Science.gov

Sample records for hot metal dephosphorization

  1. A Thermodynamic Model for Predicting Phosphorus Partition between CaO-based Slags and Hot Metal during Hot Metal Dephosphorization Pretreatment Process Based on the Ion and Molecule Coexistence Theory

    NASA Astrophysics Data System (ADS)

    Yang, Xue-min; Li, Jin-yan; Chai, Guo-ming; Duan, Dong-ping; Zhang, Jian

    2016-08-01

    A thermodynamic model for predicting phosphorus partition L P between a CaO-based slags and hot metal during hot metal dephosphorization pretreatment process has been developed based on the ion and molecule coexistence theory (IMCT), i.e., the IMCT- L P model. The reaction abilities of structural units or ion couples in the CaO-based slags have been represented by the calculated mass action concentrations N i through the developed IMCT- N i model based on the IMCT. The developed IMCT- L P model has been verified to be valid through comparing with the measured L P as well as the predicted L P by two reported L P models from the literature. Besides the total phosphorus partition L P between the CaO-based slag and hot metal, the respective phosphorus partitions L P, i of nine dephosphorization products as P2O5, 3FeO·P2O5, 4FeO·P2O5, 2CaO·P2O5, 3CaO·P2O5, 4CaO·P2O5, 2MgO·P2O5, 3MgO·P2O5, and 3MnO·P2O5 can also be accurately predicted by the developed IMCT- L P model. The formed 3CaO·P2O5 accounts for 99.20 pct of dephosphorization products comparing with the generated 4CaO·P2O5 for 0.08 pct. The comprehensive effect of CaO+Fe t O, which can be described by the mass percentage ratio (pct Fe t O)/(pct CaO) or the mass action concentration ratio N_{Fe}t O/N_{Fe}t O N_{CaO}. N_{CaO}} as well as the mass percentage product (pct Fe t O) × (pct CaO) or the mass action concentration product N_{{{{Fe}}t {{O}}}}5 × N_{{CaO}}3 , controls dephosphorization ability of the CaO-based slags. A linear relationship of L P against (pct Fe t O)/(pct CaO) can be correlated compared with a parabolic relationship of L P against N_{Fe}t O/N_{Fe}t O N_{CaO}. N_{CaO}, while the linear relationship of L P against (pct Fe t O) × (pct CaO) or N_{Fe}t O5 × N_{CaO}3 can be established. Thus, the mass percentage product (pct Fe t O) × (pct CaO) and the mass action concentration product N_{Fe}t O5 × N_{CaO}3 are recommended to represent the comprehensive effect of CaO+Fe t O on

  2. The Influence of Sulfur on Dephosphorization Kinetics Between Bloated Metal Droplets and Slag Containing FeO

    NASA Astrophysics Data System (ADS)

    Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.

    2017-06-01

    The bloating behavior of metal droplets and the dephosphorization behavior of bloated droplets at 1853 K (1580 °C) were investigated using X-ray fluoroscopy coupled with constant volume pressure change measurements and chemical analysis of quenched samples. The effect of sulfur content on dephosphorization kinetics was studied during the decarburization period. The slag foamed during the reaction forming a foamy layer over a dense layer. After a short incubation period, the droplets became bloated due to internal decarburization. The bloated droplets floated from the dense slag into the foamy slag. The behavioral changes are directly related to the effect of sulfur on the incubation time for swelling. The dephosphorization reaction was very fast; droplets with low sulfur contents experienced phosphorus reversion shortly after entering the foamy slag, while those with higher sulfur content took a longer time to swell and went through reversion before they entered the foam. The dephosphorization rate and maximum phosphorus partition were higher at lower CO evolution rates because the dynamic interfacial oxygen potential increased with the decreasing oxygen consumption rate. The rate controlling step for dephosphorization was initially a combination of mass transport in both the metal and the slag. As the iron oxide in the slag was depleted, the rate control shifted to mass transport in slag.

  3. The Influence of Sulfur on Dephosphorization Kinetics Between Bloated Metal Droplets and Slag Containing FeO

    NASA Astrophysics Data System (ADS)

    Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.

    2017-10-01

    The bloating behavior of metal droplets and the dephosphorization behavior of bloated droplets at 1853 K (1580 °C) were investigated using X-ray fluoroscopy coupled with constant volume pressure change measurements and chemical analysis of quenched samples. The effect of sulfur content on dephosphorization kinetics was studied during the decarburization period. The slag foamed during the reaction forming a foamy layer over a dense layer. After a short incubation period, the droplets became bloated due to internal decarburization. The bloated droplets floated from the dense slag into the foamy slag. The behavioral changes are directly related to the effect of sulfur on the incubation time for swelling. The dephosphorization reaction was very fast; droplets with low sulfur contents experienced phosphorus reversion shortly after entering the foamy slag, while those with higher sulfur content took a longer time to swell and went through reversion before they entered the foam. The dephosphorization rate and maximum phosphorus partition were higher at lower CO evolution rates because the dynamic interfacial oxygen potential increased with the decreasing oxygen consumption rate. The rate controlling step for dephosphorization was initially a combination of mass transport in both the metal and the slag. As the iron oxide in the slag was depleted, the rate control shifted to mass transport in slag.

  4. Effects of Various Slag Systems on Metal/Slag Separation of CCA and Slag Composition on Desulfurization and Dephosphorization of Iron Nugget

    NASA Astrophysics Data System (ADS)

    Park, Ji-Ook; Jung, Sung-Mo

    The reduction experiment of iron ore containing high Alumina content with petroleum coke was carried out in the temperature range of 1673 to 1773K by changing the slag composition. The sulfur and phosphorous content in the reduced iron nugget were measured to investigate the desulfurization and dephosphorization behavior during the reduction. The mineralogy of iron ore and additives to the carbon composite agglomerate (CCA) highly influenced on not only the reduction itself but also the melting, carburization, metal-slag separation, desulfurization and dephosphorization. High basicity of slag retarded the melting of CCA and the metal-slag separation, but enhanced sulfur and phosphorous removal degrees in the separated metal.

  5. Dephosphorization Kinetics between Bloated Metal Droplets and Slag Containing FeO: The Influence of CO Bubbles on the Mass Transfer of Phosphorus in the Metal

    NASA Astrophysics Data System (ADS)

    Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.

    2017-09-01

    Dephosphorization kinetics of bloated metal droplets was investigated in the temperature range from 1813 K to 1913 K (1540 °C to 1640 °C). The experimental results showed that the overall mass transfer coefficient, {ko} , decreased with increasing temperature because of decreasing phosphorus partition ratio, {LP} . It was also found that the mass transfer coefficient for phosphorus in the metal, {km} , had the highest value at the lowest temperature [i.e., 1813 K (1540 °C)] because the formation of smaller CO bubbles increased the rate of surface renewal, leading to faster mass transport. Meanwhile, metal droplets without carbon were also employed to study the effect of decarburization on dephosphorization. The results show that although decarburization lowers the driving force significantly, {km} (6.2 × 10-2 cm/s) for a carbon containing droplet is two orders of magnitude higher than that for carbon free droplets (5.3 × 10-4 cm/s) because of the stirring effect provided by CO bubbles. This stirring offers a faster surface renewal rate, which surpasses the loss of driving force and then leads to a faster dephosphorization rate.

  6. Numerical Model of Dephosphorization Reaction Kinetics in Top Blown Converter Coupled with Flow Field

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Yang, Shufeng; Li, Jingshe; Wang, Minghui

    2017-07-01

    A 3D transient numerical model of dephosphorization kinetics coupled with flow field in a top blown converter was built. Through the model the dephosphorization reaction rate influenced by the oxygen jets and the steel flow were simulated. The results show that the dephosphorization rate at the droplet metal-slag interface is two orders of magnitude faster than that at bath metal-slag interface. When the lance oxygen pressure increases from 0.7 to 0.8 MPa, the dephosphorization rate increases notably and the end content of P has a decrease of 19 %. However, when the pressure continues rising to 0.9 MPa, the dephosphorization rate has no significant increase. In addition, the lance height shows a nearly linear relation to the end P content of steel, that the lower the height, the faster the dephosphorization rate.

  7. Critical Evaluation of Prediction Models for Phosphorus Partition between CaO-based Slags and Iron-based Melts during Dephosphorization Processes

    NASA Astrophysics Data System (ADS)

    Yang, Xue-Min; Li, Jin-Yan; Chai, Guo-Ming; Duan, Dong-Ping; Zhang, Jian

    2016-08-01

    According to the experimental results of hot metal dephosphorization by CaO-based slags at a commercial-scale hot metal pretreatment station, the collected 16 models of equilibrium quotient k_{{P}} or phosphorus partition L_{{P}} between CaO-based slags and iron-based melts from the literature have been evaluated. The collected 16 models for predicting equilibrium quotient k_{{P}} can be transferred to predict phosphorus partition L_{{P}} . The predicted results by the collected 16 models cannot be applied to be criteria for evaluating k_{{P}} or L_{{P}} due to various forms or definitions of k_{{P}} or L_{{P}} . Thus, the measured phosphorus content [pct P] in a hot metal bath at the end point of the dephosphorization pretreatment process is applied to be the fixed criteria for evaluating the collected 16 models. The collected 16 models can be described in the form of linear functions as y = c0 + c1 x , in which independent variable x represents the chemical composition of slags, intercept c0 including the constant term depicts the temperature effect and other unmentioned or acquiescent thermodynamic factors, and slope c1 is regressed by the experimental results of k_{{P}} or L_{{P}} . Thus, a general approach to developing the thermodynamic model for predicting equilibrium quotient k_{{P}} or phosphorus partition L P or [pct P] in iron-based melts during the dephosphorization process is proposed by revising the constant term in intercept c0 for the summarized 15 models except for Suito's model (M3). The better models with an ideal revising possibility or flexibility among the collected 16 models have been selected and recommended. Compared with the predicted result by the revised 15 models and Suito's model (M3), the developed IMCT- L_{{P}} model coupled with the proposed dephosphorization mechanism by the present authors can be applied to accurately predict phosphorus partition L_{{P}} with the lowest mean deviation δ_{{L_{{P}} }} of log L_{{P}} as 2.33, as

  8. Alternative Metal Hot Cutting Operations for Opacity

    DTIC Science & Technology

    2014-10-01

    Distribution A: Approved for public release; distribution is unlimited. TDS-NAVFAC-EXWC-EV-1509 October 2014 Alternative Metal Hot Cutting ...for oxy-fuel cutting of metal, to reduce opacity emissions during shipbreaking and recycling operations. When ships and submarines reach the end...vessels utilizes oxy-fuel metal cutting . However, this process generates visible particulate matter that has the potential to exceed local air

  9. 13. Underside Span 1, Hot Metal Bridge on right toward ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Underside Span 1, Hot Metal Bridge on right toward Pier 1. - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  10. METHOD OF HOT ROLLING URANIUM METAL

    DOEpatents

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  11. DEVELOPMENT OF METALLIC HOT GAS FILTERS

    SciTech Connect

    Anderson, I.E.; Gleeson, B.; Terpstra, R.L.

    2003-04-23

    Successful development of metallic filters with high temperature oxidation/corrosion resistance for fly ash capture is a key to enabling advanced coal combustion and power generation technologies. Compared to ceramic filters, metallic filters can offer increased resistance to impact and thermal fatigue, greatly improving filter reliability. A beneficial metallic filter structure, composed of a thin-wall (0.5mm) tube with uniform porosity (about 30%), is being developed using a unique spherical powder processing and partial sintering approach, combined with porous sheet rolling and resistance welding. Alloy choices based on modified superalloys, e.g., Ni-16Cr-4.5Al-3Fe (wt.%), are being tested in porous and bulk samples for oxide (typically alumina) scale stability in simulated oxidizing/sulfidizing atmospheres found in PFBC and IGCC systems at temperatures up to 850 C. Recent ''hanging o-ring'' exposure tests in actual combustion systems at a collaborating DOE site (EERC) have been initiated to study the combined corrosive effects from particulate deposits and hot exhaust gases. New studies are exploring the correlation between sintered microstructure, tensile strength, and permeability of porous sheet samples.

  12. 2. HOT METAL BRIDGE (ACROSS THE MONONGAHELA RIVER) AND CARRIE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. HOT METAL BRIDGE (ACROSS THE MONONGAHELA RIVER) AND CARRIE FURNACES No. 3 AND No. 4 FROM THE TOP OF WATER TOWER. THE EDGAR THOMSON WORKS IS VISIBLE BEYOND HOT METAL BRIDGE. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  13. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2016-09-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  14. Simultaneous desulfurization and dephosphorization reactions of molten iron by soda ash treatment

    NASA Astrophysics Data System (ADS)

    Mori, Katsumi; Wada, Harue; Pehlke, Robert D.

    1985-06-01

    Desulfurization and dephosphorization reactions of molten iron by soda ash has been studied on laboratory heats of Fe-C, Fe-C-S, Fe-C-P, and Fe-C-S-P alloys at 1573 and 1623 K. The alloys were melted in helium gas flow and preheated soda ash was added; metal samples were taken at certain time intervals and analyzed for sulfur, phosphorus, and carbon. Evolved gas samples were also taken at certain time intervals and analyzed. The phosphorus and sulfur contents in metals decreased rapidly, reaching the lowest values two to four minutes after the soda ash addition. The degree of desulfurization was generally greater than that of dephosphorization, and both degrees were higher at lower reaction temperature. The major component of evolved gas was CO with small amounts of CO2. Phosphorus appeared to form a stable phosphate compound with Na2O, possibly 3Na2O-P2O5, in the slag phase. Soda ash reacts with carbon resulting in decarburization of molten iron and vaporization of sodium; this reaction may cause the fading of soda ash and can be expressed as: Na2CO3(1) + (1 + x) C = (1 - xNa2O(1) + 2 xNa(g_ + (2 + xCO(g). For the phosphorus containing melt, the reaction can be expressed as: Na2CO3(l) + yC + 2 x/3 P = x(Na2O · 1/3P2O5)(1) + (2 - y - 8 x/3)Na2O(l) + 2(-l + y + 5 x/3)Na(g) + (1 + y)CO(g) and for the sulfur containing melt: Na2O(l) + C + S = Na2S(l) + CO(g).

  15. Critical Assessment of P2O5 Activity Coefficients in CaO-based Slags during Dephosphorization Process of Iron-based Melts

    NASA Astrophysics Data System (ADS)

    Yang, Xue-min; Li, Jin-yan; Chai, Guo-Ming; Duan, Dong-ping; Zhang, Jian

    2016-08-01

    According to the experimental results of hot metal dephosphorization by CaO-based slags at a commercial-scale hot metal pretreatment station, activity a_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in the CaO-based slags has been determined using the calculated comprehensive mass action concentration N_{{{{Fe}}t {{O}}}}{} of iron oxides by the ion and molecule coexistence theory (IMCT) for representing the reaction ability of Fe t O, i.e., activity of a_{{{{Fe}}t {{O}}}}{} . The collected ten models from the literature for predicting activity coefficient γ_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in CaO-based slags have been evaluated based on the determined activity a_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 by the IMCT as the criterion. The collected ten models of activity coefficient γ_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in CaO-based slags can be described in the form of a linear function as log γ_{{{{P}}_{ 2} {{O}}_{ 5} }} ≡ y = c0 + c1 x , in which independent variable x represents the chemical composition of slags, intercept c0 including the constant term depicts temperature effect and other unmentioned or acquiescent thermodynamic factors, and slope c1 is regressed by the experimental results. Thus, a general approach for obtaining good prediction results of activity a_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in CaO-based slags is proposed by revising the constant term in intercept c0 for the collected ten models. The better models with an ideal revising possibility or flexibility in the collected ten models have been selected and recommended.

  16. 18. LOOKING EAST AT THE HOT METAL RELADLING PIT No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. LOOKING EAST AT THE HOT METAL RELADLING PIT No. 1 ON THE CHARGING AISLE OF THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. Hot temperatures line lists for metal hydrides

    NASA Astrophysics Data System (ADS)

    Gorman, M.; Lodi, L.; Leyland, P. pC; Hill, C.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    The ExoMol project is an ERC funded project set up with the purpose of calculating high quality theoretical molecular line list data to facilitate the emerging field of exoplanet and cool star atmospheric haracterisation [1]. Metal hydrides are important building blocks of interstellar physical chemistry. For molecular identification and characterisation in astrophysical sources, one requires accurate and complete spectroscopic data including transitional frequencies and intensities in the form of a line list. The ab initio methods offer the best opportunity for detailed theoretical studies of free diatomic metal hydrides and other simple hydride molecules. In this contribution we present progress on theoretical line lists for AlH, CrH, MgH, NiH, NaH and TiH obtained from first principles, applicable for a large range of temperatures up to 3500 K. Among the hydrides, AlH is of special interest because of a relatively high cosmic abundance of aluminium. The presence of AlH has been detected in the spectra of M-type and S-type stars as well as in sunspots (See [2] and references therein). CrH is a molecule of astrophysical interest; under the classification scheme developed by Kirkpatrick et al [3], CrH is of importance in distinguishing L type brown dwarfs. It has been proposed that theoretical line-lists of CrH and CrD could be used to facilitate a 'Deuterium test' for use in distinguishing planets, brown dwarfs and stars [5] and also it has been speculated that CrH exists in sunspots [4] but a higherquality hot-temperature line-list is needed to confirm this finding. The presence of MgH in stellar spectra is well documented through observation of the A2 ! X 2+ and B0 2+ ! X 2+ transitions. Different spectral features of MgH have been used as an indicator for the magnesium isotope abundances in the atmospheres of different stars from giants to dwarfs including the Sun, to measure the temperature of stars, surface gravity, stars' metal abundance, gravitational, as

  18. HOT METAL BRIDGE (NOTE: BUILDERS: JONES AND LAUGHLIN STEEL CA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT METAL BRIDGE (NOTE: BUILDERS: JONES AND LAUGHLIN STEEL CA. 1890), SOUTH PORTAL. THREE PIN CONNECTED CAMELBACK TRUSS SPANS, ONE SKEWED THROUGH TRUSS SPAN ON NORTH SIDE TRUSS BRIDGE, EAST OF HOT METAL BRIDGE BUILT BY AMERICAN BRIDGE COMPANY CA. 1910. (RIVETED MULTI-SPAN TRUSS). - Jones & Laughlin Steel Corporation, Pittsburgh Works, Morgan Billet Mill Engine, 550 feet north of East Carson Street, opposite South Twenty-seventh Street, Pittsburgh, Allegheny County, PA

  19. Hot-Dipped Metal Films as Epitaxial Substrates

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J.

    1985-01-01

    Multistep process forms semiconductor devices on macrocrystalline films of cadmium or zinc. Solar-cell fabrication processes use hot-dipped macrocrystalline films on low-cost sheet-metal base as substrates for epitaxy. Epitaxial layers formed by variety of methods of alternative sequence paths. Solar cells made economically by forming desired surface substance directly on metal film by chemical reactions.

  20. Plasmon-induced hot carriers in metallic nanoparticles.

    PubMed

    Manjavacas, Alejandro; Liu, Jun G; Kulkarni, Vikram; Nordlander, Peter

    2014-08-26

    Plasmon-induced hot carrier formation is attracting an increasing research interest due to its potential for applications in photocatalysis, photodetection and solar energy harvesting. However, despite very significant experimental effort, a comprehensive theoretical description of the hot carrier generation process is still missing. In this work we develop a theoretical model for the plasmon-induced hot carrier process and apply it to spherical silver nanoparticles and nanoshells. In this model, the conduction electrons of the metal are described as free particles in a finite spherical potential well, and the plasmon-induced hot carrier production is calculated using Fermi’s golden rule. We show that the inclusion of many-body interactions has only a minor influence on the results. Using the model we calculate the rate of hot carrier generation, finding that it closely follows the spectral profile of the plasmon. Our analysis reveals that particle size and hot carrier lifetime play a central role in determining both the production rate and the energy distribution of the hot carriers. Specifically, larger nanoparticle sizes and shorter lifetimes result in higher carrier production rates but smaller energies, and vice versa. We characterize the efficiency of the hot carrier generation process by introducing a figure of merit that measures the number of high energy carriers generated per plasmon. Furthermore, we analyze the spatial distribution and directionality of these excitations. The results presented here contribute to the basic understanding of plasmon-induced hot carrier generation and provide insight for optimization of the process.

  1. Liquid-metal atomization for hot working preforms

    NASA Technical Reports Server (NTRS)

    Grant, N. J.; Pelloux, R. M.

    1974-01-01

    Rapid quenching of a liquid metal by atomization or splat cooling overcomes the major limitation of most solidification processes, namely, the segregation of alloying elements, impurities, and constituent phases. The cooling rates of different atomizing processes are related to the dendrite arm spacings and to the microstructure of the atomized powders. The increased solubility limits and the formation of metastable compounds in splat-cooled alloys are discussed. Consolidation of the powders by hot isostatic compaction, hot extrusion, or hot forging and rolling processes yields billets with properties equivalent to or better than those of the wrought alloys. The application of this powder processing technology to high-performance alloys is reviewed.

  2. Metal vapor laser including hot electrodes and integral wick

    DOEpatents

    Ault, E.R.; Alger, T.W.

    1995-03-07

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  3. Metal vapor laser including hot electrodes and integral wick

    DOEpatents

    Ault, Earl R.; Alger, Terry W.

    1995-01-01

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  4. Metal oxide nanostructures by a simple hot water treatment.

    PubMed

    Saadi, Nawzat S; Hassan, Laylan B; Karabacak, Tansel

    2017-08-02

    Surfaces with metal oxide nanostructures have gained considerable interest in applications such as sensors, detectors, energy harvesting cells, and batteries. However, conventional fabrication techniques suffer from challenges that hinder wide and effective applications of such surfaces. Most of the metal oxide nanostructure synthesis methods are costly, complicated, non-scalable, environmentally hazardous, or applicable to only certain few materials. Therefore, it is crucial to develop a simple metal oxide nanostructure fabrication method that can overcome all these limitations and pave the way to the industrial application of such surfaces. Here, we demonstrate that a wide variety of metals can form metal oxide nanostructures on their surfaces after simply interacting with hot water. This method, what we call hot water treatment, offers the ability to grow metal oxide nanostructures on most of the metals in the periodic table, their compounds, or alloys by a one-step, scalable, low-cost, and eco-friendly process. In addition, our findings reveal that a "plugging" mechanism along with surface diffusion is critical in the formation of such nanostructures. This work is believed to be of importance especially for researchers working on the growth of metal oxide nanostructures and their application in functional devices.

  5. 12. Underside of Skew SpanHot Metal system on right, toward ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Underside of Skew Span-Hot Metal system on right, toward Rocker Bent. - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  6. Hot-electron effects in metals

    SciTech Connect

    Wellstood, F.C.; Urbina, C.; Clarke, J. |

    1994-03-01

    When sufficient electrical power {ital P} is dissipated in a thin metal film at millikelvin temperatures, the electrons can be driven far out of thermal equilibrium with the phonons. For uniform power dissipation in a volume {Omega} we show that the electrons attain a steady-state temperature {ital T}{sub {ital e}}=({ital P}/{Sigma}{Omega}+{ital T}{sub {ital p}}{sup 5}){sup 1/5}, where {ital T}{sub {ital p}} is the phonon temperature and {Sigma} is a parameter involving the electron-phonon coupling. We have used a sensitive ammeter based on a dc superconducting quantum interference device (SQUID) to measure the Nyquist current noise in thin films of AuCu as a function of {ital P}, and thus inferred {ital T}{sub {ital e}}. We fitted our data to the theory with the single parameter {Sigma}, and found good agreement for {Sigma}=(2.4{plus_minus}0.6){times}10{sup 9} Wm{sup {minus}3} K{sup {minus}5}. When we increased the volume of the resistor by attaching a thin-film cooling fin, there was a much smaller increase in {ital T}{sub {ital e}} for a given power dissipation in the resistor, in qualitative agreement with a simple model for nonuniform heating. We also measured the flux noise in dc SQUIDs at low temperatures, and found that the white noise was limited by heating of the electrons in the resistive shunts of the Josephson junctions. We were able to reduce these effects substantially by attaching cooling fins to the shunts.

  7. EXPLORATION STRATEGY FOR HOT-SPRING PRECIOUS-METAL DEPOSITS.

    USGS Publications Warehouse

    Berger, Byron R.; Adams, Samuel S.

    1984-01-01

    The discovery of economic precious-metal deposits related to physical-chemical processes in the near-surface portions of high-temperature hot-spring systems has led to intensive exploration efforts for this deposit type. To increase the probability of success, these exploration programs should (1) be based on the most important visually recognizable or readily measurable deposit-model criteria; (2) be able to identify specific targets within the best search areas; and (3) be able to rank the order of priority among the targets. We propose a process-recognition exploration strategy for hot-spring deposits that has been developed from data from precious-metal occurrences at several localities in the western United States. The exploration model is based on the degree to which recognizable geologic and geochemical criteria are favorable or unfavorable to the occurrence of an economic deposit, either through their presence or absence.

  8. Kinetics of Vanadium Extraction from Hot Metal by Basic Slag

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Xie, Bing; Liu, Xuan; Diao, Jiang; Zhang, Zhen; Li, Hong-Yi

    Extracting vanadium from vanadium containing hot metal by LD process has been proven an effective solution for the utilization of vanadium-titanium magnetite ore, but the systematic analyses of vanadium extraction rate and mechanism by basic slag are seldom reported. In this study, mathematical model of vanadium transfer from metal to slag was formulated and the rates of vanadium extraction of hot metal with basic slag were investigated. The results indicated that the apparent vanadium extraction rate constant, k p , were in the range of 1.33˜9.07×10-4g/(cm3·s). And the rate constant was increased with the increase of final slag basicity, reaction temperature and stirring gas flow. The apparent of mass transfer parameter decreases significantly from 0.13 cm3/ s to 0 cm3/ s in 20min, and the data changed as negative due to the decrease of slag oxidation and recovery of vanadium from slag to metal.

  9. Hot plasmonic electron-driven catalytic reactions on patterned metal-insulator-metal nanostructures.

    PubMed

    Kim, Sun Mi; Lee, Changhwan; Goddeti, Kalyan C; Park, Jeong Young

    2017-08-17

    The smart design of plasmonic nanostructures offers a unique capability for the efficient conversion of solar energy into chemical energy by strong interactions with resonant photons through the excitation of surface plasmon resonance, which increases the prospect of using sunlight in environmental and energy applications. Here, we show that the catalytic activity of CO oxidation can be tuned by using new model systems: two-dimensional (2D) arrays of metal-insulator-metal (MIM) plasmonic nanoislands designed to efficiently shuttle hot plasmonic electrons. Hot plasmonic electrons are generated upon the absorption of photons on noble metals, followed by the injection of these hot electrons into the Pt nanoparticles through tunneling or Schottky emission mechanisms, depending on the energy of the hot electrons. We found that these MIM nanostructures exhibit higher catalytic activity (i.e. by 40-110%) under light irradiation, revealing a significant impact on the catalytic activity for CO oxidation. The thickness dependence of the enhancement of catalytic activity on the oxide layers is consistent with the tunneling mechanism of hot electron flows. The results imply that surface plasmon-induced hot electron flows by light absorption significantly influence the catalytic activity of CO oxidation.

  10. Inhibition of hot salt corrosion by metallic additives

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1978-01-01

    The effectiveness of several potential fuel additives in reducing the effects of sodium sulfate-induced hot corrosion was evaluated in a cyclic Mach 0.3 burner rig. The potential inhibitors examined were salts of Al, Si, Cr, Fe, Zn, Mg, Ca, and Ba. The alloys tested were IN-100, U-700, IN-738, IN-792, Mar M-509, and 304 stainless steel. Each alloy was exposed for 100 cycles of 1 hour each at 900 C in combustion gases doped with the corrodant and inhibitor salts and the extent of attack was determined by measuring maximum metal thickness loss. The most effective and consistent inhibitor additive was Ba (NO3)2 which reduced the hot corrosion attack to nearly that of simple oxidation.

  11. Dependence of Temperature and Slag Composition on Dephosphorization at the First Deslagging in BOF Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Zhou, Chao-gang; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Zhang, Zhi-ming; Liu, Zhi-ming; Deng, Chang-fu

    2016-04-01

    Effects of temperature and slag composition on dephosphorization in a 120 ton top-bottom combined blown converter steelmaking process by double slag method were studied. The slag properties were determined by scanning electron microscope- energy dispersive spectrometry (SEM-EDS), X-ray diffraction (XRD). The results show that the transition oxidation temperature between dephosphorization and decarbonization Tf is not the favorable temperature for the first deslagging. The optimum first deslagging temperature is confirmed to be approximately 1,673 K which is about 70 K higher than Tf. High melting temperatures phases (such as 3CaO·SiO2) in the slag with high basicity and MgO content are unfavorable to the dephosphorization. The optimum process condition for dephosphorization at the first deslagging in present work is approximately 1,673 K in temperature, 2.0 in slag basicity, 6 and 17 mass% in MgO and T.Fe content, 6 mass% ≤ MnO content.

  12. Dephosphorization of High-Phosphorus Iron Ore Using Different Sources of Aspergillus niger Strains.

    PubMed

    Xiao, Chunqiao; Wu, Xiaoyan; Chi, Ruan

    2015-05-01

    High-phosphorus iron ore is traditionally dephosphorized by chemical process with inorganic acids. However, this process is not recommended nowadays because of its high cost and consequent environmental pollution. With the current tendency for development of a low-cost and eco-friendly process, dephosphorization of high-phosphorus iron ore through microbial process with three different sources of Aspergillus niger strains was studied in this study. Results show that the three strains of A. niger could grow well in the broth, and effectively remove phosphate from high-phosphorus iron ore during the experiments. Meanwhile, the total iron in the broth was also increased. Acidification of the broth seemed to be the major mechanism for the dephosphorization by these strains. High-pressure liquid chromatography analysis indicated that various organic acids were secreted in the broth, which caused a significant drop of the broth pH. Scanning electron microscopy of ore residues revealed that the high-phosphorus iron ore was obviously destroyed by the actions of these strains. Ore residues by energy-dispersive X-ray microanalysis and Fourier transform infrared spectroscopy indicated that the phosphate was obviously removed from the high-phosphorus iron ore. The optimization of the dephosphorization by these strains was also investigated, and the maximum percentages of phosphate removal were recorded at temperature 27-30 °C, initial pH 5.0-6.5, particle size 0.07-0.1 mm, and pulp density of 2-3% (w/v), respectively. The fungus A. niger was found to have good potential for the dephosphorization of high-phosphorus iron ore, and this microbial process seems to be economic and effective in the future industrial application.

  13. Modeling the hot consolidation of ceramic and metal powders

    SciTech Connect

    Dutton, R.E.; Shamasundar, S.; Semiatin, S.L.

    1995-08-01

    Modeling of the consolidation of ceramic and metal powders by sintering, hot pressing, and hot-isostatic pressing (HIP) was conducted using a continuum yield function and associated-flow rule modified to incorporate microstructure effects such as grain growth, pore size, and pore geometry. It was shown that consolidation behavior can be described over the entire range of densities through two parameters, the stress intensification factor and Poisson`s ratio, which are readily measured using uniaxial upset tests. Both parameters are functions of relative density, whose exact dependence varies from one material to another. Furthermore, it was demonstrated that in sinter forging of ceramics, an apparent Poisson`s ratio depending on stress level (relative to the sintering stress) gives a quantitative measure of the competition between sintering and creep deformation. The accuracy of the microstructure-sensitive yield function was established through finite-element modeling (FEM) simulations of the isothermal sintering of a soda-lime glass, sinter forging of alumina, and die pressing of an alpha-two titanium aluminide alloy.

  14. METAShield: Hot Metallic Aeroshell Concept for RLV/SOV

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Poteet, Carl C.; Daryabeigi, Kamran; Nowak, Robert J.; Hsu, Su-Yuen; Schmidt, Irvin H.; Ku, Shih-Huei P.

    2003-01-01

    An innovative fuselage design approach that combines many desirable operational features with a simple and efficient structural approach is being developed by NASA. The approach, named METAShield for MEtallic TransAtmospheric Shield, utilizes lightly loaded, hot aeroshell structures surrounding integral propellant tanks that carry the primary structural loads. The aeroshells are designed to withstand the local pressure loads, transmitting them to the tanks with minimal restraint of thermal growth. No additional thermal protection system protects the METAShield, and a fibrous or multilayer insulation blanket, located in the space between the aeroshell and the tanks, serves as both high temperature and cryogenic insulation for the tanks. The concept is described in detail, and the performance and operational features are highlighted. Initial design results and analyses of the structural, thermal, and thermal-structural performance are described. Computational results evaluating resistance to hypervelocity impact damage, as well as some supporting aerothermal wind tunnel results. are also presented. Future development needs are summarized.

  15. Occupational heat strain in a hot underground metal mine.

    PubMed

    Lutz, Eric A; Reed, Rustin J; Turner, Dylan; Littau, Sally R

    2014-04-01

    In a hot underground metal mine, this study evaluated the relationship between job task, physical body type, work shift, and heat strain. Thirty-one miners were evaluated during 98 shifts while performing deep shaft-sinking tasks. Continuous core body temperature, heart rate, pre- and postshift urine specific gravity (USG), and body mass index were measured. Cutting and welding tasks were associated with significantly (P < 0.05) increased core body temperature, maximum heart rate, and increased postshift urine specific gravity. Miners in the obese level II and III body mass index categories, as well as those working night shift, had lower core body temperatures (P < 0.05). This study confirms that job task, body type, and shift are risk factors for heat strain.

  16. Discussion of Carbon Emissions for Charging Hot Metal in EAF Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Yang, Ling-zhi; Jiang, Tao; Li, Guang-hui; Guo, Yu-feng

    2017-07-01

    As the cost of hot metal is reduced for iron ore prices are falling in the international market, more and more electric arc furnace (EAF) steelmaking enterprises use partial hot metal instead of scrap as raw materials to reduce costs and the power consumption. In this paper, carbon emissions based on 1,000 kg molten steel by charging hot metal in EAF steelmaking is studied. Based on the analysis of material and energy balance calculation in EAF, the results show that 146.9, 142.2, 137.0, and 130.8 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 %, while 143.4, 98.5, 65.81, and 31.5 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 % by using gas waste heat utilization (coal gas production) for EAF steelmaking unit process. However, carbon emissions are increased by charging hot metal for the whole blast furnace-electric arc furnace (BF-EAF) steelmaking process. In the condition that the hot metal produced by BF is surplus, as carbon monoxide in gas increased by charging hot metal, the way of coal gas production can be used for waste heat utilization, which reduces carbon emissions in EAF steelmaking unit process.

  17. Hot isostatic pressing of direct selective laser sintered metal components

    NASA Astrophysics Data System (ADS)

    Wohlert, Martin Steven

    2000-10-01

    A new manufacturing process combining the benefits of Selective Laser Sintering (SLS) and Hot Isostatic Pressing (HIP) has been developed to permit Rapid Prototyping of high performance metal components. The new process uses Direct Metal SLS to produce a gas impermeable HIP container from the same powdered material that will eventually compose the bulk of the part. The SLS generated capsule performs the functions of the sheet metal container in traditional HIP, but unlike a sheet metal container, the SLSed capsule becomes an integral part of the final component. Additionally, SLS can produce a capsule of far greater geometric complexity than can be achieved by sheet metal forming. Two high performance alloys, Ti-6Al-4V and Inconel 625, were selected for use in the development of the new process. HIP maps were constructed to predict the densification rate of the two materials during HIP processing. Comparison to experimentally determined densification behavior indicated that the maps provide a useful qualitative description of densification rates; however, the accuracy of quantitative predictions was greatly enhanced by tuning key material parameters based on a limited number of experimental HIP cycles. Microstructural characterization of SLS + HIP samples revealed two distinct regions within the components. The outer SLS processed capsule material exhibited a relatively coarse microstructure comparable to a cast, or multi-layer welded structure. No layer boundaries were discernible in the SLS material, with grains observed to grow epitaxially from previously deposited material. The microstructure of the HIP consolidated core material was similar to conventionally HIP processed powder materials, featuring a fine grain structure and preserved prior particle boundaries. The large variation in grain size between the capsule and core materials was reflected in hardness measurements conducted on the Alloy 625 material; however, the variation in hardness was less

  18. Separation Characteristics of Heavy Metal Compounds by Hot Gas Cleaning System

    SciTech Connect

    Sakano, T.; Kanaoka, C.; Furuuchi, M.; Yang, K-S.; Hata, M.

    2002-09-20

    The purpose of this research is the basic study for the development of separation technology of heavy metal compounds from hot flue gas. While the hot flue gas containing heavy metals from a melting furnace of industrial waste passes through the high temperature dust collector which can be varied the operating temperature. The heavy metals can be separated due to different boiling point of each heavy metal. On the basis of this concept, the concentration of heavy metals in the flue gas were sampled and measured at inlet, outlet of the ceramic filter housing in the actual industrial waste processing system. Speciation of heavy metals in collected ashes was clarified by separating heavy metals according to compounds using their elution characteristics. Moreover, equilibrium analysis was performed to determine the effect of temperature, flue gases conditions on heavy metals speciation, and it was compared with experimental data. From these results, we discussed about separation performance of heavy metal compounds by hot gas cleaning.

  19. Metal Hydrides as hot carrier cell absorber materials

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Wen, Xiaoming; Shrestha, Santosh; Conibeer, Gavin; Aguey-Zinsou, Kondo-Francois

    2016-09-01

    The hot Carrier Solar Cell (HCSC) allows the photon-induced hot carriers (the carriers with energy larger than the band gap) to be collected before they completely thermalise. The absorber of the HCSC should have a large phononic band gap to supress Klemens Decay, which results in a slow carrier cooling speed. In fact, a large phononic band gap likely exists in a binary compound whose constituent elements have a large mass ratio between each other. Binary hydrides with their overwhelming mass ratio of the constituent elements are important absorber candidates. Study on different types of binary hydrides as potential absorber candidates is presented in this paper. Many binary transition metal hydrides have reported theoretical or experimental phonon dispersion charts which show large phononic band gaps. Among these hydrides, the titanium hydride (TiHX) is outstanding because of its low cost, easy fabrication process and is relatively inert to air and water. A TiHX thin film is fabricated by directly hydrogenating an evaporated titanium thin film. Characterisation shows good crystal quality and the hydrogenation process is believed to be successful. Ultrafast transient absorption (TA) spectroscopy is used to study the electron cooling time of TiHX. The result is very noisy due to the low absorption and transmission of the sample. The evolution of the TA curves has been explained by band to band transition using the calculated band structure of TiH2. Though not reliable due to the high noise, decay time fitting at 700nm and 600nm shows a considerably slow carrier cooling speed of the sample.

  20. Contaminated Metal Components in Dismantling by Hot Cutting Processes

    SciTech Connect

    Cesari, Franco G.; Conforti, Gianmario; Rogante, Massimo; Giostri, Angelo

    2006-07-01

    During the preparatory dismantling activities of Caorso's Nuclear Power Plant (NPP), an experimental campaign using plasma and oxyacetylene metal cutting processes has been performed and applied to plates and tubes exposed to the coolant steam of the reactor. The plant (Boiling Water Reactor, 870 MWe) was designed and built in the 70's, and it was fully operating by 1981 to 1986 being shut down after 1987 Italy's poll that abrogated nuclear power based on U235 fission. The campaign concerns no activated materials, even if the analyses have been performed of by use contaminated components under the free release level, not yet taking into account radioactivity. In this paper, the parameters related to inhalable aerosol, solid and volatile residuals production have been, studied during hot processes which applies the same characteristics of the cutting in field for the dismantling programs of Caorso NPP. The technical parameters such as cutting time and cutting rate vs. pipe diameter/thickness/schedule or plate thickness for ferritic alloys and the emissions composition coming from the sectioning are also reported. The results underline the sort of trouble that can emerge in the cutting processes, in particular focusing on the effects comparison between the two cutting processes and the chemical composition of powders captured by filtering the gaseous emission. Some preliminary considerations on methodology to be used during the dismantling have been presented. (authors)

  1. Hot Electrons and Energy Transport in Metals at MK Temperatures.

    NASA Astrophysics Data System (ADS)

    Roukes, Michael Lee

    Using a new technique involving the generation of hot carriers, we directly measure energy loss lifetimes for electrons in impure metals at mK temperatures. At these temperatures very weak inelastic scattering processes determine energy transport out of the electron gas. A temperature difference between the electron gas and the lattice can be induced by applying an extremely small electric field (of order 1 (mu)V/cm at 25 mK). This temperature difference reflects the rate at which electrons lose energy to the surroundings. The experiment is carried out using a pair of interdigitated thin film resistors mounted on a millidegree demagnetization cryostat: we obtain electron temperature directly by observing current fluctuations. Noise generated by the resistors is measured using an ultra-sensitive two -channel dc SQUID system, providing femtoamp resolution at KHz frequencies. A dc voltage applied across one resistor imposes the bias field causing electron heating. Phonon temperature in the metal lattice is obtained by measuring noise from a second (unbiased) resistor, which is tightly coupled thermally to the first (biased). Our measurements show that electron heating follows an E('2/5) power law in the regime where electron temperature is largely determined by the electric field, E. This implies a T('-3) law for the energy loss lifetime, suggesting electron -acoustic phonon processes dominate. In the mK temperature regime the conductivity is impurity limited and remains ohmic, even as the electrons heat. Assuming a T('3) dependence and extrapolating our measured rates to higher temperatures, we find agreement with electron-phonon rates measured above 1K in clean bulk metals. This contrasts with results from weak localization experiments showing a power law differing from T('3) and much faster rates. This difference arises because weak localization experiments measure the electron phase coherence lifetime; our electron heating experiments, however, measure an energy

  2. Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs

    NASA Technical Reports Server (NTRS)

    Lanz, T.; Hubeny, I.

    1995-01-01

    We present several model atmospheres for a typical hot metal-rich DA white dwarf, T(sub eff) = 60,000 K, log g = 7.5. We consider pure hydrogen models, as well as models with various abundances of two typical 'trace' elements-carbon and iron. We calculte a number of Local Thermodynamic Equilibrium (LTE) and non-LTE models, taking into account the effect of numerous lines of these elements on the atmospheric structure. We demostrate that while the non-LTE effects are notvery significant for pure hydrogen models, except for describing correctly the central emission in H-alpha they are essential for predicting correctly the ionization balance of metals, such as carbon and iron. Previously reported discrepancies in LTE abundances determinations using C III and C IV lines are easily explained by non-LTE effects. We show that if the iron abundance is larger than 10(exp -5), the iron line opacity has to be considered not only for the spectrum synthesis, but also in the model construction itself. For such metal abundances, non-LTE metal line-blanketed models are needed for detailed abundance studies of hot, metal-rich white dwarfs. We also discuss the predicted Extreme Ultraviolet (EUV) spectrum and show that it is very sensitive to metal abundances, as well as to non-LTE effects.

  3. Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs

    NASA Technical Reports Server (NTRS)

    Lanz, T.; Hubeny, I.

    1995-01-01

    We present several model atmospheres for a typical hot metal-rich DA white dwarf, T(sub eff) = 60,000 K, log g = 7.5. We consider pure hydrogen models, as well as models with various abundances of two typical 'trace' elements-carbon and iron. We calculte a number of Local Thermodynamic Equilibrium (LTE) and non-LTE models, taking into account the effect of numerous lines of these elements on the atmospheric structure. We demostrate that while the non-LTE effects are notvery significant for pure hydrogen models, except for describing correctly the central emission in H-alpha they are essential for predicting correctly the ionization balance of metals, such as carbon and iron. Previously reported discrepancies in LTE abundances determinations using C III and C IV lines are easily explained by non-LTE effects. We show that if the iron abundance is larger than 10(exp -5), the iron line opacity has to be considered not only for the spectrum synthesis, but also in the model construction itself. For such metal abundances, non-LTE metal line-blanketed models are needed for detailed abundance studies of hot, metal-rich white dwarfs. We also discuss the predicted Extreme Ultraviolet (EUV) spectrum and show that it is very sensitive to metal abundances, as well as to non-LTE effects.

  4. Plasmon-induced Hot Carriers in Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Manjavacas, Alejandro; Kulkarni, Vikram; Nordlander, Peter; LANP Team

    2015-03-01

    Plasmon-induced hot carrier formation is attracting an increasing research interest due to its potential for applications in photocatalysis, photodetection and solar energy harvesting. Here we develop a theoretical model for the plasmon-induced hot carrier process and apply it to spherical silver nanoparticles and nanoshells. We show that the inclusion of many-body interactions has only a minor influence on the results. Using the model we calculate the rate of hot carrier generation, finding that it closely follows the spectral profile of the plasmon. Our analysis reveals that particle size and hot carrier lifetime play a central role in determining both the production rate and the energy distribution of the hot carriers. We characterize the efficiency of the hot carrier generation process by introducing a figure of merit that measures the number of high energy carriers generated per plasmon. Furthermore, we analyze the spatial distribution and directionality of these excitations. A. M. acknowledges financial support from the Welch foundation through the J. Evans Attwell-Welch Postdoctoral Fellowship Program of the Smalley Institute of Rice University (Grant No. L-C-004).

  5. Controlling surface-plasmon-polaritons launching with hot spot cylindrical waves in a metallic slit structure

    NASA Astrophysics Data System (ADS)

    Yao, Wenjie; Sun, Chengwei; Gong, Qihuang; Chen, Jianjun

    2016-09-01

    Plasmonic nanostructures, which are used to generate surface plasmon polaritons (SPPs), always involve sharp corners where the charges can accumulate. This can result in strong localized electromagnetic fields at the metallic corners, forming the hot spots. The influence of the hot spots on the propagating SPPs are investigated theoretically and experimentally in a metallic slit structure. It is found that the electromagnetic fields radiated from the hot spots, termed as the hot spot cylindrical wave (HSCW), can greatly manipulate the SPP launching in the slit structure. The physical mechanism behind the manipulation of the SPP launching with the HSCW is explicated by a semi-analytic model. By using the HSCW, unidirectional SPP launching is experimentally realized in an ultra-small metallic step-slit structure. The HSCW bridges the localized surface plasmons and the propagating surface plasmons in an integrated platform and thus may pave a new route to the design of plasmonic devices and circuits.

  6. A Super-solar Metallicity for Stars with Hot Rocky Exoplanets

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel; Frasca, Antonio; Molenda-Żakowicz, Joanna

    2016-12-01

    Host star metallicity provides a measure of the conditions in protoplanetary disks at the time of planet formation. Using a sample of over 20,000 Kepler stars with spectroscopic metallicities from the LAMOST survey, we explore how the exoplanet population depends on host star metallicity as a function of orbital period and planet size. We find that exoplanets with orbital periods less than 10 days are preferentially found around metal-rich stars ([Fe/H] ≃ 0.15 ± 0.05 dex). The occurrence rates of these hot exoplanets increases to ˜30% for super-solar metallicity stars from ˜10% for stars with a sub-solar metallicity. Cooler exoplanets, which reside at longer orbital periods and constitute the bulk of the exoplanet population with an occurrence rate of ≳90%, have host star metallicities consistent with solar. At short orbital periods, P\\lt 10 days, the difference in host star metallicity is largest for hot rocky planets (\\lt 1.7 {R}\\oplus ), where the metallicity difference is [Fe/H] ≃ 0.25 ± 0.07 dex. The excess of hot rocky planets around metal-rich stars implies they either share a formation mechanism with hot Jupiters, or trace a planet trap at the protoplanetary disk inner edge, which is metallicity dependent. We do not find statistically significant evidence for a previously identified trend that small planets toward the habitable zone are preferentially found around low-metallicity stars. Refuting or confirming this trend requires a larger sample of spectroscopic metallicities.

  7. Automated hot-spot fixing system applied for metal layers of 65 nm logic devices

    NASA Astrophysics Data System (ADS)

    Kobayashi, Sachiko; Kyoh, Suigen; Kotani, Toshiya; Tanaka, Satoshi; Inoue, Soichi

    2006-05-01

    -modification design, is processed under the conventional mask data preparation process again, and then makes mask data, which will reduce the number of potential hot spot. We applied the HSF system to metal layer of logic devices of 65 nm and then the hot spots are almost diminished throughout a full chip within twelve hours. Thus HSF feasibility has been proved for metal layers in 65 nm node and below with full chip data volume.

  8. Pilot-Scale Test of Dephosphorization in Steelmaking Using Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-07-01

    Bayer red mud is characterized by its highly oxidizing nature and high alkalinity. It can act as an ideal flux and dephosphorizer in steelmaking. In this study, pilot-scale tests applying the Bayer red mud-based flux in steelmaking have been conducted in a 200-kg, medium-frequency induction furnace. Good slag fluidity and no rephosphorization phenomena are observed. High dephosphorization rates ( 90%) and low final [P] (<0.02%) are obtained in the situation of high [C] of 2.0-3.0%, which are of great importance for the production of clean steel. The P2O5 content in the P-rich phase in the red mud-based slag can reach as high as 34.05 wt.%, far higher than the 6.73 wt.% in ordinary industrial slag. This suggests that the Al2O3, TiO2 in Bayer red mud can enhance the solid solubility of phosphorus in the P-rich phase. The data obtained are important for promoting the large-scale application of red mud in steelmaking.

  9. Pilot-Scale Test of Dephosphorization in Steelmaking Using Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    Bayer red mud is characterized by its highly oxidizing nature and high alkalinity. It can act as an ideal flux and dephosphorizer in steelmaking. In this study, pilot-scale tests applying the Bayer red mud-based flux in steelmaking have been conducted in a 200-kg, medium-frequency induction furnace. Good slag fluidity and no rephosphorization phenomena are observed. High dephosphorization rates ( 90%) and low final [P] (<0.02%) are obtained in the situation of high [C] of 2.0-3.0%, which are of great importance for the production of clean steel. The P2O5 content in the P-rich phase in the red mud-based slag can reach as high as 34.05 wt.%, far higher than the 6.73 wt.% in ordinary industrial slag. This suggests that the Al2O3, TiO2 in Bayer red mud can enhance the solid solubility of phosphorus in the P-rich phase. The data obtained are important for promoting the large-scale application of red mud in steelmaking.

  10. Producing metal parts with selective laser sintering/hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Das, Suman; Wohlert, Martin; Beaman, Joseph J.; Bourell, David L.

    1998-12-01

    Selective laser sintering/hot isostatic pressing is a hybrid direct laser fabrication method that combines the strengths of both processes. Selective laser sintering can produce complexly shaped metal components with an integral, gas-impermeable skin. These components can then be directly post-processed to full density by containerless hot isostatic pressing. The use of the hybrid fabrication method, envisioned as a rapid, low-cost replacement for conventional metal-can hot isostatic pressing, is currently being studied for alloy 625 and Ti-6Al-4V alloys. The micro-structure and mechanical properties of selective-laser-sintering processed and hot isostatically pressed post-processed material compare well with those of conventionally processed material.

  11. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The extremely metal-poor galaxy I Zw 18, is the Rosetta Stone for understanding z=7-8 galaxies now being discovered by Hubb|e's Wide Field Camera 3 (HST/WFC3). Using HST/STIS images and recently obtained HST/COS ultraviolet spectra, we derive information about the hot, massive stars in this galaxy including stellar abundances, constraints on the stellar IMF and mass distribution of young clusters containing hot, massive stars.

  12. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The extremely metal-poor galaxy I Zw 18, is the Rosetta Stone for understanding z=7-8 galaxies now being discovered by Hubb|e's Wide Field Camera 3 (HST/WFC3). Using HST/STIS images and recently obtained HST/COS ultraviolet spectra, we derive information about the hot, massive stars in this galaxy including stellar abundances, constraints on the stellar IMF and mass distribution of young clusters containing hot, massive stars.

  13. Surface enrichment in hot-dipped metallic coatings investigated by Auger electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Payling, R.; Mercer, P. D.

    1985-05-01

    The treatment, appearance, and corrosion resistance of metallic coatings are largely governed by the chemical composition of the surface. Auger electron spectroscopy shows that the surfaces of hot-dipped metallic coatings differ markedly from the bulk compositions of the coatings. For example, the surfaces of terne coatings, lead-tin alloys, contain little lead. The conventional galvanized coating, which is more than 99% zinc, has a predominantly aluminium oxide surface. Typical surface compositions of a range of hot-dipped metallic coatings are provided. A qualitative prediction of the dominant metallic species present on the surface of each of these coatings is presented in terms of the relative oxygen affinities of the metals. Theoretical equations for various mechanisms, such as atomic size mismatch, solubility, and oxidation, which could lead to surface segregation are considered, in order to place the experimental observations on a more quantitative basis.

