries. PMID:22184249
NASA Technical Reports Server (NTRS)
1981-01-01
Beta Glass material, originating from the Apollo program is supplied to Fyrepel by Owens-Corning and incorporated into Fyrepel's Fyretex and Beta-Mex aluminized fabrics. Fabrics are used in fire entry suits, several other types of protective suits for wear in hot industrial environments and such accessory items as heat-reflecting curtains for industrial applications.
NASA Technical Reports Server (NTRS)
Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.
2003-01-01
As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.
Real-Time Simulation of the X-33 Aerospace Engine
NASA Technical Reports Server (NTRS)
Aguilar, Robert
1999-01-01
This paper discusses the development and performance of the X-33 Aerospike Engine RealTime Model. This model was developed for the purposes of control law development, six degree-of-freedom trajectory analysis, vehicle system integration testing, and hardware-in-the loop controller verification. The Real-Time Model uses time-step marching solution of non-linear differential equations representing the physical processes involved in the operation of a liquid propellant rocket engine, albeit in a simplified form. These processes include heat transfer, fluid dynamics, combustion, and turbomachine performance. Two engine models are typically employed in order to accurately model maneuvering and the powerpack-out condition where the power section of one engine is used to supply propellants to both engines if one engine malfunctions. The X-33 Real-Time Model is compared to actual hot fire test data and is been found to be in good agreement.
Breadboard RL10-2B low-thrust operating mode (second iteration) test report
NASA Technical Reports Server (NTRS)
Kanic, Paul G.; Kaldor, Raymond B.; Watkins, Pia M.
1988-01-01
Cryogenic rocket engines requiring a cooling process to thermally condition the engine to operating temperature can be made more efficient if cooling propellants can be burned. Tank head idle and pumped idle modes can be used to burn propellants employed for cooling, thereby providing useful thrust. Such idle modes required the use of a heat exchanger to vaporize oxygen prior to injection into the combustion chamber. During December 1988, Pratt and Whitney conducted a series of engine hot firing demonstrating the operation of two new, previously untested oxidizer heat exchanger designs. The program was a second iteration of previous low thrust testing conducted in 1984, during which a first-generation heat exchanger design was used. Although operation was demonstrated at tank head idle and pumped idle, the engine experienced instability when propellants could not be supplied to the heat exchanger at design conditions.
Wang, Jian; Evans, Julian R G
2005-01-01
This paper describes the design, construction, and operation of the London University Search Instrument (LUSI) which was recently commissioned to create and test combinatorial libraries of ceramic compositions. The instrument uses commercially available powders, milled as necessary to create thick-film libraries by ink-jet printing. Multicomponent mixtures are prepared by well plate reformatting of ceramic inks. The library tiles are robotically loaded into a flatbed furnace and, when fired, transferred to a 2-axis high-resolution measurement table fitted with a hot plate where measurements of, for example, optical or electrical properties can be made. Data are transferred to a dedicated high-performance computer. The possibilities for remote interrogation and search steering are discussed.
Hot Fire Ignition Test with Densified Liquid Hydrogen using a RL10B-2 Cryogenic H2/O2 Rocket Engine
NASA Technical Reports Server (NTRS)
McNelis, Nancy B.; Haberbusch, Mark S.
1997-01-01
Enhancements to propellants provide an opportunity to either increase performance of an existing vehicle, or reduce the size of a new vehicle. In the late 1980's the National AeroSpace Plane (NASP) reopened the technology chapter on densified propellants, in particular hydrogen. Since that point in time the NASA Lewis Research Center (LERC) in Cleveland, Ohio has been leading the way to provide critical research on the production and transfer of densified propellants. On October 4, 1996 NASA LeRC provided another key demonstration towards the advancement of densified propellants as a viable fuel. Successful ignition of an RL10B-2 engine was achieved with near triple point liquid hydrogen.
NASA Technical Reports Server (NTRS)
Goggin, David G.; Darden, J. M.
1992-01-01
Yammamoto (1954) described the influence of bearing deadband on the critical speed response of a rotor-bearing system. Practical application of these concepts to limit critical speed response of turbopump rotors is described. Nonlinear rotordynamic analyses are used to define the effect of bearing deadband and rotor unbalance on the Space Shuttle Main Engine Alternate High Pressure Fuel Turbopump. Analysis results are used with hot fire test data to verify the presence of a lightly damped critical speed within the operating speed range. With the proper control of rotor unbalance and bearing deadband, the response of this critical speed is reduced to acceptable levels without major design modifications or additional sources of damping.
Fire tests for airplane interior materials
NASA Technical Reports Server (NTRS)
Tustin, E. A.
1980-01-01
Large scale, simulated fire tests of aircraft interior materials were carried out in salvaged airliner fuselage. Two "design" fire sources were selected: Jet A fuel ignited in fuselage midsection and trash bag fire. Comparison with six established laboratory fire tests show that some laboratory tests can rank materials according to heat and smoke production, but existing tests do not characterize toxic gas emissions accurately. Report includes test parameters and test details.
NASA Technical Reports Server (NTRS)
1980-01-01
The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.
24 CFR 3280.209 - Fire testing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Fire testing. 3280.209 Section 3280... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.209 Fire testing. Link to an amendment published at 78 FR 73982, Dec. 9, 2013. All fire testing conducted in accordance with...
Full-scale aircraft cabin flammability tests of improved fire-resistant materials
NASA Technical Reports Server (NTRS)
Stuckey, R. N.; Surpkis, D. E.; Price, L. J.
1974-01-01
Full-scale aircraft cabin flammability tests to evaluate the effectiveness of new fire-resistant materials by comparing their burning characteristics with those of older aircraft materials are described. Three tests were conducted and are detailed. Test 1, using pre-1968 materials, was run to correlate the procedures and to compare the results with previous tests by other organizations. Test 2 included newer, improved fire-resistant materials. Test 3 was essentially a duplicate of test 2, but a smokeless fuel was used. Test objectives, methods, materials, and results are presented and discussed. Results indicate that the pre-1968 materials ignited easily, allowed the fire to spread, produced large amounts of smoke and toxic combustion products, and resulted in a flash fire and major fire damage. The newer fire-resistant materials did not allow the fire to spread. Furthermore, they produced less, lower concentrations of toxic combustion products, and lower temperatures. The newer materials did not produce a flash fire.
Development, qualification, and delivery of a hydrogen burnoff igniter
NASA Technical Reports Server (NTRS)
Ray, D.
1981-01-01
The hydrogen burnoff igniter, a pyrotechnic device used to burn off excess hydrogen gas near the Space Shuttle Main Engine (SSME) nozzle, was designed, fabricated, and qualified. Characteristics of the burnoff igniter include a function time of 8 + or - 2 seconds, a minimum three foot flame length at maximum output, and hot particles projected 15 feet when fired directly into or perpendicular to a 34.5 knot wind. The three foot flame length was considered to be of questionable importance, since the hot particles are the media for igniting the hydrogen. Flame temperature is greater than 1500 F.
Wildfire cluster detection using space-time scan statistics
NASA Astrophysics Data System (ADS)
Tonini, M.; Tuia, D.; Ratle, F.; Kanevski, M.
2009-04-01
The aim of the present study is to identify spatio-temporal clusters of fires sequences using space-time scan statistics. These statistical methods are specifically designed to detect clusters and assess their significance. Basically, scan statistics work by comparing a set of events occurring inside a scanning window (or a space-time cylinder for spatio-temporal data) with those that lie outside. Windows of increasing size scan the zone across space and time: the likelihood ratio is calculated for each window (comparing the ratio "observed cases over expected" inside and outside): the window with the maximum value is assumed to be the most probable cluster, and so on. Under the null hypothesis of spatial and temporal randomness, these events are distributed according to a known discrete-state random process (Poisson or Bernoulli), which parameters can be estimated. Given this assumption, it is possible to test whether or not the null hypothesis holds in a specific area. In order to deal with fires data, the space-time permutation scan statistic has been applied since it does not require the explicit specification of the population-at risk in each cylinder. The case study is represented by Florida daily fire detection using the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product during the period 2003-2006. As result, statistically significant clusters have been identified. Performing the analyses over the entire frame period, three out of the five most likely clusters have been identified in the forest areas, on the North of the country; the other two clusters cover a large zone in the South, corresponding to agricultural land and the prairies in the Everglades. Furthermore, the analyses have been performed separately for the four years to analyze if the wildfires recur each year during the same period. It emerges that clusters of forest fires are more frequent in hot seasons (spring and summer), while in the South areas they are widely present along the whole year. The analysis of fires distribution to evaluate if they are statistically more frequent in some area or/and in some period of the year, can be useful to support fire management and to focus on prevention measures.
