Science.gov

Sample records for hot plasma application

  1. Saturn's Hot Plasma Explosions

    NASA Video Gallery

    This animation based on data obtained by NASA's Cassini Spacecraft shows how the "explosions" of hot plasma on the night side (orange and white) periodically inflate Saturn's magnetic field (white ...

  2. Kinetic Theory in Hot Plasmas and Neutral Gases Applications to the Computation of the transport coefficients

    SciTech Connect

    Bendib, A.

    2008-09-23

    The conference is devoted to the study of systems consisting of a large number of particles by using the kinetic theory. In a first part, we present a general overview of the kinetic theory. In particular, the role of the correlations between particles is shown and discussed through the main models reported in the literature. In a second part, we present three applications to the transport properties in plasmas and neutral gases. The first application is devoted to the transport in hot plasmas perturbed with respect to the global equilibrium. The quasi-static and collisionless distribution function and transport coefficients are established. The influence of relativistic effects is also discussed. The second application deals with strongly inhomogeneous magnetized plasmas. The transport coefficients of Braginskii are calculated numerically in the local and the weakly nonlocal approximations. New nonlocal transport coefficients are emphasized. Finally, we apply the kinetic theory to the neutral gases by calculating the semi-collisional dispersion relation of acoustic waves. In particular, the dispersion and the damping of these waves in rarefied gases are highlighted. The method used to solve the kinetic equations is compared with the conventional method of Chapman-Enskog.

  3. Plasmas are Hot and Fusion is Cool

    SciTech Connect

    2011-01-01

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  4. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Shen; Wang, Hongwei; Kang, Wei; Zhang, Ping; He, X. T.

    2016-04-01

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  5. Microscale Effects from Global Hot Plasma Imagery

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Fok, M.-C.; Perez, J. D.; Keady, J. P.

    1995-01-01

    We have used a three-dimensional model of recovery phase storm hot plasmas to explore the signatures of pitch angle distributions (PADS) in global fast atom imagery of the magnetosphere. The model computes mass, energy, and position-dependent PADs based on drift effects, charge exchange losses, and Coulomb drag. The hot plasma PAD strongly influences both the storm current system carried by the hot plasma and its time evolution. In turn, the PAD is strongly influenced by plasma waves through pitch angle diffusion, a microscale effect. We report the first simulated neutral atom images that account for anisotropic PADs within the hot plasma. They exhibit spatial distribution features that correspond directly to the PADs along the lines of sight. We investigate the use of image brightness distributions along tangent-shell field lines to infer equatorial PADS. In tangent-shell regions with minimal spatial gradients, reasonably accurate PADs are inferred from simulated images. They demonstrate the importance of modeling PADs for image inversion and show that comparisons of models with real storm plasma images will reveal the global effects of these microscale processes.

  6. Plasma deposited rider rings for hot displacer

    DOEpatents

    Kroebig, Helmut L.

    1976-01-01

    A hot cylinder for a cryogenic refrigerator having two plasma spray deposited rider rings of a corrosion and abrasion resistant material provided in the rider ring grooves, wherein the rider rings are machined to the desired diameter and width after deposition. The rider rings have gas flow flats machined on their outer surface.

  7. CHIPS: The Cosmic Hot Interstellar Plasma Spectrometer

    NASA Astrophysics Data System (ADS)

    Dixon, W. V.; Hurwitz, M.; Jelinsky, P.; Welsh, B. Y.; Edelstein, J. E.; Siegmund, O. H. W.; McKee, C. F.; Malina, R. F.; Hawkins, I.; Vallerga, J. V.; Breitschwerdt, D.; Slavin, J.

    1998-12-01

    The Cosmic Hot Interstellar Plasma Spectrometer (CHIPS), a University-Class Explorer (UNEX) mission, will carry out all-sky spectroscopy of the diffuse background at wavelengths from 90 to 260 Angstroms with a peak resolution of lambda / 150 (about 0.5 eV). CHIPS data will help determine the electron temperature, ionization conditions, and cooling mechanisms of the million-degree plasma believed to fill the local interstellar bubble. The majority of the luminosity from diffuse million-degree plasma is expected to emerge in the poorly-explored CHIPS band, making CHIPS data of relevance in a wide variety of Galactic and extragalactic astrophysical environments. The compact CHIPS instrument will be accommodated aboard a commercial FAISAT communications spacecraft currently scheduled for launch in mid to late 2001.

  8. The hot plasma spectrometers on Freja

    NASA Astrophysics Data System (ADS)

    Norberg, O.; Eliasson, L.

    1991-11-01

    The hot plasma instrumentation F3H on the Swedish-German Freja satellite due for launch in 1992 will consist of electron and ion spectrometers. The spectrometer Magnetic imaging Two dimensional Electron (MATE) will measure the two dimensional electron distribution in the spin plane in the energy range 0.1 to 120 keV. The ion mass spectrometer Three dimensional Ion Composition Spectrometer (TICS) measures a full three dimensional distribution in the energy range 0.5 to 15000 eV/q with high mass resolution. The instruments use a particle 'imaging' detector technique based on a large diameter microchannel plate with position sensitive anode. The topics to be studied with the Freja hot plasma spectrometers include auroral particle acceleration, heating and acceleration of ionospheric ions, and the dynamics of auroral arc systems. Of special importance to the scientific objectives is the high data rate from the Freja instrumentation, the MATE and TICS spectrometers will be sampled every 10 ms, corresponding to a spatial resolution better than 70 m at ionospheric heights. The design, simulation, and calibration of the spectrometers are discussed.

  9. Hot Plasma Flows in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Shibasaki, K.

    2012-12-01

    The Solar Corona is a non-equilibrium open system. Energy and mass are supplied from the lower atmosphere and flow upwards through the corona into the interplanetary space. Steady state could be possible but not equilibrium state. Temperature of the corona varies depending on solar activities. However, even under very quite state, coronal temperature is still kept around million degrees. Coronal heating mechanisms have to work under such condition. Temperature of plasma is an averaged kinetic energy of random motion of particles. Motion of charged particles in magnetic field generates Lorenz force and particles gyrate around magnetic field lines. Gyration of charged particles generates magnetic moment which is directed anti-parallel to the surrounding magnetic field. This is the origin of diamagnetism of plasma. Each particle can be considered as a small magnet directed opposite to the surrounding magnetic field. When these magnets are put in inhomogeneous magnetic field, they are pushed toward weak field region. In case of open magnetic field region in the solar corona, plasma particles are pushed upwards. If this force (diamagnetic or mirror force) exceeds the gravity force, plasma flows upwards. Magnetic moment of each charged particle in thermal plasma is proportional to temperature and inversely proportional to magnetic field strength. The condition for plasma to flow upwards in an open magnetic field is that the scale length of the change of magnetic field strength is shorter than the hydrostatic scale length, which is determined by temperature and the gravity acceleration. This can be a mechanism to regulate the coronal temperature around million degree. The solar corona is filled with magnetic field, which is rooted at the photosphere in the form of flux tubes. Flux tubes connect directly the corona and the sub-photospheric layer where temperature is higher than the photosphere. Hot plasma, trapped in the flux tubes when they are generated around the bottom

  10. Hot-cold plasma interactions in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Williams, D. J.

    1975-01-01

    The paper gives a synopsis of observations and results obtained from the Explorer-45 satellite which pertain directly to the interaction of the magnetospheric hot and cold plasma populations. The specific case discussed is the interaction of the hot ring current plasma with the cold plasmaspheric plasma in the evening to early morning local time sector during magnetic storm recovery phase. It was found that above the plasmapause region, the hot ring current plasma is stable with negligible losses due to pitch angle diffusion; the hot ring current plasma enters a moderate pitch angle regime in the plasmapause region, whereby the addition of cold plasma destabilizes the hot plasma. Analysis of the energy, spatial, and temporal dependence of the above destabilization along with the ion-cyclotron resonant energy equation, and comparison of this analysis with an in situ estimate of the plasma density strongly indicate that the mechanism responsible for destabilization of the hot plasma is the amplification of ion-cyclotron waves due to the interaction of the cold plasmaspheric plasma with the hot ring current plasma in a manner similar to that discussed by Cornwall et al. (1970).

  11. Hot ion plasma heating experiments in SUMMA

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Posta, S. J.; Snyder, A.; Englert, G. W.

    1974-01-01

    Initial results are presented for the hot-ion plasma heating experiments conducted in the new SUMMA (superconducting magnetic mirror apparatus) at NASA Lewis Research Center. A discharge is formed by applying a radially inward dc electric field between cylindrical anodes and hallow cathodes located at the peak of the mirrors. Data were obtained at midplane magnetic field strengths from 1.0 to 3.5 tesla. Charge-exchange neutral particle energy analyzer data were reduced to ion temperatures using a plasma model that included a Maxwellian energy distribution superimposed on an azimuthal drift, finite ion orbits, and radial variations in density and electric field. The best ion temperatures in a helium plasma were 5 keV and in hydrogen the H2(+) and H(+) ions were 1.2 keV and 1 keV respectively. Optical spectroscopy line broadening measurements yielded ion temperatures about 50 percent higher than the charge-exchange neutral particle analyzer results. Spectroscopically obtained electron temperature ranged from 3 to 30 eV. Ion temperature was found to scale roughly linearly with the ratio of power input-to-magnetic field strength, P/B.

  12. The ion acoustic decay instability, and anomalous laser light absorption for the OMEGA upgrade, large scale hot plasma application to a critical surface diagnostic, and instability at the quarter critical density. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Seka, W.

    1996-11-01

    It is shown that laser light can be anomalously absorbed with a moderate intensity laster (I{lambda}{sup 2}{approx}10{sup 14} W/cm{sup 2}-{mu}m{sup 2}) in a large scale, laser produced plasma. The heating regime, which is characterized by a relatively weak instability in a large region, is different from the regime studied previously, which is characterized by a strong instability in a narrow region. The two dimensional geometrical effect (lateral heating) has an important consequence on the anomalous electron heating. The characteristics of the IADI, and the anomalous absorption of the laser light were studied in a large scale, hot plasma applicable to OMEGA upgrade plasma. These results are important for the diagnostic application of the IADI.

  13. Are Spicules the Primary Source of Hot Coronal Plasma?

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2011-01-01

    The recent discovery of Type II spicules has generated considerable excitement. It has even been suggested that these ejections can account for a majority of the hot plasma observed in the corona, thus obviating the need for "coronal" heating. If this is the case, however, then there should be observational consequences. We have begun to examine some of these consequences and find reason to question the idea that spicules are the primary source of hot coronal plasma.

  14. Ponderomotive Acceleration of Hot Electrons in Tenuous Plasmas

    SciTech Connect

    V. I. Geyko; Fraiman, G. M.; Dodin, I. Y.; Fisch, N. J.

    2009-02-01

    The oscillation-center Hamiltonian is derived for a relativistic electron injected with an arbitrary momentum in a linearly polarized laser pulse propagating in tenuous plasma, assuming that the pulse length is smaller than the plasma wavelength. For hot electrons generated at collisions with ions under intense laser drive, multiple regimes of ponderomotive acceleration are identified and the laser dispersion is shown to affect the process at plasma densities down to 1017 cm-3. Assuming a/Υg << 1, which prevents net acceleration of the cold plasma, it is also shown that the normalized energy Υ of hot electrons accelerated from the initial energy Υo < , Γ does not exceed Γ ~ aΥg, where a is the normalized laser field, and Υg is the group velocity Lorentz factor. Yet Υ ~ Γ is attained within a wide range of initial conditions; hence a cutoff in the hot electron distribution is predicted.

  15. The ion acoustic decay instability in a large scale, hot plasma relevant to direct drive laser fusion -- Application to a critical surface diagnostic. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.; Craxton, R.S.; Estabrook, K.G.

    1996-08-01

    The authors have studied the ion acoustic decay instability in a large ({approximately} 1 mm) scale, hot ({approximately} 1 keV) plasma, which is relevant to a laser fusion reactor target. They have shown that the instability threshold is low. They have developed a novel collective Thomson scattering diagnostic at a 90{degree} scattering angle. The scattering is nonetheless coherent, because of the modest ratio of the frequency of the probe laser to that of the pump laser, such that even for such a large angle, (k{lambda}{sub De}){sup 2} is much less than one. With this system they have measured the electron plasma wave excited by the ion acoustic decay instability near the critical density (n{sub e} {approximately} 0.86 n{sub c}). This allows them to use the frequency of the detected wave to measure the electron temperature in the interaction region, obtaining a result reasonably close to that predicted by the SAGE computer code.

  16. Flute vortices in a plasma with hot particles

    SciTech Connect

    Andrushchenko, Zh.N.; Pavlenko, V.P.; Cheremnykh, O.K.

    1992-01-01

    Flute perturbations in a plasma with {open_quotes}hot{close_quotes} are considered. Steady-state solutions are found which describe localized vortex structures. Two types of vortex solutions are considered: a dipolar vortex and a combination of a dipolar and a monopolar vortex. It is shown that the presence of {open_quotes}hot{close_quotes} particles has an effect on the region in which the vortex solutions exist in velocity space, which can give rise to a change in the particle flux leaving the plasma due to eddy convection. It is shown that the perturbed density profile in flute vortices must be nonmonotonic. 10 refs.

  17. Ion distribution in the hot spot of an inertial confinement fusion plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  18. The hot plasma environment at jupiter: ulysses results.

    PubMed

    Lanzerotti, L J; Armstrong, T P; Gold, R E; Anderson, K A; Krimigis, S M; Lin, R P; Pick, M; Roelof, E C; Sarris, E T; Simnett, G M; Maclennan, C G; Choo, H T; Tappin, S J

    1992-09-11

    Measurements of the hot plasma environment during the Ulysses flyby of Jupiter have revealed several new discoveries related to this large rotating astrophysical system. The Jovian magnetosphere was found by Ulysses to be very extended, with the day-side magnetopause located at approximately 105 Jupiter radii. The heavy ion (sulfur, oxygen, and sodium) population in the day-side magnetosphere increased sharply at approximately 86 Jupiter radii. This is somewhat more extended than the "inner" magnetosphere boundary region identified by the Voyager hot plasma measurements. In the day-side magnetosphere, the ion fluxes have the anisotropy direction expected for corotation with the planet, with the magnitude of the anisotropy increasing when the spacecraft becomes more immersed in the hot plasma sheet. The relative abundances of sulfur, oxygen, and sodium to helium decreased somewhat with decreasing radial distance from the planet on the day-side, which suggests that the abundances of the Jupiter-derived species are dependent on latitude. In the dusk-side, high-latitude region, intense fluxes of counter-streaming ions and electrons were discovered from the edge of the plasma sheet to the dusk-side magnetopause. These beams of electrons and ions were found to be very tightly aligned with the magnetic field and to be superimposed on a time- and space-variable isotropic hot plasma background. The currents carried by the measured hot plasma particles are typically approximately 1.6 x 10(-4) microamperes per square meter or approximately 8 x 10(5) amperes per squared Jupiter radius throughout the high-latitude magnetosphere volume. It is likely that the intense particle beams discovered at high Jovian latitudes produce auroras in the polar caps of the planet.

  19. X-ray Spectroscopy of Hot Dense Plasmas: Experimental Limits, Line Shifts and Field Effects

    SciTech Connect

    Renner, Oldrich; Sauvan, Patrick; Dalimier, Elisabeth; Riconda, Caterina; Rosmej, Frank B.; Weber, Stefan; Nicolai, Philippe; Peyrusse, Olivier; Uschmann, Ingo; Hoefer, Sebastian; Kaempfer, Tino; Loetzsch, Robert; Zastrau, Ulf; Foerster, Eckhart; Oks, Eugene

    2008-10-22

    High-resolution x-ray spectroscopy is capable of providing complex information on environmental conditions in hot dense plasmas. Benefiting from application of modern spectroscopic methods, we report experiments aiming at identification of different phenomena occurring in laser-produced plasma. Fine features observed in broadened profiles of the emitted x-ray lines and their satellites are interpreted using theoretical models predicting spectra modification under diverse experimental situations.

  20. Second sum rule for the hot plasma permittivity

    SciTech Connect

    Bobrov, V. B.; Mendeleyev, V. Ya.; Skovorod'ko, S. N.; Trigger, S. A.

    2011-02-15

    Based on linear response theory, Kramers-Kronig relations, and diagram techniques of perturbation theory, it is shown that the second sum rule is satisfied for hot plasma permittivity. An explicit analytical expression for the second sum rule in the limit of weak nonideality is derived.

  1. Plasma pharmacy - physical plasma in pharmaceutical applications.

    PubMed

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  2. Intense EM filamentation in relativistic hot plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Qiang-Lin; Chen, Zhong-Ping; Mahajan, Swadesh M.

    2017-03-01

    Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The "relativistic" filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  3. Hot Electron Instability in a Dipole Confined Plasma

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Mauel, M. E.

    2005-10-01

    In plasma containing energetic electrons, two interacting collective modes, an MHD-like mode and a hot electron interchange (HEI) modeootnotetextN. A. Krall, Phys. Fluids, 9, 820 (1966)., may be present. The linear stability of interchange modes in a z-pinch at arbitrary beta, including a bulk and hot electron species was recently studiedootnotetextN. Krasheninnikova, P. J. Catto, Phys. Plasmas, 12, 32101 (2005).. Using the dispersion relation derived in this reference we show that when necessary conditions are satisfied the two modes may be present or absent in a closed-field line magnetic confinement geometry such as a hard core z-pinch or a dipole. The HEI instability and the MHD-like centrifugally-driven mode have been studied previouslyootnotetextB. Levitt, et al., Phys. Plasmas, 9, 2507 (2002), and 12, 055703 (2005)., including a comparison between the measured mode structure and the predictions of a global low-beta simulation. The radial eigenmode is seen to effect the saturation level of the mode. In the Levitated Dipole Experimenthttp://psfcwww2.psfc.mit.edu/ldx/ electron cyclotron resonance heating produces high beta plasmas containing hot electrons, and instability observations will be discussed and compared with theoretical predictions.

  4. Axisymmetric global gravitational equilibrium for magnetized, rotating hot plasma

    NASA Astrophysics Data System (ADS)

    Catto, Peter J.; Pusztai, Istvan; Krasheninnikov, Sergei I.

    2015-12-01

    > We present analytic solutions for three-dimensional magnetized axisymmetric equilibria confining rotating hot plasma in a gravitational field. Our up-down symmetric solution to the full Grad-Shafranov equation can exhibit equatorial plane localization of the plasma density and current, resulting in disk equilibria for the plasma density. For very weak magnetic fields and high plasma pressure, we find strongly rotating thin plasma disk gravitational equilibria that satisfy strict Keplerian motion provided the gravitational energy is much larger than the plasma pressure, which must be large compared to the magnetic energy of the poloidal magnetic field. When the rotational energy exceeds the gravitational energy and it is larger than the plasma pressure, diffuse disk equilibrium solutions continue to exist provided the poloidal magnetic energy remains small. For stronger magnetic fields and lower plasma pressure and rotation, we can also find gravitational equilibria with strong localization to the equatorial plane. However, a toroidal magnetic field is almost always necessary to numerically verify these equilibria are valid solutions in the presence of gravity for the cases considered in Catto & Krasheninnikov (J. Plasma Phys., vol. 81, 2015, 105810301). In all cases both analytic and numerical results are presented.

  5. Two-dimensional flow characteristic of a hot expanding plasma

    NASA Astrophysics Data System (ADS)

    Gabriel, O.; Colsters, P. G. J.; Schram, D. C.; Engeln, R.

    2008-02-01

    A hot argon plasma expansion into a low-pressure background is investigated by means of laser induced fluorescence on argon metastables. The result is a complete two-dimensional flow field of the expanding system that covers the area reaching from the nozzle of the plasma source to the shock front of the expansion. This flow field includes information on atom velocities, densities and temperatures. It consists of two different components: a fast, cool supersonically expanding one and a slow, hot component resulting from invasion of the background gas. This invading component is first present at the outside of the barrel shock and gradually invades the expansion towards the center axis. The supersonic component, dominating the first part of the expansion, shows all characteristics of rarefied hot gas flows: acceleration to twice the sonic velocity of the source, adiabatic cooling and a parallel temperature remaining higher than the perpendicular one. However, the invading component is much slower, but also hotter due to collisions in the expanding flow, and is already present before the shock front. The total flow of argon atoms is also described by computer simulations. The result shows the same behavior as the measured flow. The importance of the invading component for radical production is also demonstrated by LIF measurements on atomic oxygen that is produced from background O2 inside the expanding system.

  6. The hot plasma environment at Jupiter - Ulysses results

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Armstrong, T. P.; Gold, R. E.; Anderson, K. A.; Krimigis, S. M.; Lin, R. P.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.

    1992-01-01

    Initial results obtained from measurements made by the HI-SCALE (heliosphere instrument for spectra, composition, and anisotropy at low energies) experiment are reported. Data revealed that the Jovian magnetosphere is very extended, with the day-side magnetopause located at about 105 Jupiter radii. The relative abundances of sulfur, oxygen, and sodium to helium decreased with the decreasing radial distance from the planet on the day-side, which suggests that the abundances of Jupiter-derived species are dependent on latitude. Intense fluxes of counter-streaming ions and electrons were discovered in the dusk-side, high-latitude region from the edge of the plasma sheet to the dusk-side magnetopause. These beams of ions and electrons appeared to be very tightly aligned with the magnetic field and to be superimposed on a time- and space variable isotropic hot plasma background. The current carried by measured hot plasma particles are about 1.6 x 10 exp -4 microamps per sq m.

  7. Opacity Measurement and Theoretical Investigation of Hot Silicon Plasma

    NASA Astrophysics Data System (ADS)

    Xiong, Gang; Yang, Jiamin; Zhang, Jiyan; Hu, Zhimin; Zhao, Yang; Qing, Bo; Yang, Guohong; Wei, Minxi; Yi, Rongqing; Song, Tianming; Li, Hang; Yuan, Zheng; Lv, Min; Meng, Xujun; Xu, Yan; Wu, Zeqing; Yan, Jun

    2016-01-01

    We report on opacity measurements of a silicon (Si) plasma at a temperature of (72 ± 5) eV and a density of (6.0 ± 1.2) mg cm-3 in the photon energy range of 1790-1880 eV. A 23 μg cm-2 Si foil tamped by 50 μg cm-2 CH layers on each side was heated to a hot-dense plasma state by X-ray radiation emitted from a D-shaped gold cavity that was irradiated by intense lasers. Absorption lines of 1s - 2p transitions of Si xiii to Si ix ions have been measured using point-projection spectroscopy. The transmission spectrum of the silicon plasma was determined by comparing the light passing through the plasma to the light from the same shot passing by the plasma. The density of the Si plasma was determined experimentally by side-on radiography and the temperature was estimated from the radiation flux data. Radiative hydrodynamic simulations were performed to obtain the temporal evolutions of the density and temperature of the Si plasma. The experimentally obtained transmission spectra of the Si sample plasma have been reproduced using a detailed term account model with the local thermodynamic equilibrium approximation. The energy levels, oscillator strengths and photoionization cross-sections used in the calculation were generated by the flexible atomic code. The experimental transmission spectrum was compared with the theoretical calculation and good agreement was found. The present experimental spectrum and theoretical calculation were also compared with the new opacities available in the Los Alamos OPLIB database.

  8. OPACITY MEASUREMENT AND THEORETICAL INVESTIGATION OF HOT SILICON PLASMA

    SciTech Connect

    Xiong, Gang; Yang, Jiamin; Zhang, Jiyan; Hu, Zhimin; Zhao, Yang; Qing, Bo; Yang, Guohong; Wei, Minxi; Yi, Rongqing; Song, Tianming; Li, Hang; Yuan, Zheng; Lv, Min; Meng, Xujun; Xu, Yan; Wu, Zeqing; Yan, Jun E-mail: zhimin.hu@yahoo.com

    2016-01-01

    We report on opacity measurements of a silicon (Si) plasma at a temperature of (72 ± 5) eV and a density of (6.0 ± 1.2) mg cm{sup −3} in the photon energy range of 1790–1880 eV. A 23 μg cm{sup −2} Si foil tamped by 50 μg cm{sup −2} CH layers on each side was heated to a hot-dense plasma state by X-ray radiation emitted from a D-shaped gold cavity that was irradiated by intense lasers. Absorption lines of 1s − 2p transitions of Si xiii to Si ix ions have been measured using point-projection spectroscopy. The transmission spectrum of the silicon plasma was determined by comparing the light passing through the plasma to the light from the same shot passing by the plasma. The density of the Si plasma was determined experimentally by side-on radiography and the temperature was estimated from the radiation flux data. Radiative hydrodynamic simulations were performed to obtain the temporal evolutions of the density and temperature of the Si plasma. The experimentally obtained transmission spectra of the Si sample plasma have been reproduced using a detailed term account model with the local thermodynamic equilibrium approximation. The energy levels, oscillator strengths and photoionization cross-sections used in the calculation were generated by the flexible atomic code. The experimental transmission spectrum was compared with the theoretical calculation and good agreement was found. The present experimental spectrum and theoretical calculation were also compared with the new opacities available in the Los Alamos OPLIB database.

  9. Investigating Fresh Hot Plasma Injections in Saturn's Inner-Magnetosphere

    NASA Astrophysics Data System (ADS)

    Vandegriff, J. D.; Loftus, K.; Rymer, A. M.; Mitchell, D. G.

    2015-12-01

    A decreasing density gradient in Saturn's plasma disk allows for centrifugal interchange instability between the dense, heavy plasma inside 10 Rs and the lighter plasma outside. This instability results in the less dense plasma of the mid-magnetosphere moving inward to the inner-magnetosphere. As flux tubes move inward, their volume decreases, and the contained plasma heats adiabatically. Most studies of interchange have focused on older events that have had time to gradient and curvature drift such that they are easily identified by a characteristic "V" energy dispersion signature in the ion and electron data [e.g. Hill et al., 2005; Chen et al., 2010]. Recently, Kennelly et al. (2013) used radio wave data to identify >300 possible "fresh" injection events. These are characterized in the plasma data by a bite-out at low energies, an enhancement at high energies, and little to no energy dispersion. Our study builds on the Kennelly et al. study to investigate the shape and frequency of injection events in order to better characterize how hot plasma transports into the inner magnetosphere. In most models of centrifugal interchange at Saturn, the time and spatial scales for inward and outward transport are fairly symmetric, but Cassini data suggests that inward injections of plasma move at much greater velocity and in narrower flow channels than their outgoing counterparts. Here we investigate the morphology of Kronian inward injection events to see if our dataset of young injections can inform on whether the inward injections are extended fingers or more like "bubbles", isolated flux tubes. Specifically, we apply minimum variance analysis to Cassini magnetic field data to determine the boundary normals at the spacecraft's entrance and exit points for each event, from which we can statistically analyze the structure's cross section. We will present our initial results on the morphology as well as the distribution of the injections over radial distance, latitude, and

  10. The AMPTE/CCE Hot-Plasma Composition Experiment (HPCE)

    NASA Astrophysics Data System (ADS)

    Shelley, E. G.; Ghielmetti, A.; Hertzberg, E.; Battel, S. J.; Altwegg-von Burg, K.; Balsiger, H.

    1985-05-01

    The Hot-Plasma Composition Experiment (HPCE) on the AMPTE-CCE spacecraft consists of an energetic ions-mass spectrometer and an electron background-environment monitor (EBEM). The mass spectrometer covers the entire mass per charge range from below 1 to greater than 150 amu/e and the energy per charge range from 0 eV/e (spacecraft potential) to 17 keV/e. The EBEM measures electrons between 50 eV and 25 keV in eight broad energy bands. The ion and electron data are processed into color spectrogram formats for the data pool.

  11. The AMPTE/CCE Hot-Plasma Composition Experiment (HPCE)

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Ghielmetti, A.; Hertzberg, E.; Battel, S. J.; Altwegg-Von Burg, K.; Balsiger, H.

    1985-01-01

    The Hot-Plasma Composition Experiment (HPCE) on the AMPTE-CCE spacecraft consists of an energetic ions-mass spectrometer and an electron background-environment monitor (EBEM). The mass spectrometer covers the entire mass per charge range from below 1 to greater than 150 amu/e and the energy per charge range from 0 eV/e (spacecraft potential) to 17 keV/e. The EBEM measures electrons between 50 eV and 25 keV in eight broad energy bands. The ion and electron data are processed into color spectrogram formats for the data pool.

  12. Unified concept of effective one component plasma for hot dense plasmas

    SciTech Connect

    Clerouin, Jean; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D.; Collins, Lee A.

    2016-03-17

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation time scales of the correlation functions associated with ionic motion. Lastly, in the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.

  13. Unified concept of effective one component plasma for hot dense plasmas

    DOE PAGES

    Clerouin, Jean; Arnault, Philippe; Ticknor, Christopher; ...

    2016-03-17

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation timemore » scales of the correlation functions associated with ionic motion. Lastly, in the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.« less

  14. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    SciTech Connect

    Kemp, Gregory Elijah

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  15. Be I isoelectronic ions embedded in hot plasma.

    PubMed

    Saha, B; Fritzsche, S

    2006-03-01

    The influence of plasma screening on the 2s(2 1)S0-->2s2p(3)p(0)1 intercombination and the 2s(2 1)S0-->2s2p(1)p(0)1 allowed transitions is investigated theoretically for several ions along the isoelectronic sequence (C III, N IV, O V, Si XI, Fe XXIII, and Mo XXXIX). For the case of a weakly coupled hot plasma, multiconfiguration Dirac-Fock computations have been carried out for these ions by considering a (time averaged) Debye-Hückel potential for both the "electron-nucleus" and "electron-electron" interaction. The plasma screening is found to enlarge the 2s(2 1)S0-->2s2p(3)p(0)1 excitation energy uniformly along the Be I isoelectronic sequence, leading to an increasing blueshift of this intercombination line as the nuclear charge is increased. For the 2s(2 1)S0-->2s2p(1)p(0)1 resonance line, in contrast, the transition energy is either blueshifted or redshifted in dependence of the screening parameter and owing to a cancellation of the plasma screening on the electron-nucleus and electron-electron interaction. This interplay of the (external) plasma screening with the internal interactions in the berylliumlike ions leads, for instance, to a shift of the resonance transition from red to blue in going from O V to Si XI ions. Apart from the screening effects on the transition energies, we also investigate their influence on the oscillator strengths and emission rates along the Be I isoelectronic sequence.

  16. Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas

    NASA Astrophysics Data System (ADS)

    Fein, J. R.; Holloway, J. P.; Trantham, M. R.; Keiter, P. A.; Edgell, D. H.; Froula, D. H.; Haberberger, D.; Frank, Y.; Fraenkel, M.; Raicher, E.; Shvarts, D.; Drake, R. P.

    2017-03-01

    Hard x-ray measurements are used to infer production of hot electrons in laser-irradiated planar foils of materials ranging from low- to high-Z. The fraction of laser energy converted to hot electrons, fhot , was reduced by a factor of 103 going from low-Z CH to high-Z Au, and hot electron temperatures were reduced from 40 to ˜20 keV. The reduction in fhot correlates with steepening electron density gradient length-scales inferred from plasma refraction measurements. Radiation hydrodynamic simulations predicted electron density profiles in reasonable agreement with those from measurements. Both multi-beam two-plasmon decay (TPD) and multi-beam stimulated Raman scattering (SRS) were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased electron plasma wave collisional and Landau damping. The results add to the evidence that SRS may play a comparable or a greater role relative to TPD in generating hot electrons in multi-beam experiments.

  17. Interaction of field-aligned cold plasma flows with an equatorially-trapped hot plasma - Electrostatic shock formation

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1993-01-01

    Effects of equatorially trapped hot plasma on the highly supersonic cold-plasma flow occurring during early stage plasmaspheric refilling are studied by means of numerical simulations. It is shown that the equatorially trapped hot ions set up a potential barrier for the cold ion beams and facilitate formation of electrostatic shocks by reflecting them from the equatorial region. Simulations with and without the hot plasma show different flow properties; the formation of electrostatic shocks occur only in the former case. The simulation with the hot plasma also reveals that the magnetic trapping in conjunction with the evolution of the electrostatic potential barrier produces ion velocity distribution functions consisting of a cold core and a hot ring in the perpendicular velocity. Such a distribution function provides a source of free energy for equatorial waves. The corresponding electron population is warm and field-aligned.

  18. Applications of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Oldham, Christopher John

    Surface modification techniques using plasmas have historically been completed in a low pressure environment due to Pd (pressure x gap distance) considerations influencing the behavior of plasma generation. Generally, plasmas produced in a low pressure environment are of a non-thermal or cold nature. The basic feature of non-thermal plasmas is the majority of electrical energy used to generate the plasma is primarily used to produce energetic electrons for generating chemical species. Low pressure plasmas serve many purposes for materials processing. Since the plasma environment is contained within a closed vessel, the plasma can be controlled very easily. Low pressure plasmas have been used in many industries but the complexity associated with the large pumping stations and limitation to batch processing has motivated new work in the area of atmospheric plasmas. Atmospheric plasmas offer both economic and technical justification for use over low pressure plasmas. Since atmospheric plasmas can be operated at ambient conditions, lower costs associated with continuous processing and a decrease in the complexity of equipment validate atmospheric plasma processing as a next generation plasma-aided manufacturing process. In an effort to advance acceptance of atmospheric plasma processing into industry, a process was developed, the dielectric barrier discharge (DBD), in order to generate a homogeneous and non-thermal plasma discharge at ambient conditions. The discharge was applied to the reduction of known food borne pathogens, deposition of thin film materials, and modification of lignocellulosic biomass.

  19. Low-Energy Hot Plasma and Particles in Saturn's Magnetosphere.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Gloeckler, G; Keath, E P; Lanzerotti, L J; Carbary, J F; Hamilton, D C; Roelof, E C

    1982-01-29

    The low-energy charged particle instrument on Voyager 2 measured low-energy electrons and ions (energies greater, similar 22 and greater, similar 28 kiloelectron volts, respectively) in Saturn's magnetosphere. The magnetosphere structure and particle population were modified from those observed during the Voyager 1 encounter in November 1980 but in a manner consistent with the same global morphology. Major results include the following. (i) A region containing an extremely hot ( approximately 30 to 50 kiloelectron volts) plasma was identified and extends from the orbit of Tethys outward past the orbit of Rhea. (ii) The low-energy ion mantle found by Voyager 1 to extend approximately 7 Saturn radii inside the dayside magnetosphere was again observed on Voyager 2, but it was considerably hotter ( approximately 30 kiloelectron volts), and there was an indication of a cooler ( < 20 kiloelectron volts) ion mantle on the nightside. (iii) At energies greater, similar 200 kiloelectron volts per nucleon, H(1), H(2), and H(3) (molecular hydrogen), helium, carbon, and oxygen are important constituents in the Saturnian magnetosphere. The presence of both H(2) and H(3) suggests that the Saturnian ionosphere feeds plasma into the magnetosphere, but relative abundances of the energetic helium, carbon, and oxygen ions are consistent with a solar wind origin. (iv) Low-energy ( approximately 22 to approximately 60 kiloelectron volts) electron flux enhancements observed between the L shells of Rhea and Tethys by Voyager 2 on the dayside were absent during the Voyager 1 encounter. (v) Persistent asymmetric pitch-angle distributions of electrons of 60 to 200 kiloelectron volts occur in the outer magnetosphere in conjunction with the hot ion plasma torus. (vi) The spacecraft passed within approximately 1.1 degrees in longitude of the Tethys flux tube outbound and observed it to be empty of energetic ions and electrons; the microsignature of Enceladus inbound was also observed. (vii

  20. Applications of nanoimprint lithography/hot embossing: a review

    NASA Astrophysics Data System (ADS)

    Chen, Yifang

    2015-11-01

    This review concentrates on the applications of nanoimprint lithography (NIL) and hot embossing for the fabrications of nanolectronic devices, nanophotonic metamaterials and other nanostructures. Technical challenges and solutions in NIL such as nanofabrication of templates, removal of residual resist, pattern displacement in thermal NIL arising from thermal expansion are first discussed. In the nanofabrication of templates, dry etch in plasma for the formation of multi-step structures and ultra-sharp tip arrays in silicon, nanophotonic chiral structures with high aspect ratio in SiC are demonstrated. A bilayer technique for nondestructive removal of residual resist in thermal NIL is described. This process is successfully applied for the fabrication of T-shape gates and functional high electron mobility transistors. However, pattern displacement intrinsically existing in thermal NIL/hot embossing owing to different thermal expansions in the template and substrate, respectively, limits its further development and scale-up. Low temperature even room temperature NIL (RTNIL) was then proposed on HSQ, trying to eliminate the pattern distortion by avoiding a thermal loop in the imprint. But, considerable pressure needed in RTNIL turned the major attentions to the development of UV-curing NIL in UV-curable monomers at low temperature. A big variety of applications by low-temperature UV-curing NIL in SU-8 are described, including high-aspect-ratio phase gratings, tagging technology by nanobarcode for DNA sequencing, nanofluidic channels, nanophotonic metamaterials and biosensors. Hot embossing, as a parallel technique to NIL, was also developed, and its applications on ferroelectric polymers as well as metals are reviewed. Therefore, it is necessary to emphasize that this review is mainly attempted to review the applications of NIL/embossing instead of NIL technique advances.

  1. SUMMA hot-ion plasma heating research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Patch, R. W.; Lauver, M. R.

    1975-01-01

    The SUMMA superconducting magnetic mirror facility and the associated hot-ion plasma research were described. SUMMA is characterized by intense magnetic fields and a large-diameter working bore (41 cm diameter) with room-temperature access. The goal of the plasma research program is to produce steady-state plasmas of fusion reactor densities and temperatures (but not confinement times). The program includes electrode development to produce a hot, dense, large-volume, steady-state plasma and diagnostics development to document the plasma properties. SUMMA and its hot-ion plasma are ideally suited to develop advanced plasma diagnostics methods. Two such methods whose requirements are well matched to SUMMA are: (1) heavy ion beam probing to measure plasma space potential; and (2) submillimeter wavelength laser Thomson scattering to measure local ion temperature.

  2. X-UV Index of Refraction of Dense and Hot Plasmas.

    PubMed

    Benattar, R; Galos, C; Ney, P

    1995-01-01

    In a dense and hot plasma the refractive index in the X-UV range takes into account not only the effect of free electrons, but also the effect of electrons bound by atoms. The refractive index is calculated by the Kramer-Kronig relations using the total opacity of the medium including bound-bound, free-bound, and free-free atomic transitions. A simple method of calculation of the emission and absorption coefficients is presented. These parameters are of great interest when one wants to study radiative transfer in a dense and hot material. The computer program used allows one to obtain either in LTE or in NLTE the values of these coefficients for every material and for a wide range of mass density and temperature, using a screened hydrogenic model. Applications are presented first to generate opacity tables and second to generate the index of refraction of aluminum for a wide range of mass density and temperature.

  3. Plasma core reactor applications

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Rodgers, R. J.

    1976-01-01

    Analytical and experimental investigations were conducted to demonstrate the feasibility of fissioning uranium plasma core reactors and to characterize space and terrestrial applications for such reactors. Uranium hexafluoride fuel is injected into core cavities and confined away from the surface by argon buffer gas injected tangentially from the peripheral walls. Radiant heat transfer calculations were performed for a six-cavity reactor configuration. Axial working fluid channels are located along a fraction of each cavity peripheral wall. Results of calculations for outward-directed radiant energy fluxes corresponding to radiating temperatures of 2000 to 5000 K indicate total operating pressures from 80 to 650 atm, centerline temperatures from 6900 to 30,000 K, and total radiated powers from 25 to 2500 MW, respectively. Applications are described for this type of reactor such as (1) high-thrust, high specific impulse space propulsion, (2) highly efficient systems for generation of electricity, and (3) hydrogen or synthetic fuel production systems using the intense radiant energy fluxes.

  4. Modeling RF Fields in Hot Plasmas with Parallel Full Wave Code

    NASA Astrophysics Data System (ADS)

    Spencer, Andrew; Svidzinski, Vladimir; Zhao, Liangji; Galkin, Sergei; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a suite of full wave RF plasma codes. It is based on a meshless formulation in configuration space with adapted cloud of computational points (CCP) capability and using the hot plasma conductivity kernel to model the nonlocal plasma dielectric response. The conductivity kernel is calculated by numerically integrating the linearized Vlasov equation along unperturbed particle trajectories. Work has been done on the following calculations: 1) the conductivity kernel in hot plasmas, 2) a monitor function based on analytic solutions of the cold-plasma dispersion relation, 3) an adaptive CCP based on the monitor function, 4) stencils to approximate the wave equations on the CCP, 5) the solution to the full wave equations in the cold-plasma model in tokamak geometry for ECRH and ICRH range of frequencies, and 6) the solution to the wave equations using the calculated hot plasma conductivity kernel. We will present results on using a meshless formulation on adaptive CCP to solve the wave equations and on implementing the non-local hot plasma dielectric response to the wave equations. The presentation will include numerical results of wave propagation and absorption in the cold and hot tokamak plasma RF models, using DIII-D geometry and plasma parameters. Work is supported by the U.S. DOE SBIR program.

  5. The kappa Distribution as Tool in Investigating Hot Plasmas in the Magnetospheres of Outer Planets

    NASA Astrophysics Data System (ADS)

    Krimigis, S. M.; Carbary, J. F.

    2014-12-01

    The first use of a Maxwellian distribution with a high-energy tail (a κ-function) was made by Olbert (1968) and applied by Vasyliunas (1968) in analyzing electron data. The k-function combines aspects of both Maxwellian and power law forms to provide a reasonably complete description of particle density, temperature, pressure and convection velocity, all of which are key parameters of magnetospheric physics. Krimigis et al (1979) used it to describe flowing plasma ions in Jupiter's magnetosphere measured by Voyager 1, and obtained temperatures in the range of 20 to 35 keV. Sarris et al (1981) used the κ-function to describe plasmas in Earth's distant plasma sheet. The κ-function, in various formulations and names (e. g., γ-thermal distribution, Krimigis and Roelof, 1983) has been used routinely to parametrize hot, flowing plasmas in the magnetospheres of the outer planets, with typical kT ~ 10 to 50 keV. Using angular measurements, it has been possible to obtain pitch angle distributions and convective flow directions in sufficient detail for computations of temperatures and densities of hot particle pressures. These 'hot' pressures typically dominate the cold plasma pressures in the high beta (β > 1) magnetospheres of Jupiter and Saturn, but are of less importance in the relatively empty (β < 1) magnetospheres of Uranus and Neptune. Thus, the κ-function represents an effective tool in analyzing plasma behavior in planetary magnetospheres, but it is not applicable in all plasma environments. References Olbert, S., in Physics of the Magnetosphere, (Carovillano, McClay, Radoski, Eds), Springer-Verlag, New York, p. 641-659, 1968 Vasyliunas, V., J. Geophys. Res., 73(9), 2839-2884, 1968 Krimigis, S. M., et al, Science 204, 998-1003, 1979 Sarris, E., et al, Geophys. Res. Lett. 8, 349-352, 1981 Krimigis, S. M., and E. C. Roelof, Physics of the Jovian Magnetosphere, edited by A. J. Dessler, 106-156, Cambridge University Press, New York, 1983

  6. Wave-particle and wave-wave interactions in hot plasmas: a French historical point of view

    NASA Astrophysics Data System (ADS)

    Laval, Guy; Pesme, Denis; Adam, Jean-Claude

    2016-11-01

    The first researches on nuclear fusion for energy applications marked the entrance of hot plasmas into the laboratory. It became necessary to understand the behavior of such plasmas and to learn how to manipulate them. Theoreticians and experimentalists, building on the foundations of empirical laws, had to construct this new plasma physics from first principles and to explain the results of more and more complicated experiments. Along this line, two important topics emerged: wave-particle and wave-wave interactions. Here, their history is recalled as it has been lived by a French team from the end of the sixties to the beginning of the twenty-first century.

  7. Disoriented chiral condensate formation from tubes of hot quark plasma

    SciTech Connect

    Abada, A.; Birse, M.C.

    1998-01-01

    We investigate the time evolution of a system of quarks interacting with {sigma} and pion fields starting from an initial configuration consisting of a tube of hot quark plasma undergoing a boost-invariant longitudinal expansion. We work within the framework of the linear sigma model using classical transport equations for the quarks coupled to the mean-field equations for the meson fields. In certain cases we find strong amplifications of any initial pion fields. For large-radius tubes, starting from quark densities that are very close to critical, we find that a disoriented chiral condensate can form in the center of the tube. Eventually the collapse of the tube drives this state back to the true vacuum. This process converts the disoriented condensate, dominated by long-wavelength pion modes, into a coherent excitation of the pion field that includes significant components with transverse momenta of around 400 MeV. In contrast, for narrow tubes or larger initial temperatures, amplification occurs only via the pion-laser-like mechanism found previously for spherical systems. In addition, we find that explicit chiral symmetry breaking significantly suppresses the formation of disoriented condensates. {copyright} {ital 1997} {ital The American Physical Society}

  8. Holographic screening length in a hot plasma of two sphere

    NASA Astrophysics Data System (ADS)

    Atmaja, A. Nata; Kassim, H. Abu; Yusof, N.

    2015-11-01

    We study the screening length L_{max} of a moving quark-antiquark pair in a hot plasma, which lives in a two sphere, S^2, using the AdS/CFT correspondence in which the corresponding background metric is the four-dimensional Schwarzschild-AdS black hole. The geodesic of both ends of the string at the boundary, interpreted as the quark-antiquark pair, is given by a stationary motion in the equatorial plane by which the separation length L of both ends of the string is parallel to the angular velocity ω . The screening length and total energy H of the quark-antiquark pair are computed numerically and show that the plots are bounded from below by some functions related to the momentum transfer P_c of the drag force configuration. We compare the result by computing the screening length in the reference frame of the moving quark-antiquark pair, in which the background metrics are "Boost-AdS" and Kerr-AdS black holes. Comparing both black holes, we argue that the mass parameters M_{Sch} of the Schwarzschild-AdS black hole and M_{Kerr} of the Kerr-AdS black hole are related at high temperature by M_{Kerr}=M_{Sch}(1-a^2l^2)^{3/2}, where a is the angular momentum parameter and l is the AdS curvature.

  9. Hot Plasma Composition Analyzer for the Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Young, D. T.; Burch, J. L.; Gomez, R. G.; De Los Santos, A.; Miller, G. P.; Wilson, P.; Paschalidis, N.; Fuselier, S. A.; Pickens, K.; Hertzberg, E.; Pollock, C. J.; Scherrer, J.; Wood, P. B.; Donald, E. T.; Aaron, D.; Furman, J.; George, D.; Gurnee, R. S.; Hourani, R. S.; Jacques, A.; Johnson, T.; Orr, T.; Pan, K. S.; Persyn, S.; Pope, S.; Roberts, J.; Stokes, M. R.; Trattner, K. J.; Webster, J. M.

    2016-03-01

    This paper describes the science motivation, measurement objectives, performance requirements, detailed design, approach and implementation, and calibration of the four Hot Plasma Composition Analyzers (HPCA) for the Magnetospheric Multiscale mission. The HPCA is based entirely on electrostatic optics combining an electrostatic energy analyzer with a carbon-foil based time-of-flight analyzer. In order to fulfill mission requirements, the HPCA incorporates three unique technologies that give it very wide dynamic range capabilities essential to measuring minor ion species in the presence of extremely high proton fluxes found in the region of magnetopause reconnection. Dynamic range is controlled primarily by a novel radio frequency system analogous to an RF mass spectrometer. The RF, in combination with capabilities for high TOF event processing rates and high current micro-channel plates, ensures the dynamic range and sensitivity needed for accurate measurements of ion fluxes between ˜1 eV and 40 keV that are expected in the region of reconnection events. A third technology enhances mass resolution in the presence of high proton flux.

  10. Current status of the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) university-class explorer mission

    NASA Astrophysics Data System (ADS)

    Hurwitz, Mark

    2003-12-01

    We present a status report on CHIPS, the Cosmic Hot Interstellar Plasma Spectrometer. CHIPS is the first NASA University-Class Explorer (UNEX) project, and was launched on January 13, 2003. The grazing incidence CHIPS spectrograph is surveying selected regions of the sky for diffuse emission in the comparatively unexplored wavelength band between 90 and 260 Å. These data are providing important new constraints on the temperature, ionization state, and emission measure of hot plasma in the "local bubble" of the interstellar medium.

  11. Development of full wave code for modeling RF fields in hot non-uniform plasmas

    NASA Astrophysics Data System (ADS)

    Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a full wave RF modeling code to model RF fields in fusion devices and in general plasma applications. As an important component of the code, an adaptive meshless technique is introduced to solve the wave equations, which allows resolving plasma resonances efficiently and adapting to the complexity of antenna geometry and device boundary. The computational points are generated using either a point elimination method or a force balancing method based on the monitor function, which is calculated by solving the cold plasma dispersion equation locally. Another part of the code is the conductivity kernel calculation, used for modeling the nonlocal hot plasma dielectric response. The conductivity kernel is calculated on a coarse grid of test points and then interpolated linearly onto the computational points. All the components of the code are parallelized using MPI and OpenMP libraries to optimize the execution speed and memory. The algorithm and the results of our numerical approach to solving 2-D wave equations in a tokamak geometry will be presented. Work is supported by the U.S. DOE SBIR program.

  12. Characterization of plasma and laser conditions for single hot spot interaction experiments

    SciTech Connect

    Montgomery, D.S.; Johnson, R.P.; Cobble, J.A.; Fernandez, J.C.; Lindman, E.L.; Rose, H.A.; Estabrook, K.G.

    1998-11-01

    The LANL TRIDENT laser system is being used for fundamental experiments which study the interaction of self-focusing, stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) in a single (diffraction limited) laser hot spot in order to better understand the coupling between these plasma instabilities. The diffraction limited beam mimics a single hot spot found in speckle distributions that are typical of random or kinoform phase plate (RPP or KPP) smoothing. A long scale length, hot plasma ({approximately} 1 mm, {approximately} 0.5 keV) is created by a separate heater beam, and the single hot spot beam is used to drive parametric instabilities. The focal plane distribution and wavefront of the single hot spot beam are characterized, and the intensity of the single hot spot can be varied between 10{sup 14}--10{sup 16} W/cm{sup 2}. The plasma density, temperature, and flow profiles are measured using gated imaging spectroscopy of collective Thomson scattering. Results of the laser and plasma characterization, and initial results of backscattered SRS, SBS, and beam steering in a flowing plasma are presented.

  13. Aerospace applications of pulsed plasmas

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey

    2012-10-01

    The use of a thermal equilibrium plasma for combustion control dates back more than a hundred years to the advent of internal combustion (IC) engines and spark ignition systems. The same principles are still applied today to achieve high efficiency in various applications. Recently, the potential use of nonequilibrium plasma for ignition and combustion control has garnered increasing interest due to the possibility of plasma-assisted approaches for ignition and flame stabilization. During the past decade, significant progress has been made toward understanding the mechanisms of plasma chemistry interactions, energy redistribution and the nonequilibrium initiation of combustion. In addition, a wide variety of fuels have been examined using various types of discharge plasmas. Plasma application has been shown to provide additional combustion control, which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine (GTE) relight, detonation initiation in pulsed detonation engines (PDE) and distributed ignition control in homogeneous charge-compression ignition (HCCI) engines, among others. The present paper describes the current understanding of the nonequilibrium excitation of combustible mixtures by electrical discharges and plasma-assisted ignition and combustion. Nonequilibrium plasma demonstrates an ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions.

  14. Nonlocality of radiative transfer in continuous spectra and Bremsstrahlung radiation transport in hot dense plasmas

    SciTech Connect

    Ivanov, V. V.; Kukushkin, A. B.

    1997-05-05

    The importance of nonlocal effects in radiative transfer in continuous spectra is shown in numerical modelling of space profiles of plasma temperature and Bremsstrahlung total power losses in a layer of adiabatically compressed hot dense plasma, via comparing the results of the exact, integral equation formalism and widely used approach of radiation temperature diffusion with Rosseland mean diffusion coefficient.

  15. Plasma Heating to Super-Hot Temperatures (>30 MK) in the August 9, 2011 Solar Flare

    NASA Astrophysics Data System (ADS)

    Sharykin, Ivan; Struminsky, Alexei; Zimovets, Ivan

    2015-08-01

    We investigate the August 9, 2011 solar flare of X-ray class X6.9, the "hottest" flare from 2000 to 2012, with a peak plasma temperature according to GOES data of 33 MK. Our goal is to determine the cause of such an anomalously high plasma temperature and to investigate the energy balance in the flare region with allowance made for the presence of a super-hot plasma (>30 MK). We analyze the RHESSI, GOES, AIA/SDO, and EVE/SDO data and discuss the spatial structure of the flare region and the results of our spectral analysis of its X-ray emission. Our analysis of the RHESSI X-ray spectra is performed in the one-temperature and two-temperature approximations by taking into account the emission of hot (20 MK) and super-hot (45 MK) plasmas. The hard X-ray spectrum in both models is fitted by power laws. The observed peculiarities of the flare are shown to be better explained in terms of the two-temperature model, in which the super-hot plasma is located at the flare loop tops (or in the magnetic cusp region). The formation of the super-hot plasma can be associated with its heating through primary energy release and with the suppression of thermal conduction.

  16. Whistler-mode Waves in a Hot Plasma

    NASA Astrophysics Data System (ADS)

    Sazhin, Sergei

    2005-10-01

    The book provides an extensive theoretical treatment of whistler-mode propagation, instabilities and damping in a collisionless plasma. This book fills a gap between oversimplified analytical studies of these waves, based on the cold plasma approximation, and studies based on numerical methods. Although the book is primarily addressed to space plasma physicists and radio physicists, it will also prove useful to laboratory plasma physicists. Mathematical methods described in the book can be applied in a straightforward way to the analysis of other types of plasma waves. Problems included in this book, along with their solutions, allow it to be used as a textbook for postgraduate students.

  17. Beam heated linear theta-pinch device for producing hot plasmas

    DOEpatents

    Bohachevsky, Ihor O.

    1981-01-01

    A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.

  18. Laser driven terahertz generation in hot plasma with step density profile

    SciTech Connect

    Kumar, Manoj Jeong, Young Uk; Tripathi, Vipin Kumar

    2015-06-15

    An analytical formalism of terahertz (THz) radiation generation by beating of two lasers in a hot plasma with step density profile is developed. The lasers propagate obliquely to plasma surface normal, and the nonlinearity arises through the ponderomotive force. The THz is emitted in the specular reflection direction, and the yield is enhanced due to coupling with the Langmuir wave when the plasma frequency is close to THz frequency. The power conversion efficiency maximizes at an optimum angle of incidence.

  19. A model of force balance in Jupiter's magnetodisc including hot plasma pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Nichols, J. D.; Achilleos, N.; Cowley, S. W. H.

    2015-12-01

    We present an iterative vector potential model of force balance in Jupiter's magnetodisc that includes the effects of hot plasma pressure anisotropy. The fiducial model produces results that are consistent with Galileo magnetic field and plasma data over the whole radial range of the model. The hot plasma pressure gradient and centrifugal forces dominate in the regions inward of ˜20 RJ and outward of ˜50 RJ, respectively, while for realistic values of the pressure anisotropy, the anisotropy current is either the dominant component or at least comparable with the hot plasma pressure gradient current in the region in between. With the inclusion of hot plasma pressure anisotropy, the ˜1.2 and ˜2.7° shifts in the latitudes of the main oval and Ganymede footprint, respectively, associated with variations over the observed range of the hot plasma parameter Kh, which is the product of hot pressure and unit flux tube volume, are comparable to the shifts observed in auroral images. However, the middle magnetosphere is susceptible to the firehose instability, with peak equatorial values of βh∥e-βh⊥e≃1 - 2, for Kh=2.0 - 2.5 × 107 Pa m T-1. For larger values of Kh,βh∥e-βh⊥e exceeds 2 near ˜25 RJ and the model does not converge. This suggests that small-scale plasmoid release or "drizzle" of iogenic plasma may often occur in the middle magnetosphere, thus forming a significant mode of plasma mass loss, alongside plasmoids, at Jupiter.

  20. Hot Plasma from Solar Active Region Cores: a Test of AC and DC Coronal Heating Models?

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Asgari-Targhi, M.; Christian, G. M.; Dhaliwal, R. S.; Pathak, S.

    2015-06-01

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) and the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be_thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.

  1. HOT PLASMA FROM SOLAR ACTIVE REGION CORES: A TEST OF AC AND DC CORONAL HEATING MODELS?

    SciTech Connect

    Schmelz, J. T.; Christian, G. M.; Dhaliwal, R. S.; Pathak, S.; Asgari-Targhi, M.

    2015-06-20

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) and the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be-thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.

  2. Hot-melt extrusion--basic principles and pharmaceutical applications.

    PubMed

    Lang, Bo; McGinity, James W; Williams, Robert O

    2014-09-01

    Originally adapted from the plastics industry, the use of hot-melt extrusion has gained favor in drug delivery applications both in academia and the pharmaceutical industry. Several commercial products made by hot-melt extrusion have been approved by the FDA, demonstrating its commercial feasibility for pharmaceutical processing. A significant number of research articles have reported on advances made regarding the pharmaceutical applications of the hot-melt extrusion processing; however, only limited articles have been focused on general principles regarding formulation and process development. This review provides an in-depth analysis and discussion of the formulation and processing aspects of hot-melt extrusion. The impact of physicochemical properties of drug substances and excipients on formulation development using a hot-melt extrusion process is discussed from a material science point of view. Hot-melt extrusion process development, scale-up, and the interplay of formulation and process attributes are also discussed. Finally, recent applications of hot-melt extrusion to a variety of dosage forms and drug substances have also been addressed.