  14. Hot Corrosion Degradation of Metals and Alloys - A Unified Theory

    DTIC Science & Technology

    1979-06-01

    tepinia deost uorsedn Thor induceatckhandiheem etso Nickl-Basd cArbonyns h Sodium wSulalsoIstudied, Nicel aoroind cobltbaealloys clontiins Hot...20 hrs. in pure oxygen. The influence of the SO in. this example 3 is two-fold. Sodium sulfate is not liquid at 700*C. When oxidation of CoCrAlY occurs...were also present in this zone, in particular, cobalt, aluminum, and sodium . Sulfur was detected throughout the scale along with sodiumand sulfide

  15. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, C.L.

    1993-08-31

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  16. High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, C.L.

    1994-08-09

    Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2,200 C and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made. 1 fig.

  17. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1993-01-01

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  18. High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1994-01-01

    Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2200.degree. C. and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made.

  19. Ballistic Hot Electron Transport in Heteroepitaxial SrRuO3 Metal-Base Transistors

    NASA Astrophysics Data System (ADS)

    Kim, Brian; Hikita, Yasuyuki; Yajima, Takeaki; Bell, Christopher; Hwang, Harold

    Perovskite oxide heterostructures is a rapidly emerging field significant for interface-induced electronic and magnetic reconstructions, resulting in novel phases distinct from those found in the bulk counterparts. Notably, utilizing device structures is an effective way to probe these interface-induced phases. One of the most prevalent device structures that has been adopted so far is a three-terminal field-effect geometry, used to probe in-plane electronic transport properties. However, the out-of-plane three-terminal device geometry, though less studied due to its complexity, is also useful in many aspects. In the metal-base transistor (MBT), for instance, ballistic transport of hot electrons injected across a Schottky diode emitter can be used to probe hot electron properties of the metal-base, providing information on inelastic scattering mechanisms, electron confinement effects, and intervalley transfer. One promising model system for the metal-base is SrRuO3 (SRO), characterized by intermediate electron correlations with unusual transport properties. Here we present an all-perovskite oxide heteroepitaxial MBT using SRO as a metal-base layer. Successful MBT operation for various metal-base layer thicknesses was achieved, from which the hot electron attenuation length of SRO was deduced. These results form a foundation on which to examine the properties of hot electrons in strongly correlated systems using the out-of-plane three-terminal device geometry.

  20. Far-ultraviolet absorption spectra of quasars: How to find missing hot gas and metals

    NASA Technical Reports Server (NTRS)

    Verner, D. A.; Tytler, David; Barthel, P. D.

    1994-01-01

    We show that some high-redshift QSO absorption systems that reveal only the H I Lyman series lines at wavelengths visible from the ground maybe a new class of ultra-high-ionization metal line systems, with metal lines in the far-UV region which is now being explored with satellites. At high temperatures or in intense radiation fields metal systems will not show the usual C IV absorption, and O VI will become the most prominent metal absorber. At still higher ionization, O IV also becomes weak and the strongest metal lines are from Ne VIII, Mg X and Si XII, which have doublets in the rangs 500-800 A. Hence very high ionization metal systems will not show metal lines in existing spectra. Recent X-ray observations show that galaxy halos contain hot gas, so we predict that far-UV spectra of QSOs will also show this gas.

  1. Far-ultraviolet absorption spectra of quasars: How to find missing hot gas and metals

    NASA Astrophysics Data System (ADS)

    Verner, D. A.; Tytler, David; Barthel, P. D.

    1994-07-01

    We show that some high-redshift QSO absorption systems that reveal only the H I Lyman series lines at wavelengths visible from the ground maybe a new class of ultra-high-ionization metal line systems, with metal lines in the far-UV region which is now being explored with satellites. At high temperatures or in intense radiation fields metal systems will not show the usual C IV absorption, and O VI will become the most prominent metal absorber. At still higher ionization, O IV also becomes weak and the strongest metal lines are from Ne VIII, Mg X and Si XII, which have doublets in the rangs 500-800 A. Hence very high ionization metal systems will not show metal lines in existing spectra. Recent X-ray observations show that galaxy halos contain hot gas, so we predict that far-UV spectra of QSOs will also show this gas.

  2. Doping transition metal ions into laser host crystals by hot isostatic pressing (HIP) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barnes, Jacob O.; Stites, Ronald W.; Cook, Gary; McDaniel, Sean; Krein, Douglas M.; Guha, Shekhar; Goldsmith, John

    2017-05-01

    This paper describes using a hot isostatic pressing (HIP) to improve II-VI crystal characteristics and diffuse metal ions into laser host crystals. Thin layers of metal are sputtered onto the surface of zinc selenide and zinc sulfide crystals prior to being HIP treated. The pre and post treatment optical properties for these materials are measured using various methods and at a variety of dopant concentrations.

  3. Simulation study of a hot metal cylinder cooling by gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Lipanov, A. M.; Makarov, S. S.; Karpov, A. I.; Makarova, E. V.

    2017-01-01

    A mathematical model was developed for conjugate heat transfer in a heterogeneous system "solid body - gas-liquid medium" with account for vapor generation at the surface of hot metal cylinder with cooling by a longitudinal water flow. Results are presented for numerical parametric calculations for influence of thermophysical and hydrodynamic characteristics on the pattern of vapor generation at the cooled cylinder surface.

  4. Streamline-coordinate finite-difference method for hot metal deformations

    SciTech Connect

    Chung, S.G. ); Kuwahara, K. ); Richmond, O. )

    1993-09-01

    The hot metal deformation in the rolling process is a typical example of near-steady, quasi two-dimensional non-Newtonian flows. An isotropic work-hardening model characterized by a dislocation energy-density is presented and analyzed the streamline-coordinate finite-difference method. 21 refs., 4 figs., 3 tabs.

  5. Hot hydrogen testing of metallic turbo pump materials

    NASA Technical Reports Server (NTRS)

    Zee, Ralph; Chin, Bryan; Inamdar, Rohit

    1993-01-01

    The objectives of this investigation are to expose heat resistant alloys to hydrogen at elevated temperatures and to use various microstructural and analytical techniques to determine the chemical and rate process involved in degradation of these materials due to hydrogen environment. Inconel 718 and NASA-23 (wrought and cast) are candidate materials. The degradation of these materials in the presence of 1 to 5 atmospheric pressure of hydrogen from 450 C to 1100 C was examined. The hydrogen facility at Auburn University was used for this purpose. Control experiments were also conducted wherein the samples were exposed to vacuum so that a direct comparison of the results would separate the thermal contribution from the hydrogen effects. The samples were analyzed prior to and after exposure. A residual gas collection system was used to determine the gaseous species produced by any chemical reaction that may have occurred during the exposure. Analysis of this gas sample shows only the presence of H2 as expected. Analyses of the samples were conducted using optical microscopy, x-ray diffraction, scanning electron microscopy, and weight change. There appears to be no change in weight of the samples as a result of hydrogen exposure. In addition no visible change on the surface structure was detected. This indicates that the materials of interest do not have strong interaction with hot hydrogen. This is consistent with the microstructure results.

  6. Development of Metallic Filters for Hot Gas Cleanup in Pressurized Fluidized Bed Combustion Applications

    SciTech Connect

    Anderson, I.E.; Gleeson, B.; Terpstra, R.L.

    2002-09-19

    Alternative alloys derived from the wide array of aerospace superalloys will be developed for hot gas filtration to improve on both ceramic filters and ''first-generation'' iron aluminide metallic filter materials. New high performance metallic filters should offer the benefits of non-brittle mechanical behavior at all temperatures, including ambient temperature, and improved resistance to thermal fatigue compared to ceramic filter elements, thus improving filter reliability. A new powder processing approach also will be established that results in lightweight metallic filters with high permeability and weldability for enhanced capability for filter system manufacturing.

  7. Large structural, thin-wall castings made of metals subject to hot tearing, and their fabrication

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor)

    2001-01-01

    An article, such as a gas turbine engine mixer, is made by providing a mold structure defining a thin-walled, hollow article, and a base metal that is subject to hot tear cracking when cast in a generally equiaxed polycrystalline form, such as Rene' 108 and Mar-M247. The article is fabricated by introducing the molten base metal into the mold structure, and directionally solidifying the base metal in the mold structure to form a directionally oriented structure. The directionally oriented structure may be formed of a single grain or oriented multiple grains.

  8. Participation of hot electrons in oxygen adsorption and ethylene oxidation on metals

    SciTech Connect

    Maganyuk, A.P.; Starkovskii, N.I.; Yurchuk, S.Y.

    1995-04-01

    This paper reports the results obtained in the course of generating hot electrons by a device that is easier to fabricate and has more stability to chemically active compounds that a metal-insulator-metal systems: a Shottky-barrier diode having planar contact between a metal and a donor-doped semiconductor. In order to elucidate the potential effect of the promotion of chemical transformation by hot electrons, two specimens of different barrier heights were used: one a silicon-gold contact, the second a gallium arsenide film coated with layers of silver and a InNi alloy (3% Ni). These contacts were used to measure the current-voltage curve, the peak intensities curves which were proportional to the quantities of oxygen, water and carbon dioxide employed, and the peak intensities proportional to the formation rates of ethylene oxidation products.

  9. Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire

    DOE PAGES

    Solbrig, Charles W.; Warmann, Stephen A.

    2016-01-01

    This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wallmore » allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.« less

  10. Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire

    SciTech Connect

    Solbrig, Charles W.; Warmann, Stephen A.

    2016-01-01

    This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wall allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.

  11. Development of a Hot Working Steel Based on a Controlled Gas-Metal-Reaction

    NASA Astrophysics Data System (ADS)

    Ritzenhoff, Roman; Gharbi, Mohammad Malekipour

    As a result of cost sensitiveness, the demand on hot working steels with advanced characteristics and properties are ascending. We have used a controlled gas-metal-reaction in a P-ESR furnace to produce high quality hot working steel. These types of materials are also known as High Nitrogen Steels (HNS). An overview of the development in a pressurized induction furnace to the final industrial scale using P-ESR will be provided. Different heat treatment strategies are conducted and their effect on mechanical properties is investigated.

  12. Enhanced Boiling-Metal Cooling Of Vanes Exposed To Hot Gases

    NASA Technical Reports Server (NTRS)

    Osofsky, I. B.

    1995-01-01

    Incorporation of automatic, self-powered jet pumps proposed to enhance boiling-liquid-metal cooling of vanes exposed to hot gases. In original intended application, vanes and probes thrust-vector-control devices inserted in supersonic flows of hot gases in rocket-engine nozzles; this cooling concept also applicable to vanes and blades in high-performance turbine engines. In further improvement, additional axial and transverse slots added to coolant passages in vane or probe and to coolant reservoir. Slots reduce stresses caused by thermal expansion and contraction of solid coolant.

  13. Study on Reaction Mechanism of Reducing Dephosphorization of Fe-Ni-Si Melt by CaO-CaF2 Slag

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Xian; Zhang, Guo-Hua; Chu, Shao-Jun

    2016-02-01

    In the present study, the dephosphorization of Fe-Ni-Si melt by CaO-saturated CaO-CaF2 slag was investigated, from which it was found that the dephosphorization efficiency increases as increasing the silicon content, meanwhile the increase rate becomes rapid when the silicon content is more than 10 mass pct. By analyzing the phase compositions of the dephosphorization slag of a high silicon Fe-Ni-Si melt, it was first found the dephosphorization products change with the silicon content. When Si contents are 10.5, 31.48, 34.71, and 43.15 mass pct, the de-P products are Ca2P2, Ca10+ x Si12-2 x P16, Ca4SiP4, and Ca10+ x Si12-2 x P16, as well as Ca4SiP4, respectively. The corresponding dephosphorization mechanism can be described as (2x)(CaO) + (x + 2y)[Si] + 2z[P] = x(SiO2 ) + 2(Cax Siy Pz ).

  14. Distribution of seven heavy metals among hot pepper plant parts.

    PubMed

    Antonious, George F

    2016-01-01

    The main objective of this investigation was to monitor concentrations of seven metals (Cd, Pb, Ni, Mo, Cu, Zn, and Cr) in the fruits, leaves, stem, and roots of Capsicum annuum L. (cv. Xcatic) plants grown under four soil management practices: yard waste (YW), sewage sludge (SS), chicken manure (CM), and no-much (NM) bare soil. Elemental analyses were conducted using inductively coupled plasma mass spectrometer. Pb and Cd concentrations in soil amended with YW, SS, and CM were not significantly different (P < 0.05) compared to NM soil, whereas Mo and Cu concentrations were significantly greater in YW compared to SS, CM, and NM treatments. Concentrations of Cd in the fruits of plants grown in NM soil were greater compared to the fruits of plants grown in other treatments. Total Ni concentration (sum of Ni in all plant parts) in plants grown in NM bare soil was greater than in plants grown in SS-, YW-, and CM-amended soils. Values of the bioaccumulation factor indicated that pepper fruits of plants grown in YW, SS, and CM did not show any tendency to accumulate Pb, Cr, and Ni in their edible fruits.

  15. Hot Hydrogen Testing of Refractory Metals and Ceramics

    NASA Technical Reports Server (NTRS)

    Zee, Ralph; Chin, Bryan; Cohron, Jon

    1993-01-01

    The objective of this investigation is to develop a technique with which refractory metal carbide samples can be exposed to hydrogen containing gases at high temperatures, and to use various microstructural and analytical techniques to determine the chemical and rate processes involved in hydrogen degradation in these materials. Five types of carbides were examined including WC, NbC, HfC, ZrC, and TaC. The ceramics were purchased and were all monolithic in nature. The temperature range investigated was from 850 to 1600 C with a hydrogen pressure of one atmosphere. Control experiments, in vacuum, were also conducted for comparison so that the net effects due to hydrogen could be isolated. The samples were analyzed prior to and after exposure. Gas samples were collected in selected experiments and analyzed using gas chromography. Characterization of the resulting microstructure after exposure to hydrogen was conducted using optical microscopy, x-ray diffraction, scanning electron microscopy, and weight change. The ceramics were purchased and were all monolithic in nature. It was found that all samples lost weight after exposure, both in hydrogen and vacuum. Results from the microstructure analyses show that the degradation processes are different among the five types of ceramics involved. In addition, the apparent activation energy for the degradation process is a function of temperature even within the same material. This indicates that there are more than one mechanism involved in each material, and that the mechanisms are temperature dependent.

  16. Wavelength modulated SERS hot spot distribution in 1D nanostructures on metal film

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Zeng, Xiping; Liu, Ting; Zhang, Xuemei; Wei, Hua; Huang, Yingzhou; Liu, Anping; Wang, Shuxia; Wen, Weijia

    2016-10-01

    Surface plasmons confining strong electromagnetic fields near metal surfaces, well-known as hot spots, provide an extremely efficient platform for surface-enhanced Raman scattering (SERS). In this work, SERS spectra of probing molecules in a silver particle-wire 1D nanostructure on a thin gold film are investigated. The Raman features of SERS spectra collected at the particle-wire joints exhibit an obvious wavelength dependence phenomenon. This result is confirmed electromagnetic field simulation, revealing that hot spot distribution is sensitively influenced by the wavelength of incident light at the joints. Further studies indicate this wavelength dependence of hot spot distribution is immune to influence from the geometric shape of the particle or the angle between wire and particle, which improves fabrication tolerance. This technology may have promising applications in surface plasmon related fields, such as ultrasensors, solar energy and selective surface catalysis.

  17. Hot-hole injection probabilities into the insulator of metal-insulator-silicon devices

    NASA Astrophysics Data System (ADS)

    Hellouin, Y.; Chehade, F.; Garrigues, M.

    1987-06-01

    The probability of hot-hole injection has been measured both on metal nitride-oxide silicon (MNOS) and metal-oxide-semiconductor (MOS) structures in the case where the silicon electric field is one dimensional and normal to the interface. The experiment uses the effect of optically induced hot carrier injection as proposed by Ning et al. [J. Appl. Phys. 48, 286 (1977)]. In the case of MNOS structures, the hot-hole injection currents can be readily measured because the Si-Si3N4 interface barrier is lower than the Si-SiO2 interface barrier. Measurements on MOS structures were carried out using heavily doped silicon. The measurements have been interpreted using the lucky carrier model with some modifications: the hot-hole mean-free path has been found equal to 41±5 Å in the case of MOS structures. Taking into account the accuracy of the measurements, this value is compatible with the value derived in the case of MNOS structures and also with the value derived from ionization measurements.

  18. Metal-insulator-semiconductor heterostructures for plasmonic hot-carrier optoelectronics.

    PubMed

    García de Arquer, F Pelayo; Konstantatos, Gerasimos

    2015-06-01

    Plasmonic hot-electron devices are attractive candidates for light-energy harvesting and photodetection applications. For solid state devices, the most compact and straightforward architecture is the metal-semiconductor Schottky junction. However convenient, this structure introduces limitations such as the elevated dark current associated to thermionic emission, or constraints for device design due to the finite choice of materials. In this work we theoretically consider the metal-insulator-semiconductor heterojunction as a candidate for plasmonic hot-carrier photodetection and solar cells. The presence of the insulating layer can significantly reduce the dark current, resulting in increased device performance with predicted solar power conversion efficiencies up to 9%. For photodetection, the sensitivity can be extended well into the infrared by a judicious choice of the insulating layer, with up to 300-fold expected enhancement in detectivity.

  19. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1992-01-01

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  20. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    SciTech Connect

    Hoenig, C.L.

    1990-12-31

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a cansister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800{degrees}C and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  1. Creep of metal-type organic compounds. 4: Application to hot isostatic pressing

    SciTech Connect

    Davies, G.C.; Jones, D.R.H.

    1997-02-01

    Hot isostatic pressing (HIP) experiments using the metal analogue materials camphene and succinonitrile are described. Data obtained previously from uniaxial creep experiments are used in densification rate equations for HIP taken from the literature, and the predicted densification behavior is compared with experimental data. The HIP equations are then modified to include two different representations of the friction stress arising from a dispersed phase of fine, hard particles. In each case the modified theory adequately describes the experimental data.

  2. A New Process for Hot Metal Production at Low Fuel Rate - Phase 1 Feasibility Study

    SciTech Connect

    Dr. Wei-Kao Lu

    2006-02-01

    The project is part of the continuing effort by the North American steel industry to develop a coal-based, cokeless process for hot metal production. The objective of Phase 1 is to determine the feasibility of designing and constructing a pilot scale facility with the capacity of 42,000 mtpy of direct reduced iron (DRI) with 95% metallization. The primary effort is performed by Bricmont, Inc., an international engineering firm, under the supervision of McMaster University. The study focused on the Paired Straight Hearth furnace concept developed previously by McMaster University, The American Iron and Steel Institute and the US Department of Energy.

  3. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals.

    PubMed

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B; Louie, Steven G

    2015-06-02

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals.

  4. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-06-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals.

  5. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    PubMed Central

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron–phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron–phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals. PMID:26033445

  6. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates

    SciTech Connect

    Leenheer, Andrew J.; Narang, Prineha; Atwater, Harry A.; Lewis, Nathan S.

    2014-04-07

    Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%–10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.

  7. Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS2 and Metal/WSe2 Heterojunctions

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Ezhilarasu, Goutham; Chatzakis, Ioannis; Dhall, Rohan; Chen, Chun-Chung; Cronin, Stephen

    Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds, therefore make more `ideal' Schottky junctions than bulk semiconductors, which produce recombination centers at the interface with metals, inhibiting charge transfer. Here, we observe a more than 10X enhancement in the indirect band gap PL of TMDCs deposited on various metals, while the direct band gap emission remains unchanged. We believe the main mechanism of light emission arises from photoexcited hot electrons in the metal that are injected into the conduction band of MoS2 and WSe2, and subsequently recombine radiatively with minority holes. Since the conduction band at the K-point is 0.5eV higher than at the Σ-point, a lower Schottky barrier of the Σ-point band makes electron injection more favorable. Also, the Σ band consists of the sulfur pz orbital, which overlaps more significantly with the electron wavefunctions in the metal. This enhancement only occurs for thick flakes, and is absent in monolayer and few-layer flakes. Here, the flake thickness must exceed the depletion width of the Schottky junction, in order for efficient radiative recombination to occur in the TMDC. The intensity of this indirect peak decreases at low temperatures. Reference: DOI: 10.1021/acs.nanolett.5b00885

  8. Magnetotransport of multiple-band nearly antiferromagnetic metals due to hot-spot scattering

    DOE PAGES

    Koshelev, A. E.

    2016-09-30

    Multiple-band electronic structure and proximity to antiferromagnetic (AF) instability are the key properties of iron-based superconductors. In this paper, we explore the influence of scattering by the AF spin fluctuations on transport of multiple-band metals above the magnetic transition. A salient feature of scattering on the AF fluctuations is that it is strongly enhanced at the Fermi surface locations where the nesting is perfect (“hot spots” or “hot lines”). We review derivation of the collision integral for the Boltzmann equation due to AF-fluctuations scattering. In the paramagnetic state, the enhanced scattering rate near the hot lines leads to anomalous behaviormore » of electronic transport in magnetic field. We explore this behavior by analytically solving the Boltzmann transport equation with approximate transition rates. This approach accounts for return scattering events and is more accurate than the relaxation-time approximation. The magnetic-field dependences are characterized by two very different field scales: the lower scale is set by the hot-spot width and the higher scale is set by the total scattering amplitude. A conventional magnetotransport behavior is limited to magnetic fields below the lower scale. In the wide range in-between these two scales, the longitudinal conductivity has linear dependence on the magnetic field and the Hall conductivity has quadratic dependence. The linear dependence of the diagonal component reflects growth of the Fermi-surface area affected by the hot spots proportional to the magnetic field. Finally, we discuss applicability of this theoretical framework for describing of anomalous magnetotransport properties in different iron pnictides and chalcogenides in the paramagnetic state.« less

  9. Magnetotransport of multiple-band nearly antiferromagnetic metals due to hot-spot scattering

    SciTech Connect

    Koshelev, A. E.

    2016-09-30

    Multiple-band electronic structure and proximity to antiferromagnetic (AF) instability are the key properties of iron-based superconductors. In this paper, we explore the influence of scattering by the AF spin fluctuations on transport of multiple-band metals above the magnetic transition. A salient feature of scattering on the AF fluctuations is that it is strongly enhanced at the Fermi surface locations where the nesting is perfect (“hot spots” or “hot lines”). We review derivation of the collision integral for the Boltzmann equation due to AF-fluctuations scattering. In the paramagnetic state, the enhanced scattering rate near the hot lines leads to anomalous behavior of electronic transport in magnetic field. We explore this behavior by analytically solving the Boltzmann transport equation with approximate transition rates. This approach accounts for return scattering events and is more accurate than the relaxation-time approximation. The magnetic-field dependences are characterized by two very different field scales: the lower scale is set by the hot-spot width and the higher scale is set by the total scattering amplitude. A conventional magnetotransport behavior is limited to magnetic fields below the lower scale. In the wide range in-between these two scales, the longitudinal conductivity has linear dependence on the magnetic field and the Hall conductivity has quadratic dependence. The linear dependence of the diagonal component reflects growth of the Fermi-surface area affected by the hot spots proportional to the magnetic field. Finally, we discuss applicability of this theoretical framework for describing of anomalous magnetotransport properties in different iron pnictides and chalcogenides in the paramagnetic state.

  10. Magnetotransport of multiple-band nearly antiferromagnetic metals due to hot-spot scattering

    NASA Astrophysics Data System (ADS)

    Koshelev, A. E.

    2016-09-01

    Multiple-band electronic structure and proximity to antiferromagnetic (AF) instability are the key properties of iron-based superconductors. We explore the influence of scattering by the AF spin fluctuations on transport of multiple-band metals above the magnetic transition. A salient feature of scattering on the AF fluctuations is that it is strongly enhanced at the Fermi surface locations where the nesting is perfect ("hot spots" or "hot lines"). We review derivation of the collision integral for the Boltzmann equation due to AF-fluctuations scattering. In the paramagnetic state, the enhanced scattering rate near the hot lines leads to anomalous behavior of electronic transport in magnetic field. We explore this behavior by analytically solving the Boltzmann transport equation with approximate transition rates. This approach accounts for return scattering events and is more accurate than the relaxation-time approximation. The magnetic-field dependences are characterized by two very different field scales: the lower scale is set by the hot-spot width and the higher scale is set by the total scattering amplitude. A conventional magnetotransport behavior is limited to magnetic fields below the lower scale. In the wide range in-between these two scales, the longitudinal conductivity has linear dependence on the magnetic field and the Hall conductivity has quadratic dependence. The linear dependence of the diagonal component reflects growth of the Fermi-surface area affected by the hot spots proportional to the magnetic field. We discuss applicability of this theoretical framework for describing of anomalous magnetotransport properties in different iron pnictides and chalcogenides in the paramagnetic state.

  11. Surface characteristics of hot-dip metallic coatings on steel strip

    NASA Astrophysics Data System (ADS)

    Kilbane, Farrell M.

    1982-05-01

    Surfaces of hot-dip metallic coatings are frequently enriched in minor alloying elements because of the large diffusion rates of elements in the liquid state. In this study, scanning Auger microscopy is used to measure the surface chemical compositions of zinc, aluminum, and lead coatings that were applied to steel strip on continuous coating lines. Comparisons are made between the surface and bulk compositions. Surface enrichments up to 1000X the bulk concentration are reported. Processing steps after coating application are shown to further alter the coatings' surface characteristics. Finally, the effects of the variable surfaces on the products' engineering properties are discussed.

  12. Processes of conversion of a hot metal particle into aerogel through clusters

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.

    2015-10-01

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  13. Processes of conversion of a hot metal particle into aerogel through clusters

    SciTech Connect

    Smirnov, B. M.

    2015-10-15

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  14. Analysis of Operational Parameters Affecting the Sulfur Content in Hot Metal of the COREX Process

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Wang, Laixin; Kou, Mingyin; Wang, Yujue; Zhang, Jiacong

    2017-02-01

    The COREX process, which has obvious advantages in environment protection, still has some disadvantages. It has a higher sulfur content in hot metal (HM) than the blast furnace has. In the present work, the distribution and transfer of sulfur in the COREX have been analyzed and several operational parameters related to the sulfur content in HM ([pct S]) have been obtained. Based on this, the effects of the coal rate, slag ratio, temperature of HM, melting rate, binary basicity ( R 2), the ratio of MgO/Al2O3, utilization of reducing gas, top gas consumption per ton burden solid, metallization rate, oxidation degree of reducing gas, and coal and DRI distribution index on the sulfur content in HM are investigated. What's more, a linear model has been developed and subsequently used for predicting and controlling the S content in HM of the COREX process.

  15. Barrier height measurement of metal contacts to Si nanowires using internal photoemission of hot carriers.

    PubMed

    Yoon, Kunho; Hyun, Jerome K; Connell, Justin G; Amit, Iddo; Rosenwaks, Yossi; Lauhon, Lincoln J

    2013-01-01

    Barrier heights between metal contacts and silicon nanowires were measured using spectrally resolved scanning photocurrent microscopy (SPCM). Illumination of the metal-semiconductor junction with sub-bandgap photons generates a photocurrent dominated by internal photoemission of hot electrons. Analysis of the dependence of photocurrent yield on photon energy enables quantitative extraction of the barrier height. Enhanced doping near the nanowire surface, mapped quantitatively with atom probe tomography, results in a lowering of the effective barrier height. Occupied interface states produce an additional lowering that depends strongly on diameter. The doping and diameter dependencies are explained quantitatively with finite element modeling. The combined tomography, electrical characterization, and numerical modeling approach represents a significant advance in the quantitative analysis of transport mechanisms at nanoscale interfaces that can be extended to other nanoscale devices and heterostructures.

  16. Mobility of heavy metals from soil into hot pepper fruits: a field study.

    PubMed

    Antonious, G F; Kochhar, T S

    2009-01-01

    Capsaicin and dihydrocapsaicin contribute to pungency as well as having health-promoting properties, in peppers. Twenty-three genotypes (four spp.) of hot pepper from the USDA germplasm collection were grown in the field to identify accessions having increased concentrations of these two compounds and determine the concentrations of heavy metals, in mature fruits. Concentrations and relative proportions of capsaicin, dihydrocapsaicin, and seven heavy metals varied between and within pepper species. Plant Introduction 547069 (C. annuum) contained the greatest concentrations of the two pungent compounds. Fruits of PI-439381 and PI-267729 (C. baccatum) accumulated the greatest concentrations of Pb, while PI-246331 (C. annuum) accumulated the greatest concentration of Cd among accessions tested.

  17. Hot-Carrier-Mediated Photon Upconversion in Metal-Decorated Quantum Wells.

    PubMed

    Naik, Gururaj V; Welch, Alex J; Briggs, Justin A; Solomon, Michelle L; Dionne, Jennifer A

    2017-08-09

    Manipulating the frequency of electromagnetic waves forms the core of many modern technologies, ranging from imaging and spectroscopy to radio and optical communication. The process of converting photons from higher to lower energy is easily accomplished and technologically widespread. However, upconversion, which is the process of converting lower-energy photons into higher-energy photons, is still a growing field of study with nascent applications and burgeoning interest. Here, we experimentally demonstrate a new photon upconversion technique mediated by hot carriers in plasmonic nanostructures. Hot holes and hot electrons generated via plasmon decay in illuminated metal nanoparticles are injected into an adjacent semiconductor quantum well where they radiatively recombine to emit higher-energy photons. Using GaN/InGaN quantum wells decorated with gold and silver nanoparticles, we show photon upconversion from 2.4 to 2.8 eV. The process scales linearly with illumination power and enables both geometry- and polarization-based tunability. The conversion of plasmonic losses into upconverted optical emission has the potential to impact bioimaging, on-chip wavelength conversion, and high-efficiency photovoltaics.

  18. 3D reconstruction of hot metallic surfaces for industrial part characterization

    NASA Astrophysics Data System (ADS)

    Bokhabrine, Youssef; Lew Yan Voon, Lew F. C.; Seulin, Ralph; Gorria, Patrick; Gomez, Miguel; Jobard, Daniel

    2009-02-01

    During industrial forging of big hot metallic shells, it is necessary to regularly measure the dimensions of the parts, especially the inner and outer diameters and the thickness of the walls, in order to decide when to stop the forging process. The inner and outer diameters of the shells range from 4 to 6 meters and to measure them a large ruler is placed horizontally at the end of the shell. Two blacksmiths standing on each side of the ruler at about ten meters from it visually reads the graduations on the ruler in order to determine the inner and outer diameters from which the thickness of the wall is determined. This operation is carried out several times during a forging process and it is very risky for the blacksmiths due to the high temperature of the shell when the measurement is done. Also, it is error prone and the result is rather inaccurate. In order to improve the working conditions, for the safety of the blacksmiths, and for a faster and more accurate measurement, a system based on two commercially available Time Of Flight (TOF) laser scanners for the measurement of cylindrical shell diameters during the forging process has been developed. The advantages of using laser scanners are that they can be placed very far from the hot shell, more than 15 meters, while at the same time giving an accurate point cloud from which 3D views of the shell can be reconstructed and diameter measurements done. Moreover, better dimensional measurement accuracy is achieved in less time with the laser system than with the conventional method using a large ruler. The system has been successfully used to measure the diameter of cold and hot cylindrical metallic shells.

  19. Investigation of surface topography effects on metal flow under lubricated hot compression of aluminum

    NASA Astrophysics Data System (ADS)

    Kurk, Justin Irvin

    An investigation was conducted to study the effects of die surface topography, specifically surface roughness and lay, on metal flow and the friction factor under lubricated hot compression. 6061-T6 aluminum rings and square bar stock specimens were compressed on H-13 tool steel platens machined with a unidirectional lay pattern to six different roughnesses between a R 0 10 and 240 muin. A lab based hydraulic press mounted with an experimental die set was used for all testing. Repeated trials were conducted using high temperature vegetable oil and boron nitride lubricants. Metal flow was quantified as a function of surface roughness, lay orientation, and die temperature. Approximate plane strain cigar test specimens were compressed at platen temperatures of 300 °F and 400 °F and at orientations of 0°, 45°, and 90° between the longitudinal axis and unidirectional platen surface lay. The friction factor was assessed using the ring compression test under varying platen roughness conditions and die temperatures between 250 °F and 400 °F. Results indicate metal flow is optimized at low platen roughnesses and orientations parallel to the surface lay of the platen. Die temperature was not found to influence metal flow within the temperature range investigated. The friction factor was observed to be minimized at lower die temperatures and platen roughnesses.

  20. HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS

    SciTech Connect

    Sell, D. A.; Baily, C. E.; Malewitz, T. J.; Medvedev, P. G.; Porter, D. L.; Hilton, B. A.

    2016-09-01

    A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium after the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.

  1. EFFECT OF METALLICITY ON X-RAY EMISSION FROM THE WARM-HOT INTERGALACTIC MEDIUM

    SciTech Connect

    Ursino, E.; Galeazzi, M.; Roncarelli, M.

    2010-09-20

    Hydrodynamic simulations predict that a significant fraction of the gas in the current universe is in the form of high temperature, highly ionized plasma emitting and absorbing primarily in the soft X-ray and UV bands, dubbed the warm-hot intergalactic medium (WHIM). Its signature should be observable in redshifted emission and absorption lines from highly ionized elements. To determine the expected WHIM emission in the soft X-ray band we used the output of a large scale smoothed particle hydrodynamic simulation to generate images and spectra with angular resolution of 14'' and energy resolution of 1 eV. The current biggest limit of any hydrodynamic simulation in predicting the X-ray emission comes from metal diffusion. In our investigation, by using four different models for the WHIM metallicity we have found a strong dependence of the emission on the model used, with differences up to almost an order of magnitude. For each model, we have investigated the redshift distribution and angular scale of the emission, confirming that most photons come from redshift z < 1.2 and that the emission has a typical angular scale of less than a few arcminutes. We also compared our simulations with the few currently available observations and found that, within the variation of the metallicity models, our predictions are in good agreement with current constraints on the WHIM emission, and at this time the weak experimental constraints on the WHIM emission are not sufficient to exclude any of the models used.

  2. The Hanford spent nuclear metal fuel multi-canister overpack and vacuum drying & hot conditioning process

    SciTech Connect

    Goldmann, L.H.; Irwin, J.J.; Miska, C.R.

    1996-12-31

    Nuclear production reactors operated at the U.S. Department of Energy`s Hanford Site from 1944 until 1988 to produce plutonium. Most of the irradiated fuel from these reactors was processed onsite to separate and recover the plutonium. When the processing facilities were closed in 1992, about 1,900 metric tons of unprocessed irradiated fuel remained in storage. Additional fuel was irradiated for research purposes or was shipped to the Hanford Site from offsite reactor facilities for storage or recovery of nuclear materials. The fuel inventory now in storage at the Hanford Site is predominantly N Reactor irradiated fuel, a metallic uranium alloy that is coextruded into zircaloy-2 cladding. The Spent Nuclear Fuel Project has committed to an accelerated schedule for removing spent nuclear fuel from the Hanford Site K Basins to a new interim storage facility in the 200 Area. The Westinghouse Hanford Company has developed an integrated process to deal with the K Basin spent fuel inventory. The process consists of cleaning the fuel, packaging it into MCOs, vacuum drying it at the K Basins, then transporting it to the Canister Storage Building for staging, hot conditioning, and interim storage. This presentation describes the MCO function, design, and life-cycle, including an overview of the vacuum drying and hot conditioning processes.

  3. Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction

    SciTech Connect

    Golubev, Dmitri; Kuzmin, Leonid

    2001-06-01

    The operation of the hot-electron bolometer with normal metal-insulator-superconductor (NIS) tunnel junction as a temperature sensor is analyzed theoretically. The responsivity and the noise equivalent power (NEP) of the bolometer are obtained numerically for typical experimental parameters. Relatively simple approximate analytical expressions for these values are derived. The time constant of the device is also found. We demonstrate that the effect of the electron cooling by the NIS junction, which serves as a thermometer, can improve the sensitivity. This effect is also useful in the presence of the finite background power load. We discuss the effect of the correlation of the shot noise and the heat flow noise in the NIS junction. {copyright} 2001 American Institute of Physics.

  4. KEPLER-6b: A TRANSITING HOT JUPITER ORBITING A METAL-RICH STAR

    SciTech Connect

    Dunham, Edward W.; Borucki, William J.; Koch, David G.; Lissauer, Jack J.; Batalha, Natalie M.; Buchhave, Lars A.; Furesz, Gabor; Geary, John C.; Latham, David W.; Brown, Timothy M.; Caldwell, Douglas A.; Jenkins, Jon M.; Cochran, William D.; Endl, Michael; Fischer, Debra; Gautier, Thomas N.; Gould, Alan; Howell, Steve B.; Kjeldsen, Hans

    2010-04-20

    We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, [Fe/H]= +0.34{+-}0.04. The planet's mass is about 2/3 that of Jupiter, M {sub P} = 0.67 M {sub J}, and the radius is 30% larger than that of Jupiter, R {sub P} = 1.32 R {sub J}, resulting in a density of {rho}{sub P} = 0.35 g cm{sup -3}, a fairly typical value for such a planet. The orbital period is P = 3.235 days. The host star is both more massive than the Sun, M {sub *} = 1.21 M {sub sun}, and larger than the Sun, R {sub *} = 1.39 R {sub sun}.

  5. Strength and toughness of ceramic-metal composites prepared by reactive hot pressing

    SciTech Connect

    ELLERBY,DONALD T.; LOEHMAN,RONALD E.; FAHRENHOLTZ,WILLIAM G.

    2000-03-10

    Metal-reinforced Al{sub 2}0{sub 3}-matrix composites were prepared using reactive hot pressing. The volume fraction of the reinforcing phase was controlled by the stoichiometry of the particular displacement reaction used. Dense Al{sub 2}0{sub 3}-Ni and Al{sub 2}O{sub 3}-Nb composites were fabricated using this technique. The best combination of strength, 610 MPa, and toughness, 12 MPam{sup 1/2}, was found for the Al{sub 2}O{sub 3}-Ni composites. Indentation cracks and fracture surfaces showed evidence of ductile deformation of the Ni phase. The Al{sub 2}O{sub 3}-Nb composites had high strength, but the toughness was lower than expected due to the poor bonding between the Nb and A1{sub 2}0{sub 3}phases.

  6. Prediction of inhomogeneous texture in clad sheet metals by hot roll bond method

    NASA Astrophysics Data System (ADS)

    Choi, Shi-Hoon; Kwon, Jae Wook; Oh, Kyu Hwan

    1996-06-01

    A finite element analysis was applied to analyze the evolution of an inhomogeneity of rolling texture in hot rolled clad metal with Taylor-Bishop-Hill model and Renourd-Winterberger method. The shear texture has been developed in the surface layer of the aluminum and plane strain texture has been developed in the center layer. The calculated texture variations through thickness direction could simulate experimental texture using deformation gradient from FEM. The ratio of shear strain to rolling strain, x, which represents the degree of rotation about transverse direction could give the degree of development of shear texture. The larger value of x gives the larger crystal rotation about transverse direction and subsequently the development of shear texture. The calculated (111) pole figures were in good agreement with experimentally measured pole figures.

  7. INVESTIGATING THE POTENTIAL DILUTION OF THE METAL CONTENT OF HOT GAS IN EARLY-TYPE GALAXIES BY ACCRETED COLD GAS

    SciTech Connect

    Su, Yuanyuan; Irwin, Jimmy A.

    2013-03-20

    The measured emission-weighted metal abundance of the hot gas in early-type galaxies has been known to be lower than theoretical expectations for 20 years. In addition, both X-ray luminosity and metal abundance vary significantly among galaxies of similar optical luminosities. This suggests some missing factors in the galaxy evolution process, especially the metal enrichment process. With Chandra and XMM-Newton, we studied 32 early-type galaxies (kT {approx}< 1 keV) covering a span of two orders of L{sub X,gas}/L{sub K} to investigate these missing factors. Contrary to previous studies that X-ray faint galaxies show extremely low Fe abundance ({approx}0.1 Z{sub Sun }), nearly all galaxies in our sample show an Fe abundance at least 0.3 Z{sub Sun }, although the measured Fe abundance difference between X-ray faint and X-ray bright galaxies remains remarkable. We investigated whether this dichotomy of hot gas Fe abundances can be related to the dilution of hot gas by mixing with cold gas. With a subset of 24 galaxies in this sample, we find that there is virtually no correlation between hot gas Fe abundances and their atomic gas content, which disproves the scenario that the low metal abundance of X-ray faint galaxies might be a result of the dilution of the remaining hot gas by pristine atomic gas. In contrast, we demonstrate a negative correlation between the measured hot gas Fe abundance and the ratio of molecular gas mass to hot gas mass, although it is unclear what is responsible for this apparent anti-correlation. We discuss several possibilities including that externally originated molecular gas might be able to dilute the hot gas metal content. Alternatively, the measured hot gas Fe abundance may be underestimated due to more complex temperature and abundance structures and even a two-temperature model might be insufficient to reflect the true value of the emission weighted mean Fe abundance.

  8. A Solvent-Free Hot-Pressing Method for Preparing Metal-Organic-Framework Coatings.

    PubMed

    Chen, Yifa; Li, Siqing; Pei, Xiaokun; Zhou, Junwen; Feng, Xiao; Zhang, Shenghan; Cheng, Yuanyuan; Li, Haiwei; Han, Ruodan; Wang, Bo

    2016-03-01

    Metal-organic frameworks (MOFs), with their well-defined pores and rich structural diversity and functionality, have drawn a great deal of attention from across the scientific community. However, industrial applications are hampered by their intrinsic fragility and poor processability. Stable and resilient MOF devices with tunable flexibility are highly desirable. Herein, we present a solvent- and binder-free approach for producing stable MOF coatings by a unique hot-pressing (HoP) method, in which temperature and pressure are applied simultaneously to facilitate the rapid growth of MOF nanocrystals onto desired substrates. This strategy was proven to be applicable to carboxylate-based, imidazolate-based, and mixed-metal MOFs. We further successfully obtained superhydrophobic and "Janus" MOF films through layer-by-layer pressing. This HoP method can be scaled up in the form of roll-to-roll production and may push MOFs into unexplored industrial applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Design of nanophotonic, hot-electron solar-blind ultraviolet detectors with a metal-oxide-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyuan; Wang, Xiaoxin; Liu, Jifeng

    2014-12-01

    Solar-blind ultraviolet (UV) detection refers to photon detection specifically in the wavelength range of 200 nm-320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. The most commonly used solid state devices for this application are wide band gap (WBG) semiconductor photodetectors (Eg > 3.5 eV). However, WBG semiconductors are difficult to grow and integrate with Si readout integrated circuits (ROICs). In this paper, we design a nanophotonic metal-oxide-semiconductor structure on Si for solar-blind UV detectors. Instead of using semiconductors as the active absorber, we use Sn nano-grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO2 interfacial barrier, thereby generating photocurrent between the metal and the n-type Si region upon UV excitation. Moreover, the transported hot electron has an excess kinetic energy >3 eV, large enough to induce impact ionization and generate another free electron in the conduction band of n-Si. This process doubles the quantum efficiency. On the other hand, the large metal/oxide interfacial energy barrier (>3.5 eV) also enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, ˜75% UV absorption and hot electron excitation can be achieved within the mean free path of ˜20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. The simple geometry of the Sn nano-gratings and the MOS structure make it easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices.

  10. Antenna induced hot restrike of a ceramic metal halide lamp recorded by high-speed photography

    NASA Astrophysics Data System (ADS)

    Hermanns, P.; Hoebing, T.; Bergner, A.; Ruhrmann, C.; Awakowicz, P.; Mentel, J.

    2016-03-01

    The hot restrike is one of the biggest challenges in operating ceramic metal halide lamps with mercury as buffer gas. Compared to a cold lamp, the pressure within a ceramic burner is two orders of magnitude higher during steady state operation due to the high temperature of the ceramic tube and the resulting high mercury vapour pressure. Room temperature conditions are achieved after 300 s of cooling down in a commercial burner, enclosed in an evacuated outer bulb. At the beginning of the cooling down, ignition voltage rises up to more than 14 kV. A significant reduction of the hot-restrike voltage can be achieved by using a so called active antenna. It is realized by a conductive sleeve surrounding the burner at the capillary of the upper electrode. The antenna is connected to the lower electrode of the lamp, so that its potential is extended to the vicinity of the upper electrode. An increased electric field in front of the upper electrode is induced, when an ignition pulse is applied to the lamp electrodes. A symmetrically shaped ignition pulse is applied with an amplitude, which is just sufficient to re-ignite the hot lamp. The re-ignition, 60 s after switching off the lamp, when the mercury pressure starts to be saturated, is recorded for both polarities of the ignition pulse with a high-speed camera, which records four pictures within the symmetrically shaped ignition pulse with exposure times of 100 ns and throws of 100 ns. The pictures show that the high electric field and its temporal variation establish a local dielectric barrier discharge in front of the upper electrode inside the burner, which covers the inner wall of the burner with a surface charge. It forms a starting point of streamers, which may induce the lamp ignition predominantly within the second half cycle of the ignition pulse. It is found out that an active antenna is more effective when the starting point of the surface streamer in front of the sleeve is a negative surface charge on the

  11. Effects of hot/wet environments on the fatigue behaviour of composite-to-metal mechanically fastened joints

    SciTech Connect

    Galea, S.C.; Saunders, D.S.

    1993-12-31

    Because of their high strength-to-weight and stiffness-to-weight ratios, carbon fiber reinforced plastic (CFRP) composite laminates are seeing increasing use, especially in the aerospace industry. In composite-to-metal structures the load transfer between various components is undertaken by the use of mechanically fastened or bonded joints. For example, on the F/A-18 aircraft, numerous composite-to-metal mechanically fastened joints are used to transfer loads from the thick composite wing skin to the metal wing ribs and spars. Previous work, undertaken at ARL, has investigated the fatigue of such joints under ambient conditions. It is widely known that the mechanical properties of CFRP laminates generally degrade considerably under hot/wet environments. A similar degradation is expected for mechanically fastened laminates. The aim of this study was to investigate the effects of hot/wet environments on the fatigue behavior of specific mechanically fastened joints. Results showed a marked decrease in the fatigue life of the composite-to-metal mechanically fastened joints under hot/wet environments when compared to lives attained at ambient and under similar load conditions. The major joint failure mode was failure of the fasteners. Other failure modes were compression failure of the 0{degree} ply layers and delamination growth.

  12. Analysis of hot forming of a sheet metal component made of advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Demirkaya, Sinem; Darendeliler, Haluk; Gökler, Mustafa İlhan; Ayhaner, Murat

    2013-05-01

    To provide reduction in weight while maintaining crashworthiness and to decrease the fuel consumption of vehicles, thinner components made of Advanced High Strength Steels (AHSS) are being increasingly used in automotive industry. However, AHSS cannot be formed easily at the room temperature (i.e. cold forming). The alternative process involves heating, hot forming and subsequent quenching. A-pillar upper reinforcement of a vehicle is currently being produced by cold forming of DP600 steel sheet with a thickness of 1.8 mm. In this study, the possible decrease in the thickness of this particular part by using 22MnB5 as appropriate AHSS material and applying this alternative process has been studied. The proposed process involves deep drawing, trimming, heating, sizing, cooling and piercing operations. Both the current production process and the proposed process are analyzed by the finite element method. The die geometry, blank holding forces and the design of the cooling channels for the cooling process are determined numerically. It is shown that the particular part made of 22MnB5 steel sheet with a thickness of 1.2 mm can be successfully produced by applying the proposed process sequence and can be used without sacrificing the crashworthiness. With the use of the 22MnB5 steel with a thickness of 1.2 mm instead of DP600 sheet metal with a thickness of 1.8 mm, the weight is reduced by approximately 33%.

  13. Multi-Objective Optimization in Hot Machining of Al/SiCp Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Jadhav, M. R.; Dabade, U. A.

    2016-02-01

    Metal Matrix Composites (MMCs) have been found to be useful in a number of engineering applications and particle reinforced MMCs have received considerable attention due to their excellent engineering properties. These materials are generally regarded as extremely difficult to machine, because of the abrasive characteristics of the reinforced particulates. These characteristics of MMCs affect the machined surface quality and integrity. This paper presents use of Taguchi Grey Relational Analyses (GRA) for optimization of Al/SiCp/10p (220 and 600 mesh) MMCs produced by stir casting. Experiments are performed using L16 orthogonal array by using hot machining technique. The objective of this study is to identify the optimum process parameters to improve the surface integrity on Al/SiCp MMCs. The machined surface integrity has been analyzed by process parameters such as speed, feed, depth of cut and preheating temperature. The significance of the process parameters on surface integrity has been evaluated quantitatively by the analysis of variance (ANOVA) method and AOM plots. The grey relational analysis shows optimum machining conditions as 0.05 mm/rev feed, 0.4 mm depth of cut and 60 °C preheating temperature to enhance surface integrity for both Al/SiCp/10p (220 and 600 mesh) MMCs except for cutting speed 50 and 25 m/min respectively.

  14. Experimental Study on Hot Metal Desulfurization Using Sintered Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-07-01

    This research presents the results of laboratory and pilot-scale tests conducted on the use of sintered red mud (RM)-based flux in the hot metal desulfurization (HMD) process. Al2O3/Na2O in RM can decrease the melting point of lime-based slag and can work as a flux in the HMD process. Good slag fluidity was observed throughout the process, and high desulfurization rates ( 80%) with a low final S content (<0.02%) were experimentally obtained when the RM:CaO ratio was between 1.2:1 and 2.4:1. The pilot-scale test results indicated that a desulfurization rate as high as 91% and a S content <0.0099% could be acquired when RM:lime = 1:1, verifying the feasibility of using sintered RM-based flux in HMD. The data obtained provide important information for promoting the large-scale application of sintered RM in steelmaking.

  15. Development and performance of a diamond-film polishing apparatus with hot metals

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Masanori

    1990-12-01

    The diamond film polishing apparatus with hot metals has been presented . Diamond films deposited by both microwave plasma CVD and arc discharge plasma jet CVD are used as workpieces . As a diamond film sways on a polishing plate made of an iron or a nickel heated to 75O''95O C it is finished to flat and glass-like surfaces without any exfoliation. Not only swaying speed but also polishing pressure in this apparatus are extremely low in comparison to a conventional mechanical polishing method. When a cast iron and a molybdenum are used as a polishing plate polishing is not advanced . The polishing rate is highest in a vacuum atmosphere . Among gas atmospheres the rate is highes t in a hydrogen atmosphere . These result show that a diamond film is polished by the diffusion of carbon into a polishing plate. When a diamond film surface is too rough to polish by this apparatus the surface planing with YAG laser is applied then polishing is conducted on the planed surface. 1 .

  16. Experimental Study on Hot Metal Desulfurization Using Sintered Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    This research presents the results of laboratory and pilot-scale tests conducted on the use of sintered red mud (RM)-based flux in the hot metal desulfurization (HMD) process. Al2O3/Na2O in RM can decrease the melting point of lime-based slag and can work as a flux in the HMD process. Good slag fluidity was observed throughout the process, and high desulfurization rates ( 80%) with a low final S content (<0.02%) were experimentally obtained when the RM:CaO ratio was between 1.2:1 and 2.4:1. The pilot-scale test results indicated that a desulfurization rate as high as 91% and a S content <0.0099% could be acquired when RM:lime = 1:1, verifying the feasibility of using sintered RM-based flux in HMD. The data obtained provide important information for promoting the large-scale application of sintered RM in steelmaking.

  17. Kinetic Study on Desulfurization of Hot Metal Using CaO and CaC2

    NASA Astrophysics Data System (ADS)

    Lindström, David; Sichen, Du

    2015-02-01

    The kinetics and reaction mechanisms of hot metal desulfurization using CaO and CaC2 were studied in a well-controlled atmosphere with a lab scale high temperature furnace. The growths of CaS around CaO and CaC2 were measured and compared at 1773 K (1500 °C). The parabolic rate constant was evaluated to be 5 × 10-7 (cm s-1) on CaO particles, and 2.4 × 10-7 (cm s-1) on CaC2. The bigger parabolic constant of CaO resulted in more efficient desulfurization. Agglomerates and big CaO particles led to 2CaO·SiO2 formation which hindered further utilization of CaO for desulfurization. The 2CaO·SiO2 formation was favoured by a high oxygen potential. Since the desulfurization reaction of CaO not only produced CaS but also oxygen, the local oxygen concentration around big CaO particles was higher than around small particles.