Fire-Resistant Hydrogel-Fabric Laminates: A Simple Concept That May Save Lives.
Illeperuma, Widusha R K; Rothemund, Philipp; Suo, Zhigang; Vlassak, Joost J
2016-01-27
There is a large demand for fabrics that can survive high-temperature fires for an extended period of time, and protect the skin from burn injuries. Even though fire-resistant polymer fabrics are commercially available, many of these fabrics are expensive, decompose rapidly, and/or become very hot when exposed to high temperatures. We have developed a new class of fire-retarding materials by laminating a hydrogel and a fabric. The hydrogel contains around 90% water, which has a large heat capacity and enthalpy of vaporization. When the laminate is exposed to fire, a large amount of energy is absorbed as water heats up and evaporates. The temperature of the hydrogel cannot exceed 100 °C until it is fully dehydrated. The fabric has a low thermal conductivity and maintains the temperature gradient between the hydrogel and the skin. The laminates are fabricated using a recently developed tough hydrogel to ensure integrity of the laminate during processing and use. A thermal model predicts the performance of the laminates and shows that they have excellent heat resistance in good agreement with experiments, making them viable candidates in life saving applications such as fire-resistant blankets or apparel.
Fire Control Agent Effectiveness for Hazardous Chemical Fires: Carbon Disulfide.
1981-01-01
Fires..................................... 46 12. AFFF Fire Control Data for Carbon Disulfide Fires............................. 47 13. Extinguishment...Disulfide and Hexane Fires ....... 67 22. Comparison of AFFF Fire Control Times for Carbon Disulfide and Hexane Fires ................... 68 23. Comparison of...Data .............. 27 2. Summary of Fluoroprotein Foam Fire Test Data ....... 28 3. Summary of AFFF Fire Test Data ..................... 29 4. Summary
Varner, Johanna; Lambert, Mallory S.; Horns, Joshua J.; Laverty, Sean; Dizney, Laurie; Beever, Erik; Dearing, M. Denise
2015-01-01
Wildfires are increasing in frequency and severity as a result of climate change in many ecosystems; however, effects of altered disturbance regimes on wildlife remain poorly quantified. Here, we leverage an unexpected opportunity to investigate how fire affects the occupancy and abundance of a climate-sensitive habitat specialist, the American pika (Ochotona princeps). We determine the effects of a fire on microclimates within talus and explore habitat factors promoting persistence and abundance in fire-affected habitat. During the fire, temperatures in talus interstices remained below 19°C, suggesting that animals could have survived in situ. Within 2 years, pikas were widely distributed throughout burned areas and did not appear to be physiologically stressed at severely burned sites. Furthermore, pika densities were better predicted by topographic variables known to affect this species than by metrics of fire severity. This widespread distribution may reflect quick vegetation recovery and the fact that the fire did not alter the talus microclimates in the following years. Together, these results highlight the value of talus as a thermal refuge for small animals during and after fire. They also underscore the importance of further study in individual species’ responses to typical and altered disturbance regimes.
Near-Real-Time Earth Observation Data Supporting Wildfire Management
NASA Astrophysics Data System (ADS)
Ambrosia, V. G.; Zajkowski, T.; Quayle, B.
2013-12-01
During disaster events, the most critical element needed by responding personnel and management teams is situational intelligence / awareness. During rapidly-evolving events such as wildfires, the need for timely information is critical to save lives, property and resources. The wildfire management agencies in the US rely heavily on remote sensing information both from airborne platforms as well as from orbital assets. The ability to readily have information from those systems, not just data, is critical to effective control and damage mitigation. NASA has been collaborating with the USFS to mature and operationalize various asset-information capabilities to effect improved knowledge of fire-prone areas, monitor wildfire events in real-time, assess effectiveness of fire management strategies, and provide rapid, post-fire assessment for recovery operations. Specific examples of near-real-time remote sensing asset utility include daily MODIS data employed to assess fire potential / wildfire hazard areas, and national-scale hot-spot detection, airborne thermal sensor collected during wildfire events to effect management strategies, EO-1 ALI 'pointable' satellite sensor data to assess fire-retardant application effectiveness, and Landsat 8 and other sensor data to derive burn severity indices for post-fire remediation work. These cases of where near-real-time data is used operationally during the previous few fire seasons will be presented.
Techniques for hot structures testing
NASA Technical Reports Server (NTRS)
Deangelis, V. Michael; Fields, Roger A.
1990-01-01
Hot structures testing have been going on since the early 1960's beginning with the Mach 6, X-15 airplane. Early hot structures test programs at NASA-Ames-Dryden focused on operational testing required to support the X-15 flight test program, and early hot structures research projects focused on developing lab test techniques to simulate flight thermal profiles. More recent efforts involved numerous large and small hot structures test programs that served to develop test methods and measurement techniques to provide data that promoted the correlation of test data with results from analytical codes. In Nov. 1988 a workshop was sponsored that focused on the correlation of hot structures test data with analysis. Limited material is drawn from the workshop and a more formal documentation is provided of topics that focus on hot structures test techniques used at NASA-Ames-Dryden. Topics covered include the data acquisition and control of testing, the quartz lamp heater systems, current strain and temperature sensors, and hot structures test techniques used to simulate the flight thermal environment in the lab.
The Influence of Non-Nociceptive Factors on Hot Plate Latency in Rats
Gunn, Amanda; Bobeck, Erin N.; Weber, Ceri; Morgan, Michael M.
2010-01-01
The hot plate is a widely used test to assess nociception. The effect of non-nociceptive factors (weight, sex, activity, habituation, and repeated testing) on hot plate latency was examined. Comparison of body weight and hot plate latency revealed a small but significant inverse correlation (light rats had longer latencies). Habituating rats to the test room for 1 hr prior to testing did not decrease hot plate latency except for female rats tested on Days 2 - 4. Hot plate latency decreased with repeated daily testing, but this was not caused by a decrease in locomotor activity or learning to respond. Activity on the hot plate was consistent across all four trials, and prior exposure to a room temperature plate caused a similar decrease in latency as rats tested repeatedly on the hot plate. Despite this decrease in baseline hot plate latency, there was no difference in morphine antinociceptive potency. The present study shows that weight, habituation to the test room, and repeated testing can alter baseline hot plate latency, but these effects are small and have relatively little impact on morphine antinociception. PMID:20797920
Development of fire test methods for airplane interior materials
NASA Technical Reports Server (NTRS)
Tustin, E. A.
1978-01-01
Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.
Using unplanned fires to help suppressing future large fires in Mediterranean forests.
Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís
2014-01-01
Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change.
Flash fire propensity of materials
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Cumming, H. J.
1977-01-01
Flash fire test results on 86 materials, evaluated using the USF flash fire screening test, are presented. The materials which appear least prone to flash fires are PVC, polyphenylene oxide and sulfide, and polyether and polyaryl sulfone; these did not produce flash fires under these particular test conditions. The principal value of these screening tests at the present time is in identifying materials which appear prone to flash fires, and in identifying which formulations of a generic material are more or less prone to flash fires.
NASA Technical Reports Server (NTRS)
Margle, Janice M. (Editor)
1987-01-01
Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.
System for Anomaly and Failure Detection (SAFD) system development
NASA Technical Reports Server (NTRS)
Oreilly, D.
1992-01-01
This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.
Green hypergolic combination: Diethylenetriamine-based fuel and hydrogen peroxide
NASA Astrophysics Data System (ADS)
Kang, Hongjae; Kwon, Sejin
2017-08-01
The present research dealt with the concept of green hypergolic combination to replace the toxic hypergolic combinations. Hydrogen peroxide was selected as a green oxidizer. A novel recipe for the non-toxic hypergolic fuel (Stock 3) was suggested. Sodium borohydride was blended into the mixture of energetic hydrocarbon solvents as an ignition source for hypergolic ignition. The main ingredient of the mixture was diethylenetriamine. By mixing some amount of tetrahydrofuran with diethylenetriamine, the mixture became more flammable and volatile. The mixture of Stock 3 fuel remained stable for four months in the lab scale storability test. Through a simple drop test, the hypergolicity of the green hypergolic combination was verified. Comparing to the toxic hypergolic combination MMH/NTO as the reference, the theoretical performance of the green hypergolic combination would be achieved about 96.7% of the equilibrium specific impulse and about 105.7% of the density specific impulse. The applicability of the green hypergolic combination was successfully confirmed through the static hot-fire tests using 500 N scale hypergolic thruster.
A data base and analysis program for shuttle main engine dynamic pressure measurements
NASA Technical Reports Server (NTRS)
Coffin, T.