  3. Hot Plasma and Energetic Particles in Neptune's Magnetosphere.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Cheng, A F; Gloeckler, G; Hamilton, D C; Keath, E P; Lanzerotti, L J; Mauk, B H; Van Allen, J A

    1989-12-15

    The low-energy charged particle (LECP) instrument on Voyager 2 measured within the magnetosphere of Neptune energetic electrons (22 kiloelectron volts /=0.5 MeV per nucleon) energies, using an array of solid-state detectors in various configurations. The results obtained so far may be summarized as follows: (i) A variety of intensity, spectral, and anisotropy features suggest that the satellite Triton is important in controlling the outer regions of the Neptunian magnetosphere. These features include the absence of higher energy (>/=150 keV) ions or electrons outside 14.4 R(N) (where R(N) = radius of Neptune), a relative peak in the spectral index of low-energy electrons at Triton's radial distance, and a change of the proton spectrum from a power law with gamma >/= 3.8 outside, to a hot Maxwellian (kT [unknown] 55 keV) inside the satellite's orbit. (ii) Intensities decrease sharply at all energies near the time of closest approach, the decreases being most extended in time at the highest energies, reminiscent of a spacecraft's traversal of Earth's polar regions at low altitudes; simultaneously, several spikes of spectrally soft electrons and protons were seen (power input approximately 5 x 10(-4) ergs cm(-2) s(-1)) suggestive of auroral processes at Neptune. (iii) Composition measurements revealed the presence of H, H(2), and He(4), with relative abundances of 1300:1:0.1, suggesting a Neptunian ionospheric source for the trapped particle population. (iv) Plasma pressures at E >/= 28 keV are maximum at the magnetic equator with beta approximately 0.2, suggestive of a relatively empty magnetosphere, similar to that of Uranus. (v) A potential signature of satellite 1989N1 was seen, both inbound and outbound; other possible signatures of the moons and rings are evident in the data but cannot be positively identified in the

  4. Suppressed ion-scale turbulence in a hot high-β plasma

    PubMed Central

    Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.

    2016-01-01

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. PMID:28000675

  5. Suppressed ion-scale turbulence in a hot high-β plasma.

    PubMed

    Schmitz, L; Fulton, D P; Ruskov, E; Lau, C; Deng, B H; Tajima, T; Binderbauer, M W; Holod, I; Lin, Z; Gota, H; Tuszewski, M; Dettrick, S A; Steinhauer, L C

    2016-12-21

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.

  6. Suppressed ion-scale turbulence in a hot high-β plasma

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.

    2016-12-01

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.

  7. [Plasma technology for biomedical material applications].

    PubMed

    Liu, Z; Li, X

    2000-03-01

    In this paper is introduced the plasma technology for the applications of several species biomaterial such as ophthalmological material, drug delivery system, tissue culture material, blood anticoagulant material as well as plasma surface clearing and plasma sterilization, and so on.

  8. Plasma Sterilization Technology for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Fraser, S. J.; Olson, R. L.; Leavens, W. M.

    1975-01-01

    The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials.

  9. Influence of hot plasma pressure on the global structure of Saturn’s magnetodisk

    NASA Astrophysics Data System (ADS)

    Achilleos, N.; Guio, P.; Arridge, C. S.; Sergis, N.; Wilson, R. J.; Thomsen, M. F.; Coates, A. J.

    2010-10-01

    Using a model of force balance in Saturn's disk-like magnetosphere, we show that variations in hot plasma pressure can change the magnetic field configuration. This effect changes (i) the location of the magnetopause, even at fixed solar wind dynamic pressure, and (ii) the magnetic mapping between ionosphere and disk. The model uses equatorial observations as a boundary condition—we test its predictions over a wide latitude range by comparison with a Cassini high-inclination orbit of magnetic field and hot plasma pressure data. We find reasonable agreement over time scales larger than the period of Saturn kilometric radiation (also known as the camshaft period).

  10. Status of the cosmic hot interstellar plasma spectrometer (CHIPS) university-class explorer mission

    NASA Astrophysics Data System (ADS)

    Hurwitz, Mark; Davis, Robert; Dawson, Simon; Dobson, Patricia; Donakowski, William; Friedman, Assi; Gaines, Geoffrey A.; Edelstein, Jerry; Hemphill, Richelieu; Hoberman, Jane; Janicik, Jeffrey; Jelinsky, Patrick N.; Lampton, Michael L.; Marchant, Wiliam; Marckwordt, Mario; Mirczak, Jareb; Sasseen, Timothy P.; Sholl, Michael; Siegmund, Oswald H. W.; Sirk, Martin; Stone, David; Sulack, Steven; Riddle Taylor, Ellen; Veno, Michael; Wolff, Jonathan

    2003-02-01

    We present a status report on CHIPS, the Cosmic Hot Interstellar Plasma Spectrometer. CHIPS is the first NASA University-Class Explorer (UNEX) project. CHIPS was selected in 1998 and is now scheduled for launch in December of 2002. The grazing incidence CHIPS spectrograph will survey the sky and record spectra of diffuse emission in the comparatively unexplored wavelength band between 90 and 260 Å. These data will provide important new constraints on the temperature, ionization state, and emission measure of hot plasma in the "local bubble" of the interstellar medium.

  11. Hot air drum evaporator. [Patent application

    DOEpatents

    Black, R.L.

    1980-11-12

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  12. Plasma heating to super-hot temperatures (>30 MK) in the August 9, 2011 solar flare

    NASA Astrophysics Data System (ADS)

    Sharykin, I. N.; Struminskii, A. B.; Zimovets, I. V.

    2015-01-01

    We investigate the August 9, 2011 solar flare of X-ray class X6.9, the "hottest" flare from 2000 to 2012, with a peak plasma temperature according to GOES data of ≈32.5 MK. Our goal is to determine the cause of such an anomalously high plasma temperature and to investigate the energy balance in the flare region with allowance made for the presence of a super-hot plasma (>30 MK). We analyze the RHESSI, GOES, AIA/SDO, and EVE/SDO data and discuss the spatial structure of the flare region and the results of our spectral analysis of its X-ray emission. Our analysis of the RHESSI X-ray spectra is performed in the one-temperature and two-temperature approximations by taking into account the emission of hot (˜20 MK) and super-hot (˜45 MK) plasmas. The hard X-ray spectrum in both models is fitted by power laws. The observed peculiarities of the flare are shown to be better explained in terms of the two-temperature model, in which the super-hot plasma is located at the flare loop tops (or in the magnetic cusp region). The formation of the super-hot plasma can be associated with its heating through primary energy release and with the suppression of thermal conduction. The anomalously high temperature (33 MK according to GOES) is most likely to be an artefact of the method for calculating the temperature based on two-channel GOES measurements in the one-temperature approximation applied to the emission of a multi-temperature flare plasma with a minor contribution from the low-temperature part of the differential emission measure.

  13. New electron beam facility for irradiated plasma facing materials testing in hot cell

    SciTech Connect

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  14. Multi-Material ALE with AMR for Modeling Hot Plasmas and Cold Fragmenting Materials

    NASA Astrophysics Data System (ADS)

    Alice, Koniges; Nathan, Masters; Aaron, Fisher; David, Eder; Wangyi, Liu; Robert, Anderson; David, Benson; Andrea, Bertozzi

    2015-02-01

    We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices.

  15. Controlled Fusion with Hot-ion Mode in a Degenerate Plasma

    SciTech Connect

    S. Son and N.J. Fisch

    2005-12-01

    n a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous calculations of these processes in dense plasmas are now corrected for partial degeneracy and relativistic effects, leading to an expanded regime of self-sustained fusion.

  16. Microwave interrogation of an air plasma plume as a model system for hot spots in explosives

    NASA Astrophysics Data System (ADS)

    Kane, Ronald J.; Tringe, Joseph W.; Klunder, Gregory L.; Baluyot, Emer V.; Densmore, John M.; Converse, Mark C.

    2017-01-01

    The evolution of hot spots within explosives is critical to understand for predicting how detonation waves form and propagate. However, it is challenging to observe hot spots directly because they are small (˜micron diameter), form quickly (much less than a microsecond), and many explosives of interest are optically opaque. Microwaves are well-suited to characterize hot spots because they readily penetrate most explosives. They also have sufficient temporal and spatial resolution to measure the coalescence of an ensemble of hot spots inside explosives. Here we employ 94 GHz microwaves to characterize the evolution of individual plasma plumes formed by laser ionization of air. We use interferometry to obtain plume diameter as a function of time. Although the plasma plumes are larger than individual hot spots in explosives, they expand rapidly and predictably, and their structure can be optically imaged. They are therefore useful model systems to establish the spatial and temporal limits of microwave interferometry (MI) for understanding more complex hot spot behavior in solid explosives.

  17. Microwave interrogation of an air plasma plume as a model system for hot spots in explosives

    NASA Astrophysics Data System (ADS)

    Kane, Ron; Tringe, Joseph; Klunder, Greg; Baluyot, Emer; Densmore, John; Converse, Mark

    2015-06-01

    The evolution of hot spots within explosives is critical to understand for predicting how detonation waves form and propagate. However, it is challenging to observe hot spots directly because they are small (~ micron diameter), form quickly (much less than a microsecond), and many explosives of interest are optically opaque. Microwaves are well-suited to characterize hot spots because they readily penetrate most explosives. They also have sufficient temporal and spatial resolution to measure the coalescence of an ensemble of hot spots inside explosives. Here we employ 94 GHz microwaves to characterize the evolution of individual plasma plumes formed by laser ionization of air. We use interferometry to obtain velocity records as a function of plume position and orientation. Although the plasma plumes are larger than individual hot spots in explosives, they expand rapidly and predictably, and their structure can be optically imaged. They are therefore useful model systems to establish the spatial and temporal limits of microwave interferometry (MI) for understanding more complex hot spot behavior in solid explosives. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Theoretical study of nonlinear waves and shock-like phenomena in hot plasmas

    NASA Technical Reports Server (NTRS)

    Fried, B. D.; Banos, A., Jr.; Kennel, C. F.

    1973-01-01

    Summaries are presented of research in basic plasma physics. Nonlinear waves and shock-like phenomena were studied which are pertinent to space physics applications, and include specific problems of magnetospheric and solar wind plasma physics.

  19. Thermal conduction by electrons in hot dense plasmas

    SciTech Connect

    Khalfaoui, A.H.; Bennaceur, D.

    1997-03-01

    Based on a quantum collective approach, electron conduction opacity is analyzed, taking into account several nonideality effects such as electron-electron (e-e) collisions in addition to electron-ion collisions, dynamic shielding, electron partial degeneracy, and ion coupling. The collision process is based on electron wave functions interacting with the continuum oscillations (plasma waves). The e-e collisions, the main nonideal effect, contribute to the thermal conductivity calculation in the intermediate coupling regime. Hence, the extensively used Lorentz gas approximation cannot be justified for plasma of astrophysical interest. The present results are compared to existing theories of electron conduction in stellar matter. {copyright} {ital 1997} {ital The American Astronomical Society}

  20. Bulk viscosity of anisotropically expanding hot QCD plasma

    SciTech Connect

    Chandra, Vinod

    2011-11-01

    The bulk viscosity, {zeta} and its ratio with the shear viscosity, {zeta}/{eta} have been studied in an anisotropically expanding pure glue plasma in the presence of turbulent color fields. It has been shown that the anisotropy in the momentum distribution function of gluons, which has been determined from a linearized transport equation eventually leads to the bulk viscosity. For the isotropic (equilibrium) state, a recently proposed quasiparticle model of pure SU(3) lattice QCD equation of state has been employed where the interactions are encoded in the effective fugacity. It has been argued that the interactions present in the equation of state, significantly contribute to the bulk viscosity. Its ratio with the shear viscosity is significant even at 1.5T{sub c}. Thus, one needs to take in account the effects of the bulk viscosity while studying the hydrodynamic expansion of quark-gluon plasma in the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  1. The origins of hot plasma in the solar corona.

    PubMed

    De Pontieu, B; McIntosh, S W; Carlsson, M; Hansteen, V H; Tarbell, T D; Boerner, P; Martinez-Sykora, J; Schrijver, C J; Title, A M

    2011-01-07

    The Sun's outer atmosphere, or corona, is heated to millions of degrees, considerably hotter than its surface or photosphere. Explanations for this enigma typically invoke the deposition in the corona of nonthermal energy generated by magnetoconvection. However, the coronal heating mechanism remains unknown. We used observations from the Solar Dynamics Observatory and the Hinode solar physics mission to reveal a ubiquitous coronal mass supply in which chromospheric plasma in fountainlike jets or spicules is accelerated upward into the corona, with much of the plasma heated to temperatures between ~0.02 and 0.1 million kelvin (MK) and a small but sufficient fraction to temperatures above 1 MK. These observations provide constraints on the coronal heating mechanism(s) and highlight the importance of the interface region between photosphere and corona.

  2. Nearly axisymmetric hot plasmas in a highly rippled tokamak

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2002-11-01

    Tokamak ohmic heating current flowing along toroidally rippled flux surfaces results in a poloidal torque. Since pressure gradients cannot offset torques, the torque drives plasma flows which convect plasma toroidally from ripple necks (high B_pol^2) to ripple bulges (low B_pol^2). Stagnation of the oppositely directed toroidal flows at the ripple bulges thermalizes the directed flow velocity ˜ B_pol/μ_0ρ , giving β _pol ˜1. These flows also convect frozen-in poloidal field lines which accumulate at the bulges enhancing the pinch force there and so reducing the bulge. Thus, a nearly axisymmetric β_pol ˜1 equilibrium is achieved using only a few TF coils. Particles bouncing in step between approaching flows will be Fermi accelerated to form a high energy tail. The ST tokamak magnetic mountain experiment [1] showed that, compared to a 1.8% ripple configuration, a 28% ripple configuration had four times the neutron production, and only a modest degradation of overall confinement; the former is consistent with the notion of Fermi acceleration of particles bouncing between colliding toroidal flows and the latter is consistent with ripple reduction due to toroidal convection of poloidal field lines. [1] W. Stodiek et al, Proc. 4th Intl. Conf. Plasma Phys. and Contr. Nuc. Fusion Res., (Madison, 1971), Vol. 1, p. 465

  3. Controlling Hot Electrons by Wave Amplification and Decay in Compressing Plasma

    SciTech Connect

    Schmit, P. F.; Dodin, I. Y.; Fisch, N. J.

    2010-10-22

    Through particle-in-cell simulations, it is demonstrated that a part of the mechanical energy of compressing plasma can be controllably transferred to hot electrons by preseeding the plasma with a Langmuir wave that is compressed together with the medium. Initially, a wave is undamped, so it is amplified under compression due to plasmon conservation. Later, as the phase velocity also changes under compression, Landau damping can be induced at a predetermined instant of time. Then the wave energy is transferred to hot electrons, shaping the particle distribution over a controllable velocity interval, which is wider than that in stationary plasma. For multiple excited modes, the transition between the adiabatic amplification and the damping occurs at different moments; thus, individual modes can deposit their energy independently, each at its own prescribed time.

  4. Spectrally Resolved Intensities of Ultra-Dense Hot Aluminum Plasmas

    SciTech Connect

    Gil, J. M.; Rodriguez, R.; Florido, R.; Rubiano, J. G.; Martel, P.; Minguez, E.; Sauvan, P.; Angelo, P.; Dalimier, E.; Schott, R.; Mancini, R.

    2008-10-22

    We present a first study of spectroscopic determination of electron temperature and density spatial profiles of aluminum K-shell line emission spectra from laser-shocked aluminum experiments performed at LULI. The radiation emitted by the aluminum plasma was dispersed with an ultra-high resolution spectrograph ({lambda}/{delta}{lambda}{approx_equal}6000). From the recorded films one can extract a set of time-integrated emission lineouts associated with the corresponding spatial region of the plasma. The observed spectra include the Ly{alpha}, He{beta}, He{gamma}, Ly{beta} and Ly{gamma} line emissions and their associated He- and Li-like satellites thus covering a photon energy range from 1700 eV to 2400 eV approximately. The data analysis rely on the ABAKO/RAPCAL computational package, which has been recently developed at the University of Las Palmas de Gran Canaria and takes into account non-equilibrium collisional-radiative atomic kinetics, Stark broadened line shapes and radiation transport calculations.

  5. Magnetized thermal conduction fronts. [between hot and cold astrophysical plasma

    NASA Technical Reports Server (NTRS)

    Balbus, S. A.

    1986-01-01

    The evolution of planar thermal conduction fronts in the presence of a dynamically weak, but otherwise self-consistent, magnetic field is considered. The field is assumed to be connected and untangled. In the diffusion limit for the thermal conductivity, these fronts exhibit self-similar behavior, even in the presence of a field. The role of the field is restricted to channeling the heat flux along its lines of force, and it enters into the problem as a dimensionless angle variable. 'Combing' (or opening) of insulating field lines by the evaporative flow is explicitly demonstrated. Unless the field is nearly perpendicular to the front normal in the hot gas, insulating effects are not profound. Self-similarity breaks down if the front becomes saturated, and under certain conditions magnetized saturated conduction fronts cannot propagate: the solution characteristics of the wave equation form caustics. The physical resolution is the advent of two-fluid (nonlocal) heating. Such Coulomb-heated fronts are expected to be relatively rare in typical astrophysical systems. The large-scale effects of a magnetic field on cloud evaporation in the interstellar medium are briefly discussed, and it is suggested that these fields preclude the presence of time-independent evaporative solutions. Thermal interfaces may then continue to evolve until radiative cooling halts their development; large tracts of warm 10,000 K gas may result.

  6. Optomechanical design of the cosmic hot interstellar plasma spectrometer (CHIPS)

    NASA Astrophysics Data System (ADS)

    Sholl, Michael; Donakowski, William; Sirk, Martin M.; Clauss, Tobias; Lampton, Michael L.; Edelstein, Jerry; Hurwitz, Mark

    2003-02-01

    CHIPS is a NASA UNEX mission designed for diffuse background spectroscopy in the EUV bandpass from 90-260Å. The spectrometer is optimized for peak resolution near 170 Å, in order to study diffuse emissions from cooling million degree plasma. Details of local bubble thermal pressure, spatial distribution, and ionization history are the goals of CHIPS observations. We discuss the opto-mechanical design adopted to meet the throughput, signal to noise, and spectral resolution requirements within the mass, volume, and budgetary constraints of a UNEX Delta-II secondary payload. Mechanical tolerance requirements for the six spectrometer channels are discussed, along with details of the lightweight mounting scheme for CHIPS diffraction gratings, front cover slit mechanisms and thermal design. Finally, visible light and vacuum alignment techniques are discussed, as well as with methods employed to minimize stray light.

  7. The magnetosphere of uranus: hot plasma and radiation environment.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Cheng, A F; Gloeckler, G; Hamilton, D C; Keath, E P; Lanzerotti, L J; Mauk, B H

    1986-07-04

    The low-energy charged-particle (LECP) instrument on Voyager 2 measured lowenergy electrons and ions near and within the magnetosphere of Uranus. Initial analysis of the LECP measurements has revealed the following. (i) The magnetospheric particle population consists principally of protons and electrons having energies to at least 4 and 1.2 megaelectron volts, respectively, with electron intensities substantially excceding proton intensities at a given energy. (ii) The intensity profile for both particle species shows evidence that the particles were swept by planetry satellites out to at least the orbit of Titania. (iii) The ion and electron spectra may be described by a Maxwellian core at low energies (less than about 200 kiloelectron volts) and a power law at high energies (greater than about 590 kiloelectron volts; exponentmicro, 3 to 10) except inside the orbit of Miranda, where power-law spectra (micro approximately 1.1 and 3.1 for electrons and protons, respectively) are observed. (iv) At ion energies between 0.6 and 1 megaelectron volt per nucleon, the composition is dominated by protons with a minor fraction (about 10(-3)) of molecular hydrogen; the lower limit for the ratio of hydrogen to helium is greater than 10(4). (v) The proton population is sufficiently intense that fluences greater than 10(16) per square centimeter can accumulate in 10(4) to 10(') years; such fluences are sufficient to polymerize carbon monoxide and methane ice surfaces. The overall morphology of Uranus' magnetosphere resembles that of Jupiter, as evidenced by the fact that the spacecraft crossed the plasma sheet through the dawn magnetosheath twice per planetary rotation period (17.3 hours). Uranus' magnetosphere differs from that of Jupiter and of Saturn in that the plasma 1 is at most 0.1 rather than 1. Therefore, little distortion ofthe field is expected from particle loading at distances less than about 15 Uranus radii.

  8. Pharmaceutical applications of hot-melt extrusion: part I.

    PubMed

    Crowley, Michael M; Zhang, Feng; Repka, Michael A; Thumma, Sridhar; Upadhye, Sampada B; Battu, Sunil Kumar; McGinity, James W; Martin, Charles

    2007-09-01

    Interest in hot-melt extrusion techniques for pharmaceutical applications is growing rapidly with well over 100 papers published in the pharmaceutical scientific literature in the last 12 years. Hot-melt extrusion (HME) has been a widely applied technique in the plastics industry and has been demonstrated recently to be a viable method to prepare several types of dosage forms and drug delivery systems. Hot-melt extruded dosage forms are complex mixtures of active medicaments, functional excipients, and processing aids. HME also offers several advantages over traditional pharmaceutical processing techniques including the absence of solvents, few processing steps, continuous operation, and the possibility of the formation of solid dispersions and improved bioavailability. This article, Part I, reviews the pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology. The raw materials processed using this technique are also detailed and the physicochemical properties of the resultant dosage forms are described. Part II of this review will focus on various applications of HME in drug delivery such as granules, pellets, immediate and modified release tablets, transmucosal and transdermal systems, and implants.

  9. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  10. MAGNETICALLY CONFINED INTERSTELLAR HOT PLASMA IN THE NUCLEAR BULGE OF OUR GALAXY

    SciTech Connect

    Nishiyama, Shogo; Kwon, Jungmi; Tamura, Motohide; Yasui, Kazuki; Nagata, Tetsuya; Yoshikawa, Tatsuhito; Uchiyama, Hideki; Schödel, Rainer; Hatano, Hirofumi; Sato, Shuji; Sugitani, Koji; Suenaga, Takuya

    2013-06-01

    The origin of the Galactic center diffuse X-ray emission (GCDX) is still under intense investigation. In particular, the interpretation of the hot (kT ≈ 7 keV) component of the GCDX, characterized by the strong Fe 6.7 keV line emission, has been contentious. If the hot component originates from a truly diffuse interstellar plasma, not a collection of unresolved point sources, such plasma cannot be gravitationally bound, and its regeneration would require a huge amount of energy. Here, we show that the spatial distribution of the GCDX does not correlate with the number density distribution of an old stellar population traced by near-infrared light, strongly suggesting a significant contribution of the diffuse interstellar plasma. Contributions of the old stellar population to the GCDX are implied to be ∼50% and ∼20% in the nuclear stellar disk (NSD) and nuclear star cluster, respectively. For the NSD, a scale height of 0.°32 ± 0.°02 is obtained for the first time from the stellar number density profiles. We also show the results of the extended near-infrared polarimetric observations in the central 3° × 2° region of our Galaxy, and confirm that the GCDX region is permeated by a large scale, toroidal magnetic field (MF) as previously claimed. Together with observed MF strengths close to energy equipartition, the hot plasma could be magnetically confined, reducing the amount of energy required to sustain it.

  11. MHD stability of a hot-ion-mode plasma in the GAMMA 10 tandem mirror

    SciTech Connect

    Inutake, M.; Hattori, K.; Furukawa, S.

    1995-04-01

    Magnetohydrodynamic (MHD) stability of the GAMMA 10 tandem mirror is extensively studied in ICRF-heated, hot ion plasmas. Stability boundary for a flute interchange mode is predicted to depend on a pressure-weighted curvature integrated along the magnetic field line. It is found that the upper limit of the central-cell beta {beta}{sub C} increases linearly with the anchor-cell beta {beta}{sub A}. The critical beta ratio {beta}{sub C}/{beta}{sub A} above which the plasma cannot be sustained strongly depends on the pressure anisotropy P{sub PRP}/P{sub PLL} of hot ions. Stronger anisotropy greatly expands the stable region up to a higher critical beta ratio, owing to the reduction of the pressure weighting in the bad curvature region of the central cell. On both sides of the quadrupole anchor cells, there are flux-tube-recircularizing transition regions where the normal curvature is highly bad. Then the density and ion temperature of the cold plasma in the transition region are measured. Theoretical prediction on the flute stability boundary calculated by using the measured axial pressure profile of the hot-ion and the cold-plasma pressure can explain well the experimental results. 16 refs., 7 figs.

  12. The magnetosphere of Uranus - Hot plasma and radiation environment

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.; Armstrong, T. P.; Axford, W. I.; Cheng, A. F.; Gloeckler, G.

    1986-01-01

    Inferences are drawn on the morphology and composition of the Uranus magnetosphere based on low-energy charged particle data collected by Voyager 2. Proton and electron energies in the magnetosphere attained energies of 4 and 1.2 MeV, respectively, although electron intensities surpassed the proton intensities at most energy levels. Protons dominated in the ion energy regime 0.6-1.0 MeV. The ion and electron spectra were Maxwellian below about 200 keV and had a power law distribution at energies over 590 keV. The power law was reduced by a factor of nearly three inside the orbit of Miranda. The proton population is dense enough to polymerize CO and CH4 ice surfaces within 10,000-100,000 yr. The data indicated that the particles are swept out at least to the orbit of Titania by the satellites. The morphology of the magnetosphere closely resembles that around Jupiter, except that plasma sheet distorsion from particle loading is negligible in regions within 15 Uranus radii.

  13. Atmospheric pressure plasma jet applications

    SciTech Connect

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S.

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  14. Two Years of EUV Observations with the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)

    NASA Astrophysics Data System (ADS)

    Sasseen, T. P.; Hurwitz, M.; CHIPS Team

    2004-12-01

    The first year of CHIPS (Cosmic Hot Interstellar Plasma Spectrometer) high-resolution EUV spectral measurements showed that the expected EUV emission from hot gas in the local bubble, primarily from Fe, is nearly absent. To determine whether this is because of Fe depletion or is owing to the absence of hot gas, we have been observing in the last year in a higher sensitivity mode and report on our latest results. We continue to see only very faint EUV emission and have determined that at least part of the detected emission arises from within the solar system, rather than the local interstellar medium. We present our latest EUV spectra and discuss their implications for answering the question posed above. The CHIPS team gratefully acknowledges support of NASA.

  15. Dust-acoustic Korteweg-de Vries solitons in an adiabatic hot dusty plasma

    SciTech Connect

    Sayed, Fatema; Mamun, A. A.

    2007-01-15

    A rigorous theoretical investigation has been made of dust-acoustic (DA) Korteweg-de Vries (K-dV) solitons by the reductive perturbation method. An unmagnetized dusty plasma consisting of negatively charged adiabatic hot dust fluid and of Boltzmann distributed electrons and ions has been considered. It has been found that the DA K-dV solitons associated with only negative potential can exist in such a dusty plasma. It has been also found that the effects of dust fluid temperature have significantly modified the basic properties (amplitude and width) of the solitary potential structures in such a dusty plasma. The implications of these results to some space and astrophysical plasma situations are briefly discussed.

  16. Steady-state hot-ion plasma produced by crossed electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Sigman, D. R.; Reinmann, J. J.

    1973-01-01

    Results of initial diagnostics on the Lewis Research Center hot-ion-plasma source (HIP-1) are reported. The mirror-contained plasma was heated by applying a radial electric field similar to that used in the ORNL burnout experiments. An electrostatic neutral particle analyzer was used to make a parametric study of ion energy distributions in both hydrogen and euterium plasmas. Ion temperatures as high as 2 keV were measured in plasmas with electron densities greater than 10 to 12th power/cu cm. The performance of the device was found to be extremely sensitive to a magnetic field. There are indications that ion heating was reduced when the size of the Larmor orbit was larger than the region of a strong radial electric field.

  17. Plasma hormonal and electrolyte alterations in cycling buffaloes ( Bubalus bubalis) during hot summer months

    NASA Astrophysics Data System (ADS)

    Singh, Narinder; Chaudhary, K. C.

    1992-09-01

    Plasma levels of progesterone, prolactin, luteinizing hormone, and electrolytes were monitored by radioimmunoassay in ten cycling buffaloes maintained at Punjab Agricultural University, Ludhiana during the hot summer months of June July. The plasma progesterone concentration ranged from 0.28±0.04 to 3.09±0.03 ng/ml at various stages of the oestrous cycle. Prolactin values ranged from 319±23 to 371±25 ng/ml and LH levels from 0.95±0.05 to 1.35±0.08 ng/ml. Concentrations differed significantly ( P⩽0.05) at various stages of the cycle. Levels of electrolytes, viz. Ca+ +, Na+ and K+, were well within the normal range. The high levels of prolactin, progesterone and LH during the hot summer were assessed in relation to poor reproductive efficiency in buffaloes.

  18. Closed bioregenerative life support systems: Applicability to hot deserts

    NASA Astrophysics Data System (ADS)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  19. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    DTIC Science & Technology

    2016-08-19

    amuch higher peak current of hot electronswhich induced current in parallel wires through strong electric andmagneticfield growth . In theHERCULES shots...interaction. This was consistent with an induced current resulting from the growth and decay of a magnetic field of the form ( ) ( )»B t r I t r...Alternatively, direct current would be expected to scale exponentially , while an expanding plasma could be expected to scale as r1 2. It is of interest to note

  20. Observation of the hot electron interchange instability in a high beta dipolar confined plasma

    NASA Astrophysics Data System (ADS)

    Ortiz, Eugenio Enrique

    In this thesis the first study of the high beta, hot electron interchange (HEI) instability in a laboratory, dipolar confined plasma is presented. The Levitated Dipole Experiment (LDX) is a new research facility that explores the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. In initial experiments long-pulse, quasi-steady state microwave discharges lasting more than 10 sec have been produced with equilibria having peak beta values of 20%. Creation of high-pressure, high beta plasma is possible only when intense HEI instabilities are stabilized by sufficiently high background plasma density. LDX plasma exist within one of three regimes characterized by its response to heating and fueling. The observed HEI instability depends on the regime and can take one of three forms: as quasiperiodic bursts during the low density, low beta plasma regime, as local high beta relaxation events in the high beta plasma regime, and as global, intense energy relaxation bursts, both in the high beta and afterglow plasma regimes. Measurements of the HEI instability are made using high-impedance, floating potential probes and fast Mirnov coils. Analysis of these signals reveals the extent of the transport during high beta plasmas. During intense high beta HEI instabilities, fluctuations at the edge significantly exceed the magnitude of the equilibrium field generated by the high beta electrons and energetic electron confinement ends in under 100 musec. For heated plasmas, one of the consequences of the observed high beta transport is the presence of hysteresis in the neutral gas fueling required to stabilize and maintain the high beta plasma. Finally, a nonlinear, self-consistent numerical simulation of the growth and saturation of the HEI instability has been adapted for LDX and compared to experimental observations.

  1. Measurements of hot-electron temperature in laser-irradiated plasmas

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Yaakobi, B.; Edgell, D. H.; Follett, R. K.; Myatt, J. F.; Sorce, C.; Froula, D. H.

    2016-10-01

    In a recently published work [Yaakobi et al., Phys. Plasmas 19, 012704 (2012)] we reported on measuring the total energy of hot electrons produced by the interaction of a nanosecond laser with planar CH-coated molybdenum targets, using the Mo Kα emission. The temperature of the hot electrons in that work was determined by the high-energy bremsstrahlung [hard X-ray (HXR)] spectrum measured by a three-channel fluorescence-photomultiplier HXR detector (HXRD). In the present work, we replaced the HXRD with a nine-channel image-plate (IP)-based detector (HXIP). For the same conditions (irradiance of the order of 1014 W/cm2; 2-ns pulses), the measured temperatures are consistently lower than those measured by the HXRD (by a factor ˜1.5 to 1.7). We supplemented this measurement with three experiments that measure the hot-electron temperature using Kα line-intensity ratios from high-Z target layers, independent of the HXR emission. These experiments yielded temperatures that were consistent with those measured by the HXIP. We showed that the thermal X-ray radiation must be included in the derivation of total energy in hot electrons (Ehot), and that this makes Ehot only weakly dependent on hot-electron temperature. For a given X-ray emission in the inertial confinement fusion compression experiments, this result would lead to a higher total energy in hot electrons, but preheating of the compressed fuel may be lower because of the reduced hot-electron range.

  2. Line-tying of interchange modes in a hot electron plasma

    SciTech Connect

    Gerver, M.J.; Lane, B.G.

    1986-07-01

    The dispersion relation of low-frequency (..omega..<<..omega../sub c/i) electrostatic flute-like interchange modes in a mirror cell with a fraction ..cap alpha.. of hot bi-Maxwellian electrons, with bulk line-tying to cold (nonemitting) end walls, has been solved using a slab model and the local approximation. In the absence of line-tying, hot-electron interchange modes are never completely stabilized (in contrast to the conventional theory (Phys. Fluids 9, 820 (1966); Phys. Fluids 19, 1255 (1976)), which assumes monoenergetic hot electrons and has little relevance to real plasmas). In the presence of line-tying, hot-electron interchange modes are more effectively stabilized than magnetohydrodynamic (MHD) interchange modes, because (1) the line-tying is enhanced by a factor of (..omega../..nu../sub e/)/sup 1//sup ///sup 2/ when the wave frequency ..omega.. is greater than the cold-electron collision frequency ..nu../sub e/; and (2) hot-electron interchange modes can be completely stabilized, rather than merely having their growth rates reduced, if there is a spread of hot-electron-curvature drift velocities. Predictions of the minimum ..cap alpha.. needed for instability and of the first azimuthal mode number m to go unstable, and of the scaling of these quantities with neutral gas pressure, are in good quantitative agreement with observations of hot-electron interchange instabilities in the Tara tendem mirror experiment (Bull. Am. Phys. Soc. 30, 1581 (1985)), provided a correction is made for the fact that the modes in Tara are not flute-like, but should have higher amplitudes in the plug than in the central cell.

  3. Hot deformation behaviour of alloys for applications at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Voyzelle, Benoit

    The present study investigated the deformation behaviour, microstructure evolution and fracture behaviour under hot working conditions of alloys designed for elevated-temperature applications. For this purpose, iron-aluminum and titanium-aluminum alloys were selected and their compositions are: Fe-8.5wt%Al-5.5Cr-2.0Mo-0.2Zr-0.03C, Fe-16.5Al-5.5Cr-1.0Nb-0.05C and Ti-33.3Al-2.8Mn-4.8Nb. These alloys were tested in the as-cast condition and in the form of hot-rolled + annealed plate for the iron-aluminum alloys and in the HIP'ed condition for the titanium-aluminum alloy. Isothermal compression tests were carried out with a Gleeble 2000 over a range of temperatures from 800 to 1250°C and constant strain rates from 10-3 to 10 s-1. In general, the flow curves are marked by a peak stress and softening which decline as temperature rises, and a flow stress which diminishes with rise in temperature and decrease in strain rate. The flow behaviour at peak stress (sigmap) and 0.5 true strain of these materials was described well by the Zener-Hollomon parameter Z=3˙exp /RTQHW , where Z=K3sinha sn . A numerical curve-fitting method was used to yield values of the following parameters: (i) stress exponent, n and (ii) activation energy, QHW . The dynamic material modeling approach was performed to extract from hot compression data: (i) the strain rate sensitivity parameter, m, (ii) the efficiency of power dissipation, eta, and (iii) the instability parameter, xi. The microstructure evolution and fracture behaviour were assessed using optical and electron microscopy. The deformation processes occuring were determined by correlation of the sigma-epsilon curves, m and microstructural observations. The resulting deformation map indicates that at lower temperatures and higher strain rates, the dominant restoration occurs by dynamic recovery, while at lower strain rates and higher temperatures dynamic recrystallization is the operative mode. At the highest temperatures, dynamic

  4. Hot-Wire CVD Amorphous Si Materials for Solar Cell Application

    SciTech Connect

    Wang, Q.

    2009-01-01

    Hydrogenated amorphous silicon (a-Si:H) thin films and their application to solar cells fabricated using the hot-wire chemical vapor deposition (HWCVD) or (CAT)-CVD will be reviewed. This review will focus on the comparison to the standard plasma enhance (PE) CVD in the terms of deposition technique, film properties, and solar cell performance. The advantages of using HWCVD for a-Si:H solar cell research as well as the criteria for industry's adaptation of this technique for mass production will be addressed.

  5. Practical applications of plasma surface modification

    SciTech Connect

    Smith, M.D.

    1993-12-01

    Radio frequency activated gas plasma is an environmentally conscious manufacturing process which provides surface treatments for improved product quality. Plasma processing offers significant potential for reducing the use of solvents and other wet processing chemicals now used in surface treatments such as cleaning, activation for bonding, and moisture removal. Plasma treatments are generally accomplished without creating hazardous waste streams to dispose of. Plasma process development and application is ongoing at Allied Signal Inc., Kansas City Division.

  6. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    SciTech Connect

    Nakamura, Nobuyuki; Ding Xiaobin; Dong Chenzhong; Hara, Hirohisa; Watanabe, Tetsuya; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Koike, Fumihiro; Nakano, Tomohide; Ohashi, Hayato; Watanabe, Hirofumi; Yamamoto, Norimasa

    2013-07-11

    We present spectra of highly charged iron, gadolinium, and tungsten ions obtained with electron beam ion traps. Spectroscopic studies of these ions are important to diagnose and control hot plasmas in several areas. For iron ions, the electron density dependence of the line intensity ratio in extreme ultraviolet spectra is investigated for testing the model calculation used in solar corona diagnostics. Soft x-ray spectra of gadolinium are studied to obtain atomic data required in light source development for future lithography. Tungsten is considered to be the main impurity in the ITER plasma, and thus visible and soft x-ray spectra of tungsten have been observed to explore the emission lines useful for the spectroscopic diagnostics of the ITER plasma.

  7. "Hot" Non-flaring Plasmas in Active Region Cores Heated by Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, Will Thomas; Cargill, Peter; Bradshaw, Stephen

    2016-05-01

    We use hydrodynamic modeling tools, including a two-fluid development of the EBTEL code, to investigate the properties expected of "hot" (i.e. between 106.7 and 107.2 K) non-flaring plasmas due to nanoflare heating in active regions. Here we focus on single nanoflares and show that while simple models predict an emission measure distribution extending well above 10 MK that is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium and, for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the "smoking gun" of nanoflare heating, lies between 1 MK and 10 MK. Signatures of the actual heating may be detectable in some instances.

  8. Line-tying of interchange modes in a hot electron plasma

    NASA Astrophysics Data System (ADS)

    Gerver, M. J.; Lane, B. G.

    1986-07-01

    The dispersion relation of low-frequency (ω≪ωci) electrostatic flute-like interchange modes in a mirror cell with a fraction α of hot bi-Maxwellian electrons, with bulk line-tying to cold (nonemitting) end walls, has been solved using a slab model and the local approximation. In the absence of line-tying, hot-electron interchange modes are never completely stabilized (in contrast to the conventional theory [Phys. Fluids 9, 820 (1966); Phys. Fluids 19, 1255 (1976)], which assumes monoenergetic hot electrons and has little relevance to real plasmas). In the presence of line-tying, hot-electron interchange modes are more effectively stabilized than magnetohydrodynamic (MHD) interchange modes, because (1) the line-tying is enhanced by a factor of (ω/νe)1/2 when the wave frequency ω is greater than the cold-electron collision frequency νe; and (2) hot-electron interchange modes can be completely stabilized, rather than merely having their growth rates reduced, if there is a spread of hot-electron-curvature drift velocities. Predictions of the minimum α needed for instability and of the first azimuthal mode number m to go unstable, and of the scaling of these quantities with neutral gas pressure, are in good quantitative agreement with observations of hot-electron interchange instabilities in the Tara tendem mirror experiment [Bull. Am. Phys. Soc. 30, 1581 (1985)], provided a correction is made for the fact that the modes in Tara are not flute-like, but should have higher amplitudes in the plug than in the central cell. The theory may also explain observations in other experiments [Phys. Fluids 27, 1019 (1984); Phys. Fluids 19, 1203 (1976)]. Increasing the ion temperature Ti should have a modest stabilizing effect. In addition to the hot-electron interchange modes, there are also ion-driven interchange modes, which are unstable even in the absence of hot electrons, but generally have low growth rates, much less than MHD growth rates. Even these modes may be

  9. Industrial Applications of Low Temperature Plasmas

    SciTech Connect

    Bardsley, J N

    2001-03-15

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed.

  10. Low temperature plasma applications in medicine

    NASA Astrophysics Data System (ADS)

    Weltmann, K.-D.; Metelmann, H.-R.; von Woedtke, Th.

    2016-11-01

    The main field of plasma medicine is the direct application of cold atmospheric plasma (CAP) on or in the human body for therapeutic purposes. CAP is effective both to inactivate a broad spectrum of microorganisms including multiple drug resistant ones and to stimulate proliferation of mammalian cells. Clinical application has started in the field of wound healing and treatment of infective skin diseases.

  11. Hot Plasma from Solar Active-Region Cores: Constraints from the Hinode X-Ray Telescope

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Christian, G. M.; Matheny, P. O.

    2016-12-01

    Mechanisms invoked to heat the solar corona to millions of degrees kelvin involve either magnetic waves or magnetic reconnections. Turbulence in the convection zone produces MHD waves, which travel upward and dissipate. Photospheric motions continuously build up magnetic energy, which is released through magnetic reconnection. In this paper, we concentrate on hot non-flaring plasma with temperatures of 5 MK < T < 10 MK because it is one of the few observables for which wave and reconnection models make different predictions. Wave models predict no (or little) hot plasma, whereas reconnection models predict it, although in amounts that are challenging to detect with current instrumentation. We used data from the X-ray Telescope (XRT) and the Atmospheric Imaging Assembly (AIA). We requested a special XRT observing sequence, which cycled through the thickest XRT filter several times per hour so we could average these images and improve the signal-to-noise. We did differential emission measure (DEM) analysis using the time-averaged thick-filter data as well as all available channels from both the XRT and AIA for regions observed on 2014 December 11. Whereas our earlier work was only able to determine that plasma with a temperature greater than 5 MK was present, we are now able to find a well-constrained DEM distribution. We have therefore added a strong observational constraint that must be explained by any viable coronal heating model. Comparing state-of-the-art wave and reconnection model predictions, we can conclude that reconnection is heating the hot plasma in these active regions.

  12. Plasma chemistry and its applications

    NASA Technical Reports Server (NTRS)

    Hozumi, K.

    1980-01-01

    The relationship between discharge phenomena and plasma chemistry, as well as the equipment and mechanisms of plasma chemical reactions are described. Various areas in which plasma chemistry is applied are surveyed, such as: manufacturing of semiconductor integrated circuits; synthetic fibers; high polymer materials for medical uses; optical lenses; and membrane filters (reverse penetration films).

  13. Evaluation of hot corrosion of 8YSZ coatings elaborated by suspension plasma spraying

    NASA Astrophysics Data System (ADS)

    González-Hernández, A. G.; Ageorges, H.; López-Gómez, M. E.

    2017-01-01

    In this paper, the evaluation microscopic of hot corrosion of 8mol% Yttria Stabilized Zirconia (8YSZ) coatings was studied in the presence of V2O5 and Na2SO4 as corrosive molten salt, for 40h at 1050°C. First, the substrates of Inconel 718 super-alloy were sprayed with a NiCrCoAl-Y2O3 bond coat by atmospheric plasma spraying (APS). Then this bond coat was polished for elaborated the 8YSZ layer by suspension plasma spraying (SPS). The microstructure of the cross-section and surface of the coating was evaluated by scanning electron microscopy (SEM). After the hot corrosion test, the delamination of 8YSZ coatings was occurred in the ceramic layer due to the creation of stress resulting from the chemical reaction between the molten salts and the yttria (Y2O3) of 8YSZ coating at high temperature. According to EDS-SEM analysis, the evaluation of fractured sections of 8YSZ coating showed mainly the formation of crystals composed by Y, V, O and the surface was mainly composed by Zr and O. Those crystals can be related with the tetragonal phase of YVO4, which they were commonly found by other researchers in studies of hot corrosion of YSZ-based TBCs when its surface reacts with the corrosive salts.

  14. Laser-plasma interactions and hot electron generation in shock ignition

    NASA Astrophysics Data System (ADS)

    Ren, Chuang; Yan, Rui; Li, Jun

    2013-10-01

    We present 2D Particle-in-cell (PIC) simulations, including electron-ion collisions and lasting more than 10 ps, on laser-plasma interactions for two sets of shock ignition (SI) parameters. The first is for conditions relevant to the Omega laser facility with a spike intensity of I = 2 ×1015 W/cm2 and the density scale length at the quarter critical surface of L ~ 170microns. The second is relevant to NIF conditions with I = 5 ×1015 W/cm2 and L ~400 microns. Under the Omega conditions, the simulations show a bursting pattern in both plasma waves and hot electron fluxes, which is attributed to the interplay between stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities. The observed hot electron temperatures compare favorably to those measured in the 40 +20 spherical SI experiments (Theobald et al. 2012). SRS is the main source for hot electrons but TPD can produce >100 keV ones. Similar bursting patterns are also observed in the NIF-relevant simulations. However, these simulations show strong SBS in rather low density region (~ 0.1ncr) . This work was supported by the U.S. Department of Energy under under Grant No. DE-FC02-04ER54789 and Cooperate Agreement No. DE-FC52- 08NA28302, by NSF under Grant No. PHY-0903797, and by NSFC under Grant No. 11129503. The research used resources of NERSC.

  15. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  16. Discovery of an Io-correlated energy source for Io's hot plasma torus

    NASA Technical Reports Server (NTRS)

    Sandel, B. R.; Broadfoot, A. L.

    1982-01-01

    Energy flowing into Io's hot plasma torus from a local-time correlated source and from an Io-related source are discussed, and a correlation of the brightness of the ansae of the torus with the apparent orbital phase of Io is reported. It is shown that the energy flows cause an azimuthal modulation of the brightness of the torus that is correlated with the position of Io, and the plasma downstream from Io is shown to be brighter in S III 685-A emission, which indicates a higher electron temperature. Differences in electron temperature inferred from spectral analyses account for all observed differences in brightness, implying that no change in the composition or density of the hot plasma occurs. The mechanism regulating the Io-related source is clearly distinct from the mechanism driving the local time source, although both draw on the same pool of energy, and the combination of the two sources is easily capable of supplying all the energy radiated by the torus.

  17. Discovery of an Io-correlated energy source for Io's hot plasma torus

    NASA Astrophysics Data System (ADS)

    Sandel, B. R.; Broadfoot, A. L.

    1982-04-01

    Energy flowing into Io's hot plasma torus from a local-time correlated source and from an Io-related source are discussed, and a correlation of the brightness of the ansae of the torus with the apparent orbital phase of Io is reported. It is shown that the energy flows cause an azimuthal modulation of the brightness of the torus that is correlated with the position of Io, and the plasma downstream from Io is shown to be brighter in S III 685-A emission, which indicates a higher electron temperature. Differences in electron temperature inferred from spectral analyses account for all observed differences in brightness, implying that no change in the composition or density of the hot plasma occurs. The mechanism regulating the Io-related source is clearly distinct from the mechanism driving the local time source, although both draw on the same pool of energy, and the combination of the two sources is easily capable of supplying all the energy radiated by the torus.

  18. The diverse applications of plasma

    SciTech Connect

    Sharma, Mukul Darwhekar, Gajanan; Dubey, Shivani; Jain, Sudhir Kumar

    2015-07-31

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  19. The diverse applications of plasma

    NASA Astrophysics Data System (ADS)

    Sharma, Mukul; Dubey, Shivani; Darwhekar, Gajanan; Jain, Sudhir Kumar

    2015-07-01

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  20. Modeling the hot-dense plasma of the solar interior in and out of thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Hsuan

    The developments in helioseismology ensure a wealth of studies in solar physics. In particular, with the high precision of the observations of helioseismology, a high-quality solar model is mandated, since even the tiny deviations between a model and the real Sun can be detected. One crucial ingredient of any solar model is the thermodynamics of hot-dense plasmas, in particular the equation of state. This has motivated efforts to develop sophisticated theoretical equations of state (EOS). It is important to realize that for the conditions of solar-interior plasmas, there are no terrestrial laboratory experiments; the only observational constraints come from helioseismology. Among the most successful EOS is so called OPAL EOS, which is part of the Opacity Project at Livermore. It is based on an activity expansion of the quantum plasma, and realized in the so-called "physical picture". One of its main competitor is the so called MHD EOS, which is part of the international Opacity Project (OP), a non-classified multi-country consortium. The approach of MHD is via the so-called "chemical picture". Since OPAL is the most accurate equation of state so far, there has been a call for a public-domain version of it. However, the OPAL code remains proprietary, and its "emulation" makes sense. An additional reason for such a project is that the results form OPAL can only be accessed via tables generated by the OPAL team. Their users do not have the flexibility to change the chemical composition from their end. The earlier MHD-based OPAL emulator worked well with its modifications of the MHD equation of state, which is the Planck-Larkin partition function and its corresponding scattering terms. With this modification, MHD can serve as a OPAL emulator with all the flexibility and accessibility. However, to build a really user-friendly OPAL emulator one should consider CEFF-based OPAL emulator. CEFF itself is already widely used practical EOS which can be easily implemented

  1. Observations of Diffuse Extreme-Ultraviolet Emission with the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)

    NASA Astrophysics Data System (ADS)

    Hurwitz, M.; Sasseen, T. P.; Sirk, M. M.

    2005-04-01

    The Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) was designed to study diffuse emission from hot gas in the local interstellar cavity in the wavelength range 90-265 Å. Between launch in 2003 January and early 2004, the instrument was operated in narrow-slit mode, achieving a peak spectral resolution of about 1.4 Å FWHM. Observations were carried out preferentially at high Galactic latitudes; weighted by observing time, the mean absolute value of the Galactic latitude for all narrow-slit observations combined is about 45°. The total integration time is about 13.2 Ms (74% day, 26% night). In the context of a standard collisional ionization equilibrium plasma model, the CHIPS data set tight constraints on the emission measure at temperatures between 105.55 and 106.4 K. At 106.0 K, the 95% upper limit on the emission measure is about 0.0004 cm-6 pc for solar-abundance plasma with a foreground neutral hydrogen column of 2×1018 cm-2. This constraint, derived primarily from limits on the extreme ultraviolet emission lines of highly ionized iron, is well below the range for the local hot bubble estimated previously from soft X-ray studies. If the pattern of elemental depletion in the hot gas follows that observed in much denser interstellar clouds, the gas-phase abundance of iron, relative to other heavy elements that contribute more to the soft X-ray emission, might be much lower than solar. However, to support the emission measures inferred previously from X-ray data would require depletions much higher than the moderate values reported previously for hot gas. Excluding the He II Lyman lines, which are known to be primarily terrestrial in origin, the brightest feature we find in the integrated spectrum is an Fe IX line at 171.1 Å. The sky-averaged flux of the feature is about 6 photons cm-2 s-1 sr-1, a flux that exceeds the 1 σ shot noise significantly but is comparable to the systematic uncertainty. We find bright 171.1 Å emission (flux greater than 10

  2. Physical processes taking place in dense plasma focus devices at the interaction of hot plasma and fast ion streams with materials under test

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.

    2015-06-01

    The dense plasma focus (DPF) device represents a source of powerful streams of penetrating radiations (hot plasma, fast electron and ion beams, x-rays and neutrons) of ns-scale pulse durations. Power flux densities of the radiation types may reach in certain cases the values up to 1013 W cm  -  2. They are widely used at present time in more than 30 labs in the world in the field of radiation material science. Areas of their implementations are testing of the materials perspective for use in modern fusion reactors (FR) of both types, modification of surface layers with an aim of improvements their properties, production of some nanostructures on their surface, and so on. To use a DPF correctly in these applications it is important to understand the mechanisms of generation of the above-mentioned radiations, their dynamics inside and outside of the pinch and processes of interaction of these streams with targets. In this paper, the most important issues on the above matter we discuss in relation to the cumulative hot plasma stream and the beam of fast ions with illustration of experimental results obtained at four DPF devices ranged in the limits of bank energies from 1 kJ to 1 MJ. Among them mechanisms of a jet formation, a current abruption phenomenon, a super-Alfven ion beam propagation inside and outside of DPF plasma, generation of secondary plasma and formation of shock waves in plasma and inside a solid-state target, etc. Nanosecond time-resolved techniques (electric probes, laser interferometry, frame self-luminescent imaging, x-ray/neutron probes, etc) give an opportunity to investigate the above-mentioned events and to observe the process of interaction of the radiation types with targets. After irradiation, we analyzed the specimens by contemporary instrumentation: optical and scanning electron microscopy, local x-ray spectral and structure analysis, atomic force microscopy, the portable x-ray diffractometer that combines x-ray single

  3. Parabolic lithium mirror for a laser-driven hot plasma producing device

    DOEpatents

    Baird, James K.

    1979-06-19

    A hot plasma producing device is provided, wherein pellets, singly injected, of frozen fuel are each ignited with a plurality of pulsed laser beams. Ignition takes place within a void area in liquid lithium contained within a pressure vessel. The void in the liquid lithium is created by rotating the pressure vessel such that the free liquid surface of molten lithium therein forms a paraboloid of revolution. The paraboloid functions as a laser mirror with a reflectivity greater than 90%. A hot plasma is produced when each of the frozen deuterium-tritium pellets sequentially arrive at the paraboloid focus, at which time each pellet is illuminated by the plurality of pulsed lasers whose rays pass through circular annuli across the top of the paraboloid. The beams from the lasers are respectively directed by associated mirrors, or by means of a single conical mirror in another embodiment, and by the mirror-like paraboloid formed by the rotating liquid lithium onto the fuel pellet such that the optical flux reaching the pellet can be made to be uniform over 96% of the pellet surface area. The very hot plasma produced by the action of the lasers on the respective singly injected fuel pellets in turn produces a copious quantity of neutrons and X-rays such that the device has utility as a neutron source or as an x-ray source. In addition, the neutrons produced in the device may be utilized to produce tritium in a lithium blanket and is thus a mechanism for producing tritium.

  4. A fast model for spreading of neutral particles injected locally into hot plasma

    SciTech Connect

    Tokar, M. Z.

    2014-08-15

    A fast model for calculation of non-stationary 3-D profiles of the density for neutral particles locally released into a hot plasma is elaborated. The approach reduces non-stationary three-dimensional transport equations to a set of one-dimensional ones describing the time evolution of the radial profiles for several parameters characterizing adequately the three-dimensional structure. The method is applied to model the spreading process of carbon atoms released by laser desorption in an experimental device and the local injection of working gas into a fusion reactor. The associated heat loads onto the first wall are assessed.

  5. Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma

    SciTech Connect

    Liu, Wei; Hsu, Scott; Li, Hui

    2009-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.

  6. Hot plasma and energetic particles in the earth's outer magnetosphere: new understandings during the IMS

    SciTech Connect

    Baker, D.N.; Fritz, T.A.

    1984-01-01

    In this paper we review the major accomplishments made during the IMS period in clarifying magnetospheric particle variations in the region from roughly geostationary orbit altitudes into the deep magnetotail. We divide our review into three topic areas: (1) acceleration processes; (2) transport processes; and (3) loss processes. Many of the changes in hot plasmas and energetic particle populations are often found to be related intimately to geomagnetic storm and magnetospheric substorm effects and, therefore, substantial emphasis is given to these aspects of particle variations in this review. The IMS data, taken as a body, allow a reasonably unified view as one traces magnetospheric particles from their acceleration source through the plasma sheet and outer trapping regions and, finally, to their loss via ionospheric precipitation and ring current formation processes. It is this underlying, unifying theme which is pursued here. 52 references, 19 figures.

  7. A Detection of the Same Hot Plasma in the Corona: During a CME and Later at Ulysses

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Poletto, G.

    2004-01-01

    We show direct evidence for the same very hot plasma being detected remotely from SOHO in the corona and subsequently, at Ulysses in the solar wind. This is, to our knowledge, the first time that such an unambiguous identification has been made in the case of hot plasma. This detection complements studies correlating other plasma and field properties observed to the properties measured at the source in the corona. This observation takes advantage of a SOHO-Sun-Ulysses quadrature, during which the Sun-Ulysses included angle is $90^\\circ$ and it is possible to observe with Ulysses instruments the same plasma that has previously been remotely observed with SOHO instruments in the corona on the limb of the Sun. The identification builds on an existing base of separate SOHO and interplanetary detections of hot plasma. SOHO/UVCS has found evidence for very hot coronal plasma in current sheets in the aftermath of CMEs in the [Fe XVIII] $\\lambda$ \\AA\\ line, implying a temperature on the order of $6\\times 10(exp 6)$ K. This temperature is unusually high even for active regions, but is compatible with the high temperature predicted in current sheets. In the solar wind, ACE data from early 1998 to middle 2000 revealed high frozen-in Fe charge state in many cases to be present in interplanetary plasma.