  18. Kinetic Study on Desulfurization of Hot Metal Using CaO and CaC2

    NASA Astrophysics Data System (ADS)

    Lindström, David; Sichen, Du

    2014-09-01

    The kinetics and reaction mechanisms of hot metal desulfurization using CaO and CaC2 were studied in a well-controlled atmosphere with a lab scale high temperature furnace. The growths of CaS around CaO and CaC2 were measured and compared at 1773 K (1500 °C). The parabolic rate constant was evaluated to be 5 × 10-7 (cm s-1) on CaO particles, and 2.4 × 10-7 (cm s-1) on CaC2. The bigger parabolic constant of CaO resulted in more efficient desulfurization. Agglomerates and big CaO particles led to 2CaO·SiO2 formation which hindered further utilization of CaO for desulfurization. The 2CaO·SiO2 formation was favoured by a high oxygen potential. Since the desulfurization reaction of CaO not only produced CaS but also oxygen, the local oxygen concentration around big CaO particles was higher than around small particles.

  19. Direct laser interference patterning of metallic sleeves for roll-to-roll hot embossing

    NASA Astrophysics Data System (ADS)

    Lang, Valentin; Rank, Andreas; Lasagni, Andrés. F.

    2017-03-01

    Surfaces equipped with periodic patterns with feature sizes in the micrometer, submicrometer and nanometer range present outstanding surface properties. Many of these surfaces can be found on different plants and animals. However, there are few methods capable to produce such patterns in a one-step process on relevant technological materials. Direct laser interference patterning (DLIP) provides both high resolution as well as high throughput. Recently, fabrication rates up to 1 m2·min-1 could be achieved. However, resolution was limited to a few micrometers due to typical thermal effects that arise when nanosecond pulsed laser systems are used. Therefore, this study introduces an alternative to ns-DLIP for the fabrication of multi-scaled micrometer and submicrometer structures on nickel surfaces using picosecond pulses (10 ps at a wavelength of 1064 nm). Due to the nature of the interaction process of the metallic surfaces with the ultrashort laser pulses, it was not only possible to directly transfer the shape of the interference pattern intensity distribution to the material (with spatial periods ranging from 1.5 μm to 5.7 μm), but also to selectively obtain laser induce periodic surface structures with feature sizes in the submicrometer and nanometer range. Finally, the structured nickel sleeves are utilized in a roll-to-roll hot embossing unit for structuring of polymer foils. Processing speeds up to 25 m·min-1 are reported.

  20. Grain size measurement by EBSD in complex hot deformed metal alloy microstructures.

    PubMed

    Mingard, K P; Roebuck, B; Bennett, E G; Thomas, M; Wynne, B P; Palmiere, E J

    2007-09-01

    The measurement of grain size by EBSD has been studied to enable representative quantification of the microstructure of hot deformed metal alloys with a wide grain size distributions. Variation in measured grain size as a function of EBSD step size and noise reduction techniques has been assessed. Increasing the EBSD step size from 5% to 20% of the approximate mean grain size results in a change in calculated arithmetic mean grain size of approximately 15% and standard noise reduction techniques can produce a further change in reported size of up to 20%. The distribution of measured grain size is found not to be log-normal, with a long tail of very small sizes in agreement with a computer simulation of linear intercept and areal grain size measurements through randomly oriented grains. Comparison of EBSD with optical measurements of grain size on the same samples shows that, because of the ability of EBSD to distinguish twins and resolve much smaller grains a difference of up to 50% in measured grain size results.

  1. Microstructure and mechanical properties of hip-consolidated Rene 95 powders. [hot-isostatic pressed nickel-based powder metal

    NASA Technical Reports Server (NTRS)

    Shimanuki, Y.; Nishino, Y.; Masui, M.; Doi, H.

    1980-01-01

    The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries.

  2. Evaluation of alkali metal sulfate dew point measurement for detection of hot corrosion conditions in PFBC flue gas

    SciTech Connect

    Helt, J.E.

    1980-11-01

    Hot corrosion in combustion systems is, in general, the accelerated oxidation of nickel, cobalt, and iron-base alloys which occurs in the presence of small amounts of impurities - notably, sodium, sulfur, chlorine, and vanadium. There is no real consensus on which mechanisms are primarily responsible for high-temperature corrosion. One point generally accepted, however, is that corrosion reactions take place at an appreciable rate only in the presence of a liquid phase. When coal is the fuel for combustion, hot corrosion may occur in the form of accelerated sulfidation. It is generally agreed by investigators that molten alkali metal sulfates (Na/sub 2/SO/sub 4/ and K/sub 2/SO/sub 4/) are the principal agents responsible for the occurrence of sulfidation. Although molten sodium sulfate by itself appears to have little or no effect on the corrosion of metal alloys, its presence may increase the accessibility of the bare metal surface to the external atmosphere. If this atmosphere contains either a reductant and/or an oxide such as SiO/sub 2/, SO/sub 3/, or NaOH(Na/sub 2/O), corrosion is likely to occur. Alkali metal sulfate dew point measurement was evaluated as a means of anticipating hot corrosion in the gas turbine of a pressurized fluidized-bed combustion system. The hot corrosion mechanism and deposition rate theory were reviewed. Two methods of dew point measurement, electrical conductivity and remote optical techniques, were identified as having a potential for this application. Both techniques are outlined; practical measurement systems are suggested; and potential problem areas are identified.

  3. [Study of physical-mechanic characteristics of prosthetic construction after their adjustment with the use of laser welding and hot metal adding].

    PubMed

    Gvetadze, R Sh; Rusanov, F S; Mikhas'kov, S V

    2011-01-01

    Study of physical-mechanic characteristics of connecting joints of beam construction after laser welding and hot metal adding was performed. Increase of microhardness of joints as well as small reduction of bending strength of prosthetic constructions was established.

  4. Conformal TCO-semiconductor-metal nanowire array for narrowband and polarization-insensitive hot-electron photodetection application

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wu, Kai; Ling, Bo; Li, Xiaofeng

    2016-10-01

    The use of hot electrons arising from the nonradiative decay of surface plasmons (SPs) is increasingly attracting interests in photodetection, photovoltaics, photocatalysis, and surface imaging. Nevertheless, the quantum efficiency of the hot-electron devices has to be improved to promote the practical applications. We propose an architecture of conformal TCO/semiconductor/metal nanowire (NW) array for hot-electron photodetection with a tunable optical response across the visible and near-infrared bands. The wavelength, strength, and bandwidth of the plasmonic resonance are tailored by controlling the lattice periodicity and topology. Finite-element simulation demonstrates that the near-perfect, polarization-insensitive, and ultranarrow-band optical absorption can be achieved in the conformal NW system. By the excitation of localized SPs, a strong field concentrates at the top corner of the NWs with a high hot-electrons generation rate. The analytical probability-based electrical calculation further shows that the SPs-enhanced photoresponsivity can be more than five times larger than that of the flat reference.

  5. Transition duct system with metal liners for delivering hot-temperature gases in a combustion turbine engine

    DOEpatents

    Wiebe, David J.

    2017-04-11

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) and an arcuate connecting segment (36). A respective straight metal liner (92) and an arcuate metal liner (94) may be each inwardly disposed onto a metal outer shell (38) along the straight path segment and the arcuate connecting segment (36) of the exit piece. Structural arrangements are provided to securely attach the respective liners in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liners can be readily removed and replaced as needed.

  6. Analysis of microstructure-dependent shock dissipation and hot-spot formation in granular metalized explosive

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Sunada; Gonthier, Keith A.

    2016-07-01

    Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.

  7. Modeling of De-cohesion and the Initiation of Hot Tearing in Coherent Mushy Zones of Metallic Alloys

    NASA Astrophysics Data System (ADS)

    Mihanyar, Shifteh; Mo, Asbjørn; M'hamdi, Mohammed; Ellingsen, Kjerstin

    2011-07-01

    The initiation of a hot tear in the coherent mushy zone of metallic alloys is associated commonly with the opening up of the solid skeleton caused by thermally induced deformation. A previously established constitutive model for the continuum modeling of coherent mushy zones has been further developed in the current study to address the opening up, or decohesion, of the solid skeleton associated with volumetric tensile deformation. Whereas the original model accounts for the cohesion of the solid skeleton caused by the deformation by means of an internal variable, an additional internal variable accommodating the decohesion has been introduced in the new model. The modeled decohesion is interpreted as the initiation of a hot tear.

  8. Material development of molten metal bath hardware for continuous hot-dip processes

    NASA Astrophysics Data System (ADS)

    McElroy, Sherman A.

    Development of corrosion resistant materials to molten zinc attack for applications in galvanizing pots has long been desired, because better corrosion resistance could lead to a longer production campaign. The research objectives of this project were to develop new bulk materials and surface treatments/coatings for life improvement of molten metal bath hardware (bearings, sink roll, stabilizing rolls, corrector rolls, and also support roll arms and snout tip) in continuous hot-dip process used for coated steel strip. The ultimate goal of the project is to increase the molten Zn bath components life by an order of magnitude which results in large energy saving (estimated at 2 trillion BTU/year). Estimated cost saving would be approximately $46 million/year for the 57 lines operating in the United States of America. Extensive experimental studies were conducted on over 60 different samples of various materials (monolithic alloys with and without treatment, weld overlays, and ceramics) in molten Zn-0.16Al at 465°C. Test durations were 1h to over 9000h in the static condition, over 50h in the dynamic condition, and up to 24h in the wear condition. Data were recorded as weight change per unit area as a function of time and temperature. The reaction products were analyzed for phase composition and their distribution using SEM, EDS, XRD, and optical microscope. Corrosion rates for each selected alloys were calculated. The SS Type 316L results were used as a baseline. Comparisons between the corrosion behaviors of the stainless steel type 316L and the selected materials were made. Based on our static, dynamic, and wear immersion experimental data a mechanism for alloy corrosion in molten zinc was proposed. Alloys containing Fe, Cr, and Al as its major components results in the formation of (Fe, Cr, Al)XZnY intermetallic phases and oxides at the alloy/zinc interface when exposed to molten zinc in air. Most of the alloys studied in present investigation, corrosion

  9. Imaging challenges in 20nm and 14nm logic nodes: hot spots performance in Metal1 layer

    NASA Astrophysics Data System (ADS)

    Timoshkov, V.; Rio, D.; Liu, H.; Gillijns, W.; Wang, J.; Wong, P.; Van Den Heuvel, D.; Wiaux, V.; Nikolsky, P.; Finders, J.

    2013-10-01

    The 20nm Metal1 layer, based on ARM standard cells, has a 2D design with minimum pitch of 64nm. This 2D design requires a Litho-Etch-Litho-Etch (LELE) double patterning. The whole design is divided in 2 splits: Me1A and Me1B. But solution of splitting conflicts needs stitching at some locations, what requires good Critical Dimension (CD) and overlay control to provide reliable contact between 2 stitched line ends. ASML Immersion NXT tools are aimed at 20 and 14nm logic production nodes. Focus control requirements become tighter, as existing 20nm production logic layouts, based on ARM, have about 50-60nm focus latitude and tight CD Uniformity (CDU) specifications, especially for line ends. IMEC inspected 20nm production Metal1 ARM standard cells with a Negative Tone Development (NTD) process using the Process Window Qualification-like technique experimentally and by Brion Tachyon LMC by simulations. Stronger defects were found thru process variations. A calibrated Tachyon model proved a good overall predictability capability for this process. Selected defects are likely to be transferred to hard mask during etch. Further, CDU inspection was performed for these critical features. Hot spots showed worse CD uniformity than specifications. Intra-field CDU contribution is significant in overall CDU budget, where reticle has major impact due to high MEEF of hot spots. Tip-to-Tip and tip-to-line hot spots have high MEEF and its variation over the field. Best focus variation range was determined by best focus offsets between hot spots and its variation within the field.

  10. Hot Carrier Transport at the Graphene-Metal Interface Induced by Strong Lateral Photo-Dember Effect

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Hua; Chang, You-Chia; Dissanayake, Nanditha; Zhang, Yaozhong; Zhong, Zhaohui

    2013-03-01

    Ultrafast photo-excitation in a semiconductor can lead to transient spatial charge gradient if electrons and holes have different drift velocities. The charge gradient builds up the transient electric field and causes the subsequent terahertz pulse emission. This phenomenon, known as the photo-Dember effect, was typically considered insignificant in graphene due to its similar electron and hole mobilities. Here, we observe hot carrier transport at the graphene-metal interface driven by the photo-Dember electric field under femtosecond pulse laser excitation. The polarity of hot carrier transport is determined by the asymmetry of electron and hole mobilities of the graphene device and cannot be flipped sign by tuning graphene doping level. This indicates the formation of strong photo-Dember field, dominating over the graphene/metal built-in electric field or thermal electric field. We further analyze the spatial distribution and temporal evolution of the transient electric field near the contact edge by using the drift-diffusion model. The modeling results suggest that strong photo-Dember effect is caused by the low electronic specific heat of graphene and a huge charge gradient near the graphene-metal interface under pulse laser excitation. This work was supported from the Donors of the American Chemical Society Petroleum Research Fund and the U-M/SJTU Collaborative Research Program in Renewable Energy Science and Technology.

  11. Influence of temperature, chlorine residual and heavy metals on the presence of Legionella pneumophila in hot water distribution systems.

    PubMed

    Rakić, Anita; Perić, Jelena; Foglar, Lucija

    2012-01-01

    The microbiological colonisation of buildings and man-made structures often occurs on the walls of plumbing systems; therefore, monitoring of opportunistic pathogens such as Legionella pneumophila (L. pneumophila), both in water distribution mains and in consumers' plumbing systems, is an important issue according to the international and national guidelines that regulate the quality of drinking water. This paper investigates the presence of L. pneumophila in the Dalmatian County of Croatia and the relationship between L. pneumophila presence and heavy metals concentrations, free residual chlorine and water temperature in hot water distribution systems (WDS). Investigations were performed on a large number of hot water samples taken from taps in kitchens and bathrooms in hotels and homes for the elderly and disabled in the Split region. Of the 127 hot water samples examined, 12 (9.4%) were positive for Legionella spp. with median values concentration of 450 cfu × L(-1). Among positive isolates, 10 (83.3%) were L. pneumophila sg 1, and two of them (16.6%) belonged to the genera L. pneumophila sg 2-14. The positive correlation between the water temperature, iron and manganese concentrations, and L. pneumophila contamination was proved by statistical analysis of the experimental data. On the contrary, zinc and free residual chlorine had no observed influence on the presence of L. pneumophila. The presence of heavy metals in water samples confirms the corrosion of distribution system pipes and fittings, and suggests that metal plumbing components and associated corrosion products are important factors in the survival and growth of L. pneumophila in WDS.

  12. Microbiological analysis, antimicrobial activity, and heavy-metals content of Jordanian Ma'in hot-springs water.

    PubMed

    Shakhatreh, Muhamad Ali K; Jacob, Jacob H; Hussein, Emad I; Masadeh, Majed M; Obeidat, Safwan M; Juhmani, Abdul-Salam F; Abd Al-Razaq, Mutaz A

    2017-02-14

    Ma'in hot springs are known as sites of balneotherapy. However, little is known about their microbiology and chemistry. In this study, we aim at evaluating the antimicrobial activity of Ma'in hot-springs water (MHSW), studying its microbiology, and determining its physicochemical properties including the heavy metals content. Therefore, water samples were collected from Ma'in hot springs and tested for antimicrobial activity using agar diffusion method. Water was then cultivated on nutrient agar to isolate and identify the dominant bacteria by chemical and molecular methods. The identified strains were tested by cross streak method to evaluate their antimicrobial activity against different clinical and standard strains. Finally, water samples were chemically analyzed and the heavy-metals content was assessed. Results revealed that MHSW was not active against any of the clinical isolates. Nevertheless, MHSW was found to be active against five standard bacterial strains, namely, Staphylococcus epidermidis ATCC 12228 (inhibition zone: 20mm), Staphylococcus aureus ATCC 29213 (inhibition zone: 19mm), Micrococcus luteus ATCC 9341 (inhibition zone: 15.3mm), and Bacillus cereus ATCC 11778 (inhibition zone: 12.3mm). After cultivation of MHSW, five bacterial isolates were obtained and identified based on 16S rRNA gene analysis as new strains of Anoxybacillus flavithermus (identity percentage ranges between 96-99%). Physicochemical analysis revealed that the in situ temperature was 59°C, pH was 7.8, salinity was 1.6ppt, and dissolved oxygen was 3.8mgl(-1). In respect to heavy-metals content in MHSW, the following metals were present in the order: Cr (0.571ppm)>Mn(0.169ppm)>Fe (0.124ppm)>Zn (0.095)>Cu(0.070ppm)>Ni(0.058ppm)>Cd (0.023ppm)>Pb (0ppm). Cd, Cr, Ni and Mn were found to be higher than permissible levels set by international organizations and countries. This study highlights new chemical and microbiological data about Ma'in hot springs.

  13. Hydrogen abstraction from metal surfaces: when electron-hole pair excitations strongly affect hot-atom recombination.

    PubMed

    Galparsoro, Oihana; Pétuya, Rémi; Busnengo, Fabio; Juaristi, Joseba Iñaki; Crespos, Cédric; Alducin, Maite; Larregaray, Pascal

    2016-11-23

    Using molecular dynamics simulations, we predict that the inclusion of nonadiabatic electronic excitations influences the dynamics of preadsorbed hydrogen abstraction from the W(110) surface by hydrogen scattering. The hot-atom recombination, which involves hyperthermal diffusion of the impinging atom on the surface, is significantly affected by the dissipation of energy mediated by electron-hole pair excitations at low coverage and low incidence energy. This issue is of importance as this abstraction mechanism is thought to largely contribute to molecular hydrogen formation from metal surfaces.

  14. Stereological substructure analysis in hot-deformed metals from TEM-images

    NASA Astrophysics Data System (ADS)

    Barthel, M.; Klimanek, P.; Stoyan, D.

    1985-03-01

    In the present paper three possible methods of stereological evaluation of particle arrangements are discussed: determination of mean particle diameters by means of the so-called Poisson-Voronoi mosaics, evaluation of the spatial particle-diameter distribution using the interception-length method of Spektor and determination of the spatial distribution of grain or subgrain diameters on the basis of an intercept-area method of Saltykov. Practical application of the procedures is demonstrated by results which were obtained from hot-deformation of several material under different hot-working conditions. It can be shown that stereological interpretation of TEM images renders refined conclusions concerning the mechanisms of structure changes occurring in hot-deformation.

  15. Thermal characteristics of air-water spray impingement cooling of hot metallic surface under controlled parametric conditions

    NASA Astrophysics Data System (ADS)

    Nayak, Santosh Kumar; Mishra, Purna Chandra

    2016-06-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper. The controlling input parameters investigated were the combined air and water pressures, plate thickness, water flow rate, nozzle height from the target surface and initial temperature of the hot surface. The effects of these input parameters on the important thermal characteristics such as heat transfer rate, heat transfer coefficient and wetting front movement were measured and examined. Hot flat plate samples of mild steel with dimension 120 mm in length, 120 mm breadth and thickness of 4 mm, 6 mm, and 8 mm respectively were tested. The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface. Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e, 4 mm thick plates. Increase in the nozzle height reduced the heat transfer efficiency of spray cooling. At an inlet water pressure of 4 bar and air pressure of 3 bar, maximum cooling rates 670°C/s and average cooling rate of 305.23°C/s were achieved for a temperature of 850°C of the steel plate.

  16. Automated Nondestructive Evaluation Method for Characterizing Ceramic and Metallic Hot Gas Filters

    SciTech Connect

    Ellingson, W.A.; Pastila, P.; Koehl, E.R.; Wheeler, B.; Deemer, C.; Forster, G.A.

    2002-09-19

    The objective of this work was to develop a nondestructive (NDE), cost-effective and reliable method to assess the condition of rigid ceramic hot gas filters. The work was intended to provide an end user, as well as filter producers, with a nondestructive method to assess the ''quality'' or status of the filters.

  17. Health hazards from oil, soot and metals at a hot forging operation.

    PubMed

    Goldsmith, A H; Vorpahl, K W; French, K A; Jordan, P T; Jurinski, N B

    1976-04-01

    An extensive study of a hot forging operation was performed to characterize and quantitate worker exposures to the aerosol formed by an oil-based die lubricant and it's decomposition products. Total particulate breathing zone levels up to 65 mg/m3 and benzo (a) pyrene levels up to 2.9 mug/m3 were measured.

  18. Valley-Coherent Hot Carriers and Thermal Relaxation in Monolayer Transition Metal Dichalcogenides.

    PubMed

    Kallatt, Sangeeth; Umesh, Govindarao; Majumdar, Kausik

    2016-06-02

    We show room-temperature valley coherence in MoS2, MoSe2, WS2, and WSe2 monolayers using linear polarization-resolved hot photoluminescence (PL) at energies close to the excitation, demonstrating preservation of valley coherence before sufficient scattering events. The features of the copolarized hot luminescence allow us to extract the lower bound of the binding energy of the A exciton in monolayer MoS2 as 0.42 (±0.02) eV. The broadening of the PL peak is found to be dominated by a Boltzmann-type hot luminescence tail, and using the slope of the exponential decay, the carrier temperature is extracted in situ at different stages of energy relaxation. The temperature of the emitted optical phonons during the relaxation process is probed by exploiting the corresponding broadening of the Raman peaks due to temperature-induced anharmonic effects. The findings provide a physical picture of photogeneration of valley-coherent hot carriers and their subsequent energy relaxation pathways.

  19. Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-refined TWIP Steels

    NASA Astrophysics Data System (ADS)

    Barthelmie, J.; Schram, A.; Wesling, V.

    2016-03-01

    Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.

  20. A HOT URANUS ORBITING THE SUPER METAL-RICH STAR HD 77338 AND THE METALLICITY-MASS CONNECTION

    SciTech Connect

    Jenkins, J. S.; Hoyer, S.; Jones, M. I.; Rojo, P.; Day-Jones, A. C.; Ruiz, M. T.; Jones, H. R. A.; Tuomi, M.; Barnes, J. R.; Pavlenko, Y. V.; Pinfield, D. J.; Murgas, F.; Ivanyuk, O.; Jordan, A.

    2013-04-01

    We announce the discovery of a low-mass planet orbiting the super metal-rich K0V star HD 77338 as part of our ongoing Calan-Hertfordshire Extrasolar Planet Search. The best-fit planet solution has an orbital period of 5.7361 {+-} 0.0015 days and with a radial velocity semi-amplitude of only 5.96 {+-} 1.74 ms{sup -1}, we find a minimum mass of 15.9{sup +4.7}{sub -5.3} M{sub Circled-Plus }. The best-fit eccentricity from this solution is 0.09{sup +0.25}{sub -0.09}, and we find agreement for this data set using a Bayesian analysis and a periodogram analysis. We measure a metallicity for the star of +0.35 {+-} 0.06 dex, whereas another recent work finds +0.47 {+-} 0.05 dex. Thus HD 77338b is one of the most metal-rich planet-host stars known and the most metal-rich star hosting a sub-Neptune-mass planet. We searched for a transit signature of HD 77338b but none was detected. We also highlight an emerging trend where metallicity and mass seem to correlate at very low masses, a discovery that would be in agreement with the core accretion model of planet formation. The trend appears to show that for Neptune-mass planets and below, higher masses are preferred when the host star is more metal-rich. Also a lower boundary is apparent in the super metal-rich regime where there are no very low mass planets yet discovered in comparison to the sub-solar metallicity regime. A Monte Carlo analysis shows that this low-mass planet desert is statistically significant with the current sample of 36 planets at the {approx}4.5{sigma} level. In addition, results from Kepler strengthen the claim for this paucity of the lowest-mass planets in super metal-rich systems. Finally, this discovery adds to the growing population of low-mass planets around low-mass and metal-rich stars and shows that very low mass planets can now be discovered with a relatively small number of data points using stable instrumentation.

  1. A Hot Uranus Orbiting the Super Metal-rich Star HD 77338 and the Metallicity-Mass Connection

    NASA Astrophysics Data System (ADS)

    Jenkins, J. S.; Jones, H. R. A.; Tuomi, M.; Murgas, F.; Hoyer, S.; Jones, M. I.; Barnes, J. R.; Pavlenko, Y. V.; Ivanyuk, O.; Rojo, P.; Jordán, A.; Day-Jones, A. C.; Ruiz, M. T.; Pinfield, D. J.

    2013-04-01

    We announce the discovery of a low-mass planet orbiting the super metal-rich K0V star HD 77338 as part of our ongoing Calan-Hertfordshire Extrasolar Planet Search. The best-fit planet solution has an orbital period of 5.7361 ± 0.0015 days and with a radial velocity semi-amplitude of only 5.96 ± 1.74 ms-1, we find a minimum mass of 15.9^{+4.7}_{-5.3} M ⊕. The best-fit eccentricity from this solution is 0.09^{+0.25}_{-0.09}, and we find agreement for this data set using a Bayesian analysis and a periodogram analysis. We measure a metallicity for the star of +0.35 ± 0.06 dex, whereas another recent work finds +0.47 ± 0.05 dex. Thus HD 77338b is one of the most metal-rich planet-host stars known and the most metal-rich star hosting a sub-Neptune-mass planet. We searched for a transit signature of HD 77338b but none was detected. We also highlight an emerging trend where metallicity and mass seem to correlate at very low masses, a discovery that would be in agreement with the core accretion model of planet formation. The trend appears to show that for Neptune-mass planets and below, higher masses are preferred when the host star is more metal-rich. Also a lower boundary is apparent in the super metal-rich regime where there are no very low mass planets yet discovered in comparison to the sub-solar metallicity regime. A Monte Carlo analysis shows that this low-mass planet desert is statistically significant with the current sample of 36 planets at the ~4.5σ level. In addition, results from Kepler strengthen the claim for this paucity of the lowest-mass planets in super metal-rich systems. Finally, this discovery adds to the growing population of low-mass planets around low-mass and metal-rich stars and shows that very low mass planets can now be discovered with a relatively small number of data points using stable instrumentation. Based on observations collected at the La Silla Paranal Observatory, ESO (Chile) with the HARPS spectrograph on the ESO 3.6 m telescope

  2. Hot electron transport in a strongly correlated transition-metal oxide

    PubMed Central

    Rana, Kumari Gaurav; Yajima, Takeaki; Parui, Subir; Kemper, Alexander F.; Devereaux, Thomas P.; Hikita, Yasuyuki; Hwang, Harold Y.; Banerjee, Tamalika

    2013-01-01

    Oxide heterointerfaces are ideal for investigating strong correlation effects to electron transport, relevant for oxide-electronics. Using hot-electrons, we probe electron transport perpendicular to the La0.7Sr0.3MnO3 (LSMO)- Nb-doped SrTiO3 (Nb:STO) interface and find the characteristic hot-electron attenuation length in LSMO to be 1.48 ± 0.10 unit cells (u.c.) at −1.9 V, increasing to 2.02 ± 0.16 u.c. at −1.3 V at room temperature. Theoretical analysis of this energy dispersion reveals the dominance of electron-electron and polaron scattering. Direct visualization of the local electron transport shows different transmission at the terraces and at the step-edges. PMID:23429420

  3. SPECTROSCOPIC ANALYSIS OF HOT, HYDROGEN-RICH WHITE DWARFS: THE PRESENCE OF METALS AND THE BALMER-LINE PROBLEM

    SciTech Connect

    Gianninas, A.; Bergeron, P.; Dupuis, J.; Ruiz, M. T. E-mail: bergeron@astro.umontreal.c E-mail: mtruiz@das.uchile.c

    2010-09-01

    We present an analysis of optical spectra for 29 DAO white dwarfs. First, we present our new up-to-date model atmosphere grids computed without the assumption of local thermodynamic equilibrium in which we have included carbon, nitrogen, and oxygen at solar abundances. We demonstrate that the addition of these metals in the model atmospheres is essential in overcoming the Balmer-line problem, which manifests itself as an inability to fit all the Balmer lines simultaneously with consistent atmospheric parameters. We then present the spectroscopic analysis of our sample of DAO white dwarfs for which we determine the effective temperature, surface gravity, and helium abundance. We also present 18 hot DA white dwarfs that also suffer from the Balmer-line problem. We analyze these stars with models analogous to those for the DAO white dwarfs save for the presence of helium. Systematic differences between our newly determined atmospheric parameters with respect to previous determinations are explored. Far-ultraviolet spectra from the FUSE archive are then examined to demonstrate that there exists a correlation between higher metallic abundances and instances of the Balmer-line problem. The implications of these findings for all hot, hydrogen-rich white dwarfs are discussed. Specifically, the possible evolutionary scenario for DAO white dwarfs is revised and post-extreme horizontal branch evolution is no longer needed to explain the evolution for the majority of the DAO stars. Finally, we discuss how the presence of metals might drive a weak stellar wind which in turn could explain the presence of helium in DAO white dwarfs.

  4. Observations of the Hot Horizontal Branch Stars in the Metal-Rich Bulge Globular Cluster NGC 6388

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Sweigart, A. V.

    2006-01-01

    The metal-rich bulge globular cluster NGC 6388 shows a distinct blue horizontal-branch tail in its colour-magnitude diagram (Rich et al. 1997) and is thus a strong case of the well-known 2nd Parameter Problem. In addition, its horizontal branch (HB) shows an upward tilt toward bluer colours, which cannot be explained by canonical evolutionary models. Several non-canonical scenarios have been proposed to explain these puzzling observations. In order to test the predictions of these scenarios, we have obtained medium resolution spectra to determine the atmospheric parameters of a sample of the blue HB stars in NGC 6388.Using the medium resolution spectra, we determine effective temperatures, surface gravities and helium abundances by fitting the observed Balmer and helium lines with appropriate theoretical stellar spectra. As we know the distance to the cluster, we can verify our results by determining masses for the stars. During the data reduction we took special care to correctly subtract the background, which is dominated by the overlapping spectra of cool stars. The cool blue tail stars in our sample with T(sub eff) approximately 10000 K have lower than canonical surface gravities, suggesting that these stars are, on average, approximately equal to 0.4 mag brighter than canonical HB stars in agreement with the observed upward slope of the HB in NGC 6388. Moreover, the mean mass of these stars agrees well with theoretical predictions. In contrast, the hot blue tail stars in our sample with T(sub eff) greater than or equal to 12000 K show significantly lower surface gravities than predicted by any scenario, which can reproduce the photometric observations. Their masses are also too low by about a factor of 2 compared to theoretical predictions. The physical parameters of the blue HB stars at about 10,000 K support the helium pollution scenario. The low gravities and masses of the hot blue tail stars, however, are probably caused by problems with the data reduction

  5. Observations of the Hot Horizontal Branch Stars in the Metal-Rich Bulge Globular Cluster NGC 6388

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Sweigart, A. V.

    2006-01-01

    The metal-rich bulge globular cluster NGC 6388 shows a distinct blue horizontal-branch tail in its colour-magnitude diagram (Rich et al. 1997) and is thus a strong case of the well-known 2nd Parameter Problem. In addition, its horizontal branch (HB) shows an upward tilt toward bluer colours, which cannot be explained by canonical evolutionary models. Several non-canonical scenarios have been proposed to explain these puzzling observations. In order to test the predictions of these scenarios, we have obtained medium resolution spectra to determine the atmospheric parameters of a sample of the blue HB stars in NGC 6388.Using the medium resolution spectra, we determine effective temperatures, surface gravities and helium abundances by fitting the observed Balmer and helium lines with appropriate theoretical stellar spectra. As we know the distance to the cluster, we can verify our results by determining masses for the stars. During the data reduction we took special care to correctly subtract the background, which is dominated by the overlapping spectra of cool stars. The cool blue tail stars in our sample with T(sub eff) approximately 10000 K have lower than canonical surface gravities, suggesting that these stars are, on average, approximately equal to 0.4 mag brighter than canonical HB stars in agreement with the observed upward slope of the HB in NGC 6388. Moreover, the mean mass of these stars agrees well with theoretical predictions. In contrast, the hot blue tail stars in our sample with T(sub eff) greater than or equal to 12000 K show significantly lower surface gravities than predicted by any scenario, which can reproduce the photometric observations. Their masses are also too low by about a factor of 2 compared to theoretical predictions. The physical parameters of the blue HB stars at about 10,000 K support the helium pollution scenario. The low gravities and masses of the hot blue tail stars, however, are probably caused by problems with the data reduction

  6. Hot pressing titanium metal matrix composites reinforced with graphene nanoplatelets through an in-situ reactive method

    NASA Astrophysics Data System (ADS)

    Mu, X. N.; Zhang, H. M.; Cai, H. N.; Fan, Q. B.; Wu, Y.; Fu, Z. J.; Wang, Q. X.

    2017-05-01

    This study proposed an in-situ reactive method that uses graphene as a reinforcement to fabricate titanium metal matrix composites (TiMMCs) through powder metallurgy processing route. The volume fraction of graphene nanoplatelets was 1.8%vol, and the pure titanium was used as a matrix. The Archimedes density, hardness, microstructure and mechanical properties of specimens were compared under different ball milling times (20 min and 2.5 h) and hot pressing temperatures (900°C, 1150°C, and 1300°C,). The ultimate tensile strength of 630 MPa, which demonstrated a 27.3% increase compared with pure Ti, was achieved under a ball milling time of 20 min. Elongation increased with increasing temperature. When the ball milling time and hot pressing temperature were increased to 2.5 h and 1300 °C, respectively, the ultimate tensile strength of the composites reached 750 MPa, showing an increase of 51.5% compared with pure Ti.

  7. "Atomic Force Masking" Induced Formation of Effective Hot Spots along Grain Boundaries of Metal Thin Films.

    PubMed

    Kim, Kwang Hyun; Chae, Soo Sang; Jang, Seunghun; Choi, Won Jin; Chang, Hyunju; Lee, Jeong-O; Lee, Tae Il

    2016-11-30

    We present an interesting phenomenon, "atomic force masking", which is the deposition of a few-nanometer-thick gold film on ultrathin low-molecular-weight (LMW) polydimethylsiloxane (PDMS) engineered on a polycrystalline gold thin film, and demonstrated the formation of hot spot based on SERS. The essential principle of this atomic force masking phenomenon is that an LMW PDMS layer on a single crystalline grain of gold thin film would repel gold atoms approaching this region during a second cycle of evaporation, whereas new nucleation and growth of gold atoms would occur on LMW PDMS deposited on grain boundary regions. The nanostructure formed by the atomic force masking, denoted here as "hot spots on grain boundaries" (HOGs), which is consistent with finite-difference time-domain (FDTD) simulation, and the mechanism of atomic force masking were investigated by carrying out systematic experiments, and density functional theory (DFT) calculations were made to carefully explain the related fundamental physics. Also, to highlight the manufacturing advantages of the proposed method, we demonstrated the simple synthesis of a flexible HOG SERS, and we used this substrate in a swabbing test to detect a common pesticide placed on the surface of an apple.

  8. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The carbon-enhanced metal-poor galaxy, I Zw 18, is the Rosetta Stone for understanding galaxies in the early universe by providing constraints on the IMF of massive stars, the role of galaxies in reionization of the universe, mixing of newly synthesized material in the ISM, and gamma-ray bursts at low metallicity, and on the earliest generations of stars producing the observed abundance pattern. We describe these constraints as derived from analyses of HST/COS spectra of I Zw 18 including stellar atmosphere analysis and photo-ionization modeling of both the emission and absorption spectra of the nebular material and interstellar medium.

  9. Identifying Hot-Spots of Metal Contamination in Campus Dust of Xi’an, China

    PubMed Central

    Chen, Hao; Lu, Xinwei; Gao, Tianning; Chang, Yuyu

    2016-01-01

    The concentrations of heavy metals (As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn) in campus dust from kindergartens, elementary schools, middle schools, and universities in the city of Xi’an, China, were determined by X-ray fluorescence spectrometry. The pollution levels and hotspots of metals were analyzed using a geoaccumulation index and Local Moran’s I, an indicator of spatial association, respectively. The dust samples from the campuses had metal concentrations higher than background levels, especially for Pb, Zn, Co, Cu, Cr, and Ba. The pollution assessment indicated that the campus dusts were not contaminated with As, Mn, Ni, or V, were moderately or not contaminated with Ba and Cr and were moderately to strongly contaminated with Co, Cu, Pb, and Zn. Local Moran’s I analysis detected the locations of spatial clusters and outliers and indicated that the pollution with these 10 metals occurred in significant high-high spatial clusters, low-high, or even high-low spatial outliers. As, Cu, Mn, Ni, Pb, V, and Zn had important high-high patterns in the center of Xi’an. The western and southwestern regions of the study area, i.e., areas of old and high-tech industries, have strongly contributed to the Co content in the campus dust. PMID:27271645

  10. The influences of particle number on hot spots in strongly coupled metal nanoparticles chain

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Luk'yanchuk, B. S.; Guo, W.; Edwardson, S. P.; Whitehead, D. J.; Li, L.; Liu, Z.; Watkins, K. G.

    2008-03-01

    In understanding of the hot spot phenomenon in single-molecule surface enhanced Raman scattering (SM-SERS), the electromagnetic field within the gaps of dimers (i.e., two particle systems) has attracted much interest as it provides significant field amplification over single isolated nanoparticles. In addition to the existing understanding of the dimer systems, we show in this paper that field enhancement within the gaps of a particle chain could maximize at a particle number N>2, due to the near-field coupled plasmon resonance of the chain. This particle number effect was theoretically observed for the gold (Au) nanoparticles chain but not for the silver (Ag) chain. We attribute the reason to the different behaviors of the dissipative damping of gold and silver in the visible wavelength range. The reported effect can be utilized to design effective gold substrate for SM-SERS applications.

  11. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    DOEpatents

    Ayala, Raul E.

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  12. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions.

    PubMed

    Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi

    2008-04-01

    Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  13. Efficient and Robust Thermoelectric Power Generation Device Using Hot-Pressed Metal Contacts on Nanostructured Half-Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Joshi, Giri; Poudel, Bed

    2016-12-01

    We report an efficient thermoelectric device with power density of 8.9 W/cm2 and efficiency of 8.9% at 678°C temperature difference using hot-pressed titanium metal contact layers on nanostructured half-Heusler materials. The high power density and efficiency are due to the efficient nanostructured materials and very low contact resistance of 1 μΩ cm2 between the titanium layer and half-Heusler material. Moreover, the bonding strength between the titanium and half-Heusler is more than 50 MPa, significantly higher compared with conventional contact metallization methods. The low contact resistance and high bonding strength are due to thin-layer diffusion of titanium (<100 μm) into the half-Heusler at high temperature (>600°C). The low contact resistance and high bonding strength result in a stable and efficient power generation device with great potential for use in recovery of waste heat, e.g., in automotive and industrial applications.

  14. Radiation-thermometric study of isolated hot molten metal spheres by containerless and contactless measurement techniques

    NASA Astrophysics Data System (ADS)

    Lee, G. W.; Jeon, S.; Park, C.; Kang, D. H.; Choi, B. I.; Park, S. N.

    2013-09-01

    An electrostatic levitation (ESL) device is developed to study the radiation-properties of liquid metals at high temperature. The technique provides good advantage, such as fast response of temperature change on a sample, clear features of recalescence and plateau during freezing, no contamination or no reaction with environment, easy control of supercooling deducing hypercooling limit, and relatively simple analysis of thermodynamic quantities because of only radiative cooling process under vacuum. In this study, we could obtain a hypercooling limit (i.e., maximum supercooling) of liquid Ti, 341 K using the ESL. An accurate ratio of the specific heat to total hemispherical emissivity of liquid Ti was obtained by Stefan-Boltzmann law. Then, the specific heat and total hemispherical emissivity of Ti liquid metal can be estimated with the hypercooling limit and known fusion enthalpy values of Ti, which has been rarely reported.

  15. Triangulum II: A Very Metal-poor and Dynamically Hot Stellar System

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Collins, Michelle L. M.; Rich, R. Michael; Bell, Eric F.; Ferguson, Annette M. N.; Laevens, Benjamin P. M.; Rix, Hans-Walter; Chapman, Scott C.; Koch, Andreas

    2016-02-01

    We present a study of the recently discovered compact stellar system Triangulum II. From observations conducted with the DEIMOS spectrograph on Keck II, we obtained spectra for 13 member stars that follow the CMD features of this very faint stellar system and include two bright red giant branch stars. Tri II has a very negative radial velocity (< {v}{{r}}> =-{383.7}-3.3+3.0 {km} {{{s}}}-1) that translates to < {v}{{r},{gsr}}> ≃ -264 {km} {{{s}}}-1 and confirms it is a Milky Way satellite. We show that, despite the small data set, there is evidence that Tri II has complex internal kinematics. Its radial velocity dispersion increases from {4.4}-2.0+2.8 {km} {{{s}}}-1 in the central 2\\prime to {14.1}-4.2+5.8 {km} {{{s}}}-1 outwards. The velocity dispersion of the full sample is inferred to be {σ }{vr}={9.9}-2.2+3.2 {km} {{{s}}}-1. From the two bright RGB member stars we measure an average metallicity < {{[Fe/H]}}> =-2.6+/- 0.2, placing Tri II among the most metal-poor Milky Way dwarf galaxies. In addition, the spectra of the fainter member stars exhibit differences in their line widths that could be the indication of a metallicity dispersion in the system. All these properties paint a complex picture for Tri II, whose nature and current state are largely speculative. The inferred metallicity properties of the system however lead us to favor a scenario in which Tri II is a dwarf galaxy that is either disrupting or embedded in a stellar stream.

  16. Investigation of surface roughness and lay on metal flow in hot forging

    NASA Astrophysics Data System (ADS)

    Nowak, David J.

    A study was conducted to explore the possibility of using machining marks (i.e. surface roughness and lay) as a parameter for die design. The study was performed using 6061-T6 aluminum 1.25" diameter rounds and 0.25" square bar stock to investigate the effects of temperature, surface roughness, and lay on metal flow and friction factor. Metal flow was assessed using component true strains and spread ratio. Compression testing was performed using an instrumented die set that was mounted on a 10 ton hydraulic pres. Cigar tests were performed where the axis of the specimen were oriented at angles of 0 o, 45o and 90o with respect to the surface lay on the compression platens. Ring tests were completed to quantify friction factor at different die temperatures and surface roughness values. Results indicate that die temperature has a strong effect on bulge radius and friction factor. Lay and surface roughness were found to exhibit an effect on metal flow but surface lay of the dies was not discernible on friction factor. The study was repeated under limited conditions using graphite lubricant in order to discover if the trend was repeatable using conditions observed in industry. This was found to be the case.

  17. Hot-electron dynamics and thermalization in small metallic nanoparticles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Garcia de Abajo, Javier F.

    2016-09-01

    Recent experimental and theoretical advances in the study of graphene plasmons have triggered the search for similar phenomena in other materials that are structured down to the atomic scale, and in particular, alternative 2D crystals, noble-metal monolayers, and polycyclic aromatic hydrocarbons, which can be regarded as molecular versions of graphene. The number of valence electrons that are engaged in the plasmon excitations of these materials is small compared with those of conventional 3D metallic nanostructures, and consequently, the addition or removal of a comparatively small number of electrons produces sizeable changes in their frequencies and near-field distributions. Graphene in particular has been shown to exhibit a large degree of electrical modulation due to its peculiar electronic band structure, which is characterized by a linear dispersion relation and vanishing of the electron density of states at the Fermi level; few electrons are needed to considerably change the Fermi energy. However, plasmons in graphene have only been observed at mid-infrared and lower frequencies, and therefore, small molecular structures and atomically thin metals constitute attractive alternatives to achieve fast electro-optical modulation in the visible and near-infrared (vis-NIR) parts of the spectrum. In this presentation, we review different strategies and recent advances in the achievement of strong optical tunability in the vis-NIR using plasmons of atomic-scale materials, as well as their potential application for quantum optics, light manipulation, and sensing.

  18. Vapor Explosion of Coolant Jet When Penetrating a Hot Molten Metal

    SciTech Connect

    Perets, Y.; Harari, R.; Sher, E.

    2005-06-15

    The vapor explosion phenomenon is investigated experimentally for a geometrical arrangement in which a cold liquid (water) jet is injected into a hot liquid surface (tin). Medium-scale experiments using 1 kg of molten tin were performed in an open geometry experiment system. In the first phase of the research, the influence of the injection mass flow rate on the likelihood of vapor explosion was investigated in order to map the various relevant regimes. In the second phase, the influence of some selected parameters on the interaction was studied to characterize the relevant parameters of the vapor explosion phenomenon.The range of the initial tin and water temperatures that leads to vapor explosion has been determined in order to define the thermal interaction zone. It is noticed that vapor explosion can occur at high water temperatures even near the saturation point. The delay time for the explosion to occur and the degree of the interaction violence were correlated with the initial tin and water temperatures. We also clarified the triggering point and noted a correlation between the quench temperature and the likelihood of the vapor explosion occurrence.

  19. Thermolithographic patterning of sol-gel metal oxides on micro hot plate sensing arrays using organosilanes.

    PubMed

    Savage, Nancy Ortins; Roberson, Sonya; Gillen, Greg; Tarlov, Michael J; Semancik, Steve

    2003-09-01

    Sol-gel-derived SnO2 and Fe2O3 were selectively deposited on elements of micro hot plate (microHP) arrays. The silicon micromachined microHP arrays contain heating elements (100 microm x 100 microm) that are electronically addressable and thermally isolated from each other. Thin films of (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (TFS) or hexyltrichlorosilane (HFS) assembled on surfaces of the arrays served as thermally sensitive resists whereby heating of specific microHPs resulted in removal of organosilane films only in heated areas. TFS-masked surfaces were characterized with condensation figures and secondary ion mass spectrometry (SIMS) imaging. TFS was removed from regions heated above 400 degrees C to expose hydrophilic surfaces, while TFS films in unheated areas were unaffected and remained hydrophobic. Sol-gel tin oxide spin-coated on the thermally patterned arrays adhered only to the hydrophilic regions and was repelled from the hydrophobic areas masked by the TFS films. By using HFS films, it was possible to selectively deposit two sol-gel materials, SnO2 and Fe2O3, on different microHPs in the same array as confirmed by SIMS imaging. Both materials showed varying degrees of electrical response to hydrogen and methanol in gas-sensing measurements.

  20. Hot-pressed porcelain process for porcelain-fused-to-metal restorations.

    PubMed

    McPhee, E R

    1975-05-01

    A technique has been described that simplifies the production of full-coverage, porcelain-fused-to-metal restorations. The process utilizes a furnace-flask system in which the restoration is invested in a high-temperature refractory material and processed at an elevated temperature (1,850 degrees F.) under pressure. Shrinkage of 0.001 to 0.005 inch at the supporting cusp tips and fossae has been recorded. Tests indicate that the porcelain produced has a tensile strength and wear rate similar to those of porcelain processed by conventional methods.

  1. The Hanford spent nuclear metal fuel multi-canister overpack and vacuum drying {ampersand} hot conditioning process

    SciTech Connect

    Irwin, J.J.

    1996-05-15

    Nuclear production reactors operated at the U.S. Department of Energy`s Hanford Site from 1944 until 1988 to produce plutonium. Most of the irradiated fuel from these reactors was processed onsite to separate and recover the plutonium. When the processing facilities were closed in 1992, about 1,900 metric tons of unprocessed irradiated fuel remained in storage. Additional fuel was irradiated for research purposes or was shipped to the Hanford Site from offsite reactor facilities for storage or recovery of nuclear materials. The fuel inventory now in storage at the Hanford Site is predominantly N Reactor irradiated fuel, a metallic uranium alloy that is coextruded into zircaloy-2 cladding. The Spent Nuclear Fuel Project has rommitted to an accelerated schedule for removing spent nuclear fuel from the Hanford Site K Basins to a new interim storage facility in the 200 Area. Under the current proposed accelerated schedule, retrieval of spent nuclear fuel stored in the K East and West Basins must begin by December 1997 and be completed by December 1999. A key part of this action is retrieving fuel canisters from the water-filled K Basin storage pools and transferring them into multi@ister overpacks (MCOS) that will be used to handle and process the fuel, then store it after conditioning. The Westinghouse Hanford Company has developed an integrated process to deal with the K Basin spent fuel inventory. The process consists of cleaning the fuel, packaging it into MCOS, vacuum drying it at the K Basins, then transporting it to the Canister Storage Building (CSB) for staging, hot conditioning, and interim storage. This presentation dekribes the MCO function, design, and life-cycle, including an overview of the vacuum drying and hot conditioning processes.

  2. Literature review of metal corrosion sensitivity in high temperature, high impurity hot cell atmospheres

    SciTech Connect

    Eberle, C.S.

    1997-09-01

    The pyrochemical conditions of spent nuclear fuel for the purpose of final disposal is being demonstrated at Argonne National Laboratory (ANL). One aspect of this program is to develop a lithium preprocessing stage for the Fuel Conditioning Facility (FCF). One of the design considerations under investigation in this program is the system`s corrosion response in the presence of irradiated commercial fuel as well as atmospheric impurities. Static corrosion coupon tests have been completed which demonstrate the potential corrosivity of the salt matrix in a worse case environment as well as provide a boundary for allowable impurities in the system during operation. The literature concerning corrosion of either fused salts or molten metals consistently emphasizes three similar features which are common to both systems: (1) the overall corrosion rate is strongly dependent on temperature, impurity concentration and flow velocity; (2) many different mechanisms can be involved in a specific corrosion process; and (3) corrosion rates will significantly increase as all three of these independent variables are increased. The qualitative and quantitative understanding of these corrosion results is important for this spent fuel program since all of these variables will increase as the process scale increases. The purpose of this work was to determine if any data existed which could provide a quantitative expectation for corrosion rates of refractory metals in a lithium chloride salt bath.

  3. Synergistic effects of plant growth-promoting Neorhizobium huautlense T1-17 and immobilizers on the growth and heavy metal accumulation of edible tissues of hot pepper.

    PubMed

    Chen, Ling; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2016-07-15

    A plant growth-promoting Neorhizobium huautlense T1-17 was evaluated for its immobilization of Cd and Pb in solution. Meanwhile, the impacts of T1-17, immobilizers (vermiculite and peat) and their combination on the fruit biomass and heavy metal accumulation of hot pepper were characterized. T1-17 could significantly reduced water-soluble Cd and Pb in solution. T1-17, vermiculite+T1-17, peat, and peat+T1-17 significantly increased the fruit biomass (ranging from 45% to 269%) and decreased the fruit Cd (ranging from 66% to 87%) and Pb (ranging from 30% to 56%) contents and water-soluble Cd and Pb (ranging from 23% to 59%) contents of the rhizosphere soils compared to the controls. T1-17+vermiculite or peat had higher ability to increase the fruit biomass than T1-17 or vermiculite or peat. Furthermore, T1-17+peat had higher ability to reduce the water-soluble Cd and Pb contents of the rhizosphere soil and the fruit Pb uptake of hot pepper. The results showed that T1-17 and the immobilizers alleviated the heavy metal toxicity and decreased the fruit heavy metal uptake of hot pepper. The results also showed the synergistic effects of T1-17 and the immobilizers on the growth and Cd and Pb accumulation of hot pepper.

  4. HATS-4b: A dense hot Jupiter transiting a super metal-rich G star

    SciTech Connect

    Jordán, Andrés; Brahm, Rafael; Rabus, M.; Suc, V.; Espinoza, N.; Bakos, G. Á.; Penev, K.; Hartman, J. D.; Csubry, Z.; Bhatti, W.; De Val Borro, M.; Bayliss, D.; Zhou, G.; Mancini, L.; Mohler-Fischer, M.; Ciceri, S.; Csák, B.; Henning, T.; Sato, B.; Buchhave, L.; and others

    2014-08-01

    We report the discovery by the HATSouth survey of HATS-4b, an extrasolar planet transiting a V = 13.46 mag G star. HATS-4b has a period of P ≈ 2.5167 days, mass of M{sub p} ≈ 1.32 M {sub Jup}, radius of R{sub p} ≈ 1.02 R {sub Jup}, and density of ρ {sub p} = 1.55 ± 0.16 g cm{sup –3} ≈1.24 ρ{sub Jup}. The host star has a mass of 1.00 M {sub ☉}, a radius of 0.92 R {sub ☉}, and a very high metallicity [Fe/H]=0.43 ± 0.08. HATS-4b is among the densest known planets with masses between 1 and 2 M {sub J} and is thus likely to have a significant content of heavy elements of the order of 75 M {sub ⊕}. In this paper we present the data reduction, radial velocity measurements, and stellar classification techniques adopted by the HATSouth survey for the CORALIE spectrograph. We also detail a technique for simultaneously estimating vsin i and macroturbulence using high resolution spectra.