1986-01-01
A dynamic pressure data base management system is described for measurements obtained from space shuttle main engine (SSME) hot firing tests. The data were provided in terms of engine power level and rms pressure time histories, and power spectra of the dynamic pressure measurements at selected times during each test. Test measurements and engine locations are defined along with a discussion of data acquisition and reduction procedures. A description of the data base management analysis system is provided and subroutines developed for obtaining selected measurement means, variances, ranges and other statistics of interest are discussed. A summary of pressure spectra obtained at SSME rated power level is provided for reference. Application of the singular value decomposition technique to spectrum interpolation is discussed and isoplots of interpolated spectra are presented to indicate measurement trends with engine power level. Program listings of the data base management and spectrum interpolation software are given. Appendices are included to document all data base measurements.
Space shuttle orbital maneuvering engine platelet injector program
NASA Technical Reports Server (NTRS)
1975-01-01
A platelet face injector for the Orbit Maneuvering Engine (OME) on the space shuttle was evaluated as a means of obtaining additional design margin and lower cost. The program was conducted in three phases. The first phase evaluated single injection elements, or unielements; it involved visual flow studies, mixing experiments using propellant simulants, and hot firings to assess combustion efficiency, chamber wall compatibility, and injector face temperatures. In the second phase, subscale units producing 600 lbf thrust were used to further evaluate the orifice patterns chosen on the basis of unielement testing. In addition to combustion efficiency, chamber and injector heat transfer, the subscale testing provided a preliminary indication of injector stability. Full scale testing of the selected patterns at 6,000 lbf thrust was performed in the third phase. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects on combustion stability of acoustic cavity configuration, including cavity depth, open area, inlet contour, and other parameters, were investigated.
Test experience, 490 N high performance (321 sec Isp) engine
NASA Technical Reports Server (NTRS)
Schoenman, L.; Rosenberg, S. D.; Jassowski, D. M.
1992-01-01
Engines with area ratios of 44:1 and 286:1 are tested by means of hot fire tests using the NTO/MMH bipropellant to maximize the performance of the combined technologies. The low-thrust engine systems are designed with oxidation resistant materials that can operate at temperatures of more than 2204 C for tens of hours. The chamber is attached to the injector in a configuration that prevents overheating of the injector, valve, and the spacecraft interface. Three injectors with 44:1 area ratios are capable of nominal specific impulse values of 309 sec, and a performance of 321 lbf-sec/lbm is noted for an all-welded engine assembly with area ratio of 286:1. The all-welded engine is shown to have an acceptable design margin for thermal characteristics. High-performance liquid apogee engines are shown to perform optimally when based on iridium/rhenium chamber technology, use of a special platelet injector, and the minimization of losses due to fuel-film cooling.
Power Systems Development Facility Gasification Test Campaing TC18
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southern Company Services
2005-08-31
In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifiermore » train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.« less
Analysis of film cooling in rocket nozzles
NASA Technical Reports Server (NTRS)
Woodbury, Keith A.
1992-01-01
Computational Fluid Dynamics (CFD) programs are customarily used to compute details of a flow field, such as velocity fields or species concentrations. Generally they are not used to determine the resulting conditions at a solid boundary such as wall shear stress or heat flux. However, determination of this information should be within the capability of a CFD code, as the code supposedly contains appropriate models for these wall conditions. Before such predictions from CFD analyses can be accepted, the credibility of the CFD codes upon which they are based must be established. This report details the progress made in constructing a CFD model to predict the heat transfer to the wall in a film cooled rocket nozzle. Specifically, the objective of this work is to use the NASA code FDNS to predict the heat transfer which will occur during the upcoming hot-firing of the Pratt & Whitney 40K subscale nozzle (1Q93). Toward this end, an M = 3 wall jet is considered, and the resulting heat transfer to the wall is computed. The values are compared against experimental data available in Reference 1. Also, FDNS's ability to compute heat flux in a reacting flow will be determined by comparing the code's predictions against calorimeter data from the hot firing of a 40K combustor. The process of modeling the flow of combusting gases through the Pratt & Whitney 40K subscale combustor and nozzle is outlined. What follows in this report is a brief description of the FDNS code, with special emphasis on how it handles solid wall boundary conditions. The test cases and some FDNS solution are presented next, along with comparison to experimental data. The process of modeling the flow through a chamber and a nozzle using the FDNS code will also be outlined.
The Effect of Particle Properties on Hot Particle Spot Fire Ignition
NASA Astrophysics Data System (ADS)
Zak, Casey David
The ignition of natural combustible material by hot metal particles is an important fire ignition pathway by which wildland and wildland-urban-interface spot fires are started. There are numerous cases reported of wild fires started by clashing power-lines or from sparks generated by machines or engines. Similarly there are many cases reported of fires caused by grinding, welding and cutting sparks. Up to this point, research on hot particle spot fire ignition has largely focused on particle generation and transport. A small number of studies have examined what occurs after a hot particle contacts a natural fuel bed, but until recently the process remained poorly understood. This work describes an investigation of the effect of particle size, temperature and thermal properties on the ability of hot particles to cause flaming ignition of cellulosic fuel beds. Both experimental and theoretical approaches are used, with a focus on understanding the physics underlying the ignition process. For the experimental study, spheres of stainless steel, aluminum, brass and copper are heated in a tube furnace and dropped onto a powdered cellulose fuel bed; the occurrence of flaming ignition or lack thereof is visually observed and recorded. This procedure is repeated a large number of times for each metal type, varying particle diameter from 2 to 11 mm and particle temperature between 575 and 1100°C. The results of these experiments are statistically analyzed to find approximate ignition boundaries and identify boundary trends with respect to the particle parameters of interest. Schlieren images recorded during the ignition experiments are also used to more accurately describe the ignition process. Based on these images, a simple theoretical model of hot particle spot fire ignition is developed and used to explore the experimental trends further. The model under-predicts the minimum ignition temperatures required for small spheres, but agrees qualitatively with the experimental data. Model simulations identify the important physics controlling ignition for different sized particles and clarify many of the experimental trends. The results show a hyperbolic relationship between particle size and temperature, with the larger particles requiring lower temperatures to ignite the cellulose than the smaller particles. For very small spheres, the temperature required for ignition is very sensitive to particle size, while for very large spheres, ignition temperature shows only a weak dependence on that variable. Flaming ignition of powdered cellulose by particles ≤ 11 mm in size requires particle temperatures of at least 600°C. Ignition has not been observed for 2 mm particles at temperatures up to 1100°C, but the statistical analysis indicates that ignition by particles 2 mm and smaller may be possible at temperatures above 950°C. No clear trend is observed with particle metal type, but copper particles require slightly higher ignition temperatures and seem more sensitive to experimental variation, likely due to their relatively high thermal conductivity. High-speed Schlieren images taken during the ignition experiments show that once particles land, they volatilize the powdered cellulose and the fuel vapor diffuses out into the surrounding air. Ignition occurs in the mixing layer between the vapor and the air, either during the initial expansion of the pyrolyzate away from the particle, or after a stable plume of volatiles has formed. Modeling results indicate that in the large-particle, high-conductivity limit, the particle's surface temperature remains close to its impact temperature over the timescales of ignition. As a result, particle thermal properties are unimportant and ignition occurs when heat generation in the mixing layer overcomes losses to the surrounding air. When the large-particle limit does not apply, the particle cools upon impact with the fuel bed. In addition to the losses to the surrounding air, the reaction zone experiences losses to the cooling particle and must generate a larger amount of heat for ignition to occur. Because cooling is so important, the initial bulk energy is more useful than impact temperature for predicting ignition by smaller particles. Along those lines, the additional heat of melting available to molten particles helps to resist particle cooling; as such, molten aluminum particles 3.5 -- 7 mm in diameter can ignite at lower temperatures than solid particles of the same size with similar thermal properties. Decreasing volumetric heat capacity does increase minimum ignition temperature somewhat, but this effect is reduced for larger particles. Emissivity does not appear to have a significant effect on ignition propensity, suggesting that, over the timescales of ignition, radiation heat transfer is small relative to other modes of particle heat loss.
Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests
Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís
2014-01-01
Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire–succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000–2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18–22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change. PMID:24727853
The influence of non-nociceptive factors on hot-plate latency in rats.