  8. X-RAY DIAGNOSTICS OF THERMAL CONDITIONS OF THE HOT PLASMAS IN THE CENTAURUS CLUSTER

    SciTech Connect

    Takahashi, I.; Makishima, K.; Kitaguchi, T.; Nakazawa, K.; Okuyama, S.; Kawaharada, M.; Matsushita, K.; Ota, N.; Fukazawa, Y.; Ikebe, Y.; Kokubun, M.; Tamura, T.

    2009-08-10

    X-ray data of the Centaurus cluster, obtained with XMM-Newton for 45 ks, were analyzed. Deprojected EPIC spectra from concentric thin-shell regions were reproduced equally well by a single-phase plasma emission model, or by a two-phase model developed by ASCA, both incorporating cool (1.7-2.0 keV) and hot ({approx} 4 keV) plasma temperatures. However, EPIC spectra with higher statistics, accumulated over three-dimensional thick-shell regions, were reproduced better by the two-phase model than by the singe-phase one. Therefore, hot and cool plasma phases are inferred to co-exist in the cluster core region within {approx} 70 kpc. The iron and silicon abundances of the plasma were reconfirmed to increase significantly toward the center, while that of oxygen was consistent with being radially constant. The implied nonsolar abundance ratios explain away the previously reported excess X-ray absorption from the central region. Although an additional cool ({approx} 0.7 keV) emission was detected within {approx} 20 kpc of the center, the RGS data gave tight upper limits on any emission with temperatures below {approx} 0.5 keV. These results are compiled into a magnetosphere model, which interprets the cool phase as confined within closed magnetic loops anchored to the cD galaxy. When combined with the so-called Rosner-Tucker-Vaiana mechanism which applies to solar coronae, this model can potentially explain basic properties of the cool phase, including its temperature and thermal stability.

  9. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas

    SciTech Connect

    Heidari, E.; Aslaninejad, M.; Eshraghi, H.; Rajaee, L.

    2014-03-15

    Using a one-dimensional self-consistent fluid model, we investigate standing relativistic bright solitons in hot electron-positron plasmas. The positron dynamics is taken into account. A set of nonlinear coupled differential equations describing the evolution of electromagnetic waves in fully relativistic two-fluid plasma is derived analytically and solved numerically. As a necessary condition for the existence of standing solitons the system should be relativistic. For the case of ultra-relativistic plasma, we investigate non-drifting bright solitary waves. Detailed discussions of the acceptable solutions are presented. New single hump non-trivial symmetric solutions for the scalar potential were found, and single and multi-nodal symmetric and anti-symmetric solutions for the vector potential are presented. It is shown that for a fixed value of the fluid velocity excited modes with more zeros in the profile of the vector potential show a higher magnitude for the scalar potential. An increase in the plasma fluid velocity also increases the magnitude of the scalar potential. Furthermore, the Hamiltonian and the first integral of the system are given.

  10. Neutron monitoring and electrode calorimetry experiments in the HIP-1 Hot Ion Plasma

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Layman, R. W.

    1977-01-01

    Results are presented for two diagnostic procedures on HIP-1: neutron diagnostics to determine where neutrons originated within the plasma discharge chamber and electrode calorimetry to measure the steady-state power absorbed by the two anodes and cathodes. Results are also reported for a hot-ion plasma formed with a continuous-cathode rod, one that spans the full length of the test section, in place of the two hollow cathodes. The outboard neutron source strength increased relative to that at the midplane when (1) the cathode tips were moved farther outboard, (2) the anode diameters were increased, and (3) one of the anodes was removed. The distribution of neutron sources within the plasma discharge chamber was insensitive to the division of current between the two cathodes. For the continuous cathode, increasing the discharge current increased the midplane neutron source strength relative to the outboard source strength. Each cathode absorbed from 12 to 15 percent of the input power regardless of the division of current between the cathodes. The anodes absorbed from 20 to 40 percent of the input power. The division of power absorption between the anodes varied with plasma operating conditions and electrode placement.

  11. Reconnection-driven Double Layers in the Stratified Plasma of the Solar Transition Region: Supply of Hot Plasma into the Corona

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra

    2015-09-01

    A novel mechanism for the supply of hot plasma into the corona from the chromosphere is suggested here; the mechanism involves collisionless magnetic reconnection (CMR) in the transition region (TR) followed by double layer (DL) formation in the enhanced expansion of the chromospheric cold plasma mixed with CMR-heated hot electrons. It is well known that (i) the CMR produces energetic electrons and (ii) DLs naturally form in expanding dense plasmas containing a minor population of hot electrons. We apply these plasma physics facts to the dynamics of stratified plasma in the TR. In the TR where densities fall below ˜1016 m-3, all collisional mean-free paths, electron-ion, ion-neutral, and electron-neutral, become long enough to render plasma collisionless at kinetic scale lengths, making CMR and DL formation possible. The DLs accelerate the chromospheric cold ions to energies comparable to the energy of the hot electrons. When the upflowing energized ions neutralized by the escaping hot electrons thermalize, the resulting hot tenuous plasma supplies an energy flux ˜3 × 105 erg cm-2 s-1 = 3 × 102 J m-2 s-1 into the corona. The CMR-DL mechanism introduces sudden transitions in the TR as microstructures in both density and energy. The global transition in the TR could be a fractal structure containing such microscopic features. If not impossible, it is difficult to measure such microstructures, but it seems that the coronal heating begins in the nearly collisionless TR by CMR and DL formation.

  12. RECONNECTION-DRIVEN DOUBLE LAYERS IN THE STRATIFIED PLASMA OF THE SOLAR TRANSITION REGION: SUPPLY OF HOT PLASMA INTO THE CORONA

    SciTech Connect

    Singh, Nagendra

    2015-09-01

    A novel mechanism for the supply of hot plasma into the corona from the chromosphere is suggested here; the mechanism involves collisionless magnetic reconnection (CMR) in the transition region (TR) followed by double layer (DL) formation in the enhanced expansion of the chromospheric cold plasma mixed with CMR-heated hot electrons. It is well known that (i) the CMR produces energetic electrons and (ii) DLs naturally form in expanding dense plasmas containing a minor population of hot electrons. We apply these plasma physics facts to the dynamics of stratified plasma in the TR. In the TR where densities fall below ∼10{sup 16} m{sup −3}, all collisional mean-free paths, electron–ion, ion–neutral, and electron–neutral, become long enough to render plasma collisionless at kinetic scale lengths, making CMR and DL formation possible. The DLs accelerate the chromospheric cold ions to energies comparable to the energy of the hot electrons. When the upflowing energized ions neutralized by the escaping hot electrons thermalize, the resulting hot tenuous plasma supplies an energy flux ∼3 × 10{sup 5} erg cm{sup −2} s{sup −1} = 3 × 10{sup 2} J m{sup −2} s{sup −1} into the corona. The CMR–DL mechanism introduces sudden transitions in the TR as microstructures in both density and energy. The global transition in the TR could be a fractal structure containing such microscopic features. If not impossible, it is difficult to measure such microstructures, but it seems that the coronal heating begins in the nearly collisionless TR by CMR and DL formation.

  13. Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade

    SciTech Connect

    Ress, D.B.

    1988-06-01

    The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs.

  14. Application of Nonlocal Electron Kinetics to Plasma Technologies

    NASA Astrophysics Data System (ADS)

    Kaganovich, Igor D.

    2011-10-01

    Partially ionized plasmas are typically in a highly non-equilibrium thermodynamic state: the electrons are not in equilibrium with the neutral particle species or the ions, and the electrons are also not in equilibrium within their own ensemble, which results in a significant departure of the electron velocity distribution function (EVDF) from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal plasma parameters for applications, which make gas-discharge plasmas remarkable tools for a variety of plasma applications, including plasma processing, discharge lighting, plasma propulsion, particle beam sources, and nanotechnology. Significant progress in understanding the formation of non-Maxwellian EVDF in the self-consistent electric fields has been one of the major achievements in the low-temperature plasmas during the last decade. This progress was made possible by a synergy between full-scale particle-in-cell simulations, analytical models, and experiments. Specific examples include rf discharges, dc discharges with auxiliary electrodes, Hall thruster discharges. In each example, nonlocal kinetic effects are identified as the main mechanisms responsible for the surprising degree of discharge self-organization. These phenomena include: explosive generation of cold electrons with rf power increase in low-pressure rf discharges; abrupt changes in discharge structure with increased bias voltage on a third electrode in a dc discharge with hot cathode; absence of a steady-state regime in Hall thruster discharges with intense secondary electron emission due to coupling of the sheath properties and the EVDF. In collaboration with Y. Raitses, A.V. Khrabrov, M. Campanell, V. I. Demidov, D. Sydorenko, I. Schweigert, and A. S. Mustafaev. Research supported by the U.S. Department of Energy.

  15. Semiempirical hot atom theory. I - Initialization and application

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.; Chang, S.; Scattergood, T.

    1981-01-01

    A semiempirical approach to the modeling of the kinetics of reaction systems containing both hot and nonhot atoms is proposed. The approach is based on the probabilistic kinetic theory of hot-atom reactions formulated by Wolfgang (1963), with transmission probabilities estimated for a rectangular potential barrier for hot-atom and nonhot-atom reactions. A computational scheme for determining product concentrations following hot and nonhot reactions in a system containing photolytically produced hot atoms is then applied to the DBr + CH4 and HBr + CD4 hot hydrogen atom systems studied by Martin and Willard (1964), and good agreement is obtained between theoretical and experimental results.

  16. Antimicrobial Applications of Ambient--Air Plasmas

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew John

    The emerging field of plasma biotechology studies the applications of the plasma phase of matter to biological systems. "Ambient-condition" plasmas created at or near room temperature and atmospheric pressure are especially promising for biomedical applications because of their convenience, safety to patients, and compatibility with existing medical technology. Plasmas can be created from many different gases; plasma made from air contains a number of reactive oxygen and nitrogen species, or RONS, involved in various biological processes, including immune activity, signaling, and gene expression. Therefore, ambient-condition air plasma is of particular interest for biological applications. To understand and predict the effects of treating biological systems with ambient-air plasma, it is necessary to characterize and measure the chemical species that these plasmas produce. Understanding both gaseous chemistry and the chemistry in plasma-treated aqueous solution is important because many biological systems exist in aqueous media. Existing literature about ambient-air plasma hypothesizes the critical role of reactive oxygen and nitrogen species; a major aim of this dissertation is to better quantify RONS by produced ambient-air plasma and understand how RONS chemistry changes in response to different plasma processing conditions. Measurements imply that both gaseous and aqueous chemistry are highly sensitive to operating conditions. In particular, chemical species in air treated by plasma exist in either a low-power ozone-dominated mode or a high-power nitrogen oxide-dominated mode, with an unstable transition region at intermediate discharge power and treatment time. Ozone (O3) and nitrogen oxides (NO and NO2, or NOx) are mutually exclusive in this system and that the transition region corresponds to the transition from ozone- to nitrogen oxides-mode. Aqueous chemistry agrees well with to air plasma chemistry, and a similar transition in liquid-phase composition

  17. Aerospace Applications of Non-Equilibrium Plasma

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  18. [A applicability of sugar esters in hot-melt technology].

    PubMed

    Szuts, Angéla; Laczkovich, Orsolya; Nassab, Parya Reisi; Aigner, Zoltán; Szabone Révész, Piroska

    2007-01-01

    One of the most important tasks in pharmaceutical technology is the optimization of drug release. The hot-melt technology is an important method with which to modify the bioavailability. Sugar esters (SEs) have a wide range of HLB values (1-16). Due to their low melting points, they are promising carriers for the melting method. The aims of the present work were to study the thermal properties (DSC) and the structures (XRPD) of SEs with low, medium or high HLB values, and to evaluate their applicability in the hot-melt technology. Relationships were found between the HLB value, the structure and the thermal behaviour. After melting and solidification, the SEs have partially amorphous layered structures which slowly crystallize in time; the original structure does not return for SEs with high, moderate, or low HLB values. These results demonstrate that changes in morphology must be considered during research and development. During the examination of meloxicam-SE melted products the SEs influenced the drug release, depending on their HLB values. In the cases of ibuprofen-SE melted products, the SEs did not influence the drug release. Here, a change in the drug distribution was the predominant effect, which was accompanied by movement in the SE structure.

  19. Oxidation and Hot Corrosion Behavior of Plasma-Sprayed MCrAlY-Cr2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Huang, Chuanbing; Lan, Hao; Du, Lingzhong; Zhang, Weigang

    2016-08-01

    The oxidation and hot corrosion behavior of two atmospheric plasma-sprayed NiCoCrAlY-Cr2O3 and CoNiCrAlY-Cr2O3 coatings, which are primarily designed for wear applications at high temperature, were investigated in this study. The two coatings were exposed to air and molten salt (75%Na2SO4-25%NaCl) environment at 800 °C under cyclic conditions. Oxidation and hot corrosion kinetic curves were obtained by thermogravimetric technique. X-ray diffraction analysis and scanning electron microscopy with energy-dispersive x-ray spectrometry were employed to characterize the coatings' microstructure, surface oxides, and composition. The results showed that both coatings provided the necessary oxidation resistance with oxidation rates of about 1.03 × 10-2 and 1.36 × 10-2 mg/cm2 h, respectively. The excellent oxidation behavior of these two coatings is attributed to formation of protective (Ni,Co)Cr2O4 spinel on the surface, while as-deposited Cr2O3 in the coatings also acted as a barrier to diffusion of oxidative and corrosive substances. The greater presence of Co in the CoNiCrAlY-Cr2O3 coating restrained internal diffusion of sulfur and slowed down the coating's degradation. Thus, the CoNiCrAlY-Cr2O3 coating was found to be more protective than the NiCoCrAlY-Cr2O3 coating under hot corrosion condition.

  20. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  1. High-impedance wire grid method to study spatiotemporal behavior of hot electron clump generated in a plasma

    SciTech Connect

    Terasaka, K. Kato, Y.; Tanaka, M. Y.; Yoshimura, S.; Morisaki, T.; Furuta, K.; Aramaki, M.

    2014-11-15

    High-impedance Wire Grid (HIWG) detector has been developed to study spatiotemporal behavior of a hot electron clump generated in an electron cyclotron resonance (ECR) plasma. By measuring the floating potentials of the wire electrodes, and generating structure matrix made of geometrical means of the floating potentials, the HIWG detector reconstructs the spatial distribution of high-temperature electron clump at an arbitrary instant of time. Time slices of the spike event in floating potential revealed the growth and decay process of a hot spot occurs in an ECR plasma.

  2. High-impedance wire grid method to study spatiotemporal behavior of hot electron clump generated in a plasma.

    PubMed

    Terasaka, K; Yoshimura, S; Kato, Y; Furuta, K; Aramaki, M; Morisaki, T; Tanaka, M Y

    2014-11-01

    High-impedance Wire Grid (HIWG) detector has been developed to study spatiotemporal behavior of a hot electron clump generated in an electron cyclotron resonance (ECR) plasma. By measuring the floating potentials of the wire electrodes, and generating structure matrix made of geometrical means of the floating potentials, the HIWG detector reconstructs the spatial distribution of high-temperature electron clump at an arbitrary instant of time. Time slices of the spike event in floating potential revealed the growth and decay process of a hot spot occurs in an ECR plasma.

  3. X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Reale, F.; Gburek, S.; Terzo, S.; Barbera, M.; Collura, A.; Sylwester, J.; Kowalinski, M.; Podgorski, P.; Gryciuk, M.

    2012-08-01

    Aims: The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods: We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. Results: The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 × 1044 cm-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions: Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

  4. Phase transition of the baryon-antibaryon plasma in hot and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Iazzi, F.; Pigato, D.

    2014-02-01

    We investigate the presence of thermodynamic instabilities in a hot and dense nuclear medium where a phase transition from a gas of massive hadrons to a nearly massless baryon, antibaryon plasma can take place. The analysis is performed by requiring the global conservation of baryon number and zero net strangeness in the framework of an effective relativistic mean field theory with the inclusion of the Δ(1232)-isobars, hyperons and the lightest pseudoscalar and vector meson degrees of freedom. Similarly to the low density nuclear liquid-gas phase transition, we show that such a phase transition is characterized by both mechanical instability (fluctuations on the baryon density) that by chemical- diffusive instability (fluctuations on the strangeness concentration). It turns out that, in this situation, phases with different values of antibaryon-baryon ratios and strangeness content may coexist.

  5. Initial Results of X-ray Imaging and Energy Spectrum Measurements of Hot Electron Plasmas in RT-1

    NASA Astrophysics Data System (ADS)

    Saitoh, Haruhiko; Yano, Yoshihisa; Mizushima, Tatsunori; Morikawa, Junji; Yoshida, Zensho

    To acquire spatial profiles and energy spectra of hot electrons in ECH plasmas, we installed a soft x-ray pinhole camera in RT-1. In this publication, we compare the results of an initial experiment using a mechanically supported dipole field coil with the measurements of plasma pressure for different microwave frequencies. The results indicate that the coil support structure was the major loss channel for the high temperature electrons.

  6. The effects of ionization potential depression on the spectra emitted by hot dense aluminium plasmas

    NASA Astrophysics Data System (ADS)

    Preston, Thomas R.; Vinko, Sam M.; Ciricosta, Orlando; Chung, Hyun-Kyung; Lee, Richard W.; Wark, Justin S.

    2013-06-01

    Recent experiments at the Linac Coherent Light Source (LCLS) X-ray Free-Electron-Laser (FEL) have demonstrated that the standard model used for simulating ionization potential depression (IPD) in a plasma (the Stewart-Pyatt (SP) model, J.C. Stewart and K.D. Pyatt Jr., Astrophysical Journal 144 (1966) 1203) considerably underestimates the degree of IPD in a solid density aluminium plasma at temperatures up to 200 eV. In contrast, good agreement with the experimental data was found by use of a modified Ecker-Kröll (mEK) model (G. Ecker and W. Kröll, Physics of Fluids 6 (1963) 62-69). We present here detailed simulations, using the FLYCHK code, of the predicted spectra from hot dense, hydrogenic and helium-like aluminium plasmas ranging in densities from 0.1 to 4 times solid density, and at temperatures up to 1000 eV. Importantly, we find that the greater IPDs predicted by the mEK model result in the loss of the n = 3 states for the hydrogenic ions for all densities above ≈0.8 times solid density, and for the helium-like ions above ≈0.65 solid density. Therefore, we posit that if the mEK model holds at these higher temperatures, the temperature of solid density highly-charged aluminium plasmas cannot be determined by using spectral features associated with the n = 3 principal quantum number, and propose a re-evaluation of previous experimental data where high densities have been inferred from the spectra, and the SP model has been used.

  7. Aerial ULV application of permethrin against adult mosquitoes in an extreme hot-arid zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial ULV insecticide application is an established strategy for adult mosquito control in tropical, hot-humid, or temperate environments. However, not enough is known regarding the efficacy of aerial applications in hot-arid environments similar to those encountered by US military personnel, where...

  8. Hot-melt extrusion technology and pharmaceutical application.

    PubMed

    Wilson, Matthew; Williams, Marcia A; Jones, David S; Andrews, Gavin P

    2012-06-01

    The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production.

  9. Phonon spectral functions of photo-generated hot carrier plasmas: effects of carrier screening and plasmon-phonon coupling.

    PubMed

    Yi, Kyung-Soo; Kim, Hye-Jung

    2017-02-15

    We investigate spectral behavior of phonon spectral functions in an interacting multi-component hot carrier plasma. Spectral analysis of various phonon spectral functions is performed considering carrier-phonon channels of polar and nonpolar optical phonons, acoustic deformation-potential, and piezoelectric Coulomb couplings. Effects of phonon self-energy corrections are examined at finite temperature within a random phase approximation extended to include the effects of dynamic screening, plasmon-phonon coupling, and local-field corrections of the plasma species. We provide numerical data for the case of a photo-generated electron-hole plasma formed in a wurtzite GaN. Our result shows the clear significance of the multiplicity of the plasma species in the phonon spectral functions of a multi-component plasma giving rise to a variety of spectral behaviors of carrier-phonon coupled collective modes. A useful sum rule on the plasma-species-resolved dielectric functions is also found.

  10. Phonon spectral functions of photo-generated hot carrier plasmas: effects of carrier screening and plasmon-phonon coupling

    NASA Astrophysics Data System (ADS)

    Yi, Kyung-Soo; Kim, Hye-Jung

    2017-02-01

    We investigate spectral behavior of phonon spectral functions in an interacting multi-component hot carrier plasma. Spectral analysis of various phonon spectral functions is performed considering carrier-phonon channels of polar and nonpolar optical phonons, acoustic deformation-potential, and piezoelectric Coulomb couplings. Effects of phonon self-energy corrections are examined at finite temperature within a random phase approximation extended to include the effects of dynamic screening, plasmon-phonon coupling, and local-field corrections of the plasma species. We provide numerical data for the case of a photo-generated electron-hole plasma formed in a wurtzite GaN. Our result shows the clear significance of the multiplicity of the plasma species in the phonon spectral functions of a multi-component plasma giving rise to a variety of spectral behaviors of carrier-phonon coupled collective modes. A useful sum rule on the plasma-species-resolved dielectric functions is also found.

  11. Reflectometric measurement of plasma imaging and applications

    NASA Astrophysics Data System (ADS)

    Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.

    2012-01-01

    Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.

  12. Plasma focus: Present status and potential applications

    SciTech Connect

    Brzosko, J.S.; Nardi, V.; Powell, C.

    1997-12-01

    Initially, dense plasma focus (DPF) machines were constructed independently by Filippov in Moscow and Mather in Los Alamos at the end of the 1950s. Since then, more than 30 laboratories have carried vigorous DPF programs, oriented mainly toward the studies of physics of ion acceleration and trapping in the plasma focus environment. Applications of the DPF as intense neutron and X-ray sources have been recognized since its discovery but not implemented for various reasons. Recently, some groups (including AES) addressed the issue of DPF applications, and some of them are briefly discussed in this paper.

  13. Hinode EIS and XRT Observations of Hot Jets in Coronal Holes - Does the Plasma Escape?

    NASA Astrophysics Data System (ADS)

    Baker, D.; van Driel-Gesztelyi, L.; Kamio, S.; Culhane, J. L.; Harra, L. K.; Sun, J.; Young, P. R.; Matthews, S. A.

    2008-09-01

    X-ray jets have been detected in the extreme ultraviolet (EUV) and soft X-ray observations of Hinode's EIS and XRT instruments. Both instruments were used to observe the jets in polar and on-disk coronal holes (CHs). Here, we present a multi-wavelength study of an X-ray jet and its associated bright point found in an equatorial CH on 19 June 2007. Light curves (LCs) in 22 different emission lines were compared to that of Hinode/XRT. As we found in a previous study of two polar X-ray jets, this jet shows a post-jet increase in its EUV LCs. The post-jet enhancement appears cooler than the jet. We suggest this feature arises because the hot plasma of the jet, having failed to reach escape speeds, cools and falls back along the near vertical paths expected to be created by reconnection with open field lines of CHs. In addition to the increase in post-jet EUV intensity, we found tentative evidence of impact heating possibly caused by the fall-back of plasma.

  14. Sources of hot electrons in laser-plasma interaction with emphasis on Raman and turbulence absorption

    SciTech Connect

    Estabrook, K.; Kruer, W.L.; Phillion, D.W.; Turner, R.E.; Campbell, E.M.

    1982-04-06

    Heating targets with high power lasers results in a sizable fraction of the absorbed energy going into electrons of temperature much greater than thermal which can pre-heat the pellet core and accelerate fast ion blowoff which results in poor momentum transfer and hence poor compression efficiency. The present emphasis is to build lasers of higher frequency, ..omega../sub 0/, which at the same W/cm/sup 2/ results in more absorption into cooler electrons. Two physical reasons are that the laser can propagate to a higher electron density, n, infinity..omega../sub 0//sup 2/ resulting in more collisional inverse bremsstrahlung absorption proportional to n, and because the hot temperatures from some plasma absorption processes increase as the oscillatory velocity of an electron in the laser electric field v/sub 0//c = eE/(m/sub e/..omega../sub 0/). The heated electron temperatures from other plasma processes (Raman for example approx.(m/sub e//2)v/sup 2//sub phase/ and the higher laser frequency helps by increasing the competing collisional absorption and decreasing the Raman gain.

  15. New algorithm for computing the ablation of hydrogenic pellets in hot plasmas

    SciTech Connect

    Milora, S.L.

    1983-04-01

    A method is presented for calculating the evaporation rate of hydrogenic pellets immersed in an unmagnetized plasma with a suprathermal particle component of arbitrary distribution function. The computational procedure is based on hydrodynamic solutions for the expansion of the gaseous cloud, obtained in a previous treatment that considered the effects of thermal particles only. The appropriate heat source terms, derived from the stopping power of the gaseous shield, are worked out for energetic ions produced by neutral beam injection heating. The model predicts 27-cm penetration in a Poloidal Divertor Experiment (PDX) plasma, compared with experimentally measured values in the range of 29 to 32 cm. An application to the Tokamak Fusion Test Reactor (TFTR) gives an estimated 21-cm penetration for a 2.5-mm-diam tritium pellet injection at 2000 m/s into a 55-cm-bore plasma heated to a central electron temperature of 4 keV by 34 MW of neutral injection.

  16. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  17. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Investigating the characteristics of x radiation from a hot plasma by means of glass-capillary converters

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. P.; Petrukhin, O. G.; Shlyaptseva, A. S.; Mingaleev, A. R.; Pikuz, S. A.; Romanov, V. M.; Shelkovenko, T. A.; Faenov, A. Ya

    1993-12-01

    We have investigated the structure of the radiating region of an x-pinch plasma source by means of a new physical apparatus: a glass-capillary converter. We show that this converter unambiguously reproduces an image of the structure of the dense, hot x-pinch plasma in the soft-x-ray region of the spectrum. In comparison with standard pinhole cameras, this device lowers the intensity of hard x-radiation by two orders of magnitude and increases the image contrast. A new method is proposed for investigating the time evolution of the spatial distribution of the soft x-rays intensity of plasma sources.

  18. Radio Frequency Plasma Applications for Space Propulsion

    SciTech Connect

    Baity, F.W., Jr.; Barber, G.C.; Carter, M.D.; Chang-Diaz, F.R.; Goulding, R.H.; Ilin, A.V.; Jaeger, E.F.; Sparks, D.O.; Squire, J.P.

    1999-09-13

    Recent developments in solid-state radio frequency (RF) power technologies allow for the practical consideration of RF heated plasmas for space propulsion. These technologies permit the use of any electrical power source, de-couple the power and propellant sources, and allow for the effcient use of both the propellant mass and power. Effcient use of the propellant is obtained by expelling the rocket exhaust at the highest possible velocity, which can be orders of magnitude higher than those achieved in chemical rockets. Handling the hot plasma exhaust requires the use of magnetic nozzles, and the basic physics of ion detachment from the magnetic eld is discussed. The plasma can be generated by RF using helicon waves to heat electrons. Further direct heating of the ions helps to reduce the line radiation losses, and the magnetic geometry is tailored to allow ion cyclotron resonance heating. RF eld and ion trajectory calculations are presented to give a reasonably self-consistent picture of the ion acceleration process.

  19. Comparative study between cold plasma and hot plasma with ion beam and loss-cone distribution function by particle aspect approach

    NASA Astrophysics Data System (ADS)

    Patel, Soniya; Varma, P.; Tiwari, M. S.

    2011-03-01

    The electromagnetic ion-cyclotron (EMIC) instabilities with isotropic ion beam and general loss-cone distribution of cold and hot core plasmas are discussed. The growth rate, parallel and perpendicular resonance energies of the electromagnetic ion-cyclotron waves in a low β (ratio of plasma pressure to magnetic pressure), homogeneous plasma have been obtained using the dispersion relation for cold and hot plasmas. The wave is assumed to propagate parallel to the static magnetic field. The whole plasma is considered to consist of resonant and non-resonant particles permeated by isotropic ion beam. It is assumed that resonant particles and ion beam participate in energy exchange with the wave whereas non-resonant particles support the oscillatory motion of the wave. We determined the variation in energies and growth rate in cold and hot plasmas by the energy conservation method with a general loss-cone distribution function. The thermal anisotropy of the core plasma acts as a source of free energy for EMIC wave and enhances the growth rate. It is noted that the EMIC wave emissions occur by extracting energy of perpendicularly heated ions in the presence of up flowing ion beam and steep loss-cone distribution in the anisotropic magnetosphere. The effect of the steep loss-cone distribution is to enhance the growth rate of the EMIC wave. The heating of ions perpendicular and parallel to the magnetic field is discussed along with EMIC wave emission in the auroral acceleration region. The results are interpreted for the space plasma parameters appropriate to the auroral acceleration region of the earth's magnetoplasma.

  20. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  1. A PHYSICAL LINK BETWEEN JET FORMATION AND HOT PLASMA IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wu Qingwen; Wang Dingxiong; Cao Xinwu; Ho, Luis C. E-mail: dxwang@hust.edu.cn E-mail: lho@obs.carnegiescience.edu

    2013-06-10

    Recent observations suggest that in black hole X-ray binaries jet/outflow formation is related to the hot plasma in the vicinity of the black hole, either in the form of an advection-dominated accretion flow at low accretion rates or in a disk corona at high accretion rates. We test the viability of this scenario for supermassive black holes using two samples of active galactic nuclei distinguished by the presence (radio-strong) and absence (radio-weak) of well-collimated, relativistic jets. Each is centered on a narrow range of black hole mass but spans a very broad range of Eddington ratios, effectively simulating in a statistical manner the behavior of a single black hole evolving across a wide spread in accretion states. Unlike the relationship between the radio and optical luminosity, which shows an abrupt break between high- and low-luminosity sources at an Eddington ratio of {approx}1%, the radio emission-a measure of the jet power-varies continuously with the hard X-ray (2-10 keV) luminosity, roughly as L{sub R} {proportional_to} L{sub X}{sup 0.6-0.75}. This relation, which holds for both radio-weak and radio-strong active galaxies, is similar to the one seen in X-ray binaries. Jet/outflow formation appears to be closely linked to the conditions that give rise to the hot, optically thin coronal emission associated with accretion flows, both in the regime of low and high accretion rates.

  2. A Physical Link between Jet Formation and Hot Plasma in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Wu, Qingwen; Cao, Xinwu; Ho, Luis C.; Wang, Ding-Xiong

    2013-06-01

    Recent observations suggest that in black hole X-ray binaries jet/outflow formation is related to the hot plasma in the vicinity of the black hole, either in the form of an advection-dominated accretion flow at low accretion rates or in a disk corona at high accretion rates. We test the viability of this scenario for supermassive black holes using two samples of active galactic nuclei distinguished by the presence (radio-strong) and absence (radio-weak) of well-collimated, relativistic jets. Each is centered on a narrow range of black hole mass but spans a very broad range of Eddington ratios, effectively simulating in a statistical manner the behavior of a single black hole evolving across a wide spread in accretion states. Unlike the relationship between the radio and optical luminosity, which shows an abrupt break between high- and low-luminosity sources at an Eddington ratio of ~1%, the radio emission—a measure of the jet power—varies continuously with the hard X-ray (2-10 keV) luminosity, roughly as L_R \\propto L_X^{0.6{--}0.75}. This relation, which holds for both radio-weak and radio-strong active galaxies, is similar to the one seen in X-ray binaries. Jet/outflow formation appears to be closely linked to the conditions that give rise to the hot, optically thin coronal emission associated with accretion flows, both in the regime of low and high accretion rates.

  3. 40 CFR 420.120 - Applicability; description of the hot coating subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coating subcategory. 420.120 Section 420.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.120 Applicability; description of the hot coating subcategory. (a) The provisions of...

  4. 40 CFR 406.80 - Applicability; description of the hot cereal subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cereal subcategory. 406.80 Section 406.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Hot Cereal Subcategory § 406.80 Applicability; description of the hot cereal subcategory. The provisions of this subpart...

  5. 40 CFR 406.80 - Applicability; description of the hot cereal subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cereal subcategory. 406.80 Section 406.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Hot Cereal Subcategory § 406.80 Applicability; description of the hot cereal subcategory. The provisions of this subpart...

  6. 40 CFR 406.80 - Applicability; description of the hot cereal subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cereal subcategory. 406.80 Section 406.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Hot Cereal Subcategory § 406.80 Applicability; description of the hot cereal subcategory. The provisions of this subpart...

  7. 40 CFR 406.80 - Applicability; description of the hot cereal subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cereal subcategory. 406.80 Section 406.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Hot Cereal Subcategory § 406.80 Applicability; description of the hot cereal subcategory. The provisions of this subpart...

  8. 40 CFR 406.80 - Applicability; description of the hot cereal subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cereal subcategory. 406.80 Section 406.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Hot Cereal Subcategory § 406.80 Applicability; description of the hot cereal subcategory. The provisions of this subpart...

  9. Novel applications of plasma actuators

    NASA Astrophysics Data System (ADS)

    Ozturk, Arzu Ceren

    The current study investigates the effectiveness of two different dielectric barrier discharge plasma actuator configurations, a 3-D annular geometry for use in micro thrusters and internal duct aerodynamics and a jet vectoring actuator that acts as a vortex generator and flow control device. The first configuration consists of a closed circumferential arrangement which yields a body force when a voltage difference is applied across the inner and outer electrodes separated by a dielectric. The primary flow is driven by this zero-net mass flux jet at the wall that then entrains fluid in the core of the duct. PIV experiments in both quiescent flow and freestream are conducted on tubes of different diameters while varying parameters such as the modulation frequency, duty cycle and tunnel speed. The values of the induced velocities increase with the forcing frequency and duty cycle although there is a peak value for the forcing frequency after which the velocity and thrust decrease for each thruster. The velocities and thrust increase as the inner diameter of the tubes are increased while the velocity profiles show a great difference with the (l/di) ratio; recirculation occurs after going below a critical value. Experiments in the wind tunnel illustrate that the jet exit characteristics significantly change upon actuation in freestream flow but the effect tends to diminish with increasing inner diameters and tunnel speeds. Using staged arrays of these thrusters result in higher velocities while operating at both in phase and out of phase. The jet vectoring configuration consists of a single embedded electrode separated from two exposed electrodes on either side by the dielectric. The embedded electrode is grounded while the exposed electrodes are driven with a high frequency high voltage input signal. PIV measurements of the actuator in a freestream show that vectoring the jet yields stronger vortices than a linear configuration and increasing the difference between

  10. Boron nitride phosphide thin films grown on quartz substrate by hot-filament and plasma-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.; Xu, S. Y.; Han, G. R.

    2004-10-01

    Boron nitride phosphide films are, for the first time, grown on transparent quartz substrate by hot filament and radio-frequency plasma co-assisted chemical vapor deposition technique. XPS, XRD, SEM, and UV measurements are performed to study the chemical composition, crystallization, microstructure, and optical absorption, respectively. A centipede-like microstructure and undulating ground morphology on the film surface are observed, and their growth mechanism is speculated upon. The chemical composition is determined as BN1-xPx, whose characteristic XRD peak is preliminarily identified. The optical band gap can be modulated between 5.52 eV and 3.74 eV, simply by adjusting the phosphorus content in BN1-xPx through modifying the PH3 flux during the film-deposition process. The merits of the BN1-xPx film, such as high ultraviolet photoelectric sensitivity with negligible sensitivity in the visible region, modifiable wide optical band gap, and good adhesion on transparent substrate, suggest potential applications for ultraviolet photo-electronics.

  11. Development of a Co-Axial Hot Cathode for Magnetized Ion Source Plasma

    SciTech Connect

    Miyamoto, N.; Hamamoto, N.; Imakita, S.; Mendenilla, A. G.; Wada, M.

    2008-11-03

    Directly heated high temperature cathodes of refractory metals such as tungsten run electric current of more than several tens of amperes. The electric current makes magnetic field around the cathode wire, and the magnetic field causes inhomogeneous emission of electrons from the cathode. To solve this problem we have designed the cathode having a co-axial heater current flow structure, and mounted it in a Bernas-type ion source. A plasma produced by co-axial hot cathode showed a clearer column along the external magnetic field and less displacement in the direction perpendicular to the field than that produced by a hair-pin filament. Stable discharge current as high as 5000 mA was obtained for Ar and BF{sub 3} gases with the co-axial cathode. Boron and phosphorus ion beams were extracted from the source on an actual ion implanter. The ion beam currents were 1.5 times as large as those obtained with a hair-pin filament.

  12. Properties of hot dense plasmas by Orbital-Free Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Clerouin, Jean

    2011-10-01

    During the last decade DFT calculations have been successfully applied to the WDM regime. To overcome the limitations of DFT in temperature and density we propose to return to the very basis of DFT by using an ``only on the density'' formulation of the electronic kinetic energy, essentially captured by the finite temperature formulation of the Thomas-Fermi theory. High temperatures (up to few KeV) and high densities (up to 10 ×ρ0) systems can be addressed by orbital free molecular dynamics simulations (OFMD) at the expense of a fine description of atomic properties such as binding properties. Thanks to an efficient numerical scheme, up to thousands of particles can be propagated giving accurate static and dynamical properties without any assumptions on the ionization state or on the screening of interactions. Simulations of hydrogen and iron up to 5 keV and boron up to 10 times the normal density were performed. Very dissymmetrical mixtures can be also treated without difficulties. More recently, this method has been applied to hydrogen at high density (up to 160 g/cc) and high temperature (up to 1 KeV) to generate long trajectories for a later computation of the thermal conductivity with classical DFT. This method bridges the gap between quantum and classical molecular dynamics in the field of hot-dense plasmas and could be also used as a platform to include more physics such as nuclear reactions or interaction with a radiative field.

  13. Ionic structures and transport properties of hot dense W and U plasmas

    NASA Astrophysics Data System (ADS)

    Hou, Yong; Yuan, Jianmin

    2016-10-01

    We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.

  14. Furfuryl methacrylate plasma polymers for biomedical applications.

    PubMed

    Shirazi, Hanieh Safizadeh; Rogers, Nicholas; Michelmore, Andrew; Whittle, Jason D

    2016-09-08

    Furfuryl methacrylate (FMA) is a promising precursor for producing polymers for biomedical and cell therapy applications. Herein, FMA plasma polymer coatings were prepared with different powers, deposition times, and flow rates. The plasma polymer coatings were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results from AFM and SEM show the early growth of the coatings and the existence of particle aggregates on the surfaces. XPS results indicated no measureable chemical differences between the deposited films produced under different power and flow rate conditions. ToF-SIMS analysis demonstrated differing amounts of C5H5O (81 m/z) and C10H9O2 (161 m/z) species in the coatings which are related to the furan ring structure. Through judicious choice of plasma polymerization parameters, the quantity of the particle aggregates was reduced, and the fabricated plasma polymer coatings were chemically uniform and smooth. Primary human fibroblasts were cultured on FMA plasma polymer surfaces to determine the effect of surface chemical composition and the presence of particle aggregates on cell culture. Particle aggregates were shown to inhibit fibroblast attachment and proliferation.

  15. On the stability of obliquely propagating dust ion-acoustic solitary waves in hot adiabatic magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Shalaby, M.; EL-Labany, S. K.; EL-Shamy, E. F.; El-Taibany, W. F.; Khaled, M. A.

    2009-12-01

    Obliquely propagating dust ion acoustic solitary waves (DIASWs) are investigated in hot adiabatic magnetized dusty plasmas consisting of hot adiabatic inertial ions, hot adiabatic inertialess electrons, and negatively/positively charged static dust grains. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The effects of the concentration of negatively/positively charged dust particles and ion-neutral collision on the basic characteristics of DIASWs are studied. The three-dimensional stability of these waves is examined by the use of small-k (long wavelength plane wave) perturbation expansion technique. It is shown that the instability criterion and their growth rate depend on external magnetic field, obliqueness, the concentration of charged dust grains, ion-neutral, and ion-dust collisions.

  16. Onset of stimulated Raman scattering of a laser in a plasma in the presence of hot drifting electrons

    SciTech Connect

    Gupta, D. N. Yadav, Pinki; Avinash, K.; Jang, D. G.; Suk, H.; Hur, M. S.

    2015-05-15

    Stimulated Raman scattering of a laser in plasmas with energetic drifting electrons was investigated by analyzing the growth of interacting waves during the Raman scattering process. The Langmuir wave and scattered electromagnetic sideband wave grow initially and are dampened after attaining a maximum level that indicates a periodic exchange of energy between the pump wave and the daughter waves. The presence of energetic drifting electrons in the laser-produced plasma influences the stimulated Raman scattering process. The plasma wave generated by Raman scattering may be influenced by the energetic electrons, which enhance the growth rate of the instability. Our results show that the presence of energetic (hot) drifting electrons in a plasma has an important effect on the evolution of the interacting waves. This phenomenon is modeled via two-dimensional particle-in-cell simulations of the propagation and interaction of the laser under Raman instability.

  17. Consolidation of carbon nanofiber/copper composites by hot-pressing and spark plasma sintering: a comparative study.

    PubMed

    Barcena, Jorge; Martinez, Vladimir; Martinez, Ramon; Maudes, Jon; Sarries, Jose-Ignacio; Carol, Iñaki; Gonzalez, Javier-Jesus; Coleto, Javier

    2009-03-01

    Vapour grown carbon nanofibers have been incorporated into a copper matrix at 20 and 40 volume fractions. The manufacturing route involves the dispersion of the carbon nanofibers and their subsequent coating by electroless plating with copper. The consolidation of the composite powders was performed by two different techniques: hot-pressing and spark plasma sintering. A comparative study of the two processes is reported, in terms of microstructure, dispersion and porosity. The consolidation by hot-pressing (at 900 degrees C, 30 MPa) led to poreless composites (relative density > 96%) and to a homogeneous microstructure. On the other hand, spark plasma sintering (at 400 degrees C, 75 MPa) led to lower densification (relative density < 96%) and heterogeneous microstructure.

  18. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    SciTech Connect

    Rufai, O. R.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  19. Levitation and collection of diamond fine particles in the rf plasma chamber equipped with a hot filament

    SciTech Connect

    Shimizu, S.; Shimizu, T.; Thomas, H. M.; Morfill, G. E.; Jacob, W.

    2011-11-15

    We demonstrate the levitation of diamond fine particles in a H{sub 2} rf plasma chamber equipped with a hot filament and heated electrodes. The levitation conditions should be carefully chosen to compensate the strong thermophoretic forces caused by the filament and the electrodes. This levitation technique with the existence of a hot filament can be applied, e.g., for the efficient growth of diamond layers on seed particles injected and levitated in an rf plasma with reactive gases, e.g., CH{sub 4}/H{sub 2}. Additionally, the method for direct capture of levitated particles on a planar substrate was established, which is useful if it is necessary to analyze the particles after the levitation.

  20. Determination of element/Ca ratios in foraminifera and corals using cold- and hot-plasma techniques in inductively coupled plasma sector field mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lo, Li; Shen, Chuan-Chou; Lu, Chia-Jung; Chen, Yi-Chi; Chang, Ching-Chih; Wei, Kuo-Yen; Qu, Dingchuang; Gagan, Michael K.

    2014-02-01

    We have developed a rapid and precise procedure for measuring multiple elements in foraminifera and corals by inductively coupled plasma sector field mass spectrometry (ICP-SF-MS) with both cold- [800 W radio frequency (RF) power] and hot- (1200 W RF power) plasma techniques. Our quality control program includes careful subsampling protocols, contamination-free workbench spaces, and refined plastic-ware cleaning process. Element/Ca ratios are calculated directly from ion beam intensities of 24Mg, 27Al, 43Ca, 55Mn, 57Fe, 86Sr, and 138Ba, using a standard bracketing method. A routine measurement time is 3-5 min per dissolved sample. The matrix effects of nitric acid, and Ca and Sr levels, are carefully quantified and overcome. There is no significant difference between data determined by cold- and hot-plasma methods, but the techniques have different advantages. The cold-plasma technique offers a more stable plasma condition and better reproducibility for ppm-level elements. Long-term 2-sigma relative standard deviations (2-RSD) for repeat measurements of an in-house coral standard are 0.32% for Mg/Ca and 0.43% for Sr/Ca by cold-plasma ICP-SF-MS, and 0.69% for Mg/Ca and 0.51% for Sr/Ca by hot-plasma ICP-SF-MS. The higher sensitivity and enhanced measurement precision of the hot-plasma procedure yields 2-RSD precision for μmol/mol trace elements of 0.60% (Mg/Ca), 9.9% (Al/Ca), 0.68% (Mn/Ca), 2.7% (Fe/Ca), 0.50% (Sr/Ca), and 0.84% (Ba/Ca) for an in-house foraminiferal standard. Our refined ICP-SF-MS technique, which has the advantages of small sample size (2-4 μg carbonate consumed) and fast sample throughput (5-8 samples/hour), should open the way to the production of high precision and high resolution geochemical records for natural carbonate materials.

  1. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    SciTech Connect

    Rufai, O. R. Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  2. Search for Hot Plasmas in the Outer Atmospheres of K Giants - Repeat of GTO1177 for HOPR#132 and 144

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey

    1994-01-01

    We will measure the amount of plasma hotter than 10,000 K (or establish small upper limits) in the outer atmospheres of K giant stars thought to have little hot material. A second goal is to derive models of the hot plasma in the transition regions of early K giants with very low heating rates due to slow rotation and very weak magnetic field generation. We will measure emission lines of C III, Si III, C IV, Si IV, and N V in deep specta. Upper limits to the strength of these emission lines will place stringent constraints on possible nonradiative heating processes. Observations of weak intersystem lines will provide estimates of the electron density needed for atmospheric modeling. We will attempt to determine whether the hot plasma (and the required heating) are global or isolated to small regions on the star due to magnetic fields or stochastic heating processes. Echelle resolution Mg II and O I emission profiles will be used for stellar wind modeling. G140L exposures are returned to the proposal to detect weak high temperature lines. THIS IS AN AMMENDED VERSION OF GTO 1177 WHICH FAILED IN CYCLE 2.

  3. Quasilinear dynamics of a cloud of hot electrons propagating through a plasma with decreasing density and temperature

    NASA Astrophysics Data System (ADS)

    Foroutan, G.; Khalilpour, H.; Moslehi-Fard, M.; Li, B.; Robinson, P. A.

    2008-12-01

    The effects of plasma inhomogeneities on the propagation of a cloud of hot electrons through a cold background plasma and generation of Langmuir waves are investigated using numerical simulations of the quasilinear equations. It is found that in a plasma with decreasing density the quasilinear relaxation of the electron distribution in velocity space is accelerated and the levels of the generated Langmuir waves are enhanced. The magnitude of the induced emission rate is increased and its maximum value moves to lower velocities. Due to density gradient the height of plateau shows an increase at small distances and a corresponding decrease at large distances. It is also found that in a plasma with decreasing temperature, the relaxation of the beam is retarded, the spectral density of Langmuir waves is broadened, and the height of the plateau decreases below its value in a uniform plasma. In the presence of both density and temperature gradients, at given position, the height and upper boundary of the plateau and the level of Langmuir waves are all increased at small velocities. The spatial expansion of the beam is increased by the plasma inhomogeneities, but its average velocity of propagation decreases. Initially, at a given position, the velocity at the upper boundary of the plateau is smaller in the presence of the density gradient than in the uniform plasma but the reverse is true at longer times. Due to temperature gradient, at large times and small distances, the upper boundary of the plateau is increased above its value in the uniform plasma. Because of fast relaxation, the value of the lower boundary of the plateau in the plasma with decreasing density is always less than its value in the uniform plasma. It is found that the local velocity of the beam decreases when the density gradient is present. The local velocity spread of the beam remains unchanged during the propagation of the beam in the uniform plasma, but increases in the presence of inhomogeneities.

  4. Quasilinear dynamics of a cloud of hot electrons propagating through a plasma with decreasing density and temperature

    SciTech Connect

    Foroutan, G.; Khalilpour, H.; Moslehi-Fard, M.; Li, B.; Robinson, P. A.

    2008-12-15

    The effects of plasma inhomogeneities on the propagation of a cloud of hot electrons through a cold background plasma and generation of Langmuir waves are investigated using numerical simulations of the quasilinear equations. It is found that in a plasma with decreasing density the quasilinear relaxation of the electron distribution in velocity space is accelerated and the levels of the generated Langmuir waves are enhanced. The magnitude of the induced emission rate is increased and its maximum value moves to lower velocities. Due to density gradient the height of plateau shows an increase at small distances and a corresponding decrease at large distances. It is also found that in a plasma with decreasing temperature, the relaxation of the beam is retarded, the spectral density of Langmuir waves is broadened, and the height of the plateau decreases below its value in a uniform plasma. In the presence of both density and temperature gradients, at given position, the height and upper boundary of the plateau and the level of Langmuir waves are all increased at small velocities. The spatial expansion of the beam is increased by the plasma inhomogeneities, but its average velocity of propagation decreases. Initially, at a given position, the velocity at the upper boundary of the plateau is smaller in the presence of the density gradient than in the uniform plasma but the reverse is true at longer times. Due to temperature gradient, at large times and small distances, the upper boundary of the plateau is increased above its value in the uniform plasma. Because of fast relaxation, the value of the lower boundary of the plateau in the plasma with decreasing density is always less than its value in the uniform plasma. It is found that the local velocity of the beam decreases when the density gradient is present. The local velocity spread of the beam remains unchanged during the propagation of the beam in the uniform plasma, but increases in the presence of inhomogeneities.

  5. Applications of hot-film anemometers in hypersonic shear layers

    NASA Technical Reports Server (NTRS)

    Grubb, J. P.; Strike, W. T.

    1991-01-01

    A wind tunnel test was conducted on a flat plate at zero angle of attack with a rearward facing 2D cooling film injector nozzle. The freestream Mach number was 8 and the injector Mach number was 3. The freestream Reynolds number varied from 0.43 to 3.3 million per ft during the test, and the injector flow rate was such that the jet exit and freestream static pressures were matched. The analysis reported herein will focus on data obtained at a freestream Reynolds number of 0.85 million per ft. The data consists of heat-transfer measurements obtained upstream and downstream of the injector nozzle and flowfield surveys obtained downstream of the injector nozzle with a pitot, total temperature, hot-film anemometer and hot-wire anemometer probes. The flowfield surveys were made at stations 0.1 to 9 in. downstream of the injector nozzle from near the model surface to approximately 2 in above the model surface. The hot-film anemometer was used to define the fluctuations in the shear layer separating the flows. The hot-film results are integrated with conventional measurement techniques to obtain a more complete description of the complicated shear layer separating hypersonic and supersonic flows.

  6. Plasma endothelin-1 level in athletes after exercise in a hot environment: exercise-induced dehydration contributes to increases in plasma endothelin-1.

    PubMed

    Maeda, S; Miyauchi, T; Waku, T; Koda, Y; Kono, I; Goto, K; Matsuda, M

    1996-01-01

    We investigated whether dehydration due to exercise contributes to the increase in plasma endothelin-1 (ET-1) concentration. We measured the plasma concentration of ET-1 before and after exercise in a hot environment (about 30 degrees C). Five male intercollegiate Kendo (Japanese fencing) players entered the present study. Each athlete participated in 15 min of Kendo fighting, followed by 5 min of rest and another 15 min of Kendo fighting (i.e., total exercise 30 min), with or without oral intake of 700 ml of water. Body weight and left atrial diameter, a parameter that reflects changes in circulating plasma volume, were significantly decreased after exercise under both conditions. However, the decreases in both values were significantly greater after exercise without water intake than after exercise with water intake, indicating that dehydration and decreased circulating plasma volume were more marked after exercise without water intake. The extent of the increase in plasma ET-1 concentration appeared to be closely related to the extent of exercise-induced dehydration; the greater the dehydration, the greater the increase in plasma ET-1 concentration. These findings suggest that exercise-induced dehydration may contribute to increases in plasma ET-1 concentrations.

  7. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Celona, L.; Maimone, F.; Maeder, J.; Castro, G.; Romano, F. P.; Musumarra, A.; Altana, C.; Caliri, C.; Torrisi, G.; Neri, L.; Gammino, S.; Tinschert, K.; Spaedtke, K. P.; Rossbach, J.; Lang, R.; Ciavola, G.

    2014-02-01

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source - operating at GSI, Darmstadt - has been carried out. Two different detectors (a SDD - Silicon Drift Detector and a HpGe - hyper-pure Germanium detector) have been used to characterize the warm (2-30 keV) and hot (30-500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  8. Dilepton production rate in a hot and magnetized quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Sadooghi, N.; Taghinavaz, F.

    2017-01-01

    The differential multiplicity of dileptons in a hot and magnetized quark-gluon plasma, ΔB ≡ dNB /d4 xd4 q, is derived from first principles. The constant magnetic field B is assumed to be aligned in a fixed spatial direction. It is shown that the anisotropy induced by the B field is mainly reflected in the general structure of photon spectral density function. This is related to the imaginary part of the vacuum polarization tensor, Im [Πμν ] , which is derived in a first order perturbative approximation. As expected, the final analytical expression for ΔB includes a trace over the product of a photonic part, Im [Πμν ] , and a leptonic part, Lμν. It is shown that ΔB consists of two parts, ΔB∥ and ΔB⊥ , arising from the components (μ , ν) =(∥ , ∥) and (μ , ν) =(⊥ , ⊥) of Im [Πμν ] and Lμν. Here, the transverse and longitudinal directions are defined with respect to the direction of the B field. Combining ΔB∥ and ΔB⊥, a novel anisotropy factor νB is introduced. Using the final analytical expression of ΔB, the possible interplay between the temperature T and the magnetic field strength eB on the ratio ΔB /Δ0 and νB is numerically studied. Here, Δ0 is the Born approximated dilepton multiplicity in the absence of external magnetic fields. It is, in particular, shown that for each fixed T and B, in the vicinity of certain threshold energies of virtual photons, ΔB ≫Δ0 and ΔB⊥ ≫ ΔB∥ . The latter anisotropy may be interpreted as one of the microscopic sources of the macroscopic anisotropies, reflecting themselves, e.g., in the elliptic asymmetry factor v2 of dileptons.

  9. Rate of energy change of proton traversing in hot high-Z plasmas due to nuclear collision

    NASA Astrophysics Data System (ADS)

    He, Bin; Wang, Jian-Guo

    2015-12-01

    The rate of change of the energy of the projectile proton moving in hot Au plasmas due to the elastic binary collision between the projectile and the target ion at different density and temperature is studied based on the potential from ionic sphere model. It is found that the proton may obtain energy when its kinetic energy is less than the plasma temperature, which means that the proton and the target ion are in thermal equilibrium when the kinetic energy of the proton is around the plasma temperature. The well known model (Phys. Rev. 126, 1 (1962)) is found not to work in hot high-Z plasmas. The reason for this is explored and found relevant to the very small thermal velocity of the high-Z ion compared with the projectile. This leads to the failure to ignore the dependence of the Coulomb logarithm upon the relative velocity between the projectile and the target ion. A revised model is proposed by us and found to work well while the revised model (Phys. Rev. A 29, 2145 (1984)) is unsatisfactory in this case.

  10. Modeling hot spring chemistries with applications to martian silica formation

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Crowley, J.K.; Kargel, J.S.

    2011-01-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100??C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25??C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100??C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with

  11. Modeling hot spring chemistries with applications to martian silica formation

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Catling, D. C.; Crowley, J. K.; Kargel, J. S.

    2011-04-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO 2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100 °C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25 °C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO 4-SO 4-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system up to 100 °C and apply the model to hot springs and silica deposits. A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355 K) led to precipitation of anhydrous minerals (CaSO 4, Na 2SO 4) that was also the case for the high temperature (353 K) low pH case where anhydrous minerals (NaCl, CaSO 4) also precipitated. Thus we predict that secondary

  12. Applications of the concept of generalized vorticity to space plasmas

    NASA Technical Reports Server (NTRS)

    Banks, P. M.; Edwards, W. F.; Rasmussen, C.; Thompson, R. C.

    1981-01-01

    A reformulation of the momentum equation for electrons or ions in a collisionless plasma leads to an equation which describes the behavior of the plasma in terms of a generalized vorticity. This vorticity is both divergence-free and conserved along plasma flow streamlines. When the plasma has zero vorticity, a special relation is established which appears to have application to small scale magnetic features within both conventional space plasmas and superconductors.

  13. Clinical applications of plasma based electrosurgical systems

    NASA Astrophysics Data System (ADS)

    Woloszko, Jean; Endler, Ashley; Ryan, Thomas P.; Stalder, Kenneth R.

    2013-02-01

    Over the past 18 years, several electrosurgical systems generating a low temperature plasma in an aqueous conductive solution have been commercialized for various clinical applications and have been used in over 10 million patients to date. The most popular utilizations are in arthroscopic surgery, otorhinolaryngology surgery, spine and neurosurgery, urology and wound care. These devices can be configured to bring saline to the tip and to have concomitant aspiration to remove by-products and excess fluid. By tuning the electrode geometry, waveform and fluid dynamic at the tip of the devices, tissue resection and thermal effects can be adjusted individually. This allows one to design products that can operate as precise tissue dissectors for treatment of articular cartilage or debridement of chronic wounds, as well as global tissue debulking devices providing sufficient concomitant hemostasis for applications like tonsillectomies. Effects of these plasma based electrosurgical devices on cellular biology, healing response and nociceptive receptors has also been studied in various models. This talk will include a review of the clinical applications, with product descriptions, results and introductory review of some of the research on the biological effects of these devices.