  5. NUCLEOSYNTHESIS IN HIGH-ENTROPY HOT BUBBLES OF SUPERNOVAE AND ABUNDANCE PATTERNS OF EXTREMELY METAL-POOR STARS

    SciTech Connect

    Izutani, Natsuko; Umeda, Hideyuki E-mail: umeda@astron.s.u-tokyo.ac.j

    2010-09-01

    There have been suggestions that the abundance of extremely metal-poor (EMP) stars can be reproduced by hypernovae (HNe), not by normal supernovae (SNe). However, recently it was also suggested that if the innermost neutron-rich or proton-rich matter is ejected, the abundance patterns of ejected matter are changed, and normal SNe may also reproduce the observations of EMP stars. In this Letter, we calculate explosive nucleosynthesis with various Y {sub e} and entropy, and investigate whether normal SNe with this innermost matter, which we call the 'hot-bubble' component, can reproduce the abundance of EMP stars. We find that neutron-rich (Y {sub e} = 0.45-0.49) and proton-rich (Y {sub e} = 0.51-0.55) matter can increase Zn/Fe and Co/Fe ratios as observed, but tend to overproduce other Fe-peak elements. In addition, we find that if slightly proton-rich matter with 0.50 {<=} Y {sub e} < 0.501 with s/k {sub b} {approx} 15-40 is ejected as much as {approx}0.06 M {sub sun}, even normal SNe can reproduce the abundance of EMP stars, though it requires fine-tuning of Y {sub e}. On the other hand, HNe can more easily reproduce the observations of EMP stars without fine-tuning. Our results imply that HNe are the most likely origin of the abundance pattern of EMP stars.

  6. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    SciTech Connect

    Tortorelli, P.F.; DeVan, H.J.; Judkins, R.R.

    1995-06-01

    The product gas resulting from the partial oxidation of carboniferous materials in a gasifier consists predominantly of CO, CO{sub 2}, H{sub 2}, H{sub 2}O, CH{sub 4}, and, for air-blown units, N{sub 2} in various proportions at temperatures ranging from about 400 to 1000{degree}C. Depending on the source of the fuel, smaller concentrations of H{sub 2}S, COS, and NH{sub 3} can also be present. The gas phase is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials used in the gasifier can occur. Therefore, there are numerous concerns about materials performance in coal gasification systems, particularly at the present time when demonstration-scale projects are in or nearing the construction and operation phases. This study focused on the subset of materials degradation phenomena resulting from carbon formation and carburization processes, which are related to potential operating problems in certain gasification components and subsystems. More specifically, it examined the current state of knowledge regarding carbon deposition and a carbon-related degradation phemonenon known as metal dusting as they affect the long-term operation of the gas clean-up equipment downstream of the gasifier and addressed possible means to mitigate the degradation processes. These effects would be primarily associated with the filtering and cooling of coal-derived fuel gases from the gasifier exit temperature to as low as 400{degree}C. However, some of the consideratins are sufficiently general to cover conditions relevant to other parts of gasification systems.

  7. HATS-4b: A Dense Hot Jupiter Transiting a Super Metal-rich G star

    NASA Astrophysics Data System (ADS)

    Jordán, Andrés; Brahm, Rafael; Bakos, G. Á.; Bayliss, D.; Penev, K.; Hartman, J. D.; Zhou, G.; Mancini, L.; Mohler-Fischer, M.; Ciceri, S.; Sato, B.; Csubry, Z.; Rabus, M.; Suc, V.; Espinoza, N.; Bhatti, W.; de Val-Borro, M.; Buchhave, L.; Csák, B.; Henning, T.; Schmidt, B.; Tan, T. G.; Noyes, R. W.; Béky, B.; Butler, R. P.; Shectman, S.; Crane, J.; Thompson, I.; Williams, A.; Martin, R.; Contreras, C.; Lázár, J.; Papp, I.; Sári, P.

    2014-08-01

    We report the discovery by the HATSouth survey of HATS-4b, an extrasolar planet transiting a V = 13.46 mag G star. HATS-4b has a period of P ≈ 2.5167 days, mass of Mp ≈ 1.32 M Jup, radius of Rp ≈ 1.02 R Jup, and density of ρ p = 1.55 ± 0.16 g cm-3 ≈1.24 ρJup. The host star has a mass of 1.00 M ⊙, a radius of 0.92 R ⊙, and a very high metallicity [Fe/H]=0.43 ± 0.08. HATS-4b is among the densest known planets with masses between 1 and 2 M J and is thus likely to have a significant content of heavy elements of the order of 75 M ⊕. In this paper we present the data reduction, radial velocity measurements, and stellar classification techniques adopted by the HATSouth survey for the CORALIE spectrograph. We also detail a technique for simultaneously estimating vsin i and macroturbulence using high resolution spectra. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institut für Astronomie (MPIA), and the Australian National University (ANU). The station at Las Campanas Observatory (LCO) of the Carnegie Institution is operated by PU in conjunction with collaborators at the Pontificia Universidad Católica de Chile, the station at the High Energy Spectroscopic Survey site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the 6.5 m Magellan Telescopes located at LCO, Chile. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations made with the MPG/ESO 2.2 m Telescope at the ESO Observatory in La Silla. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope.

  8. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    SciTech Connect

    Liu, Hsi-Wen; Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Chang, Ting-Chang; Chen, Ching-En; Tseng, Tseung-Yuen; Lin, Chien-Yu; Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han

    2016-04-25

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  9. Plasmon Mapping in Metallic Nanostructures and its Application to Single Molecule Surface Enhanced Raman Scattering: Imaging Electromagnetic Hot-Spots and Analyte Location

    SciTech Connect

    Camden, Jon P

    2013-07-16

    A major component of this proposal is to elucidate the connection between optical and electron excitation of plasmon modes in metallic nanostructures. These accomplishments are reported: developed a routine protocol for obtaining spatially resolved, low energy EELS spectra, and resonance Rayleigh scattering spectra from the same nanostructures.; correlated optical scattering spectra and plasmon maps obtained using STEM/EELS.; and imaged electromagnetic hot spots responsible for single-molecule surface-enhanced Raman scattering (SMSERS).

  10. Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures.

    PubMed

    Dana, Jayanta; Maity, Partha; Ghosh, Hirendra N

    2017-07-13

    Semiconductor-metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct relevance in photocatalysis and solar energy conversion. To understand the mechanism of charge separation processes, hybrid CdSe@CdS{Au} nano-heterostructures containing Au nanoparticles (NPs) with different sizes were synthesized, and the ultrafast charge-transfer dynamics were monitored using femtosecond transient absorption spectroscopy. Steady-state optical absorption studies suggest the formation of charge-transfer complexes between core shell nanocrystals (NCs) and Au NPs. Steady-state and time-resolved luminescence spectroscopy suggest electron transfer from the photo-excited CdSe@CdS core shell QDs NCs to the Au NPs within the heterostructure. The ultrafast interfacial electron-transfer dynamics in the heterostructures were monitored by femtosecond transient absorption spectroscopy. The results revealed that both hot and thermalized electrons are transferred from the core shell QDs to the metal NPs with time constants of 150 and 300 fs, respectively. Hot-electron transfer from QDs to Au NPs was found to take place predominantly in the heterostructures depending on the sizes of the metal NPs. The photo-degradation of rhodamin B in the presence of the CdSe@CdS{Au} heterostructures under visible-light radiation suggests that the hot electrons in the heterostructures play a major role in photocatalytic degradation.

  11. The Metallicity Distribution and Hot Jupiter Rate of the Kepler Field: Hectochelle High-resolution Spectroscopy for 776 Kepler Target Stars

    NASA Astrophysics Data System (ADS)

    Guo, Xueying; Johnson, John A.; Mann, Andrew W.; Kraus, Adam L.; Curtis, Jason L.; Latham, David W.

    2017-03-01

    The occurrence rate of hot Jupiters from the Kepler transit survey is roughly half that of radial velocity surveys targeting solar neighborhood stars. One hypothesis to explain this difference is that the two surveys target stars with different stellar metallicity distributions. To test this hypothesis, we measure the metallicity distribution of the Kepler targets using the Hectochelle multi-fiber, high-resolution spectrograph. Limiting our spectroscopic analysis to 610 dwarf stars in our sample with {log}g > 3.5, we measure a metallicity distribution characterized by a mean of {[{{M}}/{{H}}]}{mean}=-0.045+/- 0.009, in agreement with previous studies of the Kepler field target stars. In comparison, the metallicity distribution of the California Planet Search radial velocity sample has a mean of {[{{M}}/{{H}}]}{CPS,{mean}}=-0.005+/- 0.006, and the samples come from different parent populations according to a Kolmogorov-Smirnov test. We refit the exponential relation between the fraction of stars hosting a close-in giant planet and the host star metallicity using a sample of dwarf stars from the California Planet Search with updated metallicities. The best-fit relation tells us that the difference in metallicity between the two samples is insufficient to explain the discrepant hot Jupiter occurrence rates; the metallicity difference would need to be ≃0.2-0.3 dex for perfect agreement. We also show that (sub)giant contamination in the Kepler sample cannot reconcile the two occurrence calculations. We conclude that other factors, such as binary contamination and imperfect stellar properties, must also be at play.

  12. The metallicity distribution and hot Jupiter rate of the Kepler field: Hectochelle High-resolution spectroscopy for 776 Kepler target stars

    NASA Astrophysics Data System (ADS)

    Guo, Xueying; Johnson, John A.; Mann, Andrew W.; Kraus, Adam L.; Curtis, Jason L.; Latham, David W.

    2017-01-01

    The occurrence rate of hot Jupiters from the Kepler transit survey is roughly half that of radial velocity surveys targeting solar neighborhood stars. One hypothesis to explain this difference is that the two surveys target stars with different stellar metallicity distributions. To test this hypothesis, we measure the metallicity distribution of the Kepler targets using the Hectochelle multi-fiber, high-resolution spectrograph. Limiting our spectroscopic analysis to 610 dwarf stars in our sample with log(g) > 3.5, we measure a metallicity distribution characterized by a mean of [M/H]_{mean} = -0.045 +/- 0.009, in agreement with previous studies of the Kepler field target stars. In comparison, the metallicity distribution of the California Planet Search radial velocity sample has a mean of [M/H]_{CPS, mean} = -0.005 +\\- 0.006, and the samples come from different parent populations according to a Kolmogorov-Smirnov test. We refit the exponential relation between the fraction of stars hosting a close-in giant planet and the host star metallicity using a sample of dwarf stars from the California Planet Search with updated metallicities. The best-fit relation tells us that the difference in metallicity between the two samples is insufficient to explain the discrepant Hot Jupiter occurrence rates; the metallicity difference would need to be 0.2-0.3 dex for perfect agreement. We also show that (sub)giant contamination in the Kepler sample cannot reconcile the two occurrence calculations. We conclude that other factors, such as binary contamination and imperfect stellar properties, must also be at play.

  13. Detection of hot, metal-enriched outflowing gas around z ≈ 2.3 star-forming galaxies in the Keck Baryonic Structure Survey

    NASA Astrophysics Data System (ADS)

    Turner, Monica L.; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.; Strom, Allison L.

    2015-06-01

    We use quasar absorption lines to study the physical conditions in the circumgalactic medium of redshift z ≈ 2.3 star-forming galaxies taken from the Keck Baryonic Structure Survey. In Turner et al. we used the pixel optical depth technique to show that absorption by H I and the metal ions O VI, N V, C IV, C III, and Si IV is strongly enhanced within |Δv| ≲ 170 km s-1 and projected distances |d| ≲ 180 proper kpc from sightlines to the background quasars. Here we demonstrate that the O VI absorption is also strongly enhanced at fixed H I, C IV, and Si IV optical depths, and that this enhancement extends out to ˜350 km s-1. At fixed H I the increase in the median O VI optical depth near galaxies is 0.3-0.7 dex and is detected at 2-3σ confidence for all seven H I bins that have log _{10}τ_{H I} ≥ -1.5. We use ionization models to show that the observed strength of O VI as a function of H I is consistent with enriched, photoionized gas for pixels with τ_{H I} ≳ 10. However, for pixels with τ_{H I} ≲ 1 this would lead to implausibly high metallicities at low densities if the gas were photoionized by the background radiation. This indicates that the galaxies are surrounded by gas that is sufficiently hot to be collisionally ionized (T > 105 K) and that a substantial fraction of the hot gas has a metallicity ≳10-1 of solar. Given the high metallicity and large velocity extent (out to ˜1.5 vcirc) of this gas, we conclude that we have detected hot, metal-enriched outflows arising from star-forming galaxies.

  14. An optical transmission spectrum of the transiting hot Jupiter in the metal-poor WASP-98 planetary system

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Giordano, M.; Mollière, P.; Southworth, J.; Brahm, R.; Ciceri, S.; Henning, Th.

    2016-09-01

    The WASP-98 planetary system represents a rare case of a hot Jupiter hosted by a metal-poor main-sequence star. We present a follow-up study of this system based on multiband photometry and high-resolution spectroscopy. Two new transit events of WASP-98 b were simultaneously observed in four passbands (g', r', i', z'), using the telescope-defocusing technique, yielding eight high-precision light curves with point-to-point scatters of less than 1 mmag. We also collected three spectra of the parent star with a high-resolution spectrograph, which we used to remeasure its spectral characteristics, in particular its metallicity. We found this to be very low, [Fe/H] = -0.49 ± 0.10, but larger than was previously reported, [Fe/H] = -0.60 ± 0.19. We used these new photometric and spectroscopic data to refine the orbital and physical properties of this planetary system, finding that the stellar and planetary mass measurements are significantly larger than those in the discovery paper. In addition, the multiband light curves were used to construct an optical transmission spectrum of WASP-98 b and probe the characteristics of its atmosphere at the terminator. We measured a lower radius at z' compared with the other three passbands. The maximum variation is between the r' and z' bands, has a confidence level of roughly 6σ and equates to 5.5 pressure scale heights. We compared this spectrum to theoretical models, investigating several possible types of atmospheres, including hazy, cloudy, cloud-free, and clear atmospheres with titanium and vanadium oxide opacities. We could not find a good fit to the observations, except in the extreme case of a clear atmosphere with TiO and VO opacities, in which the condensation of Ti and V was suppressed. As this case is unrealistic, our results suggest the presence of an additional optical-absorbing species in the atmosphere of WASP-98 b, of unknown chemical nature.

  15. Surface fatigue and failure characteristics of hot forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1986-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground SISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  16. Surface fatigue and failure characteristics of hot-forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1987-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground AISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  17. Surface fatigue and failure characteristics of hot-forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1987-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground AISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  18. Anomalous increase in hot-carrier-induced threshold voltage shift in n-type drain extended metal-oxide-semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Chen, Jone F.; Chen, Shiang-Yu; Lee, J. R.; Wu, Kuo-Ming; Huang, Tsung-Yi; Liu, C. M.

    2008-03-01

    Anomalous increase in positive threshold voltage shift (ΔVT) in n-type drain extended metal-oxide-semiconductor (DEMOS) transistors stressed under high drain voltage and gate voltage is observed. Charge pumping data and technology computer-aided-design simulations reveal that hot-electron injection and trapping in the gate oxide above channel region is responsible for ΔVT. Enhanced impact ionization rate resulted from the presence of large amount of negative oxide charge in channel region is identified to be the main mechanism for anomalous increase in ΔVT. From the results presented in this letter, hot-carrier-induced anomalous increase in ΔVT can become a serious reliability concern in DEMOS transistors.

  19. IR Hot Wave

    SciTech Connect

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  20. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data

    PubMed Central

    Kim, Sung-Min; Choi, Yosoon

    2017-01-01

    To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z-score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z-scores: high content with a high z-score (HH), high content with a low z-score (HL), low content with a high z-score (LH), and low content with a low z-score (LL). The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1–4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required. PMID:28629168

  1. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data.

    PubMed

    Kim, Sung-Min; Choi, Yosoon

    2017-06-18

    To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z-score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z-scores: high content with a high z-score (HH), high content with a low z-score (HL), low content with a high z-score (LH), and low content with a low z-score (LL). The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1-4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required.

  2. HAT-P-24b: AN INFLATED HOT JUPITER ON A 3.36 DAY PERIOD TRANSITING A HOT, METAL-POOR STAR

    SciTech Connect

    Kipping, D. M.; Bakos, G. A.; Hartman, J.; Torres, G.; Latham, D. W.; Noyes, R. W.; Beky, B.; Perumpilly, G.; Esquerdo, G. A.; Sasselov, D. D.; Stefanik, R. P.; Shporer, A.; Kovacs, Geza; Howard, A. W.; Marcy, G. W.; Fischer, D. A.; Johnson, J. A.; Lazar, J.; Papp, I.; Sari, P.

    2010-12-20

    We report the discovery of HAT-P-24b, a transiting extrasolar planet orbiting the moderately bright V = 11.818 F8 dwarf star GSC 0774-01441, with a period P = 3.3552464 {+-} 0.0000071 days, transit epoch T{sub c} = 2455216.97669 {+-} 0.00024 (BJD)11, and transit duration 3.653 {+-} 0.025 hr. The host star has a mass of 1.191 {+-} 0.042 M{sub sun}, radius of 1.317 {+-} 0.068 R{sub sun}, effective temperature 6373 {+-} 80 K, and a low metallicity of [Fe/H] = -0.16 {+-} 0.08. The planetary companion has a mass of 0.681 {+-} 0.031 M{sub J} and radius of 1.243 {+-} 0.072 R{sub J} yielding a mean density of 0.439 {+-} 0.069 g cm{sup -3}. By repeating our global fits with different parameter sets, we have performed a critical investigation of the fitting techniques used for previous Hungarian-made Automated Telescope planetary discoveries. We find that the system properties are robust against the choice of priors. The effects of fixed versus fitted limb darkening are also examined. HAT-P-24b probably maintains a small eccentricity of e = 0.052{sup +0.022}{sub -0.017}, which is accepted over the circular orbit model with false alarm probability 5.8%. In the absence of eccentricity pumping, this result suggests that HAT-P-24b experiences less tidal dissipation than Jupiter. Due to relatively rapid stellar rotation, we estimate that HAT-P-24b should exhibit one of the largest known Rossiter-McLaughlin effect amplitudes for an exoplanet ({Delta}V{sub RM} {approx_equal} 95 m s{sup -1}) and thus a precise measurement of the sky-projected spin-orbit alignment should be possible.

  3. HAT-P-24b: An Inflated Hot Jupiter on a 3.36 Day Period Transiting a Hot, Metal-poor Star

    NASA Astrophysics Data System (ADS)

    Kipping, D. M.; Bakos, G. Á.; Hartman, J.; Torres, G.; Shporer, A.; Latham, D. W.; Kovács, Géza; Noyes, R. W.; Howard, A. W.; Fischer, D. A.; Johnson, J. A.; Marcy, G. W.; Béky, B.; Perumpilly, G.; Esquerdo, G. A.; Sasselov, D. D.; Stefanik, R. P.; Lázár, J.; Papp, I.; Sári, P.

    2010-12-01

    We report the discovery of HAT-P-24b, a transiting extrasolar planet orbiting the moderately bright V = 11.818 F8 dwarf star GSC 0774-01441, with a period P = 3.3552464 ± 0.0000071 days, transit epoch Tc = 2455216.97669 ± 0.00024 (BJD)11, and transit duration 3.653 ± 0.025 hr. The host star has a mass of 1.191 ± 0.042 M sun, radius of 1.317 ± 0.068 R sun, effective temperature 6373 ± 80 K, and a low metallicity of [Fe/H] = -0.16 ± 0.08. The planetary companion has a mass of 0.681 ± 0.031 M J and radius of 1.243 ± 0.072 R J yielding a mean density of 0.439 ± 0.069 g cm-3. By repeating our global fits with different parameter sets, we have performed a critical investigation of the fitting techniques used for previous Hungarian-made Automated Telescope planetary discoveries. We find that the system properties are robust against the choice of priors. The effects of fixed versus fitted limb darkening are also examined. HAT-P-24b probably maintains a small eccentricity of e = 0.052+0.022 -0.017, which is accepted over the circular orbit model with false alarm probability 5.8%. In the absence of eccentricity pumping, this result suggests that HAT-P-24b experiences less tidal dissipation than Jupiter. Due to relatively rapid stellar rotation, we estimate that HAT-P-24b should exhibit one of the largest known Rossiter-McLaughlin effect amplitudes for an exoplanet (ΔV RM ~= 95 m s-1) and thus a precise measurement of the sky-projected spin-orbit alignment should be possible. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NOAO and NASA.

  4. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure.

    PubMed

    Caldas, Paulo; Jorge, Pedro A S; Rego, Gaspar; Frazão, Orlando; Santos, José Luís; Ferreira, Luís Alberto; Araújo, Francisco

    2011-06-10

    In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480  nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08  m/s is achieved using this new configuration.

  5. Hot Gas Particulate Cleaning Technology Applied for PFBC/IGFC -The Ceramic Tube Filter (CTF) and Metal Filter-

    SciTech Connect

    Sasatsu, H; Misawa, N; Kobori, K; Iritani, J

    2002-09-18

    Coal is a fossil fuel abundant and widespread all over world. It is a vital resource for energy security, because the supply is stable. However, its CO2 emission per unit calorific value is greater than that of other fossil fuels. It is necessary to develop more efficient coal utilization technologies to expand the coal utilization that meets the social demand for better environment. The Pressurized Fluidized Bed Combustion (PFBC) combined cycle has become a subject of world attention in terms of better plant operation, improved plant efficiency, lower flue gas emission and fuel flexibility. The gas turbine, one of the most important components in the PFBC, is eager for a hot gas (approximately 650-850C) cleaning system in order to eliminate the severe erosion problem with the less thermal loss. The cyclone is most popular system for a hot gas cleaning, however, the severe damage for gas turbine blades by highly concentrated fine fly ash from PFBC boiler is reported.

  6. Layer texture of hot-rolled BCC metals and its significance for stress-corrosion cracking of main gas pipelines

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu. A.; Isaenkova, M. G.; Krymskaya, O. A.; Morozov, N. S.

    2016-10-01

    Based on data of X-ray texture analysis of hot-rolled BCC materials it was shown that the layerwise texture inhomogeneity of products is formed during their manufacturing. The effect can be explained by saturation with interstitial impurities of the surface layer, resulting in dynamical deformation aging (DDA). DDA prevents the dislocation slip under rolling and leads to an increase of lattice parameters in the external layer. The degree of arising inhomogeneity correlates with the tendency of hot-rolled sheets and obtained therefrom tubes to stress-corrosion cracking under exploitation, since internal layers have a compressive effect on external layers, and prevents opening of corrosion cracks at the tube surface.

  7. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Nan; Yang, Jian; Wang, Rui-Zhi; Xin, Xiu-Ling; Xu, Long-Yun

    2016-06-01

    The characteristics of inclusions in Fe-16Mn- xAl-0.6C ( x = 0.002, 0.033, 0.54, 2.10 mass pct) steels have been investigated and their effects on hot ductility of the high manganese TWIP steels have been discussed. Ductility is very poor in the steel containing 0.54 mass pct aluminum, which is lower than 20 pct in the temperature range of 873 K to 1473 K (600 °C to 1200 °C). For the steels containing 0.002 and 2.10 mass pct aluminum, ductility is higher than 40 pct in the same temperature range. The hot ductility of steel containing 0.033 mass pct aluminum is higher than 30 pct throughout the temperature range under examination. With increasing aluminum content, the main inclusions in the steels change along the route of MnO/(MnO + MnS) → MnS/(Al2O3 + MnS) → AlN/(Al2O3 + MnS)/(MgAl2O4 + MnS) → AlN. The thermodynamic results of inclusion types calculated with FactSage software are in agreement with the experimental observation results. The inclusions in the steels containing 0.002 mass pct aluminum do not deteriorate the hot ductility. MnS inclusions whose average size, number density, and volume ratio are 1.12 μm, 15.62 mm-2, and 2.51 × 10-6 in the steel containing 0.033 mass pct aluminum reduce the ductility. In the steel containing 0.54 mass pct aluminum, AlN inclusions whose average size, number density, and volume ratio are 0.878 μm, 16.28 mm-2 and 2.82 × 10-6 can precipitate at the austenite grain boundaries, prevent dynamic recrystallization and deteriorate the hot ductility. On the contrary, in the steel containing 2.10 mass pct aluminum, the average size, number density and volume ratio of AlN inclusions change to 2.418 μm, 35.95 mm-2, and 2.55 × 10-5. They precipitate in the matrix, which do not inhibit dynamic recrystallization and thereby do not lead to poor hot ductility.

  8. Study of a ;hot; particle with a matrix of U-bearing metallic Zr: Clue to supercriticality during the Chernobyl nuclear accident

    NASA Astrophysics Data System (ADS)

    Pöml, P.; Burakov, B.

    2017-05-01

    This paper is dedicated to the 30th anniversary of the severe nuclear accident that occurred at the Chernobyl NPP on 26 April 1986. A detailed study on a Chernobyl ;hot; particle collected from contaminated soil was performed. Optical and electron microscopy, as well as quantitative x-ray microbeam analysis methods were used to determine the properties of the sample. The results show that the particle (≈ 240 x 165 μm) consists of a metallic Zr matrix containing 2-3 wt. % U and bearing veins of an U,Nb admixture. The metallic Zr matrix contains two phases with different amounts of O with the atomic proportions (U,Zr,Nb)0.73O0.27 and (U,Zr,Nb)0.61O0.39. The results confirm the interaction between UO2 fuel and zircaloy cladding in the reactor core. To explain the process of formation of the particle, its properties are compared to laboratory experiments. Because of the metallic nature of the particle it is concluded that it must have formed during a very high temperature (> 2400∘C) process that lasted for only a very short time (few microseconds or less); otherwise the particle should have been oxidised. Such a rapid very high temperature process indicates that at least part of the reactor core could have been supercritical prior to an explosion as it was previously suggested in the literature.

  9. Investigation into the role of sodium chloride deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1983-01-01

    Sodium chloride is deposited on the surface of alumina substrates and exposed to air containing 1% SO2 at temperatures between 500 C and 700 C. In all cases the sodium chloride was converted to sodium sulfate. The volatilization of sodium chloride from the original salt particles was responsible for the development of a uniform coating of sodium sulfate on the alumina substrate. At temperatures above 625 C, a liquid NaCl-Na2SO4 autectic was formed on the substrate. The mechanisms for these reactions are given. One of the main roles of NaCl in low temperature hot corrosion lies in enabling a corrosive liquid to form.

  10. Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods

    PubMed Central

    Lee, Kuang-Li; Wu, Tsung-Yeh; Hsu, Hsuan-Yeh; Yang, Sen-Yeu; Wei, Pei-Kuen

    2017-01-01

    We propose two approaches—hot-embossing and dielectric-heating nanoimprinting methods—for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit). The rapid fabrication is also achieved by using radio-frequency (RF) sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen–antibody interactions using bovine serum albumin (BSA) and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications. PMID:28671600

  11. Fabrication and Analysis of the Wear Properties of Hot-Pressed Al-Si/SiCp + Al-Si-Cu-Mg Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho

    2016-01-01

    The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen

  12. Efficiency of Pumping of the Active Medium of Metal Vapor Lasers: Gas-Discharge Tubes with Electrodes in the Hot Zone of the Discharge Channel

    NASA Astrophysics Data System (ADS)

    Yudin, N. A.; Yudin, N. N.

    2016-10-01

    The electrophysical approach is used to estimate conditions for effective pumping of the active medium of lasers on self-terminating metal atom transitions in gas-discharge tubes (GDT) with electrodes located in the hot zone of the discharge channel. It is demonstrated that in the laser discharge contour there are processes limiting the frequency and energy characteristics (FEC) of radiation. The mechanism of influence of these processes on the FEC of radiation, and technical methods of their neutralization are considered. It is demonstrated that the practical efficiency of a copper vapor laser can reach 10% under conditions of neutralization of these processes. Conditions for forming the distributed GDT impedance when the active medium is pumped on the front of the fast ionization wave are determined.

  13. Hot-Volumes as Uniform and Reproducible SERS-Detection Enhancers in Weakly-Coupled Metallic Nanohelices.

    PubMed

    Caridad, José M; Winters, Sinéad; McCloskey, David; Duesberg, Georg S; Donegan, John F; Krstić, Vojislav

    2017-03-30

    Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone ("hot-volume"). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~10(7) and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.

  14. Hot-Volumes as Uniform and Reproducible SERS-Detection Enhancers in Weakly-Coupled Metallic Nanohelices

    PubMed Central

    Caridad, José M.; Winters, Sinéad; McCloskey, David; Duesberg, Georg S.; Donegan, John F.; Krstić, Vojislav

    2017-01-01

    Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone (“hot-volume”). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~107 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging. PMID:28358022

  15. Photon Doppler Velocimeter to Measure Entrained Additive Manufactured Bulk Metal Powders in Hot Subsonic and Supersonic Oxygen Gas

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan

    2016-01-01

    Parts produced by additive manufacturing, particularly selective laser melting (SLM), have been shown to silt metal particulate even after undergoing stringent precision aerospace cleaning processes (Lowrey 2016). As printed parts are used in oxygen systems with increased pressures, temperatures, and gas velocity, the risk of ignition by particle impact, the most common direct ignition source of metals in oxygen, substantially increases. The White Sands Test Facility (WSTF), in collaboration with Marshall Space Flight Center (MSFC), desires to test the ignitability of SLM metals by particle impact in heated oxygen. The existing test systems rely on gas velocity calculations to infer particle velocity in both subsonic and supersonic particle impact systems. Until now, it was not possible to directly measure particle velocity. To increase the fidelity of planned SLM ignition studies, it is necessary to validate that the Photon Doppler Velocimetry(PDV) test system can accurately measure particle velocity.

  16. Evaluating a heated metal scrubber's effectiveness in preventing ozone monitors' anomalous behavior during hot and humid ambient sampling

    SciTech Connect

    Maddy, J.A.

    1999-07-01

    The purpose of this paper is to verify West Virginia's Wet/Dry test's prediction that Advanced Pollution Instrumentation's (API) ozone monitors, when using a heated metal scrubber in lieu of a standard MnO{sub 2} scrubber, would be made insensitive to sampling conditions which provoke anomalous behavior. Field trials involving two identical API model 400 ozone monitors, a Horiba APOA 360 ozone monitor, MnO{sub 2} scrubbers and API's optional heated metal scrubber would determine this. The heated metal scrubber succeeded in effectively eliminating the anomalous behavior. Evaluation results further verify the accuracy of West Virginia's Wet/Dry test. During the evaluation, a serendipitous event led to observations that confirmed previous observations by The Commonwealth of Virginia's monitoring staff, linking contamination of UV monitors' optics with anomalous behavior. Also, a partial summation of observations concerning ultraviolet ozone monitors' anomalous behavior, drawn from several sources, illustrates its complex nature.

  17. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    NASA Astrophysics Data System (ADS)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  18. Seaweeds as bioindicators of heavy metals off a hot spot area on the Egyptian Mediterranean Coast during 2008-2010.

    PubMed

    Shams El-Din, N G; Mohamedein, L I; El-Moselhy, Kh M

    2014-09-01

    Concentrations of Cu, Zn, Cd, Pb, Ni, Co, Fe, Mn, and Hg were measured successively in water, sediments, and six macroalgal species belonging to three algal classes during 3 years (2008-2010) from Abu Qir Bay, Alexandria, Egypt: Chlorophyceae (Enteromorpha compressa, Ulva fasciata), Phaeophyceae (Padina boryana), and Rhodophyceae (Jania rubens, Hypnea musciformis, Pterocladia capillacea). The study aimed to assess the bioaccumulation potential of the seaweeds, as well as to evaluate the extent of heavy metal contamination in the selected study site. Metals were analyzed using atomic absorption spectrophotometry coupled with MH-10 hydride system. The obtained data showed that the highest mean concentrations of Cu, Zn, Fe, and Mn were recorded in E. compressa; Cd, Ni, and Hg exhibited their highest mean concentrations in P. boryana, while Pb and Co were found in J. rubens. Abundance of the heavy metals in the algal species was as follow: Fe > Mn > Zn > Pb > Ni > Co > Cu > Cd > Hg. E. compressa showed the maximum metal pollution index (MPI) which was 11.55. Bioconcentration factor (BCF) for the metals in algae was relatively high with a maximum value for Mn. The Tomlinson pollution load index (PLI) values for the recorded algal species were low, which ranged between 1.00 in P. boryana and 2.72 in E. compressa. Enrichment factors for sediments were low fluctuating between 0.43 for Hg to 2.33 for Mn. Accordingly, the green alga E. compressa, brown alga P. boryana, and red alga J. rubens can be nominated as bioindicators. Based on MPI and PLI indices, Abu Qir Bay in the present study is considered as low-contaminated area.

  19. Hot Flashes

    MedlinePlus

    ... are due to menopause — the time when menstrual periods become irregular and eventually stop. In fact, hot flashes are the most common symptom of the menopausal transition. How often hot flashes occur varies among women ...

  20. Experimental and Numerical Analysis on the Distortion of Parts Made of 20MnCr5 by Hot Metal Forming

    SciTech Connect

    Rentsch, Ruediger; Brinksmeier, Ekkard

    2011-05-04

    For high performance applications, shafts and gears made of 20MnCr5 (AISI 5120) are manufactured in large numbers every year. Inhomogeneities in the material properties, process perturbations and asymmetries in shape and operation setups provide a potential for the distortion of parts, often released by heat treatment. In this contribution experimental results on the distortion of shafts and the dishing of disk-like gear wheel blanks are presented. The numerical analysis of the hot-rolling process allowed to trace a peculiar segregation distribution at the cross-section of the bars back to the casting process, and to identify an asymmetric strain distribution which may be the main cause for shaft distortion. For the dishing of the disks a correlation to the resulting distribution of the material flow was found and, a process perturbation parameter identified which is assumed to be responsible for the observed material flow variation.

  1. Hot microswimmers

    NASA Astrophysics Data System (ADS)

    Kroy, Klaus; Chakraborty, Dipanjan; Cichos, Frank

    2016-11-01

    Hot microswimmers are self-propelled Brownian particles that exploit local heating for their directed self-thermophoretic motion. We provide a pedagogical overview of the key physical mechanisms underlying this promising new technology. It covers the hydrodynamics of swimming, thermophoresis and -osmosis, hot Brownian motion, force-free steering, and dedicated experimental and simulation tools to analyze hot Brownian swimmers.

  2. Hot Flashes

    MedlinePlus

    Diseases and Conditions Hot flashes By Mayo Clinic Staff Hot flashes are sudden feelings of warmth, which are usually most intense over the ... skin may redden, as if you're blushing. Hot flashes can also cause profuse sweating and may ...

  3. Alloying Behavior and Properties of Al-Based Composites Reinforced with Al85Fe15 Metallic Glass Particles Fabricated by Mechanical Alloying and Hot Pressing Consolidation

    NASA Astrophysics Data System (ADS)

    Zhang, Lanxiang; Yang, LiKun; Leng, Jinfeng; Wang, Tongyang; Wang, Yan

    2017-04-01

    In this study, Al85Fe15 metallic glass particles with high onset crystallization temperature (1209 K) were synthesized by a mechanical alloying method. High-quality 6061Al-based composites reinforced with Al85Fe15 metallic glass particles were fabricated by a vacuum hot-pressing sintering technique. The glass particles with flake-like shape are distributed uniformly in the Al matrix. The bulk composites possess high relative density, excellent hardness and strength. The microhardness values of the Al-based bulk composites with the additions of 20 vol.% and 30 vol.% Al85Fe15 particles are 204 MPa and 248 MPa, respectively, which are much higher than that of 6061Al (61 MPa). The compressive yield strength of the 30 vol.% glass-reinforced composite is 478 MPa, which is enhanced by 273% compared with 6061Al. The amorphous characteristic and homogeneous dispersion of glass particles account for the excellent mechanical properties of the Al-based composites. In addition, the corrosion behavior of Al-based composites in a seawater solution has been investigated by electrochemical polarization measurements. Compared to 6061Al, the 30 vol.% glass-reinforced composite shows the lower corrosion/passive current density and larger passive region, indicating the greatly enhanced corrosion resistance.

  4. Alloying Behavior and Properties of Al-Based Composites Reinforced with Al85Fe15 Metallic Glass Particles Fabricated by Mechanical Alloying and Hot Pressing Consolidation

    NASA Astrophysics Data System (ADS)

    Zhang, Lanxiang; Yang, LiKun; Leng, Jinfeng; Wang, Tongyang; Wang, Yan

    2017-01-01

    In this study, Al85Fe15 metallic glass particles with high onset crystallization temperature (1209 K) were synthesized by a mechanical alloying method. High-quality 6061Al-based composites reinforced with Al85Fe15 metallic glass particles were fabricated by a vacuum hot-pressing sintering technique. The glass particles with flake-like shape are distributed uniformly in the Al matrix. The bulk composites possess high relative density, excellent hardness and strength. The microhardness values of the Al-based bulk composites with the additions of 20 vol.% and 30 vol.% Al85Fe15 particles are 204 MPa and 248 MPa, respectively, which are much higher than that of 6061Al (61 MPa). The compressive yield strength of the 30 vol.% glass-reinforced composite is 478 MPa, which is enhanced by 273% compared with 6061Al. The amorphous characteristic and homogeneous dispersion of glass particles account for the excellent mechanical properties of the Al-based composites. In addition, the corrosion behavior of Al-based composites in a seawater solution has been investigated by electrochemical polarization measurements. Compared to 6061Al, the 30 vol.% glass-reinforced composite shows the lower corrosion/passive current density and larger passive region, indicating the greatly enhanced corrosion resistance.

  5. Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots.

    PubMed

    Kubackova, Jana; Fabriciova, Gabriela; Miskovsky, Pavol; Jancura, Daniel; Sanchez-Cortes, Santiago

    2015-01-06

    In this work, we report the detection of the organochlorine pesticides aldrin, dieldrin, lindane, and α-endosulfan by using surface-enhanced Raman spectroscopy (SERS) and optimization of the SERS-sensing substrate. In order to overcome the inherent problem of the low affinity of the above pesticides, we have developed a strategy consisting of functionalization of the metal surface with alkyl dithiols in order to achieve two different goals: (i) to induce the nanoparticle linkage and create interparticle junctions where sensitive hot spots needed for SERS enhancement are present, and (ii) to create a specific environment in the nanogaps between silver and gold nanoparticles, making them suitable for the assembly and SERS detection of the analyzed pesticides. Afterward, an optimization of the sensing substrate was performed by varying the experimental conditions: type of metal nanoparticles, molecular linker (aromatic versus aliphatic dithiols and the length of the intermediate chain), surface coverage, laser excitation wavelength. From the adsorption isotherms, it was possible to deduce the corresponding adsorption constant and the limit of detection. The present results confirm the high sensitivity of SERS for the detection of the organochlorine pesticides with a limit of detection reaching 10(-8) M, thus providing a solid basis for the construction of suitable nanosensors for the identification and quantitative analysis of this type of chemical.

  6. Investigation into the role of NaCL deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1981-01-01

    The conversion to Na2SO4 of NaCl deposited on oxide substrates was studied as a function of temperature, in air with various SO2 and H2O partial pressures. The substrate was either a pure oxide or an oxide scale growing on a metal specimen. The progress of the reaction was observed using the SEM-EDAX technique to monitor morphological effects and, as far as possible, establish the rate of the process. The physical characteristics of the interaction between salt and substrate were also examined with particular reference to physical damage to the underlying oxide, especially when this is a scale on a metal specimen. An effort was also made to establish the conditions under which liquid phases may form and the mechanisms by which they form.

  7. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR) Prepared Using Hot Press Forging (HPF) Process

    PubMed Central

    Ahmad, Azlan; Lajis, Mohd Amri

    2017-01-01

    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future. PMID:28925963

  8. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR) Prepared Using Hot Press Forging (HPF) Process.

    PubMed

    Ahmad, Azlan; Lajis, Mohd Amri; Yusuf, Nur Kamilah

    2017-09-19

    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.

  9. Method for producing metallic nanoparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  10. Trapping in GaN-based metal-insulator-semiconductor transistors: Role of high drain bias and hot electrons

    SciTech Connect

    Meneghini, M. Bisi, D.; Meneghesso, G.; Zanoni, E.

    2014-04-07

    This paper describes an extensive analysis of the role of off-state and semi-on state bias in inducing the trapping in GaN-based power High Electron Mobility Transistors. The study is based on combined pulsed characterization and on-resistance transient measurements. We demonstrate that—by changing the quiescent bias point from the off-state to the semi-on state—it is possible to separately analyze two relevant trapping mechanisms: (i) the trapping of electrons in the gate-drain access region, activated by the exposure to high drain bias in the off-state; (ii) the trapping of hot-electrons within the AlGaN barrier or the gate insulator, which occurs when the devices are operated in the semi-on state. The dependence of these two mechanisms on the bias conditions and on temperature, and the properties (activation energy and cross section) of the related traps are described in the text.

  11. Hot Extrusion of A356 Aluminum Metal Matrix Composite with Carbon Nanotube/Al2O3 Hybrid Reinforcement

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Babu, J. S. S.; Kang, C. G.

    2014-05-01

    Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure-displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.

  12. Properties of Bayer Red Mud Based Flux and its Application in the Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Zhang, Yanling; Li, Fengshan; Wang, Ruimin

    Bayer red mud is characterized as highly oxidizing (high Fe2O3 content) and highly alkaline (high Na2O content), which tends to act as a flux and strong dephosphorizer in the steelmaking process. In this study, firstly, the thermodynamical properties of Bayer red mud based flux were predicted including the melting temperature and phosphorus capacity. Further, laboratory experiments on application of Bayer red mud-based flux in hot metal dephosphorization. The effects of influencing factors such as flux composition and basicity were discussed. The results gave necessary basic knowledge for promoting the application of Bayer red mud in the steelmaking process.

  13. Hot Groups.

    ERIC Educational Resources Information Center

    Vail, Kathleen

    1996-01-01

    Collaborators sparked by creative ideas and obsessed by a common task may not realize they're part of a "hot group"--a term coined by business professors Harold J. Leavitt and Jean Lipman-Blumen. Spawned by group decision making and employee empowerment, hot groups can flourish in education settings. They're typically small, short lived,…

  14. Investigation of DC Hot-Carrier Degradation at Elevated Temperatures for n-Channel Metal-Oxide-Semiconductor Field-Effect-Transistor of 0.13 μm Technology

    NASA Astrophysics Data System (ADS)

    Lin, Jung‑Chun; Chen, Shuang‑Yuan; Chen, Hung‑Wen; Jhou, Ze‑Wei; Lin, Hung‑Chuan; Chou, Sam; Ko, Joe; Lei, Tien‑Fu; Haung, Heng‑Sheng

    2006-04-01

    In this study, n-channel metal-oxide-semiconductor field-effect transistors (nMOSFETs) having 20 and 32 Å gate oxide thicknesses of 0.13 μm technology were used to investigate DC hot-carrier reliability at elevated temperatures up to 125 °C. The research also focused on the degradation of analog properties after hot-carrier injection. On the basis of the results of experiments, the hot-carrier degradation of Id,op (drain current defined on the basis of analog applications) is found to be the worst case among those of three types of drain current from room temperature to 125 °C. This result should provide valuable insight to analog circuit designers. As to the reverse temperature effect, the substrate current (Ib) commonly accepted as the parameter for monitoring the drain-avalanche-hot-carrier (DAHC) effect should be modified since the drain current (Id) degradation and Ib variations versus temperature have different trends. For the devices having a gate oxide thinner than 20 Å, we suggest that the worst condition in considering hot-carrier reliability should be placed at elevated temperatures.

  15. Charge trapping induced drain-induced-barrier-lowering in HfO2/TiN p-channel metal-oxide-semiconductor-field-effect-transistors under hot carrier stress

    NASA Astrophysics Data System (ADS)

    Lo, Wen-Hung; Chang, Ting-Chang; Tsai, Jyun-Yu; Dai, Chih-Hao; Chen, Ching-En; Ho, Szu-Han; Chen, Hua-Mao; Cheng, Osbert; Huang, Cheng-Tung

    2012-04-01

    This letter studies the channel hot carrier stress (CHCS) behaviors on high dielectric constant insulator and metal gate HfO2/TiN p-channel metal-oxide-semiconductor field effect transistors. It can be found that the degradation is associated with electron trapping, resulting in Gm decrease and positive Vth shift. However, Vth under saturation region shows an insignificant degradation during stress. To compare that, the CHC-induced electron trapping induced DIBL is proposed to demonstrate the different behavior of Vth between linear and saturation region. The devices with different channel length are used to evidence the trapping-induced DIBL behavior.

  16. HATS-11b AND HATS-12b: Two Transiting Hot Jupiters Orbiting Subsolar Metallicity Stars Selected for the K2 Campaign 7

    NASA Astrophysics Data System (ADS)

    Rabus, M.; Jordán, A.; Hartman, J. D.; Bakos, G. Á.; Espinoza, N.; Brahm, R.; Penev, K.; Ciceri, S.; Zhou, G.; Bayliss, D.; Mancini, L.; Bhatti, W.; de Val-Borro, M.; Csbury, Z.; Sato, B.; Tan, T.-G.; Henning, T.; Schmidt, B.; Bento, J.; Suc, V.; Noyes, R.; Lázár, J.; Papp, I.; Sári, P.

    2016-10-01

    We report the discovery of two transiting extrasolar planets from the HATSouth survey. HATS-11, a V = 14.1 G0-star shows a periodic 12.9 mmag dip in its light curve every 3.6192 days and a radial velocity variation consistent with a Keplerian orbit. HATS-11 has a mass of 1.000+/- 0.060 {M}⊙ , a radius of 1.444+/- 0.057 {R}⊙ and an effective temperature of 6060+/- 150 K, while its companion is a 0.85+/- 0.12 {M}{{J}}, 1.510+/- 0.078 {R}{{J}} planet in a circular orbit. HATS-12 shows a periodic 5.1 mmag flux decrease every 3.1428 days and Keplerian RV variations around a V = 12.8 F-star. HATS-12 has a mass of 1.489+/- 0.071 {M}⊙ , a radius of 2.21+/- 0.21 {R}⊙ , and an effective temperature of 6408+/- 75 K. For HATS-12b, our measurements indicate that this is a 2.38+/- 0.11 {M}{{J}}, 1.35+/- 0.17 {R}{{J}} planet in a circular orbit. Both host stars show subsolar metallicities of -0.390+/- 0.060 dex and -0.100+/- 0.040 dex, respectively, and are (slightly) evolved stars. In fact, HATS-11 is among the most metal-poor and, HATS-12, with a {log}{g}\\star of 3.923+/- 0.065, is among the most evolved stars hosting a hot-Jupiter planet. Importantly, HATS-11 and HATS-12 have been observed in long cadence by Kepler as part of K2 campaign 7 (EPIC216414930 and EPIC218131080 respectively). The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based in part on

  17. Hot microelectrodes.

    PubMed

    Baranski, Andrzej S

    2002-03-15

    Heat generation at disk microelectrodes by a high-amplitude (few volt) and high-frequency (0.1-2 GHz) alternating voltage is described. This method allows changing electrode temperature very rapidly and maintaining it well above the boiling point of solution for a very long time without any indication of boiling. The size of the hot zone in solution is determined by the radius of the electrode. There is no obvious limit in regard to the electrode size, so theoretically, by this method, it should be possible to create hot spots that are much smaller than those created with laser beams. That could lead to potential applications in medicine and biology. The heat-generating waveform does not electrically interfere with normal electroanalytical measurements. The noise level at hot microelectrodes is only slightly higher, as compared to normal microelectodes, but diffusion-controlled currents at hot microelectrodes may be up to 7 times higher, and an enhancement of kinetically controlled currents may be even larger. Hot microelectrodes can be used for end-column detection in capillary electrophoresis and for in-line or in vivo analyses. Temperature gradients at hot microelectrodes may exceed 1.5 x 10(5) K/cm, which makes them useful in studies of Soret diffusion and thermoelectric phenomena.

  18. Hot Canyon

    SciTech Connect

    2012-01-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  19. Hot Canyon

    ScienceCinema

    None

    2016-07-12

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  20. Hot Tickets

    ERIC Educational Resources Information Center

    Fox, Bette-Lee; Hoffert, Barbara; Kuzyk, Raya; McCormack, Heather; Williams, Wilda

    2008-01-01

    This article describes the highlights of this year's BookExpo America (BEA) held at the Los Angeles Convention Center. The attendees at BEA had not minded that the air was recycled, the lighting was fluorescent, and the food was bad. The first hot book sighting came courtesy of Anne Rice. Michelle Moran, author of newly published novel, "The…

  1. Hot Tickets

    ERIC Educational Resources Information Center

    Fox, Bette-Lee; Hoffert, Barbara; Kuzyk, Raya; McCormack, Heather; Williams, Wilda

    2008-01-01

    This article describes the highlights of this year's BookExpo America (BEA) held at the Los Angeles Convention Center. The attendees at BEA had not minded that the air was recycled, the lighting was fluorescent, and the food was bad. The first hot book sighting came courtesy of Anne Rice. Michelle Moran, author of newly published novel, "The…

  2. Enriching the hot circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Crain, Robert A.; McCarthy, Ian G.; Schaye, Joop; Theuns, Tom; Frenk, Carlos S.

    2013-07-01

    Simple models of galaxy formation in a cold dark matter universe predict that massive galaxies are surrounded by a hot, quasi-hydrostatic circumgalactic corona of slowly cooling gas, predominantly accreted from the intergalactic medium (IGM). This prediction is borne out by the recent cosmological hydrodynamical simulations of Crain et al., which reproduce observed scaling relations between the X-ray and optical properties of nearby disc galaxies. Such coronae are metal poor, but observations of the X-ray emitting circumgalactic medium (CGM) of local galaxies typically indicate enrichment to near-solar iron abundance, potentially signalling a shortcoming in current models of galaxy formation. We show here that, while the hot CGM of galaxies formed in the simulations is typically metal poor in a mass-weighted sense, its X-ray luminosity-weighted metallicity is often close to solar. This bias arises because the soft X-ray emissivity of a typical ˜0.1 keV corona is dominated by collisionally excited metal ions that are synthesized in stars and recycled into the hot CGM. We find that these metals are ejected primarily by stars that form in situ to the main progenitor of the galaxy, rather than in satellites or external galaxies. The enrichment of the hot CGM therefore proceeds in an `inside-out' fashion throughout the assembly of the galaxy: metals are transported from the central galaxy by supernova-driven winds and convection over several Gyr, establishing a strong negative radial metallicity gradient. Whilst metal ions synthesized by stars are necessary to produce the X-ray emissivity that enables the hot CGM of isolated galaxies to be detected with current instrumentation, the electrons that collisionally excite them are equally important. Since our simulations indicate that the electron density of hot coronae is dominated by the metal-poor gas accreted from the IGM, we infer that the hot CGM observed via X-ray emission is the outcome of both hierarchical

  3. Hot outflows in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, C. C.; McNamara, B. R.

    2015-10-01

    The gas-phase metallicity distribution has been analysed for the hot atmospheres of 29 galaxy clusters using Chandra X-ray Observatory observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the `iron radius') and jet power is found with the form R_Fe ∝ P_jet^{0.45}. The estimated outflow rates are typically tens of solar masses per year but exceed 100 M⊙ yr- 1 in the most powerful AGN. The outflow rates are 10-20 per cent of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at regulating star formation and AGN activity in BCGs and presumably in giant elliptical galaxies. The metallicity distribution overall can be complex, perhaps due to metal-rich gas returning in circulation flows or being blown around in the hot atmospheres. Roughly 15 per cent of the work done by the cavities is expended lifting the metal-enriched gas, implying their nuclear black holes have increased in mass by at least ˜107-109 M⊙. Finally, we show that hot outflows can account for the broad, gas-phase metallicity distribution compared to the stellar light profiles of BCGs, and we consider a possible connection between hot outflows and cold molecular gas flows discovered in recent Atacama Large Millimeter Array observations.

  4. Are 'hot spots' hot spots?

    NASA Astrophysics Data System (ADS)

    Foulger, Gillian R.