Gunn, Amanda; Bobeck, Erin N; Weber, Ceri; Morgan, Michael M
2011-02-01
The hot plate is a widely used test to assess nociception. The effect of non-nociceptive factors (weight, sex, activity, habituation, and repeated testing) on hot-plate latency was examined. Comparison of body weight and hot-plate latency revealed a small but significant inverse correlation (light rats had longer latencies). Habituating rats to the test room for 1 hour prior to testing did not decrease hot-plate latency except for female rats tested on days 2 to 4. Hot-plate latency decreased with repeated daily testing, but this was not caused by a decrease in locomotor activity or learning to respond. Activity on the hot plate was consistent across all 4 trials, and prior exposure to a room-temperature plate caused a similar decrease in latency as rats tested repeatedly on the hot plate. Despite this decrease in baseline hot-plate latency, there was no difference in morphine antinociceptive potency. The present study shows that weight, habituation to the test room, and repeated testing can alter baseline hot-plate latency, but these effects are small and have relatively little impact on morphine antinociception. This manuscript shows that non-nociceptive factors such as body weight, habituation, and repeated testing can alter hot-plate latency, but these factors do not alter morphine potency. In sum, the hot-plate test is an easy to use and reliable method to assess supraspinally organized nociceptive responses. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
Port Graham Community Building Biomass Heating Design Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norman, Patrick; Sink, Charles
Native Village of Port Graham completed preconstruction activities to prepare for construction and operations of a cord wood biomass heating system to five or more community buildings in Port Graham, Alaska. Project Description Native Village of Port Graham (NVPG) completed preconstruction activities that pave the way towards reduced local energy costs through the construction and operations of a cord wood biomass heating system. NVPG plans include installation of a GARN WHS 3200 Boiler that uses cord wood as fuel source. Implementation of the 700,000 Btu per hour output biomass community building heat utility would heat 5-community buildings in Port Graham,more » Alaska. Heating system is estimated to displace 85% of the heating fuel oil or 5365 gallons of fuel on an annual basis with an estimated peak output of 600,000 Btu per hour. Estimated savings is $15,112.00 per year. The construction cost estimate made to install the new biomass boiler system is estimated $251,693.47 with an additional Boiler Building expansion cost estimated at $97,828.40. Total installed cost is estimated $349,521.87. The WHS 3200 Boiler would be placed inside a new structure at the old community Water Plant Building site that is controlled by NVPG. Design of the new biomass heat plant and hot water loop system was completed by Richmond Engineering, NVPG contractor for the project. A hot water heat loop system running off the boiler is designed to be placed underground on lands controlled by NVPG and stubbed to feed hot water to existing base board heating system in the following community buildings: 1. Anesia Anahonak Moonin Health and Dental Clinic 2. Native Village of Port Graham offices 3. Port Graham Public Safety Building/Fire Department 4. Port Graham Corporation Office Building which also houses the Port Graham Museum and Head Start Center 5. North Pacific Rim Housing Authority Workshop/Old Fire Hall Existing community buildings fuel oil heating systems are to be retro-fitted to accommodate hot water from the proposed wood-burning GARN Boiler, once installed, and rely on the existing fuel oil-fired hot water heating equipment for backup. The boiler would use an estimated 125 bone dry tons, equivalent to 100 cords, woody biomass feedstock obtained from local lands per year. Project would use local labor as described in the Port Graham Biomass Project, report completed by Chena Power, Inc. and Winters and Associates as part of the in-kind support to the U. S. Department of Energy (DOE) project for work on a project for State of Alaska’s Alaska Energy Authority (AEA). NVPG will likely initiate operations of the biomass boiler system even though several operational variations were studied. Obtaining the fuel source could be done by contractors, PGVC employees, or NVPG employees. Feeding the system would likely be done by NVPG employees. A majority of the buildings heated would be owned by NVPG. The PGVC office would be heated as well as the Old Fire Hall used as a workshop and storage area for North Pacific Rim Housing Authority. One methodology studied to charge for cost of utilizing the community building biomass system would use a percentage of use of hot water generated by the biomass hot water system based on past heating oil usage in relation to all buildings heated by biomass hot water. The method is better described in the Port Graham Biomass Project report. Fuel source agreements have been drafted to enter into agreements with area landowners. One Native allotment owner has asked Chugachmiut Forestry to begin a timber sale process to sell timber off her lands, specifically wind thrown timber that was determined to be of sufficient quantity to supply to the proposed biomass heating system for approximately 5-years. On NVPG’s behalf, Chugachmiut has presented to PGVC three different documents, attached, that could lead to a sale of woody biomass fuel for the project for up to 25-years, the expected life of the project. PGVC has signed a letter of intent to negotiate a sale of woody biomass material April 30, 2015. Chugachmiut Forestry has conducted two different field forest measurements of Native allotment lands and PGVC forest and timber lands. Lands deemed road accessible for biomass harvest were analyzed for this project. Forestry then conducted three different analyses and developed two reports to determine forest biomass on a tons per acre basis in addition to timber volume measurements taken for forest management purposes. Permits required were limited. For the biomass building, the Kenai Peninsula Borough did not require a permit. State of Alaska, Department of Public Safety, Division of Fire and Life Safety requires a plan review for fire and life safety requirements called an application for Fire and Life Safety Plan Review that would require a registered design professional to sign the document. State of Alaska State Forest Practices Act is required to be followed for any timber sale or harvest. This Act also requires consultation with Alaska Department of Fish and Game when operations are in close proximity or cross anadromous waters. Native allotment lands require following U. S. Bureau of Indian Affairs timber sale contracting process and approval.« less
Santa Ana Forecasting and Classification
NASA Astrophysics Data System (ADS)
Rolinski, T.; Eichhorn, D.; D'Agostino, B. J.; Vanderburg, S.; Means, J. D.
2011-12-01
Southern California experiences wildfires every year, but under certain circumstances these fires grow into extremely large and destructive fires, such as the Cedar Fire of 2003 and the Witch Fire of 2007. The Cedar Fire burned over 1100 km2 , destroyed more than 2200 homes and killed 15 people; the Witch fire burned more than 800 km2, destroyed more than 1000 homes and killed 2 people. Fires can quickly become too large and dangerous to fight if they are accompanied by a very strong "Santa Ana" condition, which is a foehn-like wind that may bring strong winds and very low humidities. However there is an entire range of specific weather conditions that fall into the broad category of Santa Anas, from cold and blustery to hot with very little wind. All types are characterized by clear skies and low humidity. Since the potential for destructive fire is dependent on the characteristics of Santa Anas, as well as the level of fuel moisture, there exists a need for further classification, such as is done with tropical cyclones and after-the-fact with tornadoes. We use surface data and fuel moisture combined with reanalysis to diagnose those conditions that result in Santa Anas with the greatest potential for destructive fires. We use this data to produce a new classification system for Santa Anas. This classification system should be useful for informing the relevant agencies for mitigation and response planning. In the future this same classification may be made available to the general public.
Co-variability of smoke and fire in the Amazon basin
NASA Astrophysics Data System (ADS)
Mishra, Amit Kumar; Lehahn, Yoav; Rudich, Yinon; Koren, Ilan
2015-05-01
The Amazon basin is a hot spot of anthropogenically-driven biomass burning, accounting for approximately 15% of total global fire emissions. It is essential to accurately measure these fires for robust regional and global modeling of key environmental processes. Here we have explored the link between spatio-temporal variability patterns in the Amazon basin's fires and the resulting smoke loading using 11 years (2002-2012) of data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET) observations. Focusing on the peak burning season (July-October), our analysis shows strong inter-annual correlation between aerosol optical depth (AOD) and two MODIS fire products: fire radiative power (FRP) and fire pixel counts (FC). Among these two fire products, the FC better indicates the amount of smoke in the basin, as represented in remotely sensed AOD data. This fire product is significantly correlated both with regional AOD retrievals from MODIS and with point AOD measurements from the AERONET stations, pointing to spatial homogenization of the smoke over the basin on a seasonal time scale. However, MODIS AODs are found better than AERONET AODs observation for linking between smoke and fire. Furthermore, MODIS AOD measurements are strongly correlated with number of fires ∼10-20 to the east, most likely due to westward advection of smoke by the wind. These results can be rationalized by the regional topography and the wind regimes. Our analysis can improve data assimilation of satellite and ground-based observations into regional and global model studies, thus improving the assessment of the environmental and climatic impacts of frequency and distribution variability of the Amazon basin's fires. We also provide the optimal spatial and temporal scales for ground-based observations, which could be used for such applications.
Morpheus Vertical Test Bed Flight Testing
NASA Technical Reports Server (NTRS)
Hart, Jeremy; Devolites, Jennifer
2014-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Morpheus onboard software is autonomous from ignition all the way through landing, and is designed to be capable of executing a variety of flight trajectories, with onboard fault checks and automatic contingency responses. The Morpheus 1.5A vehicle performed 26 integrated vehicle test flights including hot-fire tests, tethered tests, and two attempted freeflights between April 2011 and August 2012. The final flight of Morpheus 1.5A resulted in a loss of the vehicle. In September 2012, development began on the Morpheus 1.5B vehicle, which subsequently followed a similar test campaign culminating in free-flights at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. This paper describes the integrated test campaign, including successes and setbacks, and how the system design for handling faults and failures evolved over the course of the project.