  14. Neutral atom analyzers for diagnosing hot plasmas: A review of research at the ioffe physicotechnical institute

    SciTech Connect

    Kislyakov, A. I.; Petrov, M. P.

    2009-07-15

    Research on neutral particle diagnostics of thermonuclear plasmas that has been carried out in recent years at the Ioffe Physicotechnical Institute of the Russian Academy of Sciences (St. Petersburg, Russia) is reviewed. Work on the creation and improvement of neutral atom analyzers was done in two directions: for potential applications (in particular, on the International Thermonuclear Experimental Reactor, which is now under construction at Cadarache in France) and for investigation of the ion plasma component in various devices (in particular, in the largest tokamaks, such as JET, TFTR, and JT-60). Neutral atom analyzers are the main tool for studying the behavior of hydrogen ions and isotopes in magnetic confinement systems. They make it possible to determine energy spectra, to perform the isotope analysis of atom fluxes from the plasma, to measure the absolute intensity of the fluxes, and to record how these parameters vary with time. A comparative description of the analyzers developed in recent years at the Ioffe Institute is given. These are ACORD-12/24 analyzers for recording 0.2-100-keV hydrogen and deuterium atoms with a tunable range of simultaneously measured energies, CNPA compact analyzers for a fixed energy gain in the ranges 80-1000 eV and 0.8-100 keV, an ISEP analyzer for simultaneously recording the atoms of all the three hydrogen isotopes (H, D, and T) in the energy range 5-700 keV, and GEMMA analyzers for recording atom fluxes of hydrogen and helium isotopes in the range 0.1-4 MeV. The scintillating detectors of the ISEP and GEMMA analyzers have a lowered sensitivity to neutrons and thus can operate without additional shielding in neutron fields of up to 10{sup 9} n/(cm{sup 2} s). These two types of analyzers, intended to operate under deuterium-tritium plasma conditions, are prototypes of atom analyzers created at the Ioffe Institute for use in the International Thermonuclear Experimental Reactor. With these analyzers, a number of new results

  15. Neutral atom analyzers for diagnosing hot plasmas: A review of research at the ioffe physicotechnical institute

    NASA Astrophysics Data System (ADS)

    Kislyakov, A. I.; Petrov, M. P.

    2009-07-01

    Research on neutral particle diagnostics of thermonuclear plasmas that has been carried out in recent years at the Ioffe Physicotechnical Institute of the Russian Academy of Sciences (St. Petersburg, Russia) is reviewed. Work on the creation and improvement of neutral atom analyzers was done in two directions: for potential applications (in particular, on the International Thermonuclear Experimental Reactor, which is now under construction at Cadarache in France) and for investigation of the ion plasma component in various devices (in particular, in the largest tokamaks, such as JET, TFTR, and JT-60). Neutral atom analyzers are the main tool for studying the behavior of hydrogen ions and isotopes in magnetic confinement systems. They make it possible to determine energy spectra, to perform the isotope analysis of atom fluxes from the plasma, to measure the absolute intensity of the fluxes, and to record how these parameters vary with time. A comparative description of the analyzers developed in recent years at the Ioffe Institute is given. These are ACORD-12/24 analyzers for recording 0.2-100-keV hydrogen and deuterium atoms with a tunable range of simultaneously measured energies, CNPA compact analyzers for a fixed energy gain in the ranges 80-1000 eV and 0.8-100 keV, an ISEP analyzer for simultaneously recording the atoms of all the three hydrogen isotopes (H, D, and T) in the energy range 5-700 keV, and GEMMA analyzers for recording atom fluxes of hydrogen and helium isotopes in the range 0.1-4 MeV. The scintillating detectors of the ISEP and GEMMA analyzers have a lowered sensitivity to neutrons and thus can operate without additional shielding in neutron fields of up to 109 n/(cm2 s). These two types of analyzers, intended to operate under deuterium-tritium plasma conditions, are prototypes of atom analyzers created at the Ioffe Institute for use in the International Thermonuclear Experimental Reactor. With these analyzers, a number of new results have been

  16. Measurements of hot-electron temperature in laser-irradiated plasmas

    SciTech Connect

    Solodov, A. A.; Yaakobi, B.; Edgell, D. H.; Follett, R. K.; Myatt, J. F.; Sorce, C.; Froula, D. H.

    2016-10-26

    In a recently published work1–3 we reported on measuring the total energy of hot electrons produced by the interaction of a nanosecond laser with planar CH-coated molybdenum targets, using the Mo Kα emission. The temperature of the hot electrons in that work was determined by the high-energy bremsstrahlung [hard x-ray (HXR)] spectrum measured by a three-channel fluorescence-photomultiplier detector (HXRD). In the present work, we replaced the HXRD with a nine-channel image-plate (IP)–based detector (HXIP). For the same conditions (irradiance of the order of 1014 W/cm2; 2-ns pulses) the measured temperatures are consistently lower than those measured by the HXRD (by a factor ~1.5 to 1.7). In addition, we supplemented this measurement with three experiments that measure the hot-electron temperature using Kα line-intensity ratios from high-Z target layers, independent of the HXR emission. These experiments yielded temperatures that were consistent with those measured by the HXIP. We showed that the thermal x-ray radiation must be included in the derivation of total energy in hot electrons (Ehot), and that this makes Ehot only weakly dependent on hot-electron temperature. For a given x-ray emission in inertial confinement fusion compression experiments, this result would lead to a higher total energy in hot electrons, but the preheat of the compressed fuel may be lower because of the reduced hot-electron range.

  17. Application of Time-resolved PIV to Supersonic Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2007-01-01

    This presentation lays out the ground-breaking work at bringing high-speed (25kHz) particle image velocimetry (PIV) to bear on measurements of noise-producing turbulence in hot jets. The work is still in progress in that the tremendous amount of data obtained are still be analyzed, but the method has been validated and initial results of interest to jet noise modeling have been obtained. After a brief demonstration of the validation process used on the data, results are shown for hot jets at different temperatures and Mach numbers. Comparisons of first order statistics show the relative indifference of the turbulence to the presence of shocks and independence to jet temperature. What does come out is that when the shock-containing jets are in a screech mode the turbulence is highly elevated, showing the importance of removing screech phenomena from model-scale jets before applying findings to full-scale aircraft which typically do not contain shocks.

  18. Cold plasma: overview of plasma technologies and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel nonthermal food processing technology. It is based on energetic, reactive gases which inactivate contaminating microbes on meats, poultry and fruits and vegetables. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization pro...

  19. RF generated atmospheric pressure plasmas and applications

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Herrmann, Hans W.; Henins, Ivars; Gautier, Donald C.

    2001-10-01

    RF generated atmospheric pressure plasma sources have been developed for various materials applications. They operate with rf power and produce a α-mode capacitive discharge that is stable, steady-state, non-thermal, and volumetric. The plasma parameters of this source have been measured: electron densities of 10^11 cm-3 and electron temperatures of 2 eV by using neutral bremsstrahlung emission. Localized electron heating near the sheath boundary has been observed and is related to the discharge stability and α to γ mode (or arcing) transition using 1D fluid model. The discharge stability improves with increase in rf frequency. The electrode surface property such as the secondary electron emission coefficient also plays a significant role in determining α to γ mode transition. For example, a stable α-mode air discharge is produced using 100 MHz rf power with the use of a boron nitride cover on one of the electrodes. In comparison, an air discharge becomes unstable at a lower rf frequency (e.g. 13.56 MHz) or with an alumina cover. Similar results were obtained with various feedgas such as steam, CO_2, and hydrocarbon containing gases. Further characterization of this high frequency source is under progress. For its applications, we have successfully demonstrated the effective neutralization of actual chemical warfare agents such as VX, GD and HD. In addition, significant progresses have been made in the area of etching of organic and metal film etching, and production of novel materials.

  20. EUV Spectra of the Full Solar Disk: Analysis and Results of the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)

    NASA Astrophysics Data System (ADS)

    Sirk, M. M.; Hurwitz, M.; Marchant, W.

    2010-07-01

    We analyze EUV spectra of the full solar disk from the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) spanning a period of two years. The observations were obtained via a fortuitous off-axis light path in the 140 - 275 Å passband. The general appearance of the spectra remained relatively stable over the two-year time period, but did show significant variations of up to 25% between two sets of Fe lines that show peak emission at 1 MK and 2 MK. The variations occur at a measured period of 27.2 days and are caused by regions of hotter and cooler plasma rotating into, and out of, the field of view. The CHIANTI spectral code is employed to determine plasma temperatures, densities, and emission measures. A set of five isothermal plasmas fit the full-disk spectra well. A 1 - 2 MK plasma of Fe contributes 85% of the total emission in the CHIPS passband. The standard Differential Emission Measures (DEMs) supplied with the CHIANTI package do not fit the CHIPS spectra well as they over-predict emission at temperatures below log 10 T=6.0 and above log 10 T=6.3. The results are important for cross-calibrating TIMED, SORCE, SOHO/EIT, and CDS/GIS, as well as the recently launched Solar Dynamics Observatory.

  1. Spectral line shapes using the dicenter approach for dense hot plasmas: hydrogen and helium-like lines.

    NASA Astrophysics Data System (ADS)

    Sauvan, P.; Leboucher-Dalimier, E.; Angelo, P.; Derfoul, H.; Ceccotti, T.; Poquerusse, A.; Calisti, A.; Talin, B.

    2000-05-01

    This paper reports on the spectral line shape of hydrogen and helium-like lines relevant to the quasi-static dicenter model. This treatment is justified for hot dense, moderate Z plasmas. The code IDEFIX developed for the quasi-static dicenter model involves a self-consistent description of the interactions and of the radiative properties. Strong dependence of the transition energies and of the dipole moments on the interionic separation are pointed out and novel density-dependent spectroscopic features such as asymmetries, satellite-like features, molecular transitions are exhibited. The theoretical spectra presented are discussed in connection with experimental results where these exist.

  2. Determination of hot-spot susceptibility of multistring photovoltaic modules in a central-station application

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Weaver, R. W.; Ross, R. G., Jr.; Spencer, R.; Arnett, J. C.

    1984-01-01

    Part of the effort of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) includes a program to improve module and array reliability. A collaborative activity with industry dealing with the problem of hot-spot heating due to the shadowing of photovoltaic cells in modules and arrays containing several paralleled cell strings is described. The use of multiparallel strings in large central-station arrays introduces the likelihood of unequal current sharing and increased heating levels. Test results that relate power dissipated, current imbalance, cross-strapping frequency, and shadow configuration to hot-spot heating levels are presented. Recommendations for circuit design configurations appropriate to central-station applications that reduce the risk of hot-spot problems are offered. Guidelines are provided for developing hot-spot tests for arrays when current imbalance is a threat.

  3. Micromachined hot-wire thermal conductivity probe for biomedical applications.

    PubMed

    Yi, Ming; Panchawagh, Hrishikesh V; Podhajsky, Ronald J; Mahajan, Roop L

    2009-10-01

    This paper presents the design, fabrication, numerical simulation, and experimental validation of a micromachined probe that measures thermal conductivity of biological tissues. The probe consists of a pair of resistive line heating elements and resistance temperature detector sensors, which were fabricated by using planar photolithography on a glass substrate. The numerical analysis revealed that the thermal conductivity and diffusivity can be determined by the temperature response induced by the uniform heat flux in the heating elements. After calibrating the probe using a material (agar gel) of known thermal conductivity, the probe was deployed to calculate the thermal conductivity of Crisco. The measured value is in agreement with that determined by the macro-hot-wire probe method to within 3%. Finally, the micro thermal probe was used to investigate the change of thermal conductivity of pig liver before and after RF ablation treatment. The results show an increase in thermal conductivity of liver after the RF ablation.

  4. Measurements of hot-electron temperature in laser-irradiated plasmas

    DOE PAGES

    Solodov, A. A.; Yaakobi, B.; Edgell, D. H.; ...

    2016-10-26

    In a recently published work1–3 we reported on measuring the total energy of hot electrons produced by the interaction of a nanosecond laser with planar CH-coated molybdenum targets, using the Mo Kα emission. The temperature of the hot electrons in that work was determined by the high-energy bremsstrahlung [hard x-ray (HXR)] spectrum measured by a three-channel fluorescence-photomultiplier detector (HXRD). In the present work, we replaced the HXRD with a nine-channel image-plate (IP)–based detector (HXIP). For the same conditions (irradiance of the order of 1014 W/cm2; 2-ns pulses) the measured temperatures are consistently lower than those measured by the HXRD (bymore » a factor ~1.5 to 1.7). In addition, we supplemented this measurement with three experiments that measure the hot-electron temperature using Kα line-intensity ratios from high-Z target layers, independent of the HXR emission. These experiments yielded temperatures that were consistent with those measured by the HXIP. We showed that the thermal x-ray radiation must be included in the derivation of total energy in hot electrons (Ehot), and that this makes Ehot only weakly dependent on hot-electron temperature. For a given x-ray emission in inertial confinement fusion compression experiments, this result would lead to a higher total energy in hot electrons, but the preheat of the compressed fuel may be lower because of the reduced hot-electron range.« less

  5. Measurement of a density profile of a hot-electron plasma in RT-1 with three-chord interferometry

    SciTech Connect

    Saitoh, H.; Yano, Y.; Yoshida, Z.; Nishiura, M.; Morikawa, J.; Kawazura, Y.; Nogami, T.; Yamasaki, M.

    2015-02-15

    The electron density profile of a plasma in a magnetospheric dipole field configuration was measured with a multi-chord interferometry including a relativistic correction. In order to improve the accuracy of density reconstruction, a 75 GHz interferometer was installed at a vertical chord of the Ring Trap 1 (RT-1) device in addition to previously installed ones at tangential and another vertical chords. The density profile was calculated by using the data of three-chord interferometry including relativistic effects for a plasma consisting of hot and cold electrons generated by electron cyclotron resonance heating (ECH). The results clearly showed the effects of density peaking and magnetic mirror trapping in a strongly inhomogeneous dipole magnetic field.

  6. Measurement of a density profile of a hot-electron plasma in RT-1 with three-chord interferometry

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yano, Y.; Yoshida, Z.; Nishiura, M.; Morikawa, J.; Kawazura, Y.; Nogami, T.; Yamasaki, M.

    2015-02-01

    The electron density profile of a plasma in a magnetospheric dipole field configuration was measured with a multi-chord interferometry including a relativistic correction. In order to improve the accuracy of density reconstruction, a 75 GHz interferometer was installed at a vertical chord of the Ring Trap 1 (RT-1) device in addition to previously installed ones at tangential and another vertical chords. The density profile was calculated by using the data of three-chord interferometry including relativistic effects for a plasma consisting of hot and cold electrons generated by electron cyclotron resonance heating (ECH). The results clearly showed the effects of density peaking and magnetic mirror trapping in a strongly inhomogeneous dipole magnetic field.

  7. Sports medicine applications of platelet rich plasma.

    PubMed

    Mishra, Allan; Harmon, Kimberly; Woodall, James; Vieira, Amy

    2012-06-01

    Platelet rich plasma (PRP) is a powerful new biologic tool in sports medicine. PRP is a fraction of autologous whole blood containing and increased number of platelets and a wide variety of cytokines such as platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and transforming growth factor beta-1 (TGF-B1), fibroblast growth factor (FGF), Insulin-like growth factor-1 (IGF-1) among many others. Worldwide interest in this biologic technology has recently risen sharply. Basic science and preclinical data support the use of PRP for a variety of sports related injuries and disorders. The published, peer reviewed, human data on PRP is limited. Although the scientific evaluation of clinical efficacy is in the early stages, elite and recreational athletes already use PRP in the treatment of sports related injuries. Many questions remain to be answered regarding the use of PRP including optimal formulation, including of leukocytes, dosage and rehabilitation protocols. In this review, a classification for platelet rich plasma is proposed and the in-vitro, preclinical and human investigations of PRP applications in sports medicine will be reviewed as well as a discussion of rehabilitation after a PRP procedure. The regulation of PRP by the World Anti-Doping Agency will also be discussed. PRP is a promising technology in sports medicine; however, it will require more vigorous study in order to better understand how to apply it most effectively.

  8. APPARATUS FOR MINIMIZING ENERGY LOSSES FROM MAGNETICALLY CONFINED VOLUMES OF HOT PLASMA

    DOEpatents

    Post, R.F.

    1961-10-01

    An apparatus is described for controlling electron temperature in plasma confined in a Pyrotron magnetic containment field. Basically the device comprises means for directing low temperature electrons to the plasma in controlled quantities to maintain a predetermined optimum equilibrium electron temperature whereat minimum losses of plasma ions due to ambipolar effects and energy damping of the ions due to dynamical friction with the electrons occur. (AEC)

  9. Generation And Applications Of Electron-Beam Plasma Flows

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. N.; Tun Win, Aung

    2015-03-01

    Plasma flows generated by continuous or interrupted injection of an electron beam into subsonic or supersonic gaseous streams are considered. Liquid and powder spraying by the electron-beam plasma (EBP) flows is studied as a technique of the aerosol plasma generation. A number of experimental setups generating both free plasma jets and plasma flows in channels are described. Examples of the EBP flows applications for industrial and aerospace technologies are given. The applications are shown to be based on unique properties of the EBP and its stability within very wide ranges of the plasma generation conditions. Some applications of the Hybrid Plasma (HP) generated by combined action of the electron beam (EB) and intermittent gas discharge on flows of gaseous mixtures and aerosols are presented as well.

  10. Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties

    SciTech Connect

    Wei, Xialu; Back, Christina; Izhvanov, Oleg; Haines, Christopher; Olevsky, Eugene

    2016-07-14

    Spark plasma sintering (SPS) has been employed to consolidate a micron-sized zirconium carbide (ZrC) powder. ZrC pellets with a variety of relative densities are obtained under different processing parameters. The densification kinetics of ZrC powders subjected to conventional hot pressing and SPS are comparatively studied by applying similar heating and loading profiles. Due to the lack of electric current assistance, the conventional hot pressing appears to impose lower strain rate sensitivity and higher activation energy values than those which correspond to the SPS processing. A finite element simulation is used to analyze the temperature evolution within the volume of ZrC specimens subjected to SPS. The control mechanism for grain growth during the final SPS stage is studied via a recently modified model, in which the grain growth rate dependence on porosity is incorporated. Finally, the constant pressure specific heat and thermal conductivity of the SPS-processed ZrC are determined to be higher than those reported for the hot-pressed ZrC and the benefits of applying SPS are indicated accordingly.

  11. Thermal Shock and Ablation Behavior of Tungsten Nozzle Produced by Plasma Spray Forming and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xiong, X.; Zhao, Z. W.; Xie, L.; Min, X. B.; Yan, J. H.; Xia, G. M.; Zheng, F.

    2015-08-01

    Tungsten nozzle was produced by plasma spray forming (PSF, relative density of 86 ± 2%) followed by hot isostatic pressing (HIPing, 97 ± 2%) at 2000 °C and 180 MPa for 180 min. Scanning electron microscope, x-ray diffractometer, Archimedes method, Vickers hardness, and tensile tests have been employed to study microstructure, phase composition, density, micro-hardness, and mechanical properties of the parts. Resistance of thermal shock and ablation behavior of W nozzle were investigated by hot-firing test on solid rocket motor (SRM). Comparing with PSF nozzle, less damage was observed for HIPed sample after SRM test. Linear ablation rate of nozzle made by PSF was (0.120 ± 0.048) mm/s, while that after HIPing reduced to (0.0075 ± 0.0025) mm/s. Three types of ablation mechanisms including mechanical erosion, thermophysical erosion, and thermochemical ablation took place during hot-firing test. The order of degree of ablation was nozzle throat > convergence > dilation inside W nozzle.

  12. Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties

    DOE PAGES

    Wei, Xialu; Back, Christina; Izhvanov, Oleg; ...

    2016-07-14

    Spark plasma sintering (SPS) has been employed to consolidate a micron-sized zirconium carbide (ZrC) powder. ZrC pellets with a variety of relative densities are obtained under different processing parameters. The densification kinetics of ZrC powders subjected to conventional hot pressing and SPS are comparatively studied by applying similar heating and loading profiles. Due to the lack of electric current assistance, the conventional hot pressing appears to impose lower strain rate sensitivity and higher activation energy values than those which correspond to the SPS processing. A finite element simulation is used to analyze the temperature evolution within the volume of ZrCmore » specimens subjected to SPS. The control mechanism for grain growth during the final SPS stage is studied via a recently modified model, in which the grain growth rate dependence on porosity is incorporated. Finally, the constant pressure specific heat and thermal conductivity of the SPS-processed ZrC are determined to be higher than those reported for the hot-pressed ZrC and the benefits of applying SPS are indicated accordingly.« less

  13. Plasma medicine—current state of research and medical application

    NASA Astrophysics Data System (ADS)

    Weltmann, K.-D.; von Woedtke, Th

    2017-01-01

    Plasma medicine means the direct application of cold atmospheric plasma (CAP) on or in the human body for therapeutic purposes. Further, the field interacts strongly with results gained for biological decontamination. Experimental research as well as first practical application is realized using two basic principles of CAP sources: dielectric barrier discharges (DBD) and atmospheric pressure plasma jets (APPJ). Originating from the fundamental insights that the biological effects of CAP are most probably caused by changes of the liquid environment of cells, and are dominated by reactive oxygen and nitrogen species (ROS, RNS), basic mechanisms of biological plasma activity are identified. It was demonstrated that there is no increased risk of cold plasma application and, above all, there are no indications for genotoxic effects. The most important biological effects of cold atmospheric pressure plasma were identified: (1) inactivation of a broad spectrum of microorganisms including multidrug resistant ones; (2) stimulation of cell proliferation and tissue regeneration with lower plasma treatment intensity (treatment time); (3) inactivation of cells by initialization of programmed cell death (apoptosis) with higher plasma treatment intensity (treatment time). In recent years, the main focus of clinical applications was in the field of wound healing and treatment of infective skin diseases. First CAP sources are CE-certified as medical devices now which is the main precondition to start the introduction of plasma medicine into clinical reality. Plasma application in dentistry and, above all, CAP use for cancer treatment are becoming more and more important research fields in plasma medicine. A further in-depth knowledge of control and adaptation of plasma parameters and plasma geometries is needed to obtain suitable and reliable plasma sources for the different therapeutic indications and to open up new fields of medical application.

  14. Measurements of plasma spectra from hot dense elements and mixtures at conditions relevant to the solar radiative zone

    NASA Astrophysics Data System (ADS)

    Hoarty, D. J.; Hill, E.; Beiersdorfer, P.; Allan, P.; Brown, C. R. D.; Hill, M. P.; Hobbs, L. M. R.; James, S. F.; Morton, J.; Sircombe, N.; Upcraft, L.; Harris, J. W. O.; Shepherd, R.; Marley, E.; Magee, E.; Emig, J.; Nilsen, J.; Rose, S. J.

    2017-03-01

    X-ray emission spectroscopy has been used to study hot dense plasmas produced using high power laser irradiation of dot samples buried in low Z foils of plastic or diamond. By combining a high contrast short pulse (picosecond timescale) laser beam operating in second harmonic with long pulse (nanosecond timescale) laser beams in third harmonic, and with pulse shaping of the long pulse beams, a range of plasma temperatures from 400eV up to 2.5keV and electron densities from 5e22 up to 1e24/cc have been accessed. Examples are given of measurements of dense plasma effects such as ionization potential depression and line-broadening from the K-shell emission spectra of a range of low Z elements and mixtures and compared to model prediction. Detailed spectra from measurements of the L-shell emission from mid-Z elements are also presented for an example spectrum of germanium. These data are at conditions found in stellar interiors and in particular in the radiative zone of the sun. The plasma conditions are inferred from comparison of the measured spectra to detailed modeling using atomic kinetics and spectral synthesis codes.

  15. Hot ortho-biologic topics at AAOS 2011†: platelet-rich plasma and related growth factors generate excitement.

    PubMed

    Hoggatt, Julie

    2011-06-01

    Several hot topics relating to ortho-biologics were discussed at the 2011 Annual Meeting of the American Academy of Orthopedic Surgery (AAOS) in San Diego this February. Injecting a patient's own platelet-rich plasma (PRP) prior to orthopedic surgery was an important topic, and had its own forum devoted to debating its uses and merit. PRP use has been promoted by equipment companies such as MTF Sports Medicine, Biomet, and Arteriocyte, but others are likely to take advantage of the trend of increasing PRP use by developing a proprietary injectable that mixes PRP with certain growth factors. One possible addition would be a recombinant platelet-derived growth factor (rhPDGF-BB, becaplermin) being developed by BioMimetic Therapeutics for its bone graft product. On the topic of viscosupplementation, the US's only single-injection product, Genzyme's SynviscOne®, was noticeably missing from the exhibit hall at AAOS, but an abstract comparing the single- and multiple-injection viscosupplementation techniques demonstrated that single-injection acts faster and is longer lasting. New bone morphogenetic protein formulations may improve healing of bone fractures. Molecular diagnostics may be used to predict periprosthetic joint infection, allowing orthopedic medicine to be more personalized. A diagnostic that can be used on a large scale has not yet been identified. † Adapted and reproduced from Hoggatt J. Hot Ortho-Biologic Topics at AAOS 2011: Platelet-Rich Plasma and Related Growth Factors Generate Excitement. inThought Research, 2011 Feb 28.

  16. Ionization Potential Depression in Hot Dense Plasmas Through a Pure Classical Model

    NASA Astrophysics Data System (ADS)

    Calisti, A.; Ferri, S.; Talin, B.

    2015-05-01

    The ionization potential of an ion embedded in a plasma, lowered due to the whole of the charged particles (ions and electrons) interacting with this ion, is the so-called plasma effect. A numerical plasma model based on classical molecular dynamics has been developed recently. It is capable to describe a neutral plasma at equilibrium involving ions of various charge states of the same atom together with electrons. This code is used here to investigate the ionization potential depression (IPD). The study of the IPD is illustrated and discussed for aluminum plasmas at mid and solid density and electron temperatures varying from 50eV to 190eV. The method relies on a sampling of the total potential energy of the electron located at an ion being ionized. The potential energy of such electron results from all of the interacting charged particles interacting with it.

  17. On the role of 'hot' atoms in plasma-assisted ignition.

    PubMed

    Starikovskiy, Andrey Yu

    2015-08-13

    This paper discusses the processes leading to the formation of 'hot' atoms and radicals possessing excessive translational energy in high-voltage NS pulse discharges. It is shown that the formation of such 'hot' atoms occurs efficiently both in the dissociation of molecules by direct electron impact, and in the collisional quenching of electronically excited states. Depending on the magnitude of the reduced electric field in the discharge, reactions of these 'hot' atoms increase the initial concentration of radicals in the discharge afterglow two to three times when compared with the values calculated without effects of translational non-equilibrium. The role of thermally non-equilibrium excitation has been demonstrated in the formation of the initial distribution of the chemically active components in the mixture and its influence on the kinetics of ignition initiation at low and high temperatures. It was found that in undiluted mixtures the presence of 'hot' atoms can significantly decrease an ignition threshold and accelerate a low-temperature oxidation.

  18. Atmospheric pressure non-thermal plasma: Sources and applications

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.

    2008-07-01

    Non-thermal plasma at atmospheric pressure is an inherently unstable object. Nature of discharge plasma instabilities and conditions for observation of uniform non-thermal plasma at atmospheric pressure in different environments will be discussed. Various discharge techniques have been developed, which could support uniform non-thermal plasma with parameters varied in a wide range. Time limitation by plasma instabilities can be overcome by shortening pulse length or by restriction of plasma plug residence time with a fast gas flow. Discharge instabilities leading to formation of filaments or sparks are provoked by a positive feedback between the electric field and plasma density, while the counteracting process is plasma and thermal diffusion. With gas pressure growth the size of plasma fluctuation, which could be stabilized by diffusion, diminishes. As a result, to have long lived uniform plasma one should miniaturize discharge. There exist a number of active methods to organize negative feedback between the electric field and plasma density in order to suppress or, at least, delay the instability. Among them are ballast resistors in combination with electrode sectioning, reactive ballast, electronic feedback, and dielectric barrier across the electric current. The last methods are relevant for ac discharges. In the lecture an overview will be given of different discharge techniques scalable in pressure up to one atmosphere. The interest in this topic is dictated by a potential economic benefit from numerous non-thermal plasma technologies. The spectrum of non-thermal plasma applications is continuously broadening. An incomplete list of known applications includes: plasma-assisted chemical vapor deposition, etching, polymerization, gas-phase synthesis, protective coating deposition, toxic and harmful gas decomposition, destruction of warfare agents, electromagnetic wave shielding, polymer surface modifications, gas laser excitation, odor control, plasma assisted

  19. Extended Heat Deposition in Hot Jupiters: Application to Ohmic Heating

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Sari, Re'em

    2016-03-01

    The observed radii of many giant exoplanets in close orbits exceed theoretical predictions. One suggested origin for this discrepancy is heat deposited deep inside the atmospheres of these “hot Jupiters”. Here, we study extended power sources that distribute heat from the photosphere to the deep interior of the planet. Our analytical treatment is a generalization of a previous analysis of localized “point sources”. We model the deposition profile as a power law in the optical depth and find that planetary cooling and contraction halt when the internal luminosity (i.e., cooling rate) of the planet drops below the heat deposited in the planet’s convective region. A slowdown in the evolutionary cooling prior to equilibrium is possible only for sources that do not extend to the planet’s center. We estimate the ohmic dissipation resulting from the interaction between the atmospheric winds and the planet’s magnetic field, and apply our analytical model to ohmically heated planets. Our model can account for the observed radii of most inflated planets, which have equilibrium temperatures of ≈1500-2500 K and are inflated to a radius of ≈ 1.6{R}J. However, some extremely inflated planets remain unexplained by our model. We also argue that ohmically inflated planets have already reached their equilibrium phase, and no longer contract. Following Wu & Lithwick, who argued that ohmic heating could only suspend and not reverse contraction, we calculate the time it takes ohmic heating to re-inflate a cold planet to its equilibrium configuration. We find that while it is possible to re-inflate a cold planet, the re-inflation timescales are longer by a factor of ≈ 30 than the cooling time.

  20. Hot, deep origin of petroleum: deep basin evidence and application

    USGS Publications Warehouse

    Price, Leigh C.

    1978-01-01

    Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.

  1. A Survey of Plasmas and Their Applications

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.; Grabbe, C. (Editor)

    2006-01-01

    Plasmas are everywhere and relevant to everyone. We bath in a sea of photons, quanta of electromagnetic radiation, whose sources (natural and artificial) are dominantly plasma-based (stars, fluorescent lights, arc lamps.. .). Plasma surface modification and materials processing contribute increasingly to a wide array of modern artifacts; e.g., tiny plasma discharge elements constitute the pixel arrays of plasma televisions and plasma processing provides roughly one-third of the steps to produce semiconductors, essential elements of our networking and computing infrastructure. Finally, plasmas are central to many cutting edge technologies with high potential (compact high-energy particle accelerators; plasma-enhanced waste processors; high tolerance surface preparation and multifuel preprocessors for transportation systems; fusion for energy production).

  2. APPLICATIONS ANALYSIS REPORT: TOXIC TREATMENTS, IN-SITU STEAM/HOT-AIR STRIPPING TECHNOLOGY

    EPA Science Inventory

    This document is an evaluation of the performance of the Toxic Treatments (USA), Inc., (TTUSA) in situ steam/hot-air stripping technology and its applicability as an on-site treatment technique for hazardous waste site soil cleanup of volatile and semivolatile contaminants. Both ...

  3. Multi-dipolar microwave plasmas and their application to negative ion production

    SciTech Connect

    Béchu, S.; Bès, A.; Lacoste, A.; Aleiferis, S.; Ivanov, A. A. Jr.; Bacal, M.

    2013-10-15

    During the past decade multi-dipolar plasmas have been employed for various purposes such as surface treatments in biomedicine, physical and chemical vapour deposition for hydrogen storage, and applications in mechanical engineering. On the other hand, due to the design and operational mode of these plasma sources (i.e., strong permanent magnets for the electron cyclotron resonance coupling, low working pressure, and high electron density achieved) they are suitable for studying fundamental mechanisms involved in negative ion sources used in magnetically confined fusion and particle accelerators. Thus, this study presents an overview of fundamental results obtained with: (i) a single dipolar source, (ii) a network of seven dipolar plasma sources inserted into a magnetic multipolar chamber (Camembert III), and (iii) four dipolar sources housed in a smaller metallic cylinder (ROSAE III). Investigations with Langmuir probes of electron energy probability functions revealed the variation of the plasma properties versus the radial distance from the axis of a dipolar source in its mid plane and allowed the determination of the proportion between hot and cold electron populations in both chambers. These results are compared with the density of hydrogen negative ions, measured using the photodetachment technique. Electron energy probability functions obtained in these different configurations show the possibility of both hot and cold electron production. The former is a prerequisite for increasing the vibrational level of molecules and the dissociation degree and the latter for producing negative ions via dissociative attachment of the cold electrons or via surface production induced by H atoms.

  4. An Exact Calculation of Electron-Ion Energy Splitting in a Hot Plasma

    SciTech Connect

    Singleton, Robert L

    2012-09-10

    In this brief report, I summarize the rather involved recent work of Brown, Preston, and Singleton (BPS). In Refs. [2] and [3], BPS calculate the energy partition into ions and electrons as a charged particle traverses a non-equilibrium two-temperature plasma. These results are exact to leading and next-to-leading order in the plasma coupling g, and are therefore extremely accurate in a weakly coupled plasma. The new BPS calculations are compared with the more standard work of Fraley et al. [12]. The results differ substantially at higher temperature when T{sub I} {ne} T{sub e}.

  5. Stimulated-Raman-scatter behavior in a relativistically hot plasma slab and an electromagnetic low-order pseudocavity

    SciTech Connect

    Ghizzo, A.; Reveille, T.; Bertrand, P.; Albrecht-Marc, M.; Johnston, T. W.

    2006-10-15

    Particle simulations on a flat-topped somewhat underdense (typically n{sub 0}/n{sub c}=0.6) plasma slab by Nikolic et al. [Phys. Rev. E 66, 036404 (2002)] were seen to give transient stimulated scattering behavior with frequency shift [{omega}{sub 0}-{omega}{sub s}({approx_equal}{omega}{sub p})] considerably less than the plasma frequency {omega}{sub p}. This has been linked to the electron acoustic wave (EAW) and the scattering was thus seen as another example of stimulated electron acoustic scattering inferred by Montgomery et al. [Phys. Rev. Lett. 87, 155001 (2001)] from experiments on low-density plasmas. Montgomery et al. had noted the difficulty of how one could have a very narrow observed scattering from a wave whose damping was at least initially very high. Our Vlasov-Maxwell simulations for such somewhat underdense (n{sub 0}/n{sub c}{>=}0.25) plasmas show that the simulation resonance was in fact determined by the beating of the pump with a new 'radiating pseudocavity' electromagnetic mode for the slab at a frequency close to {omega}{sub p} with relatively low loss. This allows the initial narrow-band excitation of the kinetic electrostatic electron nonlinear (KEEN) waves (the nonlinear 'cousins' of EAWs) at a well-defined frequency ({omega}{sub K}{approx_equal}{omega}{sub 0}-{omega}{sub p}<{omega}{sub p}) which is not necessarily the value given by the EAW dispersion relation. (The KEEN wave characteristics have been discussed by Afeyan et al. [33rd AAAC (2003), no. 238, IFSA 2003].) The consideration of such a mechanism is relevant to moderately underdense hot plasmas.

  6. Global magnetosphere-like 3D structure formation in kinetics by hot magnetized plasma flow characterized by shape of the particle distribution function

    NASA Astrophysics Data System (ADS)

    Gubchenko, Vladimir

    The task was to provide an analytical elementary magnetosphere-like model in kinetics for verification of the 3D EM PIC codes created for space/aerospace and HED plasmas applications. Kinetic approach versus cold MHD approach takes into account different behavior in the EM fields of resonant and non resonant particles in the velocity phase space, which appears via shape characteristics of the particle velocity distribution function (PVDF) and via the spatial dispersion effect forming the collisionless dissipation in the EM fields. The external flow is a hot collisionless plasma characterized by the particle velocity distribution function (PVDF) with different shapes: Maxwellian, kappa, etc. The flow is in a “hot regime”: it can be supersonic but its velocity remains less the thermal velocity of the electrons. The “internal” part of the magnetosphere formed by trapped particles is the prescribed 3D stationary magnetization considered as a spherical “quasiparticle” with internal magnetodipole and toroidal moments represented as a broadband EM driver. We obtain after the linearization of Vlasov/Maxwell equations a self-consistent 3D large scale kinetic solution of the classic problem. Namely, we: model the “outer” part of the magnetosphere formed by external hot plasma flow of the flyby particles. Solution of the Vlasov equation expressed via a tensor of dielectric permittivity of nonmagnetized and magnetized flowing plasma. Here, we obtain the direct kinetic dissipative effect of the magnetotail formation and the opposite diamagnetic effect of the magnetosphere “dipolization”. We get MHD wave cone in flow magnetized by external guiding magnetic (GM) field. Magnetosphere in our consideration is a 3D dissipative “wave” package structure of the skinned EM fields formed by the “waves” excited at frequency bands where we obtain negative values and singularities (resonances) of squared EM refractive index of the cold plasma. The hot regime

  7. Hot electron generation in a dense plasma by femtosecond laser pulses of subrelativistic intensity

    SciTech Connect

    Bolshakov, V V; Vorob'ev, A A; Uryupina, D S; Ivanov, K A; Morshedian, Nader; Volkov, Roman V; Savel'ev, Andrei B

    2009-07-31

    We report a study of hot electron generation via the interaction of femtosecond laser pulses of subrelativistic intensity (10{sup 15} to 2x10{sup 17} W cm{sup -2}), having different linear polarisations and nanosecond-scale contrasts, with the surface of 'transparent' (quartz glass) and 'absorbing' (silicon) targets. As the incident pulse intensity increases from 10{sup 15} to 10{sup 17} W cm{sup -2}, the difference in hard X-ray yield and average hot electron energy between s- and p-polarised beams rapidly decreases. This effect can be understood in terms of relativistic electron acceleration mechanisms. (special issue devoted to the 80th birthday of S.A. Akhmanov)

  8. On the nature of S II emission from Jupiter's hot plasma torus

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Shemansky, D. E.

    1982-01-01

    An effective electron temperature T(e) of 80,000 K is indicated by the Voyager 1 encounter Jupiter hot torus emission rates in the 6731, 1256, 911 and reclassified 765 A transitions of S II. A set of 53 measurements of the S II red line doublet obtained at 5.9 Jupiter radii shows strong, irregular fluctuations in intensity, but no variation in the line ratio. At this distance from Jupiter, the torus is found to be longitudinally uniform in density; this is consonant with Voyager UVS findings, but contrary to magnetic anomaly model predictions. It is suggested that presently unidentified ion-ion and/or iron-atom reactions are responsible for the S II component irregular variations, in view of the fact that electron properties are regular and variable only over a small range in the hot torus at 5.9 Jupiter radii.

  9. Potential applications of an electron cyclotron resonance multicusp plasma source

    SciTech Connect

    Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Stirling, W.L.

    1989-01-01

    An electron cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR plasma source. This novel source produced large (about 25-cm-diam), uniform (to within {plus minus}10%), dense (>10{sup 11}-cm{sup -3}) plasmas of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen plasma for etching 12.7-cm (5-in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Results and potential applications of this new ECR plasma source for plasma processing of thin films are discussed. 21 refs., 10 figs.

  10. The influence of the local volume fluctuations on the equation-of-state of hot and dense plasmas

    NASA Astrophysics Data System (ADS)

    Salzmann, David; Fisher, Dima; Barshalom, Avraham; Oreg, Joseph

    2008-04-01

    Generally, equation-of-state (EOS) of hot and dense plasmas is computed under the assumption that there is a constant volume available to every ion/atom in the plasma. In the present paper we combined two recently developed models to evaluate the influence of local density fluctuations around the ions on the corresponding EOS. The first of these is the so-called Ion Ellipsoid Model (IEM). IEM assumes that the local volume of the ion is a 3-dimensional ellipsoidal enclosure. Full description of the model is given in Ref. [1]. From IEM semi-empirical formulas were derived for the ions volume distribution function [1] for 0<γ<16, where γ is the plasma coupling constant. The EOS was computed by means of the EOSTA model [2], that combines and extends the STA and INFERNO models to calculate opacities and EOS on the same footing. We will describe the model and present preliminary results indicating the effect of the volume fluctuations around the ions on EOS results.

  11. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations.

    PubMed

    Wu, D; He, X T; Yu, W; Fritzsche, S

    2017-02-01

    A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.

  12. Effect of anode-cathode geometry on performance of the HIP-1 hot ion plasma. [magnetic mirrors

    NASA Technical Reports Server (NTRS)

    Lauver, M. R.

    1978-01-01

    Hot-ion hydrogen plasma experiments were conducted in the NASA Lewis HIP-1 magnetic mirror facility to determine how the ion temperature was influenced by the axial position of the cathode tips relative to the anodes. A steady-state EXB plasma was formed by applying a strong radially inward dc electric field near the throats of the magnetic mirrors. The dc electric field was created between hollow cathode rods inside hollow anode cylinders, both concentric with the magnetic axis. The highest ion temperatures, 900 eV, were attained when the tip of each cathode was in the same plane as the end of its anode. These temperatures were reached with 22 kV applied to the electrodes in a field of 1.1 tesla. Scaling relations were empirically determined for ion temperature and the product of ion density and neutral particle density as a function of cathode voltage, discharge current, and electrode positions. Plasma discharge current vs voltage (I-V) characteristics were determined.

  13. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Wu, D.; He, X. T.; Yu, W.; Fritzsche, S.

    2017-02-01

    A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.

  14. Plasma cleaning techniques and future applications in environmentally conscious manufacturing

    SciTech Connect

    Ward, P.P.

    1995-07-01

    Plasmas have frequently been used in industry as a last step surface preparation technique in an otherwise predominantly wet-etch process. The limiting factor in the usefulness of plasma cleaning techniques has been the rate at which organic materials are removed. Recent research in the field of plasma chemistry has provided some understanding of plasma processes. By controlling plasma conditions and gas mixtures, ultra-fast plasma cleaning and etching is possible. With enhanced organic removal rates, plasma processes become more desirable as an environmentally sound alternative to traditional solvent or acid dominated process, not only as a cleaning tool, but also as a patterning and machining tool. In this paper, innovations in plasma processes are discussed including enhanced plasma etch rates via plasma environment control and aggressive gas mixtures. Applications that have not been possible with the limited usefulness of past plasma processes are now approaching the realm of possibility. Some of these possible applications will be discussed along with their impact to environmentally conscious manufacturing.

  15. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    NASA Astrophysics Data System (ADS)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  16. Solar hot water systems application to the solar building test facility and the Tech House

    NASA Technical Reports Server (NTRS)

    Goble, R. L.; Jensen, R. N.; Basford, R. C.

    1976-01-01

    Projects which relate to the current national thrust toward demonstrating applied solar energy are discussed. The first project has as its primary objective the application of a system comprised of a flat plate collector field, an absorption air conditioning system, and a hot water heating system to satisfy most of the annual cooling and heating requirements of a large commercial office building. The other project addresses the application of solar collector technology to the heating and hot water requirements of a domestic residence. In this case, however, the solar system represents only one of several important technology items, the primary objective for the project being the application of space technology to the American home.

  17. Plasma Science and Applications at the Intel

    NASA Astrophysics Data System (ADS)

    Berry, Lee

    2006-10-01

    The Coalition for Plasma Science (CPS) has established a plasma prize at the annual Intel International Science and Engineering Fair (ISEF). The 2006 prize was awarded for a project that investigated the correlation of GPS errors with various measures of near-earth plasma activity. The CPS is a broadly-based group of institutions and individuals whose goal is to increase the understanding of plasmas for non-technical audiences. In addition to the ISEF plasma award, CPS activities include maintaining a website, http://www.plasmacoalition.org; developing educational literature; organizing educational luncheon presentations for Members of Congress and their staffs; and responding to questions about plasmas. In addition, the CPS has begun as effort to examine the plasma content of state education standards with the goal of promoting the adoption of standards with appropriate plasma conten; e.g. are there three or four states of matter. The success of this and other activities depend on the voluntary labor of CPS members and associates. Please send an e-mail to the CPS at CPS@plasmacoalition.org for information if you would like to become involved in spreading the good word about plasmas.

  18. Properties of hot electrons in the Jovian inner magnetosphere deduced from extended observations of the Io Plasma Torus

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Ichiro; Yoshioka, Kazuo; Murakami, Go; Suzuki, Fumiharu; Hikida, Reina; Yamazaki, Atsushi; Kimura, Tomoki; Tsuchiya, Fuminori; Kagitani, Masato; Sakanoi, Takeshi; Uemizu, Kazunori; Tao, Chihiro; Nozawa, Hiromasa; Kasaba, Yasumasa; Fujimoto, Masaki

    2016-11-01

    One of the focal points of interest in Jovian magnetospheric physics is the transport of energy and particles into the inner region. While an explosive energy release event in the midmagnetosphere is manifested as an aurora transient, its connection to the inner part has not been investigated due to sparsity of observations. Here we take the advantage of long-term and quasi-continuous simultaneous monitoring of the polar aurora and the Io Plasma Torus (IPT) located in the inner magnetosphere by Extreme Ultraviolet Spectroscope for Exospheric Dynamics/Hisaki. Studies on temporal characteristics over hours enable us to see slow ( 10 h) coupling between the middle and inner magnetosphere as well as to quantify the temperature of hot electrons in the IPT. We derive parameters that characterize the strong particle acceleration process.

  19. Effect of nearest-neighbor ions on excited ionic states, emission spectra, and line profiles in hot and dense plasmas

    NASA Technical Reports Server (NTRS)

    Salzmann, D.; Stein, J.; Goldberg, I. B.; Pratt, R. H.

    1991-01-01

    The effect of the cylindrical symmetry imposed by the nearest-neighbor ions on the ionic levels and the emission spectra of a Li-like Kr ion immersed in hot and dense plasmas is investigated using the Stein et al. (1989) two-centered model extended to include computations of the line profiles, shifts, and widths, as well as the energy-level mixing and the forbidden transition probabilities. It is shown that the cylindrical symmetry mixes states with different orbital quantum numbers l, particularly for highly excited states, and, thereby, gives rise to forbidden transitions in the emission spectrum. Results are obtained for the variation of the ionic level shifts and mixing coefficients with the distance to the nearest neighbor. Also obtained are representative computed spectra that show the density effects on the spectral line profiles, shifts, and widths, and the forbidden components in the spectrum.

  20. Preface to Special Topic: Plasmas for Medical Applications

    SciTech Connect

    Keidar, Michael; Robert, Eric

    2015-12-15

    Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.

  1. Preface to Special Topic: Plasmas for Medical Applications

    NASA Astrophysics Data System (ADS)

    Keidar, Michael; Robert, Eric

    2015-12-01

    Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells.

  2. A calculational approach to electron impact excitation of ions in hot solar plasmas

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1974-01-01

    The cross section requirements are presented for studying UV and X-ray emission spectra associated with active and flare-produced plasmas in the sun's corona. The general approach to the calculation of the distorted wave approximation problem is also given.

  3. Ion Density Fluctuations in Plasma and Their Effects on Hot Electron Generation

    DTIC Science & Technology

    2002-06-01

    43 LIST OF REFERENCES 1. Lindl, John D., Inertial Confinement Fusion, (Springer-Verlag), New York, NY 1998 2. Jones, W. David... Verdon , C.P., Comments Plasma Phys. Controller Fusion 18, 201 (1997) 8. Estabrook, Kent and Kruer, W.L., Phys. Fluids 26, 1892 (1983) 9. Langdon, A.B

  4. Pseudo-Potentials in Dense and He-like Hot temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Deutsch, Claude; Rahal, Hamid

    2012-10-01

    Extending our former derivations in dense and high temperature plasmas of hydrogenic effective interactions mimiking the Heisenberg uncertainty principle [1,2], we worked out in a canonical ensemble, effective interactions in He-like plasmas where an orbital 1s electron remains strongly tighted to the He-like ions. The plasma electrons are then taken into account through appropriate Slater sums obtained in the most economical hydrogenic extension of the He-like bound and scattered states with angular orbital momentum l<3. Ground states are described by a multi-parametric HF approximation [3]. We thus obtain Diffraction-corrected electron-ion pseudo-potentials taking into account of a polarizable and nonpointlike ion core. Very large enhancements and discrepancies are obtained when they are contrasted to their H-like homologs with ion charge Z=2,10 and 92. These results are of obvious significance for He-like warm dense matter plasmas.Ionization is also considered.[4pt] [1] C. Deutsch, Phys. Lett. A60, 317 (1977)[4pt] [2] C. Deutsch, Y. Furutani and M.M. Gombert, Phys. Rep. 69,86 (1981)[0pt] [3] E. Clementi and C. Roetti, Atomic Data and Nucl. Data Tables, 14,177(1974)

  5. Compact Plasma Accelerator for Micropropulsion Applications

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2001-01-01

    There is a need for a low power, light-weight (compact), high specific impulse electric propulsion device to satisfy mission requirements for microsatellite (1 to 20 kg) class missions. Satisfying these requirements entails addressing the general problem of generating a sufficiently dense plasma within a relatively small volume and then accelerating it. In the work presented here, the feasibility of utilizing a magnetic cusp to generate a dense plasma over small length scales of order 1 mm is investigated. This approach could potentially mitigate scaling issues associated with conventional ion thruster plasma containment schemes. Plume and discharge characteristics were documented using a Faraday probe and a retarding potential analyzer.

  6. Development, diagnostic and applications of radio-frequency plasma reactor

    NASA Astrophysics Data System (ADS)

    Puac, N.

    2008-07-01

    In many areas of the industry, plasma processing of materials is a vital technology. Nonequilibrium plasmas proved to be able to produce chemically reactive species at a low gas temperature while maintaining highly uniform reaction rates over relatively large areas (Makabe and Petrovic 2006). At the same time nonequilibrium plasmas provide means for good and precise control of the properties of active particles that determine the surface modification. Plasma needle is one of the atmospheric pressure sources that can be used for treatment of the living matter which is highly sensitive when it comes to low pressure or high temperatures (above 40 C). Dependent on plasma conditions, several refined cell responses are induced in mammalian cells (Sladek et al. 2005). It appears that plasma treatment may find many biomedical applications. However, there are few data in the literature about plasma effects on plant cells and tissues. So far, only the effect of low pressure plasmas on seeds was investigated. It was shown that short duration pretreatments by non equilibrium low temperature air plasma were stimulative in light induced germination of Paulownia tomentosa seeds (Puac et al. 2005). As membranes of plants have different properties to those of animals and as they show a wide range of properties we have tried to survey some of the effects of typical plasma which is envisaged to be used in biotechnological applications on plant cells. In this paper we will make a comparison between two configurations of plasma needle that we have used in treatment of biological samples (Puac et al. 2006). Difference between these two configurations is in the additional copper ring that we have placed around glass tube at the tip of the needle. We will show some of the electrical characteristics of the plasma needle (with and without additional copper ring) and, also, plasma emission intensity obtained by using fast ICCD camera.

  7. Eddy intrustion of hot plasma into the polar cap and formation of polar-cap arcs

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Gorney, D. J.

    1983-01-01

    Under the simple postulate that multiple large scale detachable magnetospheric convection eddies can exist in the vicinity of the convection reversal boundary and in the polar cap, by Kelvin-Helmholtz instability or otherwise, it is shown that a number of seemingly disconnected plasma and electric field observations in the polar cap can be organized into a theory of magnetosheath and plasmasheet plasma intrusion into the polar cap. Current theory of inverted V structures then predicts existence of similar, but weaker, structures at the eddy convection reversal boundaries in the polar cap. A possible consequence is that the polar cap auroras are natural offshoots from discrete oval arcs and evidently are formed by similar processes. The two arc systems can occassionally produce an optical image in the form of the theta aurora.

  8. Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah

    SciTech Connect

    Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

    1980-02-01

    Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

  9. Numerical Fluid Solutions for Nonlocal Electron Transport in Hot Plasmas: Equivalent Diffusion Versus Nonlocal Source (PREPRINT)

    DTIC Science & Technology

    2010-02-20

    x’ integration takes place within a single grid cell . For these energies, the finite difference 4 approximation is not even qualitatively correct...temperature variation within a few grid cells . However numerical instability occurs on the very shortest spatial scale length, so the background appears...proportional to /5-2 varies over 8 orders of magnitude, and since a laser plasma simulation typically has fewer than 1000 spatial cells , flux cannot be treated

  10. Multichannel reconfigurable measurement system for hot plasma diagnostics based on GEM-2D detector

    NASA Astrophysics Data System (ADS)

    Wojenski, A. J.; Kasprowicz, G.; Pozniak, K. T.; Byszuk, A.; Chernyshova, M.; Czarski, T.; Jablonski, S.; Juszczyk, B.; Zienkiewicz, P.

    2015-12-01

    In the future magnetically confined fusion research reactors (e.g. ITER tokamak), precise determination of the level of the soft X-ray radiation of plasma with temperature above 30 keV (around 350 mln K) will be very important in plasma parameters optimization. This paper presents the first version of a designed spectrography measurement system. The system is already installed at JET tokamak. Based on the experience gained from the project, the new generation of hardware for spectrography measurements, was designed and also described in the paper. The GEM detector readout structure was changed to 2D in order to perform measurements of i.e. laser generated plasma. The hardware structure of the system was redesigned in order to provide large number of high speed input channels. Finally, this paper also covers the issue of new control software, necessary to set-up a complete system of certain complexity and perform data acquisition. The main goal of the project was to develop a new version of the system, which includes upgraded structure and data transmission infrastructure (i.e. handling large number of measurement channels, high sampling rate).

  11. Theory of the large-amplitude plane magnetoacoustic wave propagating transverse to the magnetic field in a hot collisionless plasma. [in astrophysical environments

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1979-01-01

    An exact solution of the kinetic and electromagnetic equations for a large-amplitude plane magnetoacoustic wave propagating transverse to the magnetic field in a hot collisionless plasma is presented. The solution gives simple relations among the magnetic-field strength, density, stress tensor, and plasma velocity, all of which are measurable in the interplanetary plasma. These relations are independent of the electron and ion velocity distributions, subject to certain restrictions on 'high-velocity tails.' The magnetic field of the wave is linearly polarized. The wave steepens to form a shock much as the analogous waves of MHD theory do.

  12. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    SciTech Connect

    Malik, Hitendra K.; Singh, Omveer; Dahiya, Raj P.

    2015-08-28

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.

  13. X-ray Spectral Measurements and Collisional Radiative Modeling of Hot, High-Z Plasmas at the Omega Laser

    SciTech Connect

    May, M J; Schneider, M B; Hansen, S B; Chung, H; Hinkel, D E; Baldis, H A; Constantin, C

    2008-02-20

    M-Band and L-Band Gold spectra between 3 to 5 keV and 8 to 13 keV, respectively, have been recorded by a photometrically calibrated crystal spectrometer. The spectra were emitted from the plasma in the laser deposition region of a 'hot hohlraum'. This is a reduced-scale hohlraum heated with {approx} 9 kJ of 351 nm light in a 1 ns square pulse at the Omega laser. The space- and time-integrated spectra included L-Band line emission from Co-like to Ne-like gold. The three L-Band line features were identified to be the 3s {yields} 2p, 3d{sub 5/2} {yields} 2p{sub 3/2} and 3d{sub 3/2} {yields} 2p{sub 1/2} transitions at {approx}9 keV, {approx}10 keV and {approx}13 keV, respectively. M-Band 5f {yields} 3d, 4d {yields} 3p, and 4p {yields} 3s transition features from Fe-like to P-like gold were also recorded between 3 to 5 keV. Modeling from the radiation-hydrodynamics code LASNEX, the collisional-radiative codes FLYCHK and SCRAM, and the atomic structure code FAC were used to model the plasma and generate simulated spectra for comparison with the recorded spectra. Through these comparisons, we have determined the average electron temperature of the emitting plasma to be {approx} 6.5 keV. The electron temperatures predicted by LASNEX appear to be too large by a factor of about 1.5.