    2012-07-01

    The term 'hot spot' emerged in the 1960s from speculations that Hawaii might have its origins in an unusually hot source region in the mantle. It subsequently became widely used to refer to volcanic regions considered to be anomalous in the then-new plate tectonic paradigm. It carried with it the implication that volcanism (a) is emplaced by a single, spatially restricted, mongenetic melt-delivery system, assumed to be a mantle plume, and (b) that the source is unusually hot. This model has tended to be assumed a priori to be correct. Nevertheless, there are many geological ways of testing it, and a great deal of work has recently been done to do so. Two fundamental problems challenge this work. First is the difficulty of deciding a 'normal' mantle temperature against which to compare estimates. This is usually taken to be the source temperature of mid-ocean ridge basalts (MORBs). However, Earth's surface conduction layer is ˜200 km thick, and such a norm is not appropriate if the lavas under investigation formed deeper than the 40-50 km source depth of MORB. Second, methods for estimating temperature suffer from ambiguity of interpretation with composition and partial melt, controversy regarding how they should be applied, lack of repeatability between studies using the same data, and insufficient precision to detect the 200-300 °C temperature variations postulated. Available methods include multiple seismological and petrological approaches, modelling bathymetry and topography, and measuring heat flow. Investigations have been carried out in many areas postulated to represent either (hot) plume heads or (hotter) tails. These include sections of the mid-ocean spreading ridge postulated to include ridge-centred plumes, the North Atlantic Igneous Province, Iceland, Hawaii, oceanic plateaus, and high-standing continental areas such as the Hoggar swell. Most volcanic regions that may reasonably be considered anomalous in the simple plate-tectonic paradigm have been

  5. Hot Meetings

    NASA Technical Reports Server (NTRS)

    Chiu, Mary

    2002-01-01

    A colleague walked by my office one time as I was conducting a meeting. There were about five or six members of my team present. The colleague, a man who had been with our institution (The Johns Hopkins Applied Physics Lab, a.k.a. APL) for many years, could not help eavesdropping. He said later it sounded like we we re having a raucous argument, and he wondered whether he should stand by the door in case things got out of hand and someone threw a punch. Our Advanced Composition Explorer (ACE) team was a hot group, to invoke the language that is fashionable today, although we never thought of ourselves in those terms. It was just our modus operandi. The tenor of the discussion got loud and volatile at times, but I prefer to think of it as animated, robust, or just plain collaborative. Mary Chiu and her "hot" team from the Johns Hopkins Applied Physics Laboratory built the Advanced Composition Explorer spacecraft for NASA. Instruments on the spacecraft continue to collect data that inform us about what's happening on our most important star, the Sun.

  6. Chemistry of glass-ceramic to metal bonding for header applications: III. Treatment of Inconel 718 to eliminate hot cracking during laser welding

    SciTech Connect

    Moddeman, W.E.; Jones, W.H.; Koeller, T.L.; Craven, S.M.; Kramer, D.P.

    1987-04-24

    A study was conducted to determine the weldability of Inconel 718 shells. Two pieces of Inconel 718 were welded together with a Hastelloy B-2 filler. The Inconel surface condition was varied by heat-treating and by using several different cleaning processes. The surface chemistry following each modification was determined by Auger spectroscopy. Each conditioned Inconel hollow cylinder (shell) was also checked for pulsed laser weldability by looking for hot cracking. Abraded and solvent-cleaned Inconel shells were found to have thin surface oxides and were also found to be weldable. Heat-treated shells were shown to have a thick complex oxide layer consisting primarily of chromium, titanium, aluminum, and niobium, and were not found to be weldable. Variations of an ''oxide removal'' treatment were used and found to be ineffective in removing all of the heat-treated surface oxides. The predominant oxide left after the various removal treatments was a thick aluminum oxide laced with alkali, alkaline earth and nickel oxides, sulfides (or sulfates), and/or chlorides. Inconel shells after being treated by these oxide removal steps and variations were also found not be be laser weldable. This oxide was finally removed by electropolishing, and the resulting surface was found to be crack-free after welding. Auger analysis of fractured surfaces in hot-cracked regions revealed that the surfaces consisted of an oxide similar to that left after the removal steps, but without the aluminum oxide. Thus, it was concluded that hot cracking in heat-treated, oxide-removed Inconel 718 is due to one or all of the following: alkali, alkaline earth and nickel oxides, sulfides (or sulfates), and/or chlorides that accumulate in the cracked area.

  7. Prometheus Hot Leg Piping Concept

    SciTech Connect

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-30

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  8. Promethus Hot Leg Piping Concept

    SciTech Connect

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  9. Prometheus Hot Leg Piping Concept

    NASA Astrophysics Data System (ADS)

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  10. The Phosphorus Reaction in Oxygen Steelmaking: Thermodynamic Equilibrium and Metal Droplet Behavior

    NASA Astrophysics Data System (ADS)

    Assis, Andre N.

    Phosphorus equilibrium between liquid metal and slag has been extensively studied since the 1940's. It is well known that CaO and FeO are the main slag constituents that help promote dephosphorization. On the other hand, dephosphorization decreases with temperature due to the endothermic nature of the reaction. Many correlations have been developed to predict the phosphorus partition ratio as a function of metal and slag composition as well as temperature. Nevertheless, there are still disagreements in the laboratory data and the equilibrium phosphorus partition can be predicted with an uncertainty of a factor of up to 5. The first part of the present work focuses on generating more reliable equilibrium data for BOF-type slags by approaching equilibrium from both sides of the reaction. The experimental results were combined with two other sets of data from different authors to produce a new correlation that includes the effect of SiO2 on the phosphorus partition coefficient, LP . Although the quantification of phosphorus equilibrium is extremely important, most industrial furnaces do not operate at equilibrium, usually due to liquid slag formation, kinetics and time constraints. Thus, it is important to know how close to equilibrium different furnaces operate in order to suggest optimal slag compositions to promote dephosphorization. The present work analyzed four large sets of data containing the chemical compositions of both slag and metal phase as well as the tapping temperature of each heat. Each set of data corresponded to different furnaces: one AOD (Argon Oxygen Decarburization), two top-blown BOFs and one Q-BOP or OBM. It was found that the bulk slag composition can greatly "mask" the data due to solid phases coexisting with the liquid slag. The author used the software package FactSage to estimate the amount of solids in the slag and liquid slag composition. It was found that the AOD is the reactor closest to equilibrium, followed by the Q-BOP (OBM) and

  11. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.

    PubMed

    Harutyunyan, Hayk; Martinson, Alex B F; Rosenmann, Daniel; Khorashad, Larousse Khosravi; Besteiro, Lucas V; Govorov, Alexander O; Wiederrecht, Gary P

    2015-09-01

    The interaction of light and matter in metallic nanosystems is mediated by the collective oscillation of surface electrons, called plasmons. After excitation, plasmons are absorbed by the metal electrons through inter- and intraband transitions, creating a highly non-thermal distribution of electrons. The electron population then decays through electron-electron interactions, creating a hot electron distribution within a few hundred femtoseconds, followed by a further relaxation via electron-phonon scattering on the timescale of a few picoseconds. In the spectral domain, hot plasmonic electrons induce changes to the plasmonic resonance of the nanostructure by modifying the dielectric constant of the metal. Here, we report on the observation of anomalously strong changes to the ultrafast temporal and spectral responses of these excited hot plasmonic electrons in hybrid metal/oxide nanostructures as a result of varying the geometry and composition of the nanostructure and the excitation wavelength. In particular, we show a large ultrafast, pulsewidth-limited contribution to the excited electron decay signal in hybrid nanostructures containing hot spots. The intensity of this contribution correlates with the efficiency of the generation of highly excited surface electrons. Using theoretical models, we attribute this effect to the generation of hot plasmonic electrons from hot spots. We then develop general principles to enhance the generation of energetic electrons through specifically designed plasmonic nanostructures that could be used in applications where hot electron generation is beneficial, such as in solar photocatalysis, photodetectors and nonlinear devices.

  12. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots

    DOE PAGES

    Harutyunyan, Hayk; Martinson, Alex B. F.; Rosenmann, Daniel; ...

    2015-08-03

    The interaction of light and matter in metallic nanosystems is mediated by the collective oscillation of surface electrons, called plasmons. After excitation, plasmons are absorbed by the metal electrons through inter- and intraband transitions, creating a highly non-thermal distribution of electrons. The electron population then decays through electron-electron interactions, creating a hot electron distribution within a few hundred femtoseconds, followed by a further relaxation via electron-phonon scattering on the timescale of a few pico-seconds. In the spectral domain, hot plasmonic electrons induce changes to the plasmonic resonance of the nanostructure by modifying the dielectric constant of the metal. Here, wemore » report on the observation of anomalously strong changes to the ultrafast temporal and spectral responses of these excited hot plasmonic electrons in hybrid metal/oxide nanostructures as a result of varying the geometry and composition of the nanostructure and the excitation wavelength. In particular, we show a large ultrafast, pulsewidth-limited contribution to the excited electron decay signal in hybrid nanostructures containing hot spots. The intensity of this contribution correlates with the efficiency of the generation of highly excited surface electrons. Using theoretical models, we attribute this effect to the generation of hot plasmonic electrons from hot spots. Finally, we then develop general principles to enhance the generation of energetic electrons through specifically designed plasmonic nanostructures that could be used in applications where hot electron generation is beneficial, such as in solar photocatalysis, photodetectors and nonlinear devices.« less

  13. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots

    SciTech Connect

    Harutyunyan, Hayk; Martinson, Alex B. F.; Rosenmann, Daniel; Khorashad, Larousse Khosravi; Besteiro, Lucas V.; Govorov, Alexander O.; Wiederrecht, Gary P.

    2015-08-03

    The interaction of light and matter in metallic nanosystems is mediated by the collective oscillation of surface electrons, called plasmons. After excitation, plasmons are absorbed by the metal electrons through inter- and intraband transitions, creating a highly non-thermal distribution of electrons. The electron population then decays through electron-electron interactions, creating a hot electron distribution within a few hundred femtoseconds, followed by a further relaxation via electron-phonon scattering on the timescale of a few pico-seconds. In the spectral domain, hot plasmonic electrons induce changes to the plasmonic resonance of the nanostructure by modifying the dielectric constant of the metal. Here, we report on the observation of anomalously strong changes to the ultrafast temporal and spectral responses of these excited hot plasmonic electrons in hybrid metal/oxide nanostructures as a result of varying the geometry and composition of the nanostructure and the excitation wavelength. In particular, we show a large ultrafast, pulsewidth-limited contribution to the excited electron decay signal in hybrid nanostructures containing hot spots. The intensity of this contribution correlates with the efficiency of the generation of highly excited surface electrons. Using theoretical models, we attribute this effect to the generation of hot plasmonic electrons from hot spots. Finally, we then develop general principles to enhance the generation of energetic electrons through specifically designed plasmonic nanostructures that could be used in applications where hot electron generation is beneficial, such as in solar photocatalysis, photodetectors and nonlinear devices.

  14. ELODIE metallicity-biased search for transiting Hot Jupiters. IV. Intermediate period planets orbiting the stars HD 43691 and HD 132406

    NASA Astrophysics Data System (ADS)

    da Silva, R.; Udry, S.; Bouchy, F.; Moutou, C.; Mayor, M.; Beuzit, J.-L.; Bonfils, X.; Delfosse, X.; Desort, M.; Forveille, T.; Galland, F.; Hébrard, G.; Lagrange, A.-M.; Loeillet, B.; Lovis, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Ségransan, D.; Sivan, J.-P.; Vidal-Madjar, A.; Zucker, S.

    2007-10-01

    We report here the discovery of two planet candidates as a result of our planet-search programme biased in favour of high-metallicity stars, using the ELODIE spectrograph at the Observatoire de Haute Provence. One candidate has a minimum mass m_2 sin i = 2.5 M_Jup and is orbiting the metal-rich star HD 43691 with period P = 40 days and eccentricity e=0.14. The other planet has a minimum mass m_2 sin{i} = 5.6 M_Jup and orbits the slightly metal-rich star HD 132406 with period P=974 days and eccentricity e = 0.34. Additional observations for both stars were performed using the new SOPHIE spectrograph that replaces the ELODIE instrument, allowing an improved orbital solution for the systems. Based on radial velocities collected with the ELODIE spectrograph mounted on the 193-cm telescope at the Observatoire de Haute Provence, France. Additional observations were made using the new SOPHIE spectrograph (run 06B.PNP.CONS) that replaces ELODIE.

  15. Solar 'hot spots' are still hot

    NASA Technical Reports Server (NTRS)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  16. Design and development of hot corrosion-resistant nickel-base single-crystal superalloys by the d-electrons alloy design theory: Part II--Effect of refractory metals Ti, Ta, and Nb on microstructures and properties

    SciTech Connect

    Zhang, J.S. . Inst. of Metal Research Beijing Univ. of Science and Technology, ); Hu, Z.Q. . Inst. of Metal Research); Murata, Y.; Morinaga, M.; Yukawa, N. . Dept. of Production Systems Engineering)

    1993-11-01

    A systematic study of the effects of refractory metals Ti, Ta, and Nb on the microstructures and properties was conducted with a hot corrosion-resistant alloy system Ni-16Cr-9Al-4Co-2W-1Mo-(0 [approximately] 4)Ti-(0 [approximately] 4)Ta-(0 [approximately] 4)Nb (in atomic percent) which was selected based on the d-electrons alloy design theory and some basic considerations in alloying features of single-crystal nickel-base superalloys. The contour lines of solidification reaction temperatures and eutectic ([gamma] + [gamma][prime]) volume fraction in the Ti-Ta-Nb compositional triangle were determined by differential thermal analysis (DTA) and imaging analyzer. Compared with the reference alloy IN738LC, in most of the compositional ranges studied, the designed alloys show very low amounts of eutectic ([gamma] + [gamma][prime]) ([le]0.4 vol pct), narrow solidification ranges ([le]65 C), and wide heat-treatment windows'' (> 100 C). This indicates that the alloys should have the promising microstructural stability, single-crystal castability, and be easier for complete solution treatment. In a wide compositional range, the designed alloys showed good hot corrosion resistance (weight loss less than 20 mg/cm[sup 2] after 24 hours kept in molten salt at 900 C). By summarizing the results, the promising alloy compositional ranges of the alloys with balanced properties were determined for the final step of the alloy design, i.e., to grow single crystal and characterize mechanical properties of the alloys selected from the previously mentioned regions.

  17. A Chandra Archival Study of the Temperature and Metal Abundance Profiles in Hot Galaxy Clusters at 0.1 <~ z <~ 0.3

    NASA Astrophysics Data System (ADS)

    Baldi, A.; Ettori, S.; Mazzotta, P.; Tozzi, P.; Borgani, S.

    2007-09-01

    We present an analysis of the temperature and metallicity profiles of 12 galaxy clusters in the redshift range 0.1-0.3 selected from the Chandra archive with at least ~20,000 net ACIS counts and kT>6 keV. We divide the sample between seven cooling-core (CC) and five non-cooling-core (NCC) clusters according to their central cooling time. We find that single power laws can properly describe both the temperature and metallicity profiles at radii larger than 0.1r180 in both CC and NCC systems, with NCC objects showing steeper profiles outward. A significant deviation is present only in the inner 0.1r180. We perform a comparison of our sample with the De Grandi & Molendi BeppoSAX sample of local CC and NCC clusters, finding a complete agreement in the CC cluster profile and a marginally higher value (at ~1 σ) in the inner regions of the NCC clusters. The slope of the power law describing kT(r) within 0.1r180 correlates strongly with the ratio between the cooling time and the age of the universe at the cluster redshift, with a slope >0 and τc/τage<~0.6 in CC systems.

  18. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan; Mendoza, Daniel; Chen, Chun-Ku

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  19. KELT-6b: A P ∼ 7.9 day hot Saturn transiting a metal-poor star with a long-period companion

    SciTech Connect

    Collins, Karen A.; Kielkopf, John F.; Eastman, Jason D.; Beatty, Thomas G.; Gaudi, B. Scott; Siverd, Robert J.; Pepper, Joshua; Stassun, Keivan G.; Johnson, John Asher; Howard, Andrew W.; Fulton, Benjamin J.; Fischer, Debra A.; Manner, Mark; Bieryla, Allyson; Latham, David W.; Gregorio, Joao; Buchhave, Lars A.; Jensen, Eric L. N.; Penev, Kaloyan; Crepp, Justin R.; and others

    2014-02-01

    We report the discovery of KELT-6b, a mildly inflated Saturn-mass planet transiting a metal-poor host. The initial transit signal was identified in KELT-North survey data, and the planetary nature of the occulter was established using a combination of follow-up photometry, high-resolution imaging, high-resolution spectroscopy, and precise radial velocity measurements. The fiducial model from a global analysis including constraints from isochrones indicates that the V = 10.38 host star (BD+31 2447) is a mildly evolved, late-F star with T {sub eff} = 6102 ± 43 K, log g{sub ⋆}=4.07{sub −0.07}{sup +0.04}, and [Fe/H] = –0.28 ± 0.04, with an inferred mass M {sub *} = 1.09 ± 0.04 M {sub ☉} and radius R{sub ⋆}=1.58{sub −0.09}{sup +0.16} R{sub ⊙}. The planetary companion has mass M{sub P} = 0.43 ± 0.05 M {sub Jup}, radius R{sub P}=1.19{sub −0.08}{sup +0.13} R{sub Jup}, surface gravity log g{sub P}=2.86{sub −0.08}{sup +0.06}, and density ρ{sub P}=0.31{sub −0.08}{sup +0.07} g cm{sup −3}. The planet is on an orbit with semimajor axis a = 0.079 ± 0.001 AU and eccentricity e=0.22{sub −0.10}{sup +0.12}, which is roughly consistent with circular, and has ephemeris of T {sub c}(BJD{sub TDB}) = 2456347.79679 ± 0.00036 and P = 7.845631 ± 0.000046 days. Equally plausible fits that employ empirical constraints on the host-star parameters rather than isochrones yield a larger planet mass and radius by ∼4)-7). KELT-6b has surface gravity and incident flux similar to HD 209458b, but orbits a host that is more metal poor than HD 209458 by ∼0.3 dex. Thus, the KELT-6 system offers an opportunity to perform a comparative measurement of two similar planets in similar environments around stars of very different metallicities. The precise radial velocity data also reveal an acceleration indicative of a longer-period third body in the system, although the companion is not detected in Keck adaptive optics images.

  20. KELT-6b: A P ~ 7.9 Day Hot Saturn Transiting a Metal-poor Star with a Long-period Companion

    NASA Astrophysics Data System (ADS)

    Collins, Karen A.; Eastman, Jason D.; Beatty, Thomas G.; Siverd, Robert J.; Gaudi, B. Scott; Pepper, Joshua; Kielkopf, John F.; Johnson, John Asher; Howard, Andrew W.; Fischer, Debra A.; Manner, Mark; Bieryla, Allyson; Latham, David W.; Fulton, Benjamin J.; Gregorio, Joao; Buchhave, Lars A.; Jensen, Eric L. N.; Stassun, Keivan G.; Penev, Kaloyan; Crepp, Justin R.; Hinkley, Sasha; Street, Rachel A.; Cargile, Phillip; Mack, Claude E.; Oberst, Thomas E.; Avril, Ryan L.; Mellon, Samuel N.; McLeod, Kim K.; Penny, Matthew T.; Stefanik, Robert P.; Berlind, Perry; Calkins, Michael L.; Mao, Qingqing; Richert, Alexander J. W.; DePoy, Darren L.; Esquerdo, Gilbert A.; Gould, Andrew; Marshall, Jennifer L.; Oelkers, Ryan J.; Pogge, Richard W.; Trueblood, Mark; Trueblood, Patricia

    2014-02-01

    We report the discovery of KELT-6b, a mildly inflated Saturn-mass planet transiting a metal-poor host. The initial transit signal was identified in KELT-North survey data, and the planetary nature of the occulter was established using a combination of follow-up photometry, high-resolution imaging, high-resolution spectroscopy, and precise radial velocity measurements. The fiducial model from a global analysis including constraints from isochrones indicates that the V = 10.38 host star (BD+31 2447) is a mildly evolved, late-F star with T eff = 6102 ± 43 K, log g_\\star =4.07_{-0.07}^{+0.04}, and [Fe/H] = -0.28 ± 0.04, with an inferred mass M sstarf = 1.09 ± 0.04 M ⊙ and radius R_\\star =1.58_{-0.09}^{+0.16} \\,R_\\odot. The planetary companion has mass MP = 0.43 ± 0.05 M Jup, radius R_{P}=1.19_{-0.08}^{+0.13} \\,R_Jup, surface gravity log g_{P}=2.86_{-0.08}^{+0.06}, and density \\rho _{P}=0.31_{-0.08}^{+0.07}\\,g\\,cm^{-3}. The planet is on an orbit with semimajor axis a = 0.079 ± 0.001 AU and eccentricity e=0.22_{-0.10}^{+0.12}, which is roughly consistent with circular, and has ephemeris of T c(BJDTDB) = 2456347.79679 ± 0.00036 and P = 7.845631 ± 0.000046 days. Equally plausible fits that employ empirical constraints on the host-star parameters rather than isochrones yield a larger planet mass and radius by ~4}-7}. KELT-6b has surface gravity and incident flux similar to HD 209458b, but orbits a host that is more metal poor than HD 209458 by ~0.3 dex. Thus, the KELT-6 system offers an opportunity to perform a comparative measurement of two similar planets in similar environments around stars of very different metallicities. The precise radial velocity data also reveal an acceleration indicative of a longer-period third body in the system, although the companion is not detected in Keck adaptive optics images. KELT is a joint project of The Ohio State University, Vanderbilt University, and Lehigh University.

  1. The influence of Si addition in 55AlZn bath on the coating structures obtained in the batch hot-dip metallization

    NASA Astrophysics Data System (ADS)

    Mendala, J.

    2011-05-01

    One of the methods of increasing the corrosion resistance of zinc coatings is the application of zinc and aluminium alloy baths in the metallization process. The coatings obtained are characterized by much better corrosion resistance thanks to the combination of aluminium properties, i.e. the barrier protection provided by naturally created aluminium oxides, with the capacity to protect the steel substrate, which is characteristic of zinc coatings. Zinc coatings with 55 wt. % Al and an addition of Si have gained industrial importance. The introduction of a third alloying component into the metallization bath is a technological addition, the aim of which is to reduce and possibly inhibit the aluminium diffusion towards the substrate. The article presents the results of the examination of coatings obtained in a 55AlZn bath at varied parameters of the technological process, as well as the specification of silicon addition influence on the structure and chemical composition of the coatings, and on the kinetics of growth. The coatings were obtained in three temperatures: 620, 640 and 660°C, and the process was conducted in a 55 wt. % Al bath with Si content of 0, 0.8 and 1.6 wt. % respectively, the remaining content was Zn. For the purposes of evaluating the microstructure and thickness of the coatings obtained, examinations on a light microscope were conducted. In order to determine the chemical composition of the coatings obtained, an EDS analysis was conducted. Quantitative examination of the chemical composition was carried out on the selected cross-sections of samples with coatings considered to be representative ones, using a SEM with a microanalysis system. Moreover, the linear distribution of elements on the cross-sections of the chosen coatings was determined. It is possible to state that the addition of silicon to 55AlZn baths allows reducing the uncontrolled growth of a layer. The layers obtained are more uniform, continuous and they show good adhesion to

  2. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  3. Hot tub folliculitis

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001460.htm Hot tub folliculitis To use the sharing features on this page, please enable JavaScript. Hot tub folliculitis is an infection of the skin around ...

  4. Electrically detected magnetic resonance study of defects created by hot carrier stress at the SiC/SiO2 interface of a SiC n-channel metal-oxide-semiconductor field-effect transistor

    NASA Astrophysics Data System (ADS)

    Gruber, G.; Hadley, P.; Koch, M.; Aichinger, T.

    2014-07-01

    This Letter reports electrical measurements as well as electrically detected magnetic resonance (EDMR) studies of defects created at the SiC/SiO2 interface of a lateral 4H-SiC n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) by hot carrier stress (HCS). Both charge pumping (CP) and mobility measurements indicate severe device degradation due to the electrical stress. In accordance with the electrical measurements, a large increase in the EDMR amplitude by a factor of 27 was observed after 106 s of HCS. The defect observed in the unstressed device is anisotropic with gB||c = 2.0045(4) and gB⊥c = 2.0020(4). After the stress, the g-value changes to gB||c = 2.0059(4) and gB⊥c = 2.0019(4). During HCS, most defects are created near the n-doped drain region of the device. In this region, the crystalline structure of the SiC is distorted due to incorporation of N close to the amorphous dose. The distortion could explain the slight change in the g-value with the dominating defect or defect family remaining the same before and after stress. Although the precise structure of the defect could not be identified due to overlapping spectra and limited measurement resolution, the strong hyperfine side peaks suggest a N related defect.

  5. Transiting exoplanets from the CoRoT space mission. IX. CoRoT-6b: a transiting ``hot Jupiter'' planet in an 8.9d orbit around a low-metallicity star

    NASA Astrophysics Data System (ADS)

    Fridlund, M.; Hébrard, G.; Alonso, R.; Deleuil, M.; Gandolfi, D.; Gillon, M.; Bruntt, H.; Alapini, A.; Csizmadia, Sz.; Guillot, T.; Lammer, H.; Aigrain, S.; Almenara, J. M.; Auvergne, M.; Baglin, A.; Barge, P.; Bordé, P.; Bouchy, F.; Cabrera, J.; Carone, L.; Carpano, S.; Deeg, H. J.; de La Reza, R.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Guenther, E.; Gondoin, P.; den Hartog, R.; Hatzes, A.; Jorda, L.; Léger, A.; Llebaria, A.; Magain, P.; Mazeh, T.; Moutou, C.; Ollivier, M.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Samuel, B.; Schneider, J.; Shporer, A.; Stecklum, B.; Tingley, B.; Weingrill, J.; Wuchterl, G.

    2010-03-01

    The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a “hot Jupiter” planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high 7Li abundance. While the light curve indicates a much higher level of activity than, e.g., the Sun, there is no sign of activity spectroscopically in e.g., the [Ca ii] H&K lines. The CoRoT space mission, launched on December 27, 2006, has been developed and is being operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, The Research and Scientific Support Department of ESA, Germany and Spain.

  6. Hierarchical Simulation of Hot Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.

    1993-01-01

    Computational procedures are described to simulate the thermal and mechanical behavior of high temperature metal matrix composites (HT-MMC) in the following three broad areas: (1) Behavior of HT-MMC's from micromechanics to laminate via Metal Matrix Composite Analyzer (METCAN), (2) tailoring of HT-MMC behavior for optimum specific performance via Metal Matrix Laminate Tailoring (MMLT), and (3) HT-MMC structural response for hot structural components via High Temperature Composite Analyzer (HITCAN). Representative results from each area are presented to illustrate the effectiveness of computational simulation procedures. The sample case results show that METCAN can be used to simulate material behavior such as strength, stress-strain response, and cyclic life in HTMMC's; MMLT can be used to tailor the fabrication process for optimum performance such as that for in-service load carrying capacity of HT-MMC's; and HITCAN can be used to evaluate static fracture and fatigue life of hot pressurized metal matrix composite rings.

  7. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  8. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  9. The K2-ESPRINT project. VI. K2-105 b, a hot Neptune around a metal-rich G-dwarf

    NASA Astrophysics Data System (ADS)

    Narita, Norio; Hirano, Teruyuki; Fukui, Akihiko; Hori, Yasunori; Dai, Fei; Yu, Liang; Livingston, John; Ryu, Tsuguru; Nowak, Grzegorz; Kuzuhara, Masayuki; Sato, Bun'ei; Takeda, Yoichi; Albrecht, Simon; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Palle, Enric; Ribas, Ignasi; Tamura, Motohide; Van Eylen, Vincent; Winn, Joshua N.

    2017-04-01

    We report on the confirmation that the candidate transits observed for the star EPIC 211525389 are due to a short-period Neptune-sized planet. The host star, located in K2 campaign field 5, is a metal-rich ([Fe/H] = 0.26 ± 0.05) G-dwarf (Teff = 5430 ± 70 K and log g = 4.48 ± 0.09), based on observations with the High Dispersion Spectrograph (HDS) on the Subaru 8.2 m telescope. High spatial resolution AO imaging with HiCIAO on the Subaru telescope excludes faint companions near the host star, and the false positive probability of this target is found to be <10-6 using the open source vespa code. A joint analysis of transit light curves from K2 and additional ground-based multi-color transit photometry with MuSCAT on the Okayama 1.88 m telescope gives an orbital period of P = 8.266902 ± 0.000070 d and consistent transit depths of Rp/R⋆ ∼ 0.035 or (Rp/R⋆)2 ∼ 0.0012. The transit depth corresponds to a planetary radius of R_p = 3.59_{-0.39}^{+0.44} R_{\\oplus }, indicating that EPIC 211525389 b is a short-period Neptune-sized planet. Radial velocities of the host star, obtained with the Subaru HDS, lead to a 3 σ upper limit of 90 M⊕ (0.00027 M⊙) on the mass of EPIC 211525389 b, confirming its planetary nature. We expect this planet, newly named K2-105 b, to be the subject of future studies to characterize its mass, atmosphere, and spin-orbit (mis)alignment, as well as investigate the possibility of additional planets in the system.

  10. The K2-ESPRINT project. VI. K2-105 b, a hot Neptune around a metal-rich G-dwarf

    NASA Astrophysics Data System (ADS)

    Narita, Norio; Hirano, Teruyuki; Fukui, Akihiko; Hori, Yasunori; Dai, Fei; Yu, Liang; Livingston, John; Ryu, Tsuguru; Nowak, Grzegorz; Kuzuhara, Masayuki; Sato, Bunéi; Takeda, Yoichi; Albrecht, Simon; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Palle, Enric; Ribas, Ignasi; Tamura, Motohide; Van Eylen, Vincent; Winn, Joshua N.

    2017-02-01

    We report on the confirmation that the candidate transits observed for the star EPIC 211525389 are due to a short-period Neptune-sized planet. The host star, located in K2 campaign field 5, is a metal-rich ([Fe/H] = 0.26 ± 0.05) G-dwarf (Teff = 5430 ± 70 K and log g = 4.48 ± 0.09), based on observations with the High Dispersion Spectrograph (HDS) on the Subaru 8.2 m telescope. High spatial resolution AO imaging with HiCIAO on the Subaru telescope excludes faint companions near the host star, and the false positive probability of this target is found to be <10-6 using the open source vespa code. A joint analysis of transit light curves from K2 and additional ground-based multi-color transit photometry with MuSCAT on the Okayama 1.88 m telescope gives an orbital period of P = 8.266902 ± 0.000070 d and consistent transit depths of Rp/R⋆ ∼ 0.035 or (Rp/R⋆)2 ∼ 0.0012. The transit depth corresponds to a planetary radius of R_p = 3.59_{-0.39}^{+0.44} R_{oplus }, indicating that EPIC 211525389 b is a short-period Neptune-sized planet. Radial velocities of the host star, obtained with the Subaru HDS, lead to a 3 σ upper limit of 90 M⊕ (0.00027 M⊙) on the mass of EPIC 211525389 b, confirming its planetary nature. We expect this planet, newly named K2-105 b, to be the subject of future studies to characterize its mass, atmosphere, and spin-orbit (mis)alignment, as well as investigate the possibility of additional planets in the system.

  11. Secondary precious metal enrichment by steam-heated fluids in the Crofoot-Lewis hot spring gold-silver deposit and relation to paleoclimate

    USGS Publications Warehouse

    Ebert, S.W.; Rye, R.O.

    1997-01-01

    controlled largely by basin and range fractures and a high geothermal gradient with H2S for Au complexing derived from organic matter in basin sediments. A wet climate resulted in the formation of a large inland lake which provided abundant recharge water for the hydrothermal system. A fluctuating water table controlled by changing climatic conditions enabled steam-heated acid sulfate fluids to overprint lower grade mineralization resulting in ore-grade precious metal enrichment.

  12. Corrosion Resistances of Iron-Based Amorphous Metals with Yttrium and Tungsten Additions in Hot Calcium Chloride Brine & Natural Seawater: Fe48Mo14CR15Y2C15B6 and Variants

    SciTech Connect

    Farmer, J; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Yang, N; Blue, C; Peter, W; Payer, J; Perepezko, J; Hildal, K; Branagan, D J; Beardsley, M B; Aprigliano, L

    2006-10-12

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of stainless steels and Ni-based Alloy C-22 (UNS No. N06022), based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Electrochemical studies of the passive film stability of SAM1651 are reported here. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). Yttrium-containing SAM1651, also known as SAM7 (Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0}), has a critical cooling rate (CCR) of approximately 80 Kelvin per second, while yttrium-free SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) has a higher critical cooling rate of approximately 600 Kelvin per second. SAM1651's low CCR enables it to be rendered as a completely amorphous material in practical materials processes. While the yttrium enables a low CCR to be achieved, it makes the material relatively difficult to atomize, due to increases in melt viscosity. Consequently, the powders have irregular shape, which makes pneumatic conveyance during thermal spray deposition difficult. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying, due to the formation of deleterious intermetallic phases which depletes the matrix of key alloy elements, whereas SAM1651 can be applied as coatings with the same corrosion resistance as a fully-dense completely amorphous melt-spun ribbon, provided that its amorphous

  13. Hot Forming With Electron-Beam Welder

    NASA Technical Reports Server (NTRS)

    Dobson, R. K.; Whiffen, E. L.

    1984-01-01

    Hot forming to restore size and shape of thin metal parts done with electron-beam welder. Work-piece heated in scanning defocused electron beam rather than conventional heat-treating furnace. Technique proved successful in straightening some thin flanges of nickel alloy and titanium.

  14. Solutions for Hot Situations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    From the company that brought the world an integral heating and cooling food service system after originally developing it for NASA's Apollo Program, comes yet another orbital offshoot: a product that can be as thin as paper and as strong as steel. Nextel Ceramic Textiles and Composites from 3M Company offer space-age protection and innovative solutions for hot situations, ranging from NASA to NASCAR. With superior thermal protection, Nextel fabrics, tape, and sleevings outperform other high temperature textiles such as aramids, carbon, glass, and quartz, permitting engineers and manufacturers to handle applications up to 2,500 F (1,371 C). The stiffness and strength of Nextel Continuous Ceramic Fibers make them a great match for improving the rigidity of aluminum in metal matrix composites. Moreover, the fibers demonstrate low shrinkage at operating temperatures, which allow for the manufacturing of a dimensionally stable product. These novel fibers also offer excellent chemical resistance, low thermal conductivity, thermal shock resistance, low porosity, and unique electrical properties.

  15. Hot stars in globular clusters.

    NASA Astrophysics Data System (ADS)

    Moehler, S.

    Globular clusters are ideal laboratories to study the evolution of low-mass stars. In this review, I shall concentrate on two types of hot stars observed in globular clusters: horizontal branch stars and UV bright stars. The third type, the white dwarfs, are covered by Bono in this volume. While the morphology of the horizontal branch correlates strongly with metallicity, it has been known for a long time that one parameter is not sufficient to describe the diversity of observed horizontal branch morphologies. A veritable zoo of candidates for this elusive ``2{nd} parameter'' has been suggested over the past decades, and the most prominent ones will be briefly discussed here. Adding to the complications, diffusion is active in the atmospheres of hot horizontal branch stars, which makes their analysis much more diffcult. The latest twist along the horizontal branch was added by the recent discovery of an extension to hotter temperatures and fainter magnitudes, the so-called ``blue hook''. The evolutionary origin of these stars is still under debate. I shall also give a brief overview of our current knowledge about hot UV bright stars and use them to illustrate the adverse effects of selection bias.

  16. Method for producing metallic microparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-06-29

    Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.

  17. Aluminum-based hot carrier plasmonics

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Munday, Jeremy N.

    2017-01-01

    Aluminum has recently arisen as an excellent alternative plasmonic material due to its tunability, low optical loss, and CMOS compatibility. However, its use in optoelectronic applications has been limited due to Al oxidation. Herein, we report a semiconductor-free aluminum hot carrier device that exploits the self-terminating oxidation to create an interface barrier for high performance metal-insulator-transparent conducting oxide devices. We find a 300% enhancement of the responsivity compared to similarly reported Au-based devices, resulting in a responsivity up to ˜240 nA/W, and a clear dependence of the open-circuit voltage on incident photon energy. We show that further improvement can be obtained by coupling to plasmonic modes of a metal-insulator-metal structure composed of a nanowire array adjacent to a thin aluminum film, increasing light absorption by a factor of three and enabling tunability of the hot carrier response for improved device performance.

  18. Hot techniques for tonsillectomy.

    PubMed

    Scott, A

    2006-11-01

    (1) Some patients experience pain and bleeding after a standard or extracapsular tonsillectomy. (2) Evidence suggests that none of the hot tonsillectomy techniques offers concurrent reductions in intra- and post-operative bleeding and pain, compared with traditional cold-steel dissection with packs or ties. (3) Little information is available on the cost effectiveness of the hot techniques. (4) Diathermy is likely to remain the most commonly practised hot tonsillectomy technique.

  19. Crack-Free, Nondistorting Can For Hot Isostatic Pressing

    NASA Technical Reports Server (NTRS)

    Juhas, John J.

    1991-01-01

    New method of canning specimens made of composites of arc-sprayed and plasma-sprayed tape reduces outgassing and warping during hot isostatic pressing. Produces can having reliable, crack-free seal and thereby helps to ensure pressed product of high quality. Specimen placed in ring of refractory metal between two face sheets, also of refractory metal. Assembly placed in die in vacuum hot press, where simultaneously heated and pressed until plates become diffusion-welded to ring, forming sealed can around specimen. Specimen becomes partially densified, and fits snugly within can. Ready for further densification by hot isostatic pressing.

  20. The effect of hot electrons and surface plasmons on heterogeneous catalysis.

    PubMed

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-29

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal-semiconductor, and metal-insulator-metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles.

  1. The effect of hot electrons and surface plasmons on heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-01

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal-semiconductor, and metal-insulator-metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles.

  2. The nature of hot electrons generated by exothermic catalytic reactions

    NASA Astrophysics Data System (ADS)

    Nedrygailov, Ievgen I.; Park, Jeong Young

    2016-02-01

    We review recent progress in studies of the nature of hot electrons generated in metal nanoparticles and thin films on oxide supports and their role in heterogeneous catalysis. We show that the creation of hot electrons and their transport across the metal-oxide interface is an inherent component of energy dissipation accompanying catalytic and photocatalytic surface reactions. The intensity of hot electron flow is well correlated with turnover rates of corresponding reactions. We also show that controlling the flow of hot electrons crossing the interface can lead to the control of chemical reaction rates. Finally, we discuss perspectives of hot-electron-mediated surface chemistry that promise the capability to drive catalytic reactions with enhanced efficiency and selectivity through electron-mediated, non-thermal processes.

  3. Thermal Ionization at Hot Metal Surfaces

    DTIC Science & Technology

    1958-09-01

    magnetically operated shut- ter was at H. The positive ions were drawn into the region between Plate E end the drawI"-out plate ,a:-.slight~~ly led poa~ie...ricated from nonmagnetic stainless steel sheet. The magnetically actuated shutter devised to instantaneously inter- rupt the atomic beam was operated by...separately in Fig. 3, and connected -- ready for insertion into the mass spectrometer -- in Fig 4. The magnetically operated shutter assembly is not shown

  4. Alternative Metal Hot Cutting Operations for Opacity

    DTIC Science & Technology

    2014-11-01

    propadiene (MAPP) and propane. The alternative fuel is created via plasma gasification, where the liquid industrial waste (e.g. ethylene glycol , a...generation of the alternative fuel is created from virgin methanol instead of the original virgin ethylene glycol . The reason for this switch was because...Industry Day, Tacoma, WA. 2.2 TECHNOLOGY DEVELOPMENT Prior to this project, a separate study (IDR also funded by NESDI) investigated various types

  5. EVOLUTION OF OHMICALLY HEATED HOT JUPITERS

    SciTech Connect

    Batygin, Konstantin; Stevenson, David J.; Bodenheimer, Peter H.

    2011-09-01

    We present calculations of thermal evolution of hot Jupiters with various masses and effective temperatures under ohmic dissipation. The resulting evolutionary sequences show a clear tendency toward inflated radii for effective temperatures that give rise to significant ionization of alkali metals in the atmosphere, compatible with the trend of the data. The degree of inflation shows that ohmic dissipation along with the likely variability in heavy element content can account for all of the currently detected radius anomalies. Furthermore, we find that in the absence of a massive core, low-mass hot Jupiters can overflow their Roche lobes and evaporate on Gyr timescales, possibly leaving behind small rocky cores.

  6. Evolution of Hot Gas in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Mathews, William G.

    2004-01-01

    This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.

  7. Hot cracking during welding and casting

    NASA Astrophysics Data System (ADS)

    Cao, Guoping

    Aluminum welds are susceptible to liquation cracking in the partially melted zone (PMZ). Using the multicomponent Scheil model, curves of temperature vs. fraction solid (T-fS) during solidification were calculated for the PMZ and weld metals (WMs). These curves were used to predict the crack susceptibility by checking if the harmful condition of WM fS > PMZ fS exists during PMZ solidification and reduce the susceptibility by minimizing this condition. This approach was tested against full-penetration welds of alloys 7075 and 2024 and it can be used to guide the selection or development of filler metals. Liquation cracking in the PMZ in welds of Al-Si cast alloys was also investigated. The crack susceptibility was evaluated by circular-patch test, and full-penetration welds made with filler metals 1100, 4043, 4047 and 5356. Liquation cracking was significant with filler metals 1100 and 5356 but slight with filler metals 4043 and 4047. In all welds, liquation cracks were completely backfilled, instead of open as in full-penetration welds of wrought alloys 2219 and 6061. The T-fS curves showed that alloy A357 has a much higher fraction liquid for backfilling before PMZ solidification was essentially over. Hot tearing in Mg-xAl-yCa alloys was studied by constrained rod casting (CRC) in a steel mold. The hot tearing susceptibility decreased significantly with increasing Ca content (y) but did not change much with the Al content (x). An instrumented CRC with a steel mold was developed to detect the onset of hot tearing. The secondary phases, eutectic content, solidification path, and freezing range were examined. Hot tearing in Mg-Al-Sr alloys was also studied by CRC in a steel mold. With Mg-(4,6,8)Al-1.5Sr alloys, the hot tearing susceptibility decreased significantly with increasing Al content. With Mg-(4,6,8)Al-3Sr alloys, the trend was similar but not as significant. At the same Al content, the hot tearing susceptibility decreased significantly with increasing Sr

  8. The Earth's Hot Spots.

    ERIC Educational Resources Information Center

    Vink, Gregory E.; And Others

    1985-01-01

    Hot spots are isolated areas of geologic activity where volcanic eruptions, earthquakes, and upwelling currents occur far from plate boundaries. These mantle plumes are relatively stable and crustal plates drift over them. The nature and location of hot spots (with particular attention to the Hawaiian Islands and Iceland) are discussed. (DH)

  9. Hot Spot at Yellowstone

    ERIC Educational Resources Information Center

    Dress, Abby

    2005-01-01

    Within this huge national park (over two million acres spread across Wyoming, Montana, and Idaho) are steaming geysers, hot springs, bubbling mudpots, and fumaroles, or steam vents. Drives on the main roads of Yellowstone take tourists through the major hot attractions, which also include Norris Geyser Basin, Upper and Lower Geyser Basin, West…

  10. Hot Spot at Yellowstone

    ERIC Educational Resources Information Center

    Dress, Abby

    2005-01-01

    Within this huge national park (over two million acres spread across Wyoming, Montana, and Idaho) are steaming geysers, hot springs, bubbling mudpots, and fumaroles, or steam vents. Drives on the main roads of Yellowstone take tourists through the major hot attractions, which also include Norris Geyser Basin, Upper and Lower Geyser Basin, West…

  11. The Earth's Hot Spots.

    ERIC Educational Resources Information Center

    Vink, Gregory E.; And Others

    1985-01-01

    Hot spots are isolated areas of geologic activity where volcanic eruptions, earthquakes, and upwelling currents occur far from plate boundaries. These mantle plumes are relatively stable and crustal plates drift over them. The nature and location of hot spots (with particular attention to the Hawaiian Islands and Iceland) are discussed. (DH)

  12. 6. HOT AIR PORTION OF DAMPERS. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HOT AIR PORTION OF DAMPERS. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  13. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene

    NASA Astrophysics Data System (ADS)

    Sierra, Juan F.; Neumann, Ingmar; Costache, Marius V.; Valenzuela, Sergio O.

    2015-06-01

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage VNL across the remaining (detector) leads. Due to the nonlocal character of the measurement, VNL is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and VNL, VNL ~ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying VNL as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.

  14. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene.

    PubMed

    Sierra, Juan F; Neumann, Ingmar; Costache, Marius V; Valenzuela, Sergio O

    2015-06-10

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage V(NL) across the remaining (detector) leads. Due to the nonlocal character of the measurement, V(NL) is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and V(NL), V(NL) ∼ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying V(NL) as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.

  15. METAL SURFACE TREATMENT

    DOEpatents

    Eubank, L.D.

    1958-08-12

    Improved flux baths are described for use in conjunction with hot dipped coatings for uranium. The flux bath consists of molten alkali metal, or alkaline earth metal halides. One preferred embodiment comprises a bath containing molten KCl, NaCl, and LiCl in proportions approximating the triple eutectic.

  16. What Is Hot Yoga (Bikram)?

    MedlinePlus

    Healthy Lifestyle Consumer health What is hot yoga? Answers from Edward R. Laskowski, M.D. Hot yoga is ... 30, 2015 Original article: http://www.mayoclinic.org/healthy-lifestyle/consumer-health/expert-answers/hot-yoga/faq-20058057 . ...

  17. Hot ice computer

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    2009-12-01

    We experimentally demonstrate that supersaturated solution of sodium acetate, commonly called ‘hot ice’, is a massively-parallel unconventional computer. In the hot ice computer data are represented by a spatial configuration of crystallization induction sites and physical obstacles immersed in the experimental container. Computation is implemented by propagation and interaction of growing crystals initiated at the data-sites. We discuss experimental prototypes of hot ice processors which compute planar Voronoi diagram, shortest collision-free paths and implement AND and OR logical gates.

  18. Interplay of hot electrons from localized and propagating plasmons.

    PubMed

    Hoang, Chung V; Hayashi, Koki; Ito, Yasuo; Gorai, Naoki; Allison, Giles; Shi, Xu; Sun, Quan; Cheng, Zhenzhou; Ueno, Kosei; Goda, Keisuke; Misawa, Hiroaki

    2017-10-03

    Plasmon-induced hot-electron generation has recently received considerable interest and has been studied to develop novel applications in optoelectronics, photovoltaics and green chemistry. Such hot electrons are typically generated from either localized plasmons in metal nanoparticles or propagating plasmons in patterned metal nanostructures. Here we simultaneously generate these heterogeneous plasmon-induced hot electrons and exploit their cooperative interplay in a single metal-semiconductor device to demonstrate, as an example, wavelength-controlled polarity-switchable photoconductivity. Specifically, the dual-plasmon device produces a net photocurrent whose polarity is determined by the balance in population and directionality between the hot electrons from localized and propagating plasmons. The current responsivity and polarity-switching wavelength of the device can be varied over the entire visible spectrum by tailoring the hot-electron interplay in various ways. This phenomenon may provide flexibility to manipulate the electrical output from light-matter interaction and offer opportunities for biosensors, long-distance communications, and photoconversion applications.Plasmon-induced hot electrons have potential applications spanning photodetection and photocatalysis. Here, Hoang et al. study the interplay between hot electrons generated by localized and propagating plasmons, and demonstrate wavelength-controlled polarity-switchable photoconductivity.

  19. Hot Carrier Extraction from Multilayer Graphene.

    PubMed

    Urcuyo, Roberto; Duong, Dinh Loc; Sailer, Patrick; Burghard, Marko; Kern, Klaus

    2016-11-09

    Hot carriers in semiconductor or metal nanostructures are relevant, for instance, to enhance the activity of oxide-supported metal catalysts or to achieve efficient photodetection using ultrathin semiconductor layers. Moreover, rapid collection of photoexcited hot carriers can improve the efficiency of solar cells, with a theoretical maximum of 85%. Because of the long lifetime of secondary excited electrons, graphene is an especially promising two-dimensional material to harness hot carriers for solar-to-electricity conversion. However, the photoresponse of thus far realized graphene photoelectric devices is mainly governed by thermal effects, which yield only a very small photovoltage. Here, we report a Gr-TiOx-Ti heterostructure wherein the photovoltaic effect is predominant. By doping the graphene, the open circuit voltage reaches values up to 0.30 V, 2 orders of magnitude larger than for devices relying upon the thermoelectric effect. The photocurrent turned out to be limited by trap states in the few-nanometer-thick TiOx layer. Our findings represent a first valuable step toward the integration of graphene into third-generation solar cells based upon hot carrier extraction.

  20. Computational simulation of hot composites structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Murthy, P. L. N.; Singhal, S. N.

    1991-01-01

    Three different computer codes developed in-house are described for application to hot composite structures. These codes include capabilities for: (1) laminate behavior (METCAN); (2) thermal/structural analysis of hot structures made from high temperature metal matrix composites (HITCAN); and (3) laminate tailoring (MMLT). Results for select sample cases are described to demonstrate the versatility as well as the application of these codes to specific situations. The sample case results show that METCAN can be used to simulate cyclic life in high temperature metal matrix composites; HITCAN can be used to evaluate the structural performance of curved panels as well as respective sensitivities of various nonlinearities, and MMLT can be used to tailor the fabrication process in order to reduce residual stresses in the matrix upon cool-down.

  1. Smokin Hot Galaxy animation

    NASA Image and Video Library

    2006-03-16

    This infrared image from NASA Spitzer Space Telescope shows a galaxy that appears to be sizzling hot, with huge plumes of smoke swirling around it. The galaxy is known as Messier 82 or the Cigar galaxy.

  2. Saturn's Hot Plasma Explosions

    NASA Image and Video Library

    This animation based on data obtained by NASA's Cassini Spacecraft shows how the "explosions" of hot plasma on the night side (orange and white) periodically inflate Saturn's magnetic field (white ...

  3. Modelling hot air balloons

    NASA Astrophysics Data System (ADS)

    Brimicombe, N. W.

    1991-07-01

    Hot air balloons can be modelled in a number of different ways. The most satisfactory, but least useful model is at a microscopic level. Macroscopic models are easier to use but can be very misleading.

  4. Saturn Hot Plasma Explosions

    NASA Image and Video Library

    2010-12-14

    This frame from an animation based on data obtained by NASA Cassini spacecraft shows how the explosions of hot plasma on the night side orange and white periodically inflate Saturn magnetic field white lines.

  5. In hot water, again

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Watkins, Sheila

    2009-10-01

    Regarding Norman Willcox's letter about the problems of using solar panels for domestic heating (August p21), I also have thermal solar panels installed. However, contrary to his disappointing experience, I have found that they provide my family with a useful amount of hot water. In our system, the solar energy is used to heat a store of water, which has no other source of heat. Mains-pressure cold water passes through this store via a heat exchanger, removing heat from it and warming up. If the water becomes warm enough, an unpowered thermostatic valve allows it to go straight to the hot taps (mixing it with cold if it is too hot). However, if it is not hot enough, then the water is directed first through our previously installed gaspowered combination boiler and then to the taps.

  6. Hot Extrusion of Aluminum Chips

    NASA Astrophysics Data System (ADS)

    Tekkaya, A. Erman; Güley, Volkan; Haase, Matthias; Jäger, Andreas

    The process of hot extrusion is a promising approach for the direct recycling of aluminum machining chips to aluminum profiles. The presented technology is capable of saving energy, as remelting of aluminum chips can be avoided. Depending on the deformation route and process parameters, the chip-based aluminum extradates showed mechanical properties comparable or superior to cast aluminum billets extruded under the same conditions. Using different metal flow schemes utilizing different extrusion dies the mechanical properties of the profiles extruded from chips can be improved. The energy absorption capacity of the profiles the rectangular hollow profiles extruded from chips and as-cast billets were analyzed using the drop hammer test set-up. The formability of the profiles extruded from chips and as-cast material were compared using tube bending tests in a three-roller-bending machine.

  7. Hot ammonia in Orion

    SciTech Connect

    Morris, M.; Palmer, P.; Zuckerman, B.

    1980-04-01

    Ten inversion lines from nonmetastable rotational levels of NH/sub 3/ have been detected in the Kleinmann-Low (KL) nebula in Orion. Six of these lines were previoulsy undetected. The emission arises from levels which have energies up to 1150 K above the ground state, indicating that the NH/sub 3/ is immersed in a hot, dense medium. Three well-defined kinematical components within KL are evident in emission from NH/sub 3/ and other molecules. The emission from hot NH/sub 3/ is dominated by the component having V/sub LSR/=5.2 km s/sup -1/ and ..delta..V =10--12 km s/sup -1/. A non-LTE analysis of NH/sub 3/ emission from this ''hot core'' component reveals that the minimum particle density in this source is approx.5 x 10 cm/sup -3/, and that the kinetic temperature is > or approx. =220 K. The diameter of the hot core source is probably within a factor of 2 to 6'' (5 x 10/sup 16/ cm). The hot core is undoubtedly associated with one of the compact infrared sources in KL, and we suggest on the basis of position and velocity coincidences that it is IRc2. The hot core appears to contain about one Jeans mass at the inferred temperature and density. We therefore suggest that this object is a very young protostar which is still in the throes of its initial collapse.

  8. Geothermal hot water system

    SciTech Connect

    Dittell, E.W.