29 CFR 1915.509 - Definitions applicable to this subpart.
Code of Federal Regulations, 2014 CFR
2014-07-01
... influence shipyard employment (such as mail delivery or office supply services). Dangerous atmosphere—an... area—an area established for hot work after an inspection that is free of fire hazards. Drop Test—a... external resources or a combination of both, or total or partial employee evacuation of the area exposed to...
29 CFR 1915.509 - Definitions applicable to this subpart.
Code of Federal Regulations, 2012 CFR
2012-07-01
... influence shipyard employment (such as mail delivery or office supply services). Dangerous atmosphere—an... area—an area established for hot work after an inspection that is free of fire hazards. Drop Test—a... external resources or a combination of both, or total or partial employee evacuation of the area exposed to...
29 CFR 1915.509 - Definitions applicable to this subpart.
Code of Federal Regulations, 2011 CFR
2011-07-01
... influence shipyard employment (such as mail delivery or office supply services). Dangerous atmosphere—an... area—an area established for hot work after an inspection that is free of fire hazards. Drop Test—a... external resources or a combination of both, or total or partial employee evacuation of the area exposed to...
29 CFR 1915.509 - Definitions applicable to this subpart.
Code of Federal Regulations, 2013 CFR
2013-07-01
... influence shipyard employment (such as mail delivery or office supply services). Dangerous atmosphere—an... area—an area established for hot work after an inspection that is free of fire hazards. Drop Test—a... external resources or a combination of both, or total or partial employee evacuation of the area exposed to...
Credit PSR. This interior view of the building equipment room ...
Credit PSR. This interior view of the building equipment room displays heat exchangers and fan units with insulated piping for hot and cold water at left. Environmental controls and fire fighting system controls appear at right - Jet Propulsion Laboratory Edwards Facility, Propellant Curing Building, Edwards Air Force Base, Boron, Kern County, CA
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
ERIC Educational Resources Information Center
Dupe, Kai Ajala
2017-01-01
The focus on the lack of diversity in technology has become a hot topic over the last several years, with technology companies coming under fire for not being more representative of the markets that they serve. Even The White House and President Obama has made this issue of technology diversity and recruiting more women and people of color a topic…
Code of Federal Regulations, 2010 CFR
2010-04-01
... water, electrical system, elevators, emergency power, fire protection, HVAC, and sanitary system. Each..., call-for-aid, ceiling, doors, electrical systems, floors, hot water heater, HVAC (where individual... HOUSING ASSESSMENT SYSTEM PHAS Indicator #1: Physical Condition § 902.23 Physical condition standards for...
Code of Federal Regulations, 2010 CFR
2010-04-01
... domestic water, electrical system, elevators, emergency power, fire protection, HVAC, and sanitary system... applicable), ceiling, doors, electrical systems, floors, hot water heater, HVAC (where individual units are... standards address the major areas of the HUD housing: the site; the building exterior; the building systems...
Code of Federal Regulations, 2012 CFR
2012-04-01
... domestic water, electrical system, elevators, emergency power, fire protection, HVAC, and sanitary system... applicable), ceiling, doors, electrical systems, floors, hot water heater, HVAC (where individual units are... standards address the major areas of the HUD housing: the site; the building exterior; the building systems...
Code of Federal Regulations, 2014 CFR
2014-04-01
... domestic water, electrical system, elevators, emergency power, fire protection, HVAC, and sanitary system... applicable), ceiling, doors, electrical systems, floors, hot water heater, HVAC (where individual units are... standards address the major areas of the HUD housing: the site; the building exterior; the building systems...
Code of Federal Regulations, 2013 CFR
2013-04-01
... domestic water, electrical system, elevators, emergency power, fire protection, HVAC, and sanitary system... applicable), ceiling, doors, electrical systems, floors, hot water heater, HVAC (where individual units are... standards address the major areas of the HUD housing: the site; the building exterior; the building systems...
The effect of temperature on arson incidence in Toronto, Ontario, Canada
NASA Astrophysics Data System (ADS)
Yiannakoulias, Niko; Kielasinska, Ewa
2016-05-01
Studies of crime and weather have largely excluded arson from empirical and theoretical consideration, yet weather could influence arson frequency over short time frames, influencing the motivation and activity of potential arsonists, as well as the physical possibility of fire ignition. This study aims to understand the role of weather on urban arson in order to determine its role in explaining short-term variations in arson frequency. We use data reported to the Ontario Fire Marshall's office of arson events in the City of Toronto between 1996 and 2007 to estimate the effect of temperature, precipitation, wind conditions and air pressure on arson events while controlling for the effects of holidays, weekends and other calendar-related events. We find that temperature has an independent association with daily arson frequency, as do precipitation and air pressure. In this study area, cold weather has a larger influence on arson frequency than hot weather. There is also some evidence that extremely hot and cold temperatures may be associated with lower day-time arson frequency, while night-time arson seems to have a simpler positive linear association with temperature.
The effect of temperature on arson incidence in Toronto, Ontario, Canada.
Yiannakoulias, Niko; Kielasinska, Ewa
2016-05-01
Studies of crime and weather have largely excluded arson from empirical and theoretical consideration, yet weather could influence arson frequency over short time frames, influencing the motivation and activity of potential arsonists, as well as the physical possibility of fire ignition. This study aims to understand the role of weather on urban arson in order to determine its role in explaining short-term variations in arson frequency. We use data reported to the Ontario Fire Marshall's office of arson events in the City of Toronto between 1996 and 2007 to estimate the effect of temperature, precipitation, wind conditions and air pressure on arson events while controlling for the effects of holidays, weekends and other calendar-related events. We find that temperature has an independent association with daily arson frequency, as do precipitation and air pressure. In this study area, cold weather has a larger influence on arson frequency than hot weather. There is also some evidence that extremely hot and cold temperatures may be associated with lower day-time arson frequency, while night-time arson seems to have a simpler positive linear association with temperature.
NASA Technical Reports Server (NTRS)
Panda, Jayanta; James, George H.; Burnside, Nathan J.; Fong, Robert; Fogt, Vincent A.
2011-01-01
The solid-rocket plumes from the Abort motor of the Multi-Purpose Crew Vehicle (MPCV, also know as Orion) were simulated using hot, high pressure, Helium gas to determine the surface pressure fluctuations on the vehicle in the event of an abort. About 80 different abort situations over a wide Mach number range, (0.3< or =M< or =1.2) and vehicle attitudes (+/-15deg) were simulated inside the NASA Ames Unitary Plan, 11-Foot Transonic Wind Tunnel. For each abort case, typically two different Helium plume and wind tunnel conditions were used to bracket different flow matching critera. This unique, yet cost-effective test used a custom-built hot Helium delivery system, and a 6% scale model of a part of the MPCV, known as the Launch Abort Vehicle. The test confirmed the very high level of pressure fluctuations on the surface of the vehicle expected during an abort. In general, the fluctuations were found to be dominated by the very near-field hydrodynamic fluctuations present in the plume shear-layer. The plumes were found to grow in size for aborts occurring at higher flight Mach number and altitude conditions. This led to an increase in the extent of impingement on the vehicle surfaces; however, unlike some initial expectations, the general trend was a decrease in the level of pressure fluctuations with increasing impingement. In general, the highest levels of fluctuations were found when the outer edges of the plume shear layers grazed the vehicle surface. At non-zero vehicle attitudes the surface pressure distributions were found to become very asymmetric. The data from these wind-tunnel simulations were compared against data collected from the recent Pad Abort 1 flight test. In spite of various differences between the transient flight situation and the steady-state wind tunnel simulations, the hot-Helium data were found to replicate the PA1 data fairly reasonably. The data gathered from this one-of-a-kind wind-tunnel test fills a gap in the manned-space programs, and will be used to establish the acoustic environment for vibro-acoustic qualification testing of the MPCV.
Thermal-Mechanical Testing of Hypersonic Vehicle Structures
NASA Technical Reports Server (NTRS)
Hudson, Larry; Stephens, Craig
2007-01-01
A viewgraph presentation describing thermal-mechanical tests on the structures of hypersonic vehicles is shown. The topics include: 1) U.S. Laboratories for Hot Structures Testing; 2) NASA Dryden Flight Loads Laboratory; 3) Hot Structures Test Programs; 4) Typical Sequence for Hot Structures Testing; 5) Current Hot Structures Testing; and 6) Concluding Remarks.
NASA Technical Reports Server (NTRS)
Garcia, C. P.; Medina, C. R.; Protz, C. S.; Kenny, R. J.; Kelly, G. W.; Casiano, M. J.; Hulka, J. R.; Richardson, B. R.