  14. X-ray Spectral Measurements and Collisional Radiative Modeling of Hot, Gold Plasmas at the Omega Laser

    SciTech Connect

    May, M J; Schneider, M B; Hansen, S B; Chung, H; Hinkel, D E; Baldis, H A; Constantin, C

    2008-07-02

    M-Band and L-Band Gold spectra between 3 to 5 keV and 8 to 13 keV, respectively, have been recorded by a photometrically calibrated crystal spectrometer. The spectra were emitted from the plasma in the laser deposition region of a 'hot hohlraum'. This is a reduced-scale hohlraum heated with {approx} 9 kJ of 351 nm light in a 1 ns square pulse at the OMEGA laser. The space- and time-integrated spectra included L-Band line emission from Co-like to Ne-like gold. The three L-Band line features were identified to be the 3s {yields} 2p, 3d{sub 5/2} {yields} 2p{sub 3/2} and 3d{sub 3/2} {yields} 2p{sub 1/2} transitions at {approx}9 keV, {approx}10 keV and {approx}13 keV, respectively. M-Band 5f {yields} 3d, 4d {yields} 3p, and 4p {yields} 3s transition features from Fe-like to P-like gold were also recorded between 3 to 5 keV. Modeling from the radiation-hydrodynamics code LASNEX, the collisional-radiative codes FLYCHK and SCRAM, and the atomic structure code FAC were used to model the plasma and generate simulated spectra for comparison with the recorded spectra. Through these comparisons, we have determined the average electron temperature of the emitting plasma to be between 6.0 and 6.5 keV. The electron temperatures predicted by LASNEX appear to be too large by a factor of about 1.5.

  15. Medical applications of non-thermal atmospheric pressure plasma

    PubMed Central

    Tanaka, Hiromasa; Hori, Masaru

    2017-01-01

    An innovative approach for producing reactive oxygen and nitrogen species is the use of non-thermal atmospheric pressure plasma. The technique has been applied in a wide variety of fields ranging from the micro-fabrication of electric devices to the treatment of disease. Although non-thermal atmospheric pressure plasmas have been shown to be clinically beneficial for wound healing, blood coagulation, and cancer treatment, the underlying molecular mechanisms are poorly understood. In this review, we describe the current progress in plasma medicine, with a particular emphasis on plasma-activated medium (PAM), which is a solution that is irradiated with a plasma and has broadened the applications of plasmas in medicine. PMID:28163379

  16. Dust trajectories and diagnostic applications beyond strongly coupled dusty plasmas

    SciTech Connect

    Wang Zhehui; Ticos, Catalin M.; Wurden, Glen A.

    2007-10-15

    Plasma interaction with dust is of growing interest for a number of reasons. On the one hand, dusty plasma research has become one of the most vibrant branches of plasma science. On the other hand, substantially less is known about dust dynamics outside the laboratory strongly coupled dusty-plasma regime, which typically corresponds to 10{sup 15} m{sup -3} electron density with ions at room temperature. Dust dynamics is also important to magnetic fusion because of concerns about safety and potential dust contamination of the fusion core. Dust trajectories are measured under two plasma conditions, both of which have larger densities and hotter ions than in typical dusty plasmas. Plasma-flow drag force, dominating over other forces in flowing plasmas, can explain the dust motion. In addition, quantitative understanding of dust trajectories is the basis for diagnostic applications using dust. Observation of hypervelocity dust in laboratory enables dust as diagnostic tool (hypervelocity dust injection) in magnetic fusion. In colder plasmas ({approx}10 eV or less), dust with known physical and chemical properties can be used as microparticle tracers to measure both the magnitude and directions of flows in plasmas with good spatial resolution as the microparticle tracer velocimetry.

  17. The Jupiter hot plasma torus - Observed electron temperature and energy flows

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1981-01-01

    The detection of the optical emission /O I/ 6300 A (8 + or - 4 R) and /S III/ 6312 A (48 + or - 5 R) is reported. It is noted that these emissions are indicators of the ion source morphology and the plasma physical state and that the S III emitters have a kinetic temperature of approximately 10 to the 6th K. When combined with observations of UV lines from the same species, the optical measurements separately imply effective electron temperatures for radiative processes that are mutually consistent (approximately 50,000 K).

  18. Applications of plasma core reactors to terrestrial energy systems

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  19. Physics and medical applications of cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2013-09-01

    Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Varieties of novel plasma diagnostic techniques were applied in a quest to understand physics of cold plasmas. In particular it was established that the streamer head charge is about 108 electrons, the electrical field in the head vicinity is about 107 V/m, and the electron density of the streamer column is about 1019 m3. We have demonstrated the efficacy of cold plasma in a pre-clinical model of various cancer types (lung, bladder, breast, head, neck, brain and skin). Both in-vitro andin-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration velocity can have important implications in cancer treatment by localizing the affected area of the tissue and by decreasing metastasic development. In addition, cold plasma treatment has affected the cell cycle of cancer cells. In particular, cold plasmainduces a 2-fold increase in cells at the G2/M-checkpoint in both papilloma and carcinoma cells at ~24 hours after treatment, while normal epithelial cells (WTK) did not show significant differences. It was shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated. We investigated the production of reactive oxygen species (ROS) with cold plasma treatment as a potential mechanism for the tumor ablation observed.

  20. Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe

    NASA Astrophysics Data System (ADS)

    Escobedo, Miguel A.

    2017-03-01

    There are many interesting problems in heavy-ion collisions and in cosmology that involve the interaction of a heavy particle with a medium. An example is the dissociation of heavy quarkonium seen in heavy-ion collisions. This was believed to be due to the screening of chromoelectric fields that prevents the heavy quarks from binding, however in the last years several perturbative and lattice computations have pointed out to the possibility that dissociation is due to the finite lifetime of a quarkonium state inside the medium. Regarding cosmology, the study of the behavior of heavy Majorana neutrinos in a hot medium is important to understand if this model can explain the origin of dark matter and the baryon asymmetry. A very convenient way of studying these problems is with the use of non-relativistic effective field theories (EFTs), this allows to make the computations in a more systematic way by defining a more suitable power counting and making it more difficult to miss necessary resummations. In this proceedings I will review the most important results obtained by applying the EFT formalism to the study of quarkonium suppression and Majorana neutrinos, I will also discuss how combining an EFT called potential non-relativistic QCD (pNRQCD) with concepts coming from the field of open quantum systems it is possible to understand how the population of the different quarkonium states evolve with time inside a thermal medium.

  1. On the dynamics of hot air plasmas related to lightning discharges: 1. Gas dynamics

    NASA Astrophysics Data System (ADS)

    Ripoll, Jean-François; Zinn, John; Jeffery, Christopher A.; Colestock, Patrick L.

    2014-08-01

    In this paper, we first study the dynamics of hot shocks in air in cylindrical geometry coupled to multiband radiation transport and detailed air chemistry. The wide energy and length scale ranges which are covered herein includes and exceeds the ones of first and subsequent return strokes happening during lightning discharges. An emphasis is put on the NOx production and the optical power emitted by strong shocks as the ones generated by Joule heating of the air from intense current flows. The production rate of NOx, which is useful for atmospheric global modeling, is found to be between 4.5 × 1016 and 8.6 × 1016 molecules/J for all computed cases, which is in agreement with the literature. Two different radiation transport methods are used to characterize the variability of the results according to the radiation transport method. With the exact radiation solver, we show that between 15 and 40% of the energy is lost by radiation, with a percentage between 20 and 25% for averaged lightning energies. The maximal visible peak is between 7 × 108 W/m and 3 × 107 W/m obtained for, respectively, a 19 kJ/cm and a 28 J/cm energy input. The mean radiated powers in the visible range are found between 9 × 106 W/m and 2 × 105 W/m for the energies just mentioned. We discuss the agreement of these values with previous studies.

  2. Development and application of constitutive equation for the hot extrusion of 7A04 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yanhong; Cui, Zhenshan; Guo, Cheng

    2013-05-01

    The high-temperature deformation behavior of 7A04 aluminum alloy was investigated by hot compression tests in the temperature range of 300 - 450° and the strain rate range of 0.01-10 s-1. The true stress - true strain curves show that the stress level decreases with increasing temperature and decreasing strain rate. A modified JC model was developed by means of fitting the experimental data and optimizing the material constants. Then, based on the established constitutive equation of 7A04, the hot extrusion process of fuze shell was analyzed using DEFORM-3D and the flow law of metal was obtained. Finally, the validity of this research results was proved by practice, which provides some references for engineering application.

  3. Spectral densities for hot QCD plasmas in a leading-log approximation

    SciTech Connect

    Hong, Juhee; Teaney, Derek

    2010-10-15

    We compute the spectral densities of T{sup {mu}{nu}}and J{sup {mu}}in high-temperature QCD plasmas at small frequency and momentum, {omega},k{approx}g{sup 4}T. The leading log Boltzmann equation is reformulated as a Fokker-Planck equation with nontrivial boundary conditions, and the resulting partial differential equation is solved numerically in momentum space. The spectral densities of the current, shear, sound, and bulk channels exhibit a smooth transition from free-streaming quasiparticles to ideal hydrodynamics. This transition is analyzed with conformal and nonconformal second-order hydrodynamics and a second-order diffusion equation. We determine all of the second-order transport coefficients that characterize the linear response in the hydrodynamic regime.

  4. K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections

    NASA Astrophysics Data System (ADS)

    Pain, J.-C.; Gilleron, F.; Comet, M.; Gilles, D.

    2017-03-01

    The broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,…) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy. The approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates and the relativistic fine structure of Lyman lines is included by diagonalizing the Hamiltonian matrix associated to quantum states having the same principal quantum number n. The SCO-RCG code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satellite lines (such as Li-like 1snℓn'ℓ' - 1s2nℓ, Be-like, etc.). Atomic structure calculations have reached levels of accuracy which require evaluation of Breit interaction and many-electron quantum electro-dynamics (QED) contributions. Although much work was done for QED effects (self-energy and vacuum polarization) in hydrogenic atoms, the case of an arbitrary number of electrons is more complicated. Since exact analytic solutions do not exist, a number of heuristic methods have been used to approximate the screening of additional electrons in the self-energy part. We compare different ways of including such effects in atomic-structure codes (Slater-Condon, Multi-Configuration Dirac-Fock, etc.).

  5. Heliosheath ENA images by Cassini/INCA and in-situ hot plasma ion measurements by Voyagers

    NASA Astrophysics Data System (ADS)

    Krimigis, Stamatios; Roelof, Edmond; Mitchell, Donald; Decker, Robert; Dialynas, Konstantinos

    2016-07-01

    The advent of Energetic Neutral Atom (ENA) imaging, (the result of charge-exchange with energetic ions), has revealed the global nature of the heliosheath (HS) at both high ( > 5 keV, Cassini from 10 AU) and low (< 6 keV, IBEX from 1 AU) energies. Voyager 1 (V1) entered the HS in December 2004 at 94 AU and crossed the heliopause (HP) in August 2012 at 121.6 AU, while Voyager 2 (V2) has been in the HS since August 2007. Thus the properties of the HS along the V1, V2 trajectories are now well-established. Portions of the global HS have been imaged by the Cassini/ INCA (Ion and Neutral CAmera) since 2003 with a full image available since 2009, when IBEX global imaging observations also became available. The presence of the two Voyagers measuring ions locally in the HS contemporaneously with INCA global imaging through ENA in overlapping energy bands provides a powerful tool for examining the spatial, temporal, and spectral evolution of the source hot plasma ions and the global variability of the neutral component. Some of the key findings from the Voyagers and INCA measurements are as follows: (a) The HS contains a hot plasma population that carries a substantial part (30-50%) of the total pressure at E > 5 keV, the rest residing below that range, resulting in a beta (particle/magnetic pressure) always > 1, typically > 10. (b) The width of the HS in the direction of V1 is ˜~ 30 AU, but is thought to be larger (40-70 AU) in the southern ecliptic where V2 currently travels. (c) The ENA intensities at E > 5 keV exhibit a correlation with the solar cycle (SC) over the period 2003 to 2014, with minimum intensities in the anti-nose direction observed ˜~ 1.5 yrs after solar minimum followed by a recovery thereafter, and (d) The in situ ion measurements at V2 within the HS also show a similar SC dependence. The totality of the observations, together with the near-contemporaneous variability in intensities of ions in situ in the HS and ENA in the inner heliosphere suggests

  6. Plasma quench technology for natural gas conversion applications

    SciTech Connect

    Detering, B.A.; Kong, P.C.; Thomas, C.P.

    1995-07-01

    This paper describes the experimental demonstration of a process for direct conversion of methane to acetylene in a thermal plasma. The process utilizes a thermal plasma to dissociate methane and form an equilibrium mixture of acetylene followed by a supersonic expansion of the hot gas to preserve the produced acetylene in high yield. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogen which persists throughout the expansion process. The presence of atomic hydrogen shifts the equilibrium composition by inhibiting complete pyrolysis of methane and acetylene to solid carbon. This process has the potential to reduce the cost of producing acetylene from natural gas. Acetylene and hydrogen produced by this process could be used directly as industrial gases, building blocks for synthesis of industrial chemicals, or oligomerized to long chain liquid hydrocarbons for use as fuels. This process produces hydrogen and ultrafine carbon black in addition to acetylene.

  7. Plasma Functionalized Nanocarbon Materials and Their Applications

    NASA Astrophysics Data System (ADS)

    Li, Yongfeng

    2015-09-01

    The plasma treatment method is important for modifying carbon nanomaterials since it has the advantage of being nonpolluting. It has the possibility of scaling up to produce large quantities necessary for commercial use. The liquid-related plasma is especially advantageous in avoiding use of toxic stabilizers and reducing agents during the nanoparticle formation process. In this work, both gas phase and liquid phase plasmas are used to modify nanocarbon materials including graphene and carbon nanotubes. The synthesis of metal nanoparticles functionalized nanocarbon materials including carbon nanotubes and graphene has been realized by an environmentally-friendly gas-liquid interfacial method. Furthermore, the new catalysts based on hybrid of nanocarbon materials and metal nanoparticles have been proved to be stable and high catalytic performance in organic molecule transformation reactions. In addition, the modification of few-layer graphene grown by chemical vapour deposition via the nitrogen plasma ion irradiation has been performed, and the modified graphene sheets as counter electrodes in bifacial dye-sensitized solar cells exhibit high performance.

  8. Novel applications of atmospheric pressure plasma on textile materials

    NASA Astrophysics Data System (ADS)

    Cornelius, Carrie Elizabeth

    Various applications of atmospheric pressure plasma are investigated in conjunction with polymeric materials including paper, polypropylene non-woven fabric, and cotton. The effect of plasma on bulk and surface properties is examined by treating both cellulosic pulp and prefabricated paper with various plasma-gas compositions. After treatment, pulp is processed into paper and the properties are compared. The method of pulp preparation is found to be more significant than the plasma, but differences in density, strength, and surface roughness are apparent for the pulp vs. paper plasma treatments. The plasma is also used to remove sizes of PVA and starch from poly/cotton and cotton fabric respectively. In both cases plasma successfully removes a significant amount of size, but complete size removal is not achieved. Subsequent washes (PVA) or scouring (cotton) to remove the size are less successful than a control, suggesting the plasma is crosslinking the size that is not etched away. However, at short durations in cold water using an oxygen plasma, slightly more PVA is removed than with a control. For the starch sized samples, plasma and scouring are never as successful at removing starch as a conventional enzyme, but plasma improves dyeability without need for scouring. Plasma is also used to graft chemicals to the surface of polypropylene and cotton fabric. HTCC, an antimicrobial is grafted to polypropylene with successful grafting indicated by x-ray photoemission spectroscopy (XPS), dye tests, and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the grafted samples is also characterized. 3ATAC, a vinyl monomer is also grafted to polypropylene and to cotton. Additives including Mohr's salt, potassium persulfate, and diacrylate are assessed to increase yield. Successful grafting of 3ATAC is confirmed by XPS and dye testing. A combination of all three additives is identified as optimum for maximizing graft yield.

  9. Plasma Liner Development for MTF Applications: A Status Report

    NASA Technical Reports Server (NTRS)

    Eskridge, R. E.; Thio, Y. F.; Lee, M.; Martin, A.; Smith, J. W.; Griffin, S. T.; Schafer, Charles (Technical Monitor)

    2001-01-01

    An experimental plasma gun for Magnetic Target Fusion (MTF) applications under development at the NASA Marshall Space Flight Center is described. This gun has been tested experimentally and plasma jet velocities of approximately 50 km/sec have been obtained. The plasma jet structure has been photographed with 10 ns exposure times to reveal a stable and repeatable plasma structure. Data for velocity profile information has been obtained using light pipes embedded in the gun walls to record the plasma transit at various barrel locations. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter has been characterized and future work for second generation "ultra-low jitter" gun development is identified.

  10. Compact plasma focus devices: Flexible laboratory sources for applications

    SciTech Connect

    Lebert, R.; Engel, A.; Bergmann, K.; Treichel, O.; Gavrilescu, C.; Neff, W.

    1997-05-05

    Small pinch plasma devices are intense sources of pulsed XUV-radiation. Because of their low costs and their compact sizes pinch plasmas seem well suited to supplement research activities based on synchrotrons. With correct optimisation, both continuous radiation and narrowband line radiation can be tailored for specific applications. For the special demand of optimising narrowband emission from these plasmas the scaling of K-shell line emission of intermediate atomic number pinch plasmas with respect to device parameters has been studied. Scaling laws, especially taking into account the transient behaviour of the pinch plasma, give design criteria. Investigations of the transition between column and micropinch mode offer predictable access to shorter wavelengths and smaller source sizes. Results on proximity x-ray lithography, imaging and contact x-ray microscopy, x-ray fluorescence (XFA) microscopy and photo-electron spectroscopy (XPS) were achieved.

  11. Plasma upflows and microwave emission in hot supra-arcade structure associated with AN M1.6 limb flare

    SciTech Connect

    Kim, S.; Shibasaki, K.; Cho, K.-S.

    2014-04-20

    We have investigated a supra-arcade structure associated with an M1.6 flare, which occurred on the south-east limb on 2010 November 4. It is observed in EUV with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, microwaves at 17 and 34 GHz with the Nobeyama Radioheliograph (NoRH), and soft X-rays of 8-20 keV with RHESSI. Interestingly, we found exceptional properties of the supra-arcade thermal plasma from the AIA 131 Å and the NoRH: (1) plasma upflows along large coronal loops and (2) enhancing microwave emission. RHESSI detected two soft X-ray sources, a broad one in the middle of the supra-arcade structure and a bright one just above the flare-arcade. We estimated the number density and thermal energy for these two source regions during the decay phase of the flare. In the supra-arcade source, we found that there were increases of the thermal energy and the density at the early and last stages, respectively. On the contrary, the density and thermal energy of the source on the top of the flare-arcade decreases throughout. The observed upflows imply that there is continuous energy supply into the supra-arcade structure from below during the decay phase of the flare. It is hard to explain by the standard flare model in which the energy release site is located high in the corona. Thus, we suggest that a potential candidate of the energy source for the hot supra-arcade structure is the flare-arcade, which has exhibited a predominant emission throughout.

  12. Dust Accelerators And Their Applications In High-Temperature Plasmas

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui

    2011-06-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Although much effort has been devoted to getting rid of the dust nuisance, there are instances where a controlled use of dust can be beneficial. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  13. Dust accelerators and their applications in high-temperature plasmas

    SciTech Connect

    Wang, Zhehui; Ticos, Catakin M

    2010-01-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Much effort has been devoted to gening rid of the dust nuisance. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  14. Hot Collionsal Plasma Emissions in the Ultra-compact Binary Pulsar 4U 1626-67

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Chakrabarty, Deepto; Marshall, Herman

    2016-07-01

    4U 1626-67 is an ultra-compact binary pulsar with a pulse period of 7.7 sec and an orbital period of 40 min. Its X-ray spectrum varies distinctively before and after torque reversal episodes. 4U 1626-67 is a peculiar ultra-compact binary in that it not only truncates its accretion disk at the magnetospheric radius, but also emits Ne and O Doppler X-ray lines, The nature of these lines have remained quite mysterious but we can now show that these lines originate from a coronal type plasma with temperatures up to 10 Million degrees located at the magnetospheric radius. The disk line fits constrain the source distance to about 5 kpc. We also observe consistent variations in the disk lines before and after torque reversal. The observed disk lines constrain the angle of inclination to 38 degrees, which is is significantly larger than previously assumed. We discuss these findings in the context of accreting X-ray binaries and binary pulsar properties.

  15. Heavy-quark transport coefficients in a hot viscous quark-gluon plasma medium

    NASA Astrophysics Data System (ADS)

    Das, Santosh K.; Chandra, Vinod; Alam, Jan-e.

    2014-01-01

    Heavy-quark (HQ) transport coefficients have been estimated for a viscous quark-gluon plasma (QGP) medium, utilizing a recently proposed quasi-particle description based on a realistic QGP equation of state (EoS). Interactions entering through the EoS significantly suppress the temperature dependence of the drag coefficient of QGP, compared to those of an ideal relativistic system of quarks and gluons. The inclusion of shear and bulk viscosities through the corrections to the thermal phase space factors of the bath particles alters the magnitude of the drag coefficient; the enhancement is significant at lower temperatures. In the competition between the effects of the EoS and dissipative corrections through phase space factors, the former eventually dictate how the drag coefficient would behave as a function of temperature and how much it quantitatively digresses from the ideal case. The observations suggest a significant impact of both the realistic EoS and the viscosities on the HQs transport at Relativistic Heavy Ion Collider and Large Hadron Collider collision energies.

  16. Equation of state for hot quark-gluon plasma transitions to hadrons with full QCD potential

    NASA Astrophysics Data System (ADS)

    Sheikholeslami-Sabzevari, Bijan

    2002-05-01

    A practical method based on Mayer's cluster expansion to calculate critical values for a quark-gluon plasma (QGP) phase transition to hadrons is represented. It can be applied to a high-temperature QGP for clustering of quarks to mesons and baryons. The potential used is the Cornell potential, i.e., a potential containing both confining and gluon exchange terms. Debye screening effects are included. An equation of state (EOS) for hadron production is found by analytical methods, which is valid near the critical point. The example of the formation of J/ψ and Υ is recalculated. It is shown that in the range of temperatures available by today's accelerators, the latter particles are suppressed. This is further confirmation for heavy quarkonia suppression and, hence, for a signature of a QGP. The EOS presented here also shows that in future colliders there will be no heavy quarkonia production by the mechanism of phase transition. Hence, if there will be heavy quarkonia production, it must be based on some other mechanisms, perhaps on the basis of some recently suggested possibilities.

  17. Laser produced plasma diagnostics by cavity ringdown spectroscopy and applications

    SciTech Connect

    Milosevic, S.

    2012-05-25

    Laser-produced plasmas have many applications for which detailed characterization of the plume is requested. Cavity ring-down spectroscopy is a versatile absorption method which provides data on the plume and its surroundings, with spatial and temporal resolution. The measured absorption line shapes contain information about angular and velocity distributions within the plume. In various plasmas we have observed molecules or metastable atoms which were not present in the emission spectra.

  18. Near-infrared spectroscopy for burning plasma diagnostic applications.

    PubMed

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  19. Dynamics of a beam of hot electrons propagating through a plasma in the presence of nonthermal electrons

    SciTech Connect

    Khalilpour, H.; Moslehi-Fard, M.; Foroutan, G.; Li, B.; Robinson, P. A.

    2009-07-15

    The dynamics of a beam of hot electrons traveling through a cold plasma and the generation of Langmuir waves are investigated in the presence of a nonthermal tail of electrons in the background distribution function. Using quasilinear simulations, it is shown that in the presence of the nonthermal electrons, the relaxation of the beam distribution function in velocity space is retarded and the Langmuir waves are strongly damped at low velocities. The average velocity of beam propagation is almost constant but its magnitude is larger in the presence of nonthermal electrons than their absence. It is found that the self-similarity of the system is preserved in the presence of nonthermal electrons. The effects of nonthermal electrons on the evolution of gas-dynamical parameters of the beam, including the height of plateau in the beam distribution function, its upper and lower velocity boundaries, and beam velocity width, are also studied. It is found that initially the values of the upper and lower velocity boundaries are almost unaltered, but at large times the lower (upper) boundary velocity is larger (smaller) in the presence of nonthermal electrons than without the nonthermal electrons.

  20. Carbon nanofiber reinforced aluminum matrix composite fabricated by combined process of spark plasma sintering and hot extrusion.

    PubMed

    Kwon, Hansang; Kurita, Hiroki; Leparoux, Marc; Kawasaki, Akira

    2011-05-01

    Spark plasma sintering and hot extrusion processes have been employed for fabricating carbon nanofiber (CNF)-aluminum (Al) matrix bulk materials. The Al powder and the CNFs were mixed in a mixing medium of natural rubber. The CNFs were well dispersed onto the Al particles. After removal of the natural rubber, the Al-CNF mixture powders were highly densified. From the microstructural viewpoint, the composite materials were observed by optical, field-emission scanning electron, and high-resolution transmission electron microscopies. The CNFs were found to be located on every grain boundary and aligned with the extrusion direction of the Al-CNF bulk materials. Some Al carbides (Al4C3) were also observed at the surface of the CNFs. This carbide was created by a reaction between the Al and the disordered CNF. The CNFs and the formation of Al4C3 play an important role in the enhancement of the mechanical properties of the Al-CNF bulk material. The CNFs can also be used for engineering reinforcement of other matrix materials such as ceramics, polymers and more complex matrices.

  1. Hot Workability of CuZr-Based Shape Memory Alloys for Potential High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Biffi, Carlo Alberto; Tuissi, Ausonio

    2014-07-01

    The research on high-temperature shape memory alloys has been growing because of the interest of several potential industrial fields, such as automotive, aerospace, mechanical, and control systems. One suitable candidate is given by the CuZr system, because of its relative low price in comparison with others, like the NiTi-based one. In this context, the goal of this work is the study of hot workability of some CuZr-based shape memory alloys. In particular, this study addresses on the effect of hot rolling process on the metallurgical and calorimetric properties of the CuZr system. The addition of some alloying elements (Cr, Co, Ni, and Ti) is taken into account and their effect is also put in comparison with each other. The alloys were produced by means of an arc melting furnace in inert atmosphere under the shape of cigars. Due to the high reactivity of these alloys at high temperature, the cigars were sealed in a stainless steel can before the processing and two different procedures of hot rolling were tested. The characterization of the rolled alloys is performed using discrete scanning calorimetry in terms of evolution of the martensitic transformation and scanning electron microscopy for the microstructural investigations. Additionally, preliminary tests of laser interaction has been also proposed on the alloy more interesting for potential applications, characterized by high transformation temperatures and its good thermal stability.

  2. Evaluation of a hot-wire respiratory flowmeter for clinical applicability.

    PubMed

    Yoshiya, I; Shimada, Y; Tanaka, K

    1979-11-01

    A hot-wire flowmeter was evaluated for clinical applicability. 1) Calibration with a syringe could be done if emptying duration was 1-15 s. 2) Outputs linearly decreased with decreasing concentration of N2 in O2. Outputs with CO2 in O2 and N2O in O2 represented nonlinear convex relationships with varying concentrations of CO2 and N2O. Correction for each gas mixture to be measured is required. 3) Outputs linearly decreased with decreasing barometric pressure. 4) Stability assessed with a piston respirator was excellent (within +/- 2% of syringe volume) after 15 min warmup time. However, daily calibrations are recommended in clinical situations. 5) Nebulization, if not excessive, was acceptable if the expired gas was measured at the mouth. 6) Hot-wire burning, which occurred when it was partially in contact with materials whose specific heat differed with air, was successfully protected with a simple shutoff circuit. 7) The possibility of producing nitrogen oxides by the catalytic action of the platinum hot-wire was denied by colorimetric determination. Interchangeability and sterilizability of transducers and improved mechanical strength with platinum-rhodium alloy are also discussed.

  3. Radiative opacities and configuration interaction effects of hot iron plasma using a detailed term accounting model

    NASA Astrophysics Data System (ADS)

    Jin, Fengtao; Zeng, Jiaolong; Yuan, Jianmin

    2003-12-01

    We have calculated the radiative opacities of iron plasma in local thermodynamic equilibrium using a detailed term accounting model. The extensive atomic data are obtained by multiconfiguration Hartree-Fock (MCHF) method, with Breit-Pauli relativistic corrections. Extensive configuration interaction (CI) has been included based on LS coupling to obtain energy levels and the bound-bound transition cross sections. A detailed configuration accounting model is applied to evaluate the bound-free absorption cross sections. We simulate two experimental transmission spectra [G. Winhart et al., Phys. Rev. E 53, R1332 (1996); P. T. Springer et al., J. Quant. Spectrosc. Radiat. Transf. 58, 927 (1997)] to verify our calculation model, one is at a temperature of 22 eV and a density of 10-2 g/cm3 and the other is at a temperature of 20 eV and a lower density of 10-4 g/cm3. It is shown that the strong CI can effectively change the oscillator strengths in contrast to the single configuration HF method. For both of the two simulated transmission spectra good agreement is obtained between the present MCHF results and the experimental data. Spectrally resolved opacities and Planck and Rosseland mean opacities are also calculated. For the isothermal sequence of T=20 eV, when the density decreases from 10-2 to 10-5 g/cm3, the linewidth also decreases so that the iron transition arrays show more discrete line structures and the linewidth becomes very important to the Rosseland mean opacity.

  4. Development and Ground-Test Validation of Fiber Optic Sensor Attachment Techniques for Hot Structures Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Hudson, Larry D.; Richards, W. Lance

    2005-01-01

    Fiber Optic Strain Measurements: a) Successfully attached silica fiber optic sensors to both metallics and composites; b) Accomplished valid EFPI strain measurements to 1850 F; c) Successfully attached EFPI sensors to large scale hot-structures; and d) Attached and thermally validated FBG bond and epsilon(sub app). Future Development a) Improve characterization of sensors on C-C and C-SiC substrates; b) Apply application to other composites such as SiC-SiC; c) Assist development of interferometer based Sapphire sensor currently being conducted under a Phase II SBIR; and d) Complete combined thermal/mechanical testing of FBG on composite substrates in controlled laboratory environment.

  5. Experiences of the Application of Hot Gas Filtration to Industrial Processes

    SciTech Connect

    Lloyd, B.T.

    2002-09-18

    Hot Gas Filtration (HGF) is defined as the dry scrubbing of gaseous process effluent above 250 degrees. The potential applications for this technology can be found in Atmospheric Pollution Control (APC) and In-Line Equipment Protection (ILETP). In recent years novel rigid refractory filter media have emerged with several advantages over conventional fabric bag filters and other particulate arrestment systems e.g. electrostatic precipitators. A study has been made of the effect of a wide range of operational conditions, including gas volume and velocity, temperature, particle size distribution, and organic/moisture content, in real process situations on filter elements performance and life expectancy.

  6. Giant magnetic fields and relativistic electron transport in dense, hot plasmas created on solid targets

    NASA Astrophysics Data System (ADS)

    Gattamraju, Ravindra Kumar; Shaikh, Moniruzzaman; Lad, Amit; Sarkar, Deep; Jana, Kamalesh; Dey, Indranuj

    2016-10-01

    Intense,femtosecond laser pulses generate relativistic electron pulses,important for many applications. In this paper, we present a femtosecond time-resolved and micrometer space resolved giant magnetic fields generated by 1019 W cm-2, 800 nm, 30 fs, high intensity contrast laser pulses in using pump-probe Cotton Mouton polarimetry. The space and time resolved maps of the magnetic fields at the front and rear of targets reveal turbulence in the magnetic fields. We also present data from shadowgraphy and Cherenkov emission along with model calculations to build up a picture of the transport process. GRK thanks J C Bose Fellowship Grant JCB-37/2010 for partial support.

  7. A proposed technique for creation and detection of hot electron ionization and gain effects in a laser-produced tin plasma

    NASA Astrophysics Data System (ADS)

    Apruzese, J. P.; Davis, J.

    1984-07-01

    It has recently been demonstrated that suprathermal electrons, while deleterious to laser fusion, may have significant and beneficial effects in plasma ionization and promoting population inversions in neon-like ions. This report considers experimental demonstration of these effects. Using linearly focused and aligned beams, a series of shots with planar in tin targets (Z=50) is proposed. At irradiances of approx. = 1-4 X 10 to the 14th power W 1/cm, both the energies and numbers of hot electrons produced by a 1.05 micron laser beam should be appropriate for substantial enhancement of gain in the 3s-3p transition of neon-like tin at 118.2A. If possible a quiescent plasma should be prepared with a 0.35 micron beam, which would be followed by a 1.05 micron pulse to create a burst of hot electrons at 4-5 keV to pump the upper leasing state.

  8. Formation of Imploding Plasma Liners for HEDP and MIF Application

    SciTech Connect

    Witherspoon, F. Douglas; Case, Andrew; Brockington, Samuel; Messer, Sarah; Bomgardner, Richard; Phillips, Mike; Wu, Linchun; Elton, Ray

    2014-11-11

    Plasma jets with high density and velocity have a number of important applications in fusion energy and elsewhere, including plasma refueling, disruption mitigation in tokamaks, magnetized target fusion, injection of momentum into centrifugally confined mirrors, plasma thrusters, and high energy density plasmas (HEDP). In Magneto-Inertial Fusion (MIF), for example, an imploding material liner is used to compress a magnetized plasma to fusion conditions and to confine the resulting burning plasma inertially to obtain the necessary energy gain. The imploding shell may be solid, liquid, gaseous, or a combination of these states. The presence of the magnetic field in the target plasma suppresses thermal transport to the plasma shell, thus lowering the imploding power needed to compress the target to fusion conditions. This allows the required imploding momentum flux to be generated electromagnetically using off-the-shelf pulsed power technology. Practical schemes for standoff delivery of the imploding momentum flux are required and are open topics for research. One approach for accomplishing this, called plasma jet driven magneto-inertial fusion (PJMIF), uses a spherical array of pulsed plasma guns to create a spherically imploding shell of very high velocity, high momentum flux plasma. This approach requires development of plasma jet accelerators capable of achieving velocities of 50-200 km/s with very precise timing and density profiles, and with high total mass and density. Low-Z plasma jets would require the higher velocities, whereas very dense high-Z plasma shells could achieve the goal at velocities of only 50-100 km/s. In this report, we describe our work to develop the pulsed plasma gun technology needed for an experimental scientific exploration of the PJMIF concept, and also for the other applications mentioned earlier. The initial goal of a few hundred of hydrogen at 200 km/s was eventually replaced with accelerating 8000 μg of argon or xenon to 50 km

  9. Novel application of plasma treatment for pharmaceutical and biomedical engineering.

    PubMed

    Kuzuya, Masayuki; Sasai, Yasushi; Kondo, Shin-Ichi; Yamauchi, Yukinori

    2009-06-01

    The nature of plasma-induced surface radicals formed on a variety of organic polymers has been studied by electron spin resonance (ESR), making it possible to provide a sound basis for future experimental design of polymer surface processing using plasma treatment. On the basis of the findings from such studies, several novel bio-applications in the field of drug- and biomedical- engineering have been developed. Applications for drug engineering include the preparation of reservoir-type drug delivery system (DDS) of sustained- and delayed-release, and floating drug delivery system (FDDS) possessing gastric retention capabilities, followed by preparation of "Patient-Tailored DDS". Furthermore, the preparation of composite powders applicable to matrix-type DDS was developed by making a mechanical application to the surface radical-containing polymer powders with drug powders. In applications for biomedical engineering, the novel method to introduce the durable surface hydrophilicity and lubricity on hydrophobic biomedical polymers was developed by plasma-assisted immobilization of carboxyl group-containing polymer on the polymer substrate. The surfaces thus prepared were further used for the covalent immobilization of oligo-nucleotides (DNA) onto the polymer surfaces applicable to constructing DNA diagnosis system, and also plasma-assisted preparation of functionalized chemo-embolic agent of vinyl alcohol-sodium acrylate copolymer (PVA- PAANa).

  10. Topics in high voltage pulsed power plasma devices and applications

    NASA Astrophysics Data System (ADS)

    Chen, Hao

    Pulsed power technology is one of the tools that is used by scientists and engineers nowadays to produce gas plasmas. The transient ultra high power is able to provide a huge pulse of energy which is sometimes greater than the ionization energy of the gas, and therefore separates the ions and electrons to form the plasma. Sometimes, the pulsed power components themselves are plasma devices. For example, the gas type switches can "turn on" the circuit by creating the plasma channel between the switch electrodes. Mini Back Lighted Thyratron, or as we call it, mini-BLT, is one of these gas type plasma switches. The development of the reduced size and weight "mini-BLT" is presented in this dissertation. Based on the operation characteristics testing of the mini-BLT, suggestions of optimizing the design of the switch are proposed. All the factors such as the geometry of the hollow electrodes and switch housing, the gas condition, the optical triggering source, etc. are necessary to consider when we design and operate the mini-BLT. By reducing the diameter of the cylindrical gas path between the electrodes in the BLT, a novel high density plasma source is developed, producing the plasma in the "squeezed" capillary. The pulsed power generator, of course, is inevitably used to provide the ionization energy for hydrogen gas sealed in the capillary. Plasma diagnostics are necessarily analyzed and presented in detail to properly complete and understand the capillary plasma. This high density plasma source (1019 cm-3) has the potential applications in the plasma wakefield accelerator. The resonant oscillation behavior of the particles in plasmas allows for dynamically generated accelerating electric fields that have orders of magnitude larger than those available in the conventional RF accelerators. Finally, the solid state switches are introduced as a comparison to the gas type switch. Pulsed power circuit topologies such as the Marx Bank, magnetic pulse compression and diode

  11. Hinode/EIS Spectroscopic Validation of Very Hot Plasma Imaged with the Solar Dynamics Observatory in Non-flaring Active Region Cores

    NASA Astrophysics Data System (ADS)

    Testa, Paola; Reale, Fabio

    2012-05-01

    We use coronal imaging observations with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), and Hinode/Extreme-ultraviolet Imaging Spectrometer (EIS) spectral data to explore the potential of narrowband EUV imaging data for diagnosing the presence of hot (T >~ 5 MK) coronal plasma in active regions. We analyze observations of two active regions (AR 11281, AR 11289) with simultaneous AIA imaging and EIS spectral data, including the Ca XVII line (at 192.8 Å), which is one of the few lines in the EIS spectral bands sensitive to hot coronal plasma even outside flares. After careful co-alignment of the imaging and spectral data, we compare the morphology in a three-color image combining the 171, 335, and 94 Å AIA spectral bands, with the image obtained for Ca XVII emission from the analysis of EIS spectra. We find that in the selected active regions the Ca XVII emission is strong only in very limited areas, showing striking similarities with the features bright in the 94 Å (and 335 Å) AIA channels and weak in the 171 Å band. We conclude that AIA imaging observations of the solar corona can be used to track hot plasma (6-8 MK), and so to study its spatial variability and temporal evolution at high spatial and temporal resolution.

  12. Hot-wire chemical vapour deposition at low substrate temperatures for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Bakker, R.

    2010-09-01

    The need for large quantities of rapidly and cheaply produced electronic devices has increased rapidly over the past decades. The transistors and diodes that are used to build these devices are predominantly made of crystalline silicon. Since crystalline silicon is very expensive to produce on a large scale and cannot be directly deposited on plastic substrates, much research is being done on thin film amorphous or nanocrystalline semiconductors and insulators. Hot-wire chemical vapour deposition (HWCVD) is a novel, low cost, and convenient way to deposit these materials. The process can be controlled in such a way that specific chemical reactions take place and unwanted side reactions are minimized. It can easily be scaled up to produce large-area thin film electronics. Conventionally, plasma enhanced chemical vapour deposition (PECVD) is used to deposit semiconductors and inorganic dielectrics. Recently, HWCVD has been explored for fast deposition of such materials. An adaptation of HWCVD, initiated chemical vapour deposition (iCVD), offers the unique possibility of producing organic materials and polymers in a vacuum reactor, without the use of solvents. This technique was originally proposed at the Massachusetts institute of technology (MIT) by Prof. Karen Gleason. The iCVD process involves the creation of radicals by dissociation of a peroxide (a molecule with a ~O-O~ bond) by a heated wire in a vacuum reactor. This radical initiates a polymerization reaction of a vinyl (a molecule with a double carbon-carbon bond, ~C=C~) monomer at a substrate held at room temperature. This thesis describes a dedicated iCVD reactor for polymer deposition, installed at Utrecht University, along with a reactor with a cooled substrate holder in an existing HWCVD multi-chamber setup for low-temperature silicon nitride (SiNx) depositions. The most important features of these reactors are described and the characterization techniques are explained. This thesis contains four new

  13. Numerical Simulations of Plasma Based Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.

    2005-01-01

    A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.

  14. Clinical application of plasma thermograms. Utility, practical approaches and considerations.

    PubMed

    Garbett, Nichola C; Mekmaysy, Chongkham S; DeLeeuw, Lynn; Chaires, Jonathan B

    2015-04-01

    Differential scanning calorimetry (DSC) studies of blood plasma are part of an emerging area of the clinical application of DSC to biofluid analysis. DSC analysis of plasma from healthy individuals and patients with various diseases has revealed changes in the thermal profiles of the major plasma proteins associated with the clinical status of the patient. The sensitivity of DSC to the concentration of proteins, their interactions with other proteins or ligands, or their covalent modification underlies the potential utility of DSC analysis. A growing body of literature has demonstrated the versatility and performance of clinical DSC analysis across a range of biofluids and in a number of disease settings. The principles, practice and challenges of DSC analysis of plasma are described in this article.

  15. Platelet-rich plasma: applications in dermatology.

    PubMed

    Conde Montero, E; Fernández Santos, M E; Suárez Fernández, R

    2015-03-01

    In recent years, the use of platelet-rich plasma has increased notably in a range of diseases and settings. Uses of these products now go beyond skin rejuvenation therapy in patients with facial ageing. Good outcomes for other dermatological indications such as skin ulcers and, more recently, alopecia have been reported in case series and controlled studies. However, these indications are not currently included in the labeling given that stronger scientific evidence is required to support their real benefits. With the increased use of these products, dermatologists need to become familiar with the underlying biological principles and able to critically assess the quality and outcomes of the studies of these products in different skin diseases.

  16. Variable dual-frequency electrostatic wave launcher for plasma applications.

    PubMed

    Jorns, Benjamin; Sorenson, Robert; Choueiri, Edgar

    2011-12-01

    A variable tuning system is presented for launching two electrostatic waves concurrently in a magnetized plasma. The purpose of this system is to satisfy the wave launching requirements for plasma applications where maximal power must be coupled into two carefully tuned electrostatic waves while minimizing erosion to the launching antenna. Two parallel LC traps with fixed inductors and variable capacitors are used to provide an impedance match between a two-wave source and a loop antenna placed outside the plasma. Equivalent circuit analysis is then employed to derive an analytical expression for the normalized, average magnetic flux density produced by the antenna in this system as a function of capacitance and frequency. It is found with this metric that the wave launcher can couple to electrostatic modes at two variable frequencies concurrently while attenuating noise from the source signal at undesired frequencies. An example based on an experiment for plasma heating with two electrostatic waves is used to demonstrate a procedure for tailoring the wave launcher to accommodate the frequency range and flux densities of a specific two-wave application. This example is also used to illustrate a method based on averaging over wave frequencies for evaluating the overall efficacy of the system. The wave launcher is shown to be particularly effective for the illustrative example--generating magnetic flux densities in excess of 50% of the ideal case at two variable frequencies concurrently--with a high adaptability to a number of plasma dynamics and heating applications.

  17. Variable dual-frequency electrostatic wave launcher for plasma applications

    NASA Astrophysics Data System (ADS)

    Jorns, Benjamin; Sorenson, Robert; Choueiri, Edgar

    2011-12-01

    A variable tuning system is presented for launching two electrostatic waves concurrently in a magnetized plasma. The purpose of this system is to satisfy the wave launching requirements for plasma applications where maximal power must be coupled into two carefully tuned electrostatic waves while minimizing erosion to the launching antenna. Two parallel LC traps with fixed inductors and variable capacitors are used to provide an impedance match between a two-wave source and a loop antenna placed outside the plasma. Equivalent circuit analysis is then employed to derive an analytical expression for the normalized, average magnetic flux density produced by the antenna in this system as a function of capacitance and frequency. It is found with this metric that the wave launcher can couple to electrostatic modes at two variable frequencies concurrently while attenuating noise from the source signal at undesired frequencies. An example based on an experiment for plasma heating with two electrostatic waves is used to demonstrate a procedure for tailoring the wave launcher to accommodate the frequency range and flux densities of a specific two-wave application. This example is also used to illustrate a method based on averaging over wave frequencies for evaluating the overall efficacy of the system. The wave launcher is shown to be particularly effective for the illustrative example—generating magnetic flux densities in excess of 50% of the ideal case at two variable frequencies concurrently—with a high adaptability to a number of plasma dynamics and heating applications.

  18. Application of atmospheric pressure plasma in polymer and composite adhesion

    NASA Astrophysics Data System (ADS)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  19. Transferring vertically aligned carbon nanotubes onto a polymeric substrate using a hot embossing technique for microfluidic applications

    PubMed Central

    Mathur, A.; Roy, S. S.; McLaughlin, J. A.

    2010-01-01

    We explored the hot embossing method for transferring vertically aligned carbon nanotubes (CNTs) into microfluidic channels, fabricated on poly-methyl-methacrylate (PMMA). Patterned and unpatterned CNTs were synthesized by microwave plasma-enhanced chemical vapour deposition on silicon to work as a stamp. For hot embossing, 115°C and 1 kN force for 2 min were found to be the most suitable parameters for the complete transfer of aligned CNTs on the PMMA microchannel. Raman and SEM studies were used to analyse the microstructure of CNTs before and after hot embossing. The PMMA microparticles with dimensions (approx. 10 µm in diameter) similar to red blood cells were successfully filtered using laminar flow through these microfluidic channels. Finally, a microfluidic-based point-of-care device for blood filtration and detection of bio-molecules is drawn schematically. PMID:20147316

  20. Recent developments in modeling of hot rolling processes: Part II - Applications

    NASA Astrophysics Data System (ADS)

    Hirt, Gerhard; Bambach, Markus; Seuren, Simon; Henke, Thomas; Lohmar, Johannes

    2013-05-01

    This publication gives a short overview of current developments in modeling and simulation of hot rolling processes of metals at the Institute of Metal Forming of RWTH Aachen University. It is based on the fundamentals treated in Part I also contained in this conference issue. It features applications in the field of fast on-line models, where a fast multi-stage rolling model and an analytical approach for predicting the through-thickness shear distribution are presented. In addition, a new concept for sensitivity analysis by automatic differentiation is introduced and discussed. Finally, applications of rolling simulations in the field of integrated computational materials engineering are presented with a focus on TWIP and linepipe steels as well as aluminum.

  1. Propagation of a cloud of hot electrons through a plasma in the presence of Langmuir scattering by ambient density fluctuations

    SciTech Connect

    Foroutan, G. R.; Robinson, P. A.; Sobhanian, S.; Moslehi-Fard, M.; Li, B.; Cairns, I. H.

    2007-01-15

    Gas-dynamic theory is generalized to incorporate the effects of beam-driven Langmuir waves scattering off ambient density fluctuations, and the consequent effects on the propagation of a cloud of hot electrons in an inhomogeneous plasma. Assuming Langmuir scattering as the limit of nonlinear three-wave interactions with fluctuations that are weak, low-frequency, long-wavelength ion-sound waves, the net effect of scattering is equivalent to effective damping of the Langmuir waves. Under the assumption of self-similarity in the evolution of the beam and Langmuir wave distribution functions, gas-dynamic theory shows that the effects of Langmuir scattering on the beam distribution are equivalent to a perturbation in the injection profile of the beam. Analytical expressions are obtained for the height of the plateau of the beam distribution function, wave spectral number density, total wave and particle energy density, and the beam number density. The main results of gas-dynamic theory are then compared with simulation results from numerical solutions of quasilinear equations. The relaxation of the beam in velocity space is retarded in the presence of density fluctuations and the magnitude of the upper velocity boundary is less than that in the absence of fluctuations. There are four different regimes for the height of the plateau, corresponding to different stages of relaxation of the beam in velocity space. Moreover, Langmuir scattering results in transfer of electrons from moderate velocity to low velocity; this effect produces an enhancement in the beam number density at small distances near the injection site and a corresponding decrease at large distances. There are sharp decreases in the profiles of the beam and total wave energy densities, which are related to dissipation of energy at large phase velocities. Due to a slower velocity space diffusion of the beam distribution in the presence of scattering effects, the spatial width of the beam is reduced while its

  2. A Search for Extreme-Ultraviolet Emission from Comets with the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)

    NASA Astrophysics Data System (ADS)

    Sasseen, T. P.; Hurwitz, M.; Lisse, C. M.; Kharchenko, V.; Christian, D.; Wolk, S. J.; Sirk, M. M.; Dalgarno, A.

    2006-10-01

    We have obtained EUV spectra between 90 and 255 Å of the comets C/2002 T7 (LINEAR), C/2001 Q4 (NEAT), and C/2004 Q2 (Machholz) near their perihelion passages in 2004 with the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS). We obtained contemporaneous data on NEAT with the Chandra ACIS instrument, marking the first simultaneous EUV and X-ray spectral observations of a comet. The total CHIPS/EUV observing times were 337 ks for NEAT, 234 ks for LINEAR, and 483 ks for Machholz, and for both CHIPS and Chandra we calculate we have captured all the comet flux in the instrument field of view. We set upper limits on solar wind charge-exchange emission lines of O, C, N, Ne, and Fe occurring in the spectral bandpass of CHIPS. The spectrum of NEAT obtained with Chandra can be reproduced by modeling emission lines of C, N, O, Mg, Fe, Si, S, and Ne solar wind ions. The measured X-ray emission-line intensities are consistent with our predictions from a solar wind charge-exchange model. The model predictions for the EUV emission-line intensities are determined from the intensity ratios of the cascading X-ray and EUV photons arising in the charge-exchange processes. They are compatible with the measured limits on the intensities of the EUV lines. For NEAT, we measured a total X-ray flux of 3.7×10-12 ergs cm-2 s-1 and derive from model predictions a total EUV flux of 1.5×10-12 ergs cm-2 s-1. The CHIPS observations occurred predominantly while the satellite was on the dayside of Earth. For much of the observing time, CHIPS performed observations at smaller solar angles than it was designed for, and EUV emission from the Sun scattered into the instrument limited the sensitivity of the EUV measurements.

  3. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Astrophysics Data System (ADS)

    McKechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-07-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  4. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  5. Particle-in-Cell Simulations of Nonlinear Laser-Plasma Interactions and Hot-Electron Generations in the Shock-Ignition Regime

    NASA Astrophysics Data System (ADS)

    Yan, R.; Borwick, E.; Betti, R.; Li, J.; Theobald, W.; Ren, C.; Krauland, C.; Wei, M. S.; Zhang, S.; Beg, F. N.

    2016-10-01

    We performed particle-in-cell (PIC) simulations with parameters relevant to laser-plasma interaction (LPI) experiments on OMEGA EP using high laser intensities (1016 to 1017 W /cm2). Rich physics were observed in this new LPI regime, including laser filamentation and plasma cavitation, plasma waves beyond the Landau cutoff, and significant pump depletion. We will also compare hot-electron generation from the simulations with the experimental measurements. This material is based upon work supported by the Department of Energy under Grant No. DE-SC0012316; by NSF under Grant No. PHY-1314734; and by Laboratory for Laser Energetics. The research used resources of the National Energy Research Scientific Computing Center.

  6. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation.

    PubMed

    Patil, Hemlata; Tiwari, Roshan V; Repka, Michael A

    2016-02-01

    Hot-melt extrusion (HME) is a promising technology for the production of new chemical entities in the developmental pipeline and for improving products already on the market. In drug discovery and development, industry estimates that more than 50% of active pharmaceutical ingredients currently used belong to the biopharmaceutical classification system II (BCS class II), which are characterized as poorly water-soluble compounds and result in formulations with low bioavailability. Therefore, there is a critical need for the pharmaceutical industry to develop formulations that will enhance the solubility and ultimately the bioavailability of these compounds. HME technology also offers an opportunity to earn intellectual property, which is evident from an increasing number of patents and publications that have included it as a novel pharmaceutical formulation technology over the past decades. This review had a threefold objective. First, it sought to provide an overview of HME principles and present detailed engineered extrusion equipment designs. Second, it included a number of published reports on the application of HME techniques that covered the fields of solid dispersions, microencapsulation, taste masking, targeted drug delivery systems, sustained release, films, nanotechnology, floating drug delivery systems, implants, and continuous manufacturing using the wet granulation process. Lastly, this review discussed the importance of using the quality by design approach in drug development, evaluated the process analytical technology used in pharmaceutical HME monitoring and control, discussed techniques used in HME, and emphasized the potential for monitoring and controlling hot-melt technology.

  7. Application of High Speed Digital Image Correlation in Rocket Engine Hot Fire Testing

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Schmidt, Tim

    2016-01-01

    Hot fire testing of rocket engine components and rocket engine systems is a critical aspect of the development process to understand performance, reliability and system interactions. Ground testing provides the opportunity for highly instrumented development testing to validate analytical model predictions and determine necessary design changes and process improvements. To properly obtain discrete measurements for model validation, instrumentation must survive in the highly dynamic and extreme temperature application of hot fire testing. Digital Image Correlation has been investigated and being evaluated as a technique to augment traditional instrumentation during component and engine testing providing further data for additional performance improvements and cost savings. The feasibility of digital image correlation techniques were demonstrated in subscale and full scale hotfire testing. This incorporated a pair of high speed cameras to measure three-dimensional, real-time displacements and strains installed and operated under the extreme environments present on the test stand. The development process, setup and calibrations, data collection, hotfire test data collection and post-test analysis and results are presented in this paper.

  8. Theoretical hot methane line lists up to T = 2000 K for astrophysical applications

    SciTech Connect

    Rey, M.; Tyuterev, Vl. G.; Nikitin, A. V.

    2014-07-01

    The paper describes the construction of complete sets of hot methane lines based on accurate ab initio potential and dipole moment surfaces and extensive first-principle calculations. Four line lists spanning the [0-5000] cm{sup –1} infrared region were built at T = 500, 1000, 1500, and 2000 K. For each of these four temperatures, we have constructed two versions of line lists: a version for high-resolution applications containing strong and medium lines and a full version appropriate for low-resolution opacity calculations. A comparison with available empirical databases is discussed in detail for both cold and hot bands giving a very good agreement for line positions, typically <0.1-0.5 cm{sup –1} and ∼5% for intensities of strong lines. Together with numerical tests using various basis sets, this confirms the computational convergence of our results for the most important lines, which is the major issue for theoretical spectra predictions. We showed that transitions with lower state energies up to 14,000 cm{sup –1} could give significant contributions to the methane opacity and have to be systematically taken into account. Our list at 2000 K calculated up to J = 50 contains 11.5 billion transitions for I > 10{sup –29} cm mol{sup –1}. These new lists are expected to be quantitatively accurate with respect to the precision of available and currently planned observations of astrophysical objects with improved spectral resolution.

  9. Effect of Laser Wavelength and Ablator Material on Hot Electron Generation in High Power Laser Plasma Interaction at Shock Ignition High Intensity Conditions

    NASA Astrophysics Data System (ADS)

    Wei, M. S.; Alexander, N. B.; Krauland, C. M.; Zhang, S.; Beg, F. N.; Theobald, W.; Betti, R.

    2015-11-01

    Hot electrons with energies <100 keV have been found to augment ablation pressure leading to Gbar shocks in strong spherical shock experiments on OMEGA*. To study this potential benefit at shock ignition-relevant high intensities (~1016 W/cm2) , we have conducted an experiment using the high-energy OMEGA EP laser system to examine the effect of laser wavelength, intensity and ablator material on hot electron generation and energy coupling. Targets are multilayered planar foils consisting of Cu and Al layers with an ablator made of either plastic (CH) or lithium. The target is first irradiated by multi-kJ UV beams at low intensity to produce a long scalelength, hot plasma, as is the case in the shock ignition regime. Correspondingly, this is followed by the injection of the high intensity UV or IR main interaction pulse. The resultant energy, spectrum and angular distributions of the hot electrons are measured via their induced Cu fluorescence emission and the bremsstrahlung radiation. Details of the experiment and results will be presented. Work supported by the DOE/NNSA under Contract DE-NA0002730 (NLUF).

  10. Application of hot melt extrusion for poorly water-soluble drugs: limitations, advances and future prospects.

    PubMed

    Lu, Ming; Guo, Zhefei; Li, Yongcheng; Pang, Huishi; Lin, Ling; Liu, Xu; Pan, Xin; Wu, Chuanbin

    2014-01-01

    Hot melt extrusion (HME) is a powerful technology to enhance the solubility and bioavailability of poorly water-soluble drugs by producing amorphous solid dispersions. Although the number of articles and patents about HME increased dramatically in the past twenty years, there are very few commercial products by far. The three main obstacles limiting the commercial application of HME are summarized as thermal degradation of heat-sensitive drugs at high process temperature, recrystallization of amorphous drugs during storage and dissolving process, and difficulty to obtain products with reproducible physicochemical properties. Many efforts have been taken in recent years to understand the basic mechanism underlying these obstacles and then to overcome them. This article reviewed and summarized the limitations, recent advances, and future prospects of HME.