    1983-05-10

    Geothermal hot water system including a hot water tank and a warm water tank which are heated independently of each other by a close loop freon system. The closed loop freon system includes a main condenser which heats water for the warm water tank and a super-heated condenser which heats water for the hot water tank, and where the freon passes through a water evaporator which is heated by water such as from a well or other suitable source. The water evaporator in the closed loop freon system passes the water through but no environmental change to the water. An electrical circuit including aquastats in the warm water tank connected therethrough controls operation of the closed loop freon system including respective pumps on the super-heated condenser and main condenser for pumping water. Pumps pump water through the main condenser for the warm tank and through the super-heated condenser for the hot tank. The system provides for energy conservation in that the head pressure of the compressor is kept in the lower operating ranges as determined by the discharge flow of the main condenser which varies by the head pressure and temperature flow control which varies by temperature. The geothermal hot water system uses a least amount of energy in heating the water in the hot tank as well as the warm tank.

  9. Hot carrier metamaterial detectors and energy converters

    NASA Astrophysics Data System (ADS)

    Krayer, Lisa; Munday, Jeremy N.

    Metamaterials can be used to manipulate the flow of light in ways not typically available with traditional materials. Beyond their optical properties, metamaterials can be used as the basis for optoelectronic devices through the incorporation of a metal-semiconductor interface. The absorbed radiation in the metal can excite surface plasmons, which nonradiatively decay into hot electrons or holes that can be injected into the base semiconductor and contribute to photocurrent generation. In this talk, we will present our latest work on metamaterial photo-detectors and solar energy converters.

  10. Planar Hot-Electron Photodetection with Tamm Plasmons.

    PubMed

    Zhang, Cheng; Wu, Kai; Giannini, Vincenzo; Li, Xiaofeng

    2017-02-28

    There is an increasing interest in harvesting photoejected hot-electrons for sensitive photodetectors, which have highly tunable detection wavelengths controlled by structural engineering rather than the classic doped semiconductors. However, the widely employed metallic nanostructures that excite surface plasmons (SPs) to enhance the photoemission of hot-electrons are usually complex with a high fabrication challenge. Here, we present a purely planar hot-electron photodetector based on Tamm plasmons (TPs) by introducing a distributed Bragg reflector integrated with hot-electron collection layers in metal/semiconductor/metal configuration. Results show that the light incidence can be strongly confined in the localized region between the top metal and the adjacent dielectric layer due to the excitation of TP resonance so that more than 87% of the light incidence can be absorbed by the top metal layer. This enables a strong and unidirectional photocurrent and a photoresponsivity that can even be higher than that of the conventional nanostructured system. Moreover, the planar TP system shows a narrow-band resonance with high tunability, good resistance against the change of the incident angle, and the possibility for extended functionalities. The proposed TP-based planar configuration significantly simplifies the conventional SP-based systems and opens the pathway for high-performance, low-cost, hot-electron photodetection.

  11. Theory of hot electron photoemission from graphene

    NASA Astrophysics Data System (ADS)

    Ang, Lay Kee; Liang, Shijun

    Motivated by the development of Schottky-type photodetectors, some theories have been proposed to describe how the hot carriers generated by the incident photon are transported over the Schottky barrier through the internal photoelectric effect. One of them is Fowler's law proposed as early as 1931, which studied the temperature dependence of photoelectric curves of clean metals. This law is very successful in accounting for mechanism of detecting photons of energy lower than the band gap of semiconductor based on conventional metal/semiconductor Schottky diode. With the goal of achieving better performance, graphene/silicon contact-based- graphene/WSe2 heterostructure-based photodetectors have been fabricated to demonstrate superior photodetection efficiency. However, the theory of how hot electrons is photo-excited from graphene into semiconductor remains unknown. In the current work, we first examine the photoemission process from suspended graphene and it is found that traditional Einstein photoelectric effect may break down for suspended graphene due to the unique linear band structure. Furthermore, we find that the same conclusion applies for 3D graphene analog (e.g. 3D topological Dirac semi-metal). These findings are very useful to further improve the performance of graphene-based photodetector, hot-carrier solar cell and other kinds of sensor.

  12. HOT CELL BUILDING, TRA632, INTERIOR. DETAIL OF HOT CELL NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. DETAIL OF HOT CELL NO. 2 SHOWS MANIPULATION INSTRUMENTS AND SHIELDED OPERATING WINDOWS. PENETRATIONS FOR OPERATING INSTRUMENTS GO THROUGH SHIELDING ABOVE WINDOWS. CONDUIT FOR UTILITIES AND CONTROLS IS BEHIND METAL CABINET BELOW WINDOWS NEAR FLOOR. CAMERA FACES WEST. WARNING SIGN LIMITS FISSILE MATERIAL TO SPECIFIED NUMBER OF GRAMS OF URANIUM AND PLUTONIUM. INL NEGATIVE NO. HD46-28-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Development of iron-aluminide hot-gas filters

    SciTech Connect

    Tortorelli, P.F.; Wright, I.G.; Judkins, R.R.

    1996-06-01

    Removal of particles from hot synthesis gas produced by coal gasification is vital to the success of these systems. In Integrated [Coal] Gasification Combined Cycle systems, the synthesis gas is the fuel for gas turbines. To avoid damage to turbine components, it is necessary that particles be removed from the fuel gas prior to combustion and introduction into the turbine. Reliability and durability of the hot-gas filtering devices used to remove the particles is, of course, of special importance. Hot-gas filter materials include both ceramics and metals. Numerous considerations must be made in selecting materials for these filters. Constituents in the hot gases may potentially degrade the properties and performance of the filters to the point that they are ineffective in removing the particles. Very significant efforts have been made by DOE and others to develop effective hot-particle filters and, although improvements have been made, alternative materials and structures are still needed.

  14. The hot list strategy.

    SciTech Connect

    Wos, L.; Pieper, G. W.; Mathematics and Computer Science

    1999-01-01

    Experimentation strongly suggests that, for attacking deep questions and hard problems with the assistance of an automated reasoning program, the more effective paradigms rely on the retention of deduced information. A significant obstacle ordinarily presented by such a paradigm is the deduction and retention of one or more needed conclusions whose complexity sharply delays their consideration. To mitigate the severity of the cited obstacle, I formulated and feature in this article the hot list strategy. The hot list strategy asks the researcher to choose, usually from among the input statements characterizing the problem under study, one or more statements that are conjectured to play a key role for assignment completion. The chosen statements--conjectured to merit revisiting, again and again--are placed in an input list of statements, called the hot list. When an automated reasoning program has decided to retain a new conclusion C--before any other statement is chosen to initiate conclusion drawing--the presence of a nonempty hot list (with an appropriate assignment of the input parameter known as heat) causes each inference rule in use to be applied to C together with the appropriate number of members of the hot list. Members of the hot list are used to complete applications of inference rules and not to initiate applications. The use of the hot list strategy thus enables an automated reasoning program to briefly consider a newly retained conclusion whose complexity would otherwise prevent its use for perhaps many CPU-hours. To give evidence of the value of the strategy, I focus on four contexts: (1) dramatically reducing the CPU time required to reach a desired goal, (2) finding a proof of a theorem that had previously resisted all but the more inventive automated attempts, (3) discovering a proof that is more elegant than previously known, and (4) answering a question that had steadfastly eluded researchers relying on an automated reasoning program. I also

  15. HotRegion: a database of predicted hot spot clusters

    PubMed Central

    Cukuroglu, Engin; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion. PMID:22080558

  16. Hot-carrier-induced linear drain current and threshold voltage degradation for thin layer silicon-on-insulator field P-channel lateral double-diffused metal-oxide-semiconductor

    SciTech Connect

    Zhou, Xin; Qiao, Ming; He, Yitao; Li, Zhaoji; Zhang, Bo

    2015-11-16

    Hot-carrier-induced linear drain current (I{sub dlin}) and threshold voltage (V{sub th}) degradations for the thin layer SOI field p-channel lateral double-diffused MOS (pLDMOS) are investigated. Two competition degradation mechanisms are revealed and the hot-carrier conductance modulation model is proposed. In the channel, hot-hole injection induced positive oxide trapped charge and interface trap gives rise to the V{sub th} increasing and the channel conductance (G{sub ch}) decreasing, then reduces I{sub dlin}. In the p-drift region, hot-electron injection induced negative oxide trapped charge enhances the conductance of drift doping resistance (G{sub d}), and then increases I{sub dlin}. Consequently, the eventual I{sub dlin} degradation is controlled by the competition of the two mechanisms due to conductance modulation in the both regions. Based on the model, it is explained that the measured I{sub dlin} anomalously increases while the V{sub th} is increasing with power law. The thin layer field pLDMOS exhibits more severe V{sub th} instability compared with thick SOI layer structure; as a result, it should be seriously evaluated in actual application in switching circuit.

  17. Development of hot spot fixer (HSF)

    NASA Astrophysics Data System (ADS)

    Kotani, Toshiya; Kyoh, Suigen; Kobayashi, Sachiko; Inazu, Takatoshi; Ikeuchi, Atsuhiko; Urakawa, Yukihiro; Inoue, Soichi; Morita, Etsuya; Klaver, Simon; Horiuchi, Takumi; Peeters, Johan; Kuramoto, Satoshi

    2006-03-01

    A new design for manufacturability (DfM) scheme with a lithography compliance check (LCC) and hot spot fixing (HSF) flow has been developed to guarantee design compliance for OPC and RET by combining lithography simulator, hot spot detector and layout modification tool. Hot spots highlighted by the LCC flow are removed by the HSF flow following modification rule consists of "Line-Sizing" (LS) and "Space-Sizing (SS)" that are resize value of line-width and space-width for the original pattern. In order to meet layout modification requirements at the pre- and post- tape out (T.O.) stages, the priorities individually set for the modification rules and the design rules, which provides flexibly to achieve the modification scheme desirable at each stage. For handling large data at a fast speed, Layout Analyzer (LA) and Layout Optimizer (LO) engines were combined with the HSF flow. LA is used to reconstruct the original hierarchy structure, clips off small parts of the layout that include hot spots from the original layout and sends those to LO in order to reduce the computational time and resource. LO optimizes the clipped off layout following the prioritized modification- and design-rules. The new DfM scheme was found to be quite effective for hot spot cleaning for 65nm node and beyond, since it was demonstrated that the HSF flow improved the lithography margin for the metal layer of 65nm node full-chip data by reducing number of hot spots to below 0.1% of original within about 12 hours, using 1CPU of commercially available workstation.

  18. Dispersants displace hot oiling

    SciTech Connect

    Wash, R.

    1984-02-01

    Laboratory experiments and field testing of dispersants in producing wells have resulted in development of 2 inexpensive paraffin dispersant packages with a broad application range, potential for significant savings over hot oiling, and that can be applied effectively by both continuous and batch treating techniques. The 2 dispersants are soluble in the carrier solvent (one soluble in oil, one in water); are able to readily disperse the wax during a hot flask test conducted in a laboratory; and leave the producing interval water wet. Field data on the 2 dispersants are tabulated, demonstrating their efficacy.

  19. Hot Oil Removes Wax

    NASA Technical Reports Server (NTRS)

    Herzstock, James J.

    1991-01-01

    Mineral oil heated to temperature of 250 degrees F (121 degrees C) found effective in removing wax from workpieces after fabrication. Depending upon size and shape of part to be cleaned of wax, part immersed in tank of hot oil, and/or interior of part flushed with hot oil. Pump, fittings, and ancillary tooling built easily for this purpose. After cleaning, innocuous oil residue washed off part by alkaline aqueous degreasing process. Serves as relatively safe alternative to carcinogenic and environmentally hazardous solvent perchloroethylene.

  20. Hot-electron-induced light amplification

    NASA Astrophysics Data System (ADS)

    Braun, Kai; Wang, Xiao; Zhang, Dai; Meixner, Alfred J.

    2016-10-01

    Electromagnetic coupling between resonant plasmonic oscillations of two closely spaced noble metal particles can lead to a strongly enhanced optical near field in the cavity formed by the gap between the metal particles. However, discoveries in quantum plasmonics show that an upper limit is imposed to the field enhancement by the intrinsic nonlocality of the dielectric response of the metal and the tunneling of the coherently oscillating conduction electrons through the gap. Here, we introduce and experimentally demonstrate optical amplification by radiative relaxation of hot electrons in a tunneling junction of a scanning tunneling microscope forming an extremely small point light source. When electrons tunnel from the sample to the tip, holes are left behind. These can be repopulated by hot electrons induced by the laser-driven plasmon oscillation on the metal surfaces enclosing the cavity and lead to a much higher electron to photon conversion efficiency. The dynamics of this system can be described by rate equations similar to laser equations. They show that the repopulation process can be efficiently stimulated by the gap mode's near field. Our results demonstrate how optical enhancement inside the plasmonic cavity can be further increased by a stronger localization via tunneling through molecules.

  1. The Occurrence Rate of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Rampalli, Rayna; Catanzarite, Joseph; Batalha, Natalie M.

    2017-01-01

    As the first kind of exoplanet to be discovered, hot Jupiters have always been objects of interest. Despite being prevalent in radial velocity and ground-based surveys, they were found to be much rarer based on Kepler observations. These data show a pile-up at radii of 9-22 Rearth and orbital periods of 1-10 days. Computing accurate occurrence rates can lend insight into planet-formation and migration-theories. To get a more accurate look, the idea of reliability was introduced. Each hot Jupiter candidate was assigned a reliability based on its location in the galactic plane and likelihood of being a false positive. Numbers were updated if ground-based follow-up indicated a candidate was indeed a false positive. These reliabilities were introduced into an occurrence rate calculation and yielded about a 12% decrease in occurrence rate for each period bin examined and a 25% decrease across all the bins. To get a better idea of the cause behind the pileup, occurrence rates based on parent stellar metallicity were calculated. As expected from previous work, higher metallicity stars yield higher occurrence rates. Future work includes examining period distributions in both the high metallicity and low metallicity sample for a better understanding and confirmation of the pile-up effect.

  2. Heavy Metal Factory

    NASA Astrophysics Data System (ADS)

    Löbling, Lisa

    2017-07-01

    The metal enrichment in the cosmic circuit of matter is dominated by the yields of asymptotic giant branch (AGB) nucleosynthesis, that are blown back into the interstellar medium just before these stars die as white dwarfs. To establish constraints on AGB processes, spectral analyses of hot post-AGB stars are mandatory. These show that such stars are heavy metal factories due to the AGB s-process. The Virtual Observatory service TheoSSA offers access to synthetic stellar spectra calculated with our Tübingen non-local thermodynamic equilibrium model-atmosphere package that are suitable for the analysis of hot post-AGB stars.

  3. APPARATUS FOR HIGH PURITY METAL RECOVERY

    DOEpatents

    Magel, T.T.

    1959-02-10

    An apparatus is described for preparing high purity metal such as uranium, plutonium and the like from an impure mass of the same metal. The apparatus is arranged so that the impure metal is heated and swept by a stream of hydrogen gas bearing a halogen such as iodine. The volatiie metal halide formed is carried on to a hot filament where the metal halide is decomposed and the molten high purity metal is collected in a rceeiver below

  4. What's Hot? What's Not?

    ERIC Educational Resources Information Center

    Buczynski, Sandy

    2006-01-01

    When Goldilocks finds three bowls of porridge at different temperatures in the three bears' house, she accurately assesses the situation and comes up with one of the most recognizable lines in children's literature," This porridge is too hot; this porridge is too cold; aahh, this porridge is just right!" Goldilocks' famous line is a perfect…

  5. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  6. Hot off the Press

    ERIC Educational Resources Information Center

    Brisco, Nicole D.

    2007-01-01

    In the past, the newspaper was one of the world's most used sources of information. Recently, however, its use has declined due to the popularity of cable television and the Internet. Yet the idea of reading the morning paper with a hot cup of coffee holds many warm memories for children who watched their parents in this daily ritual. In this…

  7. Zen Hot Dog Molecules

    ERIC Educational Resources Information Center

    Ryan, Dennis

    2009-01-01

    Substituted cycloalkanes with one branch illustrating each topic in an instructional unit can serve as summaries or reviews in courses of organic chemistry. The hungry Zen master told the hot dog vendor to make him one with everything. You can do the same for your students.

  8. Geodynamics: Hot mantle rising

    NASA Astrophysics Data System (ADS)

    Shorttle, Oliver

    2017-06-01

    The long-term cooling of Earth's mantle is recorded in the declining temperature and volume of its volcanic outpourings over time. However, analyses of 89-million-year-old lavas from Costa Rica suggest that extremely hot mantle still lurks below.

  9. Neptune Hot South Pole

    NASA Image and Video Library

    2007-09-18

    These thermal images show a hot south pole on the planet Neptune. These warmer temperatures provide an avenue for methane to escape out of the deep atmosphere. The images were obtained with the Very Large Telescope in Chile Sept. 1 and 2, 2006.

  10. Hot off the Press

    ERIC Educational Resources Information Center

    Brisco, Nicole D.

    2007-01-01

    In the past, the newspaper was one of the world's most used sources of information. Recently, however, its use has declined due to the popularity of cable television and the Internet. Yet the idea of reading the morning paper with a hot cup of coffee holds many warm memories for children who watched their parents in this daily ritual. In this…

  11. What's Hot? What's Not?

    ERIC Educational Resources Information Center

    Buczynski, Sandy

    2006-01-01

    When Goldilocks finds three bowls of porridge at different temperatures in the three bears' house, she accurately assesses the situation and comes up with one of the most recognizable lines in children's literature," This porridge is too hot; this porridge is too cold; aahh, this porridge is just right!" Goldilocks' famous line is a perfect…

  12. Zen Hot Dog Molecules

    NASA Astrophysics Data System (ADS)

    Ryan, Dennis

    2009-04-01

    Substituted cycloalkanes with one branch illustrating each topic in an instructional unit can serve as summaries or reviews in courses of organic chemistry. The hungry Zen master told the hot dog vendor to make him one with everything. You can do the same for your students.

  13. Hot Charge Carrier Transmission from Plasmonic Nanostructures.

    PubMed

    Christopher, Phillip; Moskovits, Martin

    2017-05-05

    Surface plasmons have recently been harnessed to carry out processes such as photovoltaic current generation, redox photochemistry, photocatalysis, and photodetection, all of which are enabled by separating energetic (hot) electrons and holes-processes that, previously, were the domain of semiconductor junctions. Currently, the power conversion efficiencies of systems using plasmon excitation are low. However, the very large electron/hole per photon quantum efficiencies observed for plasmonic devices fan the hope of future improvements through a deeper understanding of the processes involved and through better device engineering, especially of critical interfaces such as those between metallic and semiconducting nanophases (or adsorbed molecules). In this review, we focus on the physics and dynamics governing plasmon-derived hot charge carrier transfer across, and the electronic structure at, metal-semiconductor (molecule) interfaces, where we feel the barriers contributing to low efficiencies reside. We suggest some areas of opportunity that deserve early attention in the still-evolving field of hot carrier transmission from plasmonic nanostructures to neighboring phases.

  14. The Hot Gaseous Halos of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bregman, J.

    2016-06-01

    In the Milky Way, absorption and emission line measurements of O VII and O VIII show that the halo environment is dominated by a nearly spherical halo of temperature 2 × 10^6 K, metallicity of 0.3-0.5 solar, and with a density decreasing as r^{-3/2}. The mass of the hot gas, estimated through extrapolation to the virial radius, is comparable to the stellar mass, but does not account for the missing mass. The Milky Way hot halo appears to be rotating at about 180 km/s, which is consistent with model expectations, depending on the time of infall. Around massive spiral galaxies, hot halos are seen in emission out to about 70 kpc in the best cases. These show similar gas density laws and metallicities in the range 0.1-0.5 solar. The gas mass is comparable to the stellar mass, but does not account for the missing baryons within the virial radius. If the density law can be extrapolated to about three virial radii, the missing baryons would be accounted for.

  15. Hot Charge Carrier Transmission from Plasmonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Christopher, Phillip; Moskovits, Martin

    2017-05-01

    Surface plasmons have recently been harnessed to carry out processes such as photovoltaic current generation, redox photochemistry, photocatalysis, and photodetection, all of which are enabled by separating energetic (hot) electrons and holes—processes that, previously, were the domain of semiconductor junctions. Currently, the power conversion efficiencies of systems using plasmon excitation are low. However, the very large electron/hole per photon quantum efficiencies observed for plasmonic devices fan the hope of future improvements through a deeper understanding of the processes involved and through better device engineering, especially of critical interfaces such as those between metallic and semiconducting nanophases (or adsorbed molecules). In this review, we focus on the physics and dynamics governing plasmon-derived hot charge carrier transfer across, and the electronic structure at, metal-semiconductor (molecule) interfaces, where we feel the barriers contributing to low efficiencies reside. We suggest some areas of opportunity that deserve early attention in the still-evolving field of hot carrier transmission from plasmonic nanostructures to neighboring phases.

  16. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect

    Venkat Vedula; Tania Bhatia

    2009-04-30

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section

  17. Homing in on Hot Dogs

    NASA Image and Video Library

    2012-08-29

    This image is a portion of the all-sky survey from NASA WISE. It highlights the first of about 1,000 hot DOGs found by the mission magenta circle. Hot DOGs are hot dust-obscured galaxies and are among the most powerful galaxies known.

  18. Evaporation of hot jupiters and hot neptunes

    NASA Astrophysics Data System (ADS)

    Ehrenreich, D.

    2011-02-01

    Among the nearly five hundred extra-solar planets known, almost 30% orbit closer than 0.1 AU from their parent star. We will review the observations and the corresponding models of the evaporation of these `hot jupiters'. The observations started with the discovery made with HST that the planet orbiting HD 209458 has an extended atmosphere of escaping hydrogen. Subsequent observations obtained with HST/STIS and HST/ACS confirm the escape of the gas. Even more, oxygen and carbon have been shown to be present at very high altitude in the upper atmosphere. Observations of other targets like HD 189733 and WASP-12 show that evaporation is a general phenomenon which could contribute to the evolution of planets orbiting close to their parent stars. To interpret these observations, we developed models to quantify the escape rate from the measured occultation depths. Numerous models have also been published to investigate mechanisms which can lead to the estimated escape rate. In general, the high temperature of the upper atmosphere heated by the far and extreme UV combined with the tidal forces allow a very efficient evaporation of the upper atmosphere. We will review the different models and their implications.

  19. Thermoelectric metal comparator determines composition of alloys and metals

    NASA Technical Reports Server (NTRS)

    Stone, C. C.; Walker, D. E.

    1967-01-01

    Emf comparing device nondestructively inspects metals and alloys for conformance to a chemical specification. It uses the Seebeck effect to measure the difference in emf produced by the junction of a hot probe and the junction of a cold contact on the surface of an unknown metal.

  20. The hot chocolate effect

    SciTech Connect

    Crawford, Frank S.

    1982-05-01

    The "hot chocolate effect" was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the ten percent accuracy of the experiments.

  1. Hot Spring Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, María Esperanza; González-Siso, María Isabel

    2013-01-01

    Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S rRNA genes arose. Thereafter, the possibility of cloning and sequencing the total environmental DNA, defined as metagenome, and the study of the genes rescued in the metagenomic libraries and assemblies made it possible to gain a more comprehensive understanding of microbial communities—their diversity, structure, the interactions existing between their components, and the factors shaping the nature of these communities. In the last decade, hot springs have been a source of thermophilic enzymes of industrial interest, encouraging further study of the poorly understood diversity of microbial life in these habitats. PMID:25369743

  2. The hot chocolate effect

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  3. Hot Billet Surface Qualifier

    SciTech Connect

    Tzyy-Shuh Chang

    2007-04-30

    OG Technologies, Inc. (OGT), developed a prototype of a Hot Billet Surface Qualifier (“Qualifier”) based on OGT’s patented HotEye™ technology and other proprietary imaging and computing technologies. The Qualifier demonstrated its ability of imaging the cast billets in line with high definition pictures, pictures capable of supporting the detection of surface anomalies on the billets. The detection will add the ability to simplify the subsequent process and to correct the surface quality issues in a much more timely and efficient manner. This is challenging due to the continuous casting environment, in which corrosive water, temperature, vibration, humidity, EMI and other unbearable factors exist. Each installation has the potential of 249,000 MMBTU in energy savings per year. This represents a cost reduction, reduced emissions, reduced water usage and reduced mill scale.

  4. Hot chocolate effect

    SciTech Connect

    Crawford, F.S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  5. The ''hot'' patella

    SciTech Connect

    Kipper, M.S.; Alazraki, N.P.; Feiglin, D.H.

    1982-01-01

    Increased patellar uptake on bone scans is seen quite commonly but the possible or probable etiologies of this finding have not been previously well described. A review of 100 consecutive bone scans showed that the incidence of bilateral ''hot'' patellae is 15%. Identified etiologies include osteoarthritic degenerative disease (35%), fracture, possible metastatic disease, bursitis, Paget's disease, and osteomyelitis. The value of careful history, physical examination, and radiographs is stressed.

  6. HOT infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Martyniuk, P.; Rogalski, A.

    2013-06-01

    At present, uncooled thermal detector focal plane arrays are successfully used in staring thermal imagers. However, the performance of thermal detectors is modest, they suffer from slow response and they are not very useful in applications requiring multispectral detection. Infrared (IR) photon detectors are typically operated at cryogenic temperatures to decrease the noise of the detector arising from various mechanisms associated with the narrow band gap. There are considerable efforts to decrease system cost, size, weight, and power consumption to increase the operating temperature in so-called high-operating-temperature (HOT) detectors. Initial efforts were concentrated on photoconductors and photoelectromagnetic detectors. Next, several ways to achieve HOT detector operation have been elaborated including non-equilibrium detector design with Auger suppression and optical immersion. Recently, a new strategies used to achieve HOT detectors include barrier structures such as nBn, material improvement to lower generation-recombination leakage mechanisms, alternate materials such as superlattices and cascade infrared devices. Another method to reduce detector's dark current is reducing volume of detector material via a concept of photon trapping detector. In this paper, a number of concepts to improve performance of photon detectors operating at near room temperature are presented. Mostly three types of detector materials are considered — HgCdTe and InAsSb ternary alloys, and type-II InAs/GaSb superlattice. Recently, advanced heterojunction photovoltaic detectors have been developed. Novel HOT detector designs, so called interband cascade infrared detectors, have emerged as competitors of HgCdTe photodetectors.

  7. The "hot" patella.

    PubMed

    Kipper, M S; Alazraki, N P; Feiglin, D H

    1982-01-01

    Increased patellar uptake on bone scans is seen quite commonly but the possible or probable etiologies of this finding have not been previously well described. A review of 100 consecutive bone scans showed that the incidence of bilateral "hot" patellae is 15%. Identified etiologies include osteoarthritic degenerative disease (35%), fracture, possible metastatic disease, bursitis, Paget's disease, and osteomyelitis. The value of careful history, physical examination, and radiographs is stressed.

  8. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  9. Spectra of Hot Cores

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S.; McKee, C. F.

    2003-12-01

    The turbulent core model for massive star formation (McKee & Tan 2002) generalizes the standard isothermal collapse model for low-mass stars to include turbulent pressure support. This model predicts reasonable massive star formation times of order 105 years, which is short enough to overcome the radiation pressure of the newly formed star. We calculate the millimeter and infrared spectrum predicted by the turbulent core model and compare with observations of several hot molecular cores. We consider spherically symmetric dust envelopes and use DUSTY, a 1-D radiative transfer code (Ivezic, Nenkova, Elitzur 1997), to numerically calculate the SEDs of these hot cores. We also analytically calculate the spectra in the asymptotic regions of low and high frequency and join these asymptotic forms smoothly by a fitting function that minimizes the relative error between the analytic and numerical spectra. Thus, we are able to express the functional dependence of the spectra of hot cores in terms of the dynamical variables of any given collapse model. This approach allows us to use observed SEDs as a diagnostic tool in inferring physical conditions in these cores.

  10. Jupiter's Hot, Mushy Moon

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    2003-01-01

    Jupiter's moon Io is the most volcanically active body in the Solar System. Observations by instruments on the Galileo spacecraft and on telescopes atop Mauna Kea in Hawai'i indicate that lava flows on Io are surprisingly hot, over 1200 oC and possibly as much as 1300 oC; a few areas might have lava flows as hot as 1500 oC. Such high temperatures imply that the lava flows are composed of rock that formed by a very large amount of melting of Io's mantle. This has led Laszlo Keszthelyi and Alfred S. McEwen of the University of Arizona and me to reawaken an old hypothesis that suggests that the interior of Io is a partially-molten mush of crystals and magma. The idea, which had fallen out of favor for a decade or two, explains high-temperature hot spots, mountains, calderas, and volcanic plains on Io. If correct, Io gives us an opportunity to study processes that operate in huge, global magma systems, which scientists believe were important during the early history of the Moon and Earth, and possibly other planetary bodies as well. Though far from proven, the idea that Io has a ocean of mushy magma beneath its crust can be tested with measurements by future spacecraft.

  11. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼25% acquiring preassembled metal cofactors. The remaining ∼70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  12. STRIPPING METAL COATINGS

    DOEpatents

    Siefen, H.T.; Campbell, J.M.

    1959-02-01

    A method is described for removing aluminumuranium-silicon alloy bonded to metallic U comprising subjecting the Al-U -Si alloy to treatment with hot concentrated HNO/sun 3/ to partially dissolve and embrittle the alloy and shot- blasting the embrittled alloy to loosen it from the U.

  13. Depomedroxyprogesterone acetate for hot flashes.

    PubMed

    Barton, Debra; Loprinzi, Charles; Quella, Susan; Sloan, Jeff; Pruthi, Sandya; Novotny, Paul

    2002-12-01

    To evaluate the efficacy of a long-acting preparation of medroxyprogesterone acetate for hot flash management, 3 men receiving androgen ablation therapy for prostate cancer and 15 women with a history of breast cancer were treated as part of clinical practice with three biweekly intramuscular injections of 500 mg depomedroxyprogesterone. A review of hot flash diaries and patient charts were completed to evaluate the effectiveness and tolerability of these injections for managing hot flashes. Treatment was associated with an approximate 90% decrease in hot flashes (95% CI 82-97%). Daily hot flash frequency decreased from a mean of 10.9 on the first day of treatment (95% CI 8.0-13.8 hot flashes per day) to a mean of 1.1 hot flashes 6 weeks later (95% CI 0.5-1.8 hot flashes) and to a mean of 0.7 hot flashes 12 weeks following therapy initiation (95% CI 0.1-1.2). Improvement in the hot flashes remained for months after discontinuing the injections in many patients. Reported side effects were minimal. This experience suggests that treatment with depomedroxyprogesterone may be an effective and well-tolerated option for the treatment of hot flashes.

  14. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    2011-03-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  15. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    1994-08-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  16. PREFACE: Hot Quarks 2004

    NASA Astrophysics Data System (ADS)

    Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs

    2005-04-01

    Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or

  17. Hot corrosion of Ni-base turbine alloys in atmospheres in coal-conversion systems

    NASA Technical Reports Server (NTRS)

    Huang, T.; Gulbransen, E. A.; Meier, G. H.

    1979-01-01

    Alkali-metal contaminants in coal may form low-melting sulfate salts during coal gasification or subsequent combustion which can have very deleterious effects on turbine components. The mechanisms for the hot-corrosion phenomena are not completely understood.

  18. The hot interstellar medium in NGC 1399

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael; Serlemitsos, Peter J.

    1993-01-01

    The first two high signal-to-noise, broad bandpass x-ray spectra of elliptical galaxies were obtained with the Broad Band X-ray Telescope (BBXRT) as part of the December 1990 Astro mission. These observations provided unprecedented information on the thermal and metallicity structure of the hot interstellar media in two ellipticals: NGC 1399, the central galaxy in the Fornax cluster, and NGC 4472, the brightest galaxy in the Virgo cluster. The finalized analysis and interpretation of the approximately 4000 sec of BBXRT data on NGC 1399 is reported.

  19. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  20. Not so hot "hot spots" in the oceanic mantle.

    PubMed

    Bonath, E

    1990-10-05

    Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle elsewhere in the North Atlantic. However, application of various geothermometers suggests that the temperature of equilibration of peridotites in the mantle was lower, or at least not higher, in the hot spot than elsewhere. The presence of H(2)O-rich metasomatized mantle domains, inferred from peridotite and basalt data, would lower the melting temperature of the hot spot mantle and thereby reconcile its high degree ofmelting with the lack of a mantle temperature anomaly. Thus, some so-called hot spots might be melting anomalies unrelated to abnormally high mantle temperature or thermal plumes.

  1. Method and apparatus for determining weldability of thin sheet metal

    DOEpatents

    Goodwin, Gene M.; Hudson, Joseph D.

    1988-01-01

    A fixture is provided for testing thin sheet metal specimens to evaluate hot-cracking sensitivity for determining metal weldability on a heat-to-heat basis or through varying welding parameters. A test specimen is stressed in a first direction with a load selectively adjustable over a wide range and then a weldment is passed along over the specimen in a direction transverse to the direction of strain to evaluate the hot-cracking characteristics of the sheet metal which are indicative of the weldability of the metal. The fixture provides evaluations of hot-cracking sensitivity for determining metal weldability in a highly reproducible manner with minimum human error.

  2. Hot oiling spreadsheet

    SciTech Connect

    Mansure, A.J.

    1996-09-01

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that was distributed as a compiled, public-domain-software spreadsheet. That spreadsheet has evolved into an interactive from on the World Wide Web and has been adapted into a Windows{trademark} program by Petrolite, St. Louis MO. The development of such a tools was facilitated by expressing downhole temperatures in terms of analytic formulas. Considerable algebraic work is required to develop such formulas. Also, the data describing hot oiling is customarily a mixture of practical units that must be converted to a consistent set of units. To facilitate the algebraic manipulations and to assure unit conversions are correct, during development parallel calculations were made using the spreadsheet and a symbolic mathematics program. Derivation of the formulas considered falling film flow in the annulus and started from the transient differential equations so that the effects of the heat capacity of the tubing and casing could be included. While this approach to developing a software product does not have the power and sophistication of a finite element or difference code, it produces a user friendly product that implements the equations solved with a minimum potential for bugs. This allows emphasis in development of the product to be placed on the physics.

  3. Dry soldering with hot filament produced atomic hydrogen

    DOEpatents

    Panitz, J.K.G.; Jellison, J.L.; Staley, D.J.

    1995-04-25

    A system is disclosed for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs. 1 fig.

  4. Dry soldering with hot filament produced atomic hydrogen

    DOEpatents

    Panitz, Janda K. G.; Jellison, James L.; Staley, David J.

    1995-01-01

    A system for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs.

  5. Surface plasmon polariton-induced hot carrier generation for photocatalysis.

    PubMed

    Ahn, Wonmi; Ratchford, Daniel C; Pehrsson, Pehr E; Simpkins, Blake S

    2017-03-02

    Non-radiative plasmon decay in noble metals generates highly energetic carriers under visible light irradiation, which opens new prospects in the fields of photocatalysis, photovoltaics, and photodetection. While localized surface plasmon-induced hot carrier generation occurs in diverse metal nanostructures, inhomogeneities typical of many metal-semiconductor plasmonic nanostructures hinder predictable control of photocarrier generation and therefore reproducible carrier-mediated photochemistry. Here, we generate traveling surface plasmon polaritons (SPPs) at the interface between a noble metal/titanium dioxide (TiO2) heterostructure film and aqueous solution, enabling simultaneous optical and electrochemical interrogation of plasmon-mediated chemistry in a system whose resonance may be continuously tuned via the incident optical excitation angle. To the best of our knowledge, this is the first experimental demonstration of SPP-induced hot carrier generation for photocatalysis. We found electrochemical photovoltage and photocurrent responses as SPP-induced hot carriers drive both solution-based oxidation of methanol and the anodic half-reaction of photoelectrochemical water-splitting in sodium hydroxide solution. A strong excitation angle dependence and linear power dependence in the electrochemical photocurrent confirm that the photoelectrochemical reactions are SPP-driven. SPP-generated hot carrier chemistry was recorded on gold and silver and with two different excitation wavelengths, demonstrating potential for mapping resonant charge transfer processes with this technique. These results will provide the design criteria for a metal-semiconductor hybrid system with enhanced hot carrier generation and transport, which is important for the understanding and application of plasmon-induced photocatalysis.

  6. MSFC hot air collectors

    NASA Technical Reports Server (NTRS)

    Anthony, K.

    1978-01-01

    A description of the hot air collector is given that includes a history of development, a history of the materials development, and a program summary. The major portion of the solar energy system cost is the collector. Since the collector is the heart of the system and the most costly subsystem, reducing the cost of producing collectors in large quantities is a major goal. This solar collector is designed to heat air and/or water cheaply and efficiently through the use of solar energy.

  7. Hot air drum evaporator

    DOEpatents

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  8. Hot cell examination table

    DOEpatents

    Gaal, Peter S.; Ebejer, Lino P.; Kareis, James H.; Schlegel, Gary L.

    1991-01-01

    A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.

  9. Configurable hot spot fixing system

    NASA Astrophysics Data System (ADS)

    Kajiwara, Masanari; Kobayashi, Sachiko; Mashita, Hiromitsu; Aburada, Ryota; Furuta, Nozomu; Kotani, Toshiya

    2014-03-01

    Hot spot fixing (HSF) method has been used to fix many hot spots automatically. However, conventional HSF based on a biasing based modification is difficult to fix many hot spots under a low-k1 lithography condition. In this paper we proposed a new HSF, called configurable hotspot fixing system. The HSF has two major concepts. One is a new function to utilize vacant space around a hot spot by adding new patterns or extending line end edges around the hot spot. The other is to evaluate many candidates at a time generated by the new functions. We confirmed the proposed HSF improves 73% on the number of fixing hot spots and reduces total fixing time by 50% on a device layout equivalent to 28nm-node. The result shows the proposed HSF is effective for layouts under the low-k1 lithography condition.

  10. Radiations from hot nuclei

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1993-01-01

    The investigation indicates that nuclei with excitation energy of a few hundred MeV to BeV are more likely to radiate hot nuclear clusters than neutrons. These daughter clusters could, furthermore, de-excite emitting other hot nuclei, and the chain continues until these nuclei cool off sufficiently to evaporate primarily neutrons. A few GeV excited nuclei could radiate elementary particles preferentially over neutrons. Impact of space radiation with materials (for example, spacecraft) produces highly excited nuclei which cool down emitting electromagnetic and particle radiations. At a few MeV excitation energy, neutron emission becomes more dominant than gamma-ray emission and one often attributes the cooling to take place by successive neutron decay. However, a recent experiment studying the cooling process of 396 MeV excited Hg-190 casts some doubt on this thinking, and the purpose of this investigation is to explore the possibility of other types of nuclear emission which might out-compete with neutron evaporation.

  11. Hot, Dry and Cloudy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Hot, Dry and Cloudy

    This artist's concept shows a cloudy Jupiter-like planet that orbits very close to its fiery hot star. NASA's Spitzer Space Telescope was recently used to capture spectra, or molecular fingerprints, of two 'hot Jupiter' worlds like the one depicted here. This is the first time a spectrum has ever been obtained for an exoplanet, or a planet beyond our solar system.

    The ground-breaking observations were made with Spitzer's spectrograph, which pries apart infrared light into its basic wavelengths, revealing the 'fingerprints' of molecules imprinted inside. Spitzer studied two planets, HD 209458b and HD 189733b, both of which were found, surprisingly, to have no water in the tops of their atmospheres. The results suggest that the hot planets are socked in with dry, high clouds, which are obscuring water that lies underneath. In addition, HD209458b showed hints of silicates, suggesting that the high clouds on that planet contain very fine sand-like particles.

    Capturing the spectra from the two hot-Jupiter planets was no easy feat. The planets cannot be distinguished from their stars and instead appear to telescopes as single blurs of light. One way to get around this is through what is known as the secondary eclipse technique. In this method, changes in the total light from a so-called transiting planet system are measured as a planet is eclipsed by its star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone.

    This technique, first used by Spitzer in 2005 to directly detect the light from an exoplanet, currently only works at infrared wavelengths, where the differences in brightness between the planet and star are less, and the planet's light is easier to pick out. For example, if the experiment had been done in visible light, the total light from the system would appear to be unchanged

  12. Hot, Dry and Cloudy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Hot, Dry and Cloudy

    This artist's concept shows a cloudy Jupiter-like planet that orbits very close to its fiery hot star. NASA's Spitzer Space Telescope was recently used to capture spectra, or molecular fingerprints, of two 'hot Jupiter' worlds like the one depicted here. This is the first time a spectrum has ever been obtained for an exoplanet, or a planet beyond our solar system.

    The ground-breaking observations were made with Spitzer's spectrograph, which pries apart infrared light into its basic wavelengths, revealing the 'fingerprints' of molecules imprinted inside. Spitzer studied two planets, HD 209458b and HD 189733b, both of which were found, surprisingly, to have no water in the tops of their atmospheres. The results suggest that the hot planets are socked in with dry, high clouds, which are obscuring water that lies underneath. In addition, HD209458b showed hints of silicates, suggesting that the high clouds on that planet contain very fine sand-like particles.

    Capturing the spectra from the two hot-Jupiter planets was no easy feat. The planets cannot be distinguished from their stars and instead appear to telescopes as single blurs of light. One way to get around this is through what is known as the secondary eclipse technique. In this method, changes in the total light from a so-called transiting planet system are measured as a planet is eclipsed by its star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone.

    This technique, first used by Spitzer in 2005 to directly detect the light from an exoplanet, currently only works at infrared wavelengths, where the differences in brightness between the planet and star are less, and the planet's light is easier to pick out. For example, if the experiment had been done in visible light, the total light from the system would appear to be unchanged

  13. Direct Fabrication of 3D Metallic Networks and Their Performance.

    PubMed

    Ron, Racheli; Gachet, David; Rechav, Katya; Salomon, Adi

    2017-02-01

    Fabrication of macroscopic nanoporous metallic networks is challenging, because it demands fine structures at the nanoscale over a large-scale. A technique to form pure scalable networks is introduced. The networked-metals ("Netals") exhibit a strong interaction with light and indicate a large fraction of hot-electrons generation. These hot-electrons are available to derive photocatalytic processes.

  14. Plasmonic hot electron transport drives nano-localized chemistry

    PubMed Central

    Cortés, Emiliano; Xie, Wei; Cambiasso, Javier; Jermyn, Adam S.; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A.

    2017-01-01

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry. PMID:28348402

  15. Plasmonic hot electron transport drives nano-localized chemistry

    NASA Astrophysics Data System (ADS)

    Cortés, Emiliano; Xie, Wei; Cambiasso, Javier; Jermyn, Adam S.; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A.

    2017-03-01

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry.

  16. Plasmonic hot electron transport drives nano-localized chemistry.

    PubMed

    Cortés, Emiliano; Xie, Wei; Cambiasso, Javier; Jermyn, Adam S; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A

    2017-03-28

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry.

  17. Plasmon-induced hot carrier science and technology.

    PubMed

    Brongersma, Mark L; Halas, Naomi J; Nordlander, Peter

    2015-01-01

    The discovery of the photoelectric effect by Heinrich Hertz in 1887 set the foundation for over 125 years of hot carrier science and technology. In the early 1900s it played a critical role in the development of quantum mechanics, but even today the unique properties of these energetic, hot carriers offer new and exciting opportunities for fundamental research and applications. Measurement of the kinetic energy and momentum of photoejected hot electrons can provide valuable information on the electronic structure of materials. The heat generated by hot carriers can be harvested to drive a wide range of physical and chemical processes. Their kinetic energy can be used to harvest solar energy or create sensitive photodetectors and spectrometers. Photoejected charges can also be used to electrically dope two-dimensional materials. Plasmon excitations in metallic nanostructures can be engineered to enhance and provide valuable control over the emission of hot carriers. This Review discusses recent advances in the understanding and application of plasmon-induced hot carrier generation and highlights some of the exciting new directions for the field.

  18. Plasmon-induced hot carrier science and technology

    NASA Astrophysics Data System (ADS)

    Brongersma, Mark L.; Halas, Naomi J.; Nordlander, Peter

    2015-01-01

    The discovery of the photoelectric effect by Heinrich Hertz in 1887 set the foundation for over 125 years of hot carrier science and technology. In the early 1900s it played a critical role in the development of quantum mechanics, but even today the unique properties of these energetic, hot carriers offer new and exciting opportunities for fundamental research and applications. Measurement of the kinetic energy and momentum of photoejected hot electrons can provide valuable information on the electronic structure of materials. The heat generated by hot carriers can be harvested to drive a wide range of physical and chemical processes. Their kinetic energy can be used to harvest solar energy or create sensitive photodetectors and spectrometers. Photoejected charges can also be used to electrically dope two-dimensional materials. Plasmon excitations in metallic nanostructures can be engineered to enhance and provide valuable control over the emission of hot carriers. This Review discusses recent advances in the understanding and application of plasmon-induced hot carrier generation and highlights some of the exciting new directions for the field.

  19. TRUEX hot demonstration

    SciTech Connect

    Chamberlain, D.B.; Leonard, R.A.; Hoh, J.C.; Gay, E.C.; Kalina, D.G.; Vandegrift, G.F.

    1990-04-01

    In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility.

  20. The Deep Hot Biosphere

    NASA Astrophysics Data System (ADS)

    Craig, Harmon

    The first inhabitants of planet Earth were single-celled microorganisms and they are still with us today. Their name is truly legion, for they live everywhere, from boiling hot springs at the Earth's surface and on the seafloor to the coldest waters of the oceans and the Antarctic lakes. They are the masters of evolutionary adaptation, who have colonized the entire range of conditions under which water can exist as a liquid. At some ancient mythic time billions of years ago in a witches' brew of precursory molecules, somewhere, somehow, on a sunny Precambrian day bright with promise some of these molecules came together in the first coupling, learned to replicate, create enzymes, metabolize, and seal themselves into protective membranes inside of which they began the process of living. How they did this is our greatest mystery, for they are our primordial ancestors and we do not understand ourselves until we understand them.

  1. How Deep and Hot was Earth's Magma Ocean? Combined Experimental Datasets for the Metal-silicate Partitioning of 11 Siderophile Elements - Ni, Co, Mo, W, P, Mn, V, Cr, Ga, Cu and Pd

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2008-01-01

    Since approximately 1990 high pressure and temperature (PT) experiments on metal-silicate systems have showed that partition coefficients (D) for siderophile (iron-loving) elements are much different than those measured at low PT conditions. The high PT data have been used to argue for a magma ocean during growth of the early Earth. Initial conclusions were based on experiments and calculations for a small number of elements such as Ni and Co. However, for many elements only a limited number of experimental data were available then, and they only hinted at values of metal-silicate D's at high PT conditions. In the ensuing decades there have been hundreds of new experiments carried out and published on a wide range of siderophile elements. At the same time several different models have been advanced to explain the siderophile elements in the earth's mantle: a) intermediate depth magma ocean; 25-30 GPa, b) deep magma ocean; up to 50 GPa, and c) early reduced and later oxidized magma ocean. Some studies have drawn conclusions based on a small subset of siderophile elements, or a set of elements that provides little leverage on the big picture (like slightly siderophile elements), and no single study has attempted to quantitatively explain more than 5 elements at a time. The purpose of this abstract is to update the predictive expressions outlined by Righter et al. (1997) with new experimental data from the last decade, test the predictive ability of these expressions against independent datasets (there are more data now to do this properly), and to apply the resulting expressions to the siderophile element patterns in Earth's upper mantle. The predictive expressions have the form: lnD = alnfO2 + b/T + cP/T + d(1Xs) + e(1Xc) + SigmafiXi + g These expressions are guided by the thermodynamics of simple metal-oxide equilibria that control each element, include terms that mimic the activity coefficients of each element in the metal and silicate, and quantify the effect of

  2. How Deep and Hot was Earth's Magma Ocean? Combined Experimental Datasets for the Metal-silicate Partitioning of 11 Siderophile Elements - Ni, Co, Mo, W, P, Mn, V, Cr, Ga, Cu and Pd

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2008-01-01

    Since approximately 1990 high pressure and temperature (PT) experiments on metal-silicate systems have showed that partition coefficients (D) for siderophile (iron-loving) elements are much different than those measured at low PT conditions. The high PT data have been used to argue for a magma ocean during growth of the early Earth. Initial conclusions were based on experiments and calculations for a small number of elements such as Ni and Co. However, for many elements only a limited number of experimental data were available then, and they only hinted at values of metal-silicate D's at high PT conditions. In the ensuing decades there have been hundreds of new experiments carried out and published on a wide range of siderophile elements. At the same time several different models have been advanced to explain the siderophile elements in the earth's mantle: a) intermediate depth magma ocean; 25-30 GPa, b) deep magma ocean; up to 50 GPa, and c) early reduced and later oxidized magma ocean. Some studies have drawn conclusions based on a small subset of siderophile elements, or a set of elements that provides little leverage on the big picture (like slightly siderophile elements), and no single study has attempted to quantitatively explain more than 5 elements at a time. The purpose of this abstract is to update the predictive expressions outlined by Righter et al. (1997) with new experimental data from the last decade, test the predictive ability of these expressions against independent datasets (there are more data now to do this properly), and to apply the resulting expressions to the siderophile element patterns in Earth's upper mantle. The predictive expressions have the form: lnD = alnfO2 + b/T + cP/T + d(1Xs) + e(1Xc) + SigmafiXi + g These expressions are guided by the thermodynamics of simple metal-oxide equilibria that control each element, include terms that mimic the activity coefficients of each element in the metal and silicate, and quantify the effect of

  3. Infrared hot carrier diode mixer.

    PubMed

    Aukerman, L W; Erler, J W

    1977-11-01

    Detection of a 54.3-GHz beatnote at 10.6 microm has been observed with a hot carrier diode mixer. The diode consists of a "cat whisker" antenna, which forms an ohmic point contact to n-InAs. The mechanism of this room-temperature detector is described as the "thermoelectric effect" of hot carriers.

  4. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  5. Practical hot oiling and hot watering for paraffin control

    SciTech Connect

    Mansure, A.J.; Barker, K.M.

    1994-03-01

    One of the common oil-field wellbore problems is paraffin deposition. Even though hot oiling or hot watering is usually the first method tried for removing paraffin, few operators appreciate the limitations of ``hot oiling`` and the potential for the fluid to aggravate well problems and cause formation damage. Field tests have shown that the chemical and thermal processes that occur during ``hot oiling`` are very complex and that there are significant variations in practices among operators. Key issues include: (1) During a typical hot oiling job, a significant amount of the fluid injected into the well goes into the formation, and hence, particulates and chemicals in the fluid have the potential to damage the formation. (2) Hot oiling can vaporize oil in the tubing faster than the pump lifts oil. This interrupts paraffin removal from the well, and thus the wax is refined into harder deposits, goes deeper into the well, and can stick rods. These insights have been used to determine good ``hot oiling`` practices designed to maximize wax removal and minimize formation damage.

  6. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic. The region where the jets collide with the intergalactic medium are known as " hot spots ". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 µm) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 µm) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image. This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far . The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites . The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations. The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active

  7. Really Hot Stars

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Spectacular VLT Photos Unveil Mysterious Nebulae Summary Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme. PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99

  8. Detecting the Warm-Hot IGM via Ultraviolet Absorbers

    NASA Astrophysics Data System (ADS)

    Danforth, Charles

    2010-03-01

    Detecting the Warm-Hot Intergalactic Medium (WHIM, T=105-107 K) via X-ray absorption in highly-ionized metal ions is a major goal in X-ray astronomy today. Species such as OVII and OVIII are predicted to be present in large quantities in the IGM, tracing metal-enriched diffuse gas at T>106 K. This reservoir of WHIM may make up a substantial fraction of the "missing" baryons in the low-redshift universe, however detections from Chandra and XMM-Newton been few and controversial. In the mean time, alternate methods of detecting the WHIM via far-UV absorbers are yielding impressive results. Roughly 100 highly-ionized metal ion detections (OVI, NV, etc) trace enriched, shock-heated gas at T<106 K. The catalog of far-UV WHIM absorbers is now large enough to not only detect the WHIM, but to start statistically-meaningful investigations as to its nature, origin, and distribution. Thermally-broadened Lyman-alpha absorbers are a second avenue of WHIM investigation which is similarly starting to produce results. Unlike either X-ray or UV metal line surveys, broad Lya studies are independent of metal enrichment and thus can trace hot gas in low-metallicity voids. Together, these two UV spectroscopic methods can account for 20% of the local baryons in the local universe.

  9. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    Unknown

    1999-04-01

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}, TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents.

  10. Techniques for hot structures testing

    NASA Technical Reports Server (NTRS)

    Deangelis, V. Michael; Fields, Roger A.