2016-01-01
As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. On the current project, several configurations of new main injectors were considered for the thrust chamber assembly of the integrated test article. All the injector elements were of the gas-centered swirl coaxial type, similar to those used on the Russian oxidizer-rich staged-combustion rocket engines. In such elements, oxidizer-rich combustion products from the preburner/turbine exhaust flow through a straight tube, and fuel exiting from the combustion chamber and nozzle regenerative cooling circuits is injected near the exit of the oxidizer tube through tangentially oriented orifices that impart a swirl motion such that the fuel flows along the wall of the oxidizer tube in a thin film. In some elements there is an orifice at the inlet to the oxidizer tube, and in some elements there is a sleeve or "shield" inside the oxidizer tube where the fuel enters. In the current project, several variations of element geometries were created, including element size (i.e., number of elements or pattern density), the distance from the exit of the sleeve to the injector face, the width of the gap between the oxidizer tube inner wall and the outer wall of the sleeve, and excluding the sleeve entirely. This paper discusses the design rationale for each of these element variations, including hydraulic, structural, thermal, combustion performance, and combustion stability considerations. This paper also discusses the fabrication and assembly of the injector components, including the injector body/interpropellant plate, the additive manufactured GRCop-84 faceplate, and the pieces that make up the injector elements including the oxidizer tube, an inlet to the oxidizer tube, and a facenut that includes the fuel tangential inlets and forms the initial recessed volume where oxidizer and fuel first interact. Hot-fire test results of these main injector designs in an integrated test article that includes an oxidizer-rich preburner are described in companion papers at this JANNAF meeting.
Influence of the processing route of porcelain/Ti-6Al-4V interfaces on shear bond strength.
Toptan, Fatih; Alves, Alexandra C; Henriques, Bruno; Souza, Júlio C M; Coelho, Rui; Silva, Filipe S; Rocha, Luís A; Ariza, Edith
2013-04-01
This study aims at evaluating the two-fold effect of initial surface conditions and dental porcelain-to-Ti-6Al-4V alloy joining processing route on the shear bond strength. Porcelain-to-Ti-6Al-4V samples were processed by conventional furnace firing (porcelain-fused-to-metal) and hot pressing. Prior to the processing, Ti-6Al-4V cylinders were prepared by three different surface treatments: polishing, alumina or silica blasting. Within the firing process, polished and alumina blasted samples were subjected to two different cooling rates: air cooling and a slower cooling rate (65°C/min). Metal/porcelain bond strength was evaluated by shear bond test. The data were analyzed using one-way ANOVA followed by Tuckey's test (p<0.05). Before and after shear bond tests, metallic surfaces and metal/ceramic interfaces were examined by Field Emission Gun Scanning Electron Microscope (FEG-SEM) equipped with Energy Dispersive X-Ray Spectroscopy (EDS). Shear bond strength values of the porcelain-to-Ti-6Al-4V alloy interfaces ranged from 27.1±8.9MPa for porcelain fused to polished samples up to 134.0±43.4MPa for porcelain fused to alumina blasted samples. According to the statistical analysis, no significant difference were found on the shear bond strength values for different cooling rates. Processing method was statistically significant only for the polished samples, and airborne particle abrasion was statistically significant only for the fired samples. The type of the blasting material did not cause a statistically significant difference on the shear bond strength values. Shear bond strength of dental porcelain to Ti-6Al-4V alloys can be significantly improved from controlled conditions of surface treatments and processing methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pruetz, Jill D; LaDuke, Thomas C
2010-04-01
The use and control of fire are uniquely human traits thought to have come about fairly late in the evolution of our lineage, and they are hypothesized to correlate with an increase in intellectual complexity. Given the relatively sophisticated cognitive abilities yet small brain size of living apes compared to humans and even early hominins, observations of wild chimpanzees' reactions to naturally occurring fire can help inform hypotheses about the likely responses of early hominins to fire. We use data on the behavior of savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal during two encounters with wildfires to illuminate the similarities between great apes and humans regarding their reaction to fire. Chimpanzees' close relatedness to our lineage makes them phylogenetically relevant to the study of hominid evolution, and the open, hot and dry environment at Fongoli, similar to the savanna mosaic thought to characterize much of hominid evolution, makes these apes ecologically important as a living primate model as well. Chimpanzees at Fongoli calmly monitor wildfires and change their behavior in anticipation of the fire's movement. The ability to conceptualize the "behavior" of fire may be a synapomorphic trait characterizing the human-chimpanzee clade. If the cognitive underpinnings of fire conceptualization are a primitive hominid trait, hypotheses concerning the origins of the control and use of fire may need revision. We argue that our findings exemplify the importance of using living chimpanzees as models for better understanding human evolution despite recently published suggestions to the contrary. (c) 2009 Wiley-Liss, Inc.
BPM Motors in Residential Gas Furnaces: What are theSavings?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, James; Franco, Victor; Lekov, Alex
2006-05-12
Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured staticmore » pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.« less
HyspIRI High-Temperature Saturation Study
NASA Technical Reports Server (NTRS)
Realmuto, V.; Hook, S.; Foote, M.; Csiszar, I.; Dennison, P.; Giglio, L.; Ramsey, M.; Vaughan, R.G.; Wooster, M.; Wright, R.
2011-01-01
As part of the precursor activities for the HyspIRI mission, a small team was assembled to determine the optimum saturation level for the mid-infrared (4-?m) channel, which is dedicated to the measurement of hot targets. Examples of hot targets include wildland fires and active lava flows. This determination took into account both the temperature expected for the natural phenomena and the expected performance of the mid-infrared channel as well as its overlap with the other channels in the thermal infrared (7.5-12 ?m) designed to measure the temperature of lower temperature targets. Based on this work, the hot target saturation group recommends a saturation temperature of 1200 K for the mid-infrared channel. The saturation temperature of 1200 K represents a good compromise between the prevention of saturation and sensitivity to ambient temperature.
NASA Technical Reports Server (NTRS)
1980-01-01
The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.
Elastomeric Thermal Insulation Design Considerations in Long, Aluminized Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Martin, Heath T.
2017-01-01
An all-new sounding rocket was designed at NASA's Marshall Space Flight Center that featured an aft finocyl, aluminized solid propellant grain and silica-filled ethylene-propylene-diene monomer (SFEPDM) internal insulation. Upon the initial static firing of the first of this new design, the solid rocket motor (SRM) case failed thermally just upstream of the aft closure early in the burn time. Subsequent fluid modeling indicated that the high-velocity combustion-product jets emanating from the fin-slots in the propellant grain were likely inducing a strongly swirling flow, thus substantially increasing the severity of the convective environment on the exposed portion of the SFEPDM insulation in this region. The aft portion of the fin-slots in another of the motors were filled with propellant to eliminate the possibility of both direct jet impingement on the exposed SFEPDM and the appearance of strongly swirling flow in the aft region of the motor. When static-fired, this motor's case still failed in the same axial location, and, though somewhat later than for the first static firing, still in less than 1/3rd of the desired burn duration. These results indicate that the extreme material decomposition rates of the SFEPDM in this application are not due to gas-phase convection or shear but rather to interactions with burning aluminum or alumina slag. Further comparisons with between SFEPDM performance in this design and that in other hot-fire tests provide insight into the mechanisms of SFEPDM decomposition in SRM aft domes that can guide the upcoming redesign effort, as well as other future SRM designs. These data also highlight the current limitations of modeling elastomeric insulators solely with diffusion-controlled, gas-phase thermochemistry in SRM regions with significant viscous shear and/or condense-phase impingement or flow.
LNG pool fire spectral data and calculation of emissive power.
Raj, Phani K
2007-04-11
Spectral description of thermal emission from fires provides a fundamental basis on which the fire thermal radiation hazard assessment models can be developed. Several field experiments were conducted during the 1970s and 1980s to measure the thermal radiation field surrounding LNG fires. Most of these tests involved the measurement of fire thermal radiation to objects outside the fire envelope using either narrow-angle or wide-angle radiometers. Extrapolating the wide-angle radiometer data without understanding the nature of fire emission is prone to errors. Spectral emissions from LNG fires have been recorded in four test series conducted with LNG fires on different substrates and of different diameters. These include the AGA test series of LNG fires on land of diameters 1.8 and 6m, 35 m diameter fire on an insulated concrete dike in the Montoir tests conducted by Gaz de France, a 1976 test with 13 m diameter and the 1980 tests with 10 m diameter LNG fire on water carried out at China Lake, CA. The spectral data from the Montoir test series have not been published in technical journals; only recently has some data from this series have become available. This paper presents the details of the LNG fire spectral data from, primarily, the China Lake test series, their analysis and results. Available data from other test series are also discussed. China Lake data indicate that the thermal radiation emission from 13 m diameter LNG fire is made up of band emissions of about 50% of energy by water vapor (band emission), about 25% by carbon dioxide and the remainder constituting the continuum emission by luminous soot. The emissions from the H2O and CO2 bands are completely absorbed by the intervening atmosphere in less than about 200 m from the fire, even in the relatively dry desert air. The effective soot radiation constitutes only about 23% during the burning period of methane and increases slightly when other higher hydrocarbon species (ethane, propane, etc.) are burning in the LNG fire. The paper discusses the procedure by which the fire spectral data are used to predict the thermal emission from large LNG fires. Unfortunately, no direct measurements of the soot density or smoke characteristics were made in the tests. These parameters have significant effect on the thermal emission from large LNG fires.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fire test. 183.590 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.590 Fire test. (a) A piece of equipment is... hull section. (b) Each fire test is conducted with free burning heptane and the component must be...