  11. Polymeric formulations for drug release prepared by hot melt extrusion: application and characterization.

    PubMed

    Stanković, Milica; Frijlink, Henderik W; Hinrichs, Wouter L J

    2015-07-01

    Over the past few decades hot melt extrusion (HME) has emerged as a powerful processing technology for the production of pharmaceutical solid dosage forms in which an active pharmaceutical ingredient (API) is dispersed into polymer matrices. It has been shown that formulations using HME can provide time-controlled, sustained and targeted drug delivery, and improved bioavailability of poorly soluble drugs. In this review, the basic principles of the HME process are described together with an overview of some of the most common biodegradable and nonbiodegradable polymers used for the preparation of different formulations using this method. Further, the applications of HME in drug delivery and analytical techniques employed to characterize HME products are addressed.

  12. Low voltage drop plasma switch for inverter and modulator applications

    NASA Astrophysics Data System (ADS)

    Goebel, D. M.; Poeschel, R. L.; Schumacher, R. W.

    1993-08-01

    A low forward voltage drop plasma switch has been developed for high-efficiency inverter and modulator applications. The switch, called the HOLLOTRON, is based on a grid-controlled, thermionic hollow-cathode discharge. A low forward voltage drop (10-20 V) is achieved by operating the hollow-cathode discharge in a static gas pressure of xenon. The dense plasma generated in the Ba-oxide dispenser hollow cathode is spread over a relatively large control grid area by a diverging magnetic field superimposed on the discharge. Interruption of the discharge current at high current densities (≳4 A/cm2) over the grid area is achieved by biasing the control grid sufficiently negative with respect to the plasma. The HOLLOTRON switch has demonstrated voltage stand-off of up to 20 kV, switching times of ≤0.3 μs, and pulse repetition frequencies of 20 kHz at 50% duty.

  13. Advanced targets, diagnostics and applications of laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2015-04-01

    High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015 W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1 MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.

  14. Selective Plasma Etching of Polymeric Substrates for Advanced Applications.

    PubMed

    Puliyalil, Harinarayanan; Cvelbar, Uroš

    2016-06-07

    In today's nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a "zoo" of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance.

  15. Selective Plasma Etching of Polymeric Substrates for Advanced Applications

    PubMed Central

    Puliyalil, Harinarayanan; Cvelbar, Uroš

    2016-01-01

    In today’s nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a “zoo” of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance. PMID:28335238

  16. A Thermal Analysis of a Hot-Wire Probe for Icing Applications

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Rigby, David L.; Venkataraman, Krishna

    2014-01-01

    This paper presents a steady-state thermal model of a hot-wire instrument applicable to atmospheric measurement of water content in clouds. In this application, the power required to maintain the wire at a given temperature is used to deduce the water content of the cloud. The model considers electrical resistive heating, axial conduction, convection to the flow, radiation to the surroundings, as well as energy loss due to the heating, melting, and evaporation of impinging liquid and or ice. All of these parameters can be varied axially along the wire. The model further introduces a parameter called the evaporation potential which locally gauges the maximum fraction of incoming water that evaporates. The primary outputs of the model are the steady-state power required to maintain a spatially-average constant temperature as well as the variation of that temperature and other parameters along the wire. The model is used to understand the sensitivity of the hot-wire performance to various flow and boundary conditions including a detailed comparison of dry air and wet (i.e. cloud-on) conditions. The steady-state power values are compared to experimental results from a Science Engineering Associates (SEA) Multi-Element probe, a commonly used water-content measurement instrument. The model results show good agreement with experiment for both dry and cloud-on conditions with liquid water content. For ice, the experimental measurements under read the actual water content due to incomplete evaporation and splashing. Model results, which account for incomplete evaporation, are still higher than experimental results where the discrepancy is attributed to splashing mass-loss which is not accounted in the model.

  17. Plasma promoted manufacturing of hydrogen and vehicular applications

    NASA Astrophysics Data System (ADS)

    Bromberg, Leslie

    2003-10-01

    Plasmas can be used for promoting reformation of fuels. Plasma-based reformers developed at MIT use a low temperature, low power, low current electrical discharge to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The very fuel rich mixture is hard to ignite, and the plasmatron provides a volume-ignition. To minimize erosion and to simplify the power supply, a low current high voltage discharge is used, with wide area electrodes. The plasmatron fuel reformer operates at or slightly above atmospheric pressure. The plasma-based reformer technology provides the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels. These advantages enable use of hydrogen-manufacturing reformation technology in cars using available fuels, such as gasoline and diesel. This plasma-based reformer technology can provide substantial throughputs even without the use of a catalyst. The electrical power consumption of the device is minimized by design and operational characteristics (less than 500 W peak and 200 W average). The product from these plasma reactors is a hydrogen rich mixture that can be used for combustion enhancement and emissions aftertreatment in vehicular applications. By converting a small fraction of the fuel to hydrogen rich gas, in-cylinder combustion can be improved. With minor modification of the engine, use of hydrogen rich gas results in increased fuel efficiency and decreased emissions of smog producing gases. The status of plasma based reformer technology and its application to vehicles will be described.

  18. Applications of plasma sources for nitric oxide medicine

    NASA Astrophysics Data System (ADS)

    Vasilets, Victor; Shekhter, Anatoly; Pekshev, Alexander

    2013-09-01

    Nitric oxide (NO) has important roles in the function of many tissues and organs. Wound healing processes are always accompanying by the increase of nitric oxide concentration in wound tissue. These facts suggest a possible therapeutic use of various NO donors for the acceleration of the wound healing and treatment of other diseases. Our previous studies indicated that gaseous NO flow produced by air-plasma generators acts beneficially on the wound healing. This beneficial effect could be caused by the mechanism involving peroxynitrite as an intermediate. As a result of mobilization of various antioxidant reactions more endogenous NO molecules become available as signaling molecules. to regulate the metabolic processes in wound tissue. In this paper different air plasma sources generated therapeutic concentrations of NO are discussed. The concentration of NO and other therapeutically important gas products are estimated by thermodynamic simulation. Synergy effects of NO with other plasma components are discussed as a factor enhancing therapeutic results. Some new medical application of plasma devices are presented. Advanced Plasma Therapies Inc.

  19. Composition of hot ions /0.1-16 keV/e/ as observed by the GEOS and ISEE mass spectrometers and inferences for the origin and circulation of magnetospheric plasmas

    NASA Technical Reports Server (NTRS)

    Balsiger, H.

    1981-01-01

    The composition of hot magnetospheric plasma through different regions of the magnetosphere is described on the basis of mass spectrometer measurements by the GEOS 1, GEOS 2, and ISEE-1 spacecraft. Coordinated composition measurements on the different spacecraft also provide information on the spatial and temporal characteristics of the plasma during storms. Data on ion origins are also provided.

  20. Composition of hot ions /0. 1-16 keV/e/ as observed by the GEOS and ISEE mass spectrometers and inferences for the origin and circulation of magnetospheric plasmas

    SciTech Connect

    Balsiger, H.

    1981-01-01

    The composition of hot magnetospheric plasma through different regions of the magnetosphere is described on the basis of mass spectrometer measurements by the GEOS 1, GEOS 2, and ISEE-1 spacecraft. Coordinated composition measurements on the different spacecraft also provide information on the spatial and temporal characteristics of the plasma during storms. Data on ion origins are also provided.

  1. Plasma-polymerized methyl methacrylate via intense and highly energetic atmospheric pressure micro-plasma for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Park, Choon-Sang; Ballato, John; Kim, Sung-O.; Clemson University Team

    2013-09-01

    Poly (methyl methacrylate), PMMA, has been widely used as a biocompatible material in bone cement, dental fillings, and many other bio-related applications. Vacuum plasmas and radio frequency (RF) atmospheric plasmas are the most common methods for depositing plasma-derived thin films and nanoparticles. However, the necessary equipment is difficult to operate and maintain as well as being large and expensive. Here, we report the use of a novel intense and highly energetic atmospheric pressure plasma jet array using direct plasma jet-to-jet coupling effects to deposit high quality plasma-polymerized MMA (PPMMA) for bio-medical applications. The newly proposed atmospheric pressure micro-plasma jet array device can generate the intense plasma mode with a strong plasma emission and high plasma particle energy. PPMMA was successfully deposited on a variety of substrates and characterized by SEM, AFM, and FT-IR. The micro-plasma jet is obtained at a sinusoidal voltage with a peak value of 30 kV and frequency of 35 kHz. Argon gas was employed as the discharge gas for plasma generation and its flow rate was in the range of 2230 sccm, Methyl methacrylate (MMA) monomer was vaporized by means of a glass bubbler which was supplied by argon gas with flow rates in the range of 268 sccm from room temperature to 400°C. The deposited PPMMA thin films were flexible, transparent, thin, and strong on metal substrates.

  2. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  3. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  4. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  5. A doubly curved elliptical crystal spectrometer for the study of localized x-ray absorption in hot plasmas

    SciTech Connect

    Cahill, Adam D. Hoyt, Cad L.; Pikuz, Sergei A.; Shelkovenko, Tania; Hammer, David A.

    2014-10-15

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emitted by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here the foundational work in the design and development of this spectrometer along with initial results obtained with an aluminum x-pinch as the object plasma.

  6. The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications

    SciTech Connect

    Bussiahn, R.; Brandenburg, R.; Gerling, T.; Kindel, E.; Lange, H.; Lembke, N.; Weltmann, K.-D.; Woedtke, Th. von; Kocher, T.

    2010-04-05

    A cold atmospheric pressure plasma source, called hairline plasma, for biological and medical applications has been developed. Using the physical effect of the negative dc corona discharge, a nanosecond pulsed microplasma has been created. The device produces a very thin (dapprox30 mum) plasma filament with a length of up to 1.5 cm. Due to this geometrical parameters this plasma is particularly suitable for the treatment of microscopic cavities. The low plasma temperature allows to treat the human skin without any heating or painful irritation.

  7. Review of the phenomenon of dips in spectral lines emitted from plasmas and their applications

    NASA Astrophysics Data System (ADS)

    Oks, E.; Dalimier, E.; Faenov, A.; Renner, O.

    2014-11-01

    The review covers theoretical and experimental studies of two kinds of dips (local depressions) in spectral line profiles emitted by plasmas: Langmuir-wave-caused dips (L-dips) and charge-exchange-caused dips (X-dips). Positions of L-dips (relative to the unperturbed wavelength of a spectral line) scale with the electron density Ne roughly as Ne1/2, while positions of X-dips are almost independent of Ne. L-dips and X-dips phenomena are interesting and important both fundamentally and practically. The fundamental interest is due to a rich physics behind each of these phenomena. As for important practical applications, they are as follows. Observation of L-dips constitutes a very accurate method to measure the electron density in plasmas - the method that does not require the knowledge of the electron temperature. L-dips also allow measuring the amplitude of the electric field of Langmuir waves - the only one spectroscopic method available for this purpose. In the most recent laser plasma experiments, L-dips were found to be a spectroscopic signature of the two-plasmon decay instability. This instability causes hot-electron generation and is a critical part in laser-driven inertial confinement fusion program. As for observations of X-dips, they serve to determine rates of charge exchange between multicharged ions. This is an important reference data virtually inaccessible by other experimental methods. The rates of charge exchange are essential for magnetic fusion in tokamaks, for population inversion in the soft x-ray and VUV ranges, for ion storage devices, as well as for astrophysics (e.g., for the solar plasma and for determining the physical state of planetary nebulae).

  8. Transfer of microstructure pattern of CNTs onto flexible substrate using hot press technique for sensing applications

    SciTech Connect

    Mishra, Prabhash; Harsh

    2013-08-01

    Graphical abstract: - Highlights: • Successfully transfer of microstructure patterned CNTs on PET substrate. • Demonstrate as resistor-based NH{sub 3} gas sensor in the sub-ppm range. • Excellent photodetector having instantaneous response and recovery characteristics. • An effective technique to grow and produce flexible electronic device. - Abstract: In this work, we report the successful and efficient transfer process of two- dimensional (2-D) vertically aligned carbon nanotubes (CNTs) onto polyethylene terephthalate (PET) substrate by hot pressing method with an aim to develop flexible sensor devices. Carbon nanotubes are synthesized by cold wall thermal chemical vapor deposition using patterned SiO{sub 2} substrate under low pressure. The height of the pattern of CNTs is controlled by reaction time. The entire growth and transfer process is carried out within 30 min. Strong adhesion between the nanotube and polyethylene terephthalate substrate was observed in the post-transferred case. Raman spectroscopy and scanning electron microscope (SEM) studies are used to analyze the microstructure of carbon nanotube film before and after hot pressing. This technique shows great potential for the fabrication of flexible sensing devices. We report for the first time, the application of patterned microstructure developed by this technique in the development of gas sensor and optoelectronic device. Surface resistive mode is used for detection of ammonia (NH{sub 3}) gas in the sub-ppm range. An impressive photoconducting response is also observed in the visible wavelength. The reproducibility of the sample was checked and the results indicate the possibility of use of carbon nanotube as gas sensor, photodetector, CCDs etc.

  9. Hot-melt extrusion of polyvinyl alcohol for oral immediate release applications.

    PubMed

    De Jaeghere, W; De Beer, T; Van Bocxlaer, J; Remon, J P; Vervaet, C

    2015-08-15

    The primary purpose of this study was to process partially hydrolyzed PVOH grades (degree of hydroxylation (DH): 33-88%) via HME and to evaluate them as carrier for oral immediate release dosage forms in order to improve the release rate of poorly water soluble drugs (i.e., HCT and CEL) via the formulation of solid dispersions. PVOH grades (DH >70%) were able to solubilize HCT and CEL up to 15%, but required higher extrusion temperature, due to the crystalline nature of PVOH. The highest drug release rate was observed from hot-melt extruded PVOH samples with a high DH. While drug release from extrudates consisting of PVOH with a low DH was affected by ionic strength, there was no influence of pH and ionic strength on HCT release from PVOH samples with a higher DH. However, PVOH (DH >70%) required higher extrusion temperatures, which could hamper its application for thermosensitive drugs. Therefore, the secondary purpose was to investigate the effect of sorbitol, a water-soluble plasticizer, on the thermal properties of hot-melt extruded PVOH (DH >70%). The melting of PVOH/sorbitol mixture was required to establish molecular interactions between PVOH and sorbitol. These molecular interactions were reflected in the HME behavior: whereas an extrusion temperature of 180 °C was necessary to process physical mixtures of PVOH (DH >70%) and sorbitol, only 140 °C was necessary during re-extrusion (after quench cooling and cryomilling) of the PVOH/sorbitol mixture. In addition, the in vitro and in vivo dug release of plasticized PVOH was examined; whereas the CEL/PVO/sorbitol system was able to maintain supersaturation during in vitro dissolution (0.1N HCl) compared to Celebrex(®), the in vivo pharmacokinetic parameters (AUC0-24h, Cmax and Tmax) were highly comparable.

  10. Applications of quantum cascade lasers in plasma diagnostics: a review

    NASA Astrophysics Data System (ADS)

    Röpcke, J.; Davies, P. B.; Lang, N.; Rousseau, A.; Welzel, S.

    2012-10-01

    Over the past few years mid-infrared absorption spectroscopy based on quantum cascade lasers operating over the region from 3 to 12 µm and called quantum cascade laser absorption spectroscopy or QCLAS has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, nitrogen oxides and organo-silicon compounds has led to further applications of QCLAS because most of these compounds and their decomposition products are infrared active. QCLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species at time resolutions below a microsecond, which is of particular importance for the investigation of reaction kinetics and dynamics. Information about gas temperature and population densities can also be derived from QCLAS measurements. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of QCLAS techniques to industrial requirements including the development of new diagnostic equipment. The recent availability of external cavity (EC) QCLs offers a further new option for multi-component detection. The aim of this paper is fourfold: (i) to briefly review spectroscopic issues arising from applying pulsed QCLs, (ii) to report on recent achievements in our understanding of molecular phenomena in plasmas and at surfaces, (iii) to describe the current status of industrial process monitoring in the mid-infrared and (iv) to discuss the potential of advanced instrumentation based on EC-QCLs for plasma diagnostics.

  11. Scalable graphene production: perspectives and challenges of plasma applications

    NASA Astrophysics Data System (ADS)

    Levchenko, Igor; Ostrikov, Kostya (Ken); Zheng, Jie; Li, Xingguo; Keidar, Michael; B. K. Teo, Kenneth

    2016-05-01

    Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h-1 m-2 was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various

  12. Scalable graphene production: perspectives and challenges of plasma applications.

    PubMed

    Levchenko, Igor; Ostrikov, Kostya Ken; Zheng, Jie; Li, Xingguo; Keidar, Michael; B K Teo, Kenneth

    2016-05-19

    Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h(-1) m(-2) was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of

  13. Application of Plasma Technology in the Life Sciences

    NASA Astrophysics Data System (ADS)

    Short, Robert

    2002-10-01

    This paper explores the versatility of plasma polymerization in the fabrication of surfaces for use in the Life Sciences and Tissue Engineering, highlighting three successful applications of plasma polymerized surfaces. 1. Plasma polymerized acrylic acid surfaces have been used as substrates for the culture and delivery of keratinocytes (skin cells) to chronic wounds. In proof of concept studies weekly delivery of keratinocytes have promoted healing in previously non-healing wounds. These include diabetic foot ulcers and wounds where skin grafts would normally be considered, but were contra-indicated. 2. Surface chemical patterning on the micrometer scale- length, by use of pre-fabricated masks, has been used to control the spatial binding of proteins and cells. This technology makes possible a significant reduction in size of biological assays, reducing the amount of material (e.g. antibody) or cells required. 3. Surface chemical potential gradients, from a few tens of micrometers to a few centrimeters, have been fabricated by "plasma writing", a technique currently being developed in Sheffield. These gradients are being developed to separate mixtures of biomolecules or cells.

  14. A solar powered handheld plasma source for microbial decontamination applications

    NASA Astrophysics Data System (ADS)

    Ni, Y.; Lynch, M. J.; Modic, M.; Whalley, R. D.; Walsh, J. L.

    2016-09-01

    A fully portable atmospheric pressure air plasma system is reported to be suitable for the microbial decontamination of both surfaces and liquids. The device operates in quiescent air, and includes an integrated battery which is charged from a solar cell and weighs less than 750 g, making it highly amenable for a wide variety of applications beyond the laboratory. Using particle imaging velocimetry to visualise air flows around the device, the geometric configuration of the plasma generating electrodes was enhanced to induce a gas flow on the order of 0.5 m s-1 directed towards a sample placed downstream, thus improving the transport of plasma generated reactive species to the sample. The microbial decontamination efficiency of the system was assessed using potable water samples inoculated with common waterborne organisms Escherichia coli and Pseudomonas fluorescens. The reduction in the number of microorganisms was found to be in the range of 2-8 log and was strongly dependent on the plasma generation conditions.

  15. Biomedical Applications of the Cold Atmospheric Plasma: Cell Responses

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. Depending on the configuration the cold plasma sources can be used in the following areas: wound healing, skin diseases, hospital hygiene, sterilization, antifungal treatments, dental care, cosmetics targeted cell/tissue removal, and cancer treatments. This dissertation is focused on the studies of biomedical applications of cold atmospheric plasma jet based on helium flow and resultant cell responses to the cold plasma treatment. The studies were carried out on extra-cellular and intra-cellular levels in vitro. The main practical applications are wound healing and alternative to existing cancer therapy methods, areas of great interest and significant challenges. The CAP jet was built in the Micropropulsion and Nanotechnology Laboratory of Dr. Michael Keidar, as a part of multidisciplinary collaboration with the GW Medical School (Dr. M.A. Stepp) concerned with plasma medicine and bioengineering studies. Normal and cancer cells have two fundamental behavioral properties, proliferation and motility, which can be evaluated through cell migration rates and cell cycle progression. Various microscopic, spectroscopic and flow cytometry techniques were used to characterize cell responses to the cold plasma treatment. It was found that CAP effect on the cells is localized within the area of the treatment (of around ˜ 5mm in diameter). The migration rates of the normal skin cells can be reduced up to ˜ 40%. However, depending on the cell type the required treatment time is different, thus differential treatment of various cells presented in tissue is possible. The CAP effect on the migration was explained through the changes of the cell surface proteins/integrins. It was also found that normal and cancer cells respond differently to the CAP treatment under the same

  16. Production of a Powder Metallurgical Hot Work Tool Steel with Harmonic Structure by Mechanical Milling and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Deirmina, Faraz; Pellizzari, Massimo; Federici, Matteo

    2017-04-01

    Commercial AISI-H13 gas atomized powders (AT) were mechanically milled (MM) to refine both the particle size and the microstructure. Different volume fractions of coarser grained (CG) AT powders were mixed with the ultra-fine grained (UFG) MM and consolidated by spark plasma sintering to obtain bulks showing a harmonic structure ( i.e. a 3D interconnected network of UFG areas surrounding the CG atomized particles). The low sintering temperature, 1373.15 K (1100 °C) and the short sintering time (30 minutes) made it possible to obtain near full density samples while preserving the refined microstructure induced by MM. A combination of high hardness and significantly improved fracture toughness is achieved by the samples containing 50 to 80 vol pct MM, essentially showing harmonic structure. The design allows to easily achieve specific application oriented properties by varying the MM volume fraction in the initial mixture. Hardness is governed by the fine-grained MM matrix and improved toughening is due to (1) deviatory effect of AT particles and (2) energy dissipation as a result of the decohesion in MM regions or AT and MM interface.

  17. Production of a Powder Metallurgical Hot Work Tool Steel with Harmonic Structure by Mechanical Milling and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Deirmina, Faraz; Pellizzari, Massimo; Federici, Matteo

    2017-01-01

    Commercial AISI-H13 gas atomized powders (AT) were mechanically milled (MM) to refine both the particle size and the microstructure. Different volume fractions of coarser grained (CG) AT powders were mixed with the ultra-fine grained (UFG) MM and consolidated by spark plasma sintering to obtain bulks showing a harmonic structure (i.e. a 3D interconnected network of UFG areas surrounding the CG atomized particles). The low sintering temperature, 1373.15 K (1100 °C) and the short sintering time (30 minutes) made it possible to obtain near full density samples while preserving the refined microstructure induced by MM. A combination of high hardness and significantly improved fracture toughness is achieved by the samples containing 50 to 80 vol pct MM, essentially showing harmonic structure. The design allows to easily achieve specific application oriented properties by varying the MM volume fraction in the initial mixture. Hardness is governed by the fine-grained MM matrix and improved toughening is due to (1) deviatory effect of AT particles and (2) energy dissipation as a result of the decohesion in MM regions or AT and MM interface.

  18. Detection of ligand binding hot spots on protein surfaces via fragment-based methods: application to DJ-1 and glucocerebrosidase

    SciTech Connect

    Landon, Melissa R.; Lieberman, Raquel L.; Hoang, Quyen Q.; Ju, Shulin; Caaveiro, Jose M.M.; Orwig, Susan D.; Kozakov, Dima; Brenke, Ryan; Chuang, Gwo-Yu; Beglov, Dmitry; Vajda, Sandor; Petsko, Gregory A.; Ringe, Dagmar

    2010-08-04

    The identification of hot spots, i.e., binding regions that contribute substantially to the free energy of ligand binding, is a critical step for structure-based drug design. Here we present the application of two fragment-based methods to the detection of hot spots for DJ-1 and glucocerebrosidase (GCase), targets for the development of therapeutics for Parkinson's and Gaucher's diseases, respectively. While the structures of these two proteins are known, binding information is lacking. In this study we employ the experimental multiple solvent crystal structures (MSCS) method and computational fragment mapping (FTMap) to identify regions suitable for the development of pharmacological chaperones for DJ-1 and GCase. Comparison of data derived via MSCS and FTMap also shows that FTMap, a computational method for the identification of fragment binding hot spots, is an accurate and robust alternative to the performance of expensive and difficult crystallographic experiments.

  19. M-shell resolved high-resolution X-ray spectroscopic study of transient matter evolution driven by hot electrons in kJ-laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Condamine, F. P.; Šmíd, M.; Renner, O.; Dozières, M.; Thais, F.; Angelo, P.; Rosmej, F. B.

    2017-03-01

    Hot electrons represent a key subject for high intensity laser produced plasmas and atomic physics. Simulations of the radiative properties indicate a high sensitivity to hot electrons, that in turn provides the possibility for their detailed characterization by high-resolution spectroscopic methods. Of particular interest is X-ray spectroscopy due to reduced photo-absorption in dense matter and their efficient generation by hot electrons (inner-shell ionization/excitation). Here, we report on an experimental campaign conducted at the ns, kJ laser facility PALS at Prague in Czech Republic. Thin copper foils have been irradiated with 1ω pulses. Two spherically bent quartz Bragg crystal spectrometers with high spectral (λ/Δλ > 5000) and spatial resolutions (Δx = 30µm) have been set up simultaneously to achieve a high level of confidence for the complex Kα emission group. In particular, this group, which shows a strong overlap between lines, can be resolved in several substructures. Furthermore, an emission on the red wing of the Kα2 transition (λ = 1.5444A) could be identified with Hartree-Fock atomic structure calculations. We discuss possible implications for the analysis of non-equilibrium phenomena and present first simulations.

  20. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  1. 40 CFR 420.70 - Applicability; description of the hot forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... resulting from hot forming operations conducted in primary, section, flat, and pipe and tube mills. ... forming subcategory. 420.70 Section 420.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot...

  2. Application of a Plasma Powder Welding to engine valves

    SciTech Connect

    Takeuchi, Y.; Nagata, M.

    1985-01-01

    In hardfacing of automobile engine valves made of heat resisting steel such as 21-4N, conventional oxy-acetylene gase welding has been currently conducted manually by well trained operators because of using cast Stellite rods as the filler. In accordance with the strong demands of automatic welding, the authors newly developed an automatically controlled Plasma Powder Welding (PPW) system. This system is characterized by the application of a high thermal density plasma arc as heat source and by using power filler which melts more easily than bar cast rods. Moreover, this PPW system has been applied to the automotive engine valve production line and resulted in the great contribution to manpower saving.

  3. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  4. Process analytical techniques for hot-melt extrusion and their application to amorphous solid dispersions.

    PubMed

    Hitzer, Patrick; Bäuerle, Tim; Drieschner, Tobias; Ostertag, Edwin; Paulsen, Katharina; van Lishaut, Holger; Lorenz, Günter; Rebner, Karsten

    2017-03-25

    Newly developed active pharmaceutical ingredients (APIs) are often poorly soluble in water. As a result the bioavailability of the API in the human body is reduced. One approach to overcome this restriction is the formulation of amorphous solid dispersions (ASDs), e.g., by hot-melt extrusion (HME). Thus, the poorly soluble crystalline form of the API is transferred into a more soluble amorphous form. To reach this aim in HME, the APIs are embedded in a polymer matrix. The resulting amorphous solid dispersions may contain small amounts of residual crystallinity and have the tendency to recrystallize. For the controlled release of the API in the final drug product the amount of crystallinity has to be known. This review assesses the available analytical methods that have been recently used for the characterization of ASDs and the quantification of crystalline API content. Well-established techniques like near- and mid-infrared spectroscopy (NIR and MIR, respectively), Raman spectroscopy, and emerging ones like UV/VIS, terahertz, and ultrasonic spectroscopy are considered in detail. Furthermore, their advantages and limitations are discussed with regard to general practical applicability as process analytical technology (PAT) tools in industrial manufacturing. The review focuses on spectroscopic methods which have been proven as most suitable for in-line and on-line process analytics. Further aspects are spectroscopic techniques that have been or could be integrated into an extruder.

  5. Recent advances in Sofradir IR on II-VI photodetectors for HOT applications

    NASA Astrophysics Data System (ADS)

    Rubaldo, Laurent; Brunner, Alexandre; Guinedor, Pierre; Taalat, Rachid; Berthoz, Jocelyn; Sam-giao, Diane; Kerlain, Alexandre; Dargent, Loic; Péré-Laperne, Nicolas; Chaffraix, Vincent; Bourqui, Marie-Lise; Loquet, Yannick; Coussement, Jerome

    2016-02-01

    SOFRADIR is the worldwide leader on the cooled IR detector market for high-performance space, military and security applications thanks to a well mastered Mercury Cadmium Telluride (MCT) technology, and recently thanks to the acquisition of III-V technology: InSb, InGaAs, and QWIP quantum detectors. Strong and continuous development efforts are deployed to deliver cutting edge products with improved performances in terms of spatial and thermal resolution, low excess noise and high operability. The actual trend in quantum IR detector development is the design of very small pixel, with high operating temperature. To maintain the detector performances and operability at high temperature, the number of pixels exhibiting extra noise like 1/f and RTS noise must be limited. This paper presents the recent developments achieved in Sofradir in terms of HOT MCT extrinsic p on n technology, blue MW band (cut-off wavelength of 4.2μm at 150K) and extended MW band (cut-off wavelength of 5.3μm at 130K). Comparison between optimized and non-optimized technology will be presented in terms of NETD temperature dependency, MTF, 1/f noise and the corresponding impact on RFPN (Residual Fixe Pattern Noise) and its stability up to 170K will be shown.

  6. Study on application of color filters in vision system of hot forgings

    NASA Astrophysics Data System (ADS)

    Bi, Chao; Fang, Jianguo; Li, Di; Qu, Xinghua

    2016-10-01

    In order to improve the quality and efficiency of forging process, it needs to execute on-line dimensional measurement of the forgings. In the paper, a laboratory color vision measuring system is set up and the combination of digital and physical filtering is adopted to improve the image quality based on the radiation characteristics of high-temperature forgings. The digital filtering technology is a kind of image processing methods, in which the R component of the forging image is removed. While, the physical filtering technology is achieved by optical filters installed in front of the CCD, in which strong self-emitted radiation from the hot parts can be filtered out. In order to evaluate the image quality, the image contrast is applied, which is generally defined as the difference value between average gray scale of object region and that of background region. In the experiments, image contrast derived with filters at different sample points set from 800°C to 1200°C is compared to determine the optimal scheme of filters to be selected. Results of experiments indicate that the application effect of filters is dissimilar when the forging is in different temperature ranges. Through comparison, the optimal selection scheme of filters is determined to derive high quality image of forgings at different temperatures, which lays a solid foundation for the subsequent image processing.

  7. Applicability of a ``shower`` passive cooling tower in a hot dry climate

    SciTech Connect

    Givoni, B.; Al-Hemiddi, N.

    1995-11-01

    This cooling system has originally been developed by Givoni for cooling outdoor rest areas for the EXPO`92 in Seville, Spain. However, it can also be applied, and has been tested, as a cooling system for building and enclosed and shaded courtyards. It consists of an open shaft with showers at the top and a collecting ``pond`` at the bottom. Water is recirculated by a pump. The falling water entrain a large volume of air, creating a flow of cooled air down the shaft and into a building. A wind catcher can be installed above the shaft to enhance the air flow rate. The paper presents data on the performance of the system, tested by Al Hemiddi, including experimental data obtained first in a ``patio`` test cell at UCLA in Los Angeles, and later in a full size room in Riyadh, Saudi Arabia. The testing in Riyadh has demonstrated that with outdoor air maximum temperature of about 45 C the indoor air maximum of the cooled room was bout 29 C. This system can use brackish and sea water, in addition to fresh water. Thus it is applicable and capable of providing indoor comfort even in very hot desert regions, where any kind of water, even sea water, is available.

  8. BOOK REVIEW: Introduction to Plasma Physics: With Space and Laboratory Applications

    NASA Astrophysics Data System (ADS)

    Browning, P. K.

    2005-07-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, `with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfvén wave theory, observations of Alfvén waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects—a large subject!—are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  9. Plasma Synthesis of Nanoparticles for Nanocomposite Energy Applications

    SciTech Connect

    Peter C. Kong; Alex W. Kawczak

    2008-09-01

    The nanocomposite energy applications for plasma reactor produced nanoparticles are reviewed. Nanoparticles are commonly defined as particles less than 100 nm in diameter. Due to this small size, nanoparticles have a high surface-to-volume ratio. This increases the surface energy compared to the bulk material. The high surface-to-volume ratio and size effects (quantum effects) give nanoparticles distinctive chemical, electronic, optical, magnetic and mechanical properties from those of the bulk material. Nanoparticles synthesis can be grouped into 3 broad approaches. The first one is wet phase synthesis (sol-gel processing), the second is mechanical attrition, and the third is gas-phase synthesis (aerosol). The properties of the final product may differ significantly depending on the fabrication route. Currently, there are no economical large-scale production processes for nanoparticles. This hinders the widespread applications of nanomaterials in products. The Idaho National Laboratory (INL) is engaging in research and development of advanced modular hybrid plasma reactors for low cost production of nanoparticles that is predicted to accelerate application research and enable the formation of technology innovation alliances that will result in the commercial production of nanocomposites for alternative energy production devices such as fuel cells, photovoltaics and electrochemical double layer capacitors.

  10. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Yousfi, M.; Merbahi, N.; Wattieaux, G.; Piquemal, A.

    2016-03-01

    Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A-X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017±0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm-3.

  11. Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion

    DTIC Science & Technology

    2011-11-01

    Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion Yiguang Ju AFOSR MURI Review Meeting...SUBTITLE Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion 5a. CONTRACT NUMBER 5b. GRANT...stabilization • Combustion completion F135 engine: (F35, 2011) Mach 6-8 Ignition instability Plasma assisted combustion Plasma Ions/electrons Excited species

  12. Application of the hot-wire anemometer to respiratory measurements in small animal.

    PubMed

    Godal, A; Belenky, D A; Standaert, T A; Woodrum, D E; Grimsrud, L; Hodson, W A

    1976-02-01

    A hot-wire anemometer was evaluated to determine its suitability for measurement of small tidal volumes. Used with a constant background flow of gas, the output of the hot-wire anemometer was linear and independent of respiratory frequency, temperature, and humidity. The change in output with CO2 concentration was negligible within the physiologic range. The use of a background flow eliminates the need for one-way valves, minimizes dead space, and maintains the flow velocity past the hot wire within its range of linear response.

  13. Swirling Annular Flow Experiments with Application to Plasma Torches

    NASA Astrophysics Data System (ADS)

    Fisher, L. E.; Settles, G. S.; Miller, J. D.

    2001-11-01

    Swirling flows have many applications such as combustors and cyclone separators. Here, a turbulent swirling annular cold-flow experiment is conducted in order to gain insight into conditions within a plasma cutting torch. Compressed air is forced through six circumferentially-spaced holes that impart tangential velocity to the flow at the annulus inlet. The flow subsequently traverses an annulus of L/D1 =1.8 before exiting through a sonic nozzle. The annulus (created by a cylindrical cathode in the center of the actual plasma torch) is viewable through an outer plexiglass cylinder in our 11:1 scaled-up cold-flow apparatus. Surface oil-flow visualization and laser sheet imaging are employed to investigate the annular flowfield at a Reynolds number of about 1000 based on gap width D2-D1. Results of these experiments, leading to a physical model of the flowfield, are shown. These results are helpful in understanding and improving the fluid-dynamic behavior of actual plasma torches, widely used to cut sheet metal in manufacturing. Supported by Hypertherm Inc.

  14. Investigation of laser pulse length and pre-plasma scale length impact on hot electron generation on OMEGA-EP

    NASA Astrophysics Data System (ADS)

    Peebles, J.; Wei, M. S.; Arefiev, A. V.; McGuffey, C.; Stephens, R. B.; Theobald, W.; Haberberger, D.; Jarrott, L. C.; Link, A.; Chen, H.; McLean, H. S.; Sorokovikova, A.; Krasheninnikov, S.; Beg, F. N.

    2017-02-01

    A series of experiments studying pre-plasma’s effect on electron generation and transport due to a high intensity laser were conducted on the OMEGA-EP laser facility. A controlled pre-plasma was produced in front of an aluminum foil target prior to the arrival of the high intensity short pulse beam. Energetic electron spectra were characterized with magnetic and bremsstrahlung spectrometers. Pre-plasma and pulse length were shown to have a large impact on the temperature of lower energy, ponderomotive scaling electrons. Super-ponderomotive electrons, seen in prior pre-plasma experiments with shorter pulses, were observed without any initial pre-plasma in our experiment. 2D particle-in-cell and radiation-hydrodynamic simulations shed light on and validate these experimental results.

  15. Plasma Assisted Combustion: Fundamental Studies and Engine Applications

    NASA Astrophysics Data System (ADS)

    Lefkowitz, Joseph K.

    Successful and efficient ignition in short residence time environments or ultra-lean mixtures is a key technological challenge for the evolution of advanced combustion devices in terms of both performance and efficiency. To meet this challenge, interest in plasma assisted combustion (PAC) has expanded over the past 20 years. However, understanding of the underlying physical processes of ignition by plasma discharge remains elementary. In order to shed light on the key processes involved, two main thrusts of research were undertaken in this dissertation. First, demonstration of the applicability of plasma discharges in engines and engine-like environments was carried out using a microwave discharge and a nanosecond repetitively pulsed discharge in an internal combustion engine and a pulsed detonation engine, respectively. Major conclusions include the extension of lean ignition limits for both engines, significant reduction of ignition time for mixtures with large minimum ignition energy, and the discovery of the inter-pulse coupling effect of nanosecond repetitively pulsed (NRP) discharges at high frequency. In order to understand the kinetic processes that led to these improvements, the second thrust of research directly explored the chemical kinetic processes of plasma discharges with hydrocarbon fuels. For this purpose, a low pressure flow reactor with a NRP dielectric barrier discharge cell was assembled. The discharge cell was fitted with a Herriott type multipass mirror arrangement, which allowed quantitative laser absorption spectroscopy to be performed in situ during the plasma discharge. Experiments on methane and ethylene mixtures with oxygen, argon, and helium revealed the importance of low temperature oxidation pathways in PAC. In particular, oxygen addition reactions were shown to be of primary importance in the oxidation of these small hydrocarbons in the temperature range of 300-600 K. Kinetic modeling tools, including both a coupled plasma and

  16. Atmospheric Pressure Plasma-Electrospin Hybrid Process for Protective Applications

    NASA Astrophysics Data System (ADS)

    Vitchuli Gangadharan, Narendiran

    2011-12-01

    Chemical and biological (C-B) warfare agents like sarin, sulfur mustard, anthrax are usually dispersed into atmosphere in the form of micro aerosols. They are considered to be dangerous weapon of mass destruction next to nuclear weapons. The airtight protective clothing materials currently available are able to stop the diffusion of threat agents but not good enough to detoxify them, which endangers the wearers. Extensive research efforts are being made to prepare advanced protective clothing materials that not only prevent the diffusion of C-B agents, but also detoxify them into harmless products thus ensuring the safety and comfort of the wearer. Electrospun nanofiber mats are considered to have effective filtration characteristics to stop the diffusion of submicron level particulates without sacrificing air permeability characteristics and could be used in protective application as barrier material. In addition, functional nanofibers could be potentially developed to detoxify the C-B warfare threats into harmless products. In this research, electrospun nanofibers were deposited on fabric surface to improve barrier efficiency without sacrificing comfort-related properties of the fabrics. Multi-functional nanofibers were fabricated through an electrospinning-electrospraying hybrid process and their ability to detoxify simulants of C-B agents was evaluated. Nanofibers were also deposited onto plasma-pretreated woven fabric substrate through a newly developed plasma-electrospinning hybrid process, to improve the adhesive properties of nanofibers on the fabric surface. The nanofiber adhesion and durability properties were evaluated by peel test, flex and abrasion resistance tests. In this research work, following tasks have been carried out: i) Controlled deposition of nanofiber mat onto woven fabric substrate Electrospun Nylon 6 fiber mats were deposited onto woven 50/50 Nylon/Cotton fabric with the motive of making them into protective material against submicron

  17. 40 CFR 420.120 - Applicability; description of the hot coating subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... works resulting from the operations in which steel is coated with zinc, terne metal, or other metals by... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot...

  18. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems

    PubMed Central

    Lithwick, Yoram; Wu, Yanqin

    2014-01-01

    In the inner solar system, the planets’ orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations. PMID:24367108

  19. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.

    PubMed

    Lithwick, Yoram; Wu, Yanqin

    2014-09-02

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.

  20. Influence of low energy argon plasma treatment on the moisture barrier performance of hot wire-CVD grown SiNx multilayers

    NASA Astrophysics Data System (ADS)

    Majee, Subimal; Fátima Cerqueira, Maria; Tondelier, Denis; Geffroy, Bernard; Bonnassieux, Yvan; Alpuim, Pedro; Bourée, Jean Eric

    2014-01-01

    The reliability and stability are key issues for the commercial utilization of organic photovoltaic devices based on flexible polymer substrates. To increase the shelf-lifetime of these devices, transparent moisture barriers of silicon nitride (SiNx) films are deposited at low temperature by hot wire CVD (HW-CVD) process. Instead of the conventional route based on organic/inorganic hybrid structures, this work defines a new route consisting in depositing multilayer stacks of SiNx thin films, each single layer being treated by argon plasma. The plasma treatment allows creating smoother surface and surface atom rearrangement. We define a critical thickness of the single layer film and focus our attention on the effect of increasing the number of SiNx single-layers on the barrier properties. A water vapor transmission rate (WVTR) of 2 × 10-4 g/(m2·day) is reported for SiNx multilayer stack and a physical interpretation of the plasma treatment effect is given.

  1. The collisional relaxation of electrons in hot flaring plasma and inferring the properties of solar flare accelerated electrons from X-ray observations.

    NASA Astrophysics Data System (ADS)

    Jeffrey, N. L. S.; Kontar, E. P.; Emslie, A. G.; Bian, N. H.

    2015-09-01

    X-ray observations are a direct diagnostic of fast electrons produced in solar flares, energized during the energy release process and directed towards the Sun. Since the properties of accelerated electrons can be substantially changed during their transport and interaction with the background plasma, a model must ultimately be applied to X-ray observations in order to understand the mechanism responsible for their acceleration. A cold thick target model is ubiquitously used for this task, since it provides a simple analytic relationship between the accelerated electron spectrum and the emitting electron spectrum in the X-ray source, with the latter quantity readily obtained from X-ray observations. However, such a model is inappropriate for the majority of solar flares in which the electrons propagate in a hot megaKelvin plasma, because it does not take into account the physics of thermalization of fast electrons. The use of a more realistic model, properly accounting for the properties of the background plasma, and the collisional diffusion and thermalization of electrons, can alleviate or even remove many of the traditional problems associated with the cold thick target model and the deduction of the accelerated electron spectrum from X-ray spectroscopy, such as the number problem and the need to impose an ad hoc low energy cut-off.

  2. Dust Particle Growth and Application in Low Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Boufendi, L.

    2008-09-01

    Dust particle nucleation and growth has been widely studied these last fifteen years in different chemistries and experimental conditions. This phenomenon is correlated with various electrical changes at electrodes, including self-bias voltage and amplitudes of the various harmonics of current and voltage [1]. Some of these changes, such as the appearance of more resistive plasma impedance, are correctly attributed to loss of electrons in the bulk plasma to form negative molecular ions (e.g. SiH3-) and more precisely charged nanoparticles. These changes were studied and correlated to the different phases on the dust particle formation. It is well known now that, in silane argon gas mixture discharges, in the first step of this particle formation we have formation of nanometer sized crystallites. These small entities accumulate and when their number density reaches a critical value, about 1011 to 1012 cm-1, they start to aggregate to form bigger particles. The different phases are well defined and determined thanks to the time evolution of the different electrical parameter changes. The purpose of this contribution is to compare different chemistries to highlight similarities and/or differences in order to establish possible universal dust particle growth mechanisms. The chemistries we studied concern SiH4-Ar, CH4, CH4-N2 and Sn(CH3)4 [2]. We also refer to works performed in other laboratories in different discharge configurations [3]. Different applications have already developed or are foreseen for these nanoparticles. The first application concerns the inclusion of nanosized dust crystallites in an amorphous matrix in order to modify the optoelectronic and mechanical properties [4-5]. At the present time a very active research programs are devoted towards single electron devises where nanometer sized crystallites play a role of quantum dots. These nanoparticles can be produced in low pressure cold plasmas.

  3. Plasma-etched nanostructures for optical applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Schulz, Ulrike; Rickelt, Friedrich; Munzert, Peter; Kaiser, Norbert

    2015-08-01

    A basic requirement for many optical applications is the reduction of Fresnel-reflections. Besides of interference coatings, nanostructures with sub-wavelength size as known from the eye of the night-flying moth can provide antireflective (AR) properties. The basic principle is to mix a material with air on a sub-wavelength scale to decrease the effective refractive index. To realize AR nanostructures on polymers, the self-organized formation of stochastically arranged antireflective structures using a low-pressure plasma etching process was studied. An advanced procedure involves the use of additional deposition of a thin oxide layer prior etching. A broad range of different structure morphologies exhibiting antireflective properties can be generated on almost all types of polymeric materials. For applications on glass, organic films are used as a transfer medium. Organic layers as thin film materials were evaluated to identify compounds suitable for forming nanostructures by plasma etching. The vapor deposition and etching of organic layers on glass offers a new possibility to achieve antireflective properties in a broad spectral range and for a wide range of light incidence.

  4. Stability assessment of hypromellose acetate succinate (HPMCAS) NF for application in hot melt extrusion (HME).

    PubMed

    Sarode, Ashish L; Obara, Sakae; Tanno, Fumie K; Sandhu, Harpreet; Iyer, Raman; Shah, Navnit

    2014-01-30

    HPMCAS is a widely used polymer in the pharmaceutical industry as an excipient. In this work, the physicochemical stability of HPMCAS was investigated for hot melt extrusion (HME) application. The reduction in zero rate viscosity (η0) of the polymer with the increase in temperature was determined using rheological evaluation prior to HME processing. The energy of activation for AS-MF determined by fitting Arrhenius model to the temperature dependent reduction in η0 was found to be slightly lower than that for the other grades of HPMCAS. Glassy yellowish HMEs were obtained using Haake Mini-Lab MicroCompounder operated at 160, 180, and 200°C and 100, 200, and 300 rpm for all the grades at each temperature. Various physicochemical properties of HPMCAS such as glass transition temperature, semi-crystalline nature, solid state functional group properties, moisture content, and solution viscosity were not significantly affected by the HME processing. The most significant change was the release of acetic and succinic acid with the increase in HME temperature and speed. The free acid content release due to HME was directly proportional to the speed at lower operating temperatures. AS-LF was found to be the most stable with the lowest increase in total free acid content even at higher HME temperature and speed. Although the dissolution time was not affected due to HME for AS-LF and AS-MF grades, it was notably increased for AS-HF, perhaps due to significant reduction of succinoyl content. In conclusion, the HME processing conditions for solid dispersions of HPMCAS should be based on the acceptance levels of free acid for the drug and the drug product.

  5. Inference of Heating Properties from "Hot" Non-flaring Plasmas in Active Region Cores. I. Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, W. T.; Cargill, P. J.; Bradshaw, S. J.

    2016-09-01

    The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 106.6 and 107 K. Signatures of the actual heating may be detectable in some instances.

  6. Robust Identification of Binding Hot Spots Using Continuum Electrostatics: Application to Hen Egg-White Lysozyme

    PubMed Central

    2011-01-01

    Binding hot spots, protein regions with high binding affinity, can be identified by using X-ray crystallography or NMR spectroscopy to screen libraries of small organic molecules that tend to cluster at such hot spots. FTMap, a direct computational analogue of the experimental screening approaches, uses 16 different probe molecules for global sampling of the surface of a target protein on a dense grid and evaluates the energy of interaction using an empirical energy function that includes a continuum electrostatic term. Energy evaluation is based on the fast Fourier transform correlation approach, which allows for the sampling of billions of probe positions. The grid sampling is followed by off-grid minimization that uses a more detailed energy expression with a continuum electrostatics term. FTMap identifies the hot spots as consensus clusters formed by overlapping clusters of several probes. The hot spots are ranked on the basis of the number of probe clusters, which predicts their binding propensity. We applied FTMap to nine structures of hen egg-white lysozyme (HEWL), whose hot spots have been extensively studied by both experimental and computational methods. FTMap found the primary hot spot in site C of all nine structures, in spite of conformational differences. In addition, secondary hot spots in sites B and D that are known to be important for the binding of polysaccharide substrates were found. The predicted probe–protein interactions agree well with those seen in the complexes of HEWL with various ligands and also agree with an NMR-based study of HEWL in aqueous solutions of eight organic solvents. We argue that FTMap provides more complete information on the HEWL binding site than previous computational methods and yields fewer false-positive binding locations than the X-ray structures of HEWL from crystals soaked in organic solvents. PMID:22092261

  7. Comparative evaluation of electrical conductivity of hydroxyapatite ceramics densified through ramp and hold, spark plasma and post sinter Hot Isostatic Pressing routes.

    PubMed

    Buchi Suresh, M; Biswas, P; Mahender, V; Johnson, Roy

    2017-01-01

    Hydroxyapatite ceramics synthesized through sonochemical route were processed and densified through ramp & hold (R&H) and Spark Plasma Sintering (SPS) routes. The effect of processing route on the relative density and electrical conductivity were studied. Further, the samples were Hot Isostatically Pressed (HIP) under argon pressure at elevated temperature to further densify the sample. All these samples processed under different conditions were characterized by X-ray diffraction, Scanning Electron Microscopy and AC Conductivity. The samples have exhibited hydroxyapatite phase; however, microstructures exhibited distinctly different grain morphologies and grain sizes. AC impedance spectroscopic measurement was carried out on hydroxyapatite samples processed through different routes and the corresponding spectra were analyzed by the analogy to equivalent circuit involving resistors and capacitors. SPS sintered sample after HIPing has exhibited the highest conductivity. This can be attributed to the higher density in combination with finer grain sizes. Activation energy based on Arrhenius equation is calculated and the prominent conduction mechanism is proposed.

  8. Comparative Study of Solid-Phase Crystallization of Amorphous Silicon Deposited by Hot-Wire CVD, Plasma-Enhanced CVD, and Electron-Beam Evaporation

    SciTech Connect

    Stradins, P.; Kunz, O.; Young, D. L.; Yan, Y.; Jones, K. M.; Xu, Y.; Reedy, R. C.; Branz, H. M.; Aberle, A. G.; Wang, Q.

    2007-01-01

    Solid-phase crystallization (SPC) rates are compared in amorphous silicon films prepared by three different methods: hot-wire chemical vapor deposition (HWCVD), plasma-enhanced chemical vapor deposition (PECVD), and electron-beam physical vapor deposition (e-beam). Random SPC proceeds approximately 5 and 13 times slower in PECVD and e-beam films, respectively, as compared to HWCVD films. Doping accelerates random SPC in e-beam films but has little effect on the SPC rate of HWCVD films. In contrast, the crystalline growth front in solid-phase epitaxy experiments propagates at similar speed in HWCVD, PECVD, and e-beam amorphous Si films. This strongly suggests that the observed large differences in random SPC rates originate from different nucleation rates in these materials while the grain growth rates are relatively similar. The larger grain sizes observed for films that exhibit slower random SPC support this suggestion.

  9. Using penumbral imaging to measure micrometer size plasma hot spots in Gbar equation of state experiments on the National Ignition Facility.

    PubMed

    Bachmann, B; Kritcher, A L; Benedetti, L R; Falcone, R W; Glenn, S; Hawreliak, J; Izumi, N; Kraus, D; Landen, O L; Le Pape, S; Ma, T; Pérez, F; Swift, D; Döppner, T

    2014-11-01

    We have developed an experimental platform for absolute equation of state measurements up to Gbar pressures on the National Ignition Facility (NIF) within the Fundamental Science Program. We use a symmetry-tuned hohlraum drive to launch a spherical shock wave into a solid CH sphere. Streaked radiography is the primary diagnostic to measure the density change at the shock front as the pressure increases towards smaller radii. At shock stagnation in the center of the capsule, we observe a short and bright x-ray self emission from high density (∼50 g/cm(3)) plasma at ∼1 keV. Here, we present results obtained with penumbral imaging which has been carried out to characterize the size of the hot spot emission. This allows extending existing NIF diagnostic capabilities for spatial resolution (currently ∼10 μm) at higher sensitivity. At peak emission we find the hot spot radius to be as small as 5.8 +/- 1 μm, corresponding to a convergence ratio of 200.

  10. Experimental Investigation of the Plasma Bullet and Its Applications

    DTIC Science & Technology

    2012-08-01

    Atmospheric pressure, air plasma, plasma bullet, non -equilibrium 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...be ignited. Introduction One of the attractive features of non -thermal atmospheric pressure...Plasma jets or plumes fill exactly such a niche. Background The Plasma Pencil The electron energy distribution in non -equilibrium discharges

  11. Capillary plasma jet: A low volume plasma source for life science applications

    NASA Astrophysics Data System (ADS)

    Topala, I.; Nagatsu, M.

    2015-02-01

    In this letter, we present results from multispectroscopic analysis of protein films, after exposure to a peculiar plasma source, i.e., the capillary plasma jet. This plasma source is able to generate very small pulsed plasma volumes, in kilohertz range, with characteristic dimensions smaller than 1 mm. This leads to specific microscale generation and transport of all plasma species. Plasma diagnosis was realized using general electrical and optical methods. Depending on power level and exposure duration, this miniature plasma jet can induce controllable modifications to soft matter targets. Detailed discussions on protein film oxidation and chemical etching are supported by results from absorption, X-ray photoelectron spectroscopy, and microscopy techniques. Further exploitation of principles presented here may consolidate research interests involving plasmas in biotechnologies and plasma medicine, especially in patterning technologies, modified biomolecule arrays, and local chemical functionalization.

  12. Capillary plasma jet: A low volume plasma source for life science applications

    SciTech Connect

    Topala, I. E-mail: tmnagat@ipc.shizuoka.ac.jp; Nagatsu, M. E-mail: tmnagat@ipc.shizuoka.ac.jp

    2015-02-02

    In this letter, we present results from multispectroscopic analysis of protein films, after exposure to a peculiar plasma source, i.e., the capillary plasma jet. This plasma source is able to generate very small pulsed plasma volumes, in kilohertz range, with characteristic dimensions smaller than 1 mm. This leads to specific microscale generation and transport of all plasma species. Plasma diagnosis was realized using general electrical and optical methods. Depending on power level and exposure duration, this miniature plasma jet can induce controllable modifications to soft matter targets. Detailed discussions on protein film oxidation and chemical etching are supported by results from absorption, X-ray photoelectron spectroscopy, and microscopy techniques. Further exploitation of principles presented here may consolidate research interests involving plasmas in biotechnologies and plasma medicine, especially in patterning technologies, modified biomolecule arrays, and local chemical functionalization.

  13. Application of induction coil measurements to the study of superalloy hot corrosion and oxidation

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.

    1984-01-01

    The assessment of the degree of hot corrosion attack on nickel based alloys is a difficult task, especially when the definition specifies that it must be in terms of metal consumed and even more difficult if the measurement must be nondestructive. The inductance of a solenoid coil responds to changes in volume of fill and composition of metal cores, therefore, it may be used for nondestructive measurement of hot corrosion. The hot corrosion of U700 was studied at 900 C in a Mach 0.3 flame doped with 0.85 wppm of sodium. The change of inductance was found to define the known corrosion behavior and to suggest its use as a tool with predictive capabilities. Sufficient sensitivity exists to detect oxidation of this alloy at 900 C.

  14. Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching

    NASA Astrophysics Data System (ADS)

    Lee, Jae Koo; Kim, Myoung Soo; Byun, June Ho; Kim, Kyong Tai; Kim, Gyoo Cheon; Park, Gan Young

    2011-08-01

    Low temperature atmospheric pressure plasmas have attracted great interests and they have been widely applied to biomedical applications to interact with living tissues, cells, and bacteria due to their non-thermal property. This paper reviews the biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Gold nanoparticles conjugated with cancer-specific antibodies have been introduced to cancerous cells to enhance selective killing of cells, and the mechanism of cell apoptosis induced by plasma has been investigated. Tooth exposed to helium plasma jet with hydrogen peroxide has become brighter and the productions of hydroxyl radicals from hydrogen peroxide have been enhanced by plasma exposure.

  15. COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b

    SciTech Connect

    Moses, J. I.; Line, M. R.; Visscher, C.; Richardson, M. R.; Nettelmann, N.; Fortney, J. J.; Barman, T. S.; Stevenson, K. B.; Madhusudhan, N.

    2013-11-01

    Neptune-sized extrasolar planets that orbit relatively close to their host stars—often called {sup h}ot Neptunes{sup —}are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accretion of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric metallicities of 10-10,000 times solar, hot Neptunes will exhibit an interesting continuum of atmospheric compositions, ranging from more Neptune-like, H{sub 2}-dominated atmospheres to more Venus-like, CO{sub 2}-dominated atmospheres. We explore the predicted equilibrium and disequilibrium chemistry of generic hot Neptunes and find that the atmospheric composition varies strongly as a function of temperature and bulk atmospheric properties such as metallicity and the C/O ratio. Relatively exotic H{sub 2}O, CO, CO{sub 2}, and even O{sub 2}-dominated atmospheres are possible for hot Neptunes. We apply our models to the case of GJ 436b, where we find that a CO-rich, CH{sub 4}-poor atmosphere can be a natural consequence of a very high atmospheric metallicity. From comparisons of our results with Spitzer eclipse data for GJ 436b, we conclude that although the spectral fit from the high-metallicity forward models is not quite as good as the best fit obtained from pure retrieval methods, the atmospheric composition predicted by these forward models is more physically and chemically plausible in terms of the relative abundance of major constituents. High-metallicity atmospheres (orders of magnitude in excess of solar) should therefore be considered as a possibility for GJ 436b and other hot Neptunes.