    1990-01-01

    Hot structures testing have been going on since the early 1960's beginning with the Mach 6, X-15 airplane. Early hot structures test programs at NASA-Ames-Dryden focused on operational testing required to support the X-15 flight test program, and early hot structures research projects focused on developing lab test techniques to simulate flight thermal profiles. More recent efforts involved numerous large and small hot structures test programs that served to develop test methods and measurement techniques to provide data that promoted the correlation of test data with results from analytical codes. In Nov. 1988 a workshop was sponsored that focused on the correlation of hot structures test data with analysis. Limited material is drawn from the workshop and a more formal documentation is provided of topics that focus on hot structures test techniques used at NASA-Ames-Dryden. Topics covered include the data acquisition and control of testing, the quartz lamp heater systems, current strain and temperature sensors, and hot structures test techniques used to simulate the flight thermal environment in the lab.

  11. Hot Hydrogen Test Facility

    SciTech Connect

    W. David Swank

    2007-02-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant’s absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  12. Neptune's 'Hot' South Pole

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These thermal images show a 'hot' south pole on the planet Neptune. These warmer temperatures provide an avenue for methane to escape out of the deep atmosphere.

    The images were obtained with the Very Large Telescope in Chile, using an imager/spectrometer for mid-infrared wavelengths on Sept. 1 and 2, 2006. The telescope is operated by the European Organization for Astronomical Research in the Southern Hemisphere (known as ESO).

    Scientists say Neptune's south pole is 'hotter' than anywhere else on the planet by about 10 degrees Celsius (50 degrees Fahrenheit). The average temperature on Neptune is about minus 200 degrees Celsius (minus 392 degrees Fahrenheit).

    The upper left image samples temperatures near the top of Neptune's troposphere (near 100 millibar pressure, which is one-tenth the Earth atmospheric pressure at sea level). The hottest temperatures are indicated at the lower part of the image, at Neptune's south pole (see the graphic at the upper right). The lower two images, taken 6.3 hours apart, sample temperatures at higher altitudes in Neptune's stratosphere. They do show generally warmer temperatures near, but not at, the south pole. They also show a distinct warm area which can be seen in the lower left image and rotated completely around the back of the planet and returned to the earth-facing hemisphere in the lower right image.

  13. Hot Hydrogen Test Facility

    SciTech Connect

    Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan

    2007-01-30

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 deg. C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  14. Composite hot drape forming

    NASA Astrophysics Data System (ADS)

    Ott, Thomas

    1994-02-01

    This program was initiated to replace labor-intensive ply-by-ply layup of composite I-beam posts and angle stiffeners used in the Space Station Freedom (SSF) rack structure. Hot drape forming (HDF) has been successfully implemented by BCAG for 777 composite I-stringers and by Bell Helicopter/Textron for the V-22 I-stingers. The two companies utilize two vastly different approaches to the I-beam fabrication process. A drape down process is used by Bell Helicopter where the compacted ply charge is placed on top of a forming mandrel and heated. When the heated ply charge reached a set temperature, vacuum pressure is applied and the plies are formed over the mandrel. The BCAG 777 process utilizes an inverted forming process where the ply stack is placed on a forming table and the mandrel is inverted and placed upon the ply stack. A heating and vacuum bladder underneath the ply stack form the play stack up onto the mandrels after reaching the temperature setpoint. Both methods have their advantages, but the drape down process was selected for SSF because it was more versatile and could be fabricated from readily available components.

  15. Saturn's Hot Spot

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is the sharpest image of Saturn's temperature emissions taken from the ground; it is a mosaic of 35 individual exposures made at the W.M. Keck I Observatory, Mauna Kea, Hawaii on Feb. 4, 2004.

    The images to create this mosaic were taken with infrared radiation. The mosaic was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The prominent hot spot at the bottom of the image is right at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected. The tropospheric temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole.

    Ring particles are not at a uniform temperature everywhere in their orbit around Saturn. The ring particles are orbiting clockwise in this image. Particles are coldest just after having cooled down in Saturn's shadow (lower left). As they orbit Saturn, the particles increase in temperature up to a maximum (lower right) just before passing behind Saturn again in shadow.

    A small section of the ring image is missing because of incomplete mosaic coverage during the observing sequence.

  16. Neptune's 'Hot' South Pole

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These thermal images show a 'hot' south pole on the planet Neptune. These warmer temperatures provide an avenue for methane to escape out of the deep atmosphere.

    The images were obtained with the Very Large Telescope in Chile, using an imager/spectrometer for mid-infrared wavelengths on Sept. 1 and 2, 2006. The telescope is operated by the European Organization for Astronomical Research in the Southern Hemisphere (known as ESO).

    Scientists say Neptune's south pole is 'hotter' than anywhere else on the planet by about 10 degrees Celsius (50 degrees Fahrenheit). The average temperature on Neptune is about minus 200 degrees Celsius (minus 392 degrees Fahrenheit).

    The upper left image samples temperatures near the top of Neptune's troposphere (near 100 millibar pressure, which is one-tenth the Earth atmospheric pressure at sea level). The hottest temperatures are indicated at the lower part of the image, at Neptune's south pole (see the graphic at the upper right). The lower two images, taken 6.3 hours apart, sample temperatures at higher altitudes in Neptune's stratosphere. They do show generally warmer temperatures near, but not at, the south pole. They also show a distinct warm area which can be seen in the lower left image and rotated completely around the back of the planet and returned to the earth-facing hemisphere in the lower right image.

  17. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    SciTech Connect

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-08-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T{sub eff} > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  18. Hot Electron Emission in Semiconductors.

    DTIC Science & Technology

    2014-09-26

    Second Interim Report Hot Electron Emission in Semiconductors Jan. 85 - June 85 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 6. CONTRACT OR GRANT NUMBER(a...KEY WORDS (Continue on reverse side Jf necessary and identify by block number) " -novel tunable FIR sources) • hot electron emission in GaAs/GaAlAs...heterostructures)" -,/ " streaming of hot carriers in crossed electric and magnetic fields ABST’AACr C-rrhmus- m .wr. efe it rewo-- .rv d identify by

  19. Hot melt adhesive attachment pad

    NASA Technical Reports Server (NTRS)

    Fox, R. L.; Frizzill, A. W.; Little, B. D.; Progar, D. J.; Coultrip, R. H.; Couch, R. H.; Gleason, J. R.; Stein, B. A.; Buckley, J. D.; St.clair, T. L. (Inventor)

    1984-01-01

    A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond.

  20. METC hot gas desulfurization program overview

    SciTech Connect

    Cicero, D.C.

    1994-10-01

    This overview provides a frame of reference for the Morgantown Energy Technology Center`s (METC`S) on-going hot gas desulfurization research. Although there are several methods to separate contaminant gases from fuel gases, that method receiving primary development is absorption through the use of metal oxides. Research into high-temperature and high-pressure control of sulfur species includes primarily those sorbents made of mixed-metal oxides, which offer the advantages of regenerability. These are predominantly composed of zinc and are made into media that can be utilized in reactors of either fixed-bed, moving-bed, fluidized-bed, or transport configurations. Zinc Ferrite (ZnO-Fe{sub 2}O{sub 3}), Zinc Titanate (ZnO-TiO{sub 2}), Z-SORP{reg_sign}, and METC-2/METC-6 are the current mixed-metal sorbents being investigated. The METC desulfurization program is composed of three major components: bench-scale research, pilot-plant operation, and demonstration that is a portion of the Clean Coal Demonstration projects.

  1. Hierarchical nonlinear behavior of hot composite structures

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Hierarchical computational procedures are described to simulate the multiple scale thermal/mechanical behavior of high temperature metal matrix composites (HT-MMC) in the following three broad areas: (1) behavior of HT-MMC's from micromechanics to laminate via METCAN (Metal Matrix Composite Analyzer), (2) tailoring of HT-MMC behavior for optimum specific performance via MMLT (Metal Matrix Laminate Tailoring), and (3) HT-MMC structural response for hot structural components via HITCAN (High Temperature Composite Analyzer). Representative results from each area are presented to illustrate the effectiveness of computational simulation procedures and accompanying computer codes. The sample case results show that METCAN can be used to simulate material behavior such as the entire creep span; MMLT can be used to concurrently tailor the fabrication process and the interphase layer for optimum performance such as minimum residual stresses; and HITCAN can be used to predict the structural behavior such as the deformed shape due to component fabrication. These codes constitute virtual portable desk-top test laboratories for characterizing HT-MMC laminates, tailoring the fabrication process, and qualifying structural components made from them.

  2. Process window aware layout optimization using hot spot fixing system

    NASA Astrophysics Data System (ADS)

    Kobayashi, Sachiko; Kyoh, Suigen; Kotani, Toshiya; Inoue, Soichi

    2007-03-01

    spot, complying with the design rule. The design modification process is verified with design-rule checker (DRC) and process simulation to confirm hot spot elimination without side effect. In this work, HSF is implemented in the design flow for various logic devices of 65 nm node. We extend modification target layers to multiple critical layers, including active area, poly, local metal wire and intermediate metal wire. The feasibility of the provided HSF system has been studied by applying it to around one hundred data of various sizes with respect to pattern fixing rate and turn around time (TAT). Moreover, process margin expansion including depth of focus (DOF) and exposure latitude (EL), in small layout was verified using process simulation and also by experimental results, namely, scanning electron microscope (SEM) images of focus exposure matrix. The detailed results are shown in the paper.

  3. Artist Impression of Hot

    NASA Image and Video Library

    2015-12-14

    This image shows an artist's impression of the 10 hot Jupiter exoplanets studied using the Hubble and Spitzer space telescopes. From top left to lower left, these planets are WASP-12b, WASP-6b, WASP-31b, WASP-39b, HD 189733b, HAT-P-12b, WASP-17b, WASP-19b, HAT-P-1b and HD 209458b. The colors of the planets are for illustration purposes only. There is little scientific data on color with the exception of HD 189733b, which became known as the "blue planet." The planets are also depicted with a variety of different cloud properties. The wind patterns shown on these 10 planets, which resemble the visible structures on Jupiter, are based on theoretical models. The illustrations are to scale with each other. HAT-P-12b, the smallest of these planets, is approximately the size of Jupiter, while WASP-17b, the largest one in the sample, is almost twice the size. The hottest planets within the sample are portrayed with a glowing night side. This effect is strongest on WASP-12b, the hottest exoplanet in the sample, but also visible on WASP-19b and WASP-17b. It is also known that several of the planets exhibit strong Rayleigh scattering. This effect causes the blue hue of the daytime sky and the reddening of the sun at sunset on Earth. It is also visible as a blue edge on the planets WASP-6b, HD 189733b, HAT-P-12b and HD 209458b. http://photojournal.jpl.nasa.gov/catalog/PIA20056

  4. Host to Hot Jupiter

    NASA Image and Video Library

    2009-04-16

    This image zooms into a small portion of NASA Kepler full field of view -- an expansive, 100-square-degree patch of sky in our Milky Way galaxy. At the center of the field is a star with a known "hot Jupiter" planet, named "TrES-2," zipping closely around it every 2.5 days. Kepler will observe TrES-2 and other known planets as a test to demonstrate that it is working properly, and to obtain new information about those planets. The area pictured is one-thousandth of Kepler's full field of view, and shows hundreds of stars at the very edge of the constellation Cygnus. The image has been color-coded so that brighter stars appear white, and fainter stars, red. It is a 60-second exposure, taken on April 8, 2009, one day after the spacecraft's dust cover was jettisoned. Kepler was designed to hunt for planets like Earth. The mission will spend the next three-and-a-half years staring at the same stars, looking for periodic dips in brightness. Such dips occur when planets cross in front of their stars from our point of view in the galaxy, partially blocking the starlight. To achieve the level of precision needed to spot planets as small as Earth, Kepler's images are intentionally blurred slightly. This minimizes the number of saturated stars. Saturation, or "blooming," occurs when the brightest stars overload the individual pixels in the detectors, causing the signal to spill out into nearby pixels. http://photojournal.jpl.nasa.gov/catalog/PIA11985

  5. Red-Hot Saturn

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These side-by-side false-color images show Saturn's heat emission. The data were taken on Feb. 4, 2004, from the W. M. Keck I Observatory, Mauna Kea, Hawaii. Both images were taken with infrared radiation. The image on the left was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The image on the right was taken at a wavelength of 8 microns and is sensitive to temperatures in Saturn's stratosphere. The prominent hot spot at the bottom of each image is at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected.

    The troposphere temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole. Near 70 degrees latitude, the stratospheric temperature increases even more abruptly from 146 to 150 Kelvin (-197 to -189 degrees Fahrenheit) and then again to 151 Kelvin (-188 degrees Fahrenheit) right at the pole.

    While the rings are too faint to be detected at 8 microns (right), they show up at 17.65 microns. The ring particles are orbiting Saturn to the left on the bottom and to the right on the top. The lower left ring is colder than the lower right ring, because the particles are just moving out of Saturn's shadow where they have cooled off. As they orbit Saturn, they warm up to a maximum just before passing behind Saturn again in shadow.

  6. Corrosion Resistances of Iron-Based Amorphous Metals with Yttrium and Tungsten Additions in Hot Calcium Chloride Brine & Natural Seawater: Fe48Mo14Cr15Y2C15B6 and W-Containing Variants

    SciTech Connect

    Farmer, J C; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Yang, N; Blue, C; Peter, W; Payer, J; Branagan, D J

    2006-10-20

    Yttrium-containing SAM1651 (Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0}), has a critical cooling rate (CCR) of approximately 80 Kelvin per second, while SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) with no yttrium has a higher critical cooling rate of approximately 600 Kelvin per second. SAM1651's low CCR enables it to be rendered as a completely amorphous material in practical materials processes. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The passive film stability of these Fe-based amorphous metal formulations have been found to be superior to that of conventional stainless steels, and comparable to that of Ni-based alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates.

  7. Do scientists trace hot topics?

    NASA Astrophysics Data System (ADS)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; di, Zengru; Wu, Jinshan

    2013-07-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  8. Hot-Lava World Illustration

    NASA Image and Video Library

    2016-03-30

    This illustration shows one possible scenario for the hot, rocky exoplanet called 55 Cancri e, which is nearly two times as wide as Earth. New data from NASA Spitzer Space Telescope show that the planet has extreme temperature swings.

  9. Morpheus Lander Hot Fire Test

    NASA Image and Video Library

    This video shows a successful "hot fire" test of the Morpheus lander on February 27, 2012, at the VTB Flight Complex at NASA's Johnson Space Center. The engine burns for an extended period of time ...

  10. Do scientists trace hot topics?

    PubMed Central

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects. PMID:23856680

  11. Small Friends of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Nunez, Luis Ernesto; Johnson, John A.

    2017-01-01

    Hot Jupiters are Jupiter-sized gas giant exoplanets that closely orbit their host star in periods of about 10 days or less. Early models hypothesized that these exoplanets formed away from the star, then over time drifted to their characteristically closer locations. However, new theories predict that Hot Jupiters form at their close proximity during the process of core accretion (Batygin et al. 2015). In fact, a super-Earth and a Neptune-sized exoplanet have already been detected in the Hot Jupiter-hosting star WASP-47 (Becker et al. 2015). We will present our analysis of radial velocity time series plots to determine whether low-mass, short-period planets have been previously overlooked in systems of stars which host Hot Jupiters.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851.

  12. METAL COATING BATHS

    DOEpatents

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  13. Hot Films on Ceramic Substrates for Measuring Skin Friction

    NASA Technical Reports Server (NTRS)

    Noffz, Greg; Leiser, Daniel; Bartlett, Jim; Lavine, Adrienne

    2003-01-01

    Hot-film sensors, consisting of a metallic film on an electrically nonconductive substrate, have been used to measure skin friction as far back as 1931. A hot film is maintained at an elevated temperature relative to the local flow by passing an electrical current through it. The power required to maintain the specified temperature depends on the rate at which heat is transferred to the flow. The heat transfer rate correlates to the velocity gradient at the surface, and hence, with skin friction. The hot-film skin friction measurement method is most thoroughly developed for steady-state conditions, but additional issues arise under transient conditions. Fabricating hot-film substrates using low-thermal-conductivity ceramics can offer advantages over traditional quartz or polyester-film substrates. First, a low conductivity substrate increases the fraction of heat convected away by the fluid, thus increasing sensitivity to changes in flow conditions. Furthermore, the two-part, composite nature of the substrate allows the installation of thermocouple junctions just below the hot film, which can provide an estimate of the conduction heat loss.

  14. Multi-stage FE simulation of hot ring rolling

    NASA Astrophysics Data System (ADS)

    Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.

    2013-05-01

    As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.

  15. Hard metal composition

    DOEpatents

    Sheinberg, Haskell

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  16. Hard metal composition

    DOEpatents

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  17. Deformation Mechanisms during Hot Working of Titanium

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Bieler, T. R.; Miller, J. D.; Glavicic, M. G.

    2004-06-01

    Computer models of metal flow and texture evolution during hot working require accurate descriptions of deformation mechanisms and constitutive behavior. Such descriptions for titanium alloys can be very complex because of the variety of slip systems in the hexagonal (alpha) phase, let alone the complications associated with the deformation of two-phase (alpha/beta) microstructures in commercial alloys. Methods to elucidate the deformation behavior of unalloyed alpha titanium and two-phase Ti-6Al-4V will be described. First, the analysis of the hot deformation of heavily textured bar and plate materials will be described. In these instances, the anisotropy in flow stress and in sample deformation pattern have been used in conjunction with a crystal plasticity code to deduce the relative values of the critical resolved shear stresses for basal , prism , and pyramidal slip. Analysis of the flow curves has also provided insight into the micromechanism of flow softening in two-phase alloys with colony-alpha microstructures. To complement this work, an x-ray line broadening technique was developed to deduce the relative slip activity at large strains in unalloyed titanium and Ti-6Al-4V. These measurements also provided estimates of the dislocation density as a function of temperature and the competition between slip and twinning at cold-working temperatures.

  18. Detecting the warm-hot intergalactic medium

    NASA Astrophysics Data System (ADS)

    den Herder, Jan-Willem; Paerels, Frits B. S.; Rasmussen, Andrew; Bruijn, Marcel; Hoevers, Henk; Kaastra, Jelle S.; Kahn, Steven M.; de Korte, Piet A.; Scharf, Caleb

    2004-10-01

    A very significant fraction of the baryonic matter in the local universe is predicted to form a Warm Hot Intergalactic Medium (WHIM) of very low density, moderately hot gas, tracing the cosmic web. Its X-ray emission is dominated by metal features, but is weak (< 0.01 photons/cm2/s/sr) and potentially hard to separate from the galactic component. However, a mission capable of directly mapping this component of the large scale structure of the universe, via a small number of well chosen emission lines, is now within reach due to recent improvements in cryogenic X-ray detector energy resolution. To map the WHIM, the energy resolution and grasp are optimized. A number of missions have been proposed to map the missing baryons including MBE (US/SMEX program) and DIOS (Japan). The design of the mirror and detector have still room for improvements which will be discussed. With these improvements it is feasible to map a 10 x 10 degree area of the sky in 2 years out to z = 0.2 with sufficient sensitivity to directly detect WHIM structure, such as filaments connecting clusters of galaxies. This structure is predicted by the current Cold Dark Matter paradigm which thus far appears to provide a good description of the distribution of matter as traced by galaxies.

  19. Thermal imaging of hot spots in nanostructured microstripes

    NASA Astrophysics Data System (ADS)

    Saïdi, E.; Lesueur, J.; Aigouy, L.; Labéguerie-Egéa, J.; Mortier, M.

    2010-03-01

    By scanning thermal microscopy, we study the behavior of nanostructured metallic microstripes heated by Joule effect. Regularly spaced indentations have been made along the thin film stripe in order to create hot spots. For the designed stripe geometry, we observe that heat remains confined in the wire and in particular at shrinkage points within ~1μm2. Thermal maps have been obtained with a good lateral resolution (< 300nm) and a good temperature sensitivity (~1K).

  20. Hot Isostatically Pressed Sm(2)(TM)17 Magnets.

    DTIC Science & Technology

    1985-04-01

    SUB. GR. HIP - hot isostatic pressing Stepped aging treatment Samarium - transition metal magnets f Samarium , Copper, Iron, Zirconium, Cobalt magnets 1...5 ptaI2 TABLE OF CONTENTS Section Page INTRODUCTION...............................................1 2 EXPERIMENTAL METHODS ...values of BR and Hci of the Nd-Fe-B type materials, however, have precluded their use in several critical applications such as in microwave devices and

  1. Hot startup experience with electrometallurgical treatment of spent nuclear fuel

    SciTech Connect

    Benedict, R.W.; Lineberry, M.J.; McFarlane, H.F.; Rigg, R.H.

    1997-10-01

    The treatment of spent metal fuel from the EBR-II fast reactor commenced in June of 1996 at the Fuel Conditioning Facility on the Argonne-West site in Idaho, USA. During the first year of hot operations, 20 fuel assemblies entered processing and 6 low enrichment uranium product ingots were produced. Results are presented for the various process steps with decontamination factors achieved and equipment operational history reported.

  2. Glass Coats For Hot Isostatic Pressing

    NASA Technical Reports Server (NTRS)

    Ecer, Gunes M.

    1989-01-01

    Surface voids sealed from pressurizing gas. Coating technique enables healing of surface defects by hot isostatic pressing (HIP). Internal pores readily closed by HIP, but surface voids like cracks and pores in contact with pressurizing gas not healed. Applied to casting or weldment as thick slurry of two glass powders: one melts at temperature slightly lower than used for HIP, and another melts at higher temperature. For example, powder is glass of 75 percent SiO2 and 25 percent Na2O, while other powder SiO2. Liquid component of slurry fugitive organic binder; for example, mixture of cellulose acetate and acetone. Easy to apply, separates voids from surrounding gas, would not react with metal part under treatment, and easy to remove after pressing.

  3. Mechanism of hot corrosion of IN-738

    NASA Technical Reports Server (NTRS)

    Meier, G. H.

    1982-01-01

    The Na2SO4 - induced hot corrosion of IN-738 in the temperature range 900 C to 1000 C is characterized by an initiation stage during which the corrosion rate is slow followed by a propagation stage during which the corrosion rate is markedly accelerated. In the second stage, corrosion is accelerated due essentially to a sulfidation/oxidation mechanism; in the third stage, the rate becomes catastrophic due to acid fluxing induced by an accumulation of refractory metal oxides (particularly MoO3) in the Na2SO4. The sequential stages in the corrosion process are described and a mechanism proposed. The influence of alloy microstructure on the corrosion mechanism is also discussed.

  4. Glass Coats For Hot Isostatic Pressing

    NASA Technical Reports Server (NTRS)

    Ecer, Gunes M.

    1989-01-01

    Surface voids sealed from pressurizing gas. Coating technique enables healing of surface defects by hot isostatic pressing (HIP). Internal pores readily closed by HIP, but surface voids like cracks and pores in contact with pressurizing gas not healed. Applied to casting or weldment as thick slurry of two glass powders: one melts at temperature slightly lower than used for HIP, and another melts at higher temperature. For example, powder is glass of 75 percent SiO2 and 25 percent Na2O, while other powder SiO2. Liquid component of slurry fugitive organic binder; for example, mixture of cellulose acetate and acetone. Easy to apply, separates voids from surrounding gas, would not react with metal part under treatment, and easy to remove after pressing.

  5. Ultrafast demagnetization by hot electrons: Diffusion or super-diffusion?

    PubMed Central

    Salvatella, G.; Gort, R.; Bühlmann, K.; Däster, S.; Vaterlaus, A.; Acremann, Y.

    2016-01-01

    Ultrafast demagnetization of ferromagnetic metals can be achieved by a heat pulse propagating in the electron gas of a non-magnetic metal layer, which absorbs a pump laser pulse. Demagnetization by electronic heating is investigated on samples with different thicknesses of the absorber layer on nickel. This allows us to separate the contribution of thermalized hot electrons compared to non-thermal electrons. An analytical model describes the demagnetization amplitude as a function of the absorber thickness. The observed change of demagnetization time can be reproduced by diffusive heat transport through the absorber layer. PMID:27795975

  6. Effect of Some Parameters on the Cast Component Properties in Hot Chamber Die Casting

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder; Singh, Harvir

    2016-04-01

    Hot chamber die casting process is designed to achieve high dimensional accuracy for small products by forcing molten metal under high pressure into reusable moulds, called dies. The present research work is aimed at study of some parameters (as a case study of spring adjuster) on cast component properties in hot chamber die casting process. Three controllable factors of the hot chamber die casting process (namely: pressure at second phase, metal pouring temperature and die opening time) were studied at three levels each by Taguchi's parametric approach and single-response optimization was conducted to identify the main factors controlling surface hardness, dimensional accuracy and weight of the casting. Castings were produced using aluminium alloy, at recommended parameters through hot chamber die casting process. Analysis shows that in hot chamber die casting process the percentage contribution of second phase pressure, die opening time, metal pouring temperature for surface hardness is 82.48, 9.24 and 6.78 % respectively. While in the case of weight of cast component the contribution of second phase pressure is 94.03 %, followed by metal pouring temperature and die opening time (4.58 and 0.35 % respectively). Further for dimensional accuracy contribution of die opening time is 76.97 %, metal pouring temperature is 20.05 % and second phase pressure is 1.56 %. Confirmation experiments were conducted at an optimal condition showed that the surface hardness, dimensional accuracy and weight of the castings were improved significantly.

  7. Neptune's Wandering Hot Pole

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Fletcher, Leigh; Yanamandra-Fisher, Padma; Geballe, Tom; Hammel, Heidi; Fujiyoshi, Takuya; Encrenaz, Therese; Hofstadter, Mark; Mousis, Olivier; Fuse, Tetsuharu

    2010-05-01

    Images of stratospheric emission from Neptune obtained in 2006 at ESO's Very Large Telescope (Orton et al., 2007, A&A 473, L5) revealed a near-polar hot spot near 70 deg. S latitude that was detectable in different filters sampling both methane (~7-micron) and ethane (~12-micron) emission from Neptune's stratosphere. Such a feature was not present in 2003 Keck and 2005 Gemini North observations: these showed only a general warming trend towards Neptune's pole that was longitudinally homogeneous. Because of the paucity of longitudinal sampling in the 2003, 2005 and 2006 images, it was not clear whether the failure to see this phenomenon in 2003 and 2005 was simply the result of insufficient longitudinal sampling or whether the phenomenon was truly variable in time. To unravel these two possibilities, we proposed for time on large telescopes that were capable of resolving Neptune at these wavelengths. We were granted time at Gemini South in 2007 using T-Recs, Subaru time in 2008 using the COMICS instrument and VLT time in 2008 and 2009 using VISIR. Two serendipitous T-Recs images of Neptune were also obtained in 2007 using a broad-band N (8-14 micron) filter, whose radiance is dominated by 12-micron ethane emission, and whose primary purpose was navigation of N-band spectroscopy. The feature was re-observed (i) in 2007 in the T-Recs N-band filter and (ii) in 2008 with COMICS in a 12.5-micron image. Unfortunately, none of the telescope time granted was sufficient to sample all longitudes over the 12-hour period of this latitude, and so no definitive separation of the two possibilities was obtained. However, considering the ensemble of images as a random sample of longitudes, it is likely that the phenomenon is ephemeral in time, as it was observed only twice among 9 independent observing epochs. We will continue to request observations to sample all longitudes systematically, but our current sample argues that the phenomenon is truly ephemera, because we most likely

  8. Effects of Casting Conditions on End Product Defects in Direct Chill Casted Hot Rolling Ingots

    NASA Astrophysics Data System (ADS)

    Yorulmaz, Arda; Yüksel, Çağlar; Erzi, Eraz; Dispinar, Derya

    Direct chill casting is a reliable casting process for almost any wrought aluminum alloy for subsequent deformation via hot rolling to supply vital industries such as aerospace, automotive, construction, packaging and maritime. While some defects occur during casting, like hot tearing, some others like surface defect causing blisters, appear after hot rolling process or annealing after final cold rolling steps. It was found that some of these defects are caused by melt impurities formed from entrained folded aluminum oxides or bifilms. A study in a hot rolling casting facility was carried out with different melt cleaning practices, launder and molten metal transferring designs. Bifilm index and reduced pressure test were used for determining melt cleanliness measurement. It was found that porous plug gas diffusons for degassing are more effective than lance type degassers and a design towards less turbulent molten metal flow from furnace to mould cavity are necessary for reducing defects caused by bifilms.

  9. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  10. Effect of Chromium Addition to the Low Temperature Hot Corrosion Resistance of Platinum Modified Aluminide Coatings.

    DTIC Science & Technology

    1985-12-01

    Diffusion aluminide coatings were the first coatings developed for hot corrosion resistance. Aluminum is applied to the surface of the superalloy by a...D.H., "Mechanisms of Formation of Diffusion Aluminide Coatings on Nickel-oase Superalloys , Oxidation of Metals, v. 3, pp. 475-477, 1971. 17. Lehnert...Classification) E.FFECT OF CHROMIUJM ADDITION TO THE LOW TEMPERATURE HOT CORROSION RESISTANCE OF PLATINUM MODIFIED ALUMINIDE COATINGS 2 PERSONAL AUTHOR(S) Dust

  11. Hot-Electron-Induced Ultrafast Demagnetization in Co/Pt Multilayers.

    PubMed

    Bergeard, N; Hehn, M; Mangin, S; Lengaigne, G; Montaigne, F; Lalieu, M L M; Koopmans, B; Malinowski, G

    2016-09-30

    Using specially engineered structures to tailor the optical absorption in a metallic multilayer, we analyze the magnetization dynamics of a Co/Pt multilayer buried below a thick Cu layer. We demonstrate that hot electrons alone can very efficiently induce ultrafast demagnetization. Simulations based on hot electron ballistic transport implemented within a microscopic model that accounts for local dissipation of angular momentum nicely reproduce the experimental results, ruling out contribution of pure thermal transport.

  12. Experimental Study of Ignition by Hot Spot in Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Serruys, Max

    1938-01-01

    In order to carry out the contemplated study, it was first necessary to provide hot spots in the combustion chamber, which could be measured and whose temperature could be changed. It seemed difficult to realize both conditions working solely on the temperature of the cooling water in a way so as to produce hot spots on the cylinder wall capable of provoking autoignition. Moreover, in the majority of practical cases, autoignition is produced by the spark plug, one of the least cooled parts in the engine. The first procedure therefore did not resemble that which most generally occurs in actual engine operation. All of these considerations caused us to reproduce similar hot spots at the spark plugs. The hot spots produced were of two kinds and designated with the name of thermo-electric spark plug and of metallic hot spot.

  13. Hot Alps (Invited)

    NASA Astrophysics Data System (ADS)

    Speranza, F.; Minelli, L.; Pignatelli, A.; Gilardi, M.

    2013-12-01

    Although it is frequently assumed that crust of Alpine orogens is hot due to the occurrence of thick and young (hence radiogenic) crust, evidence on the thermal ranking of orogens is contradictory. Heat flow measurements from shallow wells (depth ≤ 1 km) in the Alps yield a relatively cold thermal regime of 50-80 mW/m2, but data are likely biased by meteoric cold-water circulation. Here we report on the spectral analysis of the aeromagnetic residuals of northern Italy to derive the Curie point depth (CPD), assumed to represent the 600°C isotherm depth. Airborne magnetics were acquired on whole Italy during the 1970s by the national oil company AGIP (now Eni). Data were gathered by several surveys carried out at 1000-13,300 feet (300-4000 m) altitude, with flight line spacing of 2-10 km. Surveys of the Alps and Po Plain (northern Italy) were obtained both with a line spacing of 5 km (and 5 km tie lines), at an altitude of 4000-5000 and 13,300 feet, respectively. To evaluate CPDs we used the centroid method (routinely adopted in recent CPD studies on East Asia and central-southern Europe) on 72 square windows of 100-110 km edge, with a 50% degree of superposition. CPDs vary between 16 and 38 km (22 km on average) in the Po Plain, located south of the Alps and representing the Adriatic-African foreland area. Conversely, the Alps yield very shallow CPDs, ranging between 6 and 15 km (10 km on average). CPDs fall systematically above local Moho depths, implying that magnetic source bottoms documented in this study do not represent a lithological boundary over non-magnetic peridotitic mantle, but can be safely associated with CPDs and the 600°C isotherm. CPDs from the Po Plain are in rough agreement with reported heat flow values of 25-60 mW/m2, and imply and average thermal conductivity (k) of the Po Plain crust of 1.5 W/m°K, at the lower bound of k values measured and inferred for the crust. Conversely, the average 10 km CPD documented in the Alps translates into

  14. A&M. Hot liquid waste treatment building (TAN616). Contextual view, facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Contextual view, facing south. Wall of hot shop (TAN-607) with high bay at left of view. Lower-roofed building at left edge of view is TAN- 633, hot cell annex. Complex at center of view is TAN-616. Tall metal building with gable roof is TAN-615. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-2-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  15. HOT CELL BUILDING, TRA632. EAST END OF BUILDING. CAMERA FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. EAST END OF BUILDING. CAMERA FACING WEST. TRUCK ENCLOSURE (1986) TO THE LEFT, SMALL ADDITION IN ITS SHADOW IS ENCLOSURE OVER METAL PORT INTO HOT CELL NO. 1 (THE OLDEST HOT CELL). NOTE PERSONNEL LADDER AND PLATFORM AT LOFT LEVEL USED WHEN SERVICING AIR FILTERS AND VENTS OF CELL NO. 1. INL NEGATIVE NO. HD46-32-4. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Excitation-Dependence of Plasmon-Induced Hot Electrons in Gold Nanoparticles.

    PubMed

    Minutella, Emanuele; Schulz, Florian; Lange, Holger

    2017-10-05

    The decay of a plasmon leads to a hot electron distribution in metallic nanoparticles. Depending on the processes involved in the excitation, different distributions are obtained, which thermalize differently. We experimentally investigate excitation-wavelength and size-dependences on the generation and thermalization of the hot-electrons. We can confirm the absence of size-dependences, and we clearly observe two regimes with significantly different relaxation dynamics depending on the photon energy. The hot electron generation is more efficient when exciting with light that enables interband transitions.

  17. Hot gas cleanup for molten carbonate fuel cells: A zinc reactor model

    NASA Astrophysics Data System (ADS)

    Steinfeld, G.

    1980-09-01

    Of the two near term options available for desulfurization of gasifier effluent, namely low temperature cleanup utilizing absorber/stripper technology, and hot gas cleanup utilizing metal oxides, there is a clear advantage to using hot gas cleanup. Since the MCFC will operate at 1200 F, and the gasifier effluent could be between 1200 to 1900 F, a hot gas cleanup system will require little or no change in process gas temperature, thereby contributing to a high overall system efficiency. Simulated operating characteristics to aid in system design and system simulations of gasifier/MCFC systems are described. The modeling of the ZnO reactor is presented.

  18. Features of surface enhanced Raman scattering in the systems with «hot spots»

    NASA Astrophysics Data System (ADS)

    Solovyeva, E. V.; Khazieva, D. A.; Denisova, A. S.

    2016-12-01

    In this work we demonstrate the features of SERS on the substrates with «hot spots» on the example of system «diaminostilbene - colloidal silver». We found that «hot spots» forming on aggregated nanoparticles exist on the metal substrates only at low concentration of ligand. This effect caused by the gradual filling of first monolayer by adsorbate molecules. Significantly higher enhancement factor is obtained for substrates with «hot spots», for which the participation of resonance processes in the formation of SERS signal is revealed also.

  19. Post-irradiation-examination of irradiated fuel outside the hot cell

    SciTech Connect

    Dawn E. Janney; Adam B. Robinson; Thomas P. O'Holleran; R. Paul Lind; Marc Babcock; Laurence C. Brower; Julie Jacobs; Pamela K. Hoggan

    2007-09-01

    Because of their high radioactivity, irradiated fuels are commonly examined in a hot cell. However, the Idaho National Laboratory (INL) has recently investigated irradiated U-Mo-Al metallic fuel from the Reduced Enrichment for Research and Test Reactors (RERTR) project using a conventional unshielded scanning electron microscope outside a hot cell. This examination was possible because of a two-step sample-preparation approach in which a small volume of fuel was isolated in a hot cell and shielding was introduced during later stages of sample preparation. The resulting sample contained numerous sample-preparation artifacts but allowed analysis of microstructures from selected areas.

  20. Electron-Impurity Interactions in the Relaxation of Hot Electrons in Gold-Gold Sulfide Nanoshells

    NASA Astrophysics Data System (ADS)

    Westcott, Sarah; Wolfgang, John; Nordlander, Peter; Halas, Naomi

    2000-10-01

    Hot electron dynamics can be modified in metallic nanostructures compared to bulk metals. In this experiment, ultrafast pump-probe spectroscopy permits observation of the effects of the local environment on hot electron relaxation in gold nanoshell particles. These nanoparticles consist of spherical (40 nm diameter) gold sulfide cores surrounded by ultrathin (5 nm) gold shells and possess a structure-dependent plasmon resonance.^1 Following excitation by a pump pulse at the plasmon resonance, the relaxation of the hot electrons in the nanoparticle's shell layer was observed. When molecules were adsorbed onto the nanoshell surface, increased electronic relaxation rates were observed for those molecular species with the greatest induced dipole moments near the nanoparticle surface. The effect of impurity adsorbates on the nanoparticle's electron dynamics is attributed to a perturbation in the electronic potential in the metal by the presence of the nearby impurities. ^1 R. D. Averitt, D. Sarkar, and N. J. Halas, Phys. Rev. Lett. 78, 4217 (1997).

  1. Theoretical predictions for hot-carrier generation from surface plasmon decay

    PubMed Central

    Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.; Goddard III, William A.; Atwater, Harry A.

    2014-01-01

    Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited ‘hot’ electrons and holes generated by plasmon decay, before inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find that carrier energy distributions are sensitive to the electronic band structure of the metal: gold and copper produce holes hotter than electrons by 1–2 eV, while silver and aluminium distribute energies more equitably between electrons and holes. Momentum-direction distributions for hot carriers are anisotropic, dominated by the plasmon polarization for aluminium and by the crystal orientation for noble metals. We show that in thin metallic films intraband transitions can alter the carrier distributions, producing hotter electrons in gold, but interband transitions remain dominant. PMID:25511713

  2. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions.

    PubMed

    Tan, Shijing; Liu, Liming; Dai, Yanan; Ren, Jindong; Zhao, Jin; Petek, Hrvoje

    2017-04-12

    Hot electron processes at metallic heterojunctions are central to optical-to-chemical or electrical energy transduction. Ultrafast nonlinear photoexcitation of graphite has been shown to create hot thermalized electrons at temperatures corresponding to the solar photosphere in less than 25 fs. Plasmonic resonances in metallic nanoparticles are also known to efficiently generate hot electrons. Here we combine Ag nanoparticles with graphite (Gr) to study the ultrafast hot electron generation and dynamics in their plasmonic heterojunctions by means of time-resolved two-photon photoemission (2PP) spectroscopy. Tuning the wavelength of p-polarized femtosecond excitation pulses we find enhancement of 2PP yields by two orders-of-magnitude, which we attribute to excitation of a surface normal Mie plasmon mode of Ag/Gr heterojunctions at 3.6 eV. The 2PP spectra include contributions from: i) coherent two-photon absorption of an occupied interface state 0.2 eV below Fermi level, which electronic structure calculations assign to chemisorption-induced charge transfer; and ii) hot electrons in the π*-band of graphite, which are excited through the coherent screening response of the substrate. Ultrafast pump-probe measurements show that the interface state photoemission occurs via virtual intermediate states, whereas the characteristic lifetimes attribute the hot electrons to the population of the π*-band of Gr via the plasmon dephasing. Our study directly probes the mechanisms for enhanced hot electron generation and decay in a model plasmonic heterojunction.

  3. Controlled metal-semiconductor sintering/alloying by one-directional reverse illumination

    DOEpatents

    Sopori, Bhushan L.

    1993-01-01

    Metal strips deposited on a top surface of a semiconductor substrate are sintered at one temperature simultaneously with alloying a metal layer on the bottom surface at a second, higher temperature. This simultaneous sintering of metal strips and alloying a metal layer on opposite surfaces of the substrate at different temperatures is accomplished by directing infrared radiation through the top surface to the interface of the bottom surface with the metal layer where the radiation is absorbed to create a primary hot zone with a temperature high enough to melt and alloy the metal layer with the bottom surface of the substrate. Secondary heat effects, including heat conducted through the substrate from the primary hot zone and heat created by infrared radiation reflected from the metal layer to the metal strips, as well as heat created from some primary absorption by the metal strips, combine to create secondary hot zones at the interfaces of the metal strips with the top surface of the substrate. These secondary hot zones are not as hot as the primary hot zone, but they are hot enough to sinter the metal strips to the substrate.

  4. Exploring Equilibrium Chemistry for Hot Exoplanets

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, Joseph; Mandell, Avi; Hébrard, Eric; Venot, Olivia; Cubillos, Patricio; Challener, Ryan

    2015-11-01

    It has been established that equilibrium chemistry is usually achieved deep in the atmosphere of hot Jovians where timescales are short (Line and Young 2013). Thus, equilibrium chemistry has been used as a starting point (setting initial conditions) for evaluating disequilibrium processes. We explore parameters of setting these initial conditions including departures from solar metallicity, the number of species allowed in a system, the types of species allowed in a system, and different thermodynamic libraries in an attempt to create a standard for evaluating equilibrium chemistry. NASA's open source code Chemical Equilibrium and Applications (CEA) is used to calculate model planet abundances by varying the metallicity, in the pressure regime of 0.1 to 1 bar. These results are compared to a variety of exoplanets (Teq between 600 and 2100K) qualitatively by color maps of the dayside with different temperature redistributions. Additionally, CEA (with an updated thermodynamic library) is validated with the thermochemical model presented in Venot et al. (2012) for HD 209458b and HD 189733b. This same analysis has then been extended to the cooler planet HD 97658b. Spectra are generated from both models’ abundances using the open source code transit (https://github.com/exosports/transit) using the opacities of 15 molecules. We make the updated CEA thermodyanamic library and supporting Python scripts to do the CEA analyses available open source. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G.

  5. Exploring Chemical Equilibrium in Hot Jovians

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, Joseph; Mandell, Avi; Hébrard, Eric; Venot, Olivia; Cubillos, Patricio; Blecic, Jasmina; Challener, Ryan

    2016-01-01

    It has been established that equilibrium chemistry is usually achieved deep in the atmosphere of hot Jovians where timescales are short (Line and Yung 2013). Thus, equilibrium chemistry has been used as a starting point (setting initial conditions) for evaluating disequilibrium processes. We explore parameters of setting these initial conditions including departures from solar metallicity, the number of species allowed in a system, the types of species allowed in a system, and different thermodynamic libraries in an attempt to create a standard for evaluating equilibrium chemistry. NASA's open source code Chemical Equilibrium and Applications (CEA) is used to calculate model planet abundances by varying the metallicity, in the pressure regime 0.1 to 1 bar. These results are compared to a variety of exoplanets(Teq between 600 and 2100K) qualitatively by color maps of the dayside with different temperature redistributions. Additionally, CEA (with an up-dated thermodynamic library) is compared with the thermochemical model presented in Venotet al. (2012) for HD 209458b and HD 189733b. This same analysis is then applied to the cooler planet HD 97658b. Spectra are generated and we compare both models' outputs using the open source codetransit (https://github.com/exosports/transit) using the opacities of 15 molecules. We make the updated CEA thermodyanamic library and supporting Python scripts to do the CEA analyses available open source. Thiswork was supported by NASA Planetary Atmospheres grant NNX12AI69G.

  6. Science with hot astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Kaastra, J. S.; Gu, L.; Mao, J.; Mehdipour, M.; Mernier, F.; de Plaa, J.; Raassen, A. J. J.; Urdampilleta, I.

    2017-08-01

    We present some recent highlights and prospects for the study of hot astrophysical plasmas. Hot plasmas can be studied primarily through their X-ray emission and absorption. Most astrophysical objects, from solar system objects to the largest scale structures of the Universe, contain hot gas. In general we can distinguish collisionally ionised gas and photoionised gas. We introduce several examples of both classes and show where the frontiers of this research in astrophysics can be found. We put this also in the context of the current and future generation of X-ray spectroscopy satellites. The data coming from these missions challenge the models that we have for the calculation of the X-ray spectra.

  7. FG Sagittae - No hot companion?

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Bruhweiler, Frederick C.

    1990-01-01

    The nucleus of the planetary nebula He 1-5 (= PK 60 -7 deg 1), the variable star FG Sge, was observed with the SWP camera of the International Ultraviolet Explorer satellite to detect a hot companion of the star, if such a companion exists. The observation found no evidence for the existance of a hot companion in the 1200-2000 A range of the SWP camera and supported the contention that FG Sge underwent a helium shell flash during the past century, and that the surrounding nebula, He 1-5, is a nebula of fossil ionization. Despite the currently accepted fossil ionization model, constraints posed by the satellite detection limit, the observed H-beta flux, and the adopted radii for white dwarfs still allow the possibility of a putative hot companion photoionizing this nebula.

  8. Hot electron pump: a plasmonic rectifying antenna (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Yanik, Ahmet A.; Hossain, Golam I.

    2015-09-01

    Plasmonic nanostructures have been widely explored to improve absorption efficiency of conventional solar cells, either by employing them as a light scatterer, or as a source of local field enhancement. Unavoidable ohmic loss associated with the plasmonic metal nanostructures in visible spectrum, limits the efficiency improvement of photovoltaic devices by employing this local photon density of states (LDOS) engineering approach. Instead of using plasmonic structures as efficiency improving layer, recently, there has been a growing interest in exploring plasmoinc nanoparticle as the active medium for photovoltaic device. By extracting hot electrons that are created in metallic nanoparticles in a non-radiative Landau decay of surface plasmons, many novel plasmonic photovoltaic devices have been proposed. Moreover, these hot electrons in metal nanoparticles promises high efficiency with a spectral response that is not limited by the band gap of the semiconductors (active material of conventional solar cell). In this work, we will show a novel photovoltaic configuration of plasmonic nanoparticle that acts as an antenna by capturing free space ultrahigh frequency electromagnetic wave and rectify them through an ultrafast hot electron pump and eventually inject DC current in the contact of the device. We will introduce a bottom-up quantum mechanical approach model to explain fundamental physical processes involved in this hot electron pump rectifying antenna and it's ultrafast dynamics. Our model is based on non-equilibrium Green's function formalism, a robust theoretical framework to investigate transport and design nanoscale electronic devices. We will demonstrate some fundamental limitations that go the very foundations of quantum mechanics.

  9. Archaeal Nitrification in Hot Springs

    NASA Astrophysics Data System (ADS)

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.

    2006-12-01

    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  10. Hot Gas Halos in Galaxies

    SciTech Connect

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-06-08

    We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

  11. Design concepts for hot carrier-based detectors and energy converters in the near ultraviolet and infrared

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Krayer, Lisa; Munday, Jeremy N.

    2016-10-01

    Semiconductor materials are well suited for power conversion when the incident photon energy is slightly larger than the bandgap energy of the semiconductor. However, for photons with energy significantly greater than the bandgap energy, power conversion efficiencies are low. Further, for photons with energy below the bandgap energy, the absence of absorption results in no power generation. Here, we describe photon detection and power conversion of both high- and low-energy photons using hot carrier effects. For the absorption of high-energy photons, excited electrons and holes have excess kinetic energy that is typically lost through thermalization processes between the carriers and the lattice. However, collection of hot carriers before thermalization allows for reduced power loss. Devices utilizing plasmonic nanostructures or simple three-layer stacks (transparent conductor-insulator-metal) can be used to generate and collect these hot carriers. Alternatively, hot carrier collection from sub-bandgap photons can be possible by forming a Schottky junction with an absorbing metal so that hot carriers generated in the metal can be injected across the semiconductor-metal interface. Such structures enable near-IR detection based on sub-bandgap photon absorption. Further, utilization and optimization of localized surface plasmon resonances can increase optical absorption and hot carrier generation (through plasmon decay). Combining these concepts, hot carrier generation and collection can be exploited over a large range of incident wavelengths spanning the UV, visible, and IR.

  12. Planar microcavity-integrated hot-electron photodetector

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wu, Kai; Zhan, Yaohui; Giannini, Vincenzo; Li, Xiaofeng

    2016-05-01

    Hot-electron photodetectors are attracting increasing interest due to their capability in below-bandgap photodetection without employing classic semiconductor junctions. Despite the high absorption in metallic nanostructures via plasmonic resonance, the fabrication of such devices is challenging and costly due to the use of high-dimensional sub-wavelength nanostructures. In this study, we propose a planar microcavity-integrated hot-electron photodetector (MC-HE PD), in which the TCO/semiconductor/metal (TCO: transparent conductive oxide) structure is sandwiched between two asymmetrically distributed Bragg reflectors (DBRs) and a lossless buffer layer. Finite-element simulations demonstrate that the resonant wavelength and the absorption efficiency of the device can be manipulated conveniently by tailoring the buffer layer thickness and the number of top DBR pairs. By benefitting from the largely increased electric field at the resonance frequency, the absorption in the metal can reach 92%, which is a 21-fold enhancement compared to the reference without a microcavity. Analytical probability-based electrical calculations further show that the unbiased responsivity can be up to 239 nA mW-1, which is more than an order of magnitude larger than that of the reference. Furthermore, the MC-HE PD not only exhibits a superior photoelectron conversion ability compared to the approach with corrugated metal, but also achieves the ability to tune the near infrared multiband by employing a thicker buffer layer.

  13. Hot conditioning equipment conceptual design report

    SciTech Connect

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  14. Menopausal hot flashes: Randomness or rhythmicity

    NASA Astrophysics Data System (ADS)

    Kronenberg, Fredi

    1991-10-01

    Menopausal hot flashes are episodes of flushing, increased heart rate, skin blood flow and skin temperature, and a sensation of heat. The thermoregulatory and cardiovascular concomitants of hot flashes are associated with peaks in the levels of various hormones and neurotransmitters in the peripheral circulation. Although hot flashes affect about 75% of women, and are the primary reason that women at menopause seek medical attention, the mechanism of hot flashes is still not understood. Hot flashes vary in frequency and intensity both within and between individuals, and have been thought of as occurring randomly. Yet, some women report that their hot flashes are worse at a particular time of day or year. Initial examination of subjects' recordings of their hot flashes showed diurnal patterns of hot flash occurrence. There also seems to be a diurnal rhythm of hot flash intensity. Continuous physiological monitoring of hot flashes is facilitating the analysis of these patterns, which is revealing circadian and ultradian periodicities. The occurrence of hot flashes can be modulated by external and internal factors, including ambient temperature and fever. Rhythms of thermoregulatory and endocrine functions also may influence hot flash patterns. Examination of the interrelationships between the various systems of the body involved in hot flashes, and a multidisciplinary approach to the analysis of hot flash patterns, will aid our understanding of this complex phenomenon.

  15. Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells.

    PubMed

    Zhang, Yu; Yam, ChiYung; Schatz, George C

    2016-05-19

    Detailed balance between photon-absorption and energy loss constrains the efficiency of conventional solar cells to the Shockley-Queisser limit. However, if solar illumination can be absorbed over a wide spectrum by plasmonic structures, and the generated hot-carriers can be collected before relaxation, the efficiency of solar cells may be greatly improved. In this work, we explore the opportunities and limitations for making plasmonic solar cells, here considering a design for hot-carrier solar cells in which a conventional semiconductor heterojunction is attached to a plasmonic medium such as arrays of gold nanoparticles. The underlying mechanisms and fundamental limitations of this cell are studied using a nonequilibrium Green's function method, and the numerical results indicate that this cell can significantly improve the absorption of solar radiation without reducing open-circuit voltage, as photons can be absorbed to produce mobile carriers in the semiconductor as long as they have energy larger than the Schottky barrier rather than above the bandgap. However, a significant fraction of the hot-carriers have energies below the Schottky barrier, which makes the cell suffer low internal quantum efficiency. Moreover, quantum efficiency is also limited by hot-carrier relaxation and metal-semiconductor coupling. The connection of these results to recent experiments is described, showing why plasmonic solar cells can have less than 1% efficiency.

  16. Theoretical analysis of hot electron dynamics in nanorods

    PubMed Central

    Kumarasinghe, Chathurangi S.; Premaratne, Malin; Agrawal, Govind P.