NASA Technical Reports Server (NTRS)
Ranson, Jon K.; Kovacs, Katalin; Kharuk, Viatcheslav; Burke, Erin
2006-01-01
Fires are a common occurrence in the Siberian boreal forest. The MOD14 Thermal anomalies product of the Terra MODIS Moderate Resolution Spectroradiometer) product set is designed to detect thermal anomalies (i.e. hotspots or fires) on the Earth's surface. Recent field studies showed a dependence of fire occurrence on topography. In this study MODIS thermal anomaly data and SRTM topography data were merged and analyzed to evaluate if forest fires are more likely to occur at certain combinations of elevation, slope and aspect. Using the satellite data over a large area can lead to better understanding how topography and forest fires are related. The study area covers a 2.5 Million krn(exp 2) portion of the Central Siberian southern taiga from 72 deg to 110 deg East and from 50 deg to 60 deg North. About 57% of the study area is forested and 80% of the forest grows between 200 and 1000 m. Forests with pine (Pinus sylvestris), larch (Larix sibirica, L. gmelinii), Siberian pine (Pinus sibirica), spruce (Picea obovata.) and fir (Abies sibirica) cover most of the landscape. Deciduous stands with birch (Betula pendula, B. pubescens) and aspen (Populus tremula) cover the areas of lower elevation in this region. The climate of this area is distinctly continental with long, cold winters and short hot summers. The tree line in this part of the world is around 1500 m in elevation with alpine tundra, snow and ice fields and rock outcrops extending up to over 3800 m. A 500 m resolution landcover map was developed using 2001 MODIS MOD13 Normalized Vegetation Index (NDVI) and Middle Infrared (MIR) products for seven 16-day periods. The classification accuracy was over 87%. The SRTM version 2 data, which is distributed in 1 degree by 1 degree tiles were mosaiced using the ENVI software. In this study, only those MODIS pixels were used that were flagged as "nominal or high confidence fire" by the MODIS fire product team. Using MODIS data from the years 2000 to 2005 along with the improved Shuttle Radar Topographic Mission (SRTM) version 2 data at 100 m resolution, the distribution of hot spots was examined by elevation, slope and aspect as well as by forest type. The results show that more forest area burns at lower elevations but a larger percentage of the available forest area burns at higher elevations. This is probably because steep slopes occur at higher elevations. Fires are only more common on slopes with a southern exposure if the slope is steeper than 15 degrees. The next step in this study will be to monitor areas where the risk of fire is high (steep slopes with a southern exposure) and to refine this method by incorporating anthropogenic features for more accurate fire disturbance monitoring.
Does the Establishment of Sustainable Use Reserves Affect Fire Management in the Humid Tropics?
Carmenta, Rachel; Blackburn, George Alan; Davies, Gemma; de Sassi, Claudio; Lima, André; Parry, Luke; Tych, Wlodek; Barlow, Jos
2016-01-01
Tropical forests are experiencing a growing fire problem driven by climatic change, agricultural expansion and forest degradation. Protected areas are an important feature of forest protection strategies, and sustainable use reserves (SURs) may be reducing fire prevalence since they promote sustainable livelihoods and resource management. However, the use of fire in swidden agriculture, and other forms of land management, may be undermining the effectiveness of SURs in meeting their conservation and sustainable development goals. We analyse MODIS derived hot pixels, TRMM rainfall data, Terra-Class land cover data, socio-ecological data from the Brazilian agro-census and the spatial extent of rivers and roads to evaluate whether the designation of SURs reduces fire occurrence in the Brazilian Amazon. Specifically, we ask (1) a. Is SUR location (i.e., de facto) or (1) b. designation (i.e. de jure) the driving factor affecting performance in terms of the spatial density of fires?, and (2), Does SUR creation affect fire management (i.e., the timing of fires in relation to previous rainfall)? We demonstrate that pre-protection baselines are crucial for understanding reserve performance. We show that reserve creation had no discernible impact on fire density, and that fires were less prevalent in SURs due to their characteristics of sparser human settlement and remoteness, rather than their status de jure. In addition, the timing of fires in relation to rainfall, indicative of local fire management and adherence to environmental law, did not improve following SUR creation. These results challenge the notion that SURs promote environmentally sensitive fire-management, and suggest that SURs in Amazonia will require special attention if they are to curtail future accidental wildfires, particularly as plans to expand the road infrastructure throughout the region are realised. Greater investment to support improved fire management by farmers living in reserves, in addition to other fire users, will be necessary to help ameliorate these threats. PMID:26886207
Does the Establishment of Sustainable Use Reserves Affect Fire Management in the Humid Tropics?
Carmenta, Rachel; Blackburn, George Alan; Davies, Gemma; de Sassi, Claudio; Lima, André; Parry, Luke; Tych, Wlodek; Barlow, Jos
2016-01-01
Tropical forests are experiencing a growing fire problem driven by climatic change, agricultural expansion and forest degradation. Protected areas are an important feature of forest protection strategies, and sustainable use reserves (SURs) may be reducing fire prevalence since they promote sustainable livelihoods and resource management. However, the use of fire in swidden agriculture, and other forms of land management, may be undermining the effectiveness of SURs in meeting their conservation and sustainable development goals. We analyse MODIS derived hot pixels, TRMM rainfall data, Terra-Class land cover data, socio-ecological data from the Brazilian agro-census and the spatial extent of rivers and roads to evaluate whether the designation of SURs reduces fire occurrence in the Brazilian Amazon. Specifically, we ask (1) a. Is SUR location (i.e., de facto) or (1) b. designation (i.e. de jure) the driving factor affecting performance in terms of the spatial density of fires?, and (2), Does SUR creation affect fire management (i.e., the timing of fires in relation to previous rainfall)? We demonstrate that pre-protection baselines are crucial for understanding reserve performance. We show that reserve creation had no discernible impact on fire density, and that fires were less prevalent in SURs due to their characteristics of sparser human settlement and remoteness, rather than their status de jure. In addition, the timing of fires in relation to rainfall, indicative of local fire management and adherence to environmental law, did not improve following SUR creation. These results challenge the notion that SURs promote environmentally sensitive fire-management, and suggest that SURs in Amazonia will require special attention if they are to curtail future accidental wildfires, particularly as plans to expand the road infrastructure throughout the region are realised. Greater investment to support improved fire management by farmers living in reserves, in addition to other fire users, will be necessary to help ameliorate these threats.
Regeneratively Cooled Liquid Oxygen/Methane Technology Development Between NASA MSFC and PWR
NASA Technical Reports Server (NTRS)
Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey B.
2012-01-01
The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.
Heavy hydrocarbon main injector technology
NASA Technical Reports Server (NTRS)
Fisher, S. C.; Arbit, H. A.
1988-01-01
One of the key components of the Advanced Launch System (ALS) is a large liquid rocket, booster engine. To keep the overall vehicle size and cost down, this engine will probably use liquid oxygen (LOX) and a heavy hydrocarbon, such as RP-1, as propellants and operate at relatively high chamber pressures to increase overall performance. A technology program (Heavy Hydrocarbon Main Injector Technology) is being studied. The main objective of this effort is to develop a logic plan and supporting experimental data base to reduce the risk of developing a large scale (approximately 750,000 lb thrust), high performance main injector system. The overall approach and program plan, from initial analyses to large scale, two dimensional combustor design and test, and the current status of the program are discussed. Progress includes performance and stability analyses, cold flow tests of injector model, design and fabrication of subscale injectors and calorimeter combustors for performance, heat transfer, and dynamic stability tests, and preparation of hot fire test plans. Related, current, high pressure, LOX/RP-1 injector technology efforts are also briefly discussed.
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.
2002-01-01
This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.
40 CFR 86.138-96 - Hot soak test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Hot soak test. 86.138-96 Section 86...-Duty Vehicles; Test Procedures § 86.138-96 Hot soak test. (a)(1) Gasoline- and methanol-fueled vehicles. For gasoline- and methanol-fueled vehicles, the hot soak test shall be conducted immediately following...