  16. Investigation on critical breakdown electric field of hot carbon dioxide for gas circuit breaker applications

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Rong, Mingzhe; Wu, Yi; Chen, Zhexin; Yang, Fei; Murphy, Anthony B.; Zhang, Hantian

    2015-02-01

    Sulfur hexafluoride (SF6) gas is widely used in high-voltage circuit breakers, but due to its high global warming potential, substitutes are being sought. CO2 has been investigated as a candidate based on its arc interruption performance. The hot gas in the circuit breaker after current zero, with a complicated species composition caused by the dissociation and many other reactions, will lead to the electrical breakdown, which is one of the major concerns in assessing the arc interruption performance. Despite this, little research has been reported on the dielectric strength of hot CO2. In this paper, the dielectric properties of hot CO2 related to the dielectric recovery phase of the circuit breaker were investigated in the temperature range from 300 to 4000 K and in the pressure range from 0.01 to 1.0 MPa. Under the assumptions of local thermodynamic equilibrium (LTE) and local chemical equilibrium (LCE), the equilibrium compositions of hot CO2 were obtained based on Gibbs free energy minimization. The cross sections for interactions between electrons and the species are presented. The critical reduced electric field strength of CO2 was determined by balancing electron generation and loss. These were evaluated using the electron energy distribution function (EEDF) derived from the two-term Boltzmann transport equation. The result indicates that unlike SF6 or air, in hot CO2 the reduced critical electric field strength does not change monotonically with increasing heavy-particle temperature from 300 to 4000 K. CO2 has a superior dielectric strength to pure SF6 above 2500 K at 0.5 MPa, which means it has the potential to improve the interruption performance of the circuit breakers, while reducing the global warming effect. Good agreement was found with published experimental results and calculations for CO2 at room temperature, and with previous calculations for hot CO2.

  17. COMMERCIAL APPLICATION OF PLASMA MASS SEPARATION IN THE ARCHIMEDES FILTER PLANT

    SciTech Connect

    Ahlfeld, C.E.; Gilleland, J.G.; Wagoner, J.D.

    2003-02-27

    This paper describes the commercial application of an innovative plasma mass separator called the Archimedes Filter to a pre-treatment plant that can be integrated into the U.S. Department of Energy (DOE) Hanford and Savannah River Sites to significantly enhance the treatment of radioactive high-level waste. The output of the Archimedes Filter is completely compatible with existing waste immobilization processes such as vitrification and requires no new waste form to be developed. A full-geometric-scale Demonstration Filter Unit (DEMO) has been constructed and is undergoing initial testing at the Archimedes Technology Group Development Facilities in San Diego. Some of the technology and engineering development is being performed by other organizations in collaboration with Archimedes. The Commissariat a l'Energie Atomique (CEA) is developing the plasma calcination technology and all of the associated systems for AFP feed preparation. Two Russian institutes are involved in the development of the ICP torch and injector system. The Remote System Group (UT-Battelle) at ORNL is developing the remote maintenance system for the filter units. Conceptual design of the Archimedes Filter Plant (AFP) is being developed concurrently with the DEMO testing program. The AFP mission is to significantly reduce the cost and accelerate the rate of vitrification of high-level waste by separating low activity waste from the sludge removed from underground storage tanks. Mass separation is accomplished by vaporizing the sludge feed and injecting it into a partially ionized, neutral plasma. In a single pass, heavy ions are deposited near the center of the filter and light mass ions are transported by the plasma to the ends of the cylindrically-shaped vacuum vessel. Responding to the DOE programs for cost reduction and cleanup acceleration, the AFP Project is planned on an expeditious schedule that executes all phases of the project with private sector funding. The initial AFP

  18. Robust regression with CUDA and its application to plasma reflectometry

    NASA Astrophysics Data System (ADS)

    Ferreira, Diogo R.; Carvalho, Pedro J.; Fernandes, Horácio

    2015-11-01

    In many applications, especially those involving scientific instrumentation data with a large experimental error, it is often necessary to carry out linear regression in the presence of severe outliers which may adversely affect the results. Robust regression methods do exist, but they are much more computationally intensive, making it difficult to apply them in real-time scenarios. In this work, we resort to graphics processing unit (GPU)-based computing to carry out robust regression in a time-sensitive application. We illustrate the results and the performance gains obtained by parallelizing one of the most common robust regression methods, namely, least median of squares. Although the method has a complexity of O(n3logn), with GPU computing, it is possible to accelerate it to the point that it becomes usable within the required time frame. In our experiments, the input data come from a plasma diagnostic system installed at Joint European Torus, the largest fusion experiment in Europe, but the approach can be easily transferred to other applications.

  19. Robust regression with CUDA and its application to plasma reflectometry.

    PubMed

    Ferreira, Diogo R; Carvalho, Pedro J; Fernandes, Horácio

    2015-11-01

    In many applications, especially those involving scientific instrumentation data with a large experimental error, it is often necessary to carry out linear regression in the presence of severe outliers which may adversely affect the results. Robust regression methods do exist, but they are much more computationally intensive, making it difficult to apply them in real-time scenarios. In this work, we resort to graphics processing unit (GPU)-based computing to carry out robust regression in a time-sensitive application. We illustrate the results and the performance gains obtained by parallelizing one of the most common robust regression methods, namely, least median of squares. Although the method has a complexity of O(n(3)logn), with GPU computing, it is possible to accelerate it to the point that it becomes usable within the required time frame. In our experiments, the input data come from a plasma diagnostic system installed at Joint European Torus, the largest fusion experiment in Europe, but the approach can be easily transferred to other applications.

  20. Micro-column plasma emission liquid chromatograph. [Patent application

    DOEpatents

    Gay, D.D.

    1982-08-12

    In a direct current plasma emission spectrometer for use in combination with a microcolumn liquid chromatograph, an improved plasma source unit is claimed. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.

  1. A self-consistent model for the study of electronic properties of hot dense plasmas in the superconfiguration approximation

    NASA Astrophysics Data System (ADS)

    Pain, J. C.; Dejonghe, G.; Blenski, T.

    2006-05-01

    We propose a thermodynamically consistent model involving detailed screened ions, described by superconfigurations, in plasmas. In the present work, the electrons, bound and free, are treated quantum-mechanically so that resonances are carefully taken into account in the self-consistent calculation of the electronic structure of each superconfiguration. The procedure is in some sense similar to the one used in Inferno code developed by D.A. Liberman; however, here we perform this calculation in the ion-sphere model for each superconfiguration. The superconfiguration approximation allows rapid calculation of necessary averages over all possible configurations representing excited states of bound electrons. The model enables a fully quantum-mechanical self-consistent calculation of the electronic structure of ions and provides the relevant thermodynamic quantities (e.g., internal energy, Helmholtz free energy and pressure), together with an improved treatment of pressure ionization. It should therefore give a better insight into the impact of plasma effects on photoabsorption spectra.

  2. Nonlinear theory of ionic sound waves in a hot quantum-degenerate electron-positron-ion plasma

    SciTech Connect

    Dubinov, A. E. Sazonkin, M. A.

    2010-11-15

    A collisionless nonmagnetized e-p-i plasma consisting of quantum-degenerate gases of ions, electrons, and positrons at nonzero temperatures is considered. The dispersion equation for isothermal ionic sound waves is derived and analyzed, and an exact expression is obtained for the linear velocity of ionic sound. Analysis of the dispersion equation has made it possible to determine the ranges of parameters in which nonlinear solutions in the form of solitons should be sought. A nonlinear theory of isothermal ionic sound waves is developed and used for obtaining and analyzing the exact solution to the system of initial equations. Analysis has been carried out by the method of the Bernoulli pseudopotential. The ranges of phase velocities of periodic ionic sound waves and soliton velocities are determined. It is shown that in the plasma under investigation, these ranges do not overlap and that the soliton velocity cannot be lower than the linear velocity of ionic sound. The profiles of physical quantities in a periodic wave and in a soliton are constructed, as well as the dependences of the velocity of sound and the critical velocity on the ionic concentration in the plasma. It is shown that these velocities increase with the ion concentration.

  3. Constraining hot plasma in a non-flaring solar active region with FOXSI hard X-ray observations

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shin-nosuke; Glesener, Lindsay; Christe, Steven; Ishibashi, Kazunori; Brooks, David H.; Williams, David R.; Shimojo, Masumi; Sako, Nobuharu; Krucker, Säm

    2014-12-01

    We present new constraints on the high-temperature emission measure of a non-flaring solar active region using observations from the recently flown Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload. FOXSI has performed the first focused hard X-ray (HXR) observation of the Sun in its first successful flight on 2012 November 2. Focusing optics, combined with small strip detectors, enable high-sensitivity observations with respect to previous indirect imagers. This capability, along with the sensitivity of the HXR regime to high-temperature emission, offers the potential to better characterize high-temperature plasma in the corona as predicted by nanoflare heating models. We present a joint analysis of the differential emission measure (DEM) of active region 11602 using coordinated observations by FOXSI, Hinode/XRT, and Hinode/EIS. The Hinode-derived DEM predicts significant emission measure between 1 MK and 3 MK, with a peak in the DEM predicted at 2.0-2.5 MK. The combined XRT and EIS DEM also shows emission from a smaller population of plasma above 8 MK. This is contradicted by FOXSI observations that significantly constrain emission above 8 MK. This suggests that the Hinode DEM analysis has larger uncertainties at higher temperatures and that > 8 MK plasma above an emission measure of 3 × 1044 cm-3 is excluded in this active region.

  4. Analysis of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applications

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.

    1996-01-01

    The prospects of a YBa2Cu3O7(delta)(YBCO) hot-electron bolometer (HEB) mixer for a THz heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate.

  5. Effect of the planet shine on the corona: Application to the Martian hot oxygen

    NASA Astrophysics Data System (ADS)

    Chaufray, J.-Y.; Deighan, J.; Stewart, A. I. F.; Schneider, N.; Clarke, J.; Leblanc, F.; Jakosky, B.

    2016-11-01

    Systematic observations of the Martian hot oxygen corona by Imaging Ultraviolet Spectrograph on Mars Atmosphere and Volatile and EvolutioN can be used to constrain estimates of the current neutral oxygen escape rate. In this paper, we investigate the effect of the photons emitted from the thermosphere and lower exosphere on the emissivity of the hot oxygen corona at 130.4 nm. We compare this source of illumination, generally neglected, to the direct solar illumination used to convert the O I 130.4 triplet brightness into line-of-sight column density. This study is performed using a radiative transfer model with two Maxwellian oxygen populations, assuming spherical symmetry for the cold and hot oxygen densities. Contribution to the corona from the illumination of the exosphere by the sunlit atmosphere depends on the amount of cold oxygen and varies with altitude and solar zenith angle. An analytic formulation to take into account variations of this effect with respect to the hot oxygen kinetic temperature is proposed. The effect of the atmosphere sunlit should be general and occur on other planets for other very optically thick resonance lines.

  6. Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid

    NASA Astrophysics Data System (ADS)

    Gu, Ling

    2014-03-01

    This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with ethanol. It is found that the plasma acidic water has a stable and better performance than sulfuric acid, meaning that it is an excellent acid catalyst. The plasma acidic water would be a promising alternative for classic mineral acid as a more environment friendly acid.

  7. Development of plasma needle to be used for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bora, B.; Jain, J.; Inestrosa-Izurieta, M. J.; Avaria, G.; Moreno, J.; Pavez, C.; Marcelain, K.; Armisen, R.; Soto, L.

    2016-05-01

    Plasma needle is a novel design of a plasma source at atmospheric pressure to achieve a non-thermal plasma jet. The advantage of the plasma needle is that it can be operated in open air, outside a vessel. The plasma that is generated with the plasma needle is small (about one millimetre) and non-thermal, the temperature of the neutral particles and ions is in about room temperature and suitably can interact with living biological cell without damaging the cell. In this work, we report the development of a plasma needle, which is operated by a dc power source and produced a stable plasma jet on water surface. Argon gas is used to operate the plasma needle. The preliminary electrical diagnostics of the plasma needle shows that the discharge is filamentary in nature. For diagnostic of the plasma jet produced by the developed plasma needle, the produced plasma jet is directed to water surface and characterization are carried out by means of electrical discharge characteristics and optical emission spectroscopy. In this work, preliminary results of the diagnostic will be presented.

  8. Investigations of microwave plasmas - Applications in electrothermal thruster systems

    NASA Technical Reports Server (NTRS)

    Haraburda, Scott S.; Hawley, Martin C.

    1989-01-01

    Experimental studies which have been conducted to develop understanding of plasma processes used for spacecraft propulsion are reviewed. The techniques discussed are calorimetry and volume measurements using the TM 011 and TM 012 modes in the microwave cavity system. The use of plasmas in electrical propulsion and microwave induction is reviewed. Plasma containment, microwave power production, energy distribution, and the pressure and flow dependence of the energy distribution are addressed. The plasma dimensions and their dependence on pressure, flow, and power are considered.

  9. Novel application of hot-melt extrusion for the preparation of monolithic matrices containing enteric-coated particles.

    PubMed

    Schilling, Sandra U; McGinity, James W

    2010-11-15

    The objective was to investigate a novel application of hot-melt extrusion for the preparation of multiparticulate matrices comprising delayed-release particles. Multiparticulates of different mechanical strengths (theophylline granules, wet-mass extruded/spheronized pellets and drug-layered microcrystalline cellulose spheres) were coated with Eudragit(®) L30D-55 and characterized regarding potency, moisture content, dissolution properties and tensile strength. The coated particles were incorporated into a water-soluble matrix using hot-melt extrusion. Six hydrophilic polymers including polyethylene glycols, poloxamers and polyethylene oxides were studied as the carrier material for the extrusion. Dissolution testing showed that the maintenance of the delayed-release properties of the incorporated particles was independent of the particle tensile strength, but influenced by the nature of the carrier polymer. High miscibility between the carrier and the coating polymer correlated with increased film permeability and higher drug release in acidic media. Of the materials tested, poloxamer 407 exhibited lower miscibility with the Eudragit(®) L polymer and matrices containing up to 40% enteric pellets were compliant with the USP dissolution requirements for delayed-release dosage forms. The potential advantages of hot-melt extrusion over direct compression for the processing of soft drug granules coated with Eudragit(®) L polymer were demonstrated.

  10. PLASMA-2013: International Conference on Research and Applications of Plasmas (Warsaw, Poland, 2-6 September 2013)

    NASA Astrophysics Data System (ADS)

    Sadowski, Marek J.

    2014-05-01

    The PLASMA-2013 International Conference on Research and Applications of Plasmas was held in Warsaw (Poland) from 2 to 6 September 2013. The conference was organized by the Institute of Plasma Physics and Laser Microfusion, under the auspices of the Polish Physical Society. The scope of the PLASMA conferences, which have been organized every two years since 1993, covers almost all issues of plasma physics and fusion research as well as selected problems of plasma technology. The PLASMA-2013 conference topics included: •Elementary processes and general plasma physics. •Plasmas in tokamaks and stellarators (magnetic confinement fusion). •Plasmas generated by laser beams and inertial confinement fusion. •Plasmas produced by Z-pinch and plasma-focus discharges. •Low-temperature plasma physics. •Space plasmas and laboratory astrophysics. •Plasma diagnostic methods and applications of plasmas. This conference was designed not only for plasma researchers and engineers, but also for students from all over the world, in particular for those from Central and Eastern Europe. Almost 140 participants had the opportunity to hear 9 general lectures, 11 topical talks and 26 oral presentations, as well as to see and discuss around 120 posters. From about 140 contributions, after the preparation of about 100 papers and the peer review process, only 74 papers have been accepted for publication in this topical issue. Acknowledgments Acting on behalf of the International Scientific Committee I would like to express our thanks to all the invited speakers and all the participants of the PLASMA-2013 conference for their numerous contributions. In particular, I wish to thank all of the authors of papers submitted for publication in this topical issue of Physica Scripta . Particular thanks are due to all of the reviewers for their valuable reports and comments, which helped to improve the quality of many of the papers. International Scientific Committee Marek J Sadowski, NCBJ

  11. Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source

    NASA Astrophysics Data System (ADS)

    Dolgov, A.; Lopaev, D.; Lee, C. J.; Zoethout, E.; Medvedev, V.; Yakushev, O.; Bijkerk, F.

    2015-10-01

    Molecular contamination of a grazing incidence collector for extreme ultraviolet (EUV) lithography was experimentally studied. A carbon film was found to have grown under irradiation from a pulsed tin plasma discharge. Our studies show that the film is chemically inert and has characteristics that are typical for a hydrogenated amorphous carbon film. It was experimentally observed that the film consists of carbon (∼70 at.%), oxygen (∼20 at.%) and hydrogen (bound to oxygen and carbon), along with a few at.% of tin. Most of the oxygen and hydrogen are most likely present as OH groups, chemically bound to carbon, indicating an important role for adsorbed water during the film formation process. It was observed that the film is predominantly sp3 hybridized carbon, as is typical for diamond-like carbon. The Raman spectra of the film, under 514 and 264 nm excitation, are typical for hydrogenated diamond-like carbon. Additionally, the lower etch rate and higher energy threshold in chemical ion sputtering in H2 plasma, compared to magnetron-sputtered carbon films, suggests that the film exhibits diamond-like carbon properties.

  12. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  13. Hot-wire chemical vapor deposition of silicon and silicon nitride for photovoltaics: Experiments, simulations, and applications

    NASA Astrophysics Data System (ADS)

    Holt, Jason Knowles

    Hot-wire chemical vapor deposition is a promising technique for deposition of thin film silicon for photovoltaics. Fundamental questions remain, however, about the gas-phase and surface-kinetic processes involved. To this end, the nature of the decomposition process has been studied in detail by use of mass spectrometry. Catalysis was evident for SiH3 production with the use of a new wire, while aged wires appear to produce radicals by a non-catalyzed route. Large quantities of silicon were present at the surface, consistent with a silicide layer. Threshold ionization mass spectrometry revealed large quantities of the SiH2 radical, attributed to heterogeneous pyrolysis on the walls of the reactor. At dilute (1% in He) silane pressures of up to 2 Torr, a negligible amount of ions and silicon agglomerates (Si2, Si2H, Si 2H6) were detected. Density functional theory calculations reveal an energetically favorable route for the reaction of Si and SiH 4, producing Si2H2 and H2. Two-dimensional Monte Carlo simulations were used to model a hot-wire reactor, showing that filament arrays can be used to improve film growth uniformity. Continuum simulations predict a maximum growth rate of 10 nm/s for dilute (1%) silane conditions and a rate of 50 nm/s for pure silane. Hot-wire chemical vapor deposition was used to deposit silicon nitride films with indices of refraction from 1.8--2.5 and hydrogen content from 9--18 atomic %. By tuning the SiH4/NH3 flow ratio, films in which the hydrogen was predominantly bound to N or Si could be produced. Platinum-diffused silicon samples, capped by a hydrogenated silicon nitride layer revealed, upon annealing at 700°C, platinum-hydrogen complexes with a bulk concentration of 1014 cm-3. Photovoltaic cells employing a hot-wire nitride layer were found to have comparable electrical properties to those using plasma nitride layers. Finally, a method for in situ generation of SiH 4 by atomic hydrogen etching was evaluated. Using a cooled

  14. Application of hot platinum microelectrodes for determination of flavonoids in flow injection analysis and capillary electrophoresis.

    PubMed

    Magnuszewska, Jolanta; Krogulec, Tadeusz

    2013-07-05

    The determination of quercetin and rutin by flow injection analysis (FIA) and capillary electrophoresis (CE) using electrochemical detection was described. These flavonoids were determined at normal (unheated) and hot platinum microelectrodes using cyclic voltammetry. When quercetin or rutin is reaching the platinum electrode, a change of the current in the region of the platinum oxide formation is observed. Integration of the current changes in this in this region creates analytical signals in the form of peaks. An increase of temperature to about 76°C in a small zone adjacent to the microelectrode causes an increase of the analytical signal by more than 6 times under FIA conditions. This method enables the use of hot microelectrodes as detectors in HPLC or CE. In CE the improvement of the analytical signal at hot microelectrodes is smaller than in FIA and increase only 1.3-3.4 times. Heated microelectrodes were used for analysis of the flavonoids in natural samples of the plant (extract of sea buckthorn) and a pharmaceutical preparation (Cerutin).

  15. Development and commercialization of hot gas filters for power generation applications

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Alvin, M.A.; Bachovchin, D.M.; Newby, R.A.

    1995-12-31

    Westinghouse is conducting a broad development program under US Department of Energy (DOE) and corporate program initiatives to commercialize hot gas filtration (HGF) for power generation. Coal and biomass gasification combined cycles (GCC), and Pressurized Fluidized Bed Combustion (PFBC) are advanced power generation cycles that will use HGF to achieve maximum performance. Westinghouse, in conjunction with DOE are participating in several pilot and demonstration test programs in which hot gas filter systems are integrated and operated in coal derived gas streams. This paper reports on HGF testing conducted over the past year in the following pilot plant facilities: At the PFBC Hot Gas Clean Slipstream facility installed at the Tidd 70-MWe bubbling-PFBC Clean Coal Demonstration Plant; at the Ahlstrom 10 Mwt Circulating-PFBC facility located in Karhula, Finland; at the Advanced-PFBC subpilot facility located at the Foster Wheeler Development Corporation Livingston, NJ site; at the Biomass subpilot gasification facility located at the Institute of Gas Technology (IGT). Test results include operating experience on both conventional and advanced candle filter elements.

  16. Effect of bias application to plasma density in weakly magnetized inductively coupled plasma

    SciTech Connect

    Kim, Hyuk; Lee, Woohyun; Park, Wanjae; Whang, Ki-Woong

    2013-07-15

    Independent control of the ion flux and energy can be achieved in a dual frequency inductively coupled plasma (ICP) system. Typically, the plasma density is controlled by the high-frequency antenna radio-frequency (RF) power and the ion energy is controlled by the low-frequency bias RF power. Increasing the bias power has been known to cause a decrease in the plasma density in capacitively coupled discharge systems as well as in ICP systems. However, an applied axial magnetic field was found to sustain or increase the plasma density as bias power is increased. Measurements show higher electron temperatures but lower plasma densities are obtained in ordinary ICP systems than in magnetized ICP systems under the same neutral gas pressure and RF power levels. Explanations for the difference in the behavior of plasma density with increasing bias power are given in terms of the difference in the heating mechanism in ordinary unmagnetized and magnetized ICP systems.

  17. Si3N4-TiN nanocomposite by nitration of TiSi2 and consolidation by hot pressing and spark plasma sintering.

    PubMed

    Borodianska, Hanna; Krushinskaya, Larisa; Makarenko, Galina; Sakka, Yoshio; Uvarova, Irina; Vasylkiv, Oleg

    2009-11-01

    Homogeneous nanostructured Si3N4-TiN composite powder was obtained by nitration of a TiSi2 powder precursor in a nitrogen flow. Mechanoactivation of titanium disilicide increases the nitration rate and reduces the temperature of formation of the Si3N4 and TiN. The properties of hot pressing (HP) and spark plasma sintering (SPS) of the nanostructured Si3N4-TiN composite with Y2O3 and Al2O3 additives have been studied. In the case of the HP-prepared composite the processing conditions are sufficient to form a stable, equilibrated grain boundary framework. The SPS consolidation is extremely rapid, low-temperature process and the sintering temperature was 300-400 degrees C lower than that of the hot pressing temperature. As a result the grain boundary framework was underdeveloped. Post-sintering anneal of the SPS-prepared samples caused significant improvement of their mechanical properties. The SPS and HP-derived Si3N4-40 mass% TiN-6 mass% Y2O3-2 mass% Al2O3 nano-composite of 98.4% and 98.9% of relative density demonstrate the Vickers hardness values of 13.2 and 13.7 GPa, respectively. The grains of Si3N4 and TiN were much finer in the case of the SPS-derived ceramic composite. However, the better development of the grain boundary framework in the case of the higher temperature HP treatment in comparison to the SPS significantly reduced the advantage of nanocrystallinity. In both cases the fracture toughness was comparable even after the improvement of grain boundary framework during the SPS consolidation. The K(1c), of 7.83 MPax m(1/2) of the sample prepared according to the best SPS regime is also comparable to K(1c) of 8.30 MPa x m(1/2) of much coarser hot pressed ceramic with very similar relative density.

  18. Field Emitter Arrays for Plasma and Microwave Source Applications

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.

    1998-11-01

    Field emitter arrays (FEAs) are attractive cathode candidates for many applications, e.g., electron microguns(C. Constancias, D. Herve, R. Accomo, and E. Molva, J. Vac. Sci. Tech. B13, 611, 1995.), miniaturized TWTs(H. Imura, S. Tsuida, M. Takahasi, A. Okamoto, H. Makishima, and S. Miyano, Tech. Dig. of the IEEE-IEDM (Dec. 7-11, Washington, DC) p721.), radiation sources, instrumentation , sensors, mass spectrometers, and electric propulsion (Hall thrusters (C. M. Marrese and Alec D. Gallimore, Tech. Dig. of Int'l. Conf. on Plasma Science, (Raleigh, NC, June 4-5, 1998), 1D05.)) due to their instant ON/OFF capability, high brightness and current density, large transconductance to capacitance ratio, low voltage operation, and so on. Two applications are significant: in the most widely pursued, FEAs may enable significant reductions in physical dimensions, weight, and power consumption of flat panel displays (FPDs)(A. Ghis, R. Meyer, P. Rambaud, F. Levy, and T. Leroux, IEEE-Trans. Elect. Dev. 36, 2320 (1991)), whereas the most challenging application, advanced RF tubes(M. A. Kodis, K. L. Jensen, E. G. Zaidman, B. Goplen, D. N. Smithe, IEEE-Trans. on Plas. Sci. 24, 970 (1996).), may benefit from the current densities and high pulse repetition frequencies field emitters are capable of. FEAs (a coplanar gate less than one micron from a microfabricated conical emitter for field enhancement), provide high current density for low gate voltages, are relatively temperature insensitive, and are capable of emission modulation at 10 GHz. High currents due to quantum mechanical tunneling are made possible by narrowing the field emission barrier to nanometer widths. Greater performance and robustness may be enabled through rugged low work function coatings. We shall describe the process of field emission by quantum mechanical tunneling, provide an overview of the applications and their demands on field emitters, and present a model of FEAs used to characterize their performance

  19. Naphthalene and acenaphthene decomposition by electron beam generated plasma application

    SciTech Connect

    Ostapczuk, A.; Hakoda, T.; Shimada, A.; Kojima, T.

    2008-08-15

    The application of non-thermal plasma generated by electron beam (EB) was investigated in laboratory scale to study decomposition of polycyclic aromatic hydrocarbons like naphthalene and acenaphthene in flue gas. PAH compounds were treated by EB with the dose up to 8 kGy in dry and humid base gas mixtures. Experimentally established G-values gained 1.66 and 3.72 mol/100 eV for NL and AC at the dose of 1 kGy. NL and AC removal was observed in dry base gas mixtures showing that the reaction with OH radical is not exclusive pathway to initialize PAH decomposition; however in the presence of water remarkably higher decomposition efficiency was observed. As by-products of NL decomposition were identified compounds containing one aromatic ring and oxygen atoms besides CO and CO{sub 2}. It led to the conclusion that PAH decomposition process in humid flue gas can be regarded as multi-step oxidative de-aromatization analogical to its atmospheric chemistry.

  20. Application of nonlinear methods to the study of ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. A.; Mogilevsky, M. M.; Kozelov, B. V.

    2015-01-01

    Most of the processes taking place in the auroral region of Earth's ionosphere are reflected in a variety of dynamic forms of the aurora borealis. In order to study these processes it is necessary to consider temporary and spatial variations of the characteristics of ionospheric plasma. Most traditional methods of classical physics are applicable mainly for stationary or quasi-stationary phenomena, but dynamic regimes, transients, fluctuations, selfsimilar scaling could be considered using the methods of nonlinear dynamics. Special interest is the development of the methods for describing the spatial structure and the temporal dynamics of auroral ionosphere based on the ideas of percolation theory and fractal geometry. The fractal characteristics (the Hausdorff fractal dimension and the index of connectivity) of Hall and Pedersen conductivities are used to the description of fractal patterns in the ionosphere. To obtain the self-consistent estimates of the parameters the Hausdorff fractal dimension and the index of connectivity in the auroral zone, an additional relation describing universal behavior of the fractal geometry of percolation at the critical threshold is applied. Also, it is shown that Tsallis statistics can be used to study auroral ionosphere

  1. Applications of numerical codes to space plasma problems

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.; Birmingham, T. J.; Jones, F. C.; Wu, C. S.

    1975-01-01

    Solar wind, earth's bowshock, and magnetospheric convection and substorms were investigated. Topics discussed include computational physics, multifluid codes, ionospheric irregularities, and modeling laser plasmas.

  2. Low Temperature Atmospheric Argon Plasma: Diagnostics and Medical Applications

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Svetlana; Petrov, Oleg; Zigangirova, Nailya; Vasiliev, Mikhail; Sysolyatina, Elena; Antipov, Sergei; Alyapyshev, Maxim; Kolkova, Natalia; Mukhachev, Andrei; Naroditsky, Boris; Shimizu, Tetsuji; Grigoriev, Anatoly; Morfill, Gregor; Fortov, Vladimir; Gintsburg, Alexander

    This study was devoted to diagnostic of low temperature plasma produced by microwave generator and investigation of its bactericidal effect against bacteria in biofilms and within eukaryotic cells. The profile of gas temperature near the torch outlet was measured. The spectrum in a wide range of wavelengths was derived by the method of optical emission spec-troscopy. Probe measurements of the floating potential of plasma were car-ried out. The estimation and adaptation of parameters of plasma flow (tem-perature, velocity, ion number density) according to medico-technical requirements were produced. The model of immersed surface-associated biofilms formed by Gram-negative bacteria, Pseudomonas aeruginosa and Burkholderia cenocepacia, and Gram-positive bacteria, Staphylococcus aureus, was used to assess bactericidal effects of plasma treatment. Reduction in the concentration of live bacteria in biofilms treated with plasma for 5 min was demonstrated by measuring Live/Dead fluorescent labeling and using direct plating. The intracellular infection model with the pathogenic bacterium, Chlamydia trachomatis, was used to study the efficacy of microwave argon plasma against intracellular parasites. A 2 min plasma treatment of mouse cells infected with C. trachomatis reduced infectious bacteria by a factor of 2×106. Plasma treatment diminished the number of viable host cells by about 20%. When the samples were covered with MgF2 glass to obstruct active particles and UV alone was applied, the bactericidal effect was re-duced by 5×104 fold compared to the whole plasma.

  3. Plasma technologies application for building materials surface modification

    NASA Astrophysics Data System (ADS)

    Volokitin, G. G.; Skripnikova, N. K.; Volokitin, O. G.; Shehovtzov, V. V.; Luchkin, A. G.; Kashapov, N. F.

    2016-01-01

    Low temperature arc plasma was used to process building surface materials, such as silicate brick, sand lime brick, concrete and wood. It was shown that building surface materials modification with low temperature plasma positively affects frost resistance, water permeability and chemical resistance with high adhesion strength. Short time plasma processing is rather economical than traditional processing thermic methods. Plasma processing makes wood surface uniquely waterproof and gives high operational properties, dimensional and geometrical stability. It also increases compression resistance and decreases inner tensions level in material.

  4. Application of cylindrical Langmuir probes to streaming plasma diagnostics.

    NASA Technical Reports Server (NTRS)

    Segall, S. B.; Koopman, D. W.

    1973-01-01

    The current-voltage characteristics of cylindrical probes in a high velocity collisionless plasma flow have been investigated experimentally and theoretically. The plasma was generated by a focused laser pulse incident on a metallic target in vacuum. An analysis, developed from a stationary plasma analog to the flowing case, demonstrated a failure of plasma shielding of probe potential in the electron attracting region. Modifications of relatively simple previous treatments were found to be valid for computing electron current to a probe. The electron characteristics derived from the present analysis agree well with experimental results. The ion and electron portions of the characteristics are consistent with each other and with independent diagnostic measurements.

  5. Development of Metallic Filters for Hot Gas Cleanup in Pressurized Fluidized Bed Combustion Applications

    SciTech Connect

    Anderson, I.E.; Gleeson, B.; Terpstra, R.L.

    2002-09-19

    Alternative alloys derived from the wide array of aerospace superalloys will be developed for hot gas filtration to improve on both ceramic filters and ''first-generation'' iron aluminide metallic filter materials. New high performance metallic filters should offer the benefits of non-brittle mechanical behavior at all temperatures, including ambient temperature, and improved resistance to thermal fatigue compared to ceramic filter elements, thus improving filter reliability. A new powder processing approach also will be established that results in lightweight metallic filters with high permeability and weldability for enhanced capability for filter system manufacturing.

  6. Environmental assessment of the proposed nonelectric application of geothermal resources at Desert Hot Springs, California

    NASA Technical Reports Server (NTRS)

    Rosenberg, L.

    1978-01-01

    The paper presents an environmental analysis performed in evaluating various proposed geothermal demonstration projects at Desert Hot Springs. These are categorized in two ways: (1) indirect, or (2) direct uses. Among the former are greenhouses, industrial complexes, and car washes. The latter include aquaculture, a cascaded agribusiness system, and a mobile home park. Major categories of environmental impact covered are: (1) site, (2) construction of projects, and (3) the use of the geothermal source. Attention is also given to the disposal of the geothermal fluid after use. Finally, it is concluded that there are no major problems forseen for each project, and future objectives are discussed.

  7. Dynamics of the outer radiation belts in relation to polar substorms and hot plasma injections at geostationary altitude

    NASA Technical Reports Server (NTRS)

    Sauvaud, J. A.; Winckler, J. R.

    1981-01-01

    Geostationary satellite and ground measurements of dynamic variations of the outer radiation belts and their relations with the development of auroral structures during magnetospheric substorms are analyzed. A comparison of measurements of the H or X geomagnetic field components made by seven auroral stations with ATS-6 low-energy and high-energy particle measurements during the multiple-onset substorm of Aug. 16, 1974 is presented which demonstrates that while the decrease in energetic particle fluxed ends only at the time of a strong substorm onset, rapid motions of the outer radiation belts may occur during the flux decrease. All-sky photographs of auroral phenomena taken at Fort Yukon and College, Alaska are then compared with ATS-1 energetic particle flux measurements in order to demonstrate the relation between flux decreases and increases and distinct substorm phases. Results support the hypothesis of a magnetospheric substorm precursor which appears to be an instability growing at the inner boundary of the plasma layer and approaching the earth, and underline the importance of current and magnetic field variations in charged particle dynamics.

  8. Renormalized theory of ion temperature gradient instability of the magnetic-field-aligned plasma shear flow with hot ions

    SciTech Connect

    Mikhailenko, V. V. Mikhailenko, V. S.; Lee, Hae June

    2015-10-15

    The developed kinetic theory for the stability of a magnetic-field-aligned (parallel) shear flow with inhomogeneous ion temperature [Mikhailenko et al., Phys. Plasmas 21, 072117 (2014)] predicted that a kinetic instability arises from the coupled reinforcing action of the flow velocity shear and ion temperature gradient in the cases where comparable ion and electron temperatures exist. In the present paper, the nonlinear theory was developed for the instability caused by the combined effects of ion-temperature-gradient and shear-flow (ITG–SF). The level of the electrostatic turbulence is determined for the saturation state of the instability on the basis of the nonlinear dispersion equation, which accounts for a nonlinear scattering of ions by the developed turbulence in a sheared flow. The renormalized quasilinear equation for the ion distribution function, which accounts for the turbulent scattering of ions by ITG–SF driven turbulence, was derived and employed for the estimation of the turbulent ion viscosity, the anomalous ion thermal conductivity, and anomalous ion heating rate at the saturation state of the instability.

  9. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  10. Fundamentals and applications of a plasma-processing system based on electron-beam ionizationa)

    NASA Astrophysics Data System (ADS)

    Leonhardt, D.; Walton, S. G.; Fernsler, R. F.

    2007-05-01

    Plasmas generated from moderate energy (2-5keV) electron beams (e-beam) have unique, attractive characteristics that are ideal for materials processing applications. These plasmas possess low electron temperatures (<0.5eV), variable plasma densities (109-1012cm-3) with an improved control of plasma species generation, and perhaps most importantly, a direct scalability to processing areas exceeding one square meter. These characteristics are due to the plasma ionization being driven by the e-beam instead of an external electromagnetic field as used in conventional processing plasma sources. Theoretical and experimental system details are discussed in terms of plasma operating conditions applied to three different surface modification approaches: metal nitriding, negative ion etching, and polymer surface energy tailoring.

  11. Advances in the medical research and clinical applications on the plasma DNA.

    PubMed

    Wang, Shuye; Chen, Yuanyuan; Wu, Zhanhe

    2014-04-01

    Plasma DNA has had a strong impact and influence on basic medical research and clinical practice since the discovery of low levels of plasma DNA in healthy individuals under different physiological conditions. Although the source of circulating DNA still requires further investigation, a wide range of research has also proven the value of qualitative and quantitative measurements of plasma DNA in many disease conditions. The use of plasma DNA has a biomarker is advantageous due to accessibility, reliability, reproducibility, sensitivity, specific and relatively low cost. Recently, the detection of circulating (plasma) DNA quantitative changes have been using in the studies on the tumor gene mutations and to monitor disease progressing and to predict the disease prognosis. Such technique also has been using other many different fields, particularly in prenatal diagnosis, for which plasma DNA testing is preferable due to non-invasiveness. This article reviews the research progression and clinical applications of plasma DNA in the last several years.

  12. Radiation-driven winds of hot luminous stars. XI - Frictional heating in a multicomponent stellar wind plasma and decoupling of radiatively accelerated ions

    NASA Astrophysics Data System (ADS)

    Springmann, U. W. E.; Pauldrach, A. W. A.

    1992-09-01

    It is shown that the usual assumption of regarding radiatively driven winds of hot stars as a one-component fluid is wrong under certain circumstances. A detailed investigation of the mechanism of momentum transfer from radiatively accelerated ions to the bulk matter of a stellar wind plasma via Coulomb collisions shows that, at least for thin winds, the one-fluid description is not justified. Instead, for objects with thin winds (candidates are late OV and early BV stars, central stars of planetary nebulae, and subdwarf O-stars) a multicomponent model is required because ionic decoupling occurs, which leads to a 'runaway mechanism' for the accelerated ions and hence terminates the momentum transfer from ions to the bulk matter of the wind (e.g. H and He). As a consequence the predicted one-fluid terminal wind velocities are significantly reduced. This is shown for the late main sequence O-star Tau Scorpii (O9.5V). Furthermore, the collisionally induced momentum transfer is inevitably accompanied by the production of entropy in the form of frictional heating, which dominates the energy balance in the case of thin winds and thus enhances the runaway mechanism.

  13. Application of imitation steam'' systems to hot water district heating and cooling systems

    SciTech Connect

    Aalto, P.J.; Chen, D.B.

    1991-10-01

    Pequod Associates, Inc. and District Energy St. Paul, Inc. installed a pilot project of an innovative District Heating technology through a contract with the US DOE. This applied research was funded by the Energy Research and Development Act (94--163) for District Heating and Cooling Research. The experimental design is an intervention technique that permits hot water district heating systems to connect to buildings equipped with steam heating systems to connect to buildings equipped with steam heating systems. This method can substantially reduce conversion costs in many older buildings. The method circulates Imitation Steam, which is moist hot air, as a heating medium in standard steam radiators and steam heating coils. Based on the operation of the system during the 1989--90 and 1990--91 winter heating seasons, we conclude the following: the basic concept of using Imitation Steam was proved feasible. The performance of the system can be improved beyond the levels achieved in this installation. Imitation Steam did not cause significant corrosion in the piping system. The technology can be used by other district heating systems to lower conversion costs and increase market penetration. Among the additional benefits from this technology are: eliminating old, inefficient boilers; lower maintenance costs; improved fuel efficiency; reduced emissions.

  14. Development of a hot-gas desulfurization system for IGCC applications

    SciTech Connect

    Gupta, R.; McMichael, W.J.; Gangwal, S.K.; Jain, S.C.; Dorchak, T.P.

    1992-12-31

    Integrated gasification combined cycle (IGCC) power plants are being advanced worldwide to produce electricity from coal because of their superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. One key component of an advanced IGCC power plant is a hot-gas desulfurization system employing regenerable sorbents. To carry out hot-gas desulfurization in a fluidized-bed reactor, it is necessary that the sorbents have high attrition resistance, while still maintaining high chemical reactivity and sulfur absorption capacity. Also, efficient processes are needed for the treatment of SO{sub 2}-containing regeneration off-gas to produce environmentally benign waste or useful byproducts. A series of durable zinc titanate sorbents were formulated and tested in a bench-scale fluidized-bed reactor system. Reactive sorbents were developed with addition resistance comparable to fluid-bed cracking (FCC) catalysts used in petroleum refineries. In addition, progress continues on the development of the Direct Sulfur Recovery Process (DSRP) for converting SO{sub 2} in the regeneration off-gas to elemental sulfur. Plans are under way to test these bench-scale systems at gasifier sites with coal gas. This paper describes the status and future plans for the demonstration of these technologies.

  15. Application of mixtures of polymeric carriers for dissolution enhancement of fenofibrate using hot-melt extrusion.

    PubMed

    Kalivoda, Adela; Fischbach, Matthias; Kleinebudde, Peter

    2012-06-15

    Hot-melt extrusion was applied to improve dissolution behavior of poorly soluble model drug fenofibrate. Blends of polymers were used as carrier: copovidone (COP), polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol copolymer (PVCL-PVAc-PEG) and hypromellose 2910/5 (HPMC). The ratio of fenofibrate to COP remained constantly 1+3 (weighted parts) with varying amounts of PVCL-PVAc-PEG and HPMC. Solid state of fenofibrate was characterized by X-ray diffractometry and differential scanning calorimetry. Dissolution performance was compared to marketed formulations Lipidil and Lipidil-Ter. Stability studies were conducted at 25°C/60%rH. The dissolution rate from extrudates was significantly increased when compared to pure fenofibrate powder or physical mixture of the components. A supersaturation of 7.6-12.1 was reached with the pelletized extrudates. All extrudates were superior to marketed formulations. No recrystallization was observed after 26 weeks of storage for fenofibrate-COP extrudates 1+3 (weighted parts) with or without polymeric additives. Even so, both degree and duration of supersaturation decreased with increasing storage periods with the exception of fenofibrate-HPMC extrudates. Of particular interest is the finding that by adding polymers with differing release characteristics to the drug-carrier mixture, the dissolution performance of hot-melt extruded solid dosage forms can be readily adapted to meet specific requirements.

  16. Application of mixtures of polymeric carriers for dissolution enhancement of oxeglitazar using hot-melt extrusion.

    PubMed

    Kalivoda, Adela; Fischbach, Matthias; Kleinebudde, Peter

    2012-12-15

    Hot-melt extrusion was applied to improve the solubility of the poorly water-soluble drug oxeglitazar. Various polymers and their blends were used as carriers: copovidone (COP), polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol copolymer (PVCL-PVAc-PEG) and hypromellose 2910/5 (HPMC). After extrusion, the extrudate was pelletized. The physical state of the drug was assessed using X-ray diffraction and differential scanning calorimetry. The dissolution performance of the extrudates was compared to the physical mixture and pure oxeglitazar. The stability under long-term storage conditions (25 °C/60%rH) was investigated.The solubility of oxeglitazar was improved with all hot-melt extruded formulations: 26-66% of the drug was dissolved and a 1.9-5.0-fold supersaturation was reached with the pelletized extrudates. All extrudates which were assessed for their storage stability showed sufficient product stability. A super-additive effect of COP and HPMC as a polymeric blend was successfully demonstrated as a higher supersaturation and longer time of supersaturation were shown for the ternary blend. Through variations of the ratio COP:HPMC, it was shown that the shape of the dissolution curve is dominated by the polymer with the higher amount in the polymeric blend. If PVCL-PVAc-PEG is applied as single or additional carrier, the initial release rate is drastically reduced.

  17. Pulsed Power, Plasma, and Interior Ballistic Simulations for Application to Electrothermal-Chemical Guns.

    DTIC Science & Technology

    1996-03-01

    ARMY RESEARCH LABORATORY ........ Pulsed Power, Plasma, and Interior Ballistic Simulations for Application to Electrothermal- Chemical Guns Gary L...ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED March 1996 Final 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Pulsed Power, Plasma, and...simulation code called the pulsed power plasma interior ballistics (PPIB). PPIB is a time-dependent, lumped parameter, electrothermal-chemical gun ballistic

  18. Unified first wall-blanket structure for plasma device applications

    DOEpatents

    Gruen, Dieter M.

    1987-01-01

    A plasma device for use in controlling nuclear reactions within the plasma including a first wall and blanket formed in a one-piece structure composed of a solid solution containing copper and lithium and melting above about 500.degree. C.

  19. Cavitational Iron Microparticles Generation By Plasma Procedures For Medical Applications

    NASA Astrophysics Data System (ADS)

    Bica, Ioan; Bunoiu, Madalin; Chirigiu, Liviu; Spunei, Marius; Juganaru, Iulius

    2012-12-01

    The paper presents the experimental installation for the production, in argon plasma, of cavitational iron microparticles (pore microspheres, microtubes and octopus-shaped microparticles). Experimental results are presented and discussed and it is shown that absorbant particles with a minimum iron content are obtained by the plasma procedures

  20. Unified first wall - blanket structure for plasma device applications

    DOEpatents

    Gruen, D.M.

    A plasma device is described for use in controlling nuclear reactions within the plasma including a first wall and blanket formed in a one-piece structure composed of a solid solution containing copper and lithium and melting above about 500/sup 0/C.

  1. Gliding arc triggered microwave plasma arc at atmospheric pressure for coal gasification application

    NASA Astrophysics Data System (ADS)

    Jain, Vishal; Visani, A.; Patil, C.; Patel, B. K.; Sharma, P. K.; John, P. I.; Nema, S. K.

    2014-08-01

    Plasma torch is device that efficiently converts electrical energy in to thermal energy for various high temperature applications. The conventional plasma torch comprises of consumable electrodes namely anode and cathode electrodes. The replacement of these electrodes is a complex process owing to its cooling and process shut down requirements. However, microwave plasma arc is electrode-less plasma arc system that is an alternative method to conventional arc technology for generating plasma arc. In this technique, microwave power is efficiently coupled to generate plasma arc by using the property of polar molecule to absorb microwave power. The absorption of microwave power is in form of losses due to intermolecular friction and high collisions between the molecules. This is an efficient method because all microwave power can be absorbed by plasma arc. The main feature of microwave plasma arc is its large uniform high temperature column which is not possible with conventional arc discharge methods. Such type of plasma discharge is very useful in applications where sufficient residence time for treat materials is required. Microwave arc does not require any consumable electrodes and hence, it can be operated continuously that makes it very useful for hazardous effluent treatment applications. Further, microwave cannot ionize neutral particles at atmospheric pressure and hence, a gliding arc is initiated between two thin electrodes in the cavity by applying very low power high voltage (3kV) AC source. In this report, the method for generating microwave arc of 1kW power using commercial microwave oven is elaborated.

  2. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  3. Hot Flashes

    MedlinePlus

    Diseases and Conditions Hot flashes By Mayo Clinic Staff Hot flashes are sudden feelings of warmth, which are usually most intense over the ... skin may redden, as if you're blushing. Hot flashes can also cause profuse sweating and may ...

  4. Hot microswimmers

    NASA Astrophysics Data System (ADS)

    Kroy, Klaus; Chakraborty, Dipanjan; Cichos, Frank

    2016-11-01

    Hot microswimmers are self-propelled Brownian particles that exploit local heating for their directed self-thermophoretic motion. We provide a pedagogical overview of the key physical mechanisms underlying this promising new technology. It covers the hydrodynamics of swimming, thermophoresis and -osmosis, hot Brownian motion, force-free steering, and dedicated experimental and simulation tools to analyze hot Brownian swimmers.

  5. A micro-scale plasma spectrometer for space and plasma edge applications (invited)

    NASA Astrophysics Data System (ADS)

    Scime, E. E.; Keesee, A. M.; Dugas, M.; Ellison, S.; Tersteeg, J.; Wagner, G.; Barrie, A.; Rager, A.; Elliott, D.

    2016-11-01

    A plasma spectrometer design based on advances in lithography and microchip stacking technologies is described. A series of curved plate energy analyzers, with an integrated collimator, is etched into a silicon wafer. Tests of spectrometer elements, the energy analyzer and collimator, were performed with a 5 keV electron beam. The measured collimator transmission and energy selectivity were in good agreement with design targets. A single wafer element could be used as a plasma processing or fusion first wall diagnostic.

  6. Fabrication of high-Tc superconducting hot electron bolometers for terahertz mixer applications

    NASA Astrophysics Data System (ADS)

    Villegier, Jean-Claude; Degardin, Annick F.; Guillet, Bruno; Houze, Frederic; Kreisler, Alain J.; Chaubet, Michel

    2005-03-01

    Superconducting Hot Electron Bolometer (HEB) mixers are a competitive alternative to Schottky diode mixers or other conventional superconducting receiver technologies in the terahertz frequency range because of their ultrawide bandwidth (from millimeter waves to the visible), high conversion gain, and low intrinsic noise level, even at 77 K. A new technological process has been developed to realize HEB mixers based on high temperature superconducting materials, using 15 to 40 nm thick layers of YBa2Cu3O7-δ (YBCO), sputtered on MgO (100) substrates by hollow cathode magnetron sputtering. Critical temperature values of YBCO films were found in the 85 to 91 K range. Sub-micron HEB bridges (0.8 μm x 0.8 μm) were obtained by combining electronic and UV lithography followed by selective etching techniques. Realization of YBCO HEB coupling to planar integrated gold antennas was also considered.

  7. Hot, deep origin of petroleum: shelf and shallow basin evidence and application

    USGS Publications Warehouse

    Price, Leigh C.

    1978-01-01

    Oil and gas pools in shallow basins or on the shallow, stable shelves of deeper sedimentary basins may not be exceptions to the model of a hot deep origin of petroleum. The oil in shallow basins is directly associated with faulting extending out of the deepest parts of the basin. Evidence exists that some of these shallow basins have been much hotter in the past either from igneous activity or from a higher geothermal gradient. Uplift and erosion may also have removed substantial thicknesses of sediments in some of these basins. Oil on the stable shallow shelves of deep basins may have originated in the deeper part of the basin and undergone long lateral migration to the traps where it is now found. Conduits for such migration have been sandstones in delta-distributary systems (eastern Oklahoma and Kansas), reef trends (Alberta, Canada), or regional porosity and permeability in sheet carbonates (Anadarko basin, western Oklahoma and Kansas).

  8. High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1979-01-01

    An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.

  9. An Ultrasensitive Hot-Electron Bolometer for Low-Background SMM Applications

    NASA Technical Reports Server (NTRS)

    Olayaa, David; Wei, Jian; Pereverzev, Sergei; Karasik, Boris S.; Kawamura, Jonathan H.; McGrath, William R.; Sergeev, Andrei V.; Gershenson, Michael E.

    2006-01-01

    We are developing a hot-electron superconducting transition-edge sensor (TES) that is capable of counting THz photons and operates at T = 0.3K. The main driver for this work is moderate resolution spectroscopy (R approx. 1000) on the future space telescopes with cryogenically cooled (approx. 4 K) mirrors. The detectors for these telescopes must be background-limited with a noise equivalent power (NEP) approx. 10(exp -19)-10(exp -20) W/Hz(sup 1/2) over the range v = 0.3-10 THz. Above about 1 THz, the background photon arrival rate is expected to be approx. 10-100/s), and photon counting detectors may be preferable to an integrating type. We fabricated superconducting Ti nanosensors with a volume of approx. 3x10(exp -3) cubic microns on planar substrate and have measured the thermal conductance G to the thermal bath. A very low G = 4x10(exp -14) W/K, measured at 0.3 K, is due to the weak electron-phonon coupling in the material and the thermal isolation provided by superconducting Nb contacts. This low G corresponds to NEP(0.3K) = 3x10(exp -19) W/Hz(sup 1/2). This Hot-Electron Direct Detector (HEDD) is expected to have a sufficient energy resolution for detecting individual photons with v > 0.3 THz at 0.3 K. With the sensor time constant of a few microseconds, the dynamic range is approx. 50 dB.

  10. Imaging of spatially extended hot spots with coded apertures for intra-operative nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Kaissas, I.; Papadimitropoulos, C.; Potiriadis, C.; Karafasoulis, K.; Loukas, D.; Lambropoulos, C. P.

    2017-01-01

    Coded aperture imaging transcends planar imaging with conventional collimators in efficiency and Field of View (FOV). We present experimental results for the detection of 141 keV and 122 keV γ-photons emitted by uniformly extended 99mTc and 57Co hot-spots along with simulations of uniformly and normally extended 99mTc hot-spots. These results prove that the method can be used for intra-operative imaging of radio-traced sentinel nodes and thyroid remnants. The study is performed using a setup of two gamma cameras, each consisting of a coded-aperture (or mask) of Modified Uniformly Redundant Array (MURA) of rank 19 positioned on top of a CdTe detector. The detector pixel pitch is 350 μm and its active area is 4.4 × 4.4 cm2, while the mask element size is 1.7 mm. The detectable photon energy ranges from 15 keV up to 200 keV with an energy resolution of 3–4 keV FWHM. Triangulation is exploited to estimate the 3D spatial coordinates of the radioactive spots within the system FOV. Two extended sources, with uniform distributed activity (11 and 24 mm in diameter, respectively), positioned at 16 cm from the system and with 3 cm distance between their centers, can be resolved and localized with accuracy better than 5%. The results indicate that the estimated positions of spatially extended sources lay within their volume size and that neighboring sources, even with a low level of radioactivity, such as 30 MBq, can be clearly distinguished with an acquisition time about 3 seconds.

  11. Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection

    NASA Astrophysics Data System (ADS)

    Lee, Gwo-Bin; Chen, Shu-Hui; Huang, Guan-Ruey; Lin, Yen-Heng; Sung, Wang-Chou

    2000-08-01

    Design and fabrication of microfluidic devices on polymethylmethacrylate (PMMA) substrates using novel microfabrication methods are described. The image of microfluidic devices is transferred from quartz master templates possessing inverse image of the devices to plastic plates by using hot embossing method. The micro channels on master templates are formed by the combination of metal etch mask and wet chemical etching. The micromachined quartz templates can be used repeatedly to fabricate cheap and disposable plastic devices. The reproducibility of the hot embossing method is evaluated after using 10 channels on different plastics. The relative standard deviation of the plastic channel profile from ones on quartz templates is less than 1%. In this study, the PMMA chips have been demonstrated as a micro capillary electrophoresis ((mu) -CE) device for DNA separation and detection. The capability of the fabricated chip for electrophoretic injection and separation is characterized via the analysis of DNA fragments (phi) X174. Results indicate that all of the 11 DNA fragments of the size marker could be identified in less than 3 minutes with relative standard deviations less than 0.4% and 8% for migration time and peak area, respectively. Moreover, with the use of near IR dye, fluorescence signals of the higher molecular weight fragments ($GTR 603 bp in length) could be detected at total DNA concentrations as low as 0.1 (mu) g/mL. In addition to DNA fragments (phi) X174, DNA sizing of hepatitis C viral (HCV) amplicon is also achieved using microchip electrophoresis fabricated on PMMA substrate.

  12. Properties and Commercial Application of Manual Plasma Hardening

    NASA Astrophysics Data System (ADS)

    Korotkov, V. A.

    2016-11-01

    A new method and a device for plasma hardening of various parts are considered. Installation of the new device does not require too much investment (the active mechanical productions are appropriate for its accommodation) and special choice of personnel (welders train to use it without difficulty). Plasma hardening does not deform and worsen the smoothness of the surface, which makes it possible to employ many hardened parts without finishing mechanical treatment required after bulk or induction hardening. The hardened layer (about 1 mm) produced by plasma hardening exhibits better wear resistance than after bulk hardening with tempering, which prolongs the service life of the parts.

  13. Use of pressurized hot water extraction and high performance liquid chromatography-inductively coupled plasma-mass spectrometry for water soluble halides speciation in atmospheric particulate matter.