    2015-01-01

    Localised surface plasmons create a non-equilibrium high-energy electron gas in nanostructures that can be injected into other media in energy harvesting applications. Here, we derive the rate of this localised-surface-plasmon mediated generation of hot electrons in nanorods and the rate of injecting them into other media by considering quantum mechanical motion of the electron gas. Specifically, we use the single-electron wave function of a particle in a cylindrical potential well and the electric field enhancement factor of an elongated ellipsoid to derive the energy distribution of electrons after plasmon excitation. We compare the performance of nanorods with equivolume nanoparticles of other shapes such as nanospheres and nanopallets and report that nanorods exhibit significantly better performance over a broad spectrum. We present a comprehensive theoretical analysis of how different parameters contribute to efficiency of hot-electron harvesting in nanorods and reveal that increasing the aspect ratio can increase the hot-electron generation and injection, but the volume shows an inverse dependency when efficiency per unit volume is considered. Further, the electron thermalisation time shows much less influence on the injection rate. Our derivations and results provide the much needed theoretical insight for optimization of hot-electron harvesting process in highly adaptable metallic nanorods. PMID:26202823

  17. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  18. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  19. Origins of Hot Jupiters, Revisited

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Greg

    2015-12-01

    Hot Jupiters, giant extrasolar planets with orbital periods less than ~10 days, have long been thought to form at large radial distances (a > 2AU) in protostellar disks, only to subsequently experience large-scale inward migration to the small orbital radii at which they are observed. Here, we propose that a substantial fraction of the hot Jupiter population forms in situ, with the Galactically prevalent short-period super-Earths acting as the source population. Our calculations suggest that under conditions appropriate to the inner regions of protostellar disks, rapid gas accretion can be initiated for solid cores of 10-20 Earth masses, in line with the conventional picture of core-nucleated accretion. This formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional planets, reminiscent of those observed in large numbers by NASA’s Kepler Mission and Doppler velocity surveys. However, dynamical interactions during the early stages of planetary systems' evolutionary lifetimes tend to increase the mutual inclinations of exterior, low-mass companions to hot Jupiters, making transits rare. High-precision radial velocity monitoring provides the best prospect for their detection.

  20. Origins of Hot Jupiters, Revisited

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Greg

    2016-05-01

    Hot Jupiters, giant extrasolar planets with orbital periods less than ~10 days, have long been thought to form at large radial distances (a > 2AU) in protoplanetary disks, only to subsequently experience large-scale inward migration to the small orbital radii at which they are observed. Here, we propose that a substantial fraction of the hot Jupiter population forms in situ, with the Galactically prevalent short-period super-Earths acting as the source population. Our calculations suggest that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated for solid cores of 10-20 Earth masses, in line with the conventional picture of core-nucleated accretion. The planetary conglomeration process, coupled with subsequent gravitational contraction and spin down of the host star, drives sweeping secular resonances through the system, increasing the mutual inclinations of exterior, low-mass companions to hot Jupiters. Accordingly, this formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional non-transiting planets, reminiscent of those observed in large numbers by NASA’s Kepler Mission and Doppler velocity surveys. High-precision radial velocity monitoring provides the best prospect for their detection.

  1. Clouds on Hot Jupiters Illustration

    NASA Image and Video Library

    2016-10-18

    Hot Jupiters are exoplanets that orbit their stars so tightly that their temperatures are extremely high, reaching over 2,400 degrees Fahrenheit (1600 Kelvin). They are also tidally locked, so one side of the planet always faces the sun and the other is in permanent darkness. Research suggests that the "dayside" is largely free of clouds, while the "nightside" is heavily clouded. This illustration represents how hot Jupiters of different temperatures and different cloud compositions might appear to a person flying over the dayside of these planets on a spaceship, based on computer modeling. Cooler planets are entirely cloudy, whereas hotter planets have morning clouds only. Clouds of different composition have different colors, whereas the clear sky is bluer than on Earth. For the hottest planets, the atmosphere is hot enough on the evening side to glow like a charcoal. Figure 1 shows an approximation of what various hot Jupiters might look like based on a combination of computer modeling and data from NASA's Kepler Space Telescope. From left to right it shows: sodium sulfide clouds (1000 to 1200 Kelvin), manganese sulfide clouds (1200 to 1600 Kelvin), magnesium silicate clouds (1600 to 1800 Kelvin), magnesium silicate and aluminum oxide clouds (1800 Kelvin) and clouds composed of magnesium silicate, aluminum oxide, iron and calcium titanate (1900 to 2200 Kelvin). http://photojournal.jpl.nasa.gov/catalog/PIA21074

  2. Solar Hot Water Hourly Simulation

    SciTech Connect

    Walker, Howard Andrew

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  3. Sources of antibiotics: Hot springs.

    PubMed

    Mahajan, Girish B; Balachandran, Lakshmi

    2016-11-24

    The discovery of antibiotics heralded an era of improved health care. However, the over-prescription and misuse of antibiotics resulted in the development of resistant strains of various pathogens. Since then, there has been an incessant search for discovering novel compounds from bacteria at various locations with extreme conditions. The soil is one of the most explored locations for bioprospecting. In recent times, hypersaline environments and symbiotic associations have been investigated for novel antimicrobial compounds. Among the extreme environments, hot springs are comparatively less explored. Many researchers have reported the presence of microbial life and secretion of antimicrobial compounds by microorganisms in hot springs. A pioneering research in the corresponding author's laboratory resulted in the identification of the antibiotic Fusaricidin B isolated from a hot spring derived eubacteria, Paenibacillus polymyxa, which has been assigned a new application for its anti-tubercular properties. The corresponding author has also reported anti-MRSA and anti-VRE activity of 73 bacterial isolates from hot springs in India.

  4. Microsensor Hot-Film Anemometer

    NASA Technical Reports Server (NTRS)

    Mcginley, Catherine B.; Stephens, Ralph; Hopson, Purnell; Bartlett, James E.; Sheplak, Mark; Spina, Eric F.

    1995-01-01

    Improved hot-film anemometer developed for making high-bandwidth turbulence measurements in moderate-enthalpy supersonic and hypersonic flows (e.g., NASP inlets and control surfaces, HSCT jet exhaust). Features include low thermal inertia, ruggedness, and reduced perturbation of flow.

  5. Solar hot-water system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design data brochure describes domestic solar water system that uses direct-feed system designed to produce 80 gallons of 140 F hot water per day to meet needs of single family dwelling. Brochure also reviews annual movements of sun relative to earth and explains geographic considerations in collector orientation and sizing.

  6. Solar Technician Program Blows Hot

    ERIC Educational Resources Information Center

    Ziegler, Peg Moran

    1977-01-01

    A training program for solar heating technicians was initiated at Sonoma State College's School of Environmental Studies for CETA applicants. Among the projects designed and built were a solar alternative energy center, a solar hot water system, and a solar greenhouse. (MF)

  7. Types of Hot Jupiter Atmospheres

    NASA Astrophysics Data System (ADS)

    Bisikalo, Dmitry V.; Kaygorodov, Pavel V.; Ionov, Dmitry E.; Shematovich, Valery I.

    Hot Jupiters, i.e. exoplanet gas giants, having masses comparable to the mass of Jupiter and semimajor axes shorter than 0.1 AU, are a unique class of objects. Since they are so close to the host stars, their atmospheres form and evolve under the action of very active gas dynamical processes caused by the gravitational field and irradiation of the host star. As a matter of fact, the atmospheres of several of these planets fill their Roche lobes , which results in a powerful outflow of material from the planet towards the host star. The energy budget of this process is so important that it almost solely governs the evolution of hot Jupiters gaseous envelopes. Based on the years of experience in the simulations of gas dynamics in mass-exchanging close binary stars, we have investigated specific features of hot Jupiters atmospheres. The analytical estimates and results of 3D numerical simulations, discussed in this Chapter, show that the gaseous envelopes around hot Jupiters may be significantly non-spherical and, at the same time, stationary and long-lived. These results are of fundamental importance for the interpretation of observational data.

  8. Detection of Hot Halo Gets Theory Out of Hot Water

    NASA Astrophysics Data System (ADS)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  9. Processing map for hot working of powder

    NASA Astrophysics Data System (ADS)

    Radhakrishna Bhat, B. V.; Mahajan, Y. R.; Roshan, H. Md.; Prasad, Yvrk

    1992-08-01

    The constitutive flow behavior of a metal matrix composite (MMC) with 2124 aluminum containing 20 vol pct silicon carbide particulates under hot-working conditions in the temperature range of 300 °C to 550 °C and strain-rate range of 0.001 to 1 s-1 has been studied using hot compression testing. Processing maps depicting the variation of the efficiency of power dissipation given by [2m/(m + 1)] (where m is the strain-rate sensitivity of flow stress) with temperature and strain rate have been established for the MMC as well as for the matrix material. The maps have been interpreted on the basis of the Dynamic Materials Model (DMM). [3] The MMC exhibited a domain of superplasticity in the temperature range of 450 °C to 550 °C and at strain rates less than 0.1 s-1. At 500 °C and 1 s-1 strain rate, the MMC undergoes dynamic recrystallization (DRX), resulting in a reconstitution of microstructure. In comparison with the map for the matrix material, the DRX domain occurred at a strain rate higher by three orders of magnitude. At temperatures lower than 400 °C, the MMC exhibited dynamic recovery, while at 550 °C and 1 s-1, cracking occurred at the prior particle boundaries (representing surfaces of the initial powder particles). The optimum temperature and strain-rate combination for billet conditioning of the MMC is 500 °C and 1 s-1, while secondary metalworking may be done in the super- plasticity domain. The MMC undergoes microstructural instability at temperatures lower than 400 °C and strain rates higher than 0.1 s-1.

  10. Metallated metal-organic frameworks

    DOEpatents

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  11. Metallated metal-organic frameworks

    DOEpatents

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-02-07

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  12. PCR hot-start using duplex primers.

    PubMed

    Kong, Deming; Shen, Hanxi; Huang, Yanping; Mi, Huaifeng

    2004-02-01

    A new technique of PCR hot-start using duplex primers has been developed which can decrease the undesirable products arising throughout PCR amplification thereby giving better results than a manual hot-start method.

  13. From Hot Flashes to Cool Insights: Menopause

    MedlinePlus

    ... JavaScript on. Feature: Menopause From Hot Flashes to Cool Insights: Menopause Past Issues / Winter 2017 Table of ... Read More "Menopause" Articles From Hot Flashes to Cool Insights: Menopause / Treatment Tips From the National Institute ...

  14. Acord 1-26 hot, dry well, Roosevelt Hot Springs hot dry rock prospect, Utah

    SciTech Connect

    Shannon, S.S. Jr.; Pettitt, R.; Rowley, J.; Goff, F.; Mathews, M.; Jacobson, J.J.

    1983-08-01

    The Acord 1-26 well is a hot, dry well peripheral to the Roosevelt Hot Springs known geothermal resource area (KGRA) in southwestern Utah. The bottom-hole temperature in this 3854-m-deep well is 230/sup 0/C, and the thermal gradient is 54/sup 0/C/km. The basal 685 m, comprised of biotite monzonite and quartz schist and gneiss, is a likely hot, dry rock (HDR) prospect. The hole was drilled in a structural low within the Milford Valley graben and is separated from the Roosevelt KGRA to the east by the Opal Mound Fault and other basin faults. An interpretation of seismic data approximates the subsurface structure around the well using the lithology in the Acord 1-26 well. The hole was drilled with a minimum of difficulty, and casing was set to 2411 m. From drilling and geophysical logs, it is deduced that the subsurface blocks of crystalline rock in the vicinity of the Acord 1-26 well are tight, dry, shallow, impermeable, and very hot. A hydraulic fracture test of the crystalline rocks below 3170 m is recommended. Various downhole tools and techniques could be tested in promising HDR regimes within the Acord 1-26 well.

  15. COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b

    SciTech Connect

    Moses, J. I.; Line, M. R.; Visscher, C.; Richardson, M. R.; Nettelmann, N.; Fortney, J. J.; Barman, T. S.; Stevenson, K. B.; Madhusudhan, N.

    2013-11-01

    Neptune-sized extrasolar planets that orbit relatively close to their host stars—often called {sup h}ot Neptunes{sup —}are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accretion of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric metallicities of 10-10,000 times solar, hot Neptunes will exhibit an interesting continuum of atmospheric compositions, ranging from more Neptune-like, H{sub 2}-dominated atmospheres to more Venus-like, CO{sub 2}-dominated atmospheres. We explore the predicted equilibrium and disequilibrium chemistry of generic hot Neptunes and find that the atmospheric composition varies strongly as a function of temperature and bulk atmospheric properties such as metallicity and the C/O ratio. Relatively exotic H{sub 2}O, CO, CO{sub 2}, and even O{sub 2}-dominated atmospheres are possible for hot Neptunes. We apply our models to the case of GJ 436b, where we find that a CO-rich, CH{sub 4}-poor atmosphere can be a natural consequence of a very high atmospheric metallicity. From comparisons of our results with Spitzer eclipse data for GJ 436b, we conclude that although the spectral fit from the high-metallicity forward models is not quite as good as the best fit obtained from pure retrieval methods, the atmospheric composition predicted by these forward models is more physically and chemically plausible in terms of the relative abundance of major constituents. High-metallicity atmospheres (orders of magnitude in excess of solar) should therefore be considered as a possibility for GJ 436b and other hot Neptunes.

  16. Shear bond strength of a hot pressed Au-Pd-Pt alloy-porcelain dental composite.

    PubMed

    Henriques, B; Soares, D; Silva, F S

    2011-11-01

    The purpose of this study was to evaluate the effect of hot pressing on the shear bond strength of a Au-Pt-Pd alloy-porcelain composite. Several metal-porcelain composites specimens were produced by two different routes: conventional porcelain fused to metal (PFM) and hot pressing. In the latter case, porcelain was hot pressed onto a polished surface (PPPS) as well as a roughened one (PPRS). Bond strength of all metal-porcelain composites were assessed by the means of a shear test performed in a universal test machine (crosshead speed: 0.5 mm/min) until fracture. Interfaces of fractured specimens as well as undestroyed interface specimens were examined with optical microscope, stereomicroscope, Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The data were analyzed using one-way ANOVA followed by Tuckey's test (p<0.05). Shear bond strength of conventional PFM specimens were in line with the upper range of literature data (83±14 MPa). Hot pressing proved to significantly increase bond strength between metal and porcelain (p<0.05). For both polished and roughened surface the shear bond strength values for hot pressed specimens were 120±16 MPa and 129±5 MPa, respectively, which represents an improvement of more than 50% relatively to a conventional PFM. Roughened surface did not have a significant effect on bond strength of hot pressed specimens (p>0.05). This study shows that it is possible to significantly improve metal-porcelain bond strength by applying an overpressure during porcelain firing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Acupuncture for menopausal hot flushes.

    PubMed

    Dodin, Sylvie; Blanchet, Claudine; Marc, Isabelle; Ernst, Edzard; Wu, Taixiang; Vaillancourt, Caroline; Paquette, Joalee; Maunsell, Elizabeth

    2013-07-30

    Hot flushes are the most common menopausal vasomotor symptom. Hormone therapy (HT) has frequently been recommended for relief of hot flushes, but concerns about the health risks of HT have encouraged women to seek alternative treatments. It has been suggested that acupuncture may reduce hot flush frequency and severity. To determine whether acupuncture is effective and safe for reducing hot flushes and improving the quality of life of menopausal women with vasomotor symptoms. We searched the following databases in January 2013: the Cochrane Menstrual Disorders and Subfertility Group Specialised Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, EMBASE, CINAHL, PsycINFO, Chinese Biomedical Literature Database (CBM), Chinese Medical Current Content (CMCC), China National Knowledge Infrastructure (CNKI), VIP database, Dissertation Abstracts International, Current Controlled Trials, Clinicaltrials.gov, National Center for Complementary and Alternative Medicine (NCCAM), BIOSIS, AMED, Acubriefs, and Acubase. Randomized controlled trials comparing any type of acupuncture to no treatment/control or other treatments for reducing menopausal hot flushes and improving the quality of life of symptomatic perimenopausal/postmenopausal women were eligible for inclusion. Sixteen studies, with 1155 women, were eligible for inclusion. Three review authors independently assessed trial eligibility and quality, and extracted data. We pooled data where appropriate and calculated mean differences (MDs) and standardized mean differences (SMDs) with 95% confidence intervals (CI). We evaluated the overall quality of the evidence using Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. Eight studies compared acupuncture versus sham acupuncture. No significant difference was found between the groups for hot flush frequency (MD -1.13 flushes per day, 95% CI -2.55 to 0.29, 8 RCTs, 414 women, I(2) = 70%, low-quality evidence

  18. Erosion of Metals Exposed to Hot, Dense Gases

    DTIC Science & Technology

    1988-02-01

    8217e2SSon’eS. ildrOgeii di lbs L’s inlto th’ SaMI) IC aiid naY t𔃻𔃻 1ii a.;eOýIý iscoiiipoood1s witilh OrOn andi s ilIicoln of thet ai loY [9] , thols ... E -XPOSED TO 6/16/84Ss HO0T, DENSE GA~SES 6. PERFORkIINZ ORG. REPORT NUMBER IS U 7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(&) M1aI:o to T de D)AAG;e29...16. DISTRIBu FiON STATEMENT (of thisa Report)15.DLAIIATODONRIG Aoprovted for public 1-11ap~: (1iot,ihutiofl E L . 17. DISTRIBUTION STATEMENT (of Itý

  19. Hydrologic indicators of hot spots and hot moments of mercury methylation along river corridors

    NASA Astrophysics Data System (ADS)

    Singer, Michael; Harrison, Lee; Donovan, Patrick; Blum, Joel; Marvin-DiPasquale, Mark

    2016-04-01

    The biogeochemical cycling of metals and other contaminants river-floodplain corridors is controlled by microbial activity is often affected by dynamic redox conditions. Riverine flooding thus has the potential to affect speciation of redox-sensitive metals such as mercury (Hg). Therefore, flow history over a period of decades potentially holds information on past production of bioavailable Hg. We investigate this process within a Northern California river system that has a legacy of industrial-scale 19th century hydraulic gold mining. In the first known application of this methodology, we combine hydraulic modeling, measurements of Hg species in sediment and biota, and first-order calculations to assess the role of river floodplains in producing monomethylmercury (MMHg), which accumulates in local and migratory biota. We identify areas that represent 'hot spots' (frequently inundated areas of floodplains) and 'hot moments' (floodplain areas inundated for consecutive long periods). We show that the probability of MMHg production in each sector of the river system is dependent on the spatial patterns of overbank flow and drainage, which affect its long-term redox history. MMHg bioaccumulation within the aquatic food web may pose a major risk to humans and waterfowl that eat migratory salmonids, which are being encouraged to come up these rivers to spawn, and there appears to be no end to MMHg production under a regime of increasingly common large floods with extended duration. These findings identify river floodplains as periodic, temporary, yet important, loci of biogeochemical transformation in which contaminants may undergo change during limited periods of the historical hydrologic record. We suggest that inundation is the primary driver of MMHg production in river corridors and that the entire flow history must be analyzed in terms of magnitude and frequency of inundation in order to accurately assess biogeochemical risks, rather than merely highlighting the

  20. Refrigerator with anti-sweat hot liquid loop

    SciTech Connect

    Woolley, S.J.; Cushing, D.S.; Jenkins, T.E.; Gerdes, K.W.; Sisler, R.R.

    1988-04-05

    A cabinet assembly for a refrigerator having a freezer compartment ontop with two top front corners, a fresh food compartment on the bottom, a mullion partition between the compartments and a hot liquid anti-sweat loop is described comprising; an outer sheet metal shell having a top panel, side panels and a front face, a brace located at each of the two top front corners of the cabinet and having two formed sections at right angles to each other and each section is formed as an inwardly open U-shaped channel having a base, a first leg and a second leg spaced apart and integrally joined to the base, fastening means for rigidly attaching each of the second leg of the corner braces to the flange of the third wall of the front face, and means to secure a portion of the hot liquid anti-sweat loop to the braces.

  1. Diffuse vacuum arc with cerium oxide hot cathode

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.; Ivanov, A. S.

    2016-11-01

    Diffuse vacuum arc with hot cathode is one of the perspective plasma sources for the development of spent nuclear fuel plasma reprocessing technology. Experimental data is known for such type of discharges on metal cathodes. In this work discharge with cerium dioxide hot cathode was studied. Cerium dioxide properties are similar to uranium dioxide. Its feature as dielectric is that it becomes conductive in oxygen-free atmosphere. Vacuum arc was studied at following parameters: cathode temperatures were between 2.0 and 2.2 kK, discharge currents was between 30 and 65 A and voltages was in range from 15 to 25 V. Power flows from plasma to cathode were estimated in achieved regimes. Analysis of generated plasma component composition was made by radiation spectrum diagnostics. These results were compared with calculations of equilibrium gaseous phase above solid sample of cerium dioxide in close to experimental conditions. Cerium dioxide vacuum evaporation rate and evaporation rate in arc were measured.

  2. Unsymmetrical hot electron heating in quasi-ballistic nanocontacts

    PubMed Central

    Tsutsui, Makusu; Kawai, Tomoji; Taniguchi, Masateru

    2012-01-01

    Electrons are allowed to pass through a single atom connected to two electrodes without being scattered as the characteristic size is much smaller than the inelastic mean free path. In this quasi-ballistic regime, it is difficult to predict where and how power dissipation occurs in such current-carrying atomic system. Here, we report direct assessment of electrical heating in a metallic nanocontact. We find asymmetric electrical heating effects in the essentially symmetric single-atom contact. We simultaneously identified the voltage polarity independent onset of the local heating by conducting the inelastic noise spectroscopy. As a result, we revealed significant heat dissipation by hot electrons transmitting ballistically through the junction that creates a hot spot at the current downstream. This technique can be used as a platform for studying heat dissipation and transport in atomic/molecular systems. PMID:22355731

  3. Development of advanced hot-gas desulfurization sorbents. Final report

    SciTech Connect

    Jothimurugesan, K.; Adeyiga, A.A.; Gangwal, S.K.

    1997-10-01

    The objective of this project was to develop hot-gas desulfurization sorbent formulations for relatively lower temperature application, with emphasis on the temperature range from 343--538 C. The candidate sorbents include highly dispersed mixed metal oxides of zinc, iron, copper, cobalt, nickel and molybdenum. The specific objective was to develop suitable sorbents, that would have high and stable surface area and are sufficiently reactive and regenerable at the relatively lower temperatures of interest in this work. Stability of surface area during regeneration was achieved by adding stabilizers. To prevent sulfation, catalyst additives that promote the light-off of the regeneration reaction at lower temperature was considered. Another objective of this study was to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343 to 538 C and regenerability at lower temperatures than leading first generation sorbents.

  4. Overview of Idaho National Laboratory's Hot Fuels Examination Facility

    SciTech Connect

    Adam B. Robinson; R. Paul Lind; Daniel M. Wachs

    2007-09-01

    The Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) of the Idaho National Laboratory was constructed in the 1960’s and opened for operation in the 1975 in support of the liquid metal fast breeder reactor research. Specifically the facility was designed to handle spent fuel and irradiated experiments from the Experimental Breeder Reactor EBRII, the Fast Flux Test Facility (FFTF), and the Transient Reactor Test Facility (TREAT). HFEF is a large alpha-gamma facility designed to remotely characterize highly radioactive materials. In the late 1980’s the facility also began support of the US DOE waste characterization including characterizing contact-handled transuranic (CH-TRU) waste. A description of the hot cell as well as some of its primary capabilities are discussed herein.

  5. OUT Success Stories: Solar Hot Water Technology

    DOE R&D Accomplishments Database

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  6. Further Studies Of Hot-Wire Anemometry

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert; Logan, Pamela; Bershader, Daniel

    1990-01-01

    Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Represents extension of work described in "Hot-Wire Anemometry Versus Laser-Induced Fluorescence" (ARC-11802). Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF).

  7. Diamond film by hot filament CVD method

    NASA Technical Reports Server (NTRS)

    Hirose, Y.

    1988-01-01

    Diamond synthesis by the hot filament CVD method is discussed. A hot filament decomposes gas mixtures and oxygen containing organic compounds such as alcohols. which are carbon sources. The resulting thin films, growth mechanisms, and characteristics and problems associated with the hot filament CVD method are analyzed and evaluated.

  8. Hot electron dynamics and impurity scattering on gold nanoshell surfaces

    NASA Astrophysics Data System (ADS)

    Wolfgang, John Adam

    2000-10-01

    Recent ultrafast pump-probe experiments studying the relaxation rate of an optically excited hot electron distribution on Au/Au2S gold nanoshells indicate that this relaxation rate can be modified by the chemical environment surrounding the shell. This work will begin a theoretical investigation of the effect of chemical adsorbates---solvents and impurities---upon nanoshell hot electron dynamics. The effects of water, polyvinyl alcohol (PVA), sulfur, p-aminobenzoic acid, p-mercaptobenzoic acid and propylamine adsorbates are examined for their electronic interaction with a noble metal surface. p-Aminobenzoic acid is found to have a very large dipole moment when adsorbed to the metal surface, in contrast to p-mercaptobenzoic acid, propylamine and water. This correlates well to the experimentally observed results where nanoshells dispersed in an aqueous soulution with p-aminobenzoic acid display a faster relaxation rate compared to nanoshells dispersed in a pure water, aqueous propylamine or aqueous p-mercaptobenzoic acid environments. This thesis will also introduce a non-equilibrium Green's function approach, based on the formalism developed by Baym and Kadanoff, to model the dynamics of a hot electron distribution. The model will be discussed in terms of a simple potential scattering mechanism, which may in later work be expanded to include more complex electron-electron and electron-phonon interactions. Lastly acoustic oscillation modes are calculated for solid gold spheres and gold-silicon nanoshells. These modes describe an effect of electron-phonon coupling between the hot electron distribution and the nanoshell lattice, whereby the electronic energy is converted into mechanical energy.

  9. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection

    NASA Astrophysics Data System (ADS)

    Qi, Zhiyang; Zhai, Yusheng; Wen, Long; Wang, Qilong; Chen, Qin; Iqbal, Sami; Chen, Guangdian; Xu, Ji; Tu, Yan

    2017-07-01

    The heterojunction between metal and silicon (Si) is an attractive route to extend the response of Si-based photodiodes into the near-infrared (NIR) region, so-called Schottky barrier diodes. Photons absorbed into a metallic nanostructure excite the surface plasmon resonances (SPRs), which can be damped non-radiatively through the creation of hot electrons. Unfortunately, the quantum efficiency of hot electron detectors remains low due to low optical absorption and poor electron injection efficiency. In this study, we propose an efficient and low-cost plasmonic hot electron NIR photodetector based on a Au nanoparticle (Au NP)-decorated Si pyramid Schottky junction. The large-area and lithography-free photodetector is realized by using an anisotropic chemical wet etching and rapid thermal annealing (RTA) of a thin Au film. We experimentally demonstrate that these hot electron detectors have broad photoresponsivity spectra in the NIR region of 1200-1475 nm, with a low dark current on the order of 10-5 A cm-2. The observed responsivities enable these devices to be competitive with other reported Si-based NIR hot electron photodetectors using perfectly periodic nanostructures. The improved performance is attributed to the pyramid surface which can enhance light trapping and the localized electric field, and the nano-sized Au NPs which are beneficial for the tunneling of hot electrons. The simple and large-area preparation processes make them suitable for large-scale thermophotovoltaic cell and low-cost NIR detection applications.

  10. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection.

    PubMed

    Qi, Zhiyang; Zhai, Yusheng; Wen, Long; Wang, Qilong; Chen, Qin; Iqbal, Sami; Chen, Guangdian; Xu, Ji; Tu, Yan

    2017-05-22

    The heterojunction between metal and silicon (Si) is an attractive route to extend the response of Si-based photodiodes into the near-infrared (NIR) region, so-called Schottky barrier diodes. Photons absorbed into a metallic nanostructure excite the surface plasmon resonances (SPRs), which can be damped non-radiatively through the creation of hot electrons. Unfortunately, the quantum efficiency of hot electron detectors remains low due to low optical absorption and poor electron injection efficiency. In this study, we propose an efficient and low-cost plasmonic hot electron NIR photodetector based on a Au nanoparticle (Au NP)-decorated Si pyramid Schottky junction. The large-area and lithography-free photodetector is realized by using an anisotropic chemical wet etching and rapid thermal annealing (RTA) of a thin Au film. We experimentally demonstrate that these hot electron detectors have broad photoresponsivity spectra in the NIR region of 1200-1475 nm, with a low dark current on the order of 10(-5) A cm(-2). The observed responsivities enable these devices to be competitive with other reported Si-based NIR hot electron photodetectors using perfectly periodic nanostructures. The improved performance is attributed to the pyramid surface which can enhance light trapping and the localized electric field, and the nano-sized Au NPs which are beneficial for the tunneling of hot electrons. The simple and large-area preparation processes make them suitable for large-scale thermophotovoltaic cell and low-cost NIR detection applications.

  11. Distribution Ratios of Phosphorus Between CaO-FeO-SiO2-Al2O3/Na2O/TiO2 Slags and Carbon-Saturated Iron

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Li, Xianpeng; Yang, Shufeng; Zhang, Yanling

    2017-10-01

    In order to effectively enhance the efficiency of dephosphorization, the distribution ratios of phosphorus between CaO-FeO-SiO2-Al2O3/Na2O/TiO2 slags and carbon-saturated iron ( LP^{Fe-C} ) were examined through laboratory experiments in this study, along with the effects of different influencing factors such as the temperature and concentrations of the various slag components. Thermodynamic simulations showed that, with the addition of Na2O and Al2O3, the liquid areas of the CaO-FeO-SiO2 slag are enlarged significantly, with Al2O3 and Na2O acting as fluxes when added to the slag in the appropriate concentrations. The experimental data suggested that LP^{Fe-C} increases with an increase in the binary basicity of the slag, with the basicity having a greater effect than the temperature and FeO content; LP^{Fe-C} increases with an increase in the Na2O content and decrease in the Al2O3 content. In contrast to the case for the dephosphorization of molten steel, for the hot-metal dephosphorization process investigated in this study, the FeO content of the slag had a smaller effect on LP^{Fe-C} than did the other factors such as the temperature and slag basicity. Based on the experimental data, by using regression analysis, log LP^{Fe-C} could be expressed as a function of the temperature and the slag component concentrations as follows: log LP^{Fe-C} = 0.059({pct}{CaO}) + 1.583log ({TFe}) - 0.052( {{pct}{SiO}2 } ) - 0.014( {{pct}{Al}2 {O}3 } ) \\quad + 0.142( {{pct}{Na}2 {O}} ) - 0.003( {{pct}{TiO}2 } ) + 0.049( {{pct}{P}2 {O}5 } ) + 13{,}527/T - 9.87.

  12. Hot electron detectors and energy conversion in the UV and IR

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Krayer, Lisa; Munday, Jeremy N.

    2015-09-01

    Semiconductor materials are well suited for power conversion when the incident photon energy is slightly larger than the bandgap energy of the semiconductor. However, for photons with energy significantly greater than the bandgap energy, power conversion efficiencies are low. Further, for photons with energy below the bandgap energy, the absence of absorption results in no power conversion. Here we describe photon detection and power conversion of both high energy and sub-bandgap photons using hot carrier effects. For the absorption of high-energy photons, excited electrons and holes have excess kinetic energy, which results in the generation of hot electrons and holes. Energy is typically lost through a thermalization process between the carriers and the lattice. However, collection of carriers before thermalization allows for reduced power loss. Devices consisting of a three-layer stack (transparent conductor - insulator - metal) can be used to generate and collect these hot carriers. Alternatively, when a semiconductor is used, photons with energy below the semiconductor bandgap energy generally do not generate electrons and holes; however, hot carrier collection is still possible in semiconductor devices with a metal layer when a Schottky junction is formed at the semiconductor-metal interface. Such structures enable IR detection based on sub-bandgap photon absorption. Combining these concepts, hot carrier generation and collection and be exploited over a large range of incident wavelengths spanning the UV, visible, and IR.

  13. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  14. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  15. Spectropolarimetry of hot, luminous stars

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, Regina E.

    1994-01-01

    I review polarimetric observations of presumably single, hot luminous stars. The stellar types discussed are OB stars. B(e) supergiants, Luminous Blue Variables (LBV), Wolf-Rayet (W-R) stars, and type II supernovae (SN). It is shown that variable, intrinsic polarization is a common phenomenon in that part of the Hertzsprung-Russell (HR) diagram which these stars occupy. However, much observational work remains to be done before we can answer the most basic, statistical questions about the polarimetric properties of different groups of hot, luminous stars. Insight into the diagnostic power of polarization observations has been gained, but cannot be exploited without detailed models. Thus, while polarimetric observations do tell us that the mass-loss processes of all types of massive stars are time-dependent and anisotropic, the significance that this might have for the accuracy of their stellar parameters and evolutionary paths remains elusive.

  16. Noise Generation in Hot Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Kenzakowski, Donald C.

    2007-01-01

    A prediction method based on the generalized acoustic analogy is presented, and used to evaluate aerodynamic noise radiated from high speed hot jets. The set of Euler equations are split into their respective non-radiating and residual components. Under certain conditions, the residual equations are rearranged to form a wave equation. This equation consists of a third-order wave operator, plus a number of nonlinear terms that are identified with the equivalent sources of sound and their statistical characteristics are modeled. A specialized RANS solver provides the base flow as well as turbulence quantities and temperature fluctuations that determine the source strength. The main objective here is to evaluate the relative contribution from various source elements to the far-field spectra and to show the significance of temperature fluctuations as a source of aerodynamic noise in hot jets.

  17. HOT HYDROGEN IN DIFFUSE CLOUDS

    SciTech Connect

    Cecchi-Pestellini, Cesare; Duley, Walt W.; Williams, David A. E-mail: wwduley@uwaterloo.ca

    2012-08-20

    Laboratory evidence suggests that recombination of adsorbed radicals may cause an abrupt temperature excursion of a dust grain to about 1000 K. One consequence of this is the rapid desorption of adsorbed H{sub 2} molecules with excitation temperatures of this magnitude. We compute the consequences of injection of hot H{sub 2} into cold diffuse interstellar gas at a rate of 1% of the canonical H{sub 2} formation rate. We find that the level populations of H{sub 2} in J = 3, 4, and 5 are close to observed values, and that the abundances of CH{sup +} and OH formed in reactions with hot hydrogen are close to the values obtained from observations of diffuse clouds.

  18. Hot atom chemistry and radiopharmaceuticals

    SciTech Connect

    Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J.

    2012-12-19

    The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

  19. Hot atom chemistry and radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J.

    2012-12-01

    The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

  20. Pore structure and reactivity changes in hot coal gas desulfurization sorbents

    SciTech Connect

    Sotirchos, S.V.

    1991-05-01

    The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

  1. Hot gas and the evolution of spiral-rich groups

    NASA Astrophysics Data System (ADS)

    Vrtilek, Jan M.; O'Sullivan, E. J.; Giacintucci, S.; David, L. P.; Raychaudhury, S.; Forman, W. R.; Jones, C.

    2014-01-01

    The group environment --- the locus of most galaxies in the present-day Universe --- is particularly suitable, owing to high galaxy densities and low velocity dispersions, for study of the merging of spirals to form ellipticals. In particular, little is known about how the resulting ellipticals acquire hot gas halos (whether from stellar mass loss or from accretion of group gas). We here discuss our examination, relying principally on Chandra and GMRT data, of two groups that are at once compact, spiral-dominated, sufficiently X-ray bright, nearby, and in early stages of merging. For HCG92 (Stephan’s Quintet), GMRT 610 and 327 MHz observations show diffuse extended radio emission. X-ray and radio emissions from the group are dominated by a bright north-south ridge associated with the interloper galaxy NGC 7318b, with the low temperature of X-ray gas (0.6 keV) indicating an oblique shock resulting from the interaction. Much of the gas now in the hot phase may have been produced by shock heating of cool material during galaxy interactions, with additional energy and metals injected by star formation. Radio spectral index mapping allows us to trace the relative contributions from the shock and from star formation. Within the ridge spectral information can also be used to estimate the radiative age of the electron population, providing information on the shock age. For HCG16 the nature and even the existence of a hot intragroup medium has been debated. With a combination of a very recent deep (150 ks) Chandra image and radio data already available, we expect to resolve questions about the existence, extent, and nature of hot gas in HCG 16; map the heavy element distribution; determine the hot gas mass compared to the HI deficit; examine the prevalence of shock heating and ram pressure stripping; and study the brightest point sources.

  2. Silicon Hot-Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Hsieh, Wen-Ting; Mitchell, Robert R.; Isenberg, Hal D.; Stahle, Carl M.; Cao, Nga T.; Schneider, Gideon; Travers, Douglas E.; Moseley, S. Harvey; Wollack, Edward J.

    2004-01-01

    We discuss a new type of direct detector, a silicon hot-electron bolometer, for measurements in the far-infrared and submillimeter spectral ranges. High performance bolometers can be made using the electron-phonon conductance in heavily doped silicon to provide thermal isolation from the cryogenic bath. Noise performance is expected to be near thermodynamic limits, allowing background limited performance for many far infrared and submillimeter photometric and spectroscopic applications.

  3. Hot gas engine heater head

    DOEpatents

    Berntell, John O.

    1983-01-01

    A heater head for a multi-cylinder double acting hot gas engine in which each cylinder is surrounded by an annular regenerator unit, and in which the tops of each cylinder and its surrounding regenerator are interconnected by a multiplicity of heater tubes. A manifold for the heater tubes has a centrally disposed duct connected to the top of the cylinder and surrounded by a wider duct connecting the other ends of the heater tubes with the regenerator unit.

  4. WISE Discovers Hyperluminous Hot DOGs

    NASA Astrophysics Data System (ADS)

    Eisenhardt, Peter R.; Wu, J.; WISE Team

    2013-01-01

    One of the primary science objectives for NASA's Wide-field Infrared Survey Explorer (WISE) is to find the most luminous galaxies in the Universe. We have used WISE photometry to select an extraordinary all-sky sample of galaxies, which are prominent at 12 microns (W3) or 22 microns (W4), but faint or undetected at 3.4 microns (W1) and 4.6 microns (W2). Follow-up observations reveal that most of these galaxies are at redshift > 1.5, that they are hyperluminous (> 10^13 Lsun; with ~10% exceeding 10^14 Lsun, comparable to the most luminous optical QSOs). The follow-up observations also show that they are at least twice as hot as other types of infrared luminous galaxies, so that they are hot dust-obscured-galaxies, or Hot DOGs. Their SEDs have a very high mid-IR to submillimeter luminosity ratio, which is quite different from any existing galaxy templates. They may represent a rare, new phase in the galaxy evolution, possibly hosting extremely powerful super massive black holes.

  5. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    E.S. Connolly; G.D. Forsythe

    1998-12-22

    Advanced, coal-based power plants will require durable and reliable hot gas filtration systems to remove particulate contaminants from the gas streams to protect downstream components such as turbine blades from erosion damage. It is expected that the filter elements in these systems will have to be made of ceramic materials to withstand goal service temperatures of 1600 F or higher. Recent demonstration projects and pilot plant tests have indicated that the current generation of ceramic hot gas filters (cross-flow and candle configurations) are failing prematurely. Two of the most promising materials that have been extensively evaluated are clay-bonded silicon carbide and alumina-mullite porous monoliths. These candidates, however, have been found to suffer progressive thermal shock fatigue damage, as a result of rapid cooling/heating cycles. Such temperature changes occur when the hot filters are back-pulsed with cooler gas to clean them, or in process upset conditions, where even larger gas temperature changes may occur quickly and unpredictably. In addition, the clay-bonded silicon carbide materials are susceptible to chemical attack of the glassy binder phase that holds the SiC particles together, resulting in softening, strength loss, creep, and eventual failure.

  6. Hot Post-AGB Stars

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; Gauba, G.; Fujii, T.; Nakada, Y.

    2001-08-01

    From the study of IRAS sources with far-IR colors similar to planetary nebulae (PNe), several proto-planetary nebulae with hot (OB) post-AGB central stars have been detected. These stars form an evolutionary link between the cooler G,F,A supergiant stars that have evolved off the Asymptotic Giant Branch (AGB) and the hot (OB) central stars of PNe. The optical spectra of these objects show strong Balmer emission lines and in some cases low excitation nebular emission lines such as [NII] and [SII] superposed on the OB stellar continuum. The absence of of [OIII] 5007Å line and the presence of low excitation nebular emission lines indicate that photoionisation has just started. The UV(IUE) spectra of some of these objects revealed violet shifted stellar wind P-Cygni profiles of CIV, SiIV and NV, indicating hot and fast stellar wind and post-AGB mass loss. These objects appear to be rapildy evolving into the early stages of PNe similar to that observed in the case of Hen1357 IRAS 17119-5926 (Stingray Nebula) and IRAS 18062+2410 SAO85766.

  7. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion

    NASA Astrophysics Data System (ADS)

    Narang, Prineha; Sundararaman, Ravishankar; Atwater, Harry A.

    2016-06-01

    Surface plasmons provide a pathway to efficiently absorb and confine light in metallic nanostructures, thereby bridging photonics to the nano scale. The decay of surface plasmons generates energetic `hot' carriers, which can drive chemical reactions or be injected into semiconductors for nano-scale photochemical or photovoltaic energy conversion. Novel plasmonic hot carrier devices and architectures continue to be demonstrated, but the complexity of the underlying processes make a complete microscopic understanding of all the mechanisms and design considerations for such devices extremely challenging.Here,we review the theoretical and computational efforts to understand and model plasmonic hot carrier devices.We split the problem into three steps: hot carrier generation, transport and collection, and review theoretical approaches with the appropriate level of detail for each step along with their predictions.We identify the key advances necessary to complete the microscopic mechanistic picture and facilitate the design of the next generation of devices and materials for plasmonic energy conversion.

  8. Process window limiting hot spot monitoring for high-volume manufacturing

    NASA Astrophysics Data System (ADS)

    Jochemsen, Marinus; Anunciado, Roy; Timoshkov, Vadim; Hunsche, Stefan; Zhou, Xinjian; Jones, Chris; Callan, Neal

    2016-03-01

    As process window margins for cutting edge DUV lithography continue to shrink, the impact of systematic patterning defects on final yield increases. Finding process window limiting hot spot patterns and monitoring them in high volume manufacturing (HVM) is increasingly challenging with conventional methods, as the size of critical defects can be below the resolution of traditional HVM inspection tools. We utilize a previously presented computational method of finding hot spot patterns by full chip simulation and use this to guide high resolution review tools by predicting the state of the hot spots on all fields of production wafers. In experiments with a 10nm node Metal LELELE vehicle we show a 60% capture rate of after-etch defects down to 3nm in size, at specific hot spot locations. By using the lithographic focus and dose correction knobs we can reduce the number of patterning defects for this test case by ~60%.

  9. Calculation of recovery plasticity in multistage hot forging under isothermal conditions.

    PubMed

    Zhbankov, Iaroslav G; Perig, Alexander V; Aliieva, Leila I

    2016-01-01

    A widely used method for hot forming steels and alloys, especially heavy forging, is the process of multistage forging with pauses between stages. The well-known effect which accompanies multistage hot forging is metal plasticity recovery in comparison with monotonic deformation. A method which takes into consideration the recovery of plasticity in pauses between hot deformations of a billet under isothermal conditions is proposed. This method allows the prediction of billet forming limits as a function of deformation during the forging stage and the duration of the pause between the stages. This method takes into account the duration of pauses between deformations and the magnitude of subdivided deformations. A hot isothermal upsetting process with pauses was calculated by the proposed method. Results of the calculations have been confirmed with experimental data.

  10. Liquid-phase catalytic reactor combined with measurement of hot electron flux and chemiluminescence

    NASA Astrophysics Data System (ADS)

    Nedrygailov, Ievgen I.; Lee, Changhwan; Moon, Song Yi; Lee, Hyosun; Park, Jeong Young

    2016-11-01

    Understanding the role of electronically nonadiabatic interactions during chemical reactions on metal surfaces in liquid media is of great importance for a variety of applications including catalysis, electrochemistry, and environmental science. Here, we report the design of an experimental apparatus for detection of the highly excited (hot) electrons created as a result of nonadiabatic energy transfer during the catalytic decomposition of hydrogen peroxide on thin-film metal-semiconductor nanodiodes. The apparatus enables the measurement of hot electron flows and related phenomena (e.g., surface chemiluminescence) as well as the corresponding reaction rates at different temperatures. The products of the chemical reaction can be characterized in the gaseous phase by means of gas chromatography. The combined measurement of hot electron flux, catalytic activity, and light emission can lead to a fundamental understanding of the elementary processes occurring during the heterogeneous catalytic reaction.

  11. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers.

    PubMed

    Lee, Young Keun; Lee, Hyosun; Park, Jeong Young

    2014-04-03

    We demonstrate a tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. The tandem-structured, hot electron based photovoltaic cell is composed of two metal/semiconductor interfaces. Two types of tandem cells were fabricated using TiO2/Au/Si and TiO2/Au/TiO2, and photocurrent enhancement was detected. The double Schottky barriers lead to an additional pathway for harvesting hot electrons, which is enhanced through multiple reflections between the two barriers with different energy ranges. In addition, light absorption is improved by the band-to-band excitation of both semiconductors with different band gaps. Short-circuit current and energy conversion efficiency of the tandem-structured TiO2/Au/Si increased by 86% and 70%, respectively, compared with Au/Si metal/semiconductor nanodiodes, showing an overall solar energy conversion efficiency of 5.3%.

  12. Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection

    SciTech Connect

    Zhan, Yaohui; Li, Xiaofeng Wu, Kai; Wu, Shaolong; Deng, Jiajia

    2015-02-23

    Single-nanowire photodetectors (SNPDs) are mostly propelled by p-n junctions, where the detection wavelength is constrained by the band-gap width. Here, we present a simple doping-free metal/semiconductor/metal SNPD, which shows strong detection tunability without such a material constraint. The proposed hot-electron SNPD exhibits superior optical and electrical advantages, i.e., optically the coaxial design leads to a strong asymmetrical photoabsorption and results in a high unidirectional photocurrent, as desired by the hot-electron collection; electrically the hot-electrons are generated in the region very close to the barrier, facilitating the electrical transport. Rigorous calculations predict an unbiased photoresponsivity of ∼200 nA/mW.

  13. Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection

    NASA Astrophysics Data System (ADS)

    Zhan, Yaohui; Li, Xiaofeng; Wu, Kai; Wu, Shaolong; Deng, Jiajia

    2015-02-01

    Single-nanowire photodetectors (SNPDs) are mostly propelled by p-n junctions, where the detection wavelength is constrained by the band-gap width. Here, we present a simple doping-free metal/semiconductor/metal SNPD, which shows strong detection tunability without such a material constraint. The proposed hot-electron SNPD exhibits superior optical and electrical advantages, i.e., optically the coaxial design leads to a strong asymmetrical photoabsorption and results in a high unidirectional photocurrent, as desired by the hot-electron collection; electrically the hot-electrons are generated in the region very close to the barrier, facilitating the electrical transport. Rigorous calculations predict an unbiased photoresponsivity of ˜200 nA/mW.

  14. Application of induction coil measurements to the study of superalloy hot corrosion and oxidation

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.

    1984-01-01

    The assessment of the degree of hot corrosion attack on nickel based alloys is a difficult task, especially when the definition specifies that it must be in terms of metal consumed and even more difficult if the measurement must be nondestructive. The inductance of a solenoid coil responds to changes in volume of fill and composition of metal cores, therefore, it may be used for nondestructive measurement of hot corrosion. The hot corrosion of U700 was studied at 900 C in a Mach 0.3 flame doped with 0.85 wppm of sodium. The change of inductance was found to define the known corrosion behavior and to suggest its use as a tool with predictive capabilities. Sufficient sensitivity exists to detect oxidation of this alloy at 900 C.

  15. Liquid-phase catalytic reactor combined with measurement of hot electron flux and chemiluminescence.

    PubMed

    Nedrygailov, Ievgen I; Lee, Changhwan; Moon, Song Yi; Lee, Hyosun; Park, Jeong Young

    2016-11-01

    Understanding the role of electronically nonadiabatic interactions during chemical reactions on metal surfaces in liquid media is of great importance for a variety of applications including catalysis, electrochemistry, and environmental science. Here, we report the design of an experimental apparatus for detection of the highly excited (hot) electrons created as a result of nonadiabatic energy transfer during the catalytic decomposition of hydrogen peroxide on thin-film metal-semiconductor nanodiodes. The apparatus enables the measurement of hot electron flows and related phenomena (e.g., surface chemiluminescence) as well as the corresponding reaction rates at different temperatures. The products of the chemical reaction can be characterized in the gaseous phase by means of gas chromatography. The combined measurement of hot electron flux, catalytic activity, and light emission can lead to a fundamental understanding of the elementary processes occurring during the heterogeneous catalytic reaction.

  16. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers

    PubMed Central

    Lee, Young Keun; Lee, Hyosun; Park, Jeong Young

    2014-01-01

    We demonstrate a tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. The tandem-structured, hot electron based photovoltaic cell is composed of two metal/semiconductor interfaces. Two types of tandem cells were fabricated using TiO2/Au/Si and TiO2/Au/TiO2, and photocurrent enhancement was detected. The double Schottky barriers lead to an additional pathway for harvesting hot electrons, which is enhanced through multiple reflections between the two barriers with different energy ranges. In addition, light absorption is improved by the band-to-band excitation of both semiconductors with different band gaps. Short-circuit current and energy conversion efficiency of the tandem-structured TiO2/Au/Si increased by 86% and 70%, respectively, compared with Au/Si metal/semiconductor nanodiodes, showing an overall solar energy conversion efficiency of 5.3%. PMID:24694838

  17. Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding

    NASA Astrophysics Data System (ADS)

    Wu, Weite; Tsai, C. H.

    1999-02-01

    The hot cracking susceptibility of fillers 52 and 82 in a alloy 690 weldment is analyzed by the Varestraint test. Weld characteristics, microstructure, hardness distribution, and thermal analysis of the two filler metals are also examined. The weld metal of both fillers develops an extremely dense oxide layer. A stainless steel brush cannot remove the oxide layer, and a grinder may be needed between weld passes to assure a sound weld. Differential temperature analysis (DTA) shows that filler 82 has a lower melting point and a wider melting/solidification temperature differential (Δ T). These characteristics correlate with greater hot cracking susceptibility of filler 82 than 52 in Varestraint tests. The hot cracks are intergranular and are caused by elements segregating in grain boundies.

  18. Experimental study of hot cracking at circular welding joints of 42CrMo steel

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Chen, Genyu; Chen, Binghua; Wang, Jinhai; Zhou, Cong

    2017-12-01

    The hot cracking at circular welding joints of quenched and tempered 42CrMo steel were studied. The flow of the molten pool and the solidification process of weld were observed with a high-speed video camera. The information on the variations in the weld temperature was collected using an infrared (IR) thermal imaging system. The metallurgical factors of hot cracking were analyzed via metallographic microscope and scanning electron microscope (SEM). The result shows that leading laser laser-metal active gas (MAG) hybrid welding process has a smaller solid-liquid boundary movement rate (VSL) and a smaller solid-liquid boundary temperature gradient (GSL) compared with leading arc laser-MAG hybrid welding process and laser welding process. Additionally, the metal in the molten pool has superior permeability while flowing toward the dendritic roots and can compensate for the inner-dendritic pressure balance. Therefore, leading laser laser-MAG hybrid welding process has the lowest hot cracking susceptibility.

  19. ESA uncovers Geminga's `hot spot'

    NASA Astrophysics Data System (ADS)

    2004-07-01

    16 July 2004 Astronomers using ESA’s X-ray observatory XMM-Newton have detected a small, bright ‘hot spot’ on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga’s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga. hi-res Size hi-res: 1284 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot This figure shows the effects of charged particles accelerated in the magnetosphere of Geminga. Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of particles kicked out by Geminga’s strong magnetic field, trail the neutron star as it moves about in space. Panel (b) shows how electrically charged particles interact with Geminga’s magnetic field. For example, if electrons (blue) are kicked out by the star, positrons (in red) hit the star’s magnetic poles like in an ‘own goal’. Panel (c) illustrates the size of Geminga’s magnetic field (blue) compared to that of the star itself at the centre (purple). The magnetic field is tilted with respect to Geminga’s rotation axis (red). Panel (d) shows the magnetic poles of Geminga, where charged particles hit the surface of the star, creating a two-million degrees hot spot, a region much hotter than the surroundings. As the star spins on its rotation axis, the hot spot comes into view and then disappears, causing the periodic colour change seen by XMM-Newton. An animated version of the entire sequence can be found at: Click here for animated GIF [low resolution, animated GIF, 5536 KB] Click here for AVI [high resolution, AVI with DIVX compression, 19128 KB] hi-res Size hi-res: 371 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot, panel (a) Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of

  20. Chandra grating spectroscopy of three hot white dwarfs

    NASA Astrophysics Data System (ADS)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2012-10-01

    Context. High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB 1919) and the other is a non-DA of spectral type PG 1159 (PG 1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD 246). Aims: The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB 1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD 246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG 1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods: The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results: No metals could be identified in LB 1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD 246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG 1520+525 constrains the effective temperature to Teff = 150 000 ± 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GW Vir class (PG 1159 - 035) defines the location of the blue edge of the GW Vir