40 CFR 86.138-96 - Hot soak test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Hot soak test. 86.138-96 Section 86...-Duty Vehicles; Test Procedures § 86.138-96 Hot soak test. (a)(1) Gasoline- and methanol-fueled vehicles. For gasoline- and methanol-fueled vehicles, the hot soak test shall be conducted immediately following...
40 CFR 86.138-96 - Hot soak test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Hot soak test. 86.138-96 Section 86...-Duty Vehicles; Test Procedures § 86.138-96 Hot soak test. (a)(1) Gasoline- and methanol-fueled vehicles. For gasoline- and methanol-fueled vehicles, the hot soak test shall be conducted immediately following...
40 CFR 86.138-96 - Hot soak test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Hot soak test. 86.138-96 Section 86...-Duty Vehicles; Test Procedures § 86.138-96 Hot soak test. (a)(1) Gasoline- and methanol-fueled vehicles. For gasoline- and methanol-fueled vehicles, the hot soak test shall be conducted immediately following...
40 CFR 86.138-96 - Hot soak test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Hot soak test. 86.138-96 Section 86...-Duty Vehicles; Test Procedures § 86.138-96 Hot soak test. (a)(1) Gasoline- and methanol-fueled vehicles. For gasoline- and methanol-fueled vehicles, the hot soak test shall be conducted immediately following...
A low cost igniter utilizing an SCB and titanium sub-hydride potassium perchlorate pyrotechnic
NASA Technical Reports Server (NTRS)
Bickes, R. W., Jr.; Grubelich, M. C.; Hartman, J. K.; McCampbell, C. B.; Churchill, J. K.
1994-01-01
A conventional NSI (NASA Standard Initiator) normally employs a hot-wire ignition element to ignite ZPP (zirconium potassium perchlorate). With minor modifications to the interior of a header similar to an NSI device to accommodate an SCB (semiconductor bridge), a low cost initiator was obtained. In addition, the ZPP was replaced with THKP (titanium sub-hydride potassium perchlorate) to obtain increased overall gas production and reduced static-charge sensitivity. This paper reports on the all-fire and no-fire levels obtained and on a dual mix device that uses THKP as the igniter mix and a thermite as the output mix.
Water augmented indirectly-fired gas turbine systems and method
Bechtel, Thomas F.; Parsons, Jr., Edward J.
1992-01-01
An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.
Cost of heat from a seasonal source
NASA Astrophysics Data System (ADS)
Reilly, R. W.; Brown, D. R.; Huber, H. D.
Results are reported of an investigation to estimate the cost of aquifer thermal energy storage (ATES) from a seasonal heat source. The cost of supplying energy (hot water) from an ATES system is estimated. Three types of loads are investigated: point demands, residential developments, and a multidistrict city. Several technical and economic factors are found to control the economic performance of an ATES system. Costs are found to be prohibitive for systems of small size, long transmission distances, and employing expensive purchased thermal energy. ATES is found to be cost-competitive with oil-fired and electric hot water delivery systems under a broad range of potential situations.
NASA Technical Reports Server (NTRS)
1978-01-01
The Decade 80 solar house, located in Tucson, Arizona, was built to show the use of copper in home building and to demonstrate the use of solar energy to provide space heating and cooling and domestic hot water. The auxiliary energy sources are electrical resistance heating for the domestic hot water and a gas fired boiler for space heating and operation of the absorption air conditioning units. The Semi-Annual report gives an overview of the instrumentation effort with the back-up monthly reports reflecting more detail of the effort that went into the implementation of the data acquisition system.
Impact of Fire Ventilation on General Ventilation in the Building
NASA Astrophysics Data System (ADS)
Zender-Świercz, Ewa; Telejko, Marek
2017-10-01
The fire of building is a threat to its users. The biggest threat is generation, during lifetime of fire, hot gases and smoke. The purpose of quick and efficient evacuation from the area covered by the fire, at first step the escape routes have to be secured from smokiness. The smoke ventilation systems are used for this purpose. The proper design and execution of smoke ventilation is important not only because of the safety, but also of the maintenance of comfort in the building at a time when there is no fire. The manuscript presents the effect of incorrectly realized smoke ventilation in the stairwell of the medium building. The analysis shows that the flaps of smoke ventilation located in the stairwell may have a significant impact on the proper functioning of mechanical ventilation in the period when there is no fire. The improperly installed or incorrect insulated components cause perturbation of air flow and they change pressure distribution in the building. The conclusion of the analysis is the need to include the entire technical equipment of the building during the design and realization of its individual elements. The impact of various installations at each other is very important, and the omission of any of them can cause disturbances in the proper work of another.
The ecological importance of severe wildfires: some like it hot.
Hutto, Richard L
2008-12-01
Many scientists and forest land managers concur that past fire suppression, grazing, and timber harvesting practices have created unnatural and unhealthy conditions in the dry, ponderosa pine forests of the western United States. Specifically, such forests are said to carry higher fuel loads and experience fires that are more severe than those that occurred historically. It remains unclear, however, how far these generalizations can be extrapolated in time and space, and how well they apply to the more mesic ponderosa pine systems and to other forest systems within the western United States. I use data on the pattern of distribution of one bird species (Black-backed Woodpecker, Picoides arcticus) as derived from 16465 sample locations to show that, in western Montana, this bird species is extremely specialized on severely burned forests. Such specialization has profound implications because it suggests that the severe fires we see burning in many forests in the Intermountain West are not entirely "unnatural" or "unhealthy." Instead, severely burned forest conditions have probably occurred naturally across a broad range of forest types for millennia. These findings highlight the fact that severe fire provides an important ecological backdrop for fire specialists like the Black-backed Woodpecker, and that the presence and importance of severe fire may be much broader than commonly appreciated.
Use of a Small Unmanned Aircraft System for Autonomous Fire Spotting at the Great Dismal Swamp
NASA Technical Reports Server (NTRS)
Logan, Michael J.; Glaab, Louis J.; Craig, Timothy
2016-01-01
This paper describes the results of a set of experiments and analyses conducted to evaluate the capability of small unmanned aircraft systems (sUAS) to spot nascent fires in the Great Dismal Swamp (GDS) National Wildlife Refuge. This work is the result of a partnership between the National Aeronautics and Space Administration and the US Fish and Wildlife service specifically to investigate sUAS usage for fire-spotting. The objectives of the current effort were to: 1) Determine suitability and utility of low-cost Small Unmanned Aircraft Systems (sUAS) to detect nascent fires at GDS; 2) Identify and assess the necessary National Airspace System (NAS) integration issues; and 3) Provide information to GDS and the community on system requirements and concepts-of-operation (CONOPS) for conducting fire detection/support mission in the National Airspace and (4) Identify potential applications of intelligent autonomy that would enable or benefit this high-value mission. In addition, data on the ability of various low-cost sensors to detect smoke plumes and fire hot spots was generated during the experiments as well as identifying a path towards a future practical mission utility by using sUAS in beyond visual-line-of-sight operation in the National Airspace System (NAS).
A Mixing Length Scale of Unlike Impinging Jets
NASA Astrophysics Data System (ADS)
Inoue, Chihiro; Fujii, Go; Daimon, Yu
2017-11-01
Bi-propellant thrusters in space propulsion systems often utilize unlike-doublet or triplet injectors. The impingement of hypergolic liquid jet streams of fuel and oxidizer involves the expanding sheet, droplet fragmentation, mixing, evaporation, and chemical reactions in liquid and gas phases, in which the rate controlling phenomenon is the mixing step. In this study, a defined length scale demonstrates the distribution of fuel and oxidizer, and therefore, represents their mixing states, allowing for providing a physical meaning of widely accepted practical indicator, so called Rupe factor, over half a century of injector design history. We concisely formulate the characteristic velocity in a consistent manner for doublet and triplet injectors as a function of propellant injection conditions. The validity of the present formulation is convinced by comparing with hot firing tests.
49 CFR Appendix B to Part 179 - Procedures for Simulated Pool and Torch-Fire Testing
Code of Federal Regulations, 2011 CFR
2011-10-01
... plate. (3) Before exposure to the pool-fire simulation, none of the thermocouples on the thermal... simulated pool fire. (5) A pool-fire simulation test must run for a minimum of 100 minutes. The thermal... three consecutive successful simulation fire tests must be performed for each thermal protection system...
49 CFR Appendix B to Part 179 - Procedures for Simulated Pool and Torch-Fire Testing
Code of Federal Regulations, 2013 CFR
2013-10-01
... thermal response of the plate. (3) Before exposure to the pool-fire simulation, none of the thermocouples... exposed to the simulated pool fire. (5) A pool-fire simulation test must run for a minimum of 100 minutes...) A minimum of three consecutive successful simulation fire tests must be performed for each thermal...