    PubMed

    Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; Moreda-Piñeiro, Antonio; Moscoso-Pérez, Carmen; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2012-11-15

    The feasibility of pressurized hot water extraction (PHWE) has been novelty investigated to speed up water soluble halide species (bromide, Br(-); bromate, BrO(3)(-); iodide, I(-) and iodate, IO(3)(-)) leaching from atmospheric particulate matter (PM(10) and PM(2.5)). Total bromine and iodine and total water soluble bromine and iodine have been assessed by inductively coupled plasma-mass spectrometry (ICP-MS). Water-soluble bromine and iodine species were also measured by ICP-MS after anion exchange high performance liquid chromatography (HPLC). Variables inherent to the pressurized hot water extraction process (temperature, modifier concentration, static time, pressure, number of cycles and dispersing agent mass) were fully studied. Results showed that the pressurized leaching procedure can be performed in 9 min (5 min for pre-heating, 2 min of static time, 1 min of purge time, and 1 min of end relief time). The use of diluted acetic acid as a modifier did not improve the target recoveries. Dispersing agent (diatomaceous earth) was not needed, which reduces the time for filling the cells. Water-soluble halides were reached under the following extraction conditions: extraction temperature of 100 °C, pressure of 1500 psi, static time of 2 min and 1 extraction cycle. Optimized HPLC conditions consisted of an isocratic elution with 175 mM ammonium nitrate plus 15% (v/v) methanol as mobile phase (optimum flow rate of at 1.5 mL min(-1)). Analytical performances, such as limits of detection and quantification, repeatability and analytical recoveries of the over-all procedure have been established. Results obtained show water soluble halides accounted for approximately 20.9±1.3 and 11.8±0.6% of the total bromine and total iodine, respectively. A 79 and 89% of bromine and iodine was non-water soluble, which may be organic non-water soluble species. Br(-) and IO(3)(-) were found to be the major species, and they accounted for 100% of the total water-soluble bromine and

  14. Non-thermal plasma jet without electrical shock for biomedical applications

    NASA Astrophysics Data System (ADS)

    Baik, Ku Youn; Kang, Han Lim; Kim, Junseong; Park, Shin Young; Bang, Ji Yun; Uhm, Han S.; Choi, Eun Ha; Cho, Guangsup

    2013-10-01

    A plasma jet without an electrical shock was generated through a Y-shaped tube in which voltages with opposite phases were applied to a pair of tubes. The plasma plume generated at the intersection had a plasma potential of a 60-90 V and high concentrations of reactive species sufficient to induce a high level of lethality on gram-negative bacteria on a tissue mimic. The selective lethality of bacteria on an epithelial-cell-containing tissue mimic could be modulated using oxidant and antioxidant chemicals, thereby leading to the possibility of a shock-reduced plasma jet for biomedical applications.

  15. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect

    Milchberg, Howard

    2016-07-01

    This grant supported basic experimental, theoretical and computer simulation research into developing a compact, high pulse repetition rate laser accelerator using the direct laser acceleration mechanism in plasma-based slow wave structures.

  16. Plasma technologies application for building materials surface modification

    NASA Astrophysics Data System (ADS)

    Luchkin, A. G.; Hakki, A.; Rahimov, N. F.; Sadikov, K. G.; Luchkin, G. S.

    2017-01-01

    Low-temperature plasma modification of LiYF4 crystal surface in Helium atmosphere caused microhardness decreasing and increasing of roughness of crystal surface. The change of microhardness and morphology is a possible result of Fluorine outgoing from material structure due to heating of surface and plasma chemical reactions and ingoing of Oxygen. As a result of exchange and diffusion processes crystal surface structure become more crumbly, its morphology and mechanical properties change.

  17. Pulse plasma carburizing and high pressure gas quenching -- Industrial applications

    SciTech Connect

    Preisser, F.; Schnatbaum, F.

    1995-12-31

    Pulse plasma carburizing with high pressure gas quenching up to 20 bar is the newly developed case hardening process now available in production size equipment. The first part of results demonstrates the tremendous potential of high pressure gas quenching for successful hardening of case hardening steels. The second part opens a window to glance at the pulse plasma carburizing of complex shaped parts. Both processes improve economical data and performance of carburizing processes.

  18. Application of delrin in laser plasma micro-propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Gao, H.; Gao, L.; Xing, J.; Fan, Z. J.

    2013-09-01

    The interaction between polymer of Delrin with nano-second pulse laser is investigated in laser plasma micro-propulsion. The coupling coefficient and specific impulse are measured respectively. The coupling coefficient about 42 dyne/W and specific impulse up to 646 s have been obtained. Moreover, the surface images after ablation have been observed. It is found that Delrin has less debris on ablation surface. This indicates that Delrin is a potential polymer material in laser plasma propulsion.

  19. Dense Plasma Focus: physics and applications (radiation material science, single-shot disclosure of hidden illegal objects, radiation biology and medicine, etc.)

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.; Miklaszewski, R.; Paduch, M.; Zielinska, E.; Chernyshova, M.; Pisarczyk, T.; Pimenov, V. N.; Demina, E. V.; Niemela, J.; Crespo, M.-L.; Cicuttin, A.; Tomaszewski, K.; Sadowski, M. J.; Skladnik-Sadowska, E.; Pytel, K.; Zawadka, A.; Giannini, G.; Longo, F.; Talab, A.; Ul'yanenko, S. E.

    2015-03-01

    The paper presents some outcomes obtained during the year of 2013 of the activity in the frame of the International Atomic Energy Agency Co-ordinated research project "Investigations of Materials under High Repetition and Intense Fusion-Relevant Pulses". The main results are related to the effects created at the interaction of powerful pulses of different types of radiation (soft and hard X-rays, hot plasma and fast ion streams, neutrons, etc. generated in Dense Plasma Focus (DPF) facilities) with various materials including those that are counted as perspective ones for their use in future thermonuclear reactors. Besides we discuss phenomena observed at the irradiation of biological test objects. We examine possible applications of nanosecond powerful pulses of neutrons to the aims of nuclear medicine and for disclosure of hidden illegal objects. Special attention is devoted to discussions of a possibility to create extremely large and enormously diminutive DPF devices and probabilities of their use in energetics, medicine and modern electronics.

  20. Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer.

    PubMed

    Gay-Mimbrera, Jesús; García, Maria Carmen; Isla-Tejera, Beatriz; Rodero-Serrano, Antonio; García-Nieto, Antonio Vélez; Ruano, Juan

    2016-06-01

    Plasma-based electrosurgical devices have long been employed for tissue coagulation, cutting, desiccation, and cauterizing. Despite their clinical benefits, these technologies involve tissue heating and their effects are primarily heat-mediated. Recently, there have been significant developments in cold atmospheric pressure plasma (CAP) science and engineering. New sources of CAP with well-controlled temperatures below 40 °C have been designed, permitting safe plasma application on animal and human bodies. In the last decade, a new innovative field, often referred to as plasma medicine, which combines plasma physics, life science, and clinical medicine has emerged. This field aims to exploit effects of mild plasma by controlling the interactions between plasma components (and other secondary species that can be formed from these components) with specific structural elements and functionalities of living cells. Recent studies showed that CAP can exert beneficial effects when applied selectively in certain pathologies with minimal toxicity to normal tissues. The rapid increase in new investigations and development of various devices for CAP application suggest early adoption of cold plasma as a new tool in the biomedical field. This review explores the latest major achievements in the field, focusing on the biological effects, mechanisms of action, and clinical evidence of CAP applications in areas such as skin disinfection, tissue regeneration, chronic wounds, and cancer treatment. This information may serve as a foundation for the design of future clinical trials to assess the efficacy and safety of CAP as an adjuvant therapy for skin cancer.

  1. THz Plasma Diagnostics: an evolution from FIR and Millimeter waves historical applications

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Doria, A.; Galatola Teka, G.; Giovenale, E.; Zerbini, M.

    2016-08-01

    Extremely broadband (100 GHz-30 THz) single cycle THz pulses are routinely generated with femtosecond laser for Time Domain Spectroscopy applications (TDS). The wide frequency range has an unquestionable diagnostic potential for Tokamak plasmas and not surprisingly THz TDS finds a natural field of application in this area, which is an evolution of the FIR and millimeter waves diagnostics, where ENEA Frascati holds historical expertise. By illuminating the plasma with a THz beam, phase, intensity and polarization of both reflected and transmitted beams can be detected, devising a single diagnostic instrument capable of measuring multiple plasma parameters. We will describe and discuss the laboratory work now in progress to realise a tailored THz-TDS spectrometer with design parameters optimised for the requirements of Tokamak plasmas and the tests of optical fibers and quasioptical couplers to optimise access to plasma. ENEA Frascati and the Photonics group of Physics Dept. of Oxford University are collaborating on this subject [1].

  2. Analysis and Application of Silicon Nano-Particles Produced via Continuous Flow Non-Thermal Plasmas

    NASA Astrophysics Data System (ADS)

    Lopez, Thomas David

    Continuous flow non-thermal plasma reactors are being investigated for their ability to efficiently produce high quality nanoparticles. While many nanomaterials can be produced via continuous flow non-thermal plasma reactors, silicon is of particular interest, due to its abundance and relevance in many energy related fields. Significant gaps still exist in the understanding of the kinetics responsible for particle growth, structural evolution, and surface termination of continuous flow non-thermal plasma reactor produced particles. Particle interaction with plasma radicals results in the heating of the particles, which in turn affects the kinetics of particle growth, structural evolution, and surface termination during synthesis and processing. We have investigated the details of plasma-nanoparticle interaction by using in-flight and in-situ characterization techniques. For the first time, we have measured the temperature of a free-standing particle immersed in a non-equilibrium processing plasma. In parallel, we have utilized continuous flow non-thermal plasma reactor-produced nanoparticles to create bulk nanostructured materials. The ability to tune size, structure, and surface termination of the continuous flow non-thermal plasma reactor produced nanoparticles allows for significant control of the precursor powders used in the densification processes. Hot pressing processes allow for the production of samples with bulk-like densities while limiting grain growth, allowing for the creation of nanostructured bulk systems. Nanostructured bulk silicon represents an ideal system to study the role of nano-structuring on transport of charge carriers and phonons in bulk materials. Initial results show that small particle and narrow particle size distributions allows for the creation of bulk nanostructured silicon with high ZT values. This system has shown to be relevant for direct conversion of heat into electrical power, but is also a model for the optimization of

  3. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  4. Application of Atmospheric-Pressure Microwave Line Plasma for Low Temperature Process

    NASA Astrophysics Data System (ADS)

    Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2015-09-01

    Atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. In various kinds of plasma production technique, pulsed-microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production. In this plasma source, however, size of the plasma has been limited up to a few cm in length due to standing wave inside a waveguide. To solve this, we have proposed a newly-developed AP microwave plasma source that utilizes not standing wave but travelling wave. By using this plasma source, spatially-uniform AP line plasma with 40 cm in length was realized by pure helium discharge in 60 cm slot and with nitrogen gas additive of 1%. Furthermore, gas temperature as low as 400 K was realized in this device. In this study, as an example of low temperature processes, hydrophilic treatment of PET films was performed. Processing speed increased with pulse frequency and a water contact angle of ~20° was easily obtained within 5 s with no thermal damage to the substrate. To evaluate treatment-uniformity of long line length, PET films were treated by 90 cm slot-antenna plasma and uniform treatment performance was confirmed.

  5. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  6. Effects of plasma on polyethylene fiber surface for prosthodontic application

    PubMed Central

    SPYRIDES, Silvana Marques Miranda; do PRADO, Maíra; de ARAUJO, Joyce Rodrigues; SIMÃO, Renata Antoun; BASTIAN, Fernando Luis

    2015-01-01

    ABSTRACT Plasma technology has the potential to improve the adherence of fibers to polymeric matrices, and there are prospects for its application in dentistry to reinforce the dental particulate composite. Objectives This study aimed to investigate the effect of oxygen or argon plasma treatment on polyethylene fibers. Material and Methods Connect, Construct, InFibra, and InFibra treated with oxygen or argon plasma were topographically evaluated by scanning electron microscopy (SEM), and chemically by X-ray photoelectron spectroscopy (XPS). For bending analysis, one indirect composite (Signum) was reinforced with polyethylene fiber (Connect, Construct, or InFibra). The InFibra fiber was subjected to three different treatments: (1) single application of silane, (2) oxygen or argon plasma for 1 or 3 min, (3) oxygen or argon plasma and subsequent application of silane. The samples (25x2x2 mm), 6 unreinforced and 60 reinforced with fibers, were subjected to three-point loading tests to obtain their flexural strength and deflection. The results were statistically analyzed with ANOVA and the Bonferroni correction for multiple comparison tests. Results SEM analysis showed that oxygen and argon plasma treatments promote roughness on the polyethylene fiber surface. X-ray photoelectron spectroscopy (XPS) analysis shows that both plasmas were effective in incorporating oxygenated functional groups. Argon or oxygen plasma treatment affected the flexural strength and deflection of a fiber reinforced composite. The application of silane does not promote an increase in the flexural strength of the reinforced composites. Conclusions Oxygen and argon plasma treatments were effective in incorporating oxygenated functional groups and surface roughness. The highest strength values were obtained in the group reinforced with polyethylene fibers treated with oxygen plasma for 3 min. PMID:26814463

  7. Accutech pneumatic fracturing extraction and hot gas injection, phase 1. Applications analysis report

    SciTech Connect

    Skovronek, H.S.

    1993-03-01

    The report summarizes and analyzes the SITE demonstration of Accutech's Pneumatic Fracturing Extraction (PFE) process at an industrial park in NJ. Based on the results of 4-hr tests before and after fracturing, extracted air flow rate increased an average 600% and trichloroethene (TCE) mass removal rate increased about 675%, primarily due to the increased air flow. The radius for effective vapor extraction also is enlarged by fracturing; extracted air flow rates increased 700% to 1,400% in wells at a 10 ft radius and 200% to 1,100% in wells 20 ft from the fracture well. With passive air inlets, the extracted air flow rate increased about 19,500%, and TCE mass removal rate increased 2,300%. The estimated cost for full-scale remediation of the site with PFE was $307/kg ($140/lb) of TCE removed based on the SITE demonstration experience and information provided by the developer. Major contributing factors were: Labor (29%); Capital Equipment (22); and Emissions Collection/disposal (19%). Numerous assumptions were used in arriving at this cost. Results of two Hot Gas Injection (HGI) tests were inconclusive.

  8. Energetic particle physics with applications in fusion and space plasmas

    SciTech Connect

    Cheng, C.Z.

    1997-05-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma.

  9. Fabrication of hybrid nanostructures by liquid plasma for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ponraj, Sri Balaji; Dai, Xiujuan Jane; Li, Luhua; Chen, Zhiqiang; Surya Narayanan, Jayanth; Kanwar, Jagat; Du Plessis, Johan

    2013-09-01

    Liquid plasma, generated by a nanosecond pulsed generator at atmospheric pressure, was used to treat bamboo-like boron nitride nanotubes (BNNTs). It was observed that the length of the BNNTs was reduced and found more cup like structures called boron nitride nanocups (BNNCs). Interestingly, a new peak appeared at 406.86 eV in the N1s X-ray photoelectron spectrum, which seems to be attributable to the oxidation of nitrogen (N-O) in BNNTs. The C1s spectrum showed that oxygen functional groups were introduced onto the BNNT/BNNC surface. The liquid plasma was also used to assemble gold nanoparticles onto the treated BNNTs/BNNCs. This hybrid nanostructure was fabricated efficiently, compared with normal equilibrium conditions. The pH values and conductivity of all samples were measured. After plasma treatment, the pH values were greatly reduced and conductivity was significantly increased. We propose that the plasma acid, hydrogen peroxide, OH-, H ions and radicals formed in liquid plasma as well as the pulsed electric field contribute to the oxidation of nitrogen, reduced length of the BNNTs(forming BNNCs), surface functionalization, and to the fabrication of hybrid nanostructure. The cytotoxic tests for these hybrid nanostructures is underway. The authors acknowledge Rosey van Driel and Prabhukumar Sellamuthu for assisting with TEM and SEM, and the access of the XPS facility at RMIT University.

  10. Plasma Processing of Lunar Regolith Simulant for Diverse Applications

    NASA Technical Reports Server (NTRS)

    Schofield, Elizabeth C.; Sen, Subhayu; O'Dell, J. Scott

    2008-01-01

    Versatile manufacturing technologies for extracting resources from the moon are needed to support future space missions. Of particular interest is the production of gases and metals from lunar resources for life support, propulsion, and in-space fabrication. Deposits made from lunar regolith could yield highly emissive coatings and near-net shaped parts for replacement or repair of critical components. Equally important is development of high fidelity lunar simulants for ground based validation of potential lunar surface operations. Described herein is an innovative plasma processing technique for insitu production of gases, metals, coatings, and deposits from lunar regolith, and synthesis of high fidelity lunar simulant from NASA issued lunar simulant JSC-1. Initial plasma reduction trials of JSC-1 lunar simulant have indicated production of metallic iron and magnesium. Evolution of carbon monoxide has been detected subsequent to reduction of the simulant using the plasma process. Plasma processing of the simulant has also resulted in glassy phases resembling the volcanic glass and agglutinates found in lunar regolith. Complete and partial glassy phase deposits have been obtained by varying the plasma process variables. Experimental techniques, product characterization, and process gas analysis will be discussed.

  11. Calculation and application of combined diffusion coefficients in thermal plasmas

    NASA Astrophysics Data System (ADS)

    Murphy, Anthony B.

    2014-03-01

    The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given.

  12. Underwater plasma discharge and its water treatment applications

    NASA Astrophysics Data System (ADS)

    Ma, Sukhwal; Huh, Jin Young; Kim, Kangil; Hong, Yong Cheol; National Fusion Research Institute Team; Chonbuk National University Team; Kwangwoon University Team; NPAC Team

    2016-09-01

    In recent, the quality of water has been exacerbated by the influx of wastewater and water pollutants. There have been frequent occurrences of water blooms due to the eutrophication of river. Therefore, the needs for water treatment are increased through effective and environment-friendly method. In this work, we propose the plasma system to overcome the problems mentioned above using underwater discharge plasma. The underwater discharges are generated by capillary electrode, and have the advantages of low cost, high efficiency and eco-friendly processing. The proposed technologies can be suitable for eliminating cyanobacteria, decreasing the concentration of oil dissolved in water, and purifying wastewater. Cyanobacteria is killed directly by the underwater discharge and water-dissolved oil and heavy-metal wastewater are purified by coagulation effect, which may result from the chemical reactions of underwater plasma. Consequently, these technologies using underwater discharge can be alternative methods to replace the existing technologies.

  13. A long life plasma switch for space applications

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Lee, Ja H.

    1987-01-01

    The use of a novel plasma switch based on the inverse-pinch mechanism can reduce local current density over spacecraft power system electrodes, thereby minimizing damage to the insulator. The current density involved is 2 orders of magnitude smaller than that of the z-pinched current in a spark-gap switch; local heating is therefore about 4 orders of magnitude less than that to the electrodes of the spark-gap switch. Over 2000 tests of the plasma switch have been conducted for a forward current of more than 1 MA and up to 20 kV holdoff voltage.

  14. High frequency plasma generators for ion thruster applications

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Komatsu, G. K.; Christensen, T.

    1981-01-01

    Two concepts for high frequency discharge ion thrusters are described. Both sources are designed for use with 30 cm grid sets and argon propellant and utilize multi-cusp permanent magnet geometries for plasma confinement. The RF induction source is a conventional design representing a synthesis of the RIT and multi-cusp concepts. The preliminary data (without system optimization) indicate a discharge efficiency comparable to that obtained in 30 cm hollow cathode multi-cusp argon thrusters. The electron cyclotron heating source is electrodeless and exhibits plasma characteristics which should lead to greatly reduced discharge chamber and screen sputter rates with the optimization of the magnetic fields, microwave frequency, and feed configuration.

  15. Applications of web produced by hot air assisted melt differential electrospinning method

    NASA Astrophysics Data System (ADS)

    Bubakir, Mahmoud M.; Li, Haoyi; Wu, Weifeng; Li, Xiaohu; Ma, Shuai; Yang, Weimin

    2014-08-01

    Melt electrospinning, a technique that has gained increasing attention since it easily can generate continuous ultrafine fibers directly from polymer melts without the use of any solvent. Therefore, it is considered as a safe, cost effective, and environmental friendly technique. However, with all those great advantages, the technique still suffers some drawbacks such as: large fiber diameter and low throughput. The hot air assisted melt differential electrospinning (MDES) is a new technique invented by our research team that can solve or eliminate those drawbacks. The most important features of our used apparatus are: Needleless nozzle that could generate multiple Taylor cones around the bottom edge of the nozzle, which can result in a high throughput. The stretching force acting on the jets can be further strengthened by an air current provided by an air pressure gun. Interference between the high voltage supply and temperature sensors could be prevented through the grounding of the nozzle. The ultrafine pp webs produced using the same apparatus was in the micro/nano scale with a diameter of 600nm-6um and a smooth surface. Porosity of the webs ranges from 86.5%-99.4% when different collecting devices are used. The resultant ultrafine webs were applied in three areas: oil sorption, water treatment, and hydrophilic PP membrane. The results were very promising as for oil the sorption capacity was 129.0g/g; for water treatment, the rejection rate for 3um particles was 95%. And for the hydrophilic PP membrane, the water sorption capacity was 12.3 g/g.

  16. Fabrication of an Aluminum Based Hot Electron Mixer for Terahertz Applications

    NASA Technical Reports Server (NTRS)

    Echternach, P. M.; LeDuc, H. G.; Skalare, A.; McGrath, W. R.

    2000-01-01

    Aluminum based diffusion cooled hot electron bolometers (HEB) mixers, predicted to have better noise, bandwidth and to require less LO power than Nb based diffusion cooled HEBs, have been fabricated. Preliminary DC tests were performed. The bolometer elements consisted of short (0.1 to 0.3 micron), narrow (0.08 to 0. 15 micron) and thin (11 nm) aluminum wires connected to large contact pads consisting of a novel trilayer Al/Ti/Au. The patterns were defined by electron beam lithography and the metal deposition involved a double angle process, the Aluminum wires being deposited straight on and the pads being deposited at a 45 degree angle without breaking vacuum. The Al/Ti/Au trilayer was developed to provide a way of making contact between the aluminum wire and the gold antenna. The Titanium layer acts as a diffusion barrier to avoid damage of the Aluminum contact and bolometer wire and to lower the transition temperature of the pads to below that of the bolometer wire. The Au layer avoids the formation of an oxide on the Ti layer and provides good electrical contact to the IF/antenna structure. The resistance of the bolometers as a function of temperature was measured. It is clear that below the transition temperature of the wire (1.8K) but above the transition temperature of the contact pads (0.6K), the proximity effect drives most of the bolometer wire normal, causing a very broad transition. This effect should not affect the performance of the bolometers since they will be operated at a temperature below the TC of the pads. This is evident from the IV characteristics measured at 0.3K. RF characterization tests will begin shortly.

  17. Application of non-equilibrium plasmas in treatment of wool fibers and seeds

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran

    2003-10-01

    While large effort is under way to achieve stable, large area, non-equilibrium plasma reactors operating at atmospheric pressure we should still consider application of low pressure reactors, which provide well defined, easily controlled reactive plasmas. Therefore, the application of low pressure rf plasmas for the treatment of wool and seed was investigated. The studies were aimed at establishing optimal procedure to achieve better wettability, dyeability and printability of wool. Plasma treatment led to a modification of wool fiber topography and formation of new polar functional groups inducing the increase of wool hydrophylicity. Plasma activation of fiber surface was also used to achieve better binding of biopolymer chitosan to wool in order to increase the content of favorable functional groups and thus improving sorption properties of recycled wool fibers for heavy metal ions and acid dyes. In another study, the increase of germination percentage of seeds induced by plasmas was investigated. We have selected dry (unimbibed) Empress tree seeds (Paulownia tomentosa Steud.). Empress tree seed has been studied extensively and its mechanism of germination is well documented. Germination of these seeds is triggered by light in a limited range of wavelengths. Interaction between activated plasma particles and seed, inside the plasma reactor, leads to changes in its surface topography, modifies the surface layer and increases the active surface area. Consequently, some bioactive nitrogeneous compounds could be bound to the activated surface layer causing the increment of germination percentage.

  18. Characterization of an atmospheric pressure plasma jet and its applications for disinfection and cancer treatment.

    PubMed

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier F

    2013-01-01

    In this work an atmospheric pressure non-thermal resistive barrier (RB) plasma jet was constructed, characterized and was applied for biomedical applications. The RB plasma source can operate in both DC (battery) as well as in standard 60/50 Hz low frequency AC excitation, and it functions effectively in both direct and indirect plasma exposure configurations. The characteristics of the RB plasma jet such as electrical properties, plasma gas temperature and nitric oxides concentration were determined using voltage-current characterization, optical emission spectroscopy and gas analyzer diagnostic techniques. Plasma discharge power of 26.33 W was calculated from voltage-current characterization. An optical emission spectroscopy was applied and the gas temperature which is equivalent to the nitrogen rotational (Trot) temperatures was measured. The concentrations of the reactive oxygen species at different spatial distances from the tip of the plasma jet were measured and the ppm concentration of NO is at the preferred level for a wide range of standard biomedical treatment applications. The ppm values of nitric oxides after the cooling unit are observed to be of the same order of magnitude as compared to plasma jet. The portable RB plasma source was tested to be very effective for decontamination and disinfection of a wide range of foodborne and opportunistic nosocomial pathogens such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus cereus and the preliminary results are presented. The effects of indirect exposure of the portable RBP source on monocytic leukemia cancer cells (THP-1) were also tested and the results demonstrate that a preference for apoptosis in plasma treated THP-1 cells under particular plasma parameters and dosage levels.

  19. Langmuir probe-based observables for plasma-turbulence code validation and application to the TORPEX basic plasma physics experiment

    SciTech Connect

    Ricci, Paolo; Theiler, C.; Fasoli, A.; Furno, I.; Labit, B.; Mueller, S. H.; Podesta, M.; Poli, F. M.

    2009-05-15

    The methodology for plasma-turbulence code validation is discussed, with focus on the quantities to use for the simulation-experiment comparison, i.e., the validation observables, and application to the TORPEX basic plasma physics experiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. The considered validation observables are deduced from Langmuir probe measurements and are ordered into a primacy hierarchy, according to the number of model assumptions and to the combinations of measurements needed to form each of them. The lowest levels of the primacy hierarchy correspond to observables that require the lowest number of model assumptions and measurement combinations, such as the statistical and spectral properties of the ion saturation current time trace, while at the highest levels, quantities such as particle transport are considered. The comparison of the observables at the lowest levels in the hierarchy is more stringent than at the highest levels. Examples of the use of the proposed observables are applied to a specific TORPEX plasma configuration characterized by interchange-driven turbulence.

  20. Application of an impedance matching transformer to a plasma focus.

    PubMed

    Bures, B L; James, C; Krishnan, M; Adler, R

    2011-10-01

    A plasma focus was constructed using an impedance matching transformer to improve power transfer between the pulse power and the dynamic plasma load. The system relied on two switches and twelve transformer cores to produce a 100 kA pulse in short circuit on the secondary at 27 kV on the primary with 110 J stored. With the two transformer systems in parallel, the Thevenin equivalent circuit parameters on the secondary side of the driver are: C = 10.9 μF, V(0) = 4.5 kV, L = 17 nH, and R = 5 mΩ. An equivalent direct drive circuit would require a large number of switches in parallel, to achieve the same Thevenin equivalent. The benefits of this approach are replacement of consumable switches with non-consumable transformer cores, reduction of the driver inductance and resistance as viewed by the dynamic load, and reduction of the stored energy to produce a given peak current. The system is designed to operate at 100 Hz, so minimizing the stored energy results in less load on the thermal management system. When operated at 1 Hz, the neutron yield from the transformer matched plasma focus was similar to the neutron yield from a conventional (directly driven) plasma focus at the same peak current.

  1. Equation Free Projective Integration and its Applicability for Simulating Plasma

    NASA Astrophysics Data System (ADS)

    Jemella, B.; Shay, M. A.; Drake, J. F.; Dorland, W.

    2004-12-01

    We examine a novel simulation scheme called equation free projective integration1 which has the potential to allow global simulations of plasmas while still including the global effects of microscale physics. These simulation codes would be ideal for such multiscale problems as the Earth's magnetosphere, tokamaks, and the solar corona. In this method, the global plasma variables stepped forward in time are not time-integrated directly using dynamical differential equations, hence the name "equation free." Instead, these variables are represented on a microgrid using a kinetic simulation. This microsimulation is integrated forward long enough to determine the time derivatives of the global plasma variables, which are then used to integrate forward the global variables with much larger time steps. We are exploring the feasibility of applying this scheme to simulate plasma, and we will present the results of exploratory test problems including the development of 1-D shocks and magnetic reconnection. 1 I. G. Kevrekidis et. al., ``Equation-free multiscale computation: Enabling microscopic simulators to perform system-level tasks,'' arXiv:physics/0209043.

  2. Equation free projective integration and its applicability for simulating plasma

    NASA Astrophysics Data System (ADS)

    Shay, Michael A.; Drake, James F.; Dorland, William; Swisdak, Marc

    2004-11-01

    We examine a novel simulation scheme called equation free projective integration^1 which has the potential to allow global simulations of plasmas while still including the global effects of microscale physics. These simulation codes would be ideal for such multiscale problems as tokamaks, the Earth's magnetosphere, and the solar corona. In this method, the global plasma variables stepped forward in time are not time-integrated directly using dynamical differential equations, hence the name ``equation free.'' Instead, these variables are represented on a microgrid using a kinetic simulation. This microsimulation is integrated forward long enough to determine the time derivatives of the global plasma variables, which are then used to integrate forward the global variables with much larger time steps. We are exploring the feasibility of applying this scheme to simulate plasma, and we will present the results of exploratory test problems including the development of 1-D shocks and magnetic reconnection. ^1 I. G. Kevrekidis et. al., ``Equation-free multiscale computation: Enabling microscopic simulators to perform system-level tasks,'' arXiv:physics/0209043.

  3. Evaluation of extended-release applications for solid dispersion hot-melt fluid bed coatings utilizing hydrophobic coating agents.

    PubMed

    Kennedy, J P; Niebergall, P J

    1998-02-01

    A new hot-melt fluid bed coating method was evaluated for potential extended-release applications. Chlorpheniramine maleate (CPM) USP was chosen as a model drug. The assays for drug release and content uniformity were dictated by the USP Official Monograph for a Chlorpheniramine Maleate Extended-Release Capsule. The fluid bed chamber was charged with CPM-loaded nonpareils and hydrophobic coating agents in the solid state. The method consists of four processing stages: (a) warming, (b) preheating, (c) melting-spreading, and (d) cooling-congealing. Various hydrophobic coating agent candidates were evaluated for extended-release potential by a preliminary screen at a coating agent level of 1.5% (w/w). A beeswax coating agent was identified as the most promising candidate of the preliminary screen. After the level of beeswax was increased to 2.0%, the dissolution profile met all of the specifications of the USP Drug Release Test 1 for a CPM Extended-Release Capsule. The potency and content uniformity remained unchanged by the process. Dual coatings demonstrated a cumulative extension of release superior to the capability of a single coat. The new method is a viable alternative to hot-melt spray-coating methodologies. Organic solvents, spraying equipment, steam jackets, and/or heating tape are eliminated from the process. A reduction of equipment costs, setup time, and cleanup time may be realized. The method has demonstrated extended-release capabilities. No excessive attrition of potency or content uniformity has been noted. Additive, multiple coatings that have a cumulative effect on release retardation are feasible.

  4. Cold Atmospheric Plasma for Medicine: State of Research and Clinical Application

    NASA Astrophysics Data System (ADS)

    von Woedtke, Thomas

    2015-09-01

    Basic research in plasma medicine has made excellent progress and resulted in the fundamental insights that biological effects of cold atmospheric plasmas (CAP) are significantly caused by changes of the liquid environment of cells, and are dominated by redox-active species. First CAP sources are CE-certified as medical devices. Main focus of plasma application is on wound healing and treatment of infective skin diseases. Clinical applications in this field confirm the supportive effect of cold plasma treatment in acceleration of healing of chronic wounds above all in cases where conventional treatment fails. Cancer treatment is another actual and emerging field of CAP application. The ability of CAP to kill cancer cells by induction of apoptosis has been proved in vitro. First clinical applications of CAP in palliative care of cancer are realized. In collaboration with Hans-Robert Metelmann, University Medicine Greifswald; Helmut Uhlemann, Klinikum Altenburger Land GmbH Altenburg; Anke Schmidt and Kai Masur, Leibniz Institute for Plasma Science and Technology (INP Greifswald); Renate Schönebeck, Neoplas Tools GmbH Greifswald; and Klaus-Dieter Weltmann, Leibniz Institute for Plasma Science and Technology (INP Greifswald).

  5. Application of advanced plasma technology to energy materials and environmental problems

    NASA Astrophysics Data System (ADS)

    Kobayashi, Akira

    2015-04-01

    Advanced plasma system has been proposed for various energy materials and for its application to environmental problems. The gas tunnel type plasma device developed by the author exhibits high energy density and also high efficiency. Regarding the application to thermal processing, one example is the plasma spraying of ceramics such as Al2O3 and ZrO2 as thermal barrier coatings (TBCs). The performances of these ceramic coatings are superior to conventional ones, namely, the properties such as the mechanical and chemical properties, thermal behavior and high temperature oxidation resistance of the alumina/zirconia thermal barrier coatings (TBCs) have been clarified and discussed. The ZrO2 composite coating has a possibility for the development of high functionally graded TBC. The results showed that the alumina/zirconia composite system exhibited an improvement of mechanical properties and oxidation resistance. Another application of gas tunnel type plasma to a functional material is the surface modification of metals. TiN films were formed in a short time of 5 s on Ti and its alloy. Also, thick TiN coatings were easily obtained by gas tunnel type plasma reactive spraying on any metals. Regarding the application to the environmental problems, the decomposition of CO2 gas is also introduced by applying the gas tunnel type plasma system.

  6. The Application of Thermal Plasma to Extraction Metallurgy and Related Fields

    NASA Technical Reports Server (NTRS)

    Akashi, K.

    1980-01-01

    Various applications of thermal plasma to extraction metallurgy and related fields are surveyed, chiefly on the basis of documents published during the past two or three years. Applications to melting and smelting, to thermal decomposition, to reduction, to manufacturing of inorganic compounds, and to other fields are considered.

  7. Comparison of hot-pressing, rate-controlled sintering, and microwave sintering of magnesium aluminate for optical applications

    NASA Astrophysics Data System (ADS)

    Gilde, Gary A.; Patel, Parimal J.; Patterson, Mark

    1999-07-01

    There are several crystalline materials that transmit electromagnetic radiation in the visible and IR portion of the spectrum. At this time, single-crystal sapphire, aluminum oxynitride (ALON), and spinel show promise for applications, including advanced electromagnetic windows and transparent armor. These applications require materials with high strength, hardness, and the ability to withstand high temperatures. Because of lower processing temperatures and shorter processing times, it is reasonable to assume that spinel should ultimately be less costly to produce than ALON or sapphire. Despite many attempts to commercialize spinel, it is not available today as an optical materials due to difficulties in reliably obtaining the desired transparently. To help develop a commercial source for transparent spinel, the US Army Research Laboratory and Ceramic Composites Inc. of Annapolis have signed a Cooperative Research and Development Agreement on the 'Development and Dual-Use Assessment of Transparent Spinel'. The advent of commercially available, highly pure spinel powders should lead to improvements in processing spinel to transparency. This investigation compares the advantages and limitations of hot-pressing, microwave sintering, and rate- controlled sintering and compares the limited property data available from each of these fabrication techniques.

  8. Application of Langmuir Probe Method to the Atmospheric Pressure Discharge Plasma

    SciTech Connect

    Matsuura, Hiroto; Matsumura, Yasuhiro; Nakano, Ken

    2008-12-31

    The heat balance model in the probe tip applied to atmospheric pressure plasma is constructed. Considering the natural convective heat loss, the limitation of plasma density for probe application to such a plasma is estimated. The rough limit is about n{sub e} = 10{sup 18} m{sup -3}. Four kind of materials (Cu, SUS, W, Al) are used for probe tips, and are tested in DC atmospheric pressure discharge. Heat conductivity is found to be a more important property than melting point in design of probes in high pressure discharge. DC atmospheric pressure discharge plasma parameters are obtained with our test probes. Obtained density is the order of 10{sup 17} m{sup -3} and does not contradict with the above density limitation. Change of space potential in air/Ar plasma is also confirmed.

  9. A macroscopic plasma Lagrangian and its application to wave interactions and resonances

    NASA Technical Reports Server (NTRS)

    Peng, Y. K. M.

    1974-01-01

    The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.

  10. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  11. The Perspectives of Laboratory Dusty Plasmas for the Applications in Astrophysics

    SciTech Connect

    Kovacevic, E.; Berndt, J.; Boufendi, Laifa; Mutschke, Harald; Stefanovic, I.; Winter, J.; Pendleton, Yvonne J.

    2008-09-07

    It is very well known fact that dust and dusty plasmas are ubiquitous in the space: from interstellar media, to cometary dust, planetary rings and so on. The phenomena concerning the dust in space, seems to have an immense number of facets. The help for the identification of some of the phenomena, or tracing the new ones, has coming during last few decades more and more from the physics of dusty plasmas. We present an overview on the development in the application of laboratory dusty plasmas seizing from the production of interstellar analogs, investigations connected with the field of the interplanetary dust and planet-formation, charging phenomena and their future possibilities of the dusty plasma applications in this field.

  12. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications.

    PubMed

    Jahanbakhsh, Sina; Satir, Mert; Celik, Murat

    2016-02-01

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  13. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    NASA Astrophysics Data System (ADS)

    Jahanbakhsh, Sina; Satir, Mert; Celik, Murat

    2016-02-01

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  14. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    SciTech Connect

    Jahanbakhsh, Sina Satir, Mert; Celik, Murat

    2016-02-15

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  15. Methods of Plasma Turbulence Analysis: Application to Shock Studies

    SciTech Connect

    Balikhin, M.A.; Walker, S.N.

    2005-08-01

    The availability of multisatellite observations (e.g. ISEE, AMPTE, and Cluster) has triggered the development of new methods of analysis to shed light on the complex dynamics inherent in the solar wind and magnetosphere. This paper looks at the results of two such methods. Firstly, the phase differencing method is used to determine the properties of waves observed upstream of a quasiperpendicular bow shock. The resulting dispersion relation is then interpreted as evidence that the waves are generated as a result of the dynamics of the shock front. The second, NARMAX, is used to investigate the linear and nonlinear processes if the plasma observed at a antiparallel shock. The results show that for a small amplitude whistler wavetrain, third order nonlinear interactions are only important at the interface between the shocklet and the wavetrain. For higher amplitude wavetrains, the phase of the linear term describing the plasma is shifted.

  16. Many-Task Applications in the Integrated Plasma Simulator

    SciTech Connect

    Foley, Samantha S; Elwasif, Wael R; Bernholdt, David E; Shet, Aniruddha G; Bramley, R

    2010-01-01

    This paper discusses the Integrated Plasma Simulator (IPS), a framework for coupled multiphysics simulation of fusion plasmas, in the context of many-task computing. The IPS supports multiple levels of parallelism: individual computational tasks can be parallel, components can launch multiple tasks concurrently, tasks from multiple components can be executed concurrently within a simulation, and multiple simulations can be run simultaneously. Each level of parallelism is constructed on top of the many-task computing capabilities implemented in the IPS, the foundation for the parallelism presented at the multiple simulation level. We show that a modest number of simultaneous simulations, with appropriately sized resource allocations, can provide a better trade-off between resource utilization and overall execution time than if they are run as separate jobs. This approach is highly beneficial for situations in which individual simulation tasks may differ significantly in parallel scalability, as is the case in many scientific communities where coupled simulations rely substantially on legacy code.

  17. Application of electron beam plasma for biopolymers modification

    NASA Astrophysics Data System (ADS)

    Vasilieva, T. M.

    2012-06-01

    The effects of the Electron Beam Plasma treatment on natural polysaccharide chitosan were studied experimentally. Low molecular water-soluble products of chitosan and chitooligosaccharides were obtained by treating the original polymers in the Electron Beam Plasma of oxygen and water vapor. The molecular mass of the products varied from 18 kDa to monomeric fragments. The degradation of the original polymers was due to the action of active oxygen particles (atomic and singlet oxygen) and the particles of the water plasmolysis (hydroxyl radicals, hydrogen peroxides). The 95% yield of low molecular weight chitosans was attained by optimizing the treatment conditions. The studies of the antimicrobial activity of low molecular products showed that they strongly inhibit the multiplication of colon bacillus, aurococcus and yeast-like fungi. The EBP-stimulated degradation of polysaccharides and proteins were found to result from breaking β-1,4 glycosidic bounds and peptide bonds, respectively.

  18. Advanced modeling techniques in application to plasma pulse treatment

    NASA Astrophysics Data System (ADS)

    Pashchenko, A. F.; Pashchenko, F. F.

    2016-06-01

    Different approaches considered for simulation of plasma pulse treatment process. The assumption of a significant non-linearity of processes in the treatment of oil wells has been confirmed. Method of functional transformations and fuzzy logic methods suggested for construction of a mathematical model. It is shown, that models, based on fuzzy logic are able to provide a satisfactory accuracy of simulation and prediction of non-linear processes observed.

  19. Topical applications of resonance internal conversion in laser produced plasma

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.

    2007-04-01

    Physical aspects of resonance effects arising in plasma due to interactions of nuclei with the electrons are considered. Among them are resonance conversion (TEEN) and the reverse process of NEET. These processes are of great importance for pumping the excited nuclear states (isomers) and for accelerating their decay. Experiment is discussed on studying the unique 3.5-eV 229m Th nuclide.

  20. Multi-field plasma sandpile model in tokamaks and applications

    NASA Astrophysics Data System (ADS)

    Peng, X. D.; Xu, J. Q.

    2016-08-01

    A multi-field sandpile model of tokamak plasmas is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast/micro time-scale and diffusive transports on the slow/macro time-scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are taken into account simultaneously. New redistribution rules of a sand-relaxing process are defined according to the transport properties of special turbulence which allows the uphill particle transport. Applying the model, we first simulate the steady-state plasma profile self-sustained by drift wave turbulences in the Ohmic discharge of a tokamak. A scaling law as f = a q0 b + c for the relation of both center-density n ( 0 ) and electron (ion) temperatures T e ( 0 ) ( T i ( 0 ) ) with the center-safety-factor q 0 is found. Then interesting work about the nonlocal transport phenomenon observed in tokamak experiments proceeds. It is found that the core electron temperature increases rapidly in response to the edge cold pulse and inversely it decreases in response to the edge heat pulse. The results show that the nonlocal response of core electron temperature depending on the amplitudes of background plasma density and temperature is more remarkable in a range of gas injection rate. Analyses indicate that the avalanche transport caused by plasma drift instabilities with thresholds is a possible physical mechanism for the nonlocal transport in tokamaks. It is believed that the model is capable of being applied to more extensive questions occurring in the transport field.

  1. Laser Diagnostics Study of Plasma Assisted Combustion for Scramjet Applications

    DTIC Science & Technology

    2011-12-01

    future. The combustion process in these engines typically involves highly turbulent reactive flow conditions, often beyond the limits of our...electric field gives rise to new electron and ion impact processes which can enhance the propagation and branching of radicals and ultimately...is generated separately and the flame is ignited as the gases pass over the plasma region. The actual oxidation process occurs further downstream

  2. Plasma treatments of wool fiber surface for microfluidic applications

    SciTech Connect

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su; Boo, Jin-Hyo; Yun, Sang H.

    2015-09-15

    Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For this reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.

  3. Nonthermal Argon Plasma Generator and Some Potential Applications

    NASA Astrophysics Data System (ADS)

    Bunoiu, M.; Jugunaru, I.; Bica, I.; Balasoiu, M.

    2015-12-01

    A laboratory - made nonthermal plasma generator is presented. It has a diameter of 0.020 m and length of 0.155 m and contains two electrodes. The first electrode is a 2% Th-W alloy, 0.002 m in diameter bar, centred inside the generator's body by means of a four channel teflon piece; the other three channels, 0.003 m in diameter, are used for Ar supply. The second electrode is a nozzle of 0.002 m - 0.008 m diameter and 0.005m length. A ~500 kV/m electric field is generated between the two electrodes by a high frequency source (13.56 MHz ±5%), equipped with a OT-1000 (Tungsram) power triode. For Ar flows ranging from 0.00008 m3/s to 0.00056 m3/s, a plasma jet of length not exceeding 0.015 m and temperature below 315 K is obtained. Anthurium andraeanumis sample , blood matrix, human hair and textile fibers may be introduced in the plasma jet. For time periods of 30 s and 60 s, various effects like, cell detexturization, fast blood coagulation or textile fiber or hair cleaning and smoothing are obtained. These effects are presented and discussed in the paper.

  4. Application of optical emission spectroscopy for the SNS H- ion source plasma studies

    NASA Astrophysics Data System (ADS)

    Han, B. X.; Stockli, M. P.; Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.

    2015-04-01

    The SNS H- ion source is a dual-frequency RF-driven (13.56-MHz low power continuous RF superimposed by 2-MHz high power pulsed RF with ˜1.0 ms pulse length at 60 Hz), Cs-enhanced ion source. This paper discusses the applications of optical emission spectroscopy for the ion source plasma conditioning, cesiation, failure diagnostics, and studies of plasma build-up and outage issues.

  5. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  6. Characterizations of atmospheric pressure low temperature plasma jets and their applications

    NASA Astrophysics Data System (ADS)

    Karakas, Erdinc

    2011-12-01

    Atmospheric pressure low temperature plasma jets (APLTPJs) driven by short pulses have recently received great attention because of their potential in biomedical and environmental applications. This potential is due to their user-friendly features, such as low temperature, low risk of arcing, operation at atmospheric pressure, easy handheld operation, and low concentration of ozone generation. Recent experimental observations indicate that an ionization wave exists and propagates along the plasma jet. The plasma jet created by this ionization wave is not a continuous medium but rather consists of a bullet-like-structure known as "Plasma Bullet". More interestingly, these plasma bullets actually have a donut-shaped makeup. The nature of the plasma bullet is especially interesting because it propagates in the ambient air at supersonic velocities without any externally applied electric field. In this dissertation, experimental insights are reported regarding the physical and chemical characteristics of the APLTPJs. The dynamics of the plasma bullet are investigated by means of a high-speed ICCD camera. A plasma bullet propagation model based on the streamer theory is confirmed with adequate explanations. It is also found that a secondary discharge, ignited by the charge accumulation on the dielectric electrode surfaces at the end of the applied voltage, interrupts the plasma bullet propagation due to an opposing current along the ionization channel. The reason for this interesting phenomenon is explained in detail. The plasma bullet comes to an end when the helium mole fraction along the ionization channel, or applied voltage, or both, are less than some critical values. The presence of an inert gas channel in the surrounding air, such as helium or argon, has a critical role in plasma bullet formation and propagation. For this reason, a fluid dynamics study is employed by a commercially available simulation software, COMSOL, based on finite element method. Spatio

  7. Magnetic-Nozzle Studies for Fusion Propulsion Applications: Gigawatt Plasma Source Operation and Magnetic Nozzle Analysis

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin

    2004-01-01

    This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.

  8. Quasilinear dynamics of a cloud of hot electrons propagating through a plasma in the presence of an externally applied uniform electric field

    NASA Astrophysics Data System (ADS)

    Foroutan, G.; Robinson, P. A.; Zahed, H.; Li, B.; Cairns, I. H.

    2007-12-01

    The propagation of a cloud of hot electrons through a plasma and the generation of Langmuir waves are investigated in the presence of an externally applied uniform electric field. Using numerical simulations of the quasilinear equations the evolution of the electron distribution function and the spectral density of Langmuir waves are monitored in coordinate and velocity space. It is found that the Langmuir waves are enhanced in the presence of the electric field and the distribution functions of the beam and Langmuir waves diffuse toward large velocities. The overall self-similar characteristic of the system is preserved in the presence of the electric field. The average beam velocity is no longer constant and increases with time along its trajectory, but the acceleration is much less than that of free streaming particles. The beam number density plateaus in coordinate space and large scale, small amplitude fluctuations develop on the top of this plateau. The level of the fluctuations depends on the strength of the electric field. We also investigated the influence of the external electric field on the evolution of gas-dynamical parameters such as the height of the plateau in the beam distribution function in velocity space, its upper velocity boundary, and the local velocity spread of the beam. Due to the finite quasilinear relaxation time and spatial inhomogeneity of the electron beam, different parts of the beam are in different states of relaxation. In the region of partial relaxation the plateau is specified by both upper and lower velocity boundaries. The upper boundary of plateau increases linearly with the strength of the electric field but the lower boundary is independent of it. Contrary to the free streaming of a beam in an electric field or quasilinear relaxation in the absence of the electric field, the local velocity spread of the beam increases during its propagation. Some of the electrons at the back of the beam are also transferred by the electric

  9. Quasilinear dynamics of a cloud of hot electrons propagating through a plasma in the presence of an externally applied uniform electric field

    SciTech Connect

    Foroutan, G.; Robinson, P. A.; Zahed, H.; Li, B.; Cairns, I. H.

    2007-12-15

    The propagation of a cloud of hot electrons through a plasma and the generation of Langmuir waves are investigated in the presence of an externally applied uniform electric field. Using numerical simulations of the quasilinear equations the evolution of the electron distribution function and the spectral density of Langmuir waves are monitored in coordinate and velocity space. It is found that the Langmuir waves are enhanced in the presence of the electric field and the distribution functions of the beam and Langmuir waves diffuse toward large velocities. The overall self-similar characteristic of the system is preserved in the presence of the electric field. The average beam velocity is no longer constant and increases with time along its trajectory, but the acceleration is much less than that of free streaming particles. The beam number density plateaus in coordinate space and large scale, small amplitude fluctuations develop on the top of this plateau. The level of the fluctuations depends on the strength of the electric field. We also investigated the influence of the external electric field on the evolution of gas-dynamical parameters such as the height of the plateau in the beam distribution function in velocity space, its upper velocity boundary, and the local velocity spread of the beam. Due to the finite quasilinear relaxation time and spatial inhomogeneity of the electron beam, different parts of the beam are in different states of relaxation. In the region of partial relaxation the plateau is specified by both upper and lower velocity boundaries. The upper boundary of plateau increases linearly with the strength of the electric field but the lower boundary is independent of it. Contrary to the free streaming of a beam in an electric field or quasilinear relaxation in the absence of the electric field, the local velocity spread of the beam increases during its propagation. Some of the electrons at the back of the beam are also transferred by the electric

  10. PROBING OF THE INTERACTIONS BETWEEN THE HOT PLASMAS AND GALAXIES IN CLUSTERS FROM z = 0.1 TO 0.9

    SciTech Connect

    Gu, Liyi; Nakazawa, Kazuhiro; Makishima, Kazuo; Gandhi, Poshak; Kawaharada, Madoka; Inada, Naohisa; Kodama, Tadayuki; Konami, Saori; Shimasaku, Kazuhiro; Xu Haiguang

    2013-04-20

    Based on optical and X-ray data for a sample of 34 relaxed rich clusters of galaxies with redshifts of 0.1-0.9, we studied relative spatial distributions of the two major baryon contents, the cluster galaxies and the hot plasmas. Using multi-band photometric data taken with the UH88 telescope, we determined the integrated (two-dimensional) radial light profiles of member galaxies in each cluster using two independent approaches, i.e., the background subtraction and the color-magnitude filtering. The intracluster medium (ICM) mass profile of each cluster in our sample, also integrated in two dimensions, was derived from a spatially resolved spectral analysis using XMM-Newton and Chandra data. Then, the radially integrated light profile of each cluster was divided by its ICM mass profile, to obtain a profile of ''galaxy light versus ICM mass ratio''. When the sample is divided into three subsamples with redshift intervals of z = 0.11-0.22, 0.22-0.45, and 0.45-0.89, the ratio profiles over the central 0.65 R{sub 500} regions were found to steepen from the higher- to lower-redshift subsamples, meaning that the galaxies become more concentrated in the ICM sphere toward lower redshifts. A Kolmogorov-Smirnov test indicates that this evolution in the cluster structure is significant on {>=}94% confidence level. A range of systematic uncertainties in the galaxy light measurements, as well as many radius-/redshift-dependent biases to the galaxy versus ICM profiles, have been assessed, but none of them are significant against the observed evolution. Besides, the galaxy light versus total mass ratio profiles also exhibit gradual concentration toward lower redshift. We interpret that the galaxies, the ICM, and the dark matter components followed a similar spatial distribution in the early phase (z > 0.5), while the galaxies have fallen toward the center relative to the others. Such galaxy infall is likely to be caused by the drag exerted from the ICM to the galaxies as they

  11. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    PubMed

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  12. Cold rocks, hot sands: In-situ cosmogenic applications in Australia at ANTARES

    NASA Astrophysics Data System (ADS)

    Fink, David; McKelvey, B.; Hannan, D.; Newsome, D.

    2000-10-01

    The ANTARES AMS facility at ANSTO is conducting a comprehensive program in the application of in-situ cosmogenic radionuclides based on strong university collaborations in the earth sciences. The program targets two major objectives: (1) to determine and improve the Quaternary glacial chronology of the Southern Hemisphere in support of global climate change studies; (2) to characterise the processes of surface weathering and landscape evolution in semi-arid regions of the Australian continent. An overview of the program is presented with preliminary results from the first phase of these studies.

  13. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    SciTech Connect

    Ciocarlan, C.; Wiggins, S. M.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.

    2013-09-15

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive self-focusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.0 × 10{sup 18} cm{sup −3}, the peak normalized laser vector potential, a{sub 0}, increases from 1.0 to 1.85 close to the entrance plane of the capillary compared with a{sub 0} = 1.41 when the plume is neglected.

  14. Investigation of remote sensing scale up for hot cell waste tank applications. CPAC optical moisture monitoring

    SciTech Connect

    Jones, P.L.

    1994-09-01

    This report discusses work done to investigate the feasibility of using non-contact optical absorption to remotely sense the surface moisture content of salt cake materials. Optical measurements were made in a dimensionally scaled setup to investigate this technique for in-situ waste tank applications. Moisture measurements were obtained from BY-104 simulant samples with 0 wt%, 10 wt%, and 20 wt% moisture content using the back-scattered light from a pulsed infrared optical parametric converter (OPC) laser source operating from 1.51 to 2.12 micron. An InGaAs detector, with 0.038 steradian solid angle (hemisphere = 6.28 steradians) collection angle was used to detect the back-scattered light. This work indicated that there was sufficient back-scatter from the BY-104 material to provide an indication of the surface moisture content.

  15. Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications

    SciTech Connect

    Yang Zhong; Robert C. O'Brien; Steven D. Howe; Nathan D. Jerred; Kristopher Schwinn; Laura Sudderth; Joshua Hundley

    2011-11-01

    The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

  16. Controlling plasma stimulated media in cancer treatment application

    NASA Astrophysics Data System (ADS)

    Yan, Dayun; Sherman, Jonathan H.; Cheng, Xiaoqian; Ratovitski, Edward; Canady, Jerome; Keidar, Michael

    2014-12-01

    Cold atmospheric plasma (CAP) constitutes a "cocktail" of various reactive species. Accumulating evidence shows the effectiveness of CAP in killing cancer cells and decreasing the tumor size, which provides a solid basis for its potential use in cancer treatment. Currently, CAP is mainly used to directly treat cancer cells and trigger the death of cancer cells via apoptosis or necrosis. By altering the concentration of fetal bovine serum in Dulbecco's modified Eagle's medium and the temperature to store CAP stimulated media, we demonstrated controllable strategies to harness the stimulated media to kill glioblastoma cells in vitro. This study demonstrated the significant role of media in killing cancer cells via the CAP treatment.

  17. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    NASA Astrophysics Data System (ADS)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  18. NUMERICAL SIMULATION OF HOT ACCRETION FLOWS. II. NATURE, ORIGIN, AND PROPERTIES OF OUTFLOWS AND THEIR POSSIBLE OBSERVATIONAL APPLICATIONS

    SciTech Connect

    Yuan Feng; Bu Defu; Wu Maochun E-mail: dfbu@shao.ac.cn

    2012-12-20

    Hydrodynamical (HD) and magnetohydrodynamical (MHD) numerical simulations of hot accretion flows have indicated that the inflow accretion rate decreases inward. Two models have been proposed to explain this result. In the adiabatic inflow-outflow solution (ADIOS), this is because of the loss of gas in the outflow. In the alternative convection-dominated accretion flow model, it is thought that the flow is convectively unstable and gas is locked in convective eddies. We investigate the nature of the inward decrease of the accretion rate using HD and MHD simulations. We calculate various properties of the inflow and outflow such as temperature and rotational velocity. Systematic and significant differences are found. These results suggest that the inflow and outflow are not simply convective turbulence; instead, systematic inward and outward motion (i.e., real outflow) must exist. We have also analyzed the convective stability of MHD accretion flows and found that they are stable. These results favor the ADIOS scenario. We suggest that the mechanisms of producing outflow in HD and MHD flows are the buoyancy associated with the convection and the centrifugal force associated with the angular momentum transport mediated by the magnetic field, respectively. The latter is similar to the Blandford and Payne mechanism but no large-scale open magnetic field is required. We discuss some possible observational applications, including the Fermi bubble in the Galactic center and winds in active galactic nuclei and black hole X-ray binaries.

  19. Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryocrystallography

    NASA Technical Reports Server (NTRS)

    Snell, Eddie

    2003-01-01

    We have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. Cryocooling is a common technique used for structural data collection to reduce radiation damage in intense X-ray beams and decrease the thermal motion of the atoms. From the thermal images it was clear that during cryocooling a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. As an extension to this work, we used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop for automated structural genomics studies. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These

  20. Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryocrystallography

    NASA Technical Reports Server (NTRS)

    Snell, Eddie H.

    2003-01-01

    In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished from the loop holding them. These large crystals, originally grown for neutron diffraction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we used thermal imaging to study small crystals, held in a cryo- loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryo-cooